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The classical store-and-forward routing has and will continue to be the most

important routing architecture in many modern packet-switched communication

networks. In a packet-switched network, data is sent in the form of discrete pack-

ets that traverse hop-by-hop from a source to a destination. At each intermediate

hop, the router stores and examines the packets it receives then forwards them

to the next hop until they reach the correct destinations according to some pre-

defined routing algorithms. Importantly, the intermediate routers do not modify

but simply store and forward the contents of the packets. In contrast, a new gen-

eralized approach to routing called Network Coding (NC) allows the intermediate

routers to modify and combine packets from different sources and destinations in

such a way that increases the overall throughput. The core idea of NC allowing

the intermediate nodes in a network to perform data processing has a wide range

of applications well beyond its initial application to routing, impacting different



disciplines from distributed data storage and security to energy efficient sensor

networks and Internet media streaming. To that end, this dissertation aims to

develop the theories and applications of NC via four main thrusts:

1) Energy efficient NC techniques for sensor networks,

2) Novel NC techniques and protocols for Internet video streaming,

3) Stochastic data replenishment for large scale NC-based distributed storage

systems,

4) Real-world implementation of NC-based distributed video streaming system.

In thrust one, we describe a novel cross-sensor coding technique that combines

network topology and coding techniques to maximize the life-time of a sensor net-

work, by addressing the uneven energy consumption problem in data gathering

sensor networks where the nodes closer to the sink tend to consume more energy

than those of the farther nodes. Our approach is based on the following obser-

vation from the sensor networks using On-Off Keying and digital transmission:

transmitting bit “1” consumes much more energy than bit “0”. Our proposed

coding technique exploits this difference to reduce the communication energy by

limiting the number of bits “1” in the output codeword (low-weight codeword) and

to use NC-based cross-sensor coding technique to equalize the communication en-

ergy among the nodes. This cross-sensor coding scheme can significantly extend

the network lifetime as compared with traditional (binary) coding by solving the

energy-consumption unfairness problem. The theoretical and experimental results

confirm that transmission energy can be reduced substantially (e.g., a factor of 15)

and the unequal energy consumption among nodes can be practically eliminated.



In thrust two, we describe a rate distortion aware hierarchical NC technique

and transport protocol for Internet video streaming. We begin by proposing

a NC-based multi-sender streaming framework that reduces the overall storage,

eliminates the complexity of sender synchronization, and enables TCP streaming.

Furthermore, we propose a Hierarchical Network Coding (HNC) technique that

facilitates scalable video streaming to combat bandwidth fluctuation on the Inter-

net. This HNC technique enables receiver to recover the important data gracefully

in the presence of limited bandwidth which causes an increase in decoding delay.

Simulations demonstrate that under certain scenarios, our proposed NC techniques

can result in bandwidth saving up to 60% over the traditional schemes.

In thrust three, we present a theory of NC-based data replenishment to auto-

mate the process of data maintenance for large scale distributed storage systems.

The data replenishment mechanism is the core of these systems that promises to

reduce the coordination complexity and increases performance scalability. The

data replenishment automates the process of maintaining a sufficient level of data

redundancy to ensure the availability of data in presence of peer departures and

failures. The dynamics of peers entering and leaving the network is modeled as

a stochastic process. We propose a novel analytical time-backward technique to

bound the expected time, the longer the better, for a piece of data to remain in

P2P systems. Both theoretical and simulation results are in agreement, indicating

that our proposed data replenishment via random linear network coding (RLNC)

outperforms other popular strategies that employ repetition and channel coding

techniques. Specifically, we show that the expected time for a piece of data to



remain in a P2P system is exponential in the number of peers used to store the

data for the RLNC-based strategy, while they are quadratic for other strategies.

Furthermore, the time-backward technique can be applied to problems in other

disciplines such as gene population modeling in theoretical biology.

Finally in thrust four, we present the architecture, design, and experimental

results of an actual NC-based distributed video streaming system. We first im-

plement random linear network coding (RLNC) library and show the feasibility of

using RLNC in P2P video streaming applications. Then we design, implement and

analyze RESnc - a resilient P2P video storage and streaming over the Internet us-

ing network coding. RESnc increases the streaming throughput and data resiliency

against peer departures and failures using peer diversity. These improvements are

based on three architectural elements:

1) The RLNC scheme that breaks a video stream into multiple smaller pieces,

codes, and disperses them throughout peers in the network, in such a way to

maximize the probability of recovering the original video under peer departures

and failures;

2) The scalable mechanism for automating the data replenishment process using

RLNC to maintain a sufficient level of redundancy for video stored in the system;

3) The path-diversity streaming protocol for a client to simultaneously stream

a video from multiple peers with minimal coordination.

Experimental results demonstrated that our system adapts well with bandwidth

fluctuation, provides significant playback quality improvement and bandwidth sav-

ing.
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Chapter 1 – Introduction
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The classical store-and-forward routing has and will continue to be the most

important routing architecture in many modern packet-switched communication

networks. In a packet-switched network, data is sent in the form of discrete pack-

ets that traverse hop-by-hop from a source to a destination. At each intermediate

hop, the router stores and examines the packets it receives then forwards them

to the next hop until they reach the correct destinations according to some pre-

defined routing algorithms. Importantly, the intermediate routers do not modify

but simply store and forward the contents of the packets. In contrast, a new gen-

eralized approach to routing called Network Coding (NC) allows the intermediate

routers to modify and combine packets from different sources and destinations in

such a way that increases the overall throughput. The core idea of NC allowing

the intermediate nodes in a network to perform data processing has a wide range

of applications well beyond its initial application to routing, impacting different

disciplines from distributed data storage and security to energy efficient sensor net-

works and Internet media streaming. We begin with the introduction to network

coding and its potential benefits in the next section.

1.1 Network coding concept

Communication networks today share the same fundamental principle of operation,

where network flow is considered as a commodity flow. That is, independent

data streams may share network resources but the information itself is separated.

Generally, all the network functions are based on this assumption. In the network,
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information is transmitted from the source node to each destination node through

a chain of intermediate nodes by a store and forward method. With this method,

data packets received from an input link of an intermediate node are forwarded to

the next node via an output link. Thus, there is no need for data processing at

the intermediate node except for data replication.

Network coding is a recent field in information theory that breaks this as-

sumption. It considers network flows as information flows, where information from

different data streams can be mixed together at the intermediate nodes. Ahlswede

et. al. started the field with their pioneering paper [4]. They showed that the net-

work throughput can approach the max-flow min-cut limit of the network graph

when the intermediate nodes are allowed to combine their received data instead of

simply forwarding them.

The key idea of network coding and its advantage over the traditional routing

schemes can be demonstrated by the butterfly network in figure 1.1. In this multi-

cast scenario, two servers S1 and S2 want to send packets X1 and X2 to both clients

C1 and C2. Assume all links have capacity of one packet per time slot. Clearly,

the optimal links allocation are S1C1 and S1R1 for transmitting packet X1; S2C2

and S2R1 for packet X2. One has to find the optimal transmission schedule for

delivering the packets to both clients.

With traditional routing schemes, the router R1 only forwards the message it

received. Thus, link R1R2 will be bottleneck because it can only deliver either X1

or X2 but not both at the same time as shown in Figure 1.1a. Therefore one of

the clients receives both packets while the other only receives one packet. If the
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X1 X2

S1 S2

X1 X2
R1

X2

C1 C2

R2

X2 X2

X1
X2

X2

X1 X2

S1 S2

X1 X2

21 XX

R1

21 XX
21 XX

C1 C2

R2

X1 X2

2112 XXXX 2121 XXXX

(a) (b)

Figure 1.1: Butterfly network: An example of network coding (a) The bottle-
neck problem exists when using traditional store and forward mechanism, and the
maximum rate is 1.5 if both rates are equal (b) Network coding (by XORing the
received messages) eliminates bottleneck and the achievable rates are 2 for both
sources.

sending rate of both servers are equal, the maximum achievable rate is 1.5.

On the other hand, if the router R1 is equipped with network coding, it encodes

its received packets by any linear combination of X1 and X2 and feeds the middle

link this encoded message, then there is no more bottleneck. For example, by

XORing the two messages, router R1 sends X1

⊕
X2 to R2 as shown in Figure

1.1b. Since C1 already received X1 and C2 got X2 from the side links, both clients

C1 and C2 are able to obtain both messages X1 and X2 by appropriately XORing

the network coded packet with the packet they already received. Therefore, the
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achievable rates are 2 for both clients, which is the optimal min-cut of this network

topology.

Network coding theory has been developed in various directions since first in-

troduced in [4]. Network coding’s popularity has increased and many research

papers have appeared on the subject [97] [14] [21] [32] [44] [29] [41] [36] [12] [38].

In [49], Li et. al. showed that linear codes are sufficient to achieve the maximum

flow bounds for the multicast scenarios. Koetter and Medard [46] presented poly-

nomial time algorithms for encoding and decoding, and Ho et. al. extended their

results to random codes [37].

1.2 Network coding benefits

The elegant network coding paradigm has proved its strength in optimizing the

usage of network resources in practical networking systems such as multicast. In

multicast networks, all receivers are interested in the same information. As a con-

sequence, only the coding task has to be done inside the network while the decoding

process is done at the receivers in order to reconstruct the original information.

This is relatively simple to implement compared to the unicast which requires an

intelligent encoding/decoding inside the network to be profitable.

Network coding has brought a new paradigm to design architectures and proto-

cols for P2P applications. In contrast to the multicast scenario where the benefits

of network coding relate to the specific network topology, the benefits of network

coding in P2P systems mostly stem from solving the block scheduling problem at
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large scale [54]. More specifically, network coding provides the following benefits.

First, it minimizes download times. In such a large scale distributed P2P system,

optimal packet scheduling is very complex. Especially, when the participating

hosts only have very limited information about the underlying network topology.

With network coding, the performance of the system depends much less on the spe-

cific overlay topology and schedule. Consequently, very simple mechanisms that

construct a random overlay can be used. Second, due to the diversity of the coded

blocks, a network coding based solution is much more robust in case the server

leaves early (before all peers have finished their downloads) or in the face of high

churn rates (where nodes only join for a short period of time or leave immediately

after finishing their downloads). Third, in contrast to forwarding based protocols,

the network coding protocol suffers only a small performance penalty when incen-

tive cooperate mechanisms are implemented. That said, network coding has been

successfully applied to content distribution [28, 29], distributed storage [25] and

data dissemination [22]. In which, the most widely known application is Avalanche

[54], a Microsoft prototype for large scale content distribution on a peer-to-peer

network that uses network coding as the core technology. Microsoft has imple-

mented and showed that Avalanche can improve the expected file download time

over BitTorrent by 20 to 30% [1].

Network coding is also highly beneficial to media streaming applications due

to its better network resources utilization. However, the application of network

coding in multimedia streaming is not a trivial task as streaming applications

generally impose strict timing and complexity constraints that limit the coding
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opportunities. The application of network coding to media streaming has to prop-

erly consider the specificities of multimedia communication applications, such as

strict delay constraints, high bandwidth requirements, as well as the unequal im-

portance of the data that further presents some tolerance to packet losses. The

design of the system has to take all these parameters into consideration in order

to produce efficient solutions with a reasonable complexity. When properly de-

signed, network coding is able to take advantage of the network diversity. Network

coding can be used to improve the throughput of a streaming system, to reduce

the end-to-end delay, or to increase the robustness. It also provides an efficient

solution that reduces the control overhead and avoids the need for reconciliation

(reduce coordination between nodes) in distributed systems. Recently, Nguyen

et. al. proposed and showed that network coding also helps multimedia storage

and streaming applications over peer-to-peer networks to improve the quality of

streaming, reduce storage redundancy and increase network robustness again peer

dynamics [59] [58] [60] [61].

1.3 Summary of contributions

Network coding is a novel mechanism that promises optimal utilization of the re-

sources of a network topology. The core idea of NC allowing the intermediate

nodes in a network to perform data processing has a wide range of applications

well beyond its initial application to routing, impacting different disciplines from

distributed data storage and security to energy efficient sensor networks and Inter-
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net media streaming. To that end, this dissertation aims to develop the theories

and applications of NC via four main thrusts:

1) Energy efficient NC techniques for sensor networks,

2) Novel NC techniques and protocols for Internet video streaming,

3) Stochastic data replenishment for large scale NC-based distributed storage

systems,

4) Real-world implementation of NC-based distributed video streaming system.

In thrust one, we describe a novel cross-sensor coding technique that combines

network topology and coding techniques to maximize the life-time of a sensor net-

work, by addressing the uneven energy consumption problem in data gathering

sensor networks where the nodes closer to the sink tend to consume more energy

than those of the farther nodes. Our approach is based on the following obser-

vation from the sensor networks using On-Off Keying and digital transmission:

transmitting bit “1” consumes much more energy than bit “0”. Our proposed

coding technique exploits this difference to reduce the communication energy by

limiting the number of bits “1” in the output codeword (low-weight codeword) and

to use NC-based cross-sensor coding technique to equalize the communication en-

ergy among the nodes. This cross-sensor coding scheme can significantly extend

the network lifetime as compared with traditional (binary) coding by solving the

energy-consumption unfairness problem. The theoretical and experimental results

confirm that transmission energy can be reduced substantially (e.g., a factor of 15)

and the unequal energy consumption among nodes can be practically eliminated.

In thrust two, we describe a rate distortion aware hierarchical NC technique
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and transport protocol for Internet video streaming. We begin by proposing

a NC-based multi-sender streaming framework that reduces the overall storage,

eliminates the complexity of sender synchronization, and enables TCP streaming.

Furthermore, we propose a Hierarchical Network Coding (HNC) technique that

facilitates scalable video streaming to combat bandwidth fluctuation on the Inter-

net. This HNC technique enables receiver to recover the important data gracefully

in the presence of limited bandwidth which causes an increase in decoding delay.

Simulations demonstrate that under certain scenarios, our proposed NC techniques

can result in bandwidth saving up to 60% over the traditional schemes.

In thrust three, we present a theory of NC-based data replenishment to auto-

mate the process of data maintenance for large scale distributed storage systems.

The data replenishment mechanism is the core of these systems that promises to

reduce the coordination complexity and increases performance scalability. The

data replenishment automates the process of maintaining a sufficient level of data

redundancy to ensure the availability of data in presence of peer departures and

failures. The dynamics of peers entering and leaving the network is modeled as

a stochastic process. We propose a novel analytical time-backward technique to

bound the expected time, the longer the better, for a piece of data to remain in

P2P systems. Both theoretical and simulation results are in agreement, indicating

that our proposed data replenishment via random linear network coding (RLNC)

outperforms other popular strategies that employ repetition and channel coding

techniques. Specifically, we show that the expected time for a piece of data to

remain in a P2P system is exponential in the number of peers used to store the
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data for the RLNC-based strategy, while they are quadratic for other strategies.

Furthermore, the time-backward technique can be applied to problems in other

disciplines such as gene population modeling in theoretical biology.

Finally in thrust four, we present the architecture, design, and experimental

results of an actual NC-based distributed video streaming system. We first im-

plement random linear network coding (RLNC) library and show the feasibility of

using RLNC in P2P video streaming applications. Then we design, implement and

analyze RESnc - a resilient P2P video storage and streaming over the Internet us-

ing network coding. RESnc increases the streaming throughput and data resiliency

against peer departures and failures using peer diversity. These improvements are

based on three architectural elements:

1) The RLNC scheme that breaks a video stream into multiple smaller pieces,

codes, and disperses them throughout peers in the network, in such a way to

maximize the probability of recovering the original video under peer departures

and failures;

2) The scalable mechanism for automating the data replenishment process using

RLNC to maintain a sufficient level of redundancy for video stored in the system;

3) The path-diversity streaming protocol for a client to simultaneously stream

a video from multiple peers with minimal coordination.

Experimental results demonstrated that our system adapts well with bandwidth

fluctuation, provides significant playback quality improvement and bandwidth sav-

ing.
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1.4 Organization of the Dissertation

The dissertation contains seven chapters. Each chapter presents a completed work

with sufficient background, detail proofs and main results. In Chapter 2, we provide

the background and preliminaries on network coding, sensor networks, P2P net-

works and media streaming. Chapter 3 presents the energy efficient NC techniques

for sensor networks. Next, we propose and investigate the novel NC techniques

and protocols for Internet video streaming in Chapter 4. In Chapter 5, we describe

a stochastic data replenishment for large scale NC-based distributed storage sys-

tems. Then we present a real-world implementation of NC-based distributed video

streaming system in Chapter 6. Finally, we conclude the dissertation with some

remarks and future work in Chapter 7.
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Chapter 2 – Background and Preliminaries
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2.1 Network Coding

The network coding field started with the pioneering paper by Ahlswede et. al.,

who showed that maximum capacity in a network can be achieved by appropriately

mixing data at the intermediate nodes [4]. The most elegant result of network

coding is that the maximum network capacity is achievable using some random

network coding techniques, while this is not usually possible with the traditional

store and forward routing. Li et. al. [49] showed that linear coding with finite

symbol size is sufficient for multicast. We will discuss their work shortly.

2.1.1 Linear Network Coding

Consider a system that acts as information relay, such as a router, a node in an ad-

hoc network, or a node in a peer. Traditionally, when forwarding an information

packet destined to some other nodes, it simply repeats it. With network coding,

the relay node combines a number of packets it has received or created into the

outgoing packets. Li et. al. proposed linear network coding [49], where outgoing

packets are linear combinations of the original packets and performed over the field

Fq. Linear combination is not concatenated, i.e. if we linearly combine packets of

length L, the resulting encoded packet also has length L.

The encoding process can be described as follows. Assume that there are m

original packets M1, ...,Mm generated by one or several sources in the system.

Using linear network coding, each relay node in the network generates the new
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forwarded packet Xi by combining m original packets as:

Xi =

m∑
j=1

gijMj (2.1)

where the coefficients gi1, ..., gim are chosen from a finite field Fq. That node

then includes the information about the coefficients {gij} in the header of the new

packets and sends the new packet to its neighbors. Encoding can be performed

recursively, namely, to already encoded packets. This operation may be repeated

at several nodes in the network and doesn’t affect the decoding process.

Assume that the receiver node has received n encoded packets. It decodes to

the original packets by solving the set of n following equations

{Xi =

m∑
j=1

gijMj, i = 1, ...n} (2.2)

for the unknowns {Mj}. This is a linear system with n equations and m unknown

variables. In order to recover all original data packets, the receiver has to collect

at least m linearly independent encoded packets, which means that the number

of received packets needs to be at least as large as the number of original packets

(n ≥ m).

The question of network code design is how to select linear combinations at

each node of the network. A simple algorithm is to let each node in the network

select uniformly at random the coefficients over the field Fq [35], in a completely

independent and decentralized manner as shown in Figure 2.1. If the field size q is
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large enough, the probability of selecting linearly dependent combinations will be

very small and can be negligible. Thus, the receiver will get enough independent

encoded packets with high probability and small redundancy. In other words, it

can retrieve the original packets with high probability.

S
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21, XX

2413 XX2211 XX

24136
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Figure 2.1: An example of random linear network coding in multicast scenario. X1

and X2 are the original packets that source S want to multicast to the receivers R1

and R2. The coefficients ξi are randomly chose elements of a finite field Fq. The
label on each link represents the encoded packet being transmitted on the link.

2.1.2 Algebraic Network Coding

Another network code construction method was proposed by Koetter and Medard

in [46]. They introduced an algebraic framework for network coding that extended

previous results from Li et. al. [49] to arbitrary networks and robust network-

ing. They proved the achievability with time-invariant solutions of the min-cut

max-flow bound for networks with delay and cycles. They also gave an algebraic

characterization of the feasibility of a multicast problem and the validity of a net-
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work coding solution in terms of transfer matrices.

In the scalar algebraic coding framework of [46], the source originated packets

Xj, the encoded packets transmitted on each link Yj and the receiver output packets

Zj are treated as elements of a finite field Fq. The encoded packets Yj transmitted

on a link j is constructed by a linear combination in Fq of link j’s input packets.

For the delay-free case, this is represented by the equation:

Yj =
∑

source(i)=input(j)

αijXi +
∑

link(l)=input(j)

βljYl (2.3)

The ith output packet at receiver node, Zi, is a linear combination of the encoded

packets on its terminal links, represented as:

Zi =
∑

link(l)=input(k)

γliYl (2.4)

where all the coefficients {αij}, {βlj} and {γli} are elements of the finite field Fq.

This code construction mechanism can be demonstrated by the following example.

Consider the delay free network which has only one source S and one sink R as

shown in Figure 2.2. The information transferring process from the source to the
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Figure 2.2: A simple network with one source and one sink, and their input and
output packets.

sink can be represented by the following algebraic equations.

Y1 = α11X1 + α21X2 + α31X3

Y2 = α12X1 + α22X2 + α32X3

Y3 = α13X1 + α23X2 + α33X3

Y4 = β14Y1 + β24Y2 (2.5)

Y5 = β15Y1 + β25Y2

Y6 = β36Y3 + β46Y4

Y7 = β37Y3 + β47Y4

Z1 = γ51Y5 + γ61Y6 + γ71Y7

Z2 = γ52Y5 + γ62Y6 + γ72Y7 (2.6)

Z3 = γ53Y5 + γ63Y6 + γ73Y7
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Let matrices A and B be defined as

A =

⎡
⎢⎢⎢⎢⎣

α11 α21 α31

α12 α22 α32

α13 α23 α33

⎤
⎥⎥⎥⎥⎦ (2.7)

B =

⎡
⎢⎢⎢⎢⎣

γ51 γ61 γ71

γ52 γ62 γ72

γ53 γ63 γ73

⎤
⎥⎥⎥⎥⎦ (2.8)

then the transfer matrix describing the relationship between the output and input

processes z = Mx can be calculated as

M = B

⎡
⎢⎢⎢⎢⎣

β15 β25 0

β14β46 β24β46 β36

β14β47 β24β47 β37

⎤
⎥⎥⎥⎥⎦A = BGA (2.9)

For a network code to exist, the above equation must be solvable, i.e. the transfer

matrix M must be invertible. Therefore, we can choose the coefficients {αij}, {βlj}
and {γli} in the finite field Fq so that the determinant of M is nonzero over Fq.

One such solution is choosing M to be an identity matrix. There exists an infinite

number of solutions to this problem, namely all assignments of parameters which

render a nonzero determinant of the transfer matrix M.
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2.1.3 Applications of Network Coding

Network coding is a novel mechanism that promises optimal utilization of the

resources of a network topology. With network coding, intermediate nodes in

the network mix information from different flows rather than just forward them

independently. This elegant transmission paradigm has proved its strength in op-

timizing the usage of network resources and might have interesting applications in

practical networking systems such as multicast. In multicast networks, all receivers

are interested in the same information. As a consequence, only the coding task has

to be done inside the network while the decoding process is done at the receivers

in order to reconstruct the original information. This is relatively simple to imple-

ment compared to the unicast case which requires an intelligent encoding/decoding

inside the network to be profitable.

The other scenario that profited from the power of network coding is file sharing

applications running on top of peer-to-peer networks. With network coding, every

transmitted packet is a linear combination of all or a subset of the packets available

at the sender. And the encoded packets can be further recombined to generate

new linear combinations, which enables nodes to generate encoded packets without

having the full file. The original information can be reconstructed after receiving

enough linearly independent packets.

Network coding is of great use in large-scale distributed systems [29]. The most

widely known application is Avalanche [54], a Microsoft prototype for large scale

content distribution on a peer-to-peer network that uses network coding as the core
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technology. Microsoft has implemented and shown that Avalanche can improve the

expected file download time over BitTorrent [1] by 20% to 30%. Recently, Nguyen

et. al. proposed and showed that network coding also helps multimedia storage

and streaming applications over peer-to-peer networks to improve the quality of

streaming, reduce storage redundancy and increase network robustness again peer

dynamics [59] [58] [60].

2.2 Sensor network

A sensor network is typically composed of a large number of small-size, low-cost,

low power sensor nodes which are randomly deployed and communicated with one

another to send data to the sink. Because of the limited capability of sensor nodes,

data can only be transmitted to the neighboring nodes, which then further relay

the data to its neighbor in the direction to the sink. Traversing hop by hop, the

report finally reaches the sink to be analyzed and taken further action as required

by the application (as shown in Figure 2.3).

Sensor networks have a variety of applications such as environmental moni-

toring, habitat monitoring, geophysical monitoring, military surveillance etc. A

typical use of sensor networks is to have a kind of streaming data, in which little

amount of data (typically just a few bytes) are transmitted periodically as in tem-

perature measurement system. The large number of nodes allows taking advantage

of short-range, multi-hop communication to conserve energy, especially when data

aggregation is applied.
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Figure 2.3: Sensor network and multi-hop transmission.

Sensors networks are most valued for their small size and low processing capa-

bilities. A small sensor can only be equipped with limited power source. Also, in

most cases, the environment to be monitored does not have an existing infrastruc-

ture for either energy or communication. It becomes imperative for sensor nodes

to survive on limited energy and communicate through a wireless communication

channel. Energy efficiency is a major concern in wireless sensor networks.

Typically, a wireless sensor node includes four basic components [72]: (i) a sens-

ing subsystem for data acquisition from the physical surrounding environment; (ii)

a processing subsystem for local data processing and storage; (iii) a wireless com-

munication subsystem for data transmission, and (iv) a power supply subsystem.

In which, communication subsystem is the main source of energy consumption.

The energy cost of transmitting a single bit of information is approximately the
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same as that needed for processing a thousand operations in a typical sensor node

[69]. The energy consumption of the sensing subsystem depends on the specific

sensor type. In many cases it is negligible with respect to the energy consumed by

the processing and, above all, the communication subsystems. In other cases, the

energy expenditure for data sensing may be comparable to the energy needed for

data transmission. In general, energy-saving techniques focus on two subsystems:

the communication subsystem (i.e., energy management is taken into account in

the operations of each node, as well as in the design of networking protocols), and

the sensing subsystem (i.e., techniques are used to reduce the amount or frequency

of energy-expensive samples).

Energy optimization in wireless sensor networks becomes more complicated

because it involved not only the reduction of energy consumption at individual

node but also prolonging the network lifetime. Thus, energy awareness must be

incorporated into the entire network, not only at the individual node. These

necessitate energy-awareness at all layers of networking protocol stack. The issues

related to physical and link layers are generally common for all kind of sensor

applications. Many solutions have been proposed and focused on system-level

power awareness such as dynamic voltage scaling, radio communication hardware,

low duty cycle, system partitioning, energy aware MAC protocols [34] [55] [93]

[94] [83]. At the network layer, the main aim is to find ways for energy efficient

route setup and reliable relaying of data from the sensor nodes to the sink so that

the lifetime of the network is maximized [89] [40] [20]. In our work, we tackle

the problem at the upper layer. Specifically, we exploit the delay-energy trade-
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off and the known network topology in order to reduce the transmission energy

consumption of the network. Using idea of network coding, we are able to design

an efficient cross-sensor coding technique to prolong the network lifetime of the

low-energy sensor networks.

