

Title: A BRANCH AND BOUND ALGORITHM APPLIED TO FIELD OFFICE LOCATION Redacted for privacy

Abstract approved:
$\prod_{\text {Dr. James L. Riggs }} \quad \prod$

This thesis develops a model for locating field offices for the Motor Vehicles Division of Oregon. The locations are determined by minimizing the total cost to the Public. This is reasonable because the Public finances the operation and the opening of the offices through tax dollars, and it bears the expense of traveling to the offices to register vehicles and obtain licenses.

A branch and bound algorithm for warehouse location developed by Basheer Khumawala is applied to the field office location problem to determine the optimal locations. It was found that the algorithm runs quite efficiently, but the storage capacities needed to determine optimality are prohibitive for large problems. The storage problem was avoided by dividing the State into four areas and running each area separately. A modification in the computer code is suggested so that the algorithm works like a heuristic procedure. The solutions obtained are not guaranteed to be optimal, but much less storage is used to find the solution.

Several different costs for opening offices and for traveling were used to investigate the sensitivity of the locations.

The results from the study are encouraging and are presently being used by the Motor Vehicles Division to assist in determination of new office locations.

A Branch and Bound Algorithm Applied to Field Office Location

by
Daryl Stanley Lovro

A THESIS
submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of
 Master of Science

June 1975

Redacted for privacy

Professor and Department Head of Industrial \(\begin{array}{r}in charge of major
General Engineering\end{array}\)

Redacted for privacy

Dean of the Graduate School

Date thesis is presented 4
Typed by Vicky Bliss for
Daryl Stanley Lovro

ACKNOWLEDGEMENTS

I would like to thank Dr. James L. Riggs for his time, assistance, and helpful criticism.

Harvey Ward, Director of Field Services for the Motor Vehicles Division, must receive recognition for proposing this study and for aiding in the location of needed information. Also, Harvey Ward and the staff on the DMV Data Processing Center must be thanked for the computer time arrangements and for the assistance they provided.

Finally, my wife, Nancy, deserves thanks for her help and assistance in writing the thesis.

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION 1
II SEARCH FOR AN ALGORITHM 6
Direct Search 7
Linear Programming 7
Heuristics 10
Branch and Bound 12
Comments on the Solution Procedures 17
The Formulation 18
Discussion of the Branch and Bound 21
Algorithm
An Example 28
III THE COLLECTION OF DATA 32
IV THE ANALYSIS 40
V THE CONCLUSION AND RECOMMENDATIONS FOR FURTHER STUDY 78
BIBLIOGRAPHY 81
APPENDIX A
An Example 83
APPENDIX BNodes Used for Branch and BoundProcedures86
APPENDIX C
Additional Estimations and Assumptions Used for Determining Field Office Locations 87
APPENDIX DDemand Center Locations and Driver Pop-ulation and Candidate Field OfficeLocations90
APPENDIX E
The Computer Code 97

LIST OF FIGURES

Figure Page
1.1 Relationship of field office location costs 4
2.1 Branch and bound tree 13
2.2 Branch and bound procedure flow chart 25
2.3 Simplification cycle flow chart 26
2.4 Branch and bound tree for the example 31
3.1 Relationship of costs 39
4.1 Effect on the total cost 48
4.2 Effect of the total miles traveled 49
4.3 Effects on the number of offices opened 504.4a Office locations from runs with an openingcost of $\$ 20,240$ and a travel cost of$\$.10$ per mile53
4.4b Enlargement of Portland and the surrounding area 54$4.5 \mathrm{a} \quad$ Office locations from runs with an openingcost of $\$ 30,240$ and a travel cost of$\$.10$ per mile55
4.5b Enlargement of Portland and the surrounding area 56Office locations from runs with an openingcost of $\$ 40,240$ and a travel cost of$\$.10$ per mile57Enlargement of Portland and the surroundingarea58
4.7aOffice locations from runs with an openingcost of $\$ 20,240$ and a travel cost of$\$.14$ per mile59

```
List of Figures (cont.)
```

Figure Page
4.7b Enlargement of Portland and the surrounding area 60
4.8a Office locations from runs with an opening cost of $\$ 30,240$ and a travel cost of $\$.14$ per mile 61
$4.8 b$ Enlargement of Portland and the surrounding area 62
4.9a Office locations from runs with an opening cost of $\$ 40,240$ and a travel cost of $\$.14$ per mile 63
4.9b Enlargement of Portland and the surrounding area 644.10a Office locations from runs with an openingcost of $\$ 20,240$ and a travel cost of\$. 18 per mile65
4.10b Enlargement of Portland and the surrounding area 66
$4.11 a$ Office locations from runs with an opening cost of $\$ 30,240$ and a travel cost of $\$.18$ per mile 67
4.11b Enlargement of Portland and the surrounding area 68
4.12a Office locations from runs with an opening cost of $\$ 40,240$ and a travel cost of $\$.18$ per mile 69
4.12b Enlargement of Portland and the surrounding area 70

LIST OF TABLES

Table Page
I Page Numbers of Algorithms 6
II Cost Matrix for Data Given in Appendix A 28
Differences Between the Total Costs Obtainedon the Various Runs43
IVThree Factor Analysis of Variance - RegularProcedure46
V The Mean Number of Nodes 46
VI Staffing Requirements in FTE's 72

A BRANCH AND BOUND ALGORITHM APPLIED TO FIELD OFFICE LOCATION

I. INTRODUCTION

How many field offices should the Motor Vehicles Division of Oregon provide to serve the public best? Where should these offices be placed? How large a staff should each office contain? In other words, a model is needed to optimize the services that the Motor Vehicles Division (DMV) can provide to the people of Oregon. These services involve the issuing of Drivers' Licenses and Vehicle Registrations. The Director of Field Services, Harvey Ward, provided information about the problem. He specified that the present locations should not be considered as constraints to finding the optimal locations. The purpose of this paper is to present a method, to derive a solution, and to investigate the feasibility of the results.

The DMV has about 45 field offices located throughout the State with the head office in Salem, Oregon. They handle Vehicle Registration, Driver Licensing, Public Utility Commission business, and Highway business. Only Vehicle Registration and Drivers License business will be considered in this paper. The business is handled partly through mail which is sent to the head office and partly through direct contact with the customer who comes to the field office. With the present field office locations, about 50% of the transactions occur at the field offices.] If there were fewer

[^0]field offices located in the State, it is possible that more of the transactions would be conducted through the mail -- people would not want to travel the extra distance. But, not all of the business can be accomplished through the mail, therefore, all the field offices cannot be eliminated. Even though it is possible for transaction levels to change with the relocation, addition, or elimination of field offices, it will be assumed that the levels remain at 50% through mail and 50% through the field offices.

A mathematical model will be used to solve the problem. Therefore, criteria which can be evaluated quantitatively need to be determined. Both tangible and intangible criteria should be included. ReVelle, Marks, and Liebman (1970) surveyed several methods for finding the location of facilities in both private and public business. They state that the criteria for evaluation costs in private business is more easily defined than in public business. In private business, locations can be determined by minimizing the total cost of operations. This approach compares the cost of opening a facility to the cost of travel resulting from going to another facility. With public operations, it is more difficult to evaluate the costs. If they cannot be determined, surrogates for utility are often used. For example, the objective of a model may be to minimize the total miles traveled to a facility given that there are a specific number of facilities.

In the problem discussed in this paper the desire is to find the optimal number of field offices and their locations. The question then arises, for whom are the locations being determined -- the Motor

Vehicles Division or the people of the State. The optimal policy for the DMV may be to open one office in the middle of the State and make each person who cannot do his business by mail travel to the office. This may be feasible, but is not practical. A more appropriate solution is to locate offices in positions where they are best for the majority of those concerned, mainly the drivers and car owners of Oregon. This is logical since it is the public's tax dollars which are used to operate the DMV, and it is the public's personal money that finances trips to the field offices. If reasonable costs can be determined, then a mathematical model can be set up to minimize the total cost to the public.

There are several factors which should be considered in determining field office locations. They are:

1. How far must the customers travel to the field offices?
2. How large is the demand for services?
3. What traveling expenses are incurred?
4. What is the cost of the public's time and inconvenience?
5. What are the operating expenses for the field offices?
6. What is the cost of opening an office?

These factors and their effects on the number and location of offices are shown quite clearly in Figure 1.1. As the number of offices increases, the travel cost decreases and the opening cost increases. The total cost is shown as the sum of the two cost functions. It can be seen that the objective of a location algorithm is to find the number and location of offices which minimize the total cost.

Figure 1.1. Relationship of field office location costs

The field office location problem comes from a group of problems associated with location analysis. Similar problems which use the same theory are the plant location problem, the fire and police station location problem, and the health facility location problem. The warehouse location problem or "simple" plant location problem as Spielburg (Jan.-Feb, 1969) puts it, is not a difficult one to formulate; but it does have combinatorial problems. The "simple" is added because of the assumption that each possible plant location is capable of supplying the total demand. The uncapacitated assumption is somewhat unrealistic in most cases, but it does lessen the difficulties of computation. The computational problem arises because a plant must either be opened or closed -- there can be no
partially opened offices. Therefore, the problem comes into the category of mixed integer programming, zero-one programming, or fixed charge programming.

The following chapters will explain more fully what has been introduced here. Several algorithms will be evaluated, and then a description of the chosen procedure will be discussed. Also included, will be a discussion of the selection of data, and finally, the analysis of that data.

II. SEARCH FOR AN ALGORITHM

A literature search was made to find an algorithm which would run efficiently on a computer. Efficiency is important because of the size of the field office problem -- it originally has 417 cities and 114 possible office locations. All of the methods investigated have formulations which could be adapted to the problem. Some fit better than others. The algorithms in Table I were investigated. Each of the researchers added their own individualities to the algorithm.

TABLE I. PAGE NUMBERS OF ALGORITHMS

Direct Search

Using a direct search involves investigating many of the possible solutions to a problem and then picking the best one. For example, if one has a map with several mountains and he wants to find the two highest peaks using a computer, a grid would be superimposed on the map. The routine would probably start at one corner investigating the altitude at each point on the grid. It would continue the investigation until it found the two highest peaks. It is a very time consuming procedure. Heuristics can be used to minimize the number of points investigated.

Abernathy and Hershey (1972) did an interesting study on planning the location of Regional Health services. Their formulation took into account three factors: (1) utilization of the health center, (2) the distance to the center per person, and (3) the distance to the center per encounter. These location criteria provide a means of evaluating the needs of the people and were of more interest to the authors than the method used to solve the problem. They used a direct search algorithm developed by Hooke and Jeeves (1961). This procedure makes use of a large amount of computer time and storage to find an optimal solution. Thus, it limits the size of the problem which can be handled.

Linear Programming

Linear Programming (LP) is very popular for optimizing convex functions. It reaches a solution rapidly compared to other
methods of optinization, but it assumes linearity and continuity.

Revelle and Swain (1970) worked the problem locating a given number of \underline{m} facilities in \underline{n} communities. The objective of their formulation is to minimize the number of miles that the total population travels. The formulation structured as an LP problem is:
minimize: $\quad Z=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \cdot d_{i j} \cdot x_{i j}$
subject to:

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}=1 & i=1,2, \ldots, n \\
x_{j j} \geq x_{i j} & i=1,2, \ldots, n \\
j=1,2, \ldots, n \\
i \neq j \\
\sum_{i=1}^{n} x_{i j}=m & x_{i j} \geq 0 \quad i=1,2, \ldots, n \\
&
\end{array}
$$

where:

$$
\begin{aligned}
\mathbf{a}_{\mathbf{i}}= & \text { population } \\
\mathbf{d}_{\mathbf{i}}= & \text { the distance between } \mathbf{i} \text { and } \mathbf{j} \\
\mathbf{m}= & \text { the number of facilities } \\
\mathbf{n}= & \text { the number of communities } \\
x_{\mathbf{i}_{\mathbf{j}}}= & \text { the fraction of a community, } \mathbf{i}, \text { assigned to } \\
& \begin{aligned}
& \text { facility } \mathbf{j} . \text { In the optimal solution, } x_{\mathbf{i}} \\
& i s \text { equal to } 0 \text { or } 1 .
\end{aligned}
\end{aligned}
$$

This formulation is appropriate for field office location. It requires the number of desired office locations be given. The present
number of offices operated by the DMV could be used as the \underline{m} value. The deficiency is that the optimum \underline{m} value is not identified. Therefore, a cost analysis would have to be made to determine the optimal number of offices to open. This would be very difficult to evaluate, because it cannot be assumed that the optimal number of field offices for the DMV is the optimal number offices for the people of Oregon. Somehow one must evaluate the needs of the people and the needs of the DMV together.

Linear programming does not guarantee integer solutions. Thus, the value $x_{i j}$ is not always a 0 or 1 integer. The authors say that it is unusual for a fractional result to occur. If it does occur, however, a branch and bound technique is recommended to find the optimal solution. $2 /$

Since the solutions resulting from the LP are optimal whether the results are fractional or integer, the results could be used to check the solutions obtained from a heuristic program. Should the heuristic solution be near the optimum, then the facility assignments can be assumed to be reasonable.