2.3 Internet media streaming

Recent years have witnessed an explosive growth of the Internet with greater net-

work bandwidth and increasing access to networks. The advances in computer

networking together with powerful personal devices make multimedia streaming

practical and affordable for ordinary consumers. The demand of multimedia ser-

vices over the Internet is expanding from PC into new user platforms such as

hand-held wireless devices, interactive television set-top boxes, games consoles,

3G mobile phones, etc. It has received tremendous attention from academia and

industry to accommodate this growing demand.

Multimedia streaming over the Internet is challenging due to bandwidth fluc-

tuation, delay and packet loss. The current best-effort Internet does not offer any

quality of service (QoS) guarantees to multimedia streaming. It does not provide

any guarantees that media packet will reach its destination, and the packets which

do arrive may not arrive in the same order to which they were sent. Furthermore, it

is difficult to achieve both efficiency and flexibility in streaming. To address these

challenges, extensive research has been conducted and many solutions have been

proposed, ranging from source and channel coding to network protocols and archi-
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tecture. For example, to combat the fluctuating and limited bandwidth, a scalable

video bit stream is used to allow a sender to dynamically adapt its video bit rate

to the available bandwidth at any point in time [86]. To reduce packet loss and the

associated delay due to the retransmissions of the lost packets, Forward Error Cor-

rection (FEC) techniques have been proposed to increase reliability at the expense

of bandwidth expansion [53]. However, all the existing approaches have their own

drawbacks that can not fully utilize the benefit of distributed computing on the

Internet. There is a need to develop a new framework for multimedia storage and

streaming over the Internet. One promising approach is the recent development of

network coding (NC) paradigm which has been shown to improve the performance

of the networks, such as bandwidth efficiency and robustness to network dynamics.

Before discussing the benefits of network coding in multimedia streaming, we first

begin with a review of the existing multimedia streaming architectures.

2.3.1 Streaming architecture

The traditional architecture for multimedia streaming over the Internet is client-

server model. It allocates servers and network resources for each client request.

One variation of client-server model is Content Delivery Network (CDN). CDN

aims to improve the throughput by pushing content to the servers strategically

placed at the edge of the network. This allows a client to choose the server that

results in shortest round-trip time and/or least amount of congestion (which is

called edge streaming). The major challenge of server based multimedia streaming
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is its scalability. The server load and network bandwidth at server side must grow

proportionally with the client population. This makes the client-server approach

very expensive and not scalable.

For example, Youtube, the most popular video storage and streaming system

on the Internet where its users can upload, view and share their video clips with

others, employs CDN to stream video to end users. In January 2008 alone, nearly

79 million users had viewed over 3 billion videos. Although the numbers are im-

pressive, majority of YouTube videos are rather short and of low-quality, resulting

in manageable amounts of storage and streaming bandwidth. This allows YouTube

to centrally control and coordinate their servers. However, its bandwidth cost is

estimated at one million dollars a day. This does not scale since the server compu-

tational capability and the network bandwidth at the server side ultimately limit

the number of clients that can be served at any given time.

Recently, the multi-sender streaming paradigm has been proposed as an alter-

native to edge streaming to provide smooth video delivery [74, 63, 8]. The main

idea is to have each server storing an identical copy of the video. The video is

partitioned into multiple disjoint parts, each part is then streamed from separated

server to a single receiver simultaneously. Having multiple senders is in essence

a diversification scheme in that it combats unpredictability of congestion in the

Internet. However, the above schemes are all rely on the dedicated server and not

storage efficient. Specifically, smooth video delivery can be realized if we assume

independent routes from various senders to the receiver, and argue that the chances

of all routes experiencing congestion at the same time is quite small. If the route
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between a particular sender and the receiver experiences congestion during stream-

ing, the receiver can re-distribute rates among the existing senders, or recruit new

senders to provide the required throughput. This requires a careful synchroniza-

tion among the senders to ensure that distinct partitions of a video are sent by

different senders in order to increase the effective throughput. In other words,

one must design an optimal partition algorithm to dynamically assign chunks of

different lengths to different senders based on their available bandwidths. This dy-

namic partition algorithm, however is often suboptimal due to the lack of accurate

available bandwidth estimation.

The recent development of Peer-to-Peer (P2P) networks opens a new possibility

of building completely distributed systems that can eliminate the computational

and bandwidth bottlenecks existed in the client-server architecture. The basic

design philosophy of P2P is to encourage users to act as both clients and servers

(peers), where a peer not only downloads data from the network, but also uploads

its data to other peers in the network. The uploading bandwidth of peers is

efficiently utilized to reduce the bandwidth burdens placed on the servers.

The advantage of P2P systems resides in their capability for self organization,

scalability, and path diversity, which are all very attractive features for effective

delivery of media streams over the networks. However, providing streaming service

over P2P networks is still a challenging task because of their inherent instability

and unreliability. To that end, a fair amount of distributed system research has

recently been focused on using P2P platforms to build reliable, large scale dis-

tributed systems for media storage and delivery over the Internet [76, 85, 73]. In
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these systems, data is stored distributedly at different peers. In some P2P multi-

media media streaming systems, original data such as a video file does not have

to be stored entirely at a peer. Rather, a video is broken into multiple pieces,

coded properly, then dispersed to a number of peers in the network. Given a

policy on data redundancy, each peer may contain only a fraction of the video,

but collectively, the entire network has the entire video plus some redundancy to

safeguard data against peer failures or departures. Furthermore, the dispersion of

data over the network provides robustness against the single point of failure. In

this setting, to watch a video, a client requests simultaneous transmissions from

multiple peers that collectively have the complete requested video. This approach

creates multiple Internet routes for transmitting a video to a client, resulting in

larger throughput.

However, the specificity of media applications in terms of bandwidth, delay,

and reliability are not completely addressed by the characteristics of unstructured

P2P systems. The lack of coordination of such systems, the limited peer capa-

bilities, and the low system stability over time represent a great challenge for the

deployment of high quality P2P streaming applications. The replacement or ex-

tension of conventional media delivery infrastructures with P2P systems clearly

requires the adaptation of existing coding, routing, and scheduling algorithms to

unreliable network environments. Network coding is a promising approach which

has recently emerged as an alternative to traditional routing algorithms.
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2.3.2 Peer-2-Peer streaming

Peer-to-peer (P2P) systems are becoming increasingly popular due to their ability

to deliver large amounts of data at a reduced deployment cost. In which, BitTorrent

system [1] is the most popular application. A BitTorrent file is partitioned into

multiple distinct pieces, and these pieces are then exchanged among the peers to

increase the receiving throughput as compared to using a single server to send the

pieces to multiple receivers. Thus, at any point in time, a peer can receive multiple

pieces from different peers. BitTorrent can be viewed as multi-sender system.

P2P systems also represent a scalable and cost-effective alternative to tradi-

tional media streaming services that enables extended network coverage in the

absence of IP multicast or expensive content distribution networks (CDN). As a

P2P system does not provide any guaranteed support to streaming services, these

must rely on self-organized and adaptive network architectures to meet their strin-

gent quality requirements. The delivery architectures for streaming applications

can be broadly classified into two categories: (1) tree-based overlay for streaming

sessions from media sources to a pool of client peers, and (2) mesh overlay for

massive parallel content distribution among peers.

2.3.2.1 Tree-based topology

Tree-based overlay organizes the peers as a single or multiple trees overlay rooted

at the media source as shown in figure 2.4. Clients are leaf nodes in the distribu-

tion tree, while intermediate peers push the content from the source. A peer can
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simultaneously be a leaf in some distribution trees and an intermediate node in

others.

Sender

Figure 2.4: Tree-based topology.

The first tree-based approaches to p2p streaming derived from early research on

application-level overlays [9] [87]. The main motivation was to provide the benefits

of an easily deployable multicast infrastructure. In which, no native support for

IP multicast was available, and an unique overlay tree was used to convey data.

End System Multicast (ESM) [15] is the first large-scale video distribution system

based on a single-tree multicast infrastructure had been deployed. NICE [9] orga-

nizes nodes in a hierarchical, cluster-based single tree overlay, trying to optimize

the average delay through appropriate node management policies and cluster-head

selection criteria. ZIGZAG [87] improves on this design by adding redundancy to
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the cluster management mechanisms to better cope with node churn. ZIGZAG or-

ganizes receivers into a hierarchy of bounded-size clusters and builds the multicast

tree based on that.

The fundamental shortcoming of all tree-based systems is due to the limitations

imposed by the tree structure. Single tree architectures are easy to implement and

maintain. However, they are highly vulnerable to peers joining/leaving the system

(peer churn). A departure peer will temporarily disrupt video delivery to all peers

in the subtree rooted at the departed peer. The maintenance, optimization, and

recovery of failed overlay tree links can become a daunting task under heavy churn.

In addition, the delivery rate is limited by the minimum upload bandwidth of the

intermediate peers in the branch, as each client is connected to the source through

a single tree branch. Each internal node is a possible bandwidth bottleneck for the

subtree it serves, and packet losses do accumulate while descending the tree.

Multiple-tree based overlays have been proposed to address the above problems

by providing redundancy in network paths. They encode the stream as multiple

independent MDC (multiple description coding) stripes [12] and stream them over

several trees. For example, Splitstream [13] creates multiple interior-node-disjoint

trees. Every peer is an interior node in at most one tree, thus mitigating the

bottleneck data loss problem (a single failure results in the interruption of at most

one stripe), and the capacity limiting problem (each node is likely to be an interior

node in at least one tree). In Coopnet [67], Padmanabhan et al. used multiple

overlay multicast trees to stream multiple descriptions of the video to the clients.

Each multicast tree transmits a description of the video. When a large number
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of descriptions are received, higher video quality can be achieved. Recently, Li et

al. proposed MutualCast [48] which focuses on throughput improvement for data

dissemination in P2P network. MutualCast employed partitioning techniques and

a fully connected topology to ensure that the upload bandwidth of all the nodes is

fully utilized.

However, designing and maintaining such multiple-tree based systems becomes

less trivial. These also can lead to solving contradictory issues such as minimizing

tree depth, while simultaneously provisioning network path diversity. Most impor-

tantly, the underlying physical topology must be carefully considered to achieve

efficient content dissemination [66].

2.3.2.2 Mesh topology

Mesh overlay architecture is based on self organization of nodes in a directed mesh

to deliver media to clients as shown in Figure 2.5. The original media content

from a source is distributed among different peers. A peer is connected to the

mesh through one or more parent peers, where it retrieves media information and

a set of child peers, to which it serves media packets.

Mesh-based designs aim to further reduce the structural constraints in media

streaming systems to improve their resilience against churn and node transience.

The stream is divided into a number of chunks, which are distributed by the source

to few nodes in the system. Nodes must exchange chunks to retrieve a sufficiently

complete stream before the play-out deadline. Bullet [47] is an early approach
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Sender

Figure 2.5: Mesh topology.

that combines a single-tree and a mesh: the tree is used to convey both data

chunks and control information, while the mesh is created independently by the

nodes based on the control information. An advantage of this scheme is that the

control protocol running on the tree can have a very low overhead. On the other

hand, no mechanism to encourage bandwidth contribution has been implemented

in the system. Coolstreaming/DONet [95] introduced a better chunk scheduling

algorithm that takes into account the individual chunk deadlines for play-out.

While each node performs a periodical long-term optimization of the mesh by

replacing the least contributing neighbors, the system is not meant to address the

combined effects of upload bandwidth heterogeneity under global shortage and high

churn rates. User experiences with the Coolstreaming application seem to indicate
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that it suffers from a high play-out latency, probably due to conservative data

buffering. PULSE [68] constantly optimizes its mesh of data connections using a

feedback-driven peer selection strategy that is based on pairwise incentives. Its

dynamically optimized mesh supports high bandwidth heterogeneity and churn,

while its buffering requirements are typically low even under a moderate shortage

of global serving capacity.

However, these systems do not use any sophisticated coding. Thus the perfor-

mance can be shown theoretically lower than those of P2P systems that employ

coding to cope with the variation in unstable P2P networks. For example, video

can be compressed and packaged in a form that facilitates adaptation to variable

network bandwidth, packet loss, and delay; error control mechanism in the form

of packet retransmission and forward error correction can help increase robustness

of streaming applications.

Systems that employ coding techniques include the work of Byers et al. [11]

on informed overlay network. In this work, Byers et al. proposed to partition data

and make use of peers to increase the throughput of the system. In this approach,

each node randomly sends different coded partitions on different links. Data recon-

ciliation techniques are then used to reduce data redundancy sent between nodes.

Recently, network coding helps increase network capacity (by reducing the

amount of replication) and its resilience to packet loss. Random network coding

technique has been previously used in Avalanche system for file distribution in P2P

network [29], in distributed storage system [3], and in live peer-to-peer streaming

[91]. R2 [91] incorporates random network coding along with a random pushing
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algorithm to smooth the latency problems, reduce buffer level and increase system

scalability.

The potentials of network coding in peer-to-peer video streaming have yet to be

explored. There are additional issues arising from the unique features of stream-

ing applications. First, unlike file, video is loss-tolerant. With network coding,

however, available data blocks might not be decodable if one or more blocks are

missing before playback deadline. Second, given the unbounded session time of

live streaming, the buffer at each node has to be updated over time to remove

obsolete data. This is different from bulk file download where the buffer is just

allocated for the file with minimizing the filling up time being the key objective.



35
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3.1 Introduction

Recent years have witnessed an explosive growth of sensor networks designed for

environmental data gathering and monitoring [5] [42] [71]. A typical sensor network

for data gathering consists of a large number of battery operated sensor nodes, each

is capable of sensing and forwarding its data wirelessly to the processing node

through its neighboring nodes. The sensor networks are often designed to operate

at low power in order to prolong their life times. However, building a truly energy

efficient sensor network is still a challenging problem. There has been a large

body of work on reducing energy consumption of sensor networks using different

approaches, from low-voltage hardware designs [71] and transmission schemes [33]

to in-network processing and routing algorithms [93].

Recently, several energy efficient algorithms for sensor networks based on the

correlation characteristic of data have been studied. From signal processing per-

spective, if the measured data among the nodes are spatially correlated, a node

can jointly compress its data and its neighbor’s data to increase the capacity of the

network [18] [19] [17] or to minimize the energy to transmit the data [51] [82]. The

larger correlation results in larger energy saving [84]. The argument for energy

reduction using data compression is based on the entropy concept from informa-

tion theory [16]. The entropy represents the amount of information in terms of

the number of bits. Therefore, by compressing the data to a smaller number of

bits, less energy is required to send these bits. However, in many situations with

practical sensor networks, the assumption of data correlation is not applicable.
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An important problem in sensor network is the uneven energy consumption of

the nodes, specifically the energy spent on communication. The nature of data

forwarding in a sensor network implies that sensor nodes closer to the processing

node (the sink) tend to spend more energy than those of the farther nodes in order

to relay the accumulated data. Figure 3.1 shows an example in which data are

collected and relayed through the internal nodes 2 and 3, and eventually to the

processing node 4. Thus, nodes 2 and 3 consume two and three times more energy

than node 1, respectively because they have to relay the data of other nodes.

This energy unfairness problem can significantly shorten the life time of a sensor

network.

1 2 3 4

x1

x1
x2

x1
x2
x3

Figure 3.1: A simple sensor network. All measured data from nodes 1, 2, and 3
are relayed to node 4

To see the seriousness of this problem, we assume that all the nodes have

identical batteries designed to continuously measure and transmit one sample of

data to the next hop for 3 months. Then, node 2 will run out of battery in 1.5

months, and node 3 will run out of battery in 1 month. Thus, while nodes 1 and

2 still function after one month, the sensor network is unusable due to node 3’s

failure. In other words, the life time of this sensor network depends on the life

time of node 3. Therefore, it is extremely important to incorporate the knowledge
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of the network topology into the design of a long-lived sensor network. We will

show that by allowing the internal nodes to re-encode the data they receive with

appropriate codes based on its position in the network, the energy consumption can

be significantly reduced.

This work proposes a low-weight cross-sensor coding technique to reduce the

communication energy and alleviate the problem of unequal energy consumption

among nodes in a sensor network, thus improving its lifetime. Our approach is

based on the following observation. Assume that digital transmission is used, and

transmitting bit “1” consumes much more energy than bit “0”. This is typically

true in optical communication where transmitting a bit “1” requires much energy

to generate a laser pulse, while being silent represents a bit-“0” transmission. Our

proposed coding technique exploits this difference to reduce the communication

energy by limiting the number of bits “1” in the output codeword (low-weight

codeword) and to use a cross-sensor coding technique to equalize the communica-

tion energy among the nodes. The proposed technique is designed to reduce the

communication energy for fiber-optic sensor networks similar to the one used by

Selker et al. as shown in Fig. 3.2 [81]. This sensor network consists of tempera-

ture sensors connected to each other through a fiber-optic cable. Each sensor can

measure temperature at temporal resolution of fractions of a minute.
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Figure 3.2: An fiber-optic sensor network deployed in lake Geneva.

3.2 Related Work

There has been a large amount of research on designing energy efficient sensor net-

works, from hardware designs and modulation schemes to MAC/routing protocols

and in-network processing techniques. In this section, we list a few works in this

area.

Many data aggregation algorithms for sensor networks have been recently pro-

posed for energy optimization [19, 17, 18, 51]. In [19], Cristescu et al. apply

information network theory to sensor network by using a simple model for data

compression and devise approximate algorithms for constructing a shortest path

tree to aggregate data from multiple sensors to a sink in order to minimize the total

energy. While this approach can greatly reduce the energy consumption, it relies

on large correlation of data at different sensors to achieve low energy consumption,
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which may not be true in many real-world scenarios.

Similar work on aggregation of correlated data in sensor network are studied

by Enachescu and Sharaf in [27] and [82]. In [27], the authors propose a simple

randomized algorithm for routing data on a grid of sensors in a way that promotes

data aggregation. They show that their randomized algorithm is a constant factor

approximation to the optimal aggregation tree. On other hand, our work does not

rely on data correlation.

Several researchers work on constructing the optimal prefix codes with unequal

letters costs [43, 10, 30]. They solved this problem by transformation to integer

linear programming to find the bound and necessary coefficients. In [43], Karp

also proved and proposed a method to construct the optimal codes from those

coefficients.

Our approach is similar to the works of Liu et al. [52], Kim et al. [45], and

Prakash et al. [70], in which the authors optimize the energy consumption by

exploiting different transmission energies for bits “1” and “0”. Our work is also

similar to the silence based communication paradigm proposed in [98]. In [23],

Dhulipala et al. also characterized the complexity of silence based communication.

On the other hand, unlike previous approaches, our approach introduces a novel

concept of coding data across different sensors which can alleviate the problem of

uneven energy consumption at different sensors, thus prolonging the lifetime of a

sensor network.
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3.3 Sensor Network Model

This work does not address the overall energy consumption problem for the general

class of sensor networks. Instead, it is useful for reducing communication energy

for a number of sensor networks in which the following assumptions hold:

1. Data is transmitted digitally using On-Off Keying (OOK) technique with bit

“1” using more energy than that of bit “0”.

2. Largest source of energy consumption is transmission.

3. All the sensor nodes are equipped with a loosely synchronized clock.

4. The sensor network is designed to collect data at low frequency, i.e. low

bandwidth requirement.

5. Sensors are aligned and relay data in a linear fashion.

Assumption 1 is critical to our coding technique since we utilize the characteristic

of OOK that more energy is required to transmit bit “1” than bit “0”. Assumption

2 typically holds in many sensor networks, and thus, minimizing the transmission

energy significantly improves the network lifetime. Therefore, in our energy per-

formance evaluation, we only consider the energy required to transmit, ignore the

energy consumed by the nodes to listen and to perform any necessary compu-

tations. We can easily add these other sources of energy consumption in future

work.

For this scheme to work, both receiver and sender must have a synchronized

clock, thus assumption 3 follows. As for assumption 4, our coding technique is
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more effective in term of energy reduction when there is no or little restriction

on the bandwidth requirement. This typical assumption often holds since sensor

networks collect data at the large intervals, e.g., on the order of minutes, resulting

in a very low bandwidth. Therefore, the clocks at different nodes are only needed

to be synchronized to a certain resolution.

Assumption 5 enables a node to code the data effectively. This assumption

arises with the fundamental characteristic of sensor networks where data is only

sent in one direction i.e., from sensor nodes to the sink as most of the sensor

networks are used for data aggregation. Furthermore, our work focuses on the

environmental sensor applications in which a typical sensor network includes only

hundreds of sensors.

Finally, the discussion on transmitted bit errors is outside the scope of this

research.

3.4 Coding Schemes

3.4.1 1-bit Coding

Typical entropy coding techniques such as Huffman coding, aim to minimize the

number of bits per symbol, given a probability distribution of the source data.

The symbols with frequent occurrences are coded using fewer number of bits than

those of the rare symbols. As a result, the average number of bits per symbol is

reduced. However, Huffman coding only minimizes the number of bits, regardless
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whether the bit is “0” or “1”. This may result in higher transmission energy. To

reduce transmission energy, one can use the 1-bit coding scheme [70] in which,

every codeword consists of at most 1 high bit as below:

0 → 00000
1 → 00001
2 → 00010
3 → 00100
4 → 01000
5 → 10000

Assume that it takes no energy to transmit bit “0”, then the transmission

energy per symbol is much smaller for the 1-bit coding than the traditional coding

schemes such as direct binary coding or Huffman coding. The 1-bit coding scheme

employs fixed-length codes for differentiation of symbol boundary. Furthermore,

the receiver and sender’s clocks must be synchronized in order for the receiver to

detect the silent interval of bit “0”. As a result, the 1-bit coding scheme results in

longer average time to transmit a symbol.

The 1-bit coding technique can be generalized to k-bit coding which uses

slightly more energy per symbol in order to reduce the delay. A k-bit coding

symbol consists of at most k bits “1” per codeword. Therefore, the number of

possible k-bit codewords of length n is:

M(n, k) =
k∑

i=0

⎛
⎜⎝ n

i

⎞
⎟⎠ (3.1)

The individual k-bit codewords of length n are then simply the enumeration of the
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combinations
(

n
i

)
for i = 0...k. Clearly, larger k results in larger energy consump-

tion. We note that if the number of possible symbols exceeds 2n where n is the

length of a k-bit symbol, then n will be increased, but k remains the same in order

to keep the transmission energy constant.

3.4.2 Cross-Sensor Coding Technique

The previous coding scheme reduces the energy consumption at each sensor, how-

ever, it cannot solve the problem of energy unfairness as explained in Section 3.1.

One may think that the relay architecture used in the sensor network fundamen-

tally produces this energy unfairness problem since some nodes, (e.g., the internal

nodes) will have to transmit more data, thus resulting in higher energy consump-

tion. However, this is not necessarily the case. The cross-sensor coding technique

described below aims to solve this problem.

We first begin with the definition of energy unfairness which ultimately affects

the life time of a sensor network. The energy unfairness is defined as follows:

Definition 3.1

FE =
1

n

n∑
i=1

(
Xi −

∑n
j=1 Xj

n

)2

(3.2)

where n denotes the number of sensors, Xi denotes the average transmission energy

at node i which is proportional to the number of 1’s in a codeword.

Intuitively, the energy unfairness represents the variance of the average energy

consumption by the nodes. The lower value of FE indicates higher fairness and
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thus is desirable in a long-lived sensor network. We will show that our cross-sensor

coding technique can reduce FE significantly.

To illustrate our coding techniques and their advantages, we first consider the

traditional data relay in a simple sensor network consisting of four sensors and a

processing node as shown in Figure 3.3.

1 2 3 4

10101111 00100111 11100111 11111100

Processing node

10101111 00100111

10101111

11100111
00100111

10101111Measured data

Figure 3.3: All measured data from nodes 1, 2, 3, 4 are relayed to the processing
node.

3.4.2.1 Traditional Data Relay

Suppose the sensors are designed to measure the data with 8-bit resolution. As-

sume that at time t, the measured data for nodes 1, 2, 3, and 4 are 10101111,

00100111, 11100111, and 11111100, respectively. Assuming that propagation de-

lay is negligible, then to transfer these data to the processing node (from left to

right in Figure 3.3), the traditional relay method requires: node 1 transmits 6 bit

1’s, node 2 transmits 10 bit 1’s, node 3 transmits 16 bit 1’s, and node 4 transmits

22 bit 1’s. Therefore, the total number of transmitted bits equals to 6 + 10 + 16 +

22 = 54 bits. Assume that the energy for transmitting a bit “1” is 1 joule and for

transmitting bit “0” is 0 joule, then the total energy consumption per one round
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of data gathering in this sensor network is 54 joules. Furthermore, the energy

consumption of node 4 is almost 4 times the larger than that of node 1. In general,

it is easy to show that the average number of transmitted bits per sample, hence

the energy per sample, is O(mn2) where m is the number of bits per sample (data

resolution) and n is the number of sensor nodes.

3.4.2.2 Direct 1-bit Coding

Now suppose we apply 1-bit coding to the 8-bit data directly, and each node relays

the data in the same way as the traditional method. Since each sample data is

coded with only one bit “1”, the total number of transmitted bits for this scheme

scheme equals 1 + 2 + 3 + 4 = 10 bits, resulting a factor of 5 in energy reduction

compared to that of the traditional coding technique. The direct 1-bit coding data

scheme results in much higher delay. Assume that a node relays the data in the

next time slot after it receives a data sample completely, then there is an additional

255 bit delay per hop. This relay technique (also called store and forward scheme)

is employed in packet-switched networks. The store and forward scheme waits until

all bits in a packet are received before transmitting the first bit of the packet onto

the next link. In our case, a packet is a data sample (255 time slots). Consequently,

the time it takes for the first bit of node 1’s data to arrive at the processing node

equals to 255 × 3 = 765 time slots as compared to only 8 × 3 = 24 time slots for

traditional binary coding. In general, we prove the following theorem regarding

the direct 1-bit coding scheme for sensor networks.
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Proposition 3.1 Given the following

1. A sensor network consisting of n sensor nodes and one processing node, all

are aligned and forward data in a linear fashion.