Kurt Spielburg (Jan, -Feb. 1969) has done most of his work with branch and bound algorithms, but suggests that the formulation shown by equations 2.5 to 2.9 can be solved by using linear programming. This can be done by weakening the constraint $Y_{j}=0$ or 1 to $Y_{i} \geq 0$ and $Y_{i} \leq 1$. This method, similar to the Revell and Swain (1970)

2/ The solution is optimal given that the value for \underline{m} is optimal.
approach, does not guarantee an integer solution. Spielburg's formulation provides a better means of finding a solution for the field office problem than does Revell and Swain's formulation. Spielburg's formulation minimizes the total cost of an operation which in this case includes the operations of the DMV and the travel expenses incurred by the people of Oregon. Minimizing the total cost obtains a more representative solution for all those concerned.

Heuristics

Heuristics are a set of rules or guidelines which are used to find a solution to a problem. Using heuristics can avoid some of the problems found in optimizing procedures. Two of the main problems are the amount of storage capacity needed and the length of the computing time. A heuristic procedure works toward a solution which is acceptable in terms of the characteristics of the program, but is not necessarily optimal.

Kuehn and Hamburger (1963) were pioneers in the use of a heuristic approach for solving the location problem. Their program has two parts: "(1) the main program, which locates warehouses one at a time until no additional warehouses can be added without increasing the total cost, and (2) the bump and shift routine, entered after processing in the main program by evaluating the profit implications of dropping individual warehouses or of shifting them from one location to another." (Kuehn, 1963. p. 645) They used three heuristics:

1. The warehouse will be in locations where the demand has the greatest concentration. Therefore, many geographical locations can be eliminated from consideration.
2. Near optimum solutions can be arrived at by adding warehouses which produce the greatest cost saving, one at a time.
3. Only a small portion of the possible warehouse locations need to be evaluated when determining the next location.

Kuehn and Hamburger's computational experience is based on a problem with 50 customer locations and 24 potential warehouse locations. Twelve possible cases were evaluated. The program produced near optimum results in an average running time of two minutes, 30 seconds on the IBM-650.- ${ }^{\text {/ }}$ Running time appears to increase linearly with the number of warehouses times the number of customers,

Kuehn and Hamburger suggested a program be set up which would eliminate warehouses one by one based on cost savings rather than adding the warehouses one by one. This procedure would be more efficient in some cases; for example, when the number of warehouses located is more than half the number of potential warehouses. Feldman, Lehrer and Ray (1966) look at this approach.

Feldman, Lehrer and Ray (1966) follow the Kuehn and Hamburger approach. There are two basic differences in the methods:

1. Feldman, Lehrer and Ray extended their heuristics to handle concave F_{i}, the cost of opening a warehouse.
2. They "drop" warehouses instead of add them.
[^1]They evaluate F_{j} as a concave function which varies with the size of the warehouse. It is cheaper per unit to open a large warehouse than it is a small one. This is interesting because most formulations consider F_{j} as a constant opening cost.

Feldman, Lehrer and Ray suggest that the "drop" routine is better than Kuehn and Hamburgers because it is more convenient when forbidden shipping routes occur. Also, companies are rarely interested in building from scratch, rather they want to eliminate.

The computer code was tested using problems which Kuehn and Hamburger solved. The authors then found their own solutions were as good as Kuehn and Hamburger's. The CPU time on an IBM 7094 was under one minute. Following this, a much larger problem was investigated. It was found that the solution obtained by their drop routine had a cost which was only 0.5% greater than the optimal. Thus, the heuristic provided warehouse locations which were acceptable.

Branch and Bound

"The branch and bound methods are enumerative schemes for solving optimization problems. The utility of the method drives from the fact that, in general, only a small fraction of the possible solutions needed actually be enumerated, the remaining solutions being eliminated from consideration through the application of bounds that establish that such solutions cannot be optimal." (Mitten, 1970. p. 24)

The procedure is implied by the name -- first you branch then you bound. Before this procedure starts, the linear programming problem is solved to see if the solution meets the integer constraints. Suppose that the constraints require Y_{i} to be equal to 0 or 1.

If so, the solution is optimal and the algorithm terminates. If not, branching begins, and a branch and bound tree (Figure 2.1) is constructed. Two branches emanate from the first node. On the first branch, one of the noninteger variables $Y_{i}{ }^{\prime}$ is forced to zero. The resulting solution is Z_{p}. On the second branch Y_{i}^{\prime} is forced to one. Its solution is z_{2}. These solutions must either be terminal solutions, solutions which meet the integer constraints, or nonterminal solutions, solutions which do not meet the integer constraints. Now, the bounding begins. $z^{\prime}=\operatorname{Min}\left(z_{1}, z_{2}\right)$. If z^{\prime} is nonterminal then it is compared with the current lower bound (LB). If $Z^{\prime}<L B$ then $L B=Z^{\prime}$.

Figure 2.1. Branch and bound tree.

Branching begins again by branching from a nonterminal node (solution) with a solution less than the current upper bound (UB). The branches result in solutions $z_{3} \& z_{4}$. If $z^{\prime \prime}=\operatorname{Min}\left(z_{3}, z_{4}\right)$ is a terminal solution, then $Z^{\prime \prime}$ is compared with UB. If $Z^{\prime \prime}<U B$,
then $U B=Z^{\prime \prime}$. When a terminal solution is reached, no further branches can emanate from it. No branching can occur at a nonfeasible ${ }^{4 /}$ node either. The process of branching and improving the bounds ends when all nodes with solutions less than the current upper bound have been investigated. The optimal solution is then the current upper bound. Another interpretation is that the optimal solution is the minimum of all the terminal nodes.

There are several problems with branch and bound procedures. The computer time is usually quite high because of the number of LP problems that must be solved. This als, causes a storage problem because of the number of solutions that must be kept in order to compare the results.

Efroymson and Ray (1966) reformulated the model shown in equations 2.5 to 2.9 because the linear programming problem must be solved so many times in a branch and bound algorithm. As a result, the LP problem can be solved more efficiently.

In this formulation, N_{j} is the set of offices which can supply customer j, and P_{i} is the set of customers who can be supplied from plant i. The reformulation is:

$$
\begin{align*}
& \text { minimize: } \quad Z=\sum_{i=1}^{m} \sum_{i=1}^{n} C_{i j} X_{i j}+\sum_{i=1}^{n} F_{i} Y_{i} \tag{2.1}\\
& \text { subject to: } \quad \Sigma_{i \in N_{j}} X_{i j}=1 \quad j=1,2, \ldots, n(2,2) \\
& \sum_{j \in P_{i}} X_{i j} \leq n_{i} Y_{i} \quad i=1,2, \ldots, m \tag{2,3}
\end{align*}
$$

4/ A nonfeasible node is a node which has at least one demand center that cannot be serviced by an open field office because of a prohibited route.

$$
\text { Where: } \begin{align*}
Y_{i}= & 0 \text { or } 1 \quad X_{i j} \geq 0 \tag{2.4}\\
\mathrm{C}_{\mathrm{ij}}= & \text { the cost for a demand center } j \\
& \text { to go to a facility } \mathrm{i} . \\
\mathrm{F}_{\mathrm{i}}= & \text { The opening cost. }
\end{align*}
$$

Khumawala offers this same formulation, and it is discussed on page 21.
In reference to Efroymson and Ray's computational experience, they found that computer storage and computer time cause the most difficult problems. Therefore, they implemented the following features to minimize the storage and computer time:

1. If a good solution is known to the problem, then no nodes whose solutions are greater will be stored.
2. If a terminal solution (all Y_{i} 's are 0 or 1) whose solution is less than all previous terminal nodes is found, the program terminates.

They worked problems with 50 warehouses and 200 customers with an average computer time on an IBM 7094 of about ten minutes.

Kurt Spielburg (Nov. 1969) has worked extensively with branch and bound algorithms for plant (warehouse) location. He found that one of the characteristics of branch and bound algorithms used in location problems is that they are efficient when the solution is close to the origin ${ }^{5 /}$ and inefficient otherwise. Thus, some problems can easily be solved if a solution is arrived at by starting with all the plants open, but are almost impossible to solve if the solution is arrived at by starting with closed plants. To try to avoid the problem, Spielburg

[^2]developed an algorithm which permits the start of a search at any convenient point. It could start with a good solution which would be generated after a certain amount of preliminary computation.

Spielburg handled several different realistic problems. His results are encouraging. By using his generalized search method as opposed to the natural search method, the solution times are decreased significantly.

Basheer Khumawala (1972) improved the algorithm developed by Efroymson and Ray. To overcome problems of storage and computational time, Khumawala derived an improved method of solving the linear program and developed test branching decision rules for determining which free warehouse (a warehouse neither opened or closed) to branch on in the next iteration. He uses Efroymson's and Ray's simplification procedures to reduce the size of the branch and bound tree.

Khumawala's computational experience is not as extensive as Spielburg's but the results are valuable. Sixteen test problems of size (25 $\times 50$) were used to test the effectiveness of the algorithrm and the branching decision rules. It was found that the largest omega rule ${ }^{6 /}$ was best. The computation time averaged 3.8 seconds on a CDC 6500 for the largest omega rule. It was also noted that the efficiencies increase with a sparse $C_{i j}$ matrix; that is, a matrix which has many prohibited routes.

6/ The largest omega rule says to open the facility from among the group of free facilities which has the largest omega Ω. The omega value is explained on page 23.

Comments on the Solution Procedures

The direct search procedure use by Abernathy and Hersey (1972) was eliminated almost inmediately. It cannot handle a problem of the size being considered in this paper.

Linear programming could be used to find a solution, but does not guarantee integers. Thus, only parts of offices might be opened. One would have to resort to another method of solution to find the results. Since this is the case, it would probably be better to use another method such as heuristics or branch and bound.

The use of heuristics seems to be a reasonable approach for solving the office location problem. The main drawback is that the solutions are not necessarily optimal. Branch and bound procedures guarantee optimal solutions. The running times for the branch and bound procedures may be somewhat longer but with a high speed computer, there should be no problem. One of the branch and bound procedures will be used because it gives an optimal solution. If storage becomes a problem with a field office location, then it can be broken down into parts and solved separately.

The decision about whose branch and bound algorithm to use, Khumawala's (1972) or Spielburg's (Nov. 1969.), was a toss up. Spielburg's algorithm has a feature which Khumawala's does not have. It has the ability to make use of a previous solution or a good solution which is not optimal. This feature makes it possible to find an optimal solution to large problems which must
have many nodes (possible solutions) investigated to find the optimum. Khumawala's algorithm appears to be more efficient, but it is hard to evaluate the difference unless the two algorithms are tested on the same problems. The final decision is to use Khumawala's algorithm because of the availability of his computer code ${ }^{7 /}$ and amount of time which it would take to write and debug a program using Spielburg's algorithm.

The formulation which Khumawala uses is very applicable to the field office problem. He minimizes the total cost like Spielburg. It is a more useful approach than minimizing the total miles traveled. In the end, the miles traveled are minimized with respect to the cost of opening a field office. The development of the formulation follows.

The Formulation

Many of the formulations for facility location problems are very similar to the one presented here. The initial model is one offered by Spielburg (Jan. - Feb., 1969. pp. 86-88). It is developed into the final model used for solving the field office problems.

There are \underline{n} demand centers with a demand $D_{j}(j=1,2, \ldots n)$, and m possible field office locations. A field office may or may not be opened. If it is opened, there is an opening cost or a fixed cost, $\mathrm{F}_{\mathrm{i}} \geq 0$, associated with it. If it is not opened, then the

7 The computer code is shown in Appendix E.
cost is zero. In mathematical terms, $\gamma_{i}=1$ if it is opened, and $Y_{i}=0$ if it is closed. The value $\xi_{i j}$ in the formulation below is the amount of service supplied by office i to meet the demands of center j. Each office is capable of meeting the demands of all the demand centers. The cost $\frac{8 /}{}$ of meeting this demand is $\gamma_{i j}$ which is the cost per unit. The objective of the formulation is to minimize the total costs of operations. It is:

$$
\begin{gathered}
\text { Minimize } Z=\sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_{i j} \xi_{i j}+\sum_{i=1}^{m} F_{i} Y_{i} \\
\text { Subject to: } \sum_{i=1}^{m} \xi_{i j}=D_{j} \quad j=1,2, \ldots, n \\
\sum_{j=1}^{n} \xi_{i j} \leq Y_{i} \cdot u_{i} \quad i=1,2, \ldots, m \\
Y_{i}=0 \text { or } 1 \quad \xi_{i j} \geq 0
\end{gathered}
$$

The u_{i} represents an upper bound which could be set equal to $\sum_{j=1}^{n} D_{j}$ independent of \boldsymbol{i}. It permits office \boldsymbol{i} to service demand center \mathbf{j} if $Y_{i}=1$ and does not permit it if $Y_{i}=0$.