2. Data gathering is based on store and forward scheme with a packet being a

data sample of m-bit resolution.

3. Measured data are randomly and uniformly distributed.

Then, using direct 1-bit coding scheme with time slot of T second per bit, results

in:

1. The average number of transmitted bits TB per sample data and node is

TB =

(
1 − 1

2m

)
n + 1

2
(3.3)

2. The achievable bandwidth B is

B =
mn

T (2n − 1)(2m − 1)
[bps] (3.4)

3. The energy fairness is

FE =

(
1 − 1

2m

)2 (
n(n + 1)(n − 1)

12

)
(3.5)

Proof 3.1 To prove Equation (3.3), one notes that the first node transmits its

sample data to node 2 using at most 1 bit “1”. There is a 1/2m chance that node
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1 does not transmit any bit “1”. This happens when its measured value maps to a

1-bit codeword that contains all zeros. Thus, the average number of bits transmitted

by node 1 is (1−1/2m). Since node 1’s bit must be relayed through n−1 nodes before

arriving at the processing nodes, the total number of transmissions for this bit is

therefore (1− 1/2m)n. Similarly, the bit from a node 2, will have to be transmitted

through n−2 nodes, resulting in (1−1/2m)(n−1) transmissions. Thus the average

number of transmissions for all the sample data is the total number of transmitted

bits per n sample data:

(
1 − 1

2m

)
n +

(
1 − 1

2m

)
(n − 1) + ...

(
1 − 1

2m

)
=

(
1 − 1

2m

)
n(n + 1)

2

Divided the result by n, we obtain the average number of bits per sample data and

node

TB =

(
1 − 1

2m

)
n + 1

2

To prove Equation (3.4), one notes that 2m − 1 is the number of time slots

required to encode m-bit data using 1-bit coding. Since there are n nodes, the time

for the first data bit of the first node to arrive at the last node is (n− 1)(2m − 1)T .

All the subsequent bits will arrive at the processing node at the rate of 1/T bps.

There are a total of n data sample transmitted from the last node to the processing

node, the time it takes for all n data samples to arrive at the processing node is

n(2m−1)T . Adding the delay of the first bit and the transmission time of n samples

together, we obtain the total time to receive all n samples of m bits each. Thus the
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bandwidth is

mn

T (2n − 1)(2m − 1)

The second sample data of the first node can be sent after all the processing node

has received completely the first data samples from all the nodes.

To prove Equation (3.5), one can explicitly compute the formula in Equation

(3.2). To compute Xi, one notes that Xi+1 = Xi + (1 − 1/2m). We know X1 =

1 − 1/2m, thus Xi can be shown to be i(1 − 1/2m).

We note that using direct 1-bit coding results in lower energy consumption, but

the energy unfairness is still on the order of O(n2). In other words, as the number

of relay nodes increases, the life time of the sensor network decreases significantly.

Thus, we propose the following cross-sensor coding technique that saves commu-

nication energy as well as resolve the energy unfairness issue.

3.4.2.3 Cross-Sensor 1-bit Coding

Unlike the previous approaches in which each sensor encodes its data separately,

cross-sensor coding technique allows each sensor to encode its data and its neigh-

bor’s data jointly using variable-length codewords where codeword’s length is based

on the location of a sensor.

Figure 3.4 illustrates the cross-sensor coding technique for 8-bit sample data.

For easy visualization, the 8-bit resolution data at each sensor nodes are now

arranged vertically with the most significant bits (MSB) at the top, and the least
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New codewords at each node

1 0 1 1

1      1 0      010 1      0010000 1      000010000000000

0
1
0
1
1

0
1
0
0
1

1
1
0
0
1

1
1
1
1
11

1
1

1
1
1

1
1
1

1
0
0

Node 1 Node 2 Node 3 Node 4

Figure 3.4: Individual bits are transmitted through each node. Each sensor com-
bines the cumulative data and produces a new codeword with larger length.

significant bits at the bottom. First, we consider sending the MSBs of the data

measured at different sensors to the processing node. The MSB of the measured

data at the node 1 is “1”, so node 1 will send the codeword “1” to the node 2.

The MSB of the measured data at node 2 is 0, so node 2 will send the codeword

“010”, representing both MSBs at nodes 1 and 2 (“10”), to node 3. The MSB of the

measured data at node 3 is 1, so node 3 will send the codeword “0010000” to node 4,

representing MSBs at nodes 1, 2, and 3 (“101”). Finally, the MSB of the measured

data at node 4 is “1”, so node 4 will send the codeword “000010000000000” to

the processing node. Basically, the code sent by node n is the 1-bit codeword,

representing all the possible bit patterns at the nodes 1 to n.

We note that the length of the codeword increases roughly by a factor 2 after

each hop. This is because there are 4 maximum possible data patterns that node

2 can send to node 3, i.e., 0 or 1 from node 1, and 0 or 1 from node 2. Similarly,
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there are 8 possible data patterns that node 3 can send to node 4. In general, there

are 2n possible data patterns that represent different MSB patterns for nodes 1 to

n. Thus, 1-bit codeword sent out by node n will have a length of 2n − 1 bit-times.

Using the above scheme, when the processing node receives a codeword “000010

000000000”, it will be able to infer that the MSBs at nodes 1, 2, 3, and 4 are 1, 0,

1, and 1, respectively, by simply converting “000010000000000” (11 in decimal) to

a binary coding, i.e., 1011. After the processing node receives the MSBs of all the

nodes, the first node can start to transmit the second bit, and the process repeats

until all the 8-bit data are transmitted. Clearly, using cross-sensor 1-bit coding,

each sensor only needs to send at most 1 bit “1” per hop, thus eliminates the

problem of uneven transmission energy. However, the length of an 1-bit codeword

increases roughly by a factor 2 after each hop, i.e., 1-bit codeword sent out by node

n will have a length of 2n − 1 bit-times, resulting in longer delay, or equivalently

bandwidth.

The cross-sensor coding technique achieves energy fairness and efficiency by

exploiting the individual node’s knowledge of the topology. In particular, each

sensor needs to know its position in the topology, and the data from other sensors

in order to encode the new codeword with appropriate length. Furthermore, to

be able to receive the correct codeword, each sensor must have a synchronized

clock to enable correct timing of each bit. Cross-sensor coding also introduces

additional delay per hop due to the store and forward scheme. Figure 3.5 shows

that the delay increases exponentially as data traverse to the processing nodes.

Note that for two consecutive nodes, the transmission time slots of one node are
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…

Node 1

Node 2

Node 3

Node 4

Time

Transmission time slot

Receiving time slot

Idle time slot

Figure 3.5: Delay in cross-sensor coding. Staggering delay is introduced at each
node as shown by the squares representing time slots. The closer the nodes to the
processing node, the higher delay. Blank squares represent the idle time slots, the
wavy squares represent the transmission time slots, and the brick squares represent
the time slots during which the node is receiving information.

the receiving time slots of another node. We emphasize that a transmission time

slot of a node does not mean that node has to transmit bit “1” during this time

slot. Rather, a transmission time slot means that this time slot is used to indicate

the transmission of the data bits either “0” or “1”. There will not be an actual

transmission if the data bit is “0”. Due to 1-bit coding, there are also idle time

slots which are necessary for the node to differentiate the codewords. The following

theorem characterizes the bandwidth, the transmission energy, and the energy

fairness associated with 1-bit cross-sensor coding.

Proposition 3.2 Given the same conditions as those of Proposition 3.1, using

1-bit cross-sensor coding scheme with time slot of T second per bit results in:
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1. The average number of transmitted bits (TB) per sample data and node is

TB = m

(
1 − 1

n
+

1

n2n

)
(3.6)

2. The achievable bandwidth B is

B =
mn

T (2n+1 − n − 2)
[bps] (3.7)

3. The energy fairness is

FE =
1

3n

(
1 − 1

4n

)
− 1

n2

(
1 − 1

2n

)2

(3.8)

Proof 3.2 To prove Equation (3.6), one notes that with probability 1/2, the first

node will not transmit anything, i.e., the first bit is bit “0”. With probability 1/4

node 2 will not transmit anything to node 3 (pattern “00”). With probability 1/8,

node 3 will not transmit anything to node 4 (pattern “000”). In general, with prob-

ability 1/2n, node n will not transmit anything. Thus, the expected transmission

energy equals to
n∑

i=1

(
1 − 1

2i

)
= n − 1 +

1

2n

Hence, the average number of transmissions per node is

1 − 1

n
+

1

n2n



54

If the data is m-bit resolution, we just need to transmit a total of

m

(
1 − 1

n
+

1

n2n

)

bits per data sample.

As for Equation (3.7), it is clear that each node i introduces additional 2i − 1

bit times as shown in Figure 3.5. Hence, the total number of bit times after n is

n∑
i=1

(
2i − 1

)
= 2n+1 − n − 2

Thus, the bandwidth is

B =
mn

T (2n+1 − n − 2)

Finally, Equation (3.8) can be obtained by computing the formula in Equation

(3.2) with Xi = 1 − 1/2i.

Note that energy unfairness from using cross-sensor coding scheme now asymp-

totically approaches 0 as the number of sensors approaches infinity. We can also

extend cross-sensor 1-bit coding to cross-sensor k-bit coding.

3.4.2.4 Cross-Sensor k-bit Coding

To reduce the delay or increase the bandwidth, one can use k-bit coding technique

where the maximum number of high bits in a codeword is k. The code length n is
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a variable such that:

2m ≤
(

n

0

)
+

(
n

1

)
+ ... +

(
n

k

)
, (3.9)

where, m is the data resolution.

3.5 Optimal Low-weight, Cross-sensor Coding

Until now, the transmission energy of bit “0” is assumed to be 0 which may not be

true. We now show how to find an appropriate low-weight, variable-length, prefix

code for each sensor based on (a) its position, (b) the transmission energy of bits

“0” and “1”, and (c) a certain delay-energy consumption trade-off. The term low-

weight means a small number of bits “1”, leading to small transmission energy. We

note that the delay-energy consumption trade-off is equivalent to the bandwidth-

energy consumption trade-off when using the cross-sensor coding technique.

Intuitively, if bits “0” and “1” require the same transmission energies, then

the delay is proportional to the length of the code which is also proportional to

the energy consumption. Therefore, Huffman coding can minimize the energy

consumption and delay simultaneously. However, since sending bits “0” and “1”

require different amounts of energy, it makes sense to design a different code. One

can use an approach similar to that proposed by Karp [43]. Here, transmission

energy can be thought as the cost of a letter (alphabet) in a code. Thus, the

problem can be formulated as finding a prefix codebook whose letters (alphabets)

have unequal costs which results in minimum cost. On the other hand, by doing so,

the average code length, i.e., the delay may exceed a desirable threshold. Therefore,
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we will consider the delay-energy consumption trade-off in our formulations. Our

approach is based on Karp’s work [43] which can be formulated as an integer

programming problem 1. Karp’s approach assumes that the cost of each letter is

discrete, and finds the necessary and sufficient conditions for the prefix code in the

form of a set of linear inequalities involving integer solutions. The key to Karp’s

formulation is to design a tree as shown in Figure 3.6, where a leaf node represents

a codeword with its letters corresponding to labels of a branch leading to it. The

length of a branch is proportional to a letter cost. Once the integer solutions are

found, they can be mapped directly to a valid prefix code. We refer the interested

readers to [43] for more details.

E
1

E
0

Figure 3.6: Prefix code as a tree with the cost of a symbol represented by the
length of its branch.

Our formulation is a variant of Karp’s in which, we introduce new optimization

1To the best of our knowledge, it is currently unknown whether the problem of optimal unequal
cost letters is NP hard or polynomial time solvable.
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variables to handle the delay and the multi-sensor aspects of our problem. Define

the following notations:

• N : The number of sensors in the network.

• nk: The number of possible symbols observed at sensor k. For a straight-line

topology, ni = 2i − 1 > nj if sensor i is closer to the sink than sensor j.

• Xk
i : The input symbol i at node k, i = 1...nk.

• Ck
i : The codeword for symbol Xk

i .

• N0
ki, N1

ki: The number of bits “0” and bit “1” in a codeword Ck
i , respectively.

• pk
i : The probability of the symbol Xk

i observed at node k and i = 1...nk.

• E0 and E1: Transmission energies of “0” and “1”, respectively. We assume

that E0 and E1 are positive integers. Note that one can approximate real

cost with integer cost by scaling the costs appropriately.

• mk: The maximum cost of a codeword at node k. mk can be set to a large

value to guarantee a solution.

To study the delay-energy consumption trade-off of a code, we first find the

expression for transmission energy in terms of the optimization variables. We

observe that the cost (transmission energy) dk
i of transmitting a symbol Xk

i by

node k is

dk
i = E0N

0
ki + E1N

1
ki, (3.10)
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and the average transmission energy per symbol at node k is given by

Ek =

nk∑
i=1

pk
i d

k
i (3.11)

Karp has shown that the condition of existence of a uniquely decipherable and

prefix code (Kraft’s inequality for binary symbols)

nk∑
i=1

2−lki ≤ 1 (3.12)

with lki denoting the length of Ck
i at node k, is equivalent to: ak

j +bk
j ≤ bk

j−E0
+bk

j−E1

where ak
j denotes the number of codeword (leaf nodes) of cost j and bk

j denotes

the number of non-leaf nodes at cost j as shown in Figure 3.6. The proof of the

equivalence between Kraft’s inequality and these linear constraints can be found

in [43].

Now, let us define

yk
ij =

⎧⎪⎪⎨
⎪⎪⎩

1 if dk
i = j,

0, otherwise.

then

dk
i =

mk∑
j=1

jyk
ij, ak

i =

nk∑
i=1

yk
ij

Thus, the transmission energy Ek at a node k can be expressed as:

Ek =

nk∑
i=1

mk∑
j=1

pk
i jy

k
ij (3.13)
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Our goal is to find a formulation for minimizing the average transmission energy

for the entire sensor network subject to the delay constraint (codelength) or vice

versa. To do so, we first find a mathematical expression for the length of a prefix

code. Denote lki as the length of a prefix code Ck
i at node k, then

lki = N0
ki + N1

ki

Therefore, the average cost (transmission energy) to transmit the code Ck
i is:

dk
i = E0(N

0
ki + N1

ki) + (E1 − E0)N
1
ki (3.14)

Define a new variable xk
ij such that

xk
ij =

⎧⎪⎪⎨
⎪⎪⎩

1 for j ≤ N1
ki,

0 for j > N1
ki.

then

N1
ki =

mk∑
j=1

xk
ij

and

dk
i = E0l

k
i + (E1 − E0)N

1
ki = E0l

k
i + (E1 − E0)

mk∑
j=1

xk
ij

⇒
mk∑
j=1

jyk
ij = E0l

k
i + (E1 − E0)

mk∑
j=1

xk
ij
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Thus we can represent the output codeword length of node k as a linear com-

bination of the two integer variables xk
ij and yk

ij as:

lki =
1

E0

mk∑
j=1

jyk
ij −

E1 − E0

E0

mk∑
j=1

xk
ij (3.15)

Given the expressions for code length (delay) and transmission energy, we can

formulate a variety of optimization problems regarding the energy consumption

and delay (bandwidth). As an example, for a straight-line network consisting of N

nodes, we can formulate the problem of finding a prefix code that minimizes the

average transmission energy of the network subject to (a) the transmission energy

of any node may not exceed a certain value W and (b) the average delay has to

be smaller than a value D as follows:

Minimize
N∑

k=1

nk∑
i=1

mk∑
j=1

pk
i jy

k
ij

Subject to,

bk
0 = 1; bk

j = 0 for j < 0

For 1 ≤ k ≤ N and 1 ≤ j ≤ mk,

nk∑
i=1

yk
ij + bk

j ≤ bk
j−E1

+ bk
j−E0
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For 1 ≤ k ≤ N and 1 ≤ i ≤ nk,

mk∑
j=1

yk
ij = 1

And
∑nk

i=1

∑mk

j=1 pk
i jy

k
ij ≤ W

N∑
k=1

( 1

E0

nk∑
i=1

mk∑
j=1

pk
i jy

k
ij −

E1 − E0

E0

nk∑
i=1

mk∑
j=1

pk
i x

k
ij

) ≤ D,

Where bk
ij , xk

ij and yk
ij are the integer and two binary optimization variables,

respectively. Once the variables bj and yk
ij are found, the optimal prefix code can

be obtained via a polynomial time mapping [43].

We can also find the optimal prefix code that minimizes the average delay

(bandwidth) such that the average transmission energy of each sensor does not

exceed W as follow:

Minimize
N∑

k=1

( 1

E0

nk∑
i=1

mk∑
j=1

pk
i jy

k
ij −

E1 − E0

E0

nk∑
i=1

mk∑
j=1

pk
i x

k
ij

)

Subject to,

bk
0 = 1; bk

j = 0 for j < 0

For 1 ≤ k ≤ N and 1 ≤ j ≤ mk,

nk∑
i=1

yk
ij + bk

j ≤ bk
j−E1

+ bk
j−E0
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For 1 ≤ k ≤ N and 1 ≤ i ≤ nk,

mk∑
j=1

yk
ij = 1

For 1 ≤ k ≤ N , and for 1 ≤ i ≤ nk

nk∑
i=1

mk∑
j=1

pk
j jy

k
ij ≤ W (3.16)

Where bk
ij , xk

ij , and yk
ij are the optimization variables with bk

ij taking on integer

values, while xk
ij and yk

ij are binary variables.

Similarly, one can also replace the constraint in (3.16) by:

mk∑
j=1

xk
ij ≤ K (3.17)

to guarantee that the number of bits “1” in any codeword cannot exceed K. This

is useful when E0 << E1 and one wants to keep the transmission energy low even

when the symbol distribution changes.

3.6 Performance Evaluation

We now present a few results on the trade-off between the delay and transmission

energy for a straight-line topology. These results are based on the different prob-

lem formulations which are made possible by having the expressions of delay and

transmission energy (Equations (3.13) and (3.15)) in Section 3.5. We use CPLEX
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- an optimization package to obtain our solutions. The running times to obtain

these solutions are negligible in all our experiments.

First, we assume that the data sample is of 10-bit resolution. Each bit has one-

half probability of being 1. Figure 3.7(a) shows the average transmission delay

versus K, the maximum number of bit “1” allowed in any codeword. As seen, the

delay decreases with the increase of K, i.e. more transmission energy is allowed.

Similarly, Figure 3.7(b) shows the average transmission energy as a function of

delay when the transmission energy is minimized subject to the delay constraint.

Figure 3.8 shows the average delay or code length for different values of K (the

constraint on the number of bits 1 in a codeword) as a function of the number

of sensors. As expected, higher K results in lower delay at the expense of energy

increase.

We now present the results of applying cross-sensor coding on the actual air

temperature being collected by an array of sensors developed at Oregon State

University. The aim of this project is to monitor the temperature and humidity

levels of the forest at different elevations. These sensors are placed along a tower

to continuously log the current temperatures at every 15 minute interval. The

sensor network is designed to collect data in real time, and the data is sent from

the higher sensors to the lower sensors, and finally to the processing node on the

ground. The measured temperature data has 10-bit resolution.

Figure 3.9 shows the transmission energy at each node (with node 1 being the

node at the top) for different relative transmission energy levels of bits “0” and

“1”. If the transmission energy is a significant part of the overall energy, then
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Figure 3.7: (a) Per sample delay as a function of K (delay optimization); (b)
Average energy as a function of per sample delay (energy optimization)
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the network lifetime depends on the transmission energy of node 11. As shown in

Figure 3.9(a), node 11 uses more energy with the traditional (binary) coding than

with the cross-sensor coding for K > 1. This is intuitively plausible as with K = 1,

the length of a codeword needs to be a lot longer, i.e. more zeros which results in

more energy usage, since transmission energy of bit “0” is not negligible, i.e., 10

times less than that of bit “1”. When K > 1, a typical codeword resulted from

cross-sensor coding is shorter, leading to lower overall transmission energy. For

certain applications, one can find a suitable K-bit cross-sensor code that achieves

the best performance both in terms of the delay and network lifetime.
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Figure 3.9: Per node energy usage of cross-sensor and traditional coding schemes
as a function of the node number for (a) E0/E1 = 0.1 and (b) E0/E1 = 0.01
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3.7 Conclusions

We have designed and analyzed a cross-sensor energy-efficient coding technique for

the ultra low energy sensor networks using On-Off Keying. Cross-sensor coding

can significantly extend the network lifetime as compared with traditional (binary)

coding by solving the energy-consumption unfairness problem. We have presented

the theoretical and experimental results to show that transmission energy can be

reduced substantially (e.g., a factor of 15) and the unequal energy consumption

among nodes can be practically eliminated.
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Chapter 4 – Video Streaming with Network Coding
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4.1 Introduction

Multimedia streaming over the Internet is challenging due to packet loss, delay, and

bandwidth fluctuation. Thus, many solutions have been proposed, ranging from

source and channel coding to network protocols and architecture. For example, to

combat the fluctuating and limited bandwidth, a scalable video bit stream is used

to allow a sender to dynamically adapt its video bit rate to the available bandwidth

at any point in time [86]. To reduce packet loss and the associated delay due to

the retransmissions of the lost packets, Forward Error Correction (FEC) techniques

have been proposed to increase reliability at the expense of bandwidth expansion

[53]. Content Delivery Network (CDN) companies such as Akamai attempt to

improve the throughput by pushing content to the servers strategically placed at

the edge of the Internet. This allows a client to choose the server that results in

shortest round-trip time and/or least amount of congestion.

Recently, the multi-sender streaming paradigm has been proposed as an alter-

native to edge streaming to provide smooth video delivery [74][63][8]. The main

idea is to have each server storing an identical copy of the video. The video is

partitioned into multiple disjoint parts, each part is then streamed from separate

servers to a single receiver simultaneously. Having multiple senders is in essence

a diversification scheme in that it combats unpredictability of congestion in the

Internet. Specifically, smooth video delivery can be realized if we assume indepen-

dent routes from various senders to the receiver, and argue that the chances of all

routes experiencing congestion at the same time is quite small. If the route between
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a particular sender and the receiver experiences congestion during streaming, the

receiver can re-distribute rates among the existing senders, or recruit new senders

so as to provide the required throughput.

This multi-sender streaming framework is particularly well suited for CDN

and P2P networks since multiple copies of a video are often present at these

servers/peers either through a coordinated distribution of the video from an orig-

inal CDN server, or through an uncoordinated propagation of contents in a P2P

network such as KaZaa [2]. However, there are a number of drawbacks with the

current multi-sender framework. First, many of the current multi-sender stream-

ing schemes assume that identical copies of a video must be present at different

servers/peers. This implies an increase in the overall storage. Second, a careful

synchronization among the senders is needed to ensure that distinct partitions of a

video are sent by different servers/peers in order to increase the effective through-

put. In other words, an optimal partition algorithm must be able to dynamically

assign chunks of different lengths to different servers based on their available band-

widths. This dynamic partition algorithm, however is often suboptimal due to the

lack of accurate available bandwidth estimation. Third, for ease of controlling the

sending rates as well as data partition, many multi-sender schemes assume a UDP-

like transport protocol, which often cannot be used for computers behind a firewall

in many networks. That said, we propose a multi-sender streaming framework us-

ing network coding technique that reduces the overall storage, the complexity of

sender synchronization, and enables TCP streaming. Furthermore, we propose

a Hierarchical Network Coding (HNC) technique that facilitates scalable video
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streaming.

4.2 Preliminaries

In this section, we discuss some background and motivation for video streaming

via path diversity framework. Based on these discussions, we will highlight several

important research issues associated with path diversity framework. The goal of

these discussions is to bring about an abstract model for multi-sender streaming

which is general enough, yet sufficient to characterize the performance in various

settings.

4.2.1 CDN and P2P Networks

A typical Internet application sends packets that follow one and only route at

any instance. An application has no control over which route its packets traverse,

rather, the route is determined by the underlying Internet routing protocols. In

recent years, overlay networks have been proposed as an alternative to enable an

application to control its route to some extent [7]. The idea is, instead of sending

the packets to the destination, an application sends its packets to an intermediate

host belonged to an overlay network. This intermediate host then forwards the

packets to the intended destination on the behalf of the sender. As a result, the

packets will take a different route than the one determined by the underlying

routing protocols. Path diversity framework takes one further step by allowing an
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application to send packets on multiple routes simultaneously. When packets are

partitioned and/or coded properly, this path diversity framework has been shown

to improve the visual quality of video streaming applications [65][8].

That said, P2P networks are overlay networks where two peers are connected

together via a TCP connection. To send data from one peer to another, the data

may go through a number of intermediate peers to get to the intended peer. This

provides a natural framework for path diversity streaming via forcing the packets

through intermediate peers. In addition, if a peer wants to view a video stream,

and presumably a number of its neighbors (direct connected peers) have either the

complete or partial video, it can simultaneously request different parts of the video

from different neighbors. Effectively, the video packets will traverse on different

routes to the peer, thus congestion on one route will not have much effect on a

peer’s viewing experience when the remaining routes together, provide sufficient

throughput.

Content Delivery Networks (CDNs) is also a natural framework for path di-

versity streaming. CDN aims to improve the application’s performance by placing

the servers near the customers in order to increase throughput and reduce latency.

In a CDN, contents are distributed to a number of servers which are strategically

placed around the edge of the Internet. When a customer requests a content, the

nearest server with the desired content is chosen to serve that customer. This

framework can be easily enhanced to allow multiple servers to deliver the content

simultaneously to a customer, and thus obtaining the benefits of path diversity

streaming, or more precisely, multi-sender streaming.
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On the other hand, the advantages of multi-sender streaming framework come

with many research issues to be resolved. In what follows, we will discuss network

protocols to accommodate multi-sender streaming framework.

4.2.2 Network Protocols

TCP vs. UDP. Many interactive and live video streaming systems use UDP

whenever possible as the basic building block for sending packets over the Inter-

net. This is because UDP allows the sender to precisely control the sending rate,

and if the network is not too much congested, a receiver would receive the data

at approximately the same rate. This property is also desirable for live video

streaming applications where minimal throughput often must be maintained for

high quality viewing experience.

On the other hand, UDP is not a congestion aware protocol, in the sense that

it does not reduce its sending rate in presence of heavy traffic load. As a result,

when a large amount of UDP traffic is injected into a network, it can cause a global

congestion collapse where majority of packets are dropped at the routers. For this

reason, non-real time applications often use TCP that can adapt the sending rate

to the network conditions automatically. This rate adaptivity prevents congestion

collapse, and results in a fair and efficient throughput allocation for each applica-

tion even when the network is congested. Furthermore, TCP-based applications

are preferable since many networks actively filter out UDP packets which are often

thought as a sign of possible flooding attacks from malicious automated software.
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Based on these, it makes sense to use TCP when TCP’s delay and throughput

fluctuation can be minimized. As will be discussed shortly, our proposed network

coding technique is designed for efficient TCP based transmission.

Push vs. Pull. In multi-sender streaming framework, the data come from

multiple senders which leads to the question of how to coordinate the multiple

transmissions to prevent or mitigate data duplication. One possible approach is

for the receiver to request disjoint data partitions from multiple senders. The

protocols based on this approach are called pull-based protocol, and they work

well in many scenarios. In other scenarios, it may be better to use push-based

approach where the senders simply send packets to a receiver without its request.

Majority of P2P systems use pull-based protocols [75][95][88] because of their

robustness against peer joining and leaving the network. Pull-based protocols

also use bandwidth efficiently, in the sense that a receiver does not receive any

duplicate data from the senders. However, they have many drawbacks that might

be unsuitable for some video streaming scenarios.

First, using pull-based protocols may result in lower throughput for a receiving

peer due to lack of disjoint data from its neighboring peers. To illustrate this,

consider a streaming a video from the source 0 to two receivers 1 and 2. Suppose

these peers are connected to each other. Using the pull-based protocol, receiver 1

would request data from 0 and 2 while receiver 2 would request data from 0 and 1.

Since these receivers are acting independently, both may request the same packets

from the source 0. If they do, most of the time, the two receivers would have

the same data, thus they cannot exchange new data with each other, resulting
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in lower throughput. Now, consider a simple push-based protocol in which the

source simply pushes the odd packets to receiver 1 and even packets to receiver 2.

Each receiver then pushes the data it receives from one node to the other node.

Effectively, the receiver 1 pushes the odd packets to receiver 2, and receiver 2

pushes even packets to receiver 1. Clearly, using this protocol, the throughput at

each receiver is larger than that of using the pull-based protocol. Typically, when

network topology is well-defined and relatively unchanged over time, the push-

based protocols result in higher throughput than their pull-based counterparts.

Also, the pull-based protocols often introduce high latency due to the requests,

this may not be appropriate for media streaming applications.

Second, a careful coordination on which to be sent by which sender (pull-based

protocol) is required to achieve optimal performance from the perspective of a par-

ticular receiver. As an example, assuming that two senders are used for streaming,

then sender 1 can stream the odd packets while the other streams the even pack-

ets, starting from the beginning of the file. As described, this approach is roughly

optimal when the throughputs from the two senders are somewhat identical. On

the other hand, when the throughput of server 1 is twice as large as that of server

2, then the pattern of packets received at the receiver will look like (0, 2, 1, 4, 6, 3,

8, 10, 5 ). Clearly, the gap between even and odd packets will grow with time. This

is problematic for streaming applications where packets are played back in order,

and the playback rate is larger than the throughput of the slow link. For example,

if the playback rate is 2 packets/s, then even with the pre-buffering technique, the

video player eventually has to stop to wait for odd packets since the arrival rate of
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odd packets is only 1 packet/s. We note that the total receiving rate at a receiver

is 3 packets/s which, in principle, should be sufficient for a 2 packets/s stream.

However, the suboptimal packet partition creates the scenario where the receiver

receives many packets to be playbacked in the far future, but not enough packets

in the near future for playback in time. A solution to this problem is to let the

receiver dynamically requests the packets it needs. When there are many servers

with different available bandwidths and are varied with time, complex dynamic

coordination between the client and the servers is needed to achieve the optimal

throughput.

Third, even when complex coordination is possible, this only works well if all

the senders have the complete file or data segments of interest, so that a receiver

can choose which packets from which senders based on the sender’s available band-

widths which presumably can be observed by the receiver. In a P2P network, it

is not always the case that the sending peers would have the complete file. In

fact, previously discussed example showed that using the pull-based approach may

result in lower throughput due to the duplication of data among the peers. In

a CDN, it is possible to store duplicated versions of a video stream at different

servers before a streaming session. However, this technique results in larger overall

servers’ storage.

As such, we believe that for certain scenarios, push-based protocols are better-

suited for multimedia streaming since they are simple, and can provide high

throughput and low delay. Although to be bandwidth efficient, one must ensure

that the data duplication at the receiver is minimal. As will be discussed shortly,
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our approach is to employ network coding to achieve this property.

4.2.3 Source Coding

Often, one must employ source coding techniques, in particular, scalable video

coding, to mitigate the effect of Internet throughput variations on the viewing

experience. Scalable video coding enables a sender to adapt its sending rate to

the current network conditions while allowing a graceful degradation of the video

quality. A typical scalable video bit stream consists of frames. Each frame consists

of bits with different importance levels in terms of the visual quality. These bits

are categorized into a hierarchy of layers with different importance levels. Thus,

when the available bandwidth is small, sending bits from the most important layers

and ignoring others would result in a smooth video playback, albeit slightly lower

video quality. That said, we will discuss the hierarchical network coding technique

designed for efficient multi-sender transmission of scalable video bit streams.

4.3 Streaming Model

To motivate the proposed abstract model for multi-sender streaming framework,

let us first consider the distribution of a live or non-live video to the clients in a

CDN. For a non-live setting, the origin server can distribute a video to a number

of assisted servers prior to the start of a video streaming session. A client then

randomly connects to a small number of these assisted servers in parallel to view
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the video. If each of the assisted server has the entire video, using a pull-based

protocol, a client can request different parts of the video from different servers as

discussed previously. However, requiring the video to be on every server implies

much redundancy. Thus, an interesting question is how to distribute the video to

the assisted servers such that, even when each server does not have the complete

video, there is still high probability that a client can get the complete video from all

the servers that it connects to. Intuitively, the key to a good distribution scheme

is to ensure that the assisted servers share as little information as possible while

allowing a client to obtain the complete video.

Another interesting question is how to best distribute a scalable video to the

assisting servers. Intuitively, for a given redundancy, a good distribution scheme

should provide a high chance for a client to obtain the base layer bits, perhaps at

the expense of lower probability of its getting the enhancement layer bits.

That said, a simple distribution scheme could be as follows. At each time step,

the origin server would pick a packet in playback order and randomly chooses a

server to send the packet to. This process repeats until a specified number of

packets (redundancy level) has been sent. This scheme, however, tends to produce

many duplicated video parts among the servers chosen by a client for streaming,

and thus reducing the chance of a client to obtain high throughput from multiple

servers. On the other hand, from a client’s viewpoint, when scalable video is used,

having multiple servers storing duplicated base layer bits is beneficial. This is

because a client now has a higher chance of obtaining the base layer bits from

a random number of servers that it connects to. We note that because of the
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randomness in the way servers were chosen, the client may or may not have the

packets it wants. Thus the goal of the origin server is to code and distribute packets

in such a way to result in high availability of packets needed by a client for smooth

video playback. Furthermore, when scalable video is used, the origin server may

decide that it would distribute the important layer packets with high probability,

i.e., more important layer bits end up at the assisted servers, thus increasing the

probability of a client obtaining these bits.

In addition to CDN setting, let us consider a video broadcast session from a

single source to multiple receivers (peers) in a P2P network. We assume a push-

based protocol, in which the source pushes the packets to its neighboring peers

who in turn push the data to other peers. Packets are pushed out by the source

in some order. To reduce the playback delay, the source may want to send packets

with earlier playback deadlines first. A peer then pushes the packets out to its

peers in the order that these packets were received.

Since streaming is of concern, it is important to consider the set of packets

available for a receiver at any point in time. To achieve smooth video playback,

this set of packets must contain the packets that are used to playback the current

video frame. From a receiver’s viewpoint, this implies that its neighbors must have

the packets it wants in a timely manner. Unfortunately, due to many factors, e.g.,

variations in round trip time (due to topology), peer joins and leaves, bandwidth

heterogeneity of peers, these packets arrive at the neighbors of a receiver in different

order than the one they were sent by the source. Thus, within a small window of

time, from a receiver’s viewpoint, we assume these packets arrive at its neighbors in
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a somewhat random manner. The neighbors then randomly push the packets to the

receiver. Clearly, the distribution of packets at these neighbors can be controlled

to some extent by the source. For example, a source may push duplicated packets

containing base layer bits to ensure their availability for the receiver. This scheme,

however might take away the throughput used for transmissions of enhancement

layer bits otherwise.

Based on these discussions, we are interested in the following abstract model.

A source has a file. It allows to code and distribute the file in whatever way to a

number of intermediate nodes (servers in CDNs and peers in P2P networks). A

receiver then randomly connects to some of these intermediate nodes to obtain the

file as shown in Figure 4.1. Thus, we model the process into two stages: the ini-

tial distribution of the packets to the intermediate nodes and the transmissions of

packets from the intermediate nodes to a receiver. The arrival patterns of packets

at the intermediate nodes are assumed to be somewhat random, and can be con-

trolled to some extent by the source. In a CDN, these packet patterns are direct

result of how an origin server send packets to these assisting servers. On the other

hand, in a P2P network, how the source send packets has an indirect effect on the

distribution of packets at the intermediate nodes, i.e., neighboring peers of receiver.

For scalability, we also assume that the intermediate nodes do not communicate

with each other. Instead, these nodes simply push packets to a receiver in some

random manner. Thus, one major concern is how to mitigate the data duplication

when using push-based protocols. We note again that the push-based protocols

can eliminate the packet partition problem that can reduce throughput while min-
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imizing the coordination overhead as argued in Section 4.2.2. That said, in this

work, we describe network coding approaches for the distribution of packets from

a source to the intermediate nodes in order to minimize the storage redundancy

(in CDNs) and bandwidth usage (in P2P networks). Furthermore, we describe a

TCP-based streaming protocol that employs network coding technique to allow a

receiver to achieve high throughput while minimizing the coordination overhead.

We now introduce the necessary background on network coding techniques.

Source

Storage nodes 

Receiver

Figure 4.1: An abstract model for path diversity streaming.



82

4.4 Network Coding

4.4.1 Random Network Coding

In their seminal network coding paper, Ahlswede et al., showed that maximum

capacity in a network can be achieved by appropriate mixing of data at the in-

termediate nodes [4][46]. The most elegant result of network coding is that the

maximum network capacity is achievable using some random network coding [35][?]

techniques, while this is not usually possible with the traditional store and forward

routing.

Using random network coding (RNC), a peer encodes a new packet pi by lin-

early combining n original packets as: pi =
∑n

j=1 fijcj where fij are the random

elements belonging to a finite field Fq having q elements. A node then includes the

information about the fij in the header of the new packets and sends these new

packets to its neighbors. If a receiver receives n encoded packets pi’s that form a

set of n linearly independent equations, it will be able to recover n original packets.

The advantage of using this random network coding in CDN or P2P networks can

be seen in the following simple CDN scenario.

Assuming that an origin server distributes a file to a number of assisting servers

in a CDN. To increase the throughput, the origin server can first divide a file into

n different chunks and randomly distributes these chunks to the assisting servers.

A client then connects to these servers to get the file. Since each server randomly

pushes pieces of the file simultaneously to a client, the time for a client to recover

all n chunks is potentially much shorter than having the only origin server pushing
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the file. Note that this design scales well since no coordination among the servers

is required. However, it is not optimal. Because of the random packet pushing,

some of the packets received at a client may be duplicated, resulting in wasteful

bandwidth. For example, an origin server may divide a file into 4 chunks c1, c2,

c3, and c4, and randomly distributes to a number of assisting servers. As a result,

assume that the chunks at server A are c1, c2, c3, and at server B are c2, c3, and

c4. Now suppose that a receiver R connects to both servers A and B to stream

the file from. Suppose further that A pushes out packets c1, c2, c3 and B pushes

out packets c2, c3, and c4 in that order. After the first time slot, R obtains both c1

and c2. In the second time slot, R obtains c2 and c3, but since it already obtained

c2 from the previous time slot, it discards c2. In the third time slot, it obtains c3

and c4, and discards c3. As seen, R needs to download six chunks in three time

slots to be able to receive the complete file.

Now let us consider the case where the origin server is allowed to use network

coding. In particular, the origin server produces coded packets as a linear combina-

tion of the original packets, and distributes them to the servers A and B randomly.

Formally, the coded packets are encoded as follows:

ai =
∑3

j=1 fa
ijcj , bi =

∑4
j=2 f b

ijcj ,

where fa
ij and f b

ij are random elements belonging to a finite field Fq. Because of

the randomness, each server is likely to have different packets, and thus R is also

likely to receive different packets. For example, during the first two time slots, it is

likely that R would receive different packets, two from each server. Suppose that

R receives a1 = fa
11c1 + fa

12c2 + fa
13c3 and a2 = fa

21c1 + fa
22c2 + fa

23c3 from A, and
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b1 = f b
12c2 + f b

13c3 + f b
14c4 and b2 = f b

22c2 + f b
23c3 + f b

24c4 from B, then clearly, it

will be able to recover c1, c2, c3, c4 if these four equations are linearly independent

and fa
ij and f b

ij are known. It can be shown that if the field size is large enough,

the probability of obtaining these independent equations is close to 1. For this

scheme to work, the information about fa
ij and f b

ij must be included in the data

packets. The number of bits required to specify fa
ij and f b

ij are n log(q) where n is

the number of original packets while q is the size of the finite field. If the chunk size

m >> n then these bits are negligible. Therefore, for most practical purposes, this

network coding scheme can speed up the download time (4 packets as compared

to 6 packets) without the overhead of coordination.

One important observation is that network coding incurs an additional delay

before any of the original data can be recovered. Without network coding, R will

be able to recover c1 and c2 during the first time slot. On the other hand, using

network coding, c1 and c2 cannot be recovered until the second time slot, although

after the second time slot, all c1 through c4 can be recovered simultaneously. In

general, if a network coded packet is a combination of n packets, then a receiver

will have to receive at least n coded packets in order for it to recover any one

of the original packets. This potentially introduces unnecessary delay for video

streaming applications. Therefore, we propose a network code structure that en-

ables a receiver to recover the important data gracefully in the presence of limited

bandwidth which causes an increase in decoding delay.
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4.4.2 Hierarchical Network Coding

To increase the probability that the most important data (base layer bits) are

available at the servers, and therefore can be pushed down to a receiver, a straight-

forward scheme is for a source to send more duplicates of the important data. For

given bandwidth and storage requirements, this implies taking away some of the

bandwidth and storage that might be used for the enhancement layer bits other-

wise. For example, let us consider a two layer video bit stream, instead of sending

every packet with equal chance (0.5), the source may want to first group the base

layer bits and enhancement layer bits into to different types of packets: the base

layer packets and enhancement layer packets. Next, it can push the base layer

packets to the assisting servers with higher probability, e.g. 0.7 than those of an

enhancement layer packets. For a limited redundancy, a receiver will likely to re-

cover the base layer information. Also even when every server has the complete

file (high redundancy), the receiver will be able to recover the base layer infor-

mation faster since the assisted server pushes the packets randomly to a receiver.

This method seems promising, however, as will be shown later, it is still far from

optimal.

We now describe a hierarchical network coding scheme to overcome the decod-

ing delay of the RNC and duplication of Uncoded schemes, while increasing the

chance for a receiver to decode the important bits of the video in time [59]. Let us

consider a r layers scalable video stream. We first divide the stream into a number

of relatively large consecutive chunks. Each chunk consists of the bits from all the
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layers. Now, within each chunk, we group all the bits from the same layer i into a

number of packets mi. Denote these packets as bi
1, bi

2, ... bi
mi

. Next, we code the

packets within a chunk using one of the following r structures:

pi =

m1∑
j=1

f 1
j b1

j +

m2∑
j=1

f 2
j b2

j + .. +

mi∑
j=1

f i
jb

i
j (4.1)

where f i
j are the non-zero random elements of a finite field Fq and bi

j are the original

packets of layer li. Assuming that l1 and lr are the most and least important

layers, then a coded packet pi would always contain the information from the

base layer. In essence, the coded packets belongs to one of the r classes. Let us

denote these classes as N1 to Nr. The packets belonging to the most important

class N1 contain only information about the base layer. The packets belonging

to second most important class contain the information about the base layer and

the first enhancement layer. In general, the packets belonging to a k class contain

information about layer 1 to k.

Using this encoding structure, given a random number of coded packets, the

probability of recovering original packets from a base layer is always larger than

those of other layers. In fact, the probability of recovering a packet from an

important layer is always larger that of a less important layer.

To fine tune the probability of receiving a certain type of packets, one can also

control the number of packets belonging to a certain types. For example, one can

increase the probability of receiving base layer packets by generating more packets

of N1 type.
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Table 4.1: Compare coding schemes with 2 layers data
Uncoded WLNC Hierarchical NC RNC

a1 a1 a1 a1

a2 a2 a2 a2

a1 + a2 a1 + a2 a1 + a2

b1 b1 a1 + b1 a1 + b1

b2 b2 a1 + b2 a1 + b2

b1 + b2 a1 + b1 + b2 a1 + b1 + b2

a2 + b1 a2 + b1

a2 + b2 a2 + b2

a2 + b1 + b2 a2 + b1 + b2

a1 + a2 + b1 a1 + a2 + b1

a1 + a2 + b2 a1 + a2 + b2

a1 + a2 + b1 + b2 a1 + a2 + b1 + b2

b1

b2

b1 + b2

To illustrate our approach, let us consider a simple example involving only 4

packets belonging to one base and one enhancement layer. Let us denote the four

packets as a1, a2, b1, and b2 with ai’s and bi’s belonging to the base and enhance-

ment layers, respectively. Further suppose that the coefficients have binary values

only. Table I shows possible encoded packets for four coding schemes: Uncoded,

Within Layer NC (WLNC), HNC, and RNC. The WLNC scheme produces coded

packets which are linear combinations of the original packets belonging to the same

layer.

For each scheme, assuming that the origin server randomly encodes a total of

M packets which can be any of these packets. With the exception of RNC, before

coding any packet, the origin server decides whether a packet should be coded as
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the base layer packet with probability P , or as the enhancement layer packet with

probability with 1−P . After the packet class has been chosen, a packet is randomly

and uniformly generated. Equivalently, the packet is chosen uniformly from all the

possible packets within a class. By choosing appropriate value of P , one can tune

the probability of getting packets from certain classes. For the RNC, there is no

class, thus a packet is randomly generated as a random linear combination of the

original packets from the entire chunk.

Suppose that three encoded packets (M) are to be randomly generated by each

scheme. It is clear to note that when using the non-network coding, exactly two

of these packets have to be a1 and a2 in order to recover all the base layer packets

(a1 and a2). For the WLNC scheme, to recover the base layer packets, two distinct

packets have to come from the N1 class. For the HNC scheme, the probability

for recovering both a1 and a2 is larger than that of WLNC. This is because in

addition to being able to recover the N1 packets from two distinct packets from

the N1 class, this scheme is also able to recover the base layer packets with an

appropriate combination of 1 N1 packet and 2 N2 packets, e.g., (a1,a1 +b1, a2 +b1).

Finally, for the RNC scheme , the probability of recovering base layer packets is

approximately equal to that of HNC for this particular example. In more general

scenario, RNC scheme would have lower probability of obtaining important layers

when small number of packets are chosen.

We note that if the origin server only generates packets from N1 class, the

receiver has the largest probability of recovering the base layer packets. However

by doing so, the receiver will never be able to recover packets from the enhancement
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layer. HNC enables receiver to recover both base and enhancement layer packets

with different probabilities. For RNC in a general setting, as argued in Section

4.4.1, it may take longer time (more packets) to be able to recover any of the

original packets. But when it does so, it can recover all the packets simultaneously.

As a simple example to show the benefits of HNC, we use a scalable stream

with 8 layers. The base layer contains 8 packets while other 7 enhancement layers

contain 4 packets each. P is set to 1/8, i.e., the probability of generating a packet

from any layer is the same. We compare the layer recoverability of non-network

coding and HNC schemes as a function of the total number of random packets gen-

erated. The more packets are generated, the higher recoverability at the expense

of larger redundancy. Redundancy is the number of additional packets received for

decoding all the packets in a layer. Figure 4.2(a) shows this decodable probability

for every layer as a function of redundancy when using HNC and RNC. Similarly,

Figure 4.2(b) shows the decodable probability when no coding is used.

As seen, when the redundancy is less than 0, using HNC, the receiver is able to

decode the most important layer with higher probability than that of using RNC.

Redundancy less than zero represents the case where a receiver does not receive all

1×8+7×4 packets. This could be due to the servers do not have enough packets

or simply the throughput from all the servers to a receiver is not sufficient for the

receiver to receive all the packets in time. In this case, a receiver is still able to

recover packets from the important layers with some high probability. However,

HNC incurs additional bandwidth when the redundancy ranges from 0 to 150%.

After 150%, both HNC and RNC results in approximate performance.



90

−50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Redundancy [%]

D
ec

od
ab

le
 P

ro
ba

bi
lit

y 

 

 

HNC: 1 layer
HNC: 2 layers
HNC: 3 layers
HNC: 4 layers
HNC: 5 layers
HNC: 6 layers
HNC: 7 layers
HNC: all 8 layers
RNC: all 8 layers

(a)

−50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

Redundancy [%]

D
ec

od
ab

le
 P

ro
ba

bi
lit

y 

 

 

1 layer
2 layers
3 layers
4 layers
5 layers
6 layers
7 layers
8 layers

(b)

Figure 4.2: Layer decodable probabilities as a function of redundancy using (a)
HNC and (b) non-network coding.
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On the other hand, when Uncoded scheme is used, the decodable probability

is substantially smaller for a same specified redundancy level. Even with the

redundancy of 150%, a receiver still fails to decode the layers with high probability.

In section 4.6, we will show more detail performances of network coding schemes

for realistic scenarios and compare their performances with traditional Reed-Solomon

codes.

4.5 Joint Network Protocols and Coding Schemes

We now propose network coding schemes for multi-sender streaming framework

that reduce the coordination among servers in CDN or peers in P2P networks. We

first discuss the RNC-based protocol.

In this scheme, a video stream F is randomly network coded and dispersed to

a number of servers/peers in the network. As described above, a file is partitioned

into N chunks c1, c2, ..., cN . Each chunk ci is further divided into n small packets

pi1, pi2, ..., pin. Now, for each chunk ci, the origin sender will randomly network

code the packets within it, to produce a number of coded packets. These packets

will be randomly sent to the assisting servers in a CDN or peers in a P2P network.

Note that each server/peer does not need to keep all n coded packets. They may

keep only a fraction of the coded packets, but each server/peer will have some

coded packets from every chunk ci. Therefore, the total amount of storage of this

scheme is small than that of the traditional CDN.

Using this approach, the receiver first requests all the senders to send their
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packets p1i’s from the first chunk c1. The sender then pushes the packets within

a chunk to a receiver in a random manner. After the receiver receives roughly n

coded packets, it will be able to recover n original packets. It then immediately

sends a request to all the senders to start streaming the packets from the second

chunk c2. In the meanwhile, the receiver can start playback the video. The process

continues until the end of the stream is reached. Clearly, there is a delay at the

beginning due to the time for the receiver to receive n independent packets. The

attractive feature of this scheme is that no dynamic packet partition is required.

All senders are sending at their available time-varying bandwidth until the receiver

sends an end of chunk request to move to the next chunk. Therefore, TCP can be

employed for streaming. The effective throughput at the receiver is roughly equal

to the total throughputs from all the senders. At any point in time, one sender

may have a slow connection, but as long as the total throughput is larger than the

playback rate, the receiver will be able to playback the video smoothly.

We emphasize that this scheme achieves maximum throughput without the

complex coordination for allocating the packets. However, it may not work well

when the aggregate throughput of all the senders is smaller than the video bit rate.

Thus, one cannot playback the video smoothly.

We now describe a HNC-based protocol that employs scalable video bit stream

to solve this problem. Similar to the RNC-based scheme, the video file is parti-

tioned into chunks. However, instead of using random network coding, we employ

HNC technique. As discussed previously, HNC packets are coded based on the

importance levels of the bits in a scalable bit stream.
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The advantage of HNC is that, given a smaller number of received coded packets

due to smaller throughput during some period of time, the probability of decoding

the base layer using HNC is higher than that of RNC scheme. Thus, when a

receiver determines that it may not have enough time to wait for all the coded

packets within a chunk, it can readily decode the packets from the important

layers, and ignore other undecodable packets. It then signals the senders to send

packets from the next chunk. This technique allows a receiver to playback a low

quality but smooth video.

4.6 Simulation Results

In this section, we investigate the performances of the proposed schemes. To be

concrete, our simulations assume a CDN scenario in which, there is an origin server

with the original video stream. This server distributes either uncoded or coded

packets to a number of assisting servers which are then responsible for streaming

the video to a client as shown in Figure 4.3.

V

V

V

client

Storage peer

Figure 4.3: Simulation setup.
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In this simulation, the origin server has a 3 layers scalable video bit stream

with a rate of 432kbps. The base layer rate is 192kbps, while the rates for the

two enhancement layers are 120kbps each. The original stream is divided into a

number of chunks ci of length 1 second. Thus each chunk consists of 36 packets

of size 1500 bytes. As a result, the base layer and each of two enhancement layers

has 16 and 10 packets, respectively. The origin server distributes the packets to 3

servers using some schemes. Next, TCP is employed to transmit data from these

three servers to a single receiver simultaneously. We use the finite field size of 28

for all the network coding operation.

We consider the following push-based transmission protocol with different cod-

ing schemes. In particular, the schemes of interest are: Uncoded , Reed Solomon

coding, RNC, WLNC, and HNC. Except for the non-network coding techniques,

the protocol used in these schemes are identical to the one described in Section

4.5.

Uncoded. Packets are not coded, however, they are divided into three classes

corresponding to the number of video layers. The origin server randomly pushes

packets to the assisting servers with different probabilities P1, P2, and P3, based

on the classes that the packets belong to.

Reed Solomon (RS). Using this scheme, m original packets within a chunk

are coded into m(1 + b) coded packets and distributed randomly to the servers.

In this case, m = 16, 10, 10 for the base layer, first enhancement layer, and sec-

ond enhancement layer, respectively. Similar to the Uncoded scheme, the packets

of three different classes are generated and pushed to the servers with different
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probabilities.

RNC. The origin server randomly generates a number of packets as linear

combinations of 36 packets for each chunk, and distributes these packets to the

assisting servers. As a result, each assisted server keeps a fraction of coded packets

which are pushed to the receiver randomly. Note that packets are not grouped

into class, thus all coded packets are randomly generated with equal probability.