The first part of the objective function $\sum_{i=1}^{m} \sum_{j=1}^{n} \gamma_{i j} \xi_{i j}$ can be solved if the minimum transportation cost from demand center j to field office i is chosen. For this reason, the problem is reformulated into a simpler form. The $\xi_{i j}$ are replaced by $X_{i j}$ where $X_{i j}=\xi_{i j} / D_{j}$. The 8/ The cost includes transportation costs and operating cost.
$X_{i j}$ s are interpreted to be the fraction of the demand serviced by office i. Also, since the purpose of inequalities is to prevent a demand center j from being assigned to a closed office or permit it otherwise, it can be replaced by $\sum_{j=1}^{n} X_{i j} \leq Y_{i} \cdot n_{i}$. The value n_{i} is the number of demand centers which can be serviced by office
i. The resulting formulation becomes:

$$
\begin{equation*}
\text { Minimize } z=\sum_{i=1}^{m} \sum_{j=1}^{n} C_{i j} X_{i j}+\sum_{i=1}^{m} F_{i} Y_{i} \tag{2.5}
\end{equation*}
$$

Subject to:

$$
\begin{array}{ll}
\sum_{i=1}^{m} X_{i j}=1 & j=1,2, \ldots, n \\
\sum_{j=1}^{n} X_{i j} \leq n_{i} Y_{i} & i=1,2, \ldots, n \\
Y_{i}=0 \text { or } 1 & X_{i j} \geq 0 \tag{2.8}
\end{array}
$$

$$
\begin{equation*}
\text { where: } C_{i j}=\gamma_{i j} D_{j} \tag{2.9}
\end{equation*}
$$

The branch and bound algorithm requires that a linear programming problem be solved at each node. If many nodes must be investigated to determine the optimal solution, much computer time will be used solving the LP. The number of LP problems solved varies a great deal. It can be as few as one or as many as several hundred. Thus, the formulation is again modified to simplify the solution of the LP. The Efroymson and Ray (1966) formulation is repeated here for convenience.

$$
\begin{equation*}
\text { Minimize } z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} X_{i j}+\sum_{i=1}^{m} F_{i} Y_{i} \tag{2.1}
\end{equation*}
$$

Subject to:

$$
\begin{array}{ll}
\Sigma_{i \varepsilon N_{j}} X_{i, j}=1 & j=1,2, \ldots, n \\
\Sigma_{j \in p_{i}} X_{i j} \leq n_{i} Y_{i} & i=1,2, \ldots, m \\
Y_{i}=0 \text { or } 1 \quad X_{i j} \geq 0 & \tag{2.4}
\end{array}
$$

$N_{j}=$ the set of field offices which can supply demand center j.
$P_{i}=$ the set of centers that can be serviced by office i. Also for each node (solution) the sets K_{0}, K_{1} and K_{2} are defined. $K_{0}=$ is the set of closed offices. $Y_{i}{ }^{\prime} s$ are the set equal to zero.
$K_{1}=i s$ the set of opened offices. Y_{i} 's are set equal to one.
$K_{2}=$ is the set of offices which are neither opened nor closed. They are free offices. Y_{i} 's are fractional.

Discussion of the Branch and Bound Algorithm

The formulation of the location problem is quite simple. The main problem is computational since it comes into the area of integer programming.

The formulation is set up so that the LP problems can easily be solved for uncapacitated problems. Other than this modification, there are three simplification procedures which are presented by Khumawala (1972). They reduce the number of nodes that must be investigated. In other words, they reduce the size of the branch and bound tree.

1. The first simplification determines the minimum bound for opening a field office. If it is positive, then the office is fixed opened. In mathematical terms, this is:

$$
\begin{aligned}
\nabla_{i j} & \left.=\operatorname{Min}_{k \varepsilon N_{j} \cap} \cap K_{1} U K_{2}\right) ; k \neq i \quad\left[\operatorname{Max}\left(C_{k j}-C_{i j}, 0\right)\right] \\
\Delta_{i} & =\Sigma_{j_{\varepsilon} P_{i}} \quad \nabla_{i j}-F_{i}
\end{aligned}
$$

"If $\Delta_{i}>0$, then $Y_{i}=1$ for all branches emanating from that node." (Khumawala, 1972. p. B-720) Delta ($\nabla_{i j}$) is the savings that results if office i is opened to service city j. If the sum of the deltas for for office i is greater than F_{i}, the cost of opening the office, then it pays to open the office.
2. The second simplification is mainly an updating procedure. It reduces n_{i}, the number of cities which are serviced by office i.

$$
\begin{aligned}
& \text { "If for } \mathbf{i}_{\varepsilon K_{2}}, j_{\varepsilon} P_{i} \\
& \qquad \operatorname{Min}_{k \varepsilon K_{1} \cap_{N}}\left(C_{k j}-C_{i j}\right)<0
\end{aligned}
$$

then n_{i} is reduced by one." (Khumawala, 1972. p. B-721)

All this says is that if it is cheaper for demand center \boldsymbol{i} to be serviced by an open field office than it is to be serviced by one of the free field offices at the node, then demand center i should not be considered as a possible customer of the free field offices.
3. The third simplification is similar to the first. Instead of determining if the cost savings warrants the opening of a field office, it determines whether the cost reduction resulting from an office being open is still warranted. Also, it determines whether a free office can be closed.

$$
\begin{aligned}
& \text { "For }{\mathbf{i} \varepsilon K_{2},} \mathbf{j}_{\varepsilon} P_{\mathbf{i}} \\
& \omega_{\mathbf{i j}}=\operatorname{Min}_{k \varepsilon N_{j} \cap K_{\mathbf{1}}}\left[\operatorname{Max}\left(C_{k j}-C_{i j}, 0\right)\right] \\
& \Omega_{\mathbf{i}}=\Sigma_{\mathbf{j} \varepsilon P_{\mathbf{i}}} \omega_{\mathbf{i j}}-F_{\mathbf{i}}
\end{aligned}
$$

If $\Omega_{i}<0$, then $Y_{i}=0$ for all branches emanating from the node." (Khumawala, 1972. p. B-721) $\omega_{i j}$ is the minimum savings which result from having office i open and city j being serviced by it. If the sum of these savings for the office i is less than the cost of originally opening the office, F_{i}, the office is closed. These simplifications are cycled through each iteration.

The simplification procedure is shown step by step in Figure (2.3). The branch and bound procedure is shown in Figure (2.2) The flow chart for the main program will be used in the following explanation.

When no further simplifications can be made, then LP is solved. Khumawala (1970. pp. 46-49) presents a time saving method to solve the LP (step M-3). It simply selects the feasible offices which will minimize the objective function at the node. The solution is defined by the following sets:
$S_{1}=$ the set of demand centers best serviced by open offices.

$$
=\left\{j\left(i_{1}\right) \mid \nabla_{i_{1}} j\left(i_{1}\right) \geq 0 ; i_{i} \varepsilon k_{1} \cap N_{j\left(i_{1}\right)}\right\}
$$

$S_{2}=$ the set demand centers best serviced by free offices.

$$
=\left\{j\left(\mathfrak{i}_{2}\right) \mid \nabla_{\boldsymbol{i}_{2}} j\left(\mathfrak{i}_{2}\right) \geq F_{i_{2}} / n_{i_{2}} ; \mathfrak{i}_{2} \varepsilon K_{2} \cap N_{j}\left(\mathfrak{i}_{2}\right)\right\}
$$

$\mathrm{S}_{1} \mathrm{US}_{2}=$ the set of remaining demand centers.
The solution is determined by the following equations:

$$
\begin{aligned}
& j\left(i_{1}\right) \in S_{1}\left\{\begin{array}{l}
x_{i_{1} j\left(i_{1}\right)=1} \\
x_{i} j\left(i_{1}\right)=0 \quad i \neq i_{1}
\end{array}\right. \\
& j\left(i_{2}\right) \in S_{2}\left\{\begin{array}{l}
x_{i_{2} j}\left(i_{2}\right)=1 \\
x_{i} j\left(i_{2}\right)=0 \quad i \neq i_{2}
\end{array}\right. \\
& j \in S_{1} \cup S_{2}\left\{\begin{array}{l}
x_{i j}=1 i f C_{i j}+F_{i / n_{i}}=\operatorname{Min}_{k_{\varepsilon} K_{1} \cup K_{2}}\left[c_{k j}+g_{k / n_{k}}\right] \\
x_{i j}=0 \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Figure 2.29/ Branch and bound procedure flow chart

Figure $2.3^{10 /}$ Simplification cycle flow chart

10/ Obtained from an article by Khumawala (1972. p. B-724).

$$
Y_{i}= \begin{cases}\sum_{j \in P_{i}} X_{i j} & i \varepsilon K_{1} \\ \frac{n_{i}}{} & \\ 0 & i \in K_{2}\end{cases}
$$

Where: $\quad g_{k}= \begin{cases}0 & k \in K_{1} \\ F_{k} & k \in K_{2}\end{cases}$
The efficiency comes from the fact that $\nabla_{i j}$ always exists. The proof that the solution is optimal is shown in Khumawala's dissertation (1970).

In order that the branching may continue, an office must be selected from the set of free offices, K_{2}, at the node where further branching is to take place (step M-9). The selection of an office is done by a branching decision rule. There are several possible rules which could be used to determine the office. Khumawala experimented with some of these and found that the selection of the free office with the largest positive Ω_{i} was the best rule in most cases.

The selected office is first constrained opened and then constrained closed. In each case, the simplification procedures are followed. The solutions resulting are compared with the present bounds to see if they may be replaced. If the solution is terminal, it is compared with the current upper bound. If it is nonterminal, it is compared with the current lower bound. When no nonterminal nodes with solutions less than the current upper bound can be found, the procedure ends. The current upper bound is optimal. The following illustrative example explains the procedure more fully.

An Example

The following matrix shows the $C_{i j}$ cost entries developed from the data provided in Appendix A. This is a simplified example designed to illustrate the algorithm. Each (D) represents a very large cost which prohibits a city j from being serviced by office i. F_{i} is the opening cost. The flow charts, Figures 2.2 and 2.3, are referred to in the explanation.

TABLE II. COST MATRIX FOR DATA GIVEN IN APPENDIX A

City

Office i

	1	2	3	4	5	6	7	F_{i}
1	282	399	1020	(1)	(L)	(L)	191	500
2	799	141	958	(L)	385	579	390	500
3	(1)	(${ }^{\text {) }}$	794	71	267	738	365	500
4	(1)	385	823	134	141	530	(L)	500
5	(1)	290	894	185	265	282	(1)	500
	220	110	330	55	110	220	110	

The algorithm minimizes the total cost according to equation 2.1 subject to equations 2.2 and 2.4 .

The initialization $M-1$, involves setting $K_{1}=K_{0}=\emptyset$, the empty set, and $K_{2}=(1,2,3,4,5)$; the sets $P_{i}(i=1,2,3,4,5)$ and $N_{i}(i=1,2,3,4,5,6,7)$ are also initialized. The lower bound (LB) $=$ 0 , and the upper bound (UB) $=+\infty$.

The simplification cycle, $M-2$, is entered to attempt the opening or closing of offices. In simplification one $S-1, \nabla_{i j}$ and Δ_{i} are computed. The values are:

$$
\begin{array}{lll}
\nabla_{11}=517 & \nabla_{17}=174 & \Delta_{1}=192 \\
\nabla_{22}=149 & \Delta_{2}=-351 \\
\nabla_{33}=29 & \nabla_{34}=63 & \Delta_{3}=-408 \\
\nabla_{45}=124 & \Delta_{4}=-376 \\
\nabla_{56}=248 & \Delta_{5}=-252
\end{array}
$$

It is found from this simplification that office number 1 should be opened $(s-3), Y_{1}=1$, since $\Delta_{1}>0$. In other words, $K_{1}=\{1\}$, $K_{2}=\{2,3,4,5\}, K_{0}=\emptyset$. It pays to open the office because it is more expensive to make people go elsewhere. Sets P_{i} and n_{i} are updated in the second simplification, S-5. Since demand centers 1 and 7 are best serviced by office 1 , they are eliminated from further consideration as customers for the other offices. The omega values are calculated in simplification three (S-7). No $\Omega_{\mathfrak{i}} \leq 0$ so no offices can be closed. The procedure returns to the main program because of this (S-8).

The linear program, $M-3$, is now solved. It is best that customers 1 and 7 go to office 1 since ∇_{17} and ∇_{11} are positive. These are elements of S_{1}. Therefore, $X_{11}=1$ and $X_{17}=1 . X_{22}$, X_{33}, and X_{34} are set equal to one because demand centers 2,3 , and 4 of $S_{1} U S_{2}$ are best serviced by offices 2,3 , and 3 respectively. Finally, X_{45} and X_{56} equal one because $\nabla_{45} \geq F_{4} / n_{4}$ and $\nabla_{56} \geq F_{5} / n_{5}$
respectively. They are elements of S_{2}. All other $X_{i j}=0 . \quad Y_{1}=1$ because $K_{1}=1$, and $Y_{2}=0.2, Y_{3}=0.4, Y_{4}=0.2, Y_{5}=0.2$ because $K_{2}=\{2,3,4,5\}$. The solution to the $L P$ is $Z=2901$. It is feasible and nonterminal. 2901 becomes the lower bound (LB at step M-8). If the solution had been terminal, the procedure would have terminated. The procedure continues at step $M-9$ where a free office ($K_{2}=$ $\{2,3,4,5\}$) is selected by the branching decision rule. This office is first opened and then it is closed. Office number 3 is selected as the office on which to branch. The program enters the simplification cycle at S-4. As a result of simplification three, offices 2 and 4 are closed. $\left(\Omega_{2} \leq 0\right.$ and $\left.\Omega_{4} \leq 0\right)$. The procedure goes back to the beginning of the simplification cycle (S-1). Office 5 is opened because of simplification one $\left(\nabla_{5} \geq 0\right)$. The procedure returns to the main program $(M-12)$ because $K_{2}=\emptyset$. The LP solution is:

$$
\begin{aligned}
& x_{11}=x_{52}=x_{33}=x_{34}=x_{55}=x_{56}=x_{17}=1\left(\nabla_{i j} \geq 0\right), \\
& Y_{1}=1, Y_{2}=0, Y_{3}=1, Y_{4}=0, Y_{5}=1, \text { and } z=3484 .
\end{aligned}
$$

This is a terminal solution and it becomes the new upper bound (UB) at step M-18.