WLNC. The origin server applies network coding to the packets belonging to

the same layer. The coded packets are then generated and pushed to the assisting

servers with different probabilities according to their classes.

HNC. The origin server employs HNC which results in three classes of packets

as described in Section 4.4.2. These coded packets are generated and pushed to

the assisting servers with different probabilities.

First, we characterize the probability of a receiver being able to decode cer-

tain layer as a function of storage redundancy for different coding schemes. A

layer is decodable if all of its packets are recoverable. This implies that there are

enough distinct coded packets for this layer on the servers. With the exception of

RNC, one important parameter for these schemes are the probabilities for which

the packets from certain classes are generated and sent to a receiver. Intuitively,

higher probability of sending packets from a class results in higher probability for a

receiver being able to decode all the packets from that class. That said, we present

the simulation results on the decodability for different transmission (equivalently,

generation) probabilities for different classes.

Figure 4.4 shows the decodable probabilities for different layers when using
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Figure 4.4: The probability of a receiver being able to decode (a) first layer; (b)
first and second layers; (c) All 3 layers; P1 = P2 = P3 = 1/3.

different schemes. The transmission probabilities for each layer are set to equal

to each other, i.e., P1 = P2 = P3. As seen, when the redundancy level is less

than zero using HNC has the largest probabilities of recovering layers 1 and 2,

followed by WLNC, RS, RNC, and Uncoded schemes. On the other hand, when
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the redundancy level is greater than zero, RNC scheme has the largest probability

of recovering layers 1 and 2, followed by HNC, WLNC, RS, and Uncoded schemes.

When the redundancy level is 150%, HNC, WLNC, RS, and RNC schemes can

recover all three layers with a probability close to 1, but the Uncoded scheme

requires redundancy of almost 200% to accomplish the same goal.

Similarly, Figures 4.5 and 4.6 show the decodable probabilities of different

schemes when the transmission probability for layer 1 increases. In particular, the

transmission probabilities for the layers are now set as (P1, P2, P3) = (0.4, 0.3, 0.3)

and (P1, P2, P3) = (0.5, 0.25, 0.25), respectively. As seen, the decodable probability

for layer 1 increases for all the schemes. This is intuitively plausible as more packets

of layer 1 are likely to be sent to the assisting servers, and thus a receiver is likely

to be able to decode all the packets from this layer. On the other hand, this comes

at the expense of not getting packets from other layers as shown in Figure 4.5 and

4.6.

From the simulation results, it is best to employ RNC and HNC when the

redundancy is greater or smaller than zero, respectively.

We now consider a scenario where each server has much redundancy, thus a

receiver will be able to recover the packets if there is sufficient throughput between

itself and the servers. One problem arises, however, when the total throughput at

a receiver is less than the video playback rate due to network congestion. In that

case, using HNC may allow a receiver to receive and decode the most important

layers early and in time for playback. A receiver then can request the next chunk

in a video stream from the servers when it determines that there is not enough
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Figure 4.5: The probability of a receiver to be able to decode (a) first layer; (b)
first and second layers; (c) All 3 layers; P1 = 0.4, P2 = 0.3, P3 = 0.3.

throughput to receive the enhancement packets.

To simulate this scenario, we use network simulator NS [39]. We use a number of

servers to transmit data to a receiver as shown in Figure 4.3. Heavy traffics between

the servers and the receiver are generated using on-off exponential distribution
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Figure 4.6: The probability of a receiver to be able to decode (a) first layer; (b)
first and second layers; (c) All 3 layers; P1 = 0.5, P2 = 0.25, P3 = 0.25.

with mean of 300kbps. The on and off periods are set to 50 ms each. The physical

bandwidth for the links between the servers and the receiver are set to 500 kbps.

Since TCP is used for transmission the data, the available throughputs of different

connections vary with time, resulting in different number of packets received per
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unit time. Figure 4.7 (a) and Figure 4.7(b) show the average time before a client

can decode different layers within a chunk for different schemes when using 3 and

6 servers, respectively. As seen, for the Uncoded scheme, the time to decode any

layer is the largest due to the high probability of getting duplicated packets. The

performances of RS schemes are better than Uncoded, but worse than those of RNC

and HNC schemes. For the RNC scheme, the time to decode all 3 layers is the

smallest. However, the time to decode 1 and 2 layers are longer than those of the

HNC. This is due to the fact that RNC scheme mixes all the packets together; thus

it requires a larger number coded packets to decode any packets. However, when

enough number of packets are received, it can decode all the packets simultaneously.

On the other hand, HNC allows a receiver to recover the important packets early,

but pays extra overhead to recover all the packets. This is suitable for scalable

video streaming since if there is not enough bandwidth as automatically dictated

by TCP congestion control, the receiver can instruct the servers to start sending

packets from the next chunk. In the meanwhile, the receiver can playback the

important layers that it has received.

Similar results are obtained when the physical bandwidth of the links are re-

duced to 70 kbps and 60 kbps as shown in Figure 4.8, respectively.

We now compare HNC technique with the coordinated technique in which the

receiver instructs the servers 1, 2, 3 to send its packets with equal rates. Packets

from more important layers are sent first, followed by the less important ones. It

is easy to see that if the available bandwidth of all the servers are equal to each

other, this coordinated technique is close to optimal. However, when the available
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Figure 4.7: Latencies to receive one chunk using non-network coding, RS, RNC,
and HNC for (a) 3 servers; (b) 6 servers; Link bandwidth = 500 kbps.
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Figure 4.8: Latencies to receive one chunk using non-network coding, RS, RNC,
and HNC using six servers (a) physical bandwidth per link = 70 kbps; (b) physical
bandwidth per link = 60 kbps.
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throughputs of these servers are not equal and varied with time, the HNC technique

can outperform this coordinated technique significantly. In particular, we assume

that relatively large disjoint partitions of data among the senders are used in this

coordinated technique. Furthermore, a receiver can dynamically request a new

data allocation from the senders due to the change in the estimated throughput.

However, the new allocation request is only sent after the receiver has received all

the data from the current allocation. Therefore, if the partition size is large, when

the available throughputs change, a receiver may have to wait some time before

requesting a new data allocation from the servers. This may result in suboptimal

throughput.

We simulate the unequal throughputs by injecting on-off exponential traffic

with the mean of 450 kbps for one link, and 250 kbps for each of the other two

links. The physical bandwidth for each link is set to 500 kbps. As seen in Figure 4.9,

both schemes are able to obtain the base layer packets in reasonable short time.

However, the coordinated scheme takes along time to receive the enhancement

packets. This is due to the congestion at one link. During this congestion period,

for the coordinated scheme, two other servers are idle since they already sent all

of their packets. However, the partition sent by the server with the congested link

takes a long time to arrive at the receiver. This happens because the receiver cannot

dynamically repartition the packets fast enough to accommodate the change in the

available throughput. As a result, the coordinated approach takes up to 60% more

time to obtain a complete chunk.
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Figure 4.9: Latencies for coordinated transmission and non-coordinated HNC
based transmission.

4.7 Conclusions

We have proposed a network coding framework for efficient media streaming in

CDNs or P2P networks in which, multiple servers/peers are employed to simulta-

neously stream a video to a single receiver. Our framework reduces the redundancy

storage and simplifies the tight synchronization between the senders and receivers.

Furthermore, we proposed an HNC technique to be used with scalable video bit

stream to enable a receiver to adapt to the available bandwidth. Simulation re-

sults demonstrate that under certain scenarios, our proposed schemes can result

in bandwidth saving up to 60% over the traditional schemes.
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Chapter 5 – Distributed Data Replenishment

1. Kien Nguyen, Thinh Nguyen, Yevgeniy Kovchegov, Viet Le, “Distributed

Data Replenishment”, submitted to IEEE Transactions on Parallel and Dis-

tributed Systems, 2010.
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5.1 Introduction

Recent development of Peer-to-Peer (P2P) networks opens a new possibility for

building large-scale distributed systems over the Internet. Typically in such sys-

tems, data are replicated across multiple nodes (peers) at different network loca-

tions such that network failures in some parts of the Internet will not prevent a user

from accessing the data stored in other parts of the Internet. To that end, many

recent research efforts have been focused on using P2P platforms to build reliable,

large scale distributed systems for Internet services [73, 85, 96, 6]. That said, one

critical drawback of distributed systems, specifically P2P systems, is the overhead

of managing data stored at multiple peers who at times, can be highly unreliable.

In this paper, we will investigate the theoretical underpinnings and examine the

simulated performance for a class of large-scale distributed systems based on a

randomized P2P approach via coding techniques. Before describing such systems

in detail, we first highlight the fundamental differences between centralized and

distributed systems. We also point out the salient features for the proposed class

of distributed system based on randomized P2P approach.

Centralized vs. Distributed. Roughly speaking, a centralized system has

the ability to access all the information and to perform all the calculations locally

using a single computational unit. The ability to access all information locally is

a marked attribute of a centralized system that enables it to carry out efficient

computations. On the other hand, given the current storage and CPU technology

trends, the centralized system architecture often does not scale well with storage
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and computational capabilities. Importantly, because a centralized system often

has all of its resources at one location and its components are tightly coupled, it is

more susceptible to bottleneck failures. These drawbacks motivate the distributed

system architecture that alleviates both the scalability and bottleneck problems.

In a nutshell, a distributed system over the Internet is an overlay network of stor-

age and computing nodes, linked together in such a way to allow computational,

storage, and bandwidth resources to be shared. Popular P2P networks such as

BitTorrent [1] and KaZaA [2] for example, are distributed systems that enable

their users to share data and bandwidth. Because these overlay nodes are lo-

cated geographically apart, i.e., each node has different network access, and data

are replicated across multiple nodes, the bottleneck failures are of less concerned.

However, if not properly designed, a typical Internet-wide distributed system will

incur substantial communication/coordination overhead among nodes in order to

guarantee operational correctness. Thus, the main challenge in realizing an efficient

distributed system is to design efficient coordination/communication protocols to

minimize such overheads while guaranteeing correctness.

Principle of Minimum Communication and Coordination. In a dis-

tributed system, nodes often make decision with limited information. Specifically,

each node does not know about the state information of all other nodes. Instead,

it only keeps track of the information about its immediate neighbors. This reduces

the communication overhead as well as the complexity of maintaining accurate

state information at every node in the network. Domain Name Server (DNS) sys-

tems is an example of such a system whose each local DNS server only stores
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only a limited number of IP addresses. We will discuss shortly how one can em-

ploy the minimum communication and coordination principle for an Internet-wide

distributed storage system via randomness and coding techniques.

Data replenishment. The fundamental tasks of a distributed storage system

is to index the data, maintain the data, and retrieve the data. In this paper, we

will not discuss various aspects of indexing and retrieving data in a distributed

system. These topics have been well investigated in [76, 77, 85, 73, 31, 79, 80,

78]. Rather, we will focus on scalable methods for maintaining data in a highly

volatile environment such as P2P networks. Suppose the data is stored on a

peer’s hard drive. Then, when a peer departs the network, so does the data

it carries. Therefore, it is preferable to employ some form of data replenishment

mechanism which ensures that at any time, the requested data is available at one or

multiple peers collectively. Furthermore, the data replenishment mechanism should

be simple for it to be effective in highly dynamic and distributed environments.

Data replenishment mechanism is the focus of this paper.

Approach Overview. Traditionally in a distributed storage system, a file

is replicated in its entirety at one or multiple locations. However, for the same

overall storage redundancy, a more robust approach is to break up a single file

into many pieces, code these pieces properly, then disperse them to multiple nodes

in a network [58, 60, 3]. A user recovers the file by downloading its many pieces

simultaneously from different locations. In this paper, we consider the following

variant of the setup described in [3, 26]. In this setup, a file to be stored, is

first broken up into multiple pieces or packets, coded using either Reed-Solomon,
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repetition, or random linear network codes (RLNC), then dispersed to a number

of peers in the network. We will discuss these techniques shortly. Now, any peer

can depart the network along with its data. If a new peer joins, it can be recruited

to help replenish the missing data. There are many ways to replenish the missing

data. One way is better than the others. We will show that the proposed data

replenishment via RLNC is much more efficient than the strategies using repetition

and traditional channel code such as Reed-Solomon code. We note that the concept

of data replenishment is very much similar to data repair as termed in [26, 25].

The outline of this chapter is as follows. In Section 5.2, we elaborate on dif-

ferent replenishment strategies for a synchronous network model. In Section 5.3,

we model the evolution of a piece of data through time for different replenish-

ment schemes as discrete stochastic processes. These processes however, have an

exponential large number of states. Because of that, it is difficult to analytically

examine their behaviors of functions of time. We then proposed a time-backward

model based on which, we are able determine an approximate closed form expres-

sion for the elapsed time that a piece of data is expected to remain in the system.

For the rest of this chapter, we call this expected time as the mean absorption

time. Our analytical results show that using the proposed data replenishment via

RLNC, the absorption time is exponential in the number of peers used to store

the data. This is much more robust than other data protection strategies based

on repetition or channel coding techniques whose absorption times are quadratic

in the number of peers. As an extension, in Section 5.7, we present the analysis

for an asynchronous model which describes peer arrivals and departures as Pois-
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son processes. Essentially, our theoretical results show that the performance of

the asynchronous model depends critically on the peer arrival and departure rates.

Finally, we conclude with some remarks on applying the proposed time-backward

model to other problems including gene and population evolutions.

5.2 Synchronous Network Model and Data Replenishment Strate-

gies

As briefly discussed in the Introduction, our distributed storage systems of interest

are the types whose files are not stored in their entirety at a specific location.

Rather, they are broken up into many pieces, coded for redundancy, and dispersed

to multiple locations ( peers ) in a P2P network. When a particular file is requested,

its pieces are downloaded simultaneously from multiple locations. It can be shown

that this method increases data availability and reduces congestion bottlenecks

[58, 60].

That said, when a peer leaves the network, so does its data. This effectively

reduces the robustness of the system temporarily or permanently if the peer never

rejoins or rejoins without its data. To avoid this, a peer can transfer its data

to some other peers before its departure. However, if the data is large, a peer

is less willing to wait until the transfer completes. Thus, without any proactive

data replenishment, the redundancy level of a piece of data in the network is

continuously reduced. After some period of time, the data of interest is not likely

to be recoverable.
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Theoretically, if one is to replace the exact missing data in the network, the

redundancy level would remain the same. However, this requires global knowledge.

Specifically the system needs to know which peer leaves the network and which

pieces of data that it has. Then, a precise coordination and communication mech-

anism is needed to reproduce the equivalent state of the network, more precisely

the redundancy amount for a piece of data prior to a peer’s departure. This could

potentially create significant communication and coordination overheads. There-

fore, we take a more scalable, randomized approach that aims to approximately

reproduce the state of the network prior to a peer’s departures, i.e. data replenish-

ment. In this chapter, we explore novel techniques for this approach to maintain

the data in the network for as long as possible while minimizing the coordination

and communication overheads.

To capture how data redundancy in the network evolves over time, it is impor-

tant to model the peer arrival and departure processes. For the majority of this

chapter, we will study a synchronous model for peer arrival and departure. In this

synchronous model, for every peer that leaves the network, the system can find

another peer to take over the responsibility of the departed peer. Under certain

setting, this model approximates the dynamics of a network with constant number

of peers since the departures and arrivals are synchronized. This is the most inter-

esting model as the advantage of Random Linear Network Coding can be clearly

demonstrated over other popular channel and repetition coding techniques. That

said, an analysis of a more general, but less interesting model with Poisson arrival

and departure of peers will be presented in Section 5.7.



112

We will describe three replenishment strategies in this chapter. Each strategy

has to follow the basic rules which model the limited communication and storage

capacities of the peers. We abstract the replenishment process as the following

game:

The game involves N peers. The objective of the game is for the N peers to

collectively maintain some given data, e.g., a file of C bits for as long as possible,

subject to the following rules:

1. Each peer is allowed to carry a maximum of T bits.

2. At every time step, a peer is selected uniformly at random to leave the game.

Thus the T bits that it carries will also be deleted.

3. A new peer is recruited to replace the departed peer. It is allowed to com-

municate with a maximum of M peers in an attempt to replenish the data.

4. Peers can modify the data in any way, as long as they do not exceed their

storage capacity of T bits.

Given these rules, what is the optimal strategy for the system to maintain a piece

of data for as long as possible? Note that, if M = N −1, i.e., the new peer is able

to communicate with every other peers, thus it will know exactly what the missing

data is, and will be able to restore the missing data quite easily. When M < N−1,

it is impossible to know with certainty what data is missing. However, some form

of data replenishment might be sufficient to maintain certain level of redundancy

in the system. We now describe three replenishment strategies, starting first with

the repetition coding technique.
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Repetition Code Based Strategy: To be specific, suppose a file to be stored

is C bits long, and there are N peers, each can store up to C/2 bits. The repetition

strategy divides the peers into two groups. Peers in one group are assigned to store

the first half of the file, while peers in the other group store the remaining half.

Note that the redundancy ratio is the total storage divided by the file size. In

this particular case, the redundancy is NC/2
C

= N/2. Whenever a peer departs, a

new peer joins, and communicates with M = 2 other peers selected uniformly at

random. Since the new peer’s capacity is only C/2 bits, even it contacts two peers,

it will only copy the data from one of these peers, or effectively, M = 1. The game

is played repeatedly until all the peers have the same piece of data which is either

the first half or the second half of the file. It is easy to see that this will happen

with probability 1. When this happens, the file is no longer recoverable even with

the help of all the peers. But before this happens, all the peers collectively will be

able to provide the file.

Reed-Solomon Code Based Strategy: Intuitively, a better strategy is to

employ the standard channel coding techniques such as the Reed-Solomon code.

Using this strategy, a file of C bits is first divided into three equal parts, which are

then channel coded to produce N codewords of length C/3 bits. Each peer then

keeps a codeword. The redundancy in this case is N/3. The property of RS(N, 3)

code ensures that a file can be recovered using any of three distinct codewords

[50, 92]. Now, the game is played in exactly the same way as before. When a peer

departs, the new peer joins, and is allowed to communicate with M = 2 peers in

an attempt to replenish the missing data. With M = 2, the new peer would not
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be able reconstruct the entire file. Therefore, its best strategy is to choose one of

the codewords from the two contacted peers at random, and copies this codeword

to itself to increase data redundancy in the system.

Random Linear Network Code Based Strategy: A yet intuitively better

strategy is to employ Random Linear Network Coding technique [35][4]. Using

this strategy, a file of C bits is first divided into three equal parts. N codewords

are produced, each is a random linear combination of the three original parts of

the file. Each peer then keeps a codeword. The redundancy is N/3, identical to

that of RS code strategy. Mathematically, an n − bit pattern can be viewed as an

element from a finite field. Thus, a codeword can be viewed as a vector of elements

from a finite field. A codeword A is a random linear combination of codewords B

and C, then

A = c1B + c2C, (5.1)

where ci’s are elements drawn uniformly at random from a finite field. Assuming

that coefficients ci’s are known, it is clear that if all peers have at least three

independent codewords (which are formed by three linear independent equations),

then the file can be recovered. Note that the number of bits that represents the

coefficients is included in the codewords, and is negligible for sufficiently long

codewords.

Now, the game for RLNC is played a bit different from the previous two. When

a peer departs, the new peer randomly chooses M = 2 peers, then copies their data.

However, since the new peer’s storage capacity is only C/3 bits, it generates and
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stores only one new codeword as a random linear combination of the two codewords

it just copied.

In all of these strategies, the game ends at the moment when all the peers

together cannot recover the original file. We will show theoretically that the RLNC

based strategy is much better than the others, i.e., it will take longer to play the

game. In practice, one can view the distributed storage system based on the

RLNC strategy as letting individual peers to perform a simple task in a random

manner. However after some time, the data might no longer be recoverable. Thus,

a practical system will allow the simple replenishments to continue until the level

of redundancy is deemed to fall below a certain threshold, then a more expensive,

full-blown replenishment is performed to restore the full level of redundancy. This

kind of systems is more scalable than ones that perform expensive replenishments

at every single peer departure.

Mathematically, the RLNC game is equivalent to the following procedure.

Given an N ×N matrix with rank 3, at each time, a row is replaced by a new row

produced by a random linear combination of two other rows. The question is how

long does it take for the rank of the matrix to reduce to 2.

5.3 Discrete Stochastic Model for Random Linear Network Coding

Based Replenishment Strategy

In this section, we describe a discrete stochastic model for the RLNC based re-

plenishment strategy. This model is analytically intractable due to a large number
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of states. However, it serves as a motivation for the proposed time-backward tech-

nique that approximates the expected time until the file is no longer recoverable.

As described in Section 5.2, each replenished codewords can be viewed as a row

in a matrix, and is linearly dependent on the other rows that were used to generate

it. Therefore, over time one would expect the number of linearly independent rows

decreases. Eventually, the rank of the matrix will reduce below the number of

original data packets. At this point, even when all rows are used, the data cannot

be recovered. Our objective is to determine the average time until this happens.

To help with the modeling process, we start with the following claim:

Given N codewords, each is a vector of L elements in a finite field F. A new

codeword of the same length is generated with the elements drawn uniformly at

random from the same field. The probability that this new codeword is linearly

independent from any combination M codewords from the given N codewords is

almost unity if L and |F| are sufficiently large. 1

Another way to view this is that if the elements are drawn from R
1, then a

randomly drawn row will definitely be independent from any other M equations be-

cause |R| is infinite. We will make this approximation to model the replenishment

process as follows.

For simplicity, we will focus on the following simple scenario. A file is broken

up into K = 3 parts, then N codewords are generated by linearly combining these

three parts (codewords) at random. Now, at every time step, a new peer is chosen

uniformly at random to depart. A new peer joins. Two distinct remaining peers

1It is straightforward to show that the lower bound for this probability is 1 − (N
M)

|F|L−1 .
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(M = 2) are then uniformly chosen at random to have their codewords copied to

the new peer. The new peer then generates its new codeword by linearly combining

these two codewords with random coefficients. In general, if M ≥ K, it will almost

always be possible to recover the file, independent of the number of replenishments.

This is because we can almost always get K linearly independent codewords, unless

with a small probability, the generated codeword happens to be linearly dependent

on some M ′ < K codewords.

We use the diagram in Figure 5.1 to visually depict how the dependencies among

the codewords progress in discrete time steps. The meanings of the solid and non-

solid circles will become clear shortly when we discuss the time-backward process.

For now, at time step n = 0, there are 7 codewords. Any of these codewords can

be represented as a linearly combination of any three other codewords due to the

initial mixing. At time step n = 1, the codeword 6 is replaced by a random linear

combination of codewords 5 and 7. At this stage, the file can be recovered using

any triplet of codewords except (5,6,7) since these three codewords are not linearly

independent. At n = 2, codeword 2 is replaced by a random linear combination of

codewords 1 and 3. As such, one cannot use triplets (5,6,7) or (1,2,3) to recover

the file at this time. The process repeats, and eventually, all codewords will be

some linear combinations of some two codewords, and the file will no longer be

recoverable. A discrete time Markov chain representation, specifically a transition

probability matrix can be used describe this replenishment process. However, a

direct application of this method requires an exponentially large number of states

(N) where a state denotes a configuration in the diagram. For example, at any
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n = 0

n = 1

n = 2

n = 3

n = 4

k = 5

k = 4

k = 5

k = 6

k = 7

codeword

1 2 3 4 5 6 7

Figure 5.1: Progression of codewords for seven peers, N = 7, M = 2 in discrete
time steps n. Codewords are represented by the circles. A circle in the current
time step that is connected to two circles in the previous time step, represents a
codeword that is a linear combination of two codewords. Solid circles are parent
codewords that are part of the linear combinations in the current codewords, while
non-solid circles are not part of the linear combinations of the current codewords.

time step, there are approximately N × (
N
2

)
states that the chain can transition

to, making this approach analytically intractable.

Our contributions is a modeling technique that produces an approximate but

closed form solution for the expected number of time steps to get from any state to

any other, including the state in which the file is no longer recoverable. Further-

more, we can bound the error on this approximate time by a factor of 2. The key

to this modeling technique is to consider a more tractable time-backward model in

which the replenishments are performed backward in time. We now describe the
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time-backward model.

5.4 Time-Backward Model

We consider the time-backward process where we begin with n = 4 and end with

n = 0. Fig. 5.1 shows two types of circles. The solid circles denotes the parent

nodes which are the codewords involving in the linear combination at different time

steps. The non-solid circle represent codewords that are not parents nodes. Let

redefine n as the number of time steps going backward from some initial state. Now,

let Xn denote the number of parent nodes at time n where n denotes the number

of time steps from the initial state with the number of parent nodes X0 = N . For

example, in Figure 5.1, X0 = 7 and X4 = 5. Clearly, all the codewords at time

n = 0 are linearly dependent on the codewords 1,2,3,4,5,6 at time n = 1. All the

codewords at time n = 1, are linearly dependent on the codewords 1, 2, 3, 4, 6 at

time n = 2, and so on. With this setup, one can view the time-backward process

as a one dimensional random walk Xn on 2, 3, . . . , N . For the case where M = 2,

one can write down the following transition probabilities:

P (Xn+1 = k − 1|Xn = k) =
k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)

P (Xn+1 = k + 1|Xn = k) =
k

N

(
N − k

N − 1

)(
N − 1 − k

N − 2

)

P (Xn+1 = k|Xn = k) = 1 − k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)

− k

N

(
N − k

N − 1

)(
N − 1 − k

N − 2

)



120

Furthermore, when Xn = M , we can artificially stop the process, i.e., setting the

transition probabilities from this state to all other states to 0. At this stage, the

file is no longer recoverable.

That said, Xn can only take on values between M and N , so the size of the

transition matrix P is (N −M +1)× (N −M +1), thus is much more manageable

as compared to modeling the time-forward process.

For example, with M = 2, N = 7, the corresponding transition probability

matrix is:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

1/35 4/5 6/35 0 0 0

0 4/35 27/35 4/25 0 0

0 0 2/7 2/3 1/21 0

0 0 0 4/7 3/7 0

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that this type of matrices has one recurrent state Xn = 2 (the first row

in the matrix), the rest of the states are transient.
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5.4.1 Mean Absorption Time

Based on P, one can immediately compute the mean absorption time, i.e., the

expected number of time steps, starting from an initial transient state to a recurrent

state, using a standard technique. Specifically, let Q be the submatrix of P that

includes only the rows and columns corresponding to the transient states, then by

rearranging the order of the states, one can write the transition probability matrix

P as:

P =

⎛
⎜⎝ P̃ 0

S Q

⎞
⎟⎠ .