The procedure continues by closing office 3 (M-15). The simplification cycle is entered but no offices are opened or closed. The LP is solved. The resulting solution is: $Z=2993$. It is nonterminal. It is the only nonterminal node left and it has a solution which is less than the current upper bound, 3673. Therefore, it is branched on next.

Office 4 is picked as the next office on which to branch. The procedure continues much the same as the preceeding portion. The branch and bound tree (Figure 3.3) shows the results of the remainder of the program. The program terminates because there are no more nonterminal nodes to branch onto next. The optimal solution becomes the minimum of the values at the terminal nodes. It is 3386. Offices opened and the cities serviced by them are:

Office 1 services demand centers 1 and 7 , and
Office 5 services demand centers 2,3,4,5, and 6.
In Figure 3.3 one of the efficiencies used to minimize storage needs for the algorithm is shown. All of the information contained in the node marked with an X, node 3 , is no longer needed for algorithm after the branching decision is made. Thus, instead of numbering the branch nodes 4 and 5, they are numbered 3 and 4. The procedure is effective for large problems.

Figure 2.4. Branch and bound tree for the example

III. THE COLLECTION OF DATA

Data collection is probably one of the most critical parts of any study. The collection of the data in this study was simplified by the cooperation of the DMV's Director of Field Services, Harvey Ward. Since inaccurate data obviously will result in erroneous results, it is vital that accurate and relevant figures are selected. The data must also fit the requirements of the model which requires that the unit cost, $\gamma_{i j}$, the demands, D_{j}, and the opening cost, F_{i}, be defined. To be consistent, all data will pertain to the year 1972.

The people of Oregon must pay for the operation of the DMV through taxes. They must also pay for the expense incurred while traveling to the field offices. Therefore, it is reasonable to minimize the total cost to the public, the object of the formulation. Referring to the objective function, Equation 2.1, there are two costs which must be evaluated:

1) $C_{i j}=\gamma_{i j} D_{j}$ is the cost matrix associated with the demand centers and the candidate field offices.
2) F_{i} is the cost of opening a field office.

Some representation for demand is needed in order to evaluate the needs of each demand center and the cost matrix $C_{i j}$.

The demand was probably the most difficult to determine. It is logical to assume that the demand centers are the cities in the state. Those people living in the rural areas are included in the city closest to their home. Ideally, by knowing the number of trips made from each demand center to the present field offices to make transactions, the
needs of the people can be evaluated. This information is not available. Therefore, some other data which represents demand must be used. It was suggested that the population census be used to represent the demand. A report was obtained from Portland State University showing the population of each of the incorporated cities and the population of the unincorporated cities and the population of the unincorporated areas by counties. The population of the unincorporated areas is quite substantial, but there is no way of determining where these people live without going back to the census track data. If the population data were used, then some factor for converting the population into representative demand would be needed. While investigating the use of population, a much better representation of demand was found.

Why not use the data which the DMV has on master file? The mailing addresses of all the drivers of record are known. Thus, one can list all the Zip Codes (cities) and the number of drivers of record at each Zip Code. ${ }^{11 /}$ The only problem with this data was its availability. At the time it was originally requested, it was not available; but it became available later. Using this information, the demand is represented as a proportion of the number of drivers of record in each demand center, $D R_{j}(j=1,2, \ldots n)$. It is assumed that each driver represents 1.10 transactions per year.12/ It will be assumed that each transaction

[^3]121
The calculations are shown in Appendix C.
represents one trip to the field office. This is not totally true because some drivers have two vehicles and may make two transactions in one trip, but this is still the best measure of the number of trips that are made. The demand (trips or transactions) is represented by:

$$
D_{j}=D R_{j} \cdot(1.10)
$$

Each of the demand centers could be used as a possible field office location. But, this is neither logical management-wise, nor is it reasonable when considering the storage capacity of a computer. In reality, the DMV would not consider locating an office in a very small town. Accordingly, we decided that any town with a driver population less than 2000 people would not be considered as a candidate. This constraint reduced the number of candidate offices to 114 as shown in Appendix D.

Now that there is a representation for demand, costs must be determined. The unit cost, $\gamma_{i j}$, is composed of two main parts: 1) the cost to the public for the travel from the demand center j to the candidate office i; and 2) the operating costs of the field offices. To determine the cost to the public, the distances between the demand centers and field offices must be evaluated. They can either be represented by the actual miles or a mathematical representation. From a practical standpoint, the mathematical representation is better because the determination of the mileage is much easier, and the storage of the data is not as large a problem. With a problem with 114 possible offices and 417 demand centers, a large matrix would have to be stored if the actual distances were used. Another reason for using the mathematical representation is the ease of making changes in the data set. For example, if
the problem needs to be reduced in size, the amount of data that must be manipulated is much smaller. One reservation is that it is not as accurate as the actual data, but it gives a close representation. For this problem the distance is given by

$$
\text { Miles }_{i j}=\sqrt{\left(Z_{1 i}-X_{j}\right)^{2}+\left(Z_{2 i}-Y_{j}\right)^{2}} \cdot(\text { Scale })
$$

where $\left(Z_{1 j}, Z_{2 j}\right)$ is the office location, $\left(X_{j}, Y_{j}\right)$ is the demand center location, $13 /$ and Scale is the number of miles per unit of measure (1.875 miles per unit). Finding the coordinates of each city or demand center involved the plotting of the cities on a grid. This was quite a lengthy process, but was much easier than finding the actual distances between the cities.

The distance to a field office is used as a screening device. If it is necessary to travel a long distance to a field office, then a very large cost is associated with the route. It works in the same manner as the ($(\mathbb{)}$ cost in the example problem. The Director of Field Services requested that:

1) The people in Eastern Oregon not travel more than 150 miles one way.
2) The people in Western Oregon not travel more than 50 miles one way.
3) Those in the Portland Metropolitan area not travel more than 10 miles one way.

The 10 mile constraint was not used and was not necessary because the cost of travel constrained the distance traveled in the Metropolitan area to be less than 10 miles.

The cost per unit demand for travel is given by:

$$
\left(\text { Miles }_{\mathrm{ij}}\right) \cdot(\text { Rate }) \cdot 2 .
$$

The rate should include the cost of travel and the cost of inconvenience to the public. The cost of travel is set at 10ϕ per mile per trip since this is the amount that the State allows for its travel. The cost of the public's time is set at $\$ 2.00$ per hour because this is approximately the minimum wage. The cost of inconvenience is a hard factor to evaluate. For some people the inconvenience is great, yet for others it is minimal. For this study, the cost of inconvenience will be included in the $\$ 2.00$ per hour allotted for the public's time. This value seems reasonable because some of the people coming to the field offices for licenses or vehicle registrations have no income, some are on welfare, some make the minimum wage, and some, or course, have large salaries or wages. Also, some combine the trip to the field office with other errands and thereby lessen the cost of inconvenience. Therefore, it will be assumed that on the average the cost of inconvenience is included in the $\$ 2.00$. If it is assumed that people overall average 25 miles per hour going to the field office, making the transaction, and going home, then an estimate of the cost of inconvenience can be made in cost per mile.
$\$ 2.00$ per hour $/ 25 \mathrm{mph}=\$.08$ per mile
Combining this cost of inconvenience with the $\$.10$ per mile, an estimated
cost of $\$.18$ per mile results. The distance between office \mathbf{i} and demand center j does not represent a round trip. Therefore, either the cost per mile or the distance must be doubled before they can be used to calculate the C_{ij} entries.

The total cost of travel function is shown in Figure 3.1. As the number of offices increases, the cost of travel decreases. It will be assumed that no travel cost is associated with a field office located in a demand center. In the analysis, the traveling cost is varied from 10ϕ to 14ϕ to 18ϕ per mile.

Also, included in $\gamma_{i j}$ is the cost of operating the field offices. The amount budgeted for 1972 is used in the calculations. About $\$ 10,120 \frac{14 /}{}$ was budgeted per employee which is about $\$ 1.41$ per driver of record. Normally, the cost of operations increases with greater decentralization because of increased administrative costs such as supervisory and communication costs. (Line 3 Figure 3.1) An increase in rent and maintenance, resulting from the need of more office space will also alter the cost of operations. It is assumed for this problem that the total number of employees $15 /$ needed to man the offices remains constant and operating cost does not increase with an increase in the number of offices opened. $C_{i j}$ becomes:

14/ The calculations are shown in Appendix C.
218.75 employees are needed to maintain the services for the Vehicle Registration and Drivers license business. Calculations shown in Appendix C.

$$
\left[\left(\text { Miles }_{\mathrm{ij}}\right) \cdot \$.18 \cdot 2+\$ 1.28\right] \mathrm{D}_{\mathrm{j}}
$$

Where: $\quad \$ 1.28=\$ 1.41 / 1.10=$ the cost per transaction

The cost of opening an office, F_{i}, was initially set at $\$ 20,240$. The Director of Field Services wants at least enough work for a two-man office before he would open it. The $\$ 20,240$ is the operating cost for an average 2-man office for one year. This opening cost does not guarantee that each office will have two employees; it only guarantees it is worth spending $\$ 20,240$ to open the office. This cost seems low, so opening costs of $\$ 30,240$ and $\$ 40,240$ are also used to test the sensitivity of the results. The opening cost is the same for each office, although it could have varied with the offices. For example, the cost of opening one of the existing offices could be assigned a zero cost while the opening of nonexisting offices could be assigned a large cost. For this problem, the desire is to find out where the offices should be located without considering the present locations. Therefore, it is assumed that there are no existing offices. The cost, F_{i}, shown in Figure 3.1 is a step function (line 2). The total cost curve is also a step function because of F_{i}.

The complete objective function can now be given. It is:

$$
\sum_{i=1}^{m} \sum_{j=1}^{n}\left[\left(\text { Miles }_{i j}\right) \cdot(\text { Rate }) Z+\$ 1.28\right] D_{j} X_{i j}+\sum_{i=1}^{m} F_{i} Y_{i}
$$

where
Miles $_{\mathbf{i} j}$ - is the number of miles from office \mathbf{i} to demand center \mathbf{j}.
Rate - is the cost per mile with values of $\$ 0.10, \$ 0.14$ and $\$ 0.18$.
D_{j} - is the demand in transactions at center j
F_{i} - is the fixed cost with values of $\$ 20,240, \$ 30,240$ and $\$ 40,240$.
The cost functions and their interactions is shown in Figure 3.1. As the number of offices opened increases, the direct costs (the travel costs) to the public decreases and the indirect costs (the costs of opening and operating the field offices) increases.

Figure 3.1 Relationships of Costs

Now that there are representations for demand, distances, and cost, the computer runs can be made to determine the location of the offices.

IV. THE ANALYSIS

The analysis of the data involved the making of several computer runsl6/ A sensitivity analysis was performed to investigate the effects of changes in the opening and travel costs on the offices opened (number and location), the staffing requirements, and the total cost. These changes also affect the difficulty of determining the optimal solution. The difficulty is shown by the number of nodes that must be investigated or by the size of the branch and bound tree and by the amount of computer time used. For this problem, only the effects on the number of nodes are investigated, The number of nodes used is directly related to the amount of computer time.

The opening cost was varied from $\$ 20,240$ to $\$ 30,240$ to $\$ 40,240$; the travel cost was varied from $\$ 0.10$ per mile to $\$ 0.14$ per mile to $\$ 0.18$ per mile.

Initially, an attempt was made to solve the office location problem by making one large run which included all 417 demand centers and 114 candidate offices. Because the storage capacity of the computer was not large enough, the problem was broken down into four parts. The four areas are shown in Figure (4.4a). The use of Zip Codes for the break-down was quite effective. The break between 2 and 4, and 3 and 4 follows natural barriers and as a result has very little affect on the solution. On the other hand,

16/ The runs were made on an IBM 370-158 used by the Motor Vehicles Division.
the division between 1, 2 and 3 may have some affect on the offices opened near the border. Offices to which the demand centers are assigned seem to be affected more than the actual offices opened. But, there is no proof since the groups were not combined.

Areas 1 and 2 were initially together, but there was not enough storage to find a solution. The limit set on the number of nodes which could be investigated was 61. Even by breaking the problem down into two smaller problems and increasing the number of possible nodes to investigate to 151, a solution ${ }^{17 /}$ could not be found in some cases. In others, optimality could not be ascertained, In cases where a solution was found but not determined to be optimal, the computer code printed, "The solution given below may not be optimal because of lack of storage."

A large amount of computational experience was obtained during the analysis of the data. One point of interest is the results obtained from a run in which an error was made. It occurred at line 272 in the computer code (Appendix E). Instead of having:

$$
\begin{aligned}
& X X=1 . / X L N, \\
& X X=I F C(K W) / X L N
\end{aligned}
$$

was in its place. As a result of this error, the wrong lower bounds for the non-integer solutions were calculated (much larger than the correct values). This decreased the computational difficulty in finding a terminal solution because very few nonterminal solutions were stored. The procedure ended promptly when a terminal solution

7/ A solution meets the integer constraints, but is not necessarily optimal.
was found because no nodes could be found with a lower bound less than that solution. Hence, it was not determined to be optimal. However, the difference between the total cost in the modified branch and bound (computer code with the error) and the solutions obtained using the regular procedure averaged 0.35%. The difference ranged from no error to an error of 3.13%. 18/ The results are shown in Table III. The number of nodes which had to be investigated by the modified branch and bound, was much less in most cases. On an overall average, the modified procedure took 43 fewer nodes to solve the problem. The regular procedure averaged 50 nodes in determining optimality and the modified procedure averaged 6.8 nodes in finding a solution. 19/ This average should be somewhat larger because in some cases no solution could be found for the regular procedure. Since the computational difficulty is so much less and the solutions near optimal, the modified procedure could be used as a heuristic type of method to find "good" solutions for large problems.

Changes in the unit cost per mile and the opening cost per office affect the number of nodes which must be used to determine the optimal solution. The difficulty of determining an optimal solution is also affected by the density of the demand centers.

[^4]TABLE III. DIFFERENCES BETWEEN THE TOTAL COSTS
OBTAINED ON THE VARIOUS RUNS.

The Runs			Modified B\&B	$\underset{B \& B}{R e g u l a r}$	Error inTotal Cost
Travel Cost	Opening Cost	Area			
\$. 10	\$20,240	\#1 \#2 \#3 \#4	$\$ 1,158,996.00$ $656,192.00$ 1,450,871.00 1,116,210.00	$\begin{array}{r} \$ 1,156,885.00 \\ 654,496.50 \\ 1,450,871.00 \\ 1,105,804.00 \end{array}$	$.25 \%$ $.18 \%$ No Error $.94 \%$
	\$30,240	\#1 \#2 \#3 \#4	$\begin{array}{r} \$ 1,316,331.00 \\ 762,036.75 \\ 1,651,470.00 \\ 1,285,421.00 \end{array}$	No Solution $(740,402.81)^{*}$ No Solution 1,285,421.00	2.9% No Error
	\$40,240	\#1 \#2 \#3 \#4	$\begin{array}{r} \$ 1,397,209.00 \\ 821,193.00 \\ 1,779,241.00 \\ 1,437,594.00 \end{array}$	No Solution $(827,912.19)$ No Solution $1,437,594.00$	$\text { . } 81 \%$ \qquad No Error
\$. 14	\$20,240	\#1 \#2 \#3 \#4	$\begin{array}{r} \$ 1,190,242.00 \\ 707,627.37 \\ 1,552,954.00 \\ 1,222,064.00 \end{array}$	\$1,190,242.00 707,627.37 1,552,954.00 1,222,064.00	No Error No Error No Error No Error
	\$30,240	\#1 \#2 \#3 \#4	\$1,346,435.00 814,425.44 $1,786,718.00$ 1,418,778.00	\$1,336,416.00 813,954.87 $1,786,718.00$ 1,418,778.00	$.7 \%$ $.05 \%$ No Error No Error

The total costs given in parentheses are not necessarily optimal.

TABLE III. (cont.)

The Runs			Modified B\&B	Regular B\&B	Error in Total Cost
Travel Cost	Opening Cost	Area			
\$. 14	\$40,240	\#1 \#2 \#3 \#4	$\begin{array}{r} \$ 1,454,315.00 \\ 928,703.06 \\ 1,991,399.00 \\ 1,599,141.00 \end{array}$	$\$ 1,451,360.00$ $(900,511.00)$ No Solution 1,599,141.00	$.20 \%$ 3.13% \qquad No Error
\$. 18	\$20,240	\#1 \#2 \#3 \#4	$\begin{array}{r} \$ 1,213,112.00 \\ 759,448.25 \\ 1,651,055.00 \\ 1,331,554.00 \end{array}$	$\begin{array}{r} \$ 1,213,112.00 \\ 759,109.94 \\ 1,651,055.00 \\ 1,331,554.00 \end{array}$	No Error $.04 \%$ No Error No Error
	\$30,240	\#1 \#2 \#3 \#4	$\begin{array}{r} \$ 1,404,776.00 \\ 879,238.31 \\ 1,893,206.00 \\ 1,538,440.00 \end{array}$	$\begin{array}{r} \$ 1,381,000.00 \\ 869,534.56 \end{array}$ No Solution $1,538,440.00$	$\begin{aligned} & 1.17 \% \\ & 1.12 \% \end{aligned}$ \qquad No Error
	\$40,240	\#1 \#2 \#3 \#4	$\$ 1,527,199.00$ 972,651.87 2,122,472.00 $1,731,751.00$	$\$ 1,515,679.00$ $972,651.87$ $2,122,472.00$ $1,731,751.00$.76\% No Error No Error No Error

The total error between the two procedures is 10.63%.
The average error is . 35% per problem.

The analysis of variance in Table IV shows that the means given in Table V for all of the conditions expressed above are significantly different. The F test is significant for all of the conditions at the 90th percentile or higher. By observing Table V, three general statements can be made about the results within the limits of the study:

1. It is much easier to find a solution in Eastern Oregon (area 4) than it is in Western Oregon (area 1, 2, and 3). The number of nodes used is affected to a certain extent by the idiocyncracies of the problem, but a major portion of the difficulty appears to result from the density of the demand areas.
2. The difficulty of finding an optimal solution decreases as the cost per mile (travel cost) increases. The number of nodes used will reach a minimum at some cost, but no further conclusions can be made without further study.
3. The difficulty of finding an optimal solution increases as the opening cost increases. The number of nodes used will reach a maximum at some opening cost, but further study is needed to determine this cost.

It is the relationship between the opening cost and travel cost that affects the difficulty. A change in the travel cost, which is seen in the cost matrix, affects the magnitude of the costs savings for a demand center that results if a specific office is opened.
table iv. three factor analysis of variance -- regular procedure ${ }^{20 /}$

Source	d.f.			SS
MS	F			
Area	3	41957.8611	13985.9537	$8.9628^{* * *}$
Cost per mile	2	11762.0000	5881.0000	$3.7688^{* *}$
Opening cost	2	9438.5000	4719.2500	3.024^{*}
Error	28	43692.3889	1560.4424	
Total	35	106850.7500		

*** Significant at the 99th percentile $\mathrm{F}(3,24)$
** Significant at the 95th percentile $F(2,24)$

* Significant at the 90th percentile $\mathrm{F}(2,24)$
table v. the mean number of nodes

Means
Area
\# of nodes

1	2	3	4
55.2222^{+}	99.5556^{+}	41.4444^{+}	4.1111

Cost per mile
\# of nodes

$\$.10$	$\$.14$	$\$.18$
74.9167^{+}	42.9167^{+}	32.4167^{+}

Opening cost
\# of nodes

$\$ 20,240$	$\$ 30,240$	$\$ 40,240$
27,2500	60.0000^{+}	63.0000^{+}

+These means should be somewhat higher because for some of the problems the storage limit was reached. Therefore, the actual number of nodes that it would take to find a solution is not shown.

As this cost savings decreases in relation to the opening cost, it becomes much more difficult for the algorithm to determine which offices to open. A larger search must be made to investigate the opening of offices because fewer offices are opened or closed by the simplified procedures; they must be opened by the branching decision rule.

Not only do changes in the travel cost and opening cost affect the difficulty of computation, but they also affect the solutions. The effect of the total cost is shown in Figure 4.1 . It is an increasing function because an increase in travel costs or opening costs must be reflected as an increase in the total cost. The total cost is a representation of the miles traveled by the public and the offices opened.

Looking at Figure 4.2, it can be seen how the changes in travel cost and opening cost affect the total miles that the public travels. The number miles traveled is inversely proportional to the cost per mile and directly proportional to the opening cost. As the cost of travel decreases, people can afford to travel farther. If Figure 4.3 is looked at along with Figure 4.2, a better picture is obtained. At a fixed opening cost with decreasing travel cost, fewer offices have to be opened because people can afford to travel farther. On the other hand, at a fixed travel cost with increasing opening cost, the public is forced to travel farther because fewer offices are opened. The range of offices opened varies from a maximum of 77 at $\$ 0.18$ and $\$ 20,240$ to a minimum of 42 at $\$ 0.10$ and \$40,240.

Figure 4.1. Effect on the total cost.

Figure 4.2. Effect on the total miles traveled.

Figure 4.3. Effects on the number of offices opened.

In both of the graphs, the lines should intersect when the opening cost is zero. All possible offices are opened at this point no matter what the travel cost is. In Figure 4.2 and 4.3 , it appears that the lines will intersect before they reach zero opening cost. This is possible because the lines behave like step functions. The dotted lines between the points represent the general direction of increase or decrease not the actual functions. From zero opening cost to some greater cost, X, all of the offices will remain open. The people will continue to travel the same distance as long as the same number offices are open. From cost X to another greater cost Y, one less office is open. These steps continue until the minimum number of offices are opened. The lines must also intersect at the other end at some opening cost M where the fewest number of offices can be open. The minimum is limited by the number of prohibited routes in the $C_{i j}$ matrix. If there were no prohibited routes, only one office would open. Since the curves intersect at both ends, the concave nature of the top line and the convex nature of the bottom line are reasonable.

Finally, the actual locations determined by the model are affected by changes in the costs. On the following maps, all of the possible office locations are represented by circles and squares. The squares represent the locations where the DMV presently has its field offices located. The circles are locations with driver populations of at least 2000 people. The locations seem to be very reasonable because they coincide greatly with the present locations.

In fact, Figure 4.6 a shows the results of a run in which the algorithm opened almost the same offices which are open now.

The locations given here can be used to help determine where the field offices should be located. They should not be used as the absolute answers. There are many assumptions made to make it possible to be solved on a computer. Therefore, if the DMV uses the solutions determined by the model to locate new offices, they should evaluate the peculiar needs of each area before making a final decision.

Some general comments can be made about the results. The runs made at a travel cost of $\$ 0.18$ per mile will be given the most attention because the costs are more realistic.

1. Jordan Valley and Umatilla offices which are presently open were never opened by the algorithm. The DMV uses these offices for handing only Public Utility Commission and Highway transaction business. Since the model locates the field offices according to Vehicle Registration and Driver License business, the results agree with the fact that no Registration or License business is handled in these offices.
2. In Area 4, offices in Enterprise, Redmond, Madras, and Talent are consistently opened. There are presently no offices in these towns, therefore, it is recommended that these be considered in the future.
3. Portland appears to need more offices than are presently

Figure 4.4a. Office locations from runs with an opening cost
of $\$ 20,240$ and a travel cost of $\$.10$ per mile.

Figure 4.4b. Enlargement of Portland and the surrounding area.

Figure 4.5a. Office locations from runs with an opening cost
of $\$ 30,240$ and a travel cost of $\$.10$ per mile.

Figure 4.5b. Enlargement of Portland and the surrounding area

Figure 4.6a. Office locations from runs with an opening cost of $\$ 40,240$

Figure 4.6b. Enlargement of Portland and the surrounding area.

Figure 4.7a. Office locations from runs with an opening cost of \$20,240 and a travel cost of $\$.14$ per mile.

Figure 4.7b. Enlargement of Portland and the surrounding area.

Figure 4.8a. Office locations from runs with an opening cost of $\$ 30,240$ and a travel cost of $\$.14$ per mile.

Figure 4.8b. Enlargement of Portland and the surrounding area.

Figure 5.9a. Office locations from runs with an opening cost of $\$ 40,240$
and a travel cost of $\$.14$ per mile.

Figure 5.9b. Enlargement of Portland and the surrounding area.

Figure 4.10a. Office locations from runs with an opening cost of \$20,240

[^5]

Figure 4.10b. Enlargement of Portland and the surrounding area.

Figure 4.11a. Office locations from runs with an opening cost of $\$ 30,240$
and a travel cost of $\$.18$ per mile.

Figure 4.11b. Enlargement of Portland and the surrounding area.

Figure 4.12a. Office locations from runs with an opening cost of $\$ 40,240$
open. There are three offices open now and four more could be opened according to the results at $\$ 0.18$ per mile.
4. In area 3 at $\$ 0.18$ per mile, it looks as though offices should be placed in Myrtle Creek, Reedsport, Florence, Sweet Home, Lincoln City, Stayton, and Silverton. These offices should be considered for opening in the future. Silverton may have been opened because it was located on the border. If Areas 2 and 3 were combined, it might have been cheaper to close it and have the people go to a town in Area 3, Stayton is open and it has a smaller population than Silverton, so this hypothesis may not be true.

The demand for services can be determined from the solution. By knowing the demand, the approximate staffing requirement can be evaluated. A time study was done by the DMV; it was found that each employee can handle about 7,879 transactions per year. Translating this value into Drivers of Record, it becomes 7,154. 21/ Table IV shows the present staffing and the results of the runs at a travel cost of $\$ 0.10$ per mile and an opening cost of $\$ 40,240$ and a travel cost of $\$ 0.18$ per mile and an opening cost of $\$ 30,240$. The run at a travel cost of $\$ 0.10$ per mile and an opening cost of $\$ 40,240$ is shown because the results are close to

21/ Refer to Appendix C for the calculations.

TABLE VI. STAFFING REQUIREMENTS IN FTE'S

* The run at $\$.10$ per mile traveled and $\$ 40,240$ per opened office was not optimal. The demand centers on which a parentheses around an X appears would probably be opened in the optimal solution. The FTE's shown by the arrow would be needed to man the office.

TABLE VI. (cont.)