Let

M = (I − Q)−1, (5.2)

Let Bi be the random variable denoting the absorption time starting in a transient

state i, the the mean absorption time is:

EBi =
∑

j

Mij (5.3)

5.4.2 Variance of Absorption Time

Given P, we can also explicitly compute the variance of absorption time, starting in

any transient state. To the best of our knowledge, we have not found any result on

computing the variance of random walk in such a closed form as the one presented
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below. We have the following proposition:

Proposition 5.1

V ar(Bi) = (I −P)−1(I + 2PM1) − (
∑

j

Mij)
2 (5.4)

Proof 5.1 Using the well-known recursion, we have:

B2
i =

∑
j

pij(1 + Bj)
2. (5.5)

Thus,

EB2
i = E[

∑
j

pij(1 + Bj)
2]

= 1 +
∑

j

pijEB2
j + 2

∑
j

pijEBj .

Rearranging the terms, we have

EB2
i −

∑
j

pijEB2
j = 1 + 2

∑
j

pijEBj (5.6)

Let B(1) = (EB1, EB2, . . . , EBN)T and B(2) = (EB2
1 , EB2

2 , . . . , EB2
N )T , then one

can write Equation (5.6) in matrix form as:

(I − P)B(2) = 1 + 2PB(1)

= 1 + 2P(I−Q)−11. (5.7)
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Thus,

B(2) = (I −P)−1(I + 2P(I− Q)−1)1

= (I −P)−1(I + 2PM)1

= (I −P)−1(1 + 2PM1) (5.8)

Finally, we finish the proof by noting that V ar(Bi) = EB2
i − (EBi)

2 and (EBi)
2 =

(
∑

j Mij)
2.

Note that this method can be easily extended to compute a recursive expression

for higher moments.

5.4.3 Bounding Mean Absorption Time of Time-Forward Process

with Time-Backward Walk

We have shown that, in contrast to the time-forward process, modeling the corre-

sponding time-backward walk is quite tractable. We now show that the expected

absorption time of the time-forward process can be approximated well by that of

the corresponding time-backward walk. Specifically, we have the following Propo-

sition:

Proposition 5.2 Let Fi and be Bi be the random variables denoting the absorp-

tion times of the time-forward process and time-backward walk, starting in state i,

respectively, then

EBi ≤ EFi < 2EBi (5.9)
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Proof 5.2 We first prove the lower bound. As shown in Fig. 5.2, a sequence of

forward walk that results in all the codewords being the children of only two code-

words must contain a sequence of backward walk that reaches these two codewords.

Thus, EBi ≤ EFi.

codeword

1 2 3 4 5 6 7

Starting

Two parent codewords

All codewords are linearAll codewords are linear
combination of two
parent codewords

Figure 5.2: Illustrating diagrams for proof of lower bound.

We now prove the upper bound. Suppose we walk backward from the state

X0 = k = N until there are only two parents nodes (k = 2). We then reset k = N ,

then walk backward one more time as shown in Figure 5.3. The total expected
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number of time steps to reach the second merge, counting from the beginning, is

2EBi. Now if the forward walk starts earlier than 2EBi time steps, then it must

have encountered at least two instances where every node is a descendant of only

two parents node. But, by definition, EFi is the number of time steps for the chain

to reach k = 2, and stays at k = 2 permanently. Thus, EFi < 2EBi.

2T
ab
so
rb

Resett k = 7

Figure 5.3: Illustrating diagrams for proof of upper bound.



126

Although the theoretical upper bound on EFi is a bit loose, simulation results

in the Section 5.5.2 reveal that EFi is quite close to EBi.

5.5 Exponential Rate for Data Replenishment via Random Linear

Network Coding

5.5.1 Analysis of Exponential Mean Absorption Time

While the time-backward model allows one to compute a closed-form solution for

the expected absorption time starting from any state, it relies on the computation

of (I − Q)−1 which often cannot be used to examine the asymptotic behavior of

the absorption time as a function of N . We now show how to compute a closed

form expression for the expected absorption time in terms of N which shows that

the mean absorption time is exponential in N . We have the following Proposition:

Proposition 5.3 Given N node and M , the mean absorption time for the time

backward walk is at least exponential in N , and thus the mean absorption time for

the time-forward walk is also at least exponential in N .

Proof 5.3 We present a proof based on the classical method for computing hitting

time of a discrete Markov chain. In the Appendix, we provide an alternative proof

that further confirms the exponential mean absorption time. To be concrete, we

consider the case of M = 2, i.e., make a new codeword as a random linear com-

bination of two codewords. It is straightforward to show that the mean absorption

time for the case M > 2 must be greater than that of M = 2.
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Denote hk as the mean absorption time starting in the state X0 = k, for k =

3, 4, . . . , N − 2, and ending in state Xn = 2 for some n. Then, we can write down

the following recursion:

hk = 1 + hk−1
k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)
+ hk+1

k

N

(
N − k

N − 1

)(
N − 1 − k

N − 2

)

+ hk

[
1 − k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)
− k

N

(
N − k

N − 1

)(
N − 1 − k

N − 2

)]

Letting yk = hk+1 − hk, and after some term re-arrangements, we have

yk−1 = yk
(N − k)(N − 1 − k)

(k − 1)(k − 2)
+

N(N − 1)(N − 2)

k(k − 1)(k − 2)

Now, this is a difference equation with the following initial conditions:

yN−1 = hN − hN−1 = 1,

and

yN−2 = hN−1 − hN−2 =
N

N − 3
.

The first initial condition is true because the first step always reduces the number

of parents nodes by 1. The second condition is true because in the special state

Xn = N −1, the chain can either go to (N −2) or stay at (N −1). It will never go

back to N as seen in the Fig. 5.1. The probability that the chain will go to N − 2

given that it is currently in N −1 is the probability that all three selected nodes are
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the parent nodes in the current time step. This probability is

(N − 1)(N − 2)(N − 3)

N(N − 1)(N − 2)
=

N − 3

N
.

Thus the expected number of trials before moving to N − 2 is N
N−3

.

The difference equation is of the form:

yk−1 = akyk + bk, (5.10)

where

ak =
(N − k)(N − 1 − k)

(k − 1)(k − 2)
(5.11)

and,

bk =
N(N − 1)(N − 2)

k(k − 1)(k − 2)
, (5.12)

for k = 3, 4, . . . , N − 2.

By performing a few recursions, starting at any N0, we have

yN0−k = aN0aN0−1 . . . aN0−k+1yN0 (5.13)

+ aN0−1aN0−2 . . . aN0−k+1bN0 + · · · + aN0−k+1bN0−k+2 + bN0−k+1,

which can be written as:

yN0−k = (

N0∏
i=N0−k+1

ai)yN0 +

N0−k+2∑
j=N0

bj

N0−k+1∏
i=j−1

ai + bN0−k+1. (5.14)
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Let N0 = N − 2, we have yN0 = yN−2 = N
N−3

, k = 0, 1, . . . , N − 4, and

yN−2−k =
N

N − 3

N−2∏
i=N−k−1

(N − i)(N − 1 − i)

(i − 1)(i − 2)

+
N−k∑

j=N−2

N(N − 1)(N − 2)

j(j − 1)(j − 2)

N−k−1∏
i=j−1

(N − i)(N − 1 − i)

(i − 1)(i − 2)

+
N(N − 1)(N − 2)

(N − k − 1)(N − k − 2)(N − k − 3)
. (5.15)

Next, to find mean absorption time hk, i.e. the expected number of time steps

for the chain to reach Xn = 2 from X0 = k, for k = 3, 4, . . . , N − 2, we have

k−1∑
j=2

yj = hk − h2 = hk, (5.16)

since h2 = 0. The expected number of time steps before the file is no longer

recoverable is:

hN = hN−2 + 1 +
N

N − 3
=

N−3∑
j=2

yj + 1 +
N

N − 3
(5.17)

We now show that hN is at least exponential in N .

We consider

zN0−k = aN0aN0−1 . . . aN0−k+1

+aN0−1aN0−2 . . . aN0−k+1 + · · ·+ aN0−k+1

for k = 2, 3, 4, . . . , N0, with N0 ≤ N − 2.
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Note that zk is a modified version of yk as defined in Equation (5.15). It is

easy to see that

yk > zk, (5.18)

for k = 2, 3, . . . , N0, since yN0 > 1 and bk > 1.

Therefore it is sufficient to show that if z2 is exponential in N0 then y2 is at

least exponential in N0, and thus hN0 as defined in Equation (5.17) must be at least

exponential in N0. We proceed as follows.

First, we note that

ak =
(N − k)(N − 1 − k)

(k − 1)(k − 2)

>
(N − k)(N − 1 − k)

k(k − 1)

≈
(

N − k

k

)2

(5.19)
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Now let a′
k =

(
N−k

k

)2
, we have

z2 = a3 + a3a4 + a3a4a5 + · · ·+ a3a4 . . . aN0

> a′
3 + a′

3a
′
4 + a′

3a
′
4a

′
5 + · · ·+ a′

3a
′
4 . . . a′

N0

=
a′

1 + a′
1a

′
2 + a′

1a
′
2a

′
3 + · · ·+ a′

1a
′
2 . . . a′

N0

a′
1a

′
2

− 1 + a′
2

a′
2

=

∑N0

i=1

∏i
k=1 a′

k

a′
1a

′
2

− 1 + a′
2

a′
2

=
4
∑N0

i=1

∏i
k=1

(
N−k

k

)2

(N − 1)2(N − 2)2
− 4

(N − 2)2
− 1

=
4
∑N0

i=1

(
N−1

i

)2

(N − 1)2(N − 2)2
− 4

(N − 2)2
− 1

=
4
∑N0

i=1

(
N−1

i

)(
N−1

N−i−1

)
(N − 1)2(N − 2)2

− 4

(N − 2)2
− 1

>
4
∑N0

i=1

(
N0

i

)(
N0

N0−i

)
(N − 1)2(N − 2)2

− 4

(N − 2)2
− 1

=
4[
(
2N0

N0

)− 1]

(N − 1)2(N − 2)2
− 4

(N − 2)2
− 1

≈ 22(N0+1)

(N − 1)2(N − 2)2
− 4

(N − 2)2
− 1 (5.20)

where the Stirling’s approximation is used in Equation (5.20).

By Proposition 5.2, the mean absorption time for the time-forward model must be

exponential in N .
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5.5.2 Simulation results for RLNC based data replenishment

In this section, we show the simulation results that demonstrate the theoretical

exponential mean absorption time using the RLNC-based data replenishment. Fur-

thermore, our simulation results show that the mean absorption time of the time-

forward model is very close to that of time-backward model, i.e. much smaller

closer to the lower bound than the upper bound given in Proposition 5.2. There-

fore in many settings, replacing the time-forward model with the time-forward

model would not sacrifice much accuracy on how long a piece of data is to remain

in the system.

First, we want to show that the mean absorption time is indeed exponential.

Figure 5.4 shows the log of mean absorption time as a function of N , the number

of nodes for both the time-forward and time-backward models. Recall that N is

the number of nodes used to store the data. In this simulation, a newly arrival

node always connects to M = 2 existing nodes to download and mix their data.

Originally, there is a total of three pieces of independent information, i.e., the

redundancy ratio is N/3. The mean absorption time is the expected time (the

number of pairs of departures and arrivals) until all the nodes collectively contain

exactly two pieces of independent information. From the previous stochastic model,

this happens when the number of parents nodes equal to two. The graphs in Figure

5.4 shows two relatively straight line segments. Since the y-axis is in log scale,

this indicates that both the mean absorption times of the time-forward and time-

backward models are exponential in the number of nodes used to store the data.
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Furthermore, they are almost identical in the log scale. This closeness also exhibits

in the linear scale graphs (not shown). It is noted that the mean absorption time

for the time-forward model is always larger than that of the time-backward model,

following the lower bound in Proposition 5.2.
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Figure 5.4: Log of mean absorption time vs. the number of nodes for N =
4, .., 9; M = 2 for the RLNC strategy.

Next, we investigate the mean absorption time as a function of redundancy

given a constant number of nodes N = 9. Specifically, if at the start, there are N

pieces of independent information, then the mean absorption time is the expected

time that the number of parents nodes reduces to k. Every newly arrival peer still

connects to M = 2 peers for data replenishment. Figure 5.5 shows log of mean

absorption time versus k, the number of parents nodes. Again, the mean absorption
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time for the time-forward model is higher than that of the time-backward model

as predicted, but they are close to each other.
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Figure 5.5: Log of mean absorption time vs. the number of parent nodes for
N = 9; M = 2 for the RLNC strategy.

Figure 5.6 show the absorption times (minimum, maximum, median, 25 and 75

percentile) for the time-forward and time-backward models when the number of

nodes N varies from 6 to 9 and M = 2 connections for data replenishment. Again,

they are very much in agreement with each other.

Finally, we also investigate the performance of the RLNC-based data replenish-

ment scheme when M ≥ 2 connections are used. Specifically, a newly arrival peer

chooses two, three, or four peers uniformly at random to download the data and

perform replenishment. Figure 5.7 shows the log of the mean absorption time for
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Figure 5.6: Log of absorption time vs number of original nodes for N = 6, .., 9; M =
2 for the RLNC strategy.

the time-backward and time-forward models vs. k, the number of parents nodes,

for the case of N = 8 nodes.

The simulation results show that for larger values of M , one can expect a longer

mean absorption time. This is intuitively plausible as a larger M would reduce the

chance of creating dependency at each replenishment steps.
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5.6 Quadratic Rate for Data Replenishment via RS and Repetition

Codes

In this section, we show that using replenishment based on the RS and repetition

codes, the number of time steps before a file is no longer recoverable is of O(N2),

and thus is less effective than that of the RLNC based strategy. We begin with

the RS based strategy.

5.6.1 Mean Absorption Time for RS-based Strategy

A file is divided into three parts, coded using RS(N, 3). Each peer keeps a code-

word, resulting in a redundancy level of N/3. A new peer is allowed to contact

with M = 2 peers. Since with M = 2, the new peer cannot recover the file, thus it

will randomly copy the codeword from one of the two peers. In this special case,

it is just as good as communicating with only M = 1 peer. Note that it is also

straightforward to analyze the general case where RS(N, K) with (2 < M < K) is

used. In this general case, the new peer still cannot reconstruct the file, however it

is potentially better to copy the data that is least duplicated among the M peers,

so as to increase the diversity. For simplicity, let us consider the case where M = 2,

or effectively M = 1.

Using the time-backward model, it is straightforward to model the RS-based

strategy as shown in Fig. 5.8.

Similar to the RLNC strategy, let k denote the number of parents nodes. A file
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is then irrecoverable when k = 2. We can write the mean absorption time using

the recursion as

hk =
k

N
(
k − 1

N − 1
)hk−1 + (1 − k

N

k − 1

N − 1
)hk + 1

hk = hk−1 +
N(N − 1)

k(k − 1)
(5.21)

for k = 3, 4, . . . , N .

Now h2 = 0 hence,

hN =

N−1∑
k=2

N(N − 1)

k(k + 1)

= N(N − 1)
N−1∑
k=2

(
1

k
− 1

k + 1

)

=
(N − 1)(N − 2)

2
(5.22)

By Proposition 5.2, the mean absorption time of the time-forward process cannot

be less than hN .

Note that if RS(N, 2) is used, i.e., redundancy is increased to N/2. Then,

using the same method, we have hN = (N − 1)2. Thus, the mean absorption time

for the time-forward walk cannot be more than 2hN . For large N , this is a small

improvement over the repetition code strategy for the same redundancy as shown

below.
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5.6.2 Mean Absorption Time for Repetition Code Strategy

Suppose a file is split into two parts and there are N peers, each containing either

parts of the file. For this strategy, whenever a peer leaves and a new peer enters,

a peer is picked uniformly at random out of N − 1 existing peers, and its data is

copied to the new peer. The process is of birth-and-death type on {0, 1, . . . , N}
with two absorbing states, 0 and N . We would like to estimate the mean absorption

time.

In the above birth-and-death process the forward probabilities are given by

pk =
k(N − k)

N(N − 1)
for k = 1, 2, . . .N, and p0 = 0

and the backward probabilities are

qk =
k(N − k)

N(N − 1)
for k = 0, 1, . . .N − 1, and qN = 0.

The expected absorption time hk = Ek[T0 ∧ Tn] solves the following recurrence

equation: For k = 1, 2, . . . , N − 1,

hk = 1 +
k(N − k)

N(N − 1)
hk−1 +

k(N − k)

N(N − 1)
hk+1 +

(
1 − 2k(N − k)

N(N − 1)

)
hk

h0 = hN = 0 (5.23)
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The above equation can be rewritten as follows

yk = −(N − 1)

(
1

k
+

1

N − k

)
+ yk−1,

where yk = hk+1 − hk.

Thus

yk = −(N − 1)

(
1 +

1

2
+ · · · + 1

k

)
(5.24)

−(N − 1)

(
1

N − k
+ · · ·+ 1

N − 1

)
+ y0.

Now, by symmetry,

−y0 = yN−1 = −2(N − 1)

(
1 +

1

2
+ · · · + 1

N − 1

)
+ y0

and therefore

y0 = (N − 1)

(
1 +

1

2
+ · · · + 1

N − 1

)
. (5.25)

Plugging y0 into (6.6), and after some algebraic manipulations, we obtain:

hk+1 = (N − 1)k

(
1 +

1

2
+ · · ·+ 1

N − 1

)

−(N − 1)(k + 1)

(
1 +

1

2
+ · · · + 1

k

)
(5.26)

+(N − 1)(N − k − 1)

(
1

N − k
+ · · · + 1

N − 1

)
.
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Taking k + 1 = N
2
, we obtain

h

(
N

2

)
≈ ln 2 · N2 (5.27)

5.7 Extension: Asynchronous Network Model

In Section 5.2, we consider the network model in which, peer departures and ar-

rivals are synchronized. In this section, this assumption is relaxed. Instead, we

model the peer arrivals and departures as Poisson processes with rate Nλ and Nμ

2 where N denotes the current number of peers in the network. It is easy to show

that if λ ≥ μ, a piece of data will be almost certain to remain in the network even

when using the repetition coding technique, a weaker form of data replenishment.

Intuitively, this is because the amount of storage increases with time outweighs

the data dependency due to replenishment. When λ < μ, the number of peers will

reduce to zero quickly (linear with N) so that any form of replenishment will be

ineffective in this scenario. Therefore, in this section, we will mainly address this

model under the repetition coding technique for the case when λ ≥ μ, and show

that there is a chance that the data will be disappeared , but this probability is

exponentially small with N , the number of peers.

In particular, suppose the data is divided into r distinct equal-sized parts to

be replicated at multiple nodes. We consider a system of m ≥ r peers, each peer

2One can also make the peer arrival rate as λ instead of Nλ to reflect that the peer arrival rate
is independent of the number of existing peers. However, this implies that no peer will survive
after a short period of time (order of log N), and thus this scenario is not interesting.
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stores exactly one part of the data. Redundancy is created by having multiple

peers store the same part of the data. Peer arrivals and departures follows Poisson

processes. Whenever a new peer arrives, it picks uniformly at random a peer from

the existing peers and copies its data. Clearly, the data cannot be recovered if at

least one part of the data is missing in system. We are interested in computing

this irrecoverable probability given that a distributed storage system begins with N

peers.

One important observation is that this problem can be viewed as a classical par-

allel queuing system consisting of r statistically independent queues with different

arrival and service rates. The number of packets in each distinct queue represent

the number of peers storing the same parts of the data. Specifically, let n1, n2, . . . ,

nr be the queue sizes, i.e., the number of peers carrying the data parts 1 to r at

any point in time. Then, it is sufficient to analyze the occupancy of any one queue.

The departure rate of peers storing parts i is kiμ/N . The arrival rate of peer of

type i is then kiλ/N . We now analyze only one queue of interest, say queue i. To

simplify the notation, let us denote n = ni as the number of packets in the queue

i. Then, the number of packets in the queue (number of peers carrying the same

parts of the data) evolves according to a birth-and-death process on {0, 1, . . . }
with the recurrence state 0. It has the transition probabilities:

p(n, n − 1) =
nμ

nλ + nμ
=

μ

λ + μ
(5.28)
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and

p(n, n + 1) =
nλ

nλ + nμ
=

λ

λ + μ
(5.29)

Let a(n) be the probability that the system starting at state n ever reach state

0. Note that a(0) = 1 and the values of a(n) is the same whether one considers

the continuous-time or discrete-time system. It is satisfied the following recursive

equation:

a(n) = a(n − 1)p(n, n − 1) + a(n + 1)p(n, n + 1)

= a(n − 1)
μ

λ + μ
+ a(n + 1)

λ

λ + μ
, n ≥ 1 (5.30)

Equation 5.30 can be rewritten as

a(n) − a(n + 1) =
μ

λ
[a(n − 1) − a(n)], n ≥ 1 (5.31)

We obtain

a(n) − a(n + 1) =
μn

λn
[a(0) − a(1)] (5.32)

Hence,

a(n + 1) = a(n + 1) − a(0) + a(0)

=

n∑
j=1

[a(j + 1) − a(j)] + a(0)

= [a(1) − 1]
n∑

j=0

(μ

λ

)j

+ 1 (5.33)
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where the j = 0 term of the sum equals 1 by convention. We can find a non-trivial

solution if the sum converges, i.e. the system is transient if and only if

∞∑
j=0

(μ

λ

)j

< ∞ (5.34)

The sum converges if and only if μ < λ. For the case of μ ≥ λ, the system is

recurrent with recurrent state 0, and the data will disappear quickly (linear with

n). Thus we only consider the case λ > μ.

We note that in this case the mean absorption time is infinite since the Markov

chain is transient. So a better metric is the probability that the number of packets

in the queue will reach zero, given that there are n packets initially.

Since a(n) is probability, we look for a solution of the form a(n) = θn, where

0 ≤ θ ≤ 1. Substitute this into Eq.5.30 we have:

θn = qθn−1 + pθn+1 (5.35)

where

q =
μ

λ + μ

and

p =
λ

λ + μ

Cancel out the power θn−1, the Eq.5.35 now becomes

θ = q + pθ2
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which has 2 roots

θ1 = 1

and

θ2 =
q

p
=

μ

λ
< 1

Thus

a(n) = c1θ
n
1 + c2θ

n
2 = c1 + c2θ

n
2 = c1 + c2

(μ

λ

)n

(5.36)

We can find the value of c1 and c2 based on two initial conditions:

1 = a(0) = c1 + c2

and

0 = a(N) = c1 + c2

(μ

λ

)N

where N is very large. Then,

c1 = − (μ
λ
)N

1 − (μ
λ
)N

≈ 0

c2 =
1

1 − (μ
λ
)N

≈ 1

Therefore,

a(n) =
(μ

λ

)n

(5.37)

Note that this probability is exponentially small with n, the initial number of

peers.
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Now, consider a system of r queues, each queue contains nk pieces of data type

k, where N =
∑r

k=1 nk is the total number of data pieces stored in the system.

Since all the queues are independent, the probability that a piece of data is not

recoverable is:

P =
r∑

i=1

(
r

i

) i∏
k=1

a(nk) =
r∑

i=1

(
r

i

) i∏
k=1

(
μk

λk

)nk

(5.38)

5.8 Concluding Remarks

In conclusion, we suggest that, to maintain data for as long as possible in a dis-

tributed setting with limited peer communication and storage, it is better to mix

the data as proposed in the RLNC strategy. We show that the average number of

replenishments before a file is no longer recoverable is exponential in the number

of peers used store the data distributedly for RLNC-based strategy and quadratic

for other traditional strategies. We also propose a novel time-backward technique

to approximate the mean absorption time. We believe this technique is general

as such, it can be applied to other problems such as gene population in which,

it is intractable to directly model an exponentially large number of states using

Markov chain representations. For example, one simple direct application of our

time-backward technique is to model the diversity of a gene pool after several

generations of inbreeding and without mutation. Taking the view of this chapter,

each gene can be considered as a codeword. One would expect that after many

generations of inbreeding, the gene population would then become homogeneous.
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Equivalently viewed, many codewords are linear combinations of a few codewords.

One can also extend the model to include other factors, e.g., making the pop-

ulation a random variable and using other distributions other than the uniform

distribution for selecting the departed nodes.

5.9 Appendix: Alternative Proof of Exponential Mean Absorption

Time for RLNC-based Replenishment

Denote hk as the mean absorption time starting in the state X0 = k, for k =

3, 4, . . . , N − 2, and ending in state Xn = 2 for some n. Then, we can write down

the following recursion:

hk = 1 + hk−1
k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)
+ hk+1

k

N

(
N − k

N − 1

)(
N − 1 − k

N − 2

)

+ hk

[
1 − k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)
− k

N

(
N − k

N − 1

)(
N − 1 − k

N − 2

)]

Using continuous approximation of discrete random variable k, we have

h(x) = 1 + h(x − 1)p(x) + h(x + 1)q(x)

+ h(x) (1 − p(x) − q(x)) (5.39)
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for 3 ≤ x ≤ N − 2 and

p(x) =
x

N

(
x − 1

N − 1

)(
x − 2

N − 2

)

q(x) =
x

N

(
x − N

N − 1

)(
x − N + 1

N − 2

)

Then,

h′(x) ≈ Δh(x) = h(x) − h(x − 1) (5.40)

and

h′′(x) ≈ Δ2h(x) = Δh(x + 1) − Δh(x) (5.41)

= h(x + 1) − h(x) − (h(x) − h(x − 1))

= h(x + 1) − h(x) − h′(x) (5.42)

Thus, Eq.(5.39) can be rewritten as

0 = 1 − p(x) [h(x) − h(x − 1)] + q(x) [h(x + 1) − h(x)]

≈ 1 − p(x)h′(x) + q(x) [h′′(x) + h′(x)]

⇒ q(x)h′′(x) + [q(x) − p(x)] h′(x) = −1. (5.43)

This is a second order non-homogeneous differential equation:

h′′(x) + f(x)h′(x) = g(x) (5.44)
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where

f(x) =
q(x) − p(x)

q(x)
=

−(N − 2)(2x − N − 1)

(x − N)(x − N + 1)

=
(N − 2)(N − 3)

x − N + 1
− (N − 1)(N − 2)

x − N

and

g(x) = − 1

q(x)
= − N(N − 1)(N − 2)

x(x − N)(x − N + 1)

=
N(N − 2)

x − N + 1
− (N − 1)(N − 2)

x − N
− N − 2

x

Let y(x) = h′(x), Eq. (5.44) becomes the first order non-homogeneous differential

equation:

y′(x) + f(x)y(x) = g(x) (5.45)

With following solution:

y(x) =
1

μ(x)

[∫ x

μ(t)g(t)dt + c

]
(5.46)

where

μ(x) = e
∫ x f(t)dt
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Since

∫ x

f(t)dt =

∫ x ((N − 2)(N − 3)

t − N + 1
− (N − 1)(N − 2)

t − N

)
dt

= (N − 2)(N − 3) log(x − N + 1) − (N − 1)(N − 2) log(x − N)

= log
(x − N + 1)(N−2)(N−3)

(x − N)(N−1)(N−2)

Then

μ(x) =
(x − N + 1)(N−2)(N−3)

(x − N)(N−1)(N−2)

≈ (x − N)−2(N−2) (5.47)

Substitute into Eq. (5.46), we have

y(x) = (x − N)2(N−2) ×
(∫ x

−(t − N)−2(N−2) N(N − 1)(N − 2)

t(t − N)(t − N + 1)
dt + c

)

≈ c(x − N)2(N−2) − (x − N)2(N−2)N(N − 1)(N − 2)

(∫ x

(t − N)−2N+1dt

)

≈ c(x − N)2(N−2) + (x − N)−2 N(N − 2)

2

≈ (x − N)2(N−2) +
N(N − 2)

2(x − N)2
(5.48)
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Finally, the explicit solution of Eq. (5.39) is

h(x) =

∫ x

y(t)dt + c

≈
∫ x (

(t − N)2(N−2) +
N(N − 2)

2(t − N)2

)
dt + c

≈ (x − N)2N−2 − N(N − 2)

2(x− N)
(5.49)

Thus, the mean absorbed time if one starts from state x = N − 2 is

h(N − 2) ≈ 22N−2 +
N(N − 2)

4
(5.50)

which is exponential in N .