Office Location	Column			
	1	2	3	4
McMinnville	4	3.49	. 51	2.40
Newberg				1.90
Seaside				. 99
Tillamook	2	1.83	-. 17	1.63
Central Portland	8	23.47		6.95
East Portland		14.16		6.95
West Portland	32		12.92*	6.95
Milwaukee				4.44
A				8.96
B		11.39		6.95
C				6.95
D				6.95
E		13.9		6.95
Salem	16	14.14	-1.96	11.64
Albany	5	4.21	-. 81	4.21
Corvallis	4	4.95	+. 95	4.73
Dallas	2	2.55	+. 55	2.53
Stayton				2.09
Lebanon	3	4.25	1.25	2.14
Newport	4	2.48	-1.52	1.63
Lincoln City				. 89

* This is the total difference for the city of Portland (Central, East, West, A, B, C, D, and E).

TABLE VI. (cont.)

Office Location	Column			
	1	2	3	4
Silverton 1.26				
Sweet Home 1.30				
Eugene	13	19.49	-. 51 *	12.78
Springfield	7			4.93
Brookings	1	1.17	+. 17	. 71
Coos Bay 3.90				
North Bend	7	4.63	-2.47	
Bandon		$\underbrace{2.16}_{i}$		
Coquille	1	(X)	+1.16	1.92
Cottage Grove	2	3.13	$+1.13$	2.10
Florence		1.09	+1.09	1.00
Gold Beach . 69				
Junction City 2.22				
Myrtle Creek 1.78				
Oakridge . 52				
Reedsport ${ }^{\text {a }}$				
Roseburg Wilson	7		-. 31	3.88
Sutherlin 1.35				
Medford	10	9.88	-. 12	6.84
Ashland	3		-3.00	1.57

* Spring field is combine with Eugene for comparison.

TABLE VI. (cont.)

Office Location	Column			
	1	2	3	4
Cave Junction				. 54
Grants Pass	5	5.30	+. 30	4.74
Talent				1.48
Klamath Falls	7	4.91	-2.09	4.90
Lakeview	1	. 71	-. 29	. 71
Bend	5	3.92	-1.08	2.92
Burns	2	. 78	-1.22	. 78
Madras				1.02
Prineville	1	2.36	1.36	1.19
Redmond				1.14
Pendleton	5	2.10	-2.90	2.10
Hermiston	2	2.18	. 18	2.18
John Day	2	. 82	-1.18	. 82
La Grand	3	2.78	-. 22	2.08
Milton Freewater	2	1.27	-. 73	1.27
Baker	3	1.60	-1.40	1.60
Ontario	6	2.40	-3.60	2.40
Enterprise				. 70

the present staffing. The other results are shown because it is recommended that this combination be considered in the future. An opening cost of $\$ 20,240$ estimated from the 1972 budgetary summary seems low, but an opening cost of $\$ 30,240$ along with a travel cost of $\$ 0.18$ appears to be more representative of the actual costs.

Looking at Table VI more closely, the staffing shown in column 2-22 appears to be fairly representative of the actual DMV requirements. This fact supports the validity of the model. The largest discrepancies in the actual and the simulated requirements exist in Portland and the surrounding areas. For example, Beaverton, Gresham and Gladstone are short four to five FTE's as is shown in column 3. But the city of Portland has an excess of 12 to 13 FTE's. The error is due to the assignment of drivers to the demand centers. Where the demand centers and offices are so close, only experience can tell what the actual needs of an office are. However, the results do help determine the number and the locations of offices which should be located in the area. The discrepancies in the other areas are partly caused by the extra FTE's included in the actual requirements to handle the Public Utility Commission and Highway transaction business. They were not excluded because only partial FTE's could be eliminated from all of the actual requirements except one. That changes are made in a few of the locations to move the solution closer to the optimum. The changes are justified by experience from other runs. For example, the office opened in Troutdale, column 2, is shifted to Gresham.
one is Ontario where about 1.5 FTE's can be eliminated.
The optimal results given in column 4 show the office locations recommended for consideration. The same number of FTE's in column 2 can handle the offices in column 4. In actuality, more FTE's are required to handle the offices in column 4 because:

1. Of an increase in supervisory staff.
2. Of the requirement to have two men in an office.

There are more offices with less than 2 men in column 4.
3. Of the difficulty to employ persons on partial FTE's.

In the cases where a partial FTE is required, it would have to be increased to a full FTE.

V. CONCLUSION \& RECOMMENDATIONS FOR FURTHER STUDY

The first objective of this study was to find and present a method for solving the field office location problem. After in.. vestigating several algorithms, a branch and bound algorithm proposed by Khumawala was picked. His algorithm was chosen because it gives optimal solutions, operates efficiently on a computer, and the computer code was available.

The next objective was to derive a solution. This process involved the collection of data and the actual running of the program. It was found that the algorithm ran quite efficiently, but it has storage demands which are limiting. The need for storage was minimized by dividing the problem into smaller areas. During the study a modified procedure was found, which determines a solution but does not ascertain optimality. It uses much less storage than the original branch and bound procedure and gives near optimal solutions. This procedure could be used along with one like Spielburg's (Nov. 1969) which can make use of previous solutions to assist in the determination of an optimal solution. If this were done, not as much storage capacity would be needed as was needed for the algorithm used in this study.

The final objective was to determine the feasibility of the results. The results are reasonable because:

1. In one case, the same offices which are present open were opened by the algorithm with only a couple of exceptions.
2. In other cases more offices were opened, but the locations agree with common sense.
3. The staffing requirements determined by the algorithm closely represent the actual staffing.
Besides being reasonable, the solutions are useful. The DMV is using the results to help them determine where new offices should be located. The results obtained from the runs at a travel cost of $\$ 0.18$ per mile and an opening cost of $\$ 30,240$ are recommended to be considered in the future as possible office locations. The staffing requirements needed to handle these offices will have to be increased to fit the actual needs.

In conclusion, the objectives of the study have been met. The recommendations for further study are:

1. To do a more detailed study in the Portland area to get a better idea of where the offices should be located within the city.
2. Also, to investigate the effects of the present location of offices by assigning a zero opening cost for the present offices.
3. To evaluate a concaved opening cost function to see what effects a large opening cost has on small
offices and a small opening cost has on large offices, Before this can be done, a study would have to be made to determine the costs.
4. To study changes in demand. The DMV has made
projections evaluating the growth in demand for their services across the state. Using these projections, the future need for offices can be determined. In this way the DMV can begin preparing for changes whether there are increases or decreases in demand.
5. To make further tests on the modified branch and bound procedure, using more types of problems, to investigate its accuracy.
6. To do a larger sensitivity analysis to determine more accurately the effects shown in Figure 4.1 and 4.3. One could find out the length of the steps and the true shape of the curves. With costs increasing as they are today, the DMV should make use of these results. It should continually be reevaluating the costs associated with the operation. in order to stay abreast with the rising costs. Even during the period of time in which this paper was written, the rise in costs has made the costs used obsolete.
7. To investigate the difficulty (number of nodes used) of determining an optimal solution beyond the end points discussed in Chapter IV to get a better understanding of the algorithms behavior.

BIBLIOGRAPHY

Abernathy, William J. and John C. Hershey. 1972. A spatial-allocation model for regional health-services planning. Operations Research 20:629-642.

Center for Population Research and Census. 1972. Population estimates of counties and incorporated cities of Oregon. Portland State University.

Cooper, Leon. 1968. An extension of the generalized Weber problem. Journal of Regional Science 8:181-197.

Cooper, Leon. 1972. The transportation-location problem. Operations Research 20:94-108.
Cox, D. R. 1958. Planning of experiments. New York, John Wiley \& Sons, Inc. 308 p.

Davis, P. S. and T. L. Ray. 1970. A branch-bound algorithm for the capacitated facilities location problem. Naval Research Logistics Quarterly 16:331-344.
Efroymson, M. A. and T. L. Ray. 1966. A branch and bound algorithm for plant location. Operations Research 14:361-368.

E1-Shaieb. 1973. A new algorithm for locating sources among destinations. Management Science 20:221-231.

Feldman, E.; F. A. Lehrer, and T. L. Ray. 1966. Warehouse location under continuous economies of scale. Management Science 12:670-684.
Hooke, Robert and T. A. Jeeves. 1961. Direct search solution of numerical and statistical problems. Journal for the Association for Computing Machinery 8:212-229.
Khumawala, Basheer M. 1970. An efficient branch and bound algorithm for warehouse location. Ph.D. dissertation, Krannert Graduate School of Industrial Administration, Purdue University 141 numb. leaves.
Khumawala, Basheer M. 1972. An efficient branch and bound algorithm for locating warehouses. Management Science 9:643-666.

Kuehn, Alfred A. and Michael J. Hamburger. 1963. A heuristic program for locating warehouses. Management Science 9:643-666.

Manne, A. A. 1964. Plant location under economies of scale-decentralization and computations. Management Science 11:213-235.

Mitten, L. G. 1970. Branch and bound methods: general formulation and properties. Operations Research 18:24-34.

Revelle, Charles S. and Ralph W. Swain. 1970. Central facilities location. Geographical Analysis 2:30-42.

Revelle, Charles S., David Marks, and John C. Liebman. 1970. An analysis of public and private sector location models. Management Science 16:692-707.
Spielburg, Kurt. Jan.-Feb. 1969. Algorithms for simple plant location models with some side conditions. Operations Research 17:85-111.

Spielburg, Kurt. Nov. 1969. Plant location with generalized search. Management Science 16:165-178.
Taha, Hamdy A. 1971. Operations Research an Introduction. New York, The Macmillan Company. 703 p .

Teitz, Michel B. and P. Bart. 1968. Heuristic methods for estimating generalized vertex median of a weighted graph. Operations Research 16:955-961.

APPENDICES

APPENDIX A

An Example

Suppose that the points located on the figure below are cities, and the circled points are candidate offices.

Figure A. 1 Map of cities in the example
The entries in the cost matrix (TABLE II) are formed by using the following as sumptions.

1. The number of miles between each point is given by:

$$
\text { Miles }_{i j}=\sqrt{\left(Z_{1 i}-X_{j}\right)^{2}+\left(Z_{2 i}-Y_{j}\right)^{2}} \cdot(\text { Scale })
$$

where \quad Scale $=1.875 \mathrm{miles} / \mathrm{unit}$
$\left(Z_{1 i}, Z_{2 i}\right)$ is the candidate office location.
$\left(X_{j}, Y_{j}\right)$ is the city location.
2.

City	Location (X, Y)	Candidate office Location $\left(Z_{1}, Z_{2}\right)$	Number of Drivers
1	$(2,14)$	$(2,14)$	200
2	$(12,11)$	$(12,11)$	100
3	$(6,7)$		300
4	$(3,3)$	$(3,3)$	50
5	$(8,2)$	$(8,2)$	100
6	$(12,5)$	$(12,5)$	200
7	$(2,12)$		100

3. The cost matrix entry C_{ij} is given by:

$$
c_{i j}=D_{j} \cdot\left[\text { Miles }_{i j} \cdot \text { Rate }+ \text { Coop }\right]
$$

where

$$
D_{j}=1.1 \cdot \text { (Number of Drivers) - This represents the }
$$ number of trips to an office -- the demand.

Rate $=\$.06 \cdot 2$ - This is the cost of travel per mile round trip.

Coop $=\$ 1.28 \mathrm{~m}$ this is the cost of operating the field office per trip.
4. If a person must travel over 20 miles one way to set to a field office then a very large cost (D) will be assigned that route.
5. The cost of opening an office i is $\$ 500.00$.

APPENDIX B

Nodes used for the Branch \& Bound Procedures

Regular Branch \& Bound Procedure

Trave1 Cost	Opening Cost	1	Area 2	3	4
\$. 10	\$20,240	6	122	31	4
	\$30,240	(151)*	(151)	(61)	5
	\$40,240	(151)	(151)	(61)	5
\$. 14	\$20,240	4	99	24	3
	\$30,240	10	105	31	5
	\$40,240	(151)	18	(61)	4
\$. 18	\$20,240	4	16	11	3
	\$30,240	6	131	(61)	3
	\$40,240	14	103	32	5

*In these cases the procedure reached the storage limit.
Modified Branch and Bound

Travel Cost	Opening Cost	1	Area 2	3	4
\$. 10	\$20,240	5	7	7	4
	\$30,240	28	8	10	4
	\$40,240	12	6	12	4
\$. 24	\$20,240	4	8	7	3
	\$30,240	6	7	7	4
	\$40,240	6	5	10	3
\$.18	\$20,240	4	6	6	3
	\$30,240	5	8	9	3
	\$40,240	7	7	7	4

APPENDIX C

Additional estimations and assumptions used for determining field office locations.-

1. Estimation of the demand for service by each driver. It is assumed that each driver of record (drivers with valid and expired licenses) goes to a field office to make his transactions. In reality some drivers make more than one trip and some make no trips (they handle their transactions by mail).

$$
\begin{aligned}
& \text { 1,938,245 - Reg./Dr. Lic. Transactions } \\
& \text { Less 213,281 - Dealer Title Action - The public is not } \\
& \text { involved in these } \\
& \text { transactions. } \\
& \frac{1,724,964}{1,565,053} \begin{array}{l}
\text { Transactions } \\
\text { Drivers of }
\end{array}=\underline{\underline{1.10}} \text { Transactions/Dr. of Rec. } \\
& \text { Record } \\
& \text { This value should be close to } \\
& \text { the average number of trips. }
\end{aligned}
$$

2. Determination of the FTE's required to handle 1972 Registration and Drivers License business. The time needed to handle Public Utility Commission and Highway transaction business is eliminated from the total time. Supervisory time will be assumed to remain the same, but the fatigue and vacation time will be adjusted.