151

2 3 4 5 6

0

5

10

15

20

25

Number of parent nodes

Lo
g(

A
bs

or
pt

io
n 

tim
e)

 

 

2 connections
3 connections
4 connections

(a)

2 3 4 5 6

0

5

10

15

20

25

Number of parent nodes

Lo
g(

A
bs

op
tio

n 
tim

e)

 

 

2 connections
3 connections
4 connections

(b)

Figure 5.7: Log of mean absorption time and its standard deviation vs number of
parent nodes for N = 8; M = 2, 3, 4 for the RLNC strategy with (a) Time-forward
model and (b) Time-backward model.
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Figure 5.8: Progression of codewords for seven peers, N = 7, M = 2 in discrete
time step n. At each time step, a codeword is replaced by another.



153

Chapter 6 – RESnc: A Resilient P2P Streaming with

Network Coding

1. Kien Nguyen, Thinh Nguyen, and Yevgeniy Kovchegov, “A P2P Video De-

livery Network (P2P-VDN)”, The IEEE Workshop on Grid and P2P Systems

and Applications (GridPeer’09), Aug. 2009, San Francisco, CA, USA.

2. Kien Nguyen, Thinh Nguyen, Yevgeniy Kovchegov, and Ian Milligan, “Re-

silient P2P Video Storage and Streaming with Network Coding”, submitted

to the Journal of Parallel and Distributed Computing, 2010.



154

6.1 Introduction

Multimedia streaming over the Internet is challenging due to packet loss, delay, and

bandwidth fluctuation. Thus, many solutions have been proposed, ranging from

source and channel coding to network protocols and architecture. In which, multi-

sender streaming paradigm has been proposed to provide smooth video delivery

[63, 8]. The main idea is to have each server storing an identical copy of the

video. The video is partitioned into multiple disjoint parts, each part is then

streamed from separated server to a single receiver simultaneously. Having multiple

senders is in essence a diversification scheme in that it combats unpredictability

of congestion in the Internet. However, these schemes all rely upon a dedicated

server and not storage efficient.

The recent development of Peer-to-Peer (P2P) networks opens a new possibility

of building completely distributed systems that have the potential to eliminate

the computational and bandwidth bottlenecks existing in the traditional client-

server architecture. To that end, a fair amount of distributed system research

has recently been focused on using P2P platforms to build reliable, large scale

distributed systems for Internet services [73] [85]. In these systems, data is stored

distributedly at different peers, which provides robustness against the single point

of failure. To watch a video, a client requests simultaneous transmissions from

multiple peers that collectively have the complete requested video. This approach

creates multiple Internet routes for transmitting a video to a client, resulting in

larger throughput.
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To build such a system, one must address many important issues associated

with a decentralized overlay network such as communication, indexing, and search-

ing. Notably, in Chord, Stoica et al. employ a Distributed Hash Table (DHT)

structure in order to provide large scale Internet services, e.g., DNS in a scal-

able manner. In this chapter, we describe a peer-to-peer video-on-demand system

(RESnc) for providing video streaming services over the Internet using Chord as

its indexing architecture. The proposed RESnc system has the potential to achieve

both high scalability and performance based on three key designs.

First, in our proposed RESnc system, a video is broken into multiple pieces,

coded properly, then dispersed to a number of peers in the network. This is in

contrast with the current video storage and streaming systems such as YouTube or

Akamai whose individual videos are stored in their entireties at a video server, or at

multiple servers if video replication is employed. As will be described subsequently,

using a proper indexing architecture such as Chord, a video publisher will be able

to publish his video, i.e. to disperse his coded video pieces to the RESnc network.

This is done in such a way to allow a client to efficiently locate the pieces of a

previously published video, and use them to recover the original video. From a

user perspective, this is much like uploading one’s video to one of the YouTube

server. However, unknown to the uploader, his video will be broken up into parts,

coded properly, and dispersed to multiple peers in the RESnc. And unknown to

a client, his requested video is being retrieved not from a single server, but from

multiple peers.

Second, in the RESnc system, videos are stored at peers who, unlike servers,
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are unreliable due to their frequent departures and failures. As a result, video

availability is a major concern. Therefore, the RESnc employs a data replenish-

ment mechanism to either proactively or passively fill in the missing data due to

peer departures or failures. It does so by recruiting the incoming peers to take

part in sharing the burden of storage and streaming resources. Specifically, data

replenishment mechanism is designed to automatically maintain a constant level

of redundancy for videos in the network over time, by allowing incoming peers

to store appropriate generated data. This compensates for the data loss due to a

departing peer. Its aim is to increase the probability that, at any moment, peers

in the network, collectively store a sufficient number of coded pieces of a particular

video that allows a perfect reconstruction of that video. Furthermore, the data

replenishment is designed to be distributed, scalable, and does not require the pres-

ence of the original videos. Peers take part in the data replenishment process in a

random and independent manner, but yet collectively, the video in the network is

robust against peer dynamics. As will be discussed subsequently, the key to such

a design is to employ Random Network Coding (RNC).

Third, to watch a video, a client requests simultaneous transmissions from

multiple peers in the RESnc network that collectively have all the pieces to re-

construct the requested video. This approach creates multiple Internet routes for

transmitting a video to a client, resulting in larger throughput and higher video

quality. To accomplish this, we describe a path-diversity streaming protocol using

network coding technique that reduces the complexity of sender synchronization

while enabling TCP streaming.
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Those three key designs are three main operational phases in our proposed

system: data dispersion, data replenishment and path-diversity streaming protocol,

respectively. In this chapter, we present analysis and implementation of RNC

library and show the feasibility of using RNC in P2P video streaming applications.

We also create a application framework to test those three designs in the real world

scenario. We focus on throughput, initial buffering delay, playback quality and

downloading bandwidth.

6.2 Background and Related Work

Since the emergence of network coding in information theory [4], it has attracted

a substantial amount of attention in networking research. In [35], Ho et. al.

shown that the maximum min-cut bound of information flow rates in a multicast

session can be achieved with network coding. It has also been shown that network

coding helps achieve provably good overall performance in P2P networks. In [29]

Gkantsidis et. al. have shown how to use network coding to improve download

time by a 30% in peer-to-peer file content distribution. In this context, network

coding helps to eliminate the need for finding rare data blocks. In [90], Wang et.

al. have shown that network coding is beneficial in P2P video streaming, especially

when server bandwidth supplies barely meet user demand.

The main advantage of the current P2P video streaming systems is the band-

width saving for a live video broadcaster. In a broadcast session, there are multiple

peers (participants) who desire to watch the same video. Therefore, the broad-
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caster may need only to send a single video stream to one or a few peers who

then relay the same video stream to other peers. The process repeats itself until

every peer receives the video stream. Effectively, the P2P streaming technique

above only requires one or few video streams from the broadcaster, rather than N

streams for N users as required in the client-server model. Thus, P2P streaming

eliminates bandwidth and computational bottlenecks.

On the other hand, for video-on-demand applications, it is likely that at any

moment, there are only one or a few users who want to watch the same video.

In this case, the bandwidth advantage of P2P systems seems to be significantly

diminished. For this reason, the video-on-demand market has been dominated by

Content Delivery Networks (CDN). Because of the on-demand characteristic, many

more videos must be stored on CDN servers, in order to satisfy a potentially large

number of different client’s requests at any moment. Therefore, from both network

bandwidth and storage perspectives, using a single video streaming server is not

possible. As such, many CDNs such as Akamai use multiple servers to optimize

the streaming performance for a large number of users at different locations in

the Internet. Specifically, Akamai servers are strategically placed at the edge of

the Internet such that the nearest server to a client is chosen for streaming, thus

improving the client’s viewing experience.

That said, an Akamai-like approach might not be an optimal approach since

the overall storage amount, bandwidth capacity, and computational capability still

scale linearly with the number of clients. We advocate a new P2P approach to

designing video-on-demand systems in which participated peers contribute not only
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bandwidth but also storage resources. However, by nature, peers join and leave the

network frequently. As a result, videos might be lost temporarily or permanently.

Thus, there is a need to develop techniques and policies for providing sufficient

redundancy to ensure that, when a video is requested, it is available in the network.

A simple strategy is to replicate a video at some number of peers. This ap-

proach, however, is storage inefficient. A more effective approach is to use FEC. A

FEC code with rate n/k ensures that if k or more distinct packets are received out

of a FEC block of n packets, then the original k data packets can be recovered [92].

Thus, for every k packets belonging to a video, one can generate additional n − k

parity packets, and distribute all n packets to a number of peers in the network.

For example, using Reed Solomon code RS(8, 4), one may distribute 1 packet to

each of the 8 peers. As long as 4 of these peers are in operation, a client will be

able to recover the entire data block.

However, this approach is suboptimal since it only works for a given value of

n and k. In a very unstable P2P network, it is hard to design an optimal FEC

scheme. Consider the same example above for a very unstable network. As such,

we want to distribute those packets to 16 peers rather than just 8 peers. The

problem is, for each FEC block, we have only 8 data packets, thus it is necessary

that some peers must share identical packets. Because of this, if at some given

time, only four peers are in the network, they might collectively have fewer than 4

distinct packets. As a result, a client cannot recover the original block from these

peers.

The work by Acendanski et al. [3] and Nguyen et al. [59] [58] use the Random
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Network Coding (RNC) technique to overcome this problem. Using RNC, a coded

packet is a random linear combination N original packets. Each peer then can

keep a fraction of the total number of coded packets. If at any given time, the

peers in the network collectively have a set of coded packets that form a set of N

linearly independent equations, then a client connecting to these peers will be able

to recover N original packets. Using the random coefficients from a large finite

field, one can generate ”infinite” number of coded packets in which the probability

of getting linearly independent packets is close to 1. This effectively eliminates the

duplicate packets problem posed by using RS code.

In a real-world scenario, without any active injection of redundancy into the

network content will eventually disappear since peers will depart or the file will

be deleted with some non-zero probability. Dimakis et al. [26] [24] proposed a

way of restoring the missing redundancy from the remaining peers. Specifically,

their work show that, using RNC for storage, when a new peer joins the network,

it can download minimal amount of data from other peers to restore the missing

redundancy. We will describe a similar data replenishment process in our proposed

system.

6.3 Design Objectives

The recent development of P2P networks and network coding theory [4] provide

us the powerful tools to design a distributed system for media storage and stream-

ing over the Internet, that has the potential to eliminate the computational and
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bandwidth bottlenecks. Network coding is a novel mechanism that promises opti-

mal utilization of the resources of a network topology. The most elegant result of

network coding is that the maximum multicast capacity is achievable using some

random network coding [35] techniques, while this is not usually possible with the

traditional store and forward routing. Recently, we proposed and showed that net-

work coding also helps to improve the quality of media streaming in P2P network

[59].

In the process of designing the RESnc system, we seek to achieve the following

design objectives.

6.3.1 Server bandwidth

Dedicated server bandwidth is finite and expensive resource, even with the ex-

plosive growth of Internet infrastructure. For example, the bandwidth costs of

YouTube is estimated at 1 million dollar a day. There is a need to find a method

of scaling limited server bandwidth in order to serve as many users as possible.

Using a peer-assisted streaming can substantially reduce server bandwidth use.

We design the data dispersion mechanism to code and distribute data to the inter-

mediate peers with minimum storage redundancy and bandwidth usage. It helps

conserve server bandwidth by maximizing peer bandwidth contributions to serve

other peers. Together with the redundancy introduced by data dispersion, the data

replenishment process is designed to counter the data deletion due to peer dynam-

ics. The server/publisher only needs to inject data sporadically to conserve its
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bandwidth. We will discuss more about the data replenishment process in Section

6.4.

6.3.2 Robustness

To provide a on-demand streaming service, one has to ensure that when content is

requested it is available on the network. In RESnc, media data is stored distribut-

edly on peers which join and leave the network frequently. When a peer leaves the

network, so does its data. This effectively reduces the robustness of the system

temporarily or permanently if the peer never rejoins or rejoins without its data.

RESnc employs a data replenishment process to increase data resiliency again peer

departures and failures with minimal access to the media server.

6.3.3 Initial buffering delay

In on-demand video streaming systems, one of the most important performance

metrics is the initial buffering delay, which is the time a user would have to wait

before being able to playback the requested video. By fine tuning the network

coding schemes and redundancy level, we are able to find the minimum point of

the average initial buffering delays for the given network.
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6.3.4 Playback quality

In streaming systems, one needs to maintain a consistently satisfactory level of

user playback quality by making sure that the average download rate for a video

stream is higher than its playback rate. This requires a complicated scheduling

mechanism in multi-sender streaming. With help of network coding, we design a

path diversity streaming protocol which requires minimal or no coordination among

senders. The receiver can connect to arbitrary number of sender peers to get a

video stream. This protocol utilizes all available bandwidth of all senders. With

enough redundancy, it provides consistent playback quality if the total available

bandwidth of all sender-to-receiver connections is greater than the playback rate.

It is oblivious to senders’ qualities. Multiple senders serving one receiving peer

can collaborate with ease, and there is no need to design an elaborate protocol to

select some high quality senders. As long as a sender has the requested chunk in

its cache, its upload capacity can be utilized to serve that chunk.

To get a chunk, the receiving peer simply signals the senders and waits until

it has enough data to decode that chunk. Using Gauss-Jordan elimination, the

receiving peer can even progressively recover original blocks so that the entire

chunk is immediately playable after the last block is received from any of the

senders. This is due to the fact that randomly generated coefficient vectors from

different senders are linearly independent with high probability. One can generate

”infinite” number of coded blocks then disperse to a number of senders. As long

as n linearly independent coded blocks are received, they are sufficient to recover
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the original chunk.

We will describe in detail on our design to achieve all the above objectives in

the next section.

6.4 The RESnc Architecture

In this section, we describe the overall architecture of the proposed RESnc system

to be used as a platform for video-on-demand applications. As mentioned in the

Introduction, the RESnc system is built on three key designs: data dispersion,

data replenishment, and path-diversity streaming protocol. These three designs

correspond to the three main operational phases in the RESnc system. The data

dispersion is used when a user publishes his video to the RESnc network, similar

to the video uploading done by a YouTube user. The difference is that the video

is broken into multiple pieces, coded and dispersed to many peers, rather than

being stored in its entirety at a single YouTube server. The data replenishment

is a continual data maintenance process that ensures high probability of a video

being recoverable by a client when it is requested. This data replenishment is

needed for RESnc since videos are stored at unreliable peers which enter and depart

the network frequently. On the other hand, no such mechanism is necessary for

YouTube since by assumption, its servers are reliable. The path diversity streaming

protocol is used when a client requests a video from the RESnc. The client might

or might not belong to the RESnc network. In this case, multiple peers in the

RESnc network will cooperate among each other via the path diversity streaming
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protocol, to simultaneously stream the requested video to the client. For YouTube,

no special protocol is needed. Rather, TCP is sufficient to stream a video from

a single YouTube server to the client. We now describe and motivate each of the

three key designs.

6.4.1 Data Dispersion

In addition to employing participating peers rather than dedicated servers, a key

difference between RESnc and existing CDNs is found in the way in which videos

are stored. Akamai, for example, replicates videos in their entireties at multiple

edge servers. This allows for proximity optimization, i.e., a nearest server to the

client with the requested video in term of round trip time, will be chosen to stream

that video to the client. Thus, it is necessary that the videos are replicated suffi-

ciently at different servers. However, as discussed in Section 6.2, replicating videos

is not a storage efficient method. Therefore, in RESnc, a video is broken up into

multiple pieces. These pieces are coded using the RNC technique. The coded

pieces are then dispersed randomly to multiple peers. We emphasize that data

dispersion is good not only because it avoids the central point of failure, but also

results in better load balancing.

Using the RNC technique, a video publisher first breaks a video stream into

a number of chunks. Each chunk is further broken up into a number of packets.

Each packet pj can be viewed as a vector of elements belonging to a finite field. For

example, if GF (216) is used, then each element of the finite field can be represented
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by an 16-bit pattern. Therefore, a packet of length 16L bits can be viewed as a

vector of L elements from GF (216). A coded packet or equivalently, a vector of

finite elements, ci is produced by linearly combining k original packets as:

ci =
k∑

j=1

fjpj (6.1)

where fj are the random elements belonging to a finite field Fq having q elements.

For every k original packets, the publisher generates n > k coded packets. The

value of n depends on the desired redundancy, the larger n, the more redundancy.

The publisher also includes the information of {fj} in the header of each of coded

packets. Therefore, one should note that if a client has access to any of the k

encoded packets ci’s that form a set of k linearly independent equations, then it

will be able to recover the k original packets by solving a set of linearly independent

equations. We can show that if the finite field is sufficiently large, the probability of

having linearly independent equations is essentially 1. Furthermore, if the packet

size is large, the overhead in storing the extra bits in the packet header for of {fj}
is negligible.

Now, after generating these coded packets, the publisher randomly sends these

packets to a number of peers. It is important to note that each peer does not need

to store all k coded packets. Rather, to save space a peer may store only a fraction

of a coded video packets.

Next, in order for a client to be able to recover these pieces, we use a modified

version of Chord for indexing these pieces. In particular, we use a mapping that
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hashes a searchable video title into a value, e.g. 64-bit value. Using Chord, the

peer whose hash of its IP address is closest to this value, is used to store the

set of IP addresses of the peers that were randomly picked for storing the coded

video packets. Effectively, the client would be able to determine which peers store

the desired video by searching the DHT in log(N) where N is the number of

participating peers. Since peers join and leave frequently, the DHT structure is

updated accordingly as described in [85].

We note that for some period of time there may not be a sufficient number

of peers with the requested video available in the network to enable the client to

recover the video. Thus an automatic data replenishment technique for countering

the effect of peer departures is described below.

6.4.2 Data Replenishment

When a peer leaves the network, so does its data. This effectively reduces the

robustness of the system temporarily or permanently if the peer never rejoins or

rejoins without its data. To avoid this, a peer can transfer its data to some other

peers before its departure. However, media data such as a video tends to be large,

making a peer less willing to wait until the transfer completes. This process implies

that, without any proactive data replenishment, the redundancy level of a video

in the network is continuously reduced. At some point, the video is not likely to

be recoverable.

Theoretically, if one can replace the exact missing data in the network, the
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redundancy level would remain the same. However, a typical peer may not have

the complete video that allows it to reproduce an arbitrary missing portion, nor

does it know what the leaving peer has. Instead, we propose the following data

replenishment scheme. Assume that the network knows the peer departure or

failure rate. This can be estimated empirically, e.g., using some kind of periodic

sampling. Thus, we can determine an appropriate replenishment rate to counter

the information deletion rate. In this chapter, we do not focus on the replenishment

rate. Rather, we describe how replenishment is performed.

Assume that when a peer leaves the network there is on average at least one

peer who joins the network or there is at least one existing peer with spare storage

capacity. This allows for another peer to take over the storage responsibility of

the departed peer, to maintain the same redundancy of a piece of data. The new

peer will randomly connect to a number of peers and download some fraction of

their data. It then generates its new packets as some random linear combinations

of the packets it obtains from other peers, in an attempt to maintain the same

level of redundancy for the video. This method is attractive for its distributed

nature and scalability. Also, the original data is not needed to be present in the

network. Given such data replenishment scheme, we have to analyze the data

robustness in a network as its evolves. In other words, given piece of data, what

is the probability of being able to recover this piece of data as a function of the

number of replenishments?

Clearly, the replenished data is linearly dependent on the data that are used

to generate it. So if the number of packets used to generate a new packet is fewer
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Figure 6.1: a) Original robust state of the network; (b) Less robust state after peer
departures and data replenishments.

than the number of packets in the original piece of the data and replenishments

are repeated over time, then there may be a non-negligible chance that all peers

contain relatively few independent data, making the network less robust.

To illustrate this, consider using RNC on a video and dispersing the coded

packets to five peers, each peer stores one coded packet. Assuming that a client

is able to recover the video if it obtains three or more independent packets. Fur-

thermore, assuming that every time a peer leaves, two randomly chosen peers will

send their packets to the replacement peer. The replacement peer then randomly

combines the two packets to generate its own packet. Fig. 6.1(a) shows the geo-

metric representation of the original robust state of the network where the circles

represent packets. If there are three or more points lay on one line, they are co-

linear. In other work, there are only two independent points on any line. In this

state, if a client connects to any three peers, it will be able to recover the video,

or geometrically, recover the entire plane. It is possible because none of the 3



170

points are co-linear. Now, suppose peers 2 and 5 depart the network. By chance,

peers 1 and 3 are chosen to replenish data for peer 2, while 1 and 4 are chosen to

replenish data for peer 5. As a result, the generated data are now 2’ and 5’. 2’ are

linearly dependent on 1 and 3 while 5’ are linearly dependent on 1 and 4 as shown

in Fig.6.1(b). Now, if a client connects to peers 1, 2’, and 3, it will not be able to

recover the video since these points are co-linear. A similar situation arises when

it connects to 1, 5’, and 4. Effectively, the robustness on data recoverability in

the network has been reduced. Eventually, this piece of data become unavailable

when all the points lay on the same line.

This robustness, i.e., the recoverable probability of a video depends on how

many peers are chosen to replenish the data and the amount of data each peer

has. Figure 6.2 shows the simulation results on the recoverable probability as the

network evolves under repeated replenishments. This simulation uses two peers

for replenishment and the given parameters (a, b, c) is (total number of network

coded packets, number of independent packets needed to recover a video, number of

packets stored at each peers). As shown, the higher number of peers, the longer it

takes before a file cannot be recovered. It is interesting to note that the robustness

decreases quickly if the initial data redundancy is not sufficient.

One can use a discrete time Markov chain representation, specifically a tran-

sition probability matrix can be used to describe this replenishment process [61].

We will show the detail derivation in the next section.
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Figure 6.2: Data recoverable probability as a function of replenishments.

6.4.2.1 A Markov Model for Data Replenishment

Using RNC, each packet is represented by a vector p = (p1, p2, . . . , pj) where

pi ∈ GF (2K). A piece of data is split into l packets p1,p2, . . . ,pl. Using RNC,

a network coded packet ci is generated by randomly and linearly combining pi’s,

i.e., ci =
∑l

j=1 ajpj where aj is randomly chosen from GF (2K). n network coded

packets c1, c2, . . . , cn are generated, and each network coded packet is dispersed

to exactly one peer. Using a large finite field GF (2K), it can be shown that the

probability that l randomly chosen network coded packets (vectors) being mutually

independent, is approximately 1. Thus, if n > l, one can recover all the original

packets pi’s using any l network coded packets from any l peers.

Recall that every time a peer leaves, a new peer will connect to r randomly

chosen remaining peers, download their packets, and generate its packet using
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RNC. Clearly if r = l, then the probability that the newly generated network coded

packet is mutually independent with any of the l linear combinations from the rest

of the packets in the network is approximately 1. And thus, the network will likely

contain sufficient linearly independent packets that allows a client connecting to

the network, to recover all the original packets. On the other hand if r < l,

there is a non-negligible chance that after some number of replenishments, any

packet (vector) in the network can be spanned by only r or fewer vectors. Thus,

a client connecting to the network will not be able to recover the original data.

We are interested in the data replenishment using small values of r, specifically

r < l, since we want to reduce the amount of data sent to the new peer during

the replenishment. We also assume that whenever a peer leaves the network, the

probability of any peer being the departure peer is p = 1/n. That said, at any

point in time, the data robustness of a network depends on the interdependency

level of the packets in the network. So we model the network state using a Markov

chain as follows.

Initially, there are n network coded packets: c1, c2, . . . , cn. At any time later,

any network coded packet resulted from replenishments must be a linear combi-

nation of r or more of these original network coded packets. Since there are n

possible original network coded packets, a network coded packet must be in one of

the
(

n
r

)
combinations. Furthermore, we make an assumption that a network coded

packet can belong to exactly one of these combinations. This can be justified when

using a large finite field and long packets. In general, for any r, a network coded

packet must be in one of the
∑n

i=1

(
n
i

)
= 2n − 1 combinations. Thus a network
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state can be represented by the following (2n − 1)-tuple.

S = {|A1|, |A2|, . . . , |A2n−1|}

where Ai represents the set containing all the network coded packets that are from

a particular linear combination. Because there are n packets in the network at

any time,
∑2n−1

i=1 |Ai| = n. One convenient way to map Ai to a particular linear

combination is using the binary expansion of i = (b1, b2, . . . , bn) where bi = 1

implies that ci is present in the linear combination, bi = 0 otherwise.