	Report Data	Data for Study
Time Usage Breakdown Hours	Hours	
Reg./Dr. Business	83,495	83,495
Examinations	63,311	63,311
P.U.C.	14,357	
Highway	2,293	
Supervisory	$\underline{146,048}$	309,504
Fatigue \& Vacation		$\underline{99,438}$
Total	$\underline{409,942}$	

Fatigue \& Vacation time represents $32.13 \%\left(\frac{99,438}{309,504}\right)$ of sum of the other time categories. Using this percentage the fatigue and vacation time can be calculated for the data used in the study.

The sum of the other time categories is 292,854 hours. Fatigue and vacation time $=32.13 \% \times 292,854=94,094$ hours. Total hours required to handle the Registration and Drivers License business is 386,948 hours.

From the Field Services field report it was determined that the DMV had a 87.74% efficiency rate. Using this and the fact that each employee has 2,016 hours available per year the number of employees needed to handle the Reg./Dr. Business can be estimated. It is:

$$
\frac{386,948 \text { hours }}{1,768.83 \text { hours } / \text { FTE }}=218.75 \text { FTE's }
$$

3. Estimation of the operating cost for the DMV per Driver of Record. From the 1971-1973 budget operating expenses work out to be about $\$ 10,120$ per employee. $\frac{2 /}{}$ If $218.75 \mathrm{FTE}^{\prime} \mathrm{s}$ are needed then the operating costs should be about:

$$
\begin{aligned}
& 218.75 \mathrm{FTE} \text { 's } \times \$ 10,120 \text { per } \mathrm{FTE}=\$ 2,213,750 \\
& \frac{\$ 2,213,750}{\text { Total Operating }} \text { Cost }
\end{aligned}=\begin{aligned}
& \$ 1,565,053
\end{aligned}
$$

4. Estimation of the number of transactions and drivers of record each employee can handle.
$\frac{1,724,964 \text { Transactions }}{218.75 \mathrm{FTE}^{1} \mathrm{~s}}=7,869$ Transactions/FTE
$\frac{\text { 7,869 Transactions/FTE }}{\text { 1.1 Transactions/Driver of Record }}=7,154 \begin{aligned} & \text { Drivers of } \\ & \text { Record/FTE }\end{aligned}$

[^6]
Customer Code

1. Antelope \& Shaniko (1)
2. Aurora
3. Beaver Creek
4. Beaverton (2)
5. Aloha (3)
6. Bonneville
7. Boring (4)
8. Bridal Veil
9. Brightwood
10. Canby (5)
11. Cascade Locks
12. Clackamas (6)
13. Birkenfield \& Mist
14. Clatskanie (7)
15. Westport \& Brownsmead
16. Colton
17. Columbia City
18. Donald
19. Dufur
20. Eagle Creek
21. Estacada (8)
22. Fairview
23. Gervais
24. Gladstone \& Jennings Lodge (9)
25. Gov't Camp
26. Grass Valley
27. Gresham (10)
28. Hood River (11)
29. Hubbard (12)
30. Kent
31. Lake Grove
32. Lake Oswego \& Oak Grove (13)
(13

Coordinates		Drivers of Record (1972)
X	Y	
99	111	145
46	124	2,659
53	126	1,491
46	134	31,478
44	134	7,692
68	139	257
57	132	5,780
62	. 136	110
66	129	380
48	125	6,386
70	140	583
52	131	4,767
34	153	207
36	157	3,276
31	158	354
55	122	1,127
45	149	387
44	124	179
89	131	675
57	129	1,440
57	126	4,588
54	136	702
42	120	1,491
51	130	5,221
72	127	160
98	128	301
55	134	15,754
79	141	8,105
46	123	2,077
100	122	98
48	131	1,029
49	132	18,301

Customer Code	Coordinates		Drivers of Recard (1972)
	X	Y	
33. Maupin	90	121	315
34. Moialla (14)	51	121	4,783
35. Moro	99	132	445
36. Mosier	82	140	456
37. Mt. Hood	78	135	113
38. Mulino	51	124	1,470
39. Odell	79	138	300
40. Oregon City (15)	51	129	15,528
41. Parkdale	77	134	1,356
42. Rainier \& Goble (16)	43	156	3,364
43. Rhododendron	79	127	230
44. Rufus	99	140	312
45. St. Helens (17)	46	147	6,200
46. Warren	44	146	1,545
47. Deer Island	45	150	793
48. Sandy (18)	59	130	4,523
49. Scappoose (19)	43	144	4,186
50. The Dalles (20)	88	137	12,367
51. Troutdale (21)	56	135	5,501
52. Tualatin (22)	46	130	2,121
53. Tygh Valley	88	124	505
54. Wamic \& Friend	86	123	$\bigcirc 04$
55. Vernonia	36	148	1,765
56. Wasco	100	136	593
57. Wemme	67	128	371
58. West Linn (23)	50	129	7,019
59. Wilsonville	46	127	1,483
60. Woodburn \& Monitor (24)	43	121	8,96?
61. Zigzag	68	128	195

Customer Code	Coordinates		Drivers of Record (1972)	Customer Code		Coordinates		Orivers of Record (1972)
	X	Y				X	Y	
1. Yoncalla	10	92	894	33.	Marion	38	107	214
2. Yachats	30	65	1,070	34	Mill City	53	106	1,160
3. Alsea	23	93	841	35	Monmouth (9)	33	110	3,332
4. Brooks	41	117	533		Mt. Angel \& Marquam	45	118	1,910
5. Salem (1)	39	114	82,763	37.	Neotsu	14	117	221
6. Agate Beach	11	105	132		Newport (10)	11	104	5,517
7. Albany (2)	36	102	23,965	39.	Southbeach	11	103	544
8. Aumsville (3)	42	110	2,042	40	Lincoln City \& Kernville (1)	13	115	3,324
9. Blodgett	26	101	346	41	Otis	15	117	1,007
10. Brownsville	39	94	1,475		Otter Rock	11	108	134
11. Burntwood	23	102	148	43	Philomath \& Nashville (12)	29	99	3,383
12. Cascadia	53	93	114	44.	Rickreal	34	113	495
13. Corvallis (4)	32	100	28,412		Rose Lodge	18	118	99
14. Crabtree	42	103	155		Scio (13)	43	105	2,695
15. Crawfordsville	42	92	267		Logsden	19	107	139
16. Dallas (5)	31	113	7,581		Scotts Mills	48	117	559
17. Depoe Bay	12	110	674		Seal Rock	10	98	410
18. Detroit	62	105	245		Shedd	36	96	633
19. Eddyville	19	103	266		Sheridan (14)	30	120	2,753
20. Falls City	29	111	553	52	Siletz	16	106	710
21. Foster	48	94	523		Silverton (15)	45	116	6.531
22. Gates	54	106	336		Mehama	49	108	303
23. Grande Ronde	24	110	720		Sublimity	45	110	935
24. Halsey	36	93	964		Sweet Home (16)	46	94	6,721
25. Idanha	63	104	391		Bleneden Beach	12	112	44
26. Independence (6)	35	100	3,180		Tangent	36	99	$8!6$
27. Jefferson	30	106	1,928		Waldport	15	95	23
28. Kings Valley	28	105	58		Toledo (17)	14	103	3,457
29. Lacomb	45	100	484		Turner (18)	41	110	2,284
30. Stayton (7)	45	108	3,254		Valsetz	23	111	272
31. Lebanon (8)	41	99	13,172		Willamina	27	119	1,716
32. Lyons	49	107	1,330		Camas Valley	19	44	61

300-499 ZIP Group \#3 (cont'd.)

Customer Code	Coordinates		Drivers of Record (1972)
	X	Y	
65. Port Orford	-6	35	1,446
66. Eugene (19)	36	81	91,444
67. Coburg	37	84	541
68. Pleasent Hill	40	77	1,586
69. Leaburg	47	83	632
70. McKenzie Bridge	61	85	286
71. Finn Rock	55	84	89
72. Goshen	38	78	133
73. Jasper	41	79	144
74. Agness	8	27	74
75. Allegany	10	60	74
76. Alvadore	51	83	133
77. Azalea	30	34	386
78. Bandon (20)	-1	48	3,226
79. Blachly	25	87	276
80. Blue River	56	84	531
81. Broadbent	7	44	216
82. Brookings \& Harbor (21)	1	9	5,111
83. Canyonville	29	40	1,291
84. Chesire	31	87	526
85. Charleston	2	56	580
86. Coos Bay (22)	5	57	16,890
87. Eastside	6	57	1,030
88. Coquille (23)	5	50	5,352
89. Cottage Grove \& Saginaw (24)	36	72	8,842
90. Cresent Lake	65	60	80
91. Cresvell \& Disston (25)	37	76	3,457
92. Culp Creek	43	68	259
93. Curtin	32	69	103
94. Days Creek	23	41	488
95. Deadwood	17	82	176
96. Dexter	43	76	1,369
97. Dillard	26	46	440

Customer Code
98. Dorena
99. Drain
100. Elkton
101. Elmira
102. Fall Creek
103. Florence (26)
104. Gardiner
105. Glendale
106. Glide
107. Postal River
108. Gold Beach (27)
109. Greenleaf
110. Harrisburg (28)
11. Idleyld Park
112. Junction City (29)
113. Horton
114. Lakeside
115. Lanlois
116. Lorane
117. Lowell
$118 . ~ M a p l e t o n ~ \& ~ T i e r n a n ~$
$119 . ~ M a r c o l a ~$
$120 . ~ M i l o ~$
121. Monroe \& Alpine
122. Mrytle Creek (30)
123. Mrytle Point \& Norway (31)
124. North Bend (32)
125. Noti
126. Oakland
127. Oakridge
128. Ophir
129. Powers, Gaylord, \& Remote
130. Reedsport
1
130. Reedsport

Coordinates		Drivers of Record (1972)
χ	Y	
42	69	343
29	67	1,695
23	66	563
29	82	1,23:
43	78	625
9	80	4,354
9	70	399
25	33	1,431
35	52	1,443
-1	17	82
-2	22	2,927
17	82	99
34	89	1,956
37	55	56?
33	86	6,203
26	89	11
7	65	973
-2	41	45%
32	73	295
44	76	668
15	81	$96{ }^{\circ}$
42	86	731
25	40	155
31	91	1,327
29	43	5,042
6	46	3,610
5	59	9,329
26	81	-419
30	58	1,873
52	69	3,096
1	38	131
8	39	775
8	69	3,838

Customer Code	9 IIP Group \#3 (cont'd.)				500-999 2IP Group \#4 (cont'd.)				
		Coor	ates	Drivers of	Customer Code		Coordinates		$\begin{aligned} & \text { Drivers of } \\ & \text { Record (1972) } \end{aligned}$
		X	Y	Record (1972)			X	Y	
						White City	41	21	1,318
131. Winchester Bay		7	69	396		Ashland (4)	44	12	11,258
132. Riddle		27	41	1,886		Butte Falls	42	25	468
133. Roseburg (35)		28	51	23,953		Cave Junction (5)	18	12	2,223
134. Scottsburg		16	68	220		Gold Hill (6)	35	22	2,408
135. Sizes		-5	37	237	10.	Grants Pass (7)	28	22	26,310
136. Springfield (36)		38	81	28,811	11.	Applegate	22	14	343
137. Sunny Valley		27	29	337	12.	Jacksonville (8)	37	17	2,899
138. Sutherlin (37)		29	57	3,655	13.	Kerby	19	13	333
139. Swi sshome		17	82	391	14.	Merl in	24	24	706
140. Tenmile		22	46	311	15.	O'Brien	17	8	264
141. Tiller		38	39	276	16.	Phoenix	41	15	1,105
142. Umpqua		25	56	324	17.	Prospect	51	32	725
143. Veneta (38)		29	81	2,665	18.	Rogue River (9)	32	21	2,520
144. Vida		50	83	562	19.	Selma	19	16	725
145. Walton		23	81	174	20.	Shady Cove	42	28	932
146. Wedderburn		-1	24	147	21.	Talent (10)	42	24	2,603
147. Westfir		52	76	569	22.	Trail	42	30	648
148. Westlake		9	87	279	23.	Wilderville	23	20	339
149. Wilbur		29	54	195	24.	Williams	29	14	623
150. Winchester		28	53	560	25.	Klamath Falls (11)	70	12	30,690
151. Winston (39)		26	47	2,032	26.	Crater Lake	60	37	57
152. Wolf Creek		26	31	381		Adel	121	10	118
						Beatty	83	20	165
	500-999 2IP	\#				Bly	90	18	386
	500-9و9 21P	\%				Chiloquin	68	36	1,206
Customer Code		Coordinates		Drivers of	31.	Dairy	77	13	136
		χ	Y	Record (1972)		Fort Klamath	64	30	157
1. Arock		184	40		33.	Keno	65	9	398
2. Eagle Pt. (1)		42	23		34.	Lakeview (12)	109	11	3,977
3. Central Pt. (2)		38	19	3,856 9,786	35.	Malin	80	5	958
4. Medford (3)		40	17	35,121	36.	Merrill	25	25	1,128

Customer Code 500-999 ZIP Gr	(cont'd.)		
	Coordinates		$\begin{aligned} & \text { Drivers of } \\ & \text { Record (1972) } \\ & \hline \end{aligned}$
	X	Y	
38. New Pine Creek	110	4	130
39. Paisley	104	29	363
40. Plush	121	19	51
41. Silver Lake \& Christmas Valley	90	46	444
42. Sprague River	77	21	186
43. Sunmer Lake	97	40	69
44. Bonanza	80	11	944
45. Culver	86	97	821
46. Crane	156	56	121
47. Fort Rock	90	54	68
48. Hines	143	62	1,167
49. Bend (13)	83	80	18,094
50. Andrews	156	31	12
51. Ashwood	99	105	73
52. Brothers	102	71	50
53. Burns (14)	144	63	3,599
54. Princeton	156	52	122
55. Diamond	154	41	80
56. Camp Sherman	75	94	107
57. Chemult	70	50	353
58. Diamond Lake	61	48	14
59. La Pine	78	66	1,063
60. Lawen	150	57	50
61. Madras (15)	88	101	4,443
62. Cresent	73	58	407
63. Gilchrist	73	59	492
64. Metolius	87	99	209
65. Mitchell	114	98	300
66. Paulina	120	82	137
67. Post	107	83	55
68. Powell Butte	92	87	455
69. Prineville (16)	96	89	7,534
70. Redmond (17)	87	88	6,134

500-999 ZIP Group \#4 (cont'd.)

Customer Code	Coordinates		Drivers of Record (1972)
	x	Y	
71. Riley	132	60	64
72. Sisters	77	89	853
73. Terrebonne	87	91	1,033
74. Warm Springs	85	107	84
75. Frenchglen	147	35	53
76. Pendleton \& Rieth (18)	149	139	12,723
77. Adams	155	143	50?
78. Alicel	170	130	-85
79. Arlington \& 0lex	114	131	545
80. Cecil	129	137	37
81. Condon	113	123	1,015
82. Cove	175	126	$64)$
83. Dayville	130	95	217
84. Enterprise (19)	188	131	2,137
85. Echo	139	142	729
86. Elgin	172	136	1,690
87. Fossil	112	114	533
88. Haines	172	112	602
89. Hal fway	194	111	881
90. Helix	152	145	313
91. Heppner	129	128	1,529
92. Hereford	170	97	102
93. Hermiston (20)	136	145	7,53?
94. Lexington	126	131	303
95. Imbler	171	132	244
96. Imnaha	200.	137	125
97. Ione	123	133	512
98. Irrigon	131	147	585
99. John Day (21)	146	93	1,863
100. Joseph	190	129	1,211
101. Kimberly	128	106	120
102. Kinzua	116	114	394
103. La Grande (22)	157	127	9,795

Customer Code ${ }^{\text {500-999 7IP }}$		(cont'd.)			500-999 2IP Group \#4 (cont'd.)				
		Coordinates		Drivers of	Customer Code		Coordinates		Drivers of Record (1972)
		χ	\%	Record (1972)			X	γ	
104.	Island City	168	128	281	137.	Adrian	196	69	224
105.	Long Creek \& Fox	142	104	325	138.	Drewsey	162	71	138
106.	Lostine	184	134	295	139.	Durkee	185	100	125
107.	HeNary	137	148	181	140.	Harper	182	73	234
108.	Meachan	159	134	91	141.	Huntington	190	92	551
109.	Mikkalo	112	132	33	142.	Ironside	173	90	88
110.	Milton Freewater \& Umapine (23)	159	149	6,992	143.	Jamieson	136	86	94
111.	Athena	157	144	878	144.	Jordan Valley (25)	198	41	431
112.	Baker (24)	175	107	8,150	145.	Ontario (26)	198	80	8,773
113.	Bates	158	100	267	146.	Vale \& Willow Creek (27)	191	78	2,907
114.	Boardman	126	145	471	147.	Westfall	179	78	54
115.	Monument	134	108	188	148.	Juntura \& Riverside	169	69	140
116.	Mt. Vernon	141	93	603	. 149.	Nyssa (28)	198	75	3,751
117.	Horth Powder	172	116	472	150.	Brogan	184	89	90
118.	Pilot Rock	148	132	1,686					
119.	Prairie City	152	94	979					
120.	Richland	192	107	515					
121.	Senca	145	83	299					
122.	Spray	124	108	245					
123.	Stanfield	138	143	1,118					
124.	Sumnerville	169	133	434					
125.	Sumpter	165	105	152					
126.	Telocaset \& Medical Springs	177	117	55					
127.	Ukaih	146	119	222					
128.	Dale \& Ritter	146	114	177					
129.	Umatilla	135	148	1,031					
130.	Union	174	123	1,538					
131.	Unity	166	94	242					
132	Hallawa	182	136	1,213					
133.	Meston	159	144	749					
134.	Bridgeport	178	96	41					
135	Canyon City	146	92	672					
136	Cayuse	156	140	83					

APPENDIX E

The Computer Code


```
FORTRAN IV Gl RELEASE :.0

\begin{tabular}{|c|c|c|c|}
\hline FCETRAN IV G1 & RELEASL & C.C MAIN DATE \(=74193\) & 15/03/14 \\
\hline 0026 & & FWCOST \(=10240\). & \\
\hline 0027 & & KATE=KL.TE + . 04 & \\
\hline 0028 & & \(0099 \mathrm{JKL}=1,3\) & \\
\hline 0024 & & FWCCOST F F WCOST + 10COC. & \\
\hline 0630 & & IF(JKL.EG.1.AND.JJK.EQ.1) CO TC 991 & \\
\hline 0031 & & \(1 \mathrm{CH} 21<2 \quad 1 \mathrm{~W}=1\), NW & \\
\hline 0032 & & 1FC ( \(3 k)=F W C O S T\) & \\
\hline 0033 & & L0 21/2 1C \(=1\), NC & \\
\hline 0034 & & L(1C) =10(1C)/X2ATE & \\
\hline 00.35 & & XHILES=IIVC(IW,IC)-D(IC)*VOCOST)/(ID(IC)*YKATE*2.) & \\
\hline 0036 & & 1F(XMILES.LE.15C.) GOTO 4 & \\
\hline 0037 & & IVC (1k, IC) = 4.E36 & \\
\hline C038 & & 6010 L 122 & \\
\hline 0639 & 4 &  & \\
\hline 0640 & 2122 & CLNTINUF & \\
\hline 0 CH 1 & & GO 10992 & \\
\hline 0042 & 991 & CONTINUE & \\
\hline 00.43 & & U0 \(2121 \mathrm{I} \mathrm{h}=1, \mathrm{Nk}\) & \\
\hline 0044 & & IFC(IW) = FWCOST & \\
\hline 0045 & & CO \(21211 \mathrm{C}=1\), NC & \\
\hline 0046 & & XMILES \(=((2 X(1, I W)-X(1 C)) * * 2)+((2 X(2,1 W)-Y X(I C)) * * 2)\) & \\
\hline 0047 & & IF(XMILES.t.0.0.) ECl 705 & \\
\hline 0048 & &  & \\
\hline 0049 & 5 & CONTINUE & \\
\hline 0050 & & IF(XNILES.LE.150.) 60 TO 3 & \\
\hline 0051 & & IVC(IW,IC) = \% E30 & \\
\hline 0052 & & G0 702121 & \\
\hline 0053 & 3 & 10(IC) \(=0(I C) *\) RRATE & \\
\hline 0054 & &  & \\
\hline 0055 & 2121 & CONTINLE & \\
\hline 0056 & 992 & CONTINUE & \\
\hline 0057 & & YRATE = KATE & \\
\hline 0058 & & METHOU=3 & \\
\hline 0059 & & IF (METHOL.EO.3)WKITE (6,303) & \\
\hline 0060 & & WRITE (6, 10007 ) PATE, VOCOST, FWCOST & \\
\hline & \(C\)
\(C\)
\(C\) & InITIALIZATION & \\
\hline 0061 & & NFIRST \(=0\) & \\
\hline 0062 & & NKTR=0 & \\
\hline 0063 & & NKTR1 \(=0\) & \\
\hline 0064 & & LLN=9.499E38 & \\
\hline 0065 & & \(X \angle B C=0.0\) & \\
\hline C066 & & UBL=LLN & \\
\hline 0067 & & MODE \(=1\) & \\
\hline 0068 & & \(\mathrm{NCDE}=1\) & \\
\hline 0069 & & NUE LON=NLDE & \\
\hline 0070 & & ITEK=1 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FURTKAN IV Gl & feltase & 2.0 MA IN & DATE \(=74193\) & 15/03/14 \\
\hline 0071 & & KCODE \(=0\) & & \\
\hline 0072 & & CC, \(10001 \mathrm{~W}=1\), NW & & \\
\hline 0073 & & J[(NOLE , 3 ki\()=0\) & & \\
\hline 0074 & & KZ(NOLE, 1W) \(=0\) & & \\
\hline 0075 & & Kı( \(\mathrm{NOCt}, 1 \mathrm{l})=0\) & & \\
\hline 0076 & & K2 (ivult, IW) \(=1\) & & \\
\hline 0077 & & LAfNLUE, IW ) =NC & & \\
\hline 6078 & & OO 1CE1 \(1 \mathrm{C}=1\), NC & & \\
\hline 0079 & & JU(NJLE, IW) =JU(NUDL, IW) + IG(IC) & & \\
\hline cise & & IFIIWOGE. 216 Cl TG 1001 & & \\
\hline 0081 & & 1DFL \((\) NCOL, IC \()=6\) & & \\
\hline 0682 & 1001 & CONTIRUF & & \\
\hline 0.083 & & ILN(IW) \(=\) LN(NOCE, IW) & & \\
\hline cces & & 1J0(1W) = JLin \({ }^{\text {NODF, }}\) IW) & & \\
\hline 0085 & 1000 & CONTINUE & & \\
\hline 0086 & & GO TO 786 & & \\
\hline & c & & & \\
\hline & & SETS ARE UPUATED & & \\
\hline 0087 & 1 & continue & & \\
\hline 0048 & & 1 TER=1TER + 1 & & \\
\hline 0089 & & 1F(NLHON.EQ. 1 ) 60 TO 4193 & & \\
\hline 0090 & & 1F(NKTK.EC.1.CR.NKTR1.FO.1) CO TO & 4192 & \\
\hline 0091 & & IFIKOUE - INE.C)GO TO 4195 & & \\
\hline 0092 & 4193 & \(\mathrm{NUOE}=\mathrm{MCOE}+1\) & & \\
\hline 0093 & & MODE = NLDE & & \\
\hline & C & STORAGE ALLOTMENT CHECK & & \\
\hline & c & & & \\
\hline 0094 & & IF(MODE.GT. 150\() \mathrm{GO}\) TO 9779 & & \\
\hline 0095 & & GOTU 4196 & & \\
\hline 0096 & 4195 & NODE = KCULE & & \\
\hline 0097 & & KGUE \(=0\) & & \\
\hline cos 8 & 4196 & [0 5107 1C=1,NC & & \\
\hline 0099 & & IOLL (NOUE, IC) \(=\) IDEL (NLBON, IC) & & \\
\hline 0100 & & MCEL (NCUE, IC) \(=\) MDEL (NLBEN, IC) & & \\
\hline 0101 & 5167 & CONTINUE & & \\
\hline 0102 & & \(00921 W=1\), NW & & \\
\hline 0103 & & JD(NODE, IW) \(=\) JD(NLBDN, IW ) & & \\
\hline 0104 & & K2 (HOUF, IW) \(=\) K 2 (NLBCN, IW) & & \\
\hline 0105 & & K1(NODE, IW) \(=\) K1 (NLELN, IW ) & & \\
\hline 0108 & & K2 (NOOE, \(1 W\) ) \(=\) K 2 (NLKAON, IW) & & \\
\hline 0107 & & LN(NOLE, IW) = LN(NLGUN, IW) & & \\
\hline 0108 & & MDELS (NGOE, IW) = MUELS (NLEDN, IW) & & \\
\hline 0109 & & MEGAS (NODE, IW) = MEGAS (NLEUN, IW) & & . \\
\hline 0110 & 92 & CONTINUE & & \\
\hline 0111 & & GO TO 4194 & & \\
\hline 0112 & 4192 & NGOE \(=\) NLGDN & & \\
\hline
\end{tabular}





```


[^0]: 1/ A transaction is considered the registration of a vehicle or the licensing of a driver.

[^1]: 3/ Running time on different computers is hard to compare since there are so many types, combinations, and improvements. Therefore, times should not be taken too seriously.

[^2]: 5/ At the origin all plants are initially all open or all closed. The procedure then closes or opens plants respectively.

[^3]: 11/ This information is shown in Appendix D. The reason for using Zip Codes is to make it possible to divide the State into smaller sections which may be necessary because of the storage limitations of the computer. The use of Zip Codes has merit because the boundaries follow roads and natural barriers. In the end, it was necessary to divide the state into four parts.

[^4]: 18/ The maximum error may be greater than is shown because in this case there was no way of determining if the solutions were optimal.
 19/ The original data is shown in Appendix B.

[^5]: and a travel cost of $\$.18$ per mile.

[^6]: 2/ Budget information obtained from a Motor Vehicles Division Report. DMV field office staffing and budgetary summary. Department of Transportation, Salem, Oregon. November 1, 1973.