Having defined the state, we now show how to compute the transition proba-

bilities. At time t, the network state

St = {|A1|, |A2|, ..., |A2n−1|}

Suppose a packet dj ∈ Aj is deleted due to a peer departure. Then, the temporary

state is

Stemp = {|A1|, |A2|, ..., |Aj| − 1, ..., |A2n−1|}

Now suppose r packets [ds1 , ...,dsr ] are randomly chosen to generate the replace-

ment for lost packet dj . Assuming ki of r chosen packets are in Asi
. Then there

are
(|Asi |

ki

)
possible ways of choosing ki packets from Asi

. Therefore, the probability

of choosing this r packets from different Asi
is

r∏
i=1

(|Asi |
ki

)
n − i
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For a given set of r packets [ds1 , ...,dsr ], there are r! ways of choosing r packets by

different orders. Thus, the total probability of choosing this r packets is

r!
r∏

i=1

(|Asi |
ki

)
n − i

The new packet will be in the set Am where m =
⊎r

i=1 si and
⊎

is a bitwise OR

operator. That is, we expand si in binary form then perform bitwise OR. With

the above chosen set of r packets [ds1 , ...,dsr ], the network state will move to state

St+1 = {|A1|, |A2|, ..., |Aj| − 1, ..., |Am| + 1, ..., |A2n−1|}

with probability

p(j, m) =
|Aj|
n

r!
r∏

i=1

(|Asi |
ki

)
n − i

=
|Aj|
n

∏r
i=1

(|Asi |
ki

)
(

n−1
r

) (6.2)

However, there are many ways to choose the set of r packets [ds1 , ...,dsr ] that

all lead to the state St+1, i.e.
r⊎

i=1

si = m (6.3)

We define a set Tm that contains all the possible selections of r packets that satisfy

equation 6.3. Then, the transition probability from state St to state St+1 is:

P (j, m) =

|Tm|∑
s=1

p(j, m) (6.4)
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Theoretically, with this model, one can estimate the robustness of the network

over time by examining the hitting times of a particular state using standard

recurrence equations. However, this model is analytically intractable due to a

large number of states. Interestingly, the time-backward model proposed in [61]

can help to produce an approximate closed form solution for the expected number

of time steps to get from any state to any other, including the state in which the

file is no longer recoverable. In the next section, we show a simpler analysis on the

performance of a simple RNC-based replenishment versus repetition code strategy.

6.4.2.2 Repetition code

Suppose a video is split into two input vectors (packets) p1 and p2, and there

are n peers, each containing either p1 or p2. Whenever a peer leaves, the new

peer randomly picks one out of n − 1 existing peers, and the input vector (either

p1 or p2) is copied to the new peer. The process is of birth-and-death type on

{0, 1, . . . , n} with two absorbing states, 0 and n. We would like to estimate the

mean absorption time.

In the above birth-and-death process the forward probabilities are given by

pk =
k(n − k)

n(n − 1)
for k = 1, 2, . . . n, and p0 = 0
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and the backward probabilities are

qk =
k(n − k)

n(n − 1)
for k = 0, 1, . . . n − 1, and qn = 0 .

The expected hitting time h(k) = Ek[T0 ∧ Tn] can be found by solving the

following recurrence equation:

For k = 1, 2, . . . , n − 1,

h(k) = 1 +
k(n − k)

n(n − 1)
h(k − 1) +

k(n − k)

n(n − 1)
h(k + 1) +

(
1 − 2k(n − k)

n(n − 1)

)
h(k)

h(0) = h(n) = 0 (6.5)

The above equation can be rewritten as follows

yk = −(n − 1)

(
1

k
+

1

n − k

)
+ yk−1,

where yk = h(k + 1) − h(k).

Thus

yk = −(n − 1)

(
1 +

1

2
+ · · ·+ 1

k

)

− (n − 1)

(
1

n − k
+ · · ·+ 1

n − 1

)
+ y0. (6.6)

Now, by symmetry,

−y0 = yn−1 = −2(n − 1)

(
1 +

1

2
+ · · · + 1

n − 1

)
+ y0
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and therefore

y0 = (n − 1)

(
1 +

1

2
+ · · · + 1

n − 1

)
. (6.7)

Plugging y0 into (6.6), and after some algebraic manipulations, we obtain:

h(k + 1) = (n − 1)k

(
1 +

1

2
+ · · ·+ 1

n − 1

)

− (n − 1)(k + 1)

(
1 +

1

2
+ · · ·+ 1

k

)
(6.8)

+ (n − 1)(n − k − 1)

(
1

n − k
+ · · ·+ 1

n − 1

)
.

Taking k + 1 = n
2
, we obtain

h
(n

2

)
≈ ln 2 · n2 (6.9)

6.4.2.3 Random linear network coding

A video is split into three input vectors p1, p2 and p3. Each peer contains a

different linear combination of the three input vectors. Each time a peer is replaced,

it picks two random peers and takes a random linear combination of the two vectors.

The question is, how long will it take before the rank of n×3 matrix of coefficients

falls below three?

We model the process by splitting the peers into cliques, each having rank two.

There are originally

⎛
⎜⎝ n

2

⎞
⎟⎠ cliques. Observe that a clique can be absorbed by

another clique only when it has two peers in it. It might reappear later. The
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state space is therefore {absorbed, 2, 3, . . . , n}. In fact a clique is a birth and

death process on the above state space with the following forward and backward

probabilities, given there are k peers in a clique:

pk =
n − k

n
·

⎛
⎜⎝ k

2

⎞
⎟⎠

⎛
⎜⎝ n − 1

2

⎞
⎟⎠

=
k(n − k)(k − 1)

n(n − 1)(n − 2)
(6.10)

and

qk =
k

n
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −

⎛
⎜⎝ k − 1

2

⎞
⎟⎠

⎛
⎜⎝ n − 1

2

⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
k(n − k)(n + k − 3)

n(n − 1)(n − 2)
(6.11)

Let φ(k) be the associated probability harmonic function:

φ(k) = 1 +
k−1∑
m=2

q2 · · · qm

p2 · · · pm
k = 2, 3, . . . , n (6.12)
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Plugging in, we obtain

φ(k) = 1 +
k−1∑
m=2

⎛
⎜⎝ n + m − 3

n − 2

⎞
⎟⎠ (6.13)

=

k−2∑
j=0

⎛
⎜⎝ n − 2 + j

n − 2

⎞
⎟⎠ (6.14)

=

⎛
⎜⎝ n + k − 3

n − 1

⎞
⎟⎠

via basic combinatorics.

If we denote kt is the size of a given clique at time t, then φ(kt) is a martingale,

and by the Stopping Theorem, the probability that the clique, starting with three

peers expands to all n peers while never shrinking to two is

φ(3) − φ(2)

φ(n) − φ(2)
=

n − 1⎛
⎜⎝ 2n − 3

n − 1

⎞
⎟⎠− 1

Thus, it will take an average of

⎛
⎜⎝ 2n − 3

n − 1

⎞
⎟⎠− 1

n − 1

trials for a clique to start growing, and reach the size of n before shrinking to 2.
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Here, by Stirling’s formula,

⎛
⎜⎝ 2n − 3

n − 1

⎞
⎟⎠− 1

n − 1
∼ 1√

πn3/2
22n

Since there are no more than

⎛
⎜⎝ n

2

⎞
⎟⎠ cliques at one time, it will take an average

of at least

⎛
⎜⎝ n

2

⎞
⎟⎠

−1

·

⎛
⎜⎝ 2n − 3

n − 1

⎞
⎟⎠− 1

n − 1
∼ 1√

πn7/2
22n−2 (6.15)

replenishments before the video is no longer recoverable.

Thus, the proposed replenishment mechanism is theoretically much better than

the naive random duplication technique in terms of maintaining data redundancy

for recovery.

6.4.3 Path-diversity Streaming Protocol

In this section, we discuss how distributed storage using RNC can help to facilitate

path diversity streaming. In a traditional video streaming application, a video is

streamed from a server to a client. However, if the path between the server and the

client experiences heavy congestion, the quality of the video can degrade signifi-

cantly. To overcome congestion, many researchers have proposed the path-diversity
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streaming technique in which the different parts of the video are simultaneously

streamed from multiple servers to the client on multiple distinct routes [64]. With

appropriate channel and source coding techniques and rate allocation among the

servers, the video quality at the receiver can be improved significantly. In addition,

video streaming using multiple servers also allows fine-grained load balancing to

improve network performance. Unfortunately, current approaches to multi-sender

video streaming requires a careful coordination between a client and server to

achieve optimal performance. In particular, assuming that two servers are used

for streaming, then server 1 can stream the odd packets while the other streams

the even packets, starting from the beginning of the file. This approach works

when there are only two servers, and that their average bandwidth are equal and

constant throughout the streaming session. When there are many servers with

different available bandwidth, and these bandwidths are varied with time (e.g.

TCP is used for streaming), then obtaining the optimal packet partitions for each

server requires a complex dynamic coordination between the client and the servers.

Even when complex coordination is possible, the inaccurate estimation of available

bandwidth is often not possible which results in sub-optimality.

We now describe the network coding scheme for multi-sender streaming frame-

work that reduces the coordination among servers. In this scheme, a video stream

F is randomly network coded and dispersed to a number of peers in the network.

In this model, a stream is partitioned into N chunks. Each chunk is further divided

into k small packets p1,p2, ...,pk. Now, for each chunk, the video publisher will

randomly network code the packets within it, to produce a number of coded pack-
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ets. These packets will be distributed to a number of peers at random as described

in Section 6.4.1. Note that each peer does not need to keep all k coded packets.

They may keep only a fraction of the coded packets, but each peer will have some

coded packets from every chunk. Therefore, the total amount of storage of this

scheme is smaller than other approaches.

To stream a video, the client connects to a number of peers with the fraction

of the desired video. It first requests these peers to send their packets pi’s from

the first chunk. After the client receives roughly k coded packets, it will be able to

recover k original packets. It immediately sends a request to the senders to signal

them to start streaming the packets from the second chunk. In the meanwhile, the

client can start video playback. The process continues until the end of the stream

is reached. Clearly, there is a delay at the beginning due to the time for the client

to receive k independent packets. The attractive feature of this scheme is that

no dynamic packet partition is required. All sending peers send packets at their

available time-varying bandwidth until the client sends an end of chunk request

to move to the next chunk. Therefore, TCP can be employed for streaming. The

effective throughput at the receiver is roughly equal to the total throughputs from

all the senders. At any point in time, one sender may have a slow connection, but

as long as the total throughput is larger than the playback rate, the receiver will

be able to playback the video smoothly. We emphasize that this scheme achieves

maximum throughput without the complex coordination [58].
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6.5 Implementation

We implement our proposed RESnc system in C++/Linux and test it in the real-

world environment. In our model, the RESnc streaming system contains of a

number of storage peers and receiving peers. When a source peer has a video file

to share, it is allowed to code and distribute that file to a number of storage peers

in such a way that each peer has some blocks from all the chunks. A receiver then

randomly connects to some of these storage peers to obtain the file as shown in

Figure 6.3. Thus, we model the process into three phases: the initial distribution

of the packets to the intermediate nodes (data dispersion), the re-generation of lost

packets due to peer failures and departures (data replenishment), and the transmis-

sions of packets from the storage nodes to a receiver (path diversity streaming).

These operations are on top of the existing P2P infrastructure, which performs

indexing, searching and communicating among peers.

The RESnc streaming system consists of a set of peers interconnected through

a Chord network [85] (Figure 6.3). The Chord network maintains connectivity

among peers, manages peer membership, and performs object lookup. We note

that the original Chord returns only one peer for an object lookup request, if the

object exists in the system. In our prototype, we modify Chord to return multiple

peers for each lookup request. Unlike the original Chord, our modified Chord stores

a list of nodes that contains some parts of the video. When a user requests a video,

it first sends a look up request to Chord to get back the list of nodes storing that

video. Then it randomly chooses some of those storage nodes to download the
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Storage peer

Storage peerStorage peer

Receiving peer

Figure 6.3: RESnc model: Peers are interconnected through a P2P substrate
(CHORD) and multiple peers are serving one receiving peer.

video.

We use a tracking server (Chord server) to maintain information about par-

ticipating peers in the Chord network, including their IP addresses and listening

ports. When a peer wants to watch a video in the RESnc network, the tracking

server will give a Chord node for it to send look up request. In RESnc, a peer

is required to contribute not only its uploading bandwidth but also its storage

capacity.

We also need to handle the following challenges when implementing RESnc:
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6.5.1 Block size

A coded block is the transmission unit of a chunk. Small block size can accommo-

date slower seeds so that their slow link can transmit at least one block. However,

small block size makes the network coding coefficients overhead more significant.

For example, with random linear coding on GF (216), each coefficient occupies two

bytes, and such overhead depends on the network coding size. Furthermore, to uti-

lize the TCP link, a peer should fill up at least one TCP frame. Thus, investigation

of the optimal block size is needed.

6.5.2 Chunk size

Large chunk size brings long delay and coding computational cost. Small chunk

size leads to a different type of overhead since a receiving peer has to send start

and stop request for each chunk. Due to the latency for these ”stop” messages, the

receiver might receive additional blocks after the chunk is complete. The overhead

of such redundant blocks is more significant with smaller chunk size. Thus, study

on optimal chunk size is also needed.

6.5.3 Redundancy level

When dispersing video, we introduce some redundancy to increase the streaming

speed and data robustness. We need to find a good trade off between storage

redundancy and robustness.
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In the next section, we present the experimental results for a wide range for

these parameters, to understand how the system performance varies as a function

of these parameters.

6.6 Experimental Results

In this section, we investigate the practicality of the proposed system. First, we

will be concerned with the computational overhead of performing network coding,

and whether NC can be realized in practical system.

6.6.1 Network Coding rate

In this section, we want to measure the actual speeds of network encoding and

decoding rates. In this experiment, we set the packet size of 1024 bytes and vary

the network coding size (the number of packets involved in each operation). Figure

6.4 shows the computation rates of encoding and decoding operation versus the

network coding size, and figure 6.5 shows the network coding delay versus chunk

size in GF (216). We see that the encoding time is less than the decoding time but

they are not much different. The reason is we implemented NC library using the

table-lookup method, which makes multiplication and division quite similar in term

of complexity. Importantly, when the number of packets per encoding increases,

the encoding rate and the decoding rate decrease. It is necessary to design an

appropriate coding structure so that the data transmission speed matches with the
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encoding/decoding speeds, especially for P2P video streaming applications. For

example, with network coding size of 20 packets, the encoding rate and decoding

rate reach 28 Mb/s and 23 Mb/s respectively. Which is more than enough for any

P2P streaming applications.
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Figure 6.4: Computation rate of Network coding.

6.6.2 Linear dependence rate

Though it has been theoretically proved that coded packets generated by random

network coding are linearly independent with high probability, in a realistic system,

more linear dependence may appear due to a number of practical implementation

issues, e.g., a sequence of coding coefficients generated from a random seed may

not be as random as those uniformly and randomly selected from Galois Field.
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Figure 6.5: Network coding delay.

Therefore we need to evaluate how significant the ratio of redundant linearly de-

pendent packets over all received coded packets at each peer is (referred to as linear

dependence ratio), in order to evaluate the potential negative effects of network

coding in a real-world operational system. Figure 6.6 compares linear dependence

ratio between using GF (28) and GF (216). As seen, the dependence ratio is smaller

than 10−6 when using Galois Field (216). Furthermore, the larger network coding

size (the number of packets involved in encoding/decoding process), the smaller

dependence ratio. Even with Galois Field size of 28, the dependence ratio is smaller

than 3× 10−4. Which means that the coding redundancy can be negligible in real

world application.

Now we want to investigate the performance of the proposed architecture in a

real video streaming system. We implement RESnc core applications on a number
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Figure 6.6: Dependence ratio at each peer.

of ordinary computers (Pentium 4 2.0GHz with 1 GB of memory and gigabit

ethernet). The source distributes network coded packets to a number of storage

peers with a given redundancy level. A client peer connects to a fixed number of

storage peers to get video stream simultaneously. In the next section, we show the

effect of network coding on the streaming performance.

6.6.3 Throughput versus network coding size

In this experiment, a client connects to 3 storage peers to download a video stream

of 34.07MB. The total redundancy level of the three senders is 20%. The chunk

size is set at 100KB and the sending rate is 200KBps. Figure 6.7 shows the actual

throughput (include all transmission delay and processing delay) at the receiver as
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a function of the network coding size i.e. the number of packets involved in each

network coding operation. As seen, the throughput reduces significantly with small

network coding size due to the dependent packets. Also, when the network coding

size increases to a certain number, i.e., 50 in this experiment, the throughput

reduces significantly due to computation cost of decoding. It clearly shows that

the cost of transmitting a dependent packet is much higher than the decoding cost

at the receiver side. This is well matched with the theoretical analysis. The system

designer should choose the right network coding size that balances the dependence

rate and the coding complexity.
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Figure 6.7: Actual throughput as function of Network coding size
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6.6.4 Throughput versus chunk size

As it takes time for the braking messages (to tell senders move to the next chunk)

to reach the senders, a receiver peer may receive additional packets after a chunk

is completed. To reduce download redundancy within the constraints of coding

complexity, one should use small packet size. However, to better utilize the TCP

traffic, the packet size must be large enough to fill the TCP frame. We want to

evaluate the effect of download redundancy to system performance in real setting.

We use the same setting as with previous experiment. In which, a client connects

to 3 storage peers to download a video stream of 34.07MB. The total redundancy

level of the three senders is 20%. The the sending rate is 200KBps and the network

coding size is 20 packets. Figure 6.8 shows the actual throughput at the receiver as

a function of the chunk size. As seen, small chunk size results in larger throughput

due to smaller amount of download redundancy. When we increase the chunk size,

the actual throughput reduces significantly since the larger package size creates

much more download redundancy.

6.6.5 Playback quality

We now want to characterize the performance of our network coding scheme ver-

sus the variation of download links’ qualities. Specifically, the link capacities are

varied with time, according to the Gilbert’s model. In this model, there are two

states: good and bad. In the good state, data can be sent, and in the bad state,

congestion happens, and none of the data can get through. The transition proba-
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Figure 6.8: Actual throughput as function of chunk size

bilities between the states are shown in Fig. 6.9. We run this experiment with a

video file of 10MB which has been split into chunks of 12.5 KB. The ideal sending

rate is 128KB/s.

Figure 6.9 shows the number of buffer underflows with a fixed buffer size of

12.5KB and varied consumption rate. The consumption rate is the rate at which

data is read from the buffer compared to the rate at which data is being sent when

all senders are in a good state. Every underflow indicates that the receiver had

to wait for one time step before resuming playback. We see that the multisender

streaming schemes outperform single sender scheme. The more senders involved,

the better playback quality. Please note that our multisender streaming scheme

requires no coordination among senders. And the number of underflows seems
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high due to a very small buffer size of 12.5KB. When we increase the buffer size,

the playback quality increases significantly as shown in figure 6.10. As seen, the

3-sender scheme is consistently better than 1-sender and 2-sender schemes. Fur-

thermore, with the buffer size of 125KB, the 3-sender scheme provides smooth

playback without any glitches and adapts well to the variation in link capacities.
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6.7 Conclusions

We have proposed a RESnc that provides both performance improvement and

scalability. It does so by employing data dispersion, data replenishment, a path

diversity streaming protocol. Experimental results demonstrate that our system

adapts well with link’s variation and provides smooth playback quality.
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Chapter 7 – Conclusions and Future work
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7.1 Conclusions

In this dissertation, we focus on exploiting network coding, an elegant transmission

paradigm which is alternative to the traditional routing algorithms, to increase the

energy efficiency, bandwidth utilization and network robustness, as well as reduce

storage redundancy in real-world scenarios. We have shown our main research

results on design, analysis and implementation of network coding for some practical

applications.

Chapter 3 is devoted to address the uneven energy consumption problem in data

gathering sensor networks where the nodes closer to the sink tend to consume more

energy than those of the farther nodes. Consequently, the lifetime of a network

is significantly shortened. We have designed and analyzed a novel energy-efficient

network coding technique that maximizes the life-time of a sensor network using

On-Off Keying. This cross-sensor coding scheme exploits (a) the trade-off between

delay and bandwidth and (b) the network topology in order to alleviate the overall

energy consumption of the network. Cross-sensor coding can significantly extend

the network lifetime as compared with traditional (binary) coding by solving the

energy-consumption unfairness problem. We have presented the theoretical and

experimental results to show that transmission energy can be reduced substantially

(e.g., a factor of 15) and the unequal energy consumption among nodes can be

practically eliminated. The results presented in this chapter had been published

in [56] [57].

In Chapter 4, we describe a rate distortion aware hierarchical NC technique and
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transport protocol for Internet video streaming. We have proposed a NC-based

multi-sender streaming framework for efficient media streaming in P2P networks in

which, multiple servers/peers are employed to simultaneously stream a video to a

single receiver. Our framework reduces the storage redundancy, simplifies the tight

synchronization between the senders and receivers, and is integrated easily with

TCP. Furthermore, we have proposed an hierarchical network coding technique to

be used with scalable video bit stream to enable a receiver to adapt to the available

bandwidth. Simulation results have demonstrated that under certain scenarios, our

proposed schemes can result in bandwidth saving up to 60% over the traditional

schemes. The results had been published in [59] [58].

Performance scalability and robustness against single-point failures are the hall-

marks of a distributed system. If not properly designed however, the complexity

of a distributed system, especially the complex coordinations among its many sub-

systems could incur a significant overhead that renders itself much less useful in

practice. In Chapter 5, we investigate a class of randomized peer-to-peer (P2P) ap-

proach to Internet-wide distributed data storage systems that promises to reduce

the coordination complexity and increases performance scalability. The core of

these randomized P2P data storage systems is the data replenishment mechanism.

The data replenishment automates the process of maintaining a sufficient level of

data redundancy to ensure the availability of data in presence of peer departures

and failures. We have proposed a novel analytical time-backward technique to

bound the expected time, the longer the better, for a piece of data to remain in

P2P systems. Both theoretical and simulation results are in agreement, indicating
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that a proposed data replenishment via random linear network coding (RLNC)

outperforms other popular strategies that employ repetition and channel coding

techniques. Specifically, we have shown that expected time for a piece of data to

remain in a P2P system is exponential in the number of peers used to store the

data for the RLNC-based strategy, while they are quadratic for other strategies.

Furthermore, the time-backward technique can be applied to problems in other

disciplines such as gene population modeling in theoretical biology, which is in-

tractable to directly model an exponentially large number of states using Markov

chain representations.

Finally in Chapter 6, we present the architecture, design, and experimental

results of an actual NC-based distributed video streaming system. We first im-

plement random linear network coding (RLNC) library and show the feasibility of

using RLNC in P2P video streaming applications. Then we design, implement and

analyze RESnc - a resilient video storage and streaming over the Internet using

network coding. RESnc increases the streaming throughput and data resiliency

against peer departures and failures using peer diversity. These improvements are

based on three architectural elements: (1) The random network coding scheme

that codes and disperses video stream; (2) The scalable mechanism for automat-

ing the data replenishment process; (3) The path-diversity streaming protocol with

minimal coordination. Experimental results demonstrated that our system adapts

well with bandwidth fluctuation, provides significant playback quality improve-

ment and bandwidth saving. The main results has been partially published in [60]

[62].
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7.2 Future work

We have advocated a new network coding approach to designing a distributed stor-

age and streaming system in which participated peers contribute not only band-

width but also storage resources. However, by nature, peers join and leave the

network frequently. As a result, data might be lost temporarily or permanently.

Thus, there is a need to develop techniques and policies for providing sufficient re-

dundancy to ensure that, when a video is requested, it is available in the network.

It has been shown that random linear network coding can replenish data with

less network traffic than replica and erasure codes. We have designed and analyzed

a data replenishment mechanism using random network coding that automates the

process of maintaining a sufficient redundancy to ensure the availability of data in

presence of peer departures and failures. It stores network coded data distributedly

at different nodes. The replenishment mechanism provides high data reliability by

using redundancy and the regeneration of new redundant data at the newcomer

whenever lost happen. Replenishment process is expected to be finished as soon

as possible, because the replenishment time can influence the data reliability and

availability of the systems.

However, our current replenishment mechanism mainly focused on how to re-

plenish data to reduce the regeneration traffic, and to increase the lifetime of a

piece of data in the system. We analyzed it based on the number of replenishments,

not the replenishment time itself. Thus, designing a fast replenishment mechanism

that take into account the advantage of distributed routes is an interesting prob-
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lem. In future work, we want to investigate more on that direction.

Fast data replenishment structure

To ensure data reliability and availability, we expect the replenishment time to

be as little as possible. The less replenishment time, the more replenished data

can be preserved in the system with data loss. Less replenishment time can also

result in higher probability that the replenishment process is successfully finished

before any involving nodes leaves the system. One possible solution to reduce

the replenishment time is to reduce the network traffic in the replenishment. We

have already integrated random linear network coding in our current replenishment

mechanism, which helps incur less replenishment traffic than repetition codes and

erasure codes.

However, in the current replenishment scheme, replenished data are transferred

directly from existing storage nodes (providers) to the newcomer and the new data

is generated at the newcomer only. Therefore, the replenishment time is limited

by the slowest link between newcomer and providers. The problem can be clearly

shown via following example.

Consider the scenario that a newcomer C connects to two existing providers

E1 and E2 to download the stored data. It then generate its own data by linear

network coding the downloaded parts from E1 and E2. Assuming link bandwidths

between providers and newcomer are as in Figure 7.1. In our current replenishment

scheme, the newcomer receives data from each provider directly as in Figure 7.1(a).

In this scheme, the replenishment speed depends on the minimal edge connecting

to the newcomer, which is 30KB/s on link E1-C. Thus, the bandwidth bottleneck
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on link E1-C limits the actual transmission rate during the replenishment process

to 30KB/s only. Now if we allow the provider E2 download data from provider E1,

and combine it with its own stored data to produce a replenished data then send

to the newcomer C. Using this updated scheme, the bottleneck link is E1-E2 with

40KB/s. It increases the actual transmission rate during the replenishment process

to 40KB/s. We can clearly see the improvement in replenishment speed if we utilize

the available bandwidth between providers, which will reduce replenishment time

as well.

40KB/s

50KB/s30KB/s

E2E1

C

40KB/s

50KB/s30KB/s

E2E1

C

(a) (b)

Figure 7.1: Data replenishment scheme: (a) Directed; (b) Optimal

In future work, we want to exploit the bandwidth between providers and find

an optimal replenishment scheme with shortest time. In this scheme, data can

be transferred from providers to the newcomer through a number of providers. A

provider can receive data from other providers, then encode the received data with
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the data this provider stores, and finally send the encoded data to another provider

or to the newcomer. We believe that this scheme will reduce the replenishment time

as it better utilizes the distributed bandwidth among providers and newcomer.
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