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The Astoria-Megler Bridge is a 6.6 kilometer (4.1 mile) long bridge, connecting Oregon 

and Washington on US 101, with a continuous steel truss main span of 376 m (1232 ft). It 

is the second longest main span bridge of this type in the world. Due to vortex shedding, 

some of the long truss verticals exhibit wind-induced torsional vibrations. These vibrations 

can create large numbers of repeated stress cycles in the truss verticals and the gusset plate 

assemblies. The members and connections were not designed for such conditions and the 

impact of this behavior on the service life of the bridge is uncertain. 

 



 

A full-scale representation of one of the truss verticals observed to exhibit such wind 

induced torsional response was fabricated and tested in the Structural Engineering 

Research Laboratory at Oregon State University. Experimental data of the rotational 

behavior and the stress distribution along the vertical were collected using inclinometers, 

an angular rate sensor, and uniaxial and rosette strain gages. The data collected were 

compared with existing analytical methods and predictions from finite element models. 

The observed experimental results including twist angle, stress distribution, and stress 

magnitude were well captured by both the finite element model and the analytical 

equations. Using analytical expressions, the fatigue lives of the existing bridge verticals 

were predicted based on assumed storm duration and recurrence.  
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WIND INDUCED TORSIONAL FATIGUE BEHAVIOR OF TRUSS BRIDGE 
VERTICALS 

 
1 INTRODUCTION 

1.1 Background 

The Astoria-Megler Bridge is a continuous steel truss bridge and was completed in 1966 

[1]. It is the second longest bridge of this type in the world. The main span measures 376 m 

(1232 ft) and the total bridge length is 6.6 km (4.1 miles). The continuous steel truss is 

shown in Figure 1.1. 

Figure 1.1: Continuous steel truss of the Astoria-Megler Bridge 

 

The bridge crosses the Columbia River between Washington State and Oregon on US 101, 

an important national scenic highway. The nearest adjacent detour highway crossing over 

the Columbia River is located in Longview, WA, 76 kilometers (47 miles) east of Astoria, 

OR. Thus, the bridge is a critical lifeline structure for the region. 
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The bridge has exhibited wind-induced vibrations of some of the longer truss verticals near 

the continuous support towers. Several of the verticals have been remediated by the 

Oregon Department of Transportation over many years. However, wind-induced vibrations 

continue to be observed for some of the bridge verticals and these have raised concerns 

among the motoring public. The phenomenon which causes this motion is called vortex 

shedding. Due to vortex shedding, the relatively low torsional stiffness and damping in the 

verticals results in twisting of some of the verticals. The repeated twisting could produce 

high-cycle fatigue damage to the member or the attached gusset plates as the vertical 

member and gusset plate assembly were not designed for such conditions. 

 

Research was undertaken to quantify the interaction between member twisting and the 

resulting stress magnitudes and distributions in the member and connection. These data, 

combined with field-measured wind speed and direction along with member twisting 

amplitude and frequency can be combined to produce estimates of the remaining life of the 

verticals and connections. The research topic synthesizes wind-induced phenomena, 

torsional member behavior, and fatigue life prediction. 
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1.2 Objectives 

The following objectives were defined for this research project: 

 Develop an experimental model to characterize the relationship between the twist 

angle and the stresses induced in the member to assess the fatigue vulnerability of 

truss verticals that exhibit torsional motions. 

 Compare experimental results with available analytical methods and finite element 

models. 

 Predict the fatigue life of existing bridge verticals using experimentally validated 

analytical methods and/or finite element models. 

 Use experimental and analytical findings to inform bridge inspectors of the 

probable fatigue crack locations in bridge verticals that exhibit torsional motions. 



4 

 

2 LITERATURE REVIEW 

The literature review is divided into four different sections: aeroelastic instability 

phenomena, torsional behavior, fatigue, and case studies of bridges with fatigue problems 

associated with torsional excitation of truss verticals. 

 

2.1 Aeroelastic Instability 

The phenomenon that causes the aeroelastic instability in the existing bridge verticals of 

the Astoria-Megler Bridge is called vortex shedding. Vortex shedding can occur when 

wind flows around a bluff body which disturbs the uniform flow of the wind, thereby 

producing vortices behind the object. Due to the alternating high and low pressure changes 

behind the body, the vortex moves from one side of the object to the other side. This 

phenomenon is illustrated in Figure 2.1 for a circular bluff body. If the frequency of the 

pressure changes is in the same range as the natural frequency of a member, the member 

can produce relatively large amplitude vibrations. 

 

Figure 2.1: Vortex shedding behind a cylindrical bluff body (Figure from [2] and edited) 
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In the present research, the bluff body is the I shaped cross-section of the truss bridge 

verticals. The long member length, combined with the open cross sectional shape has a 

relatively low torsional natural frequency. The combination of vortex shedding in the same 

frequency range as the natural frequency of some bridge verticals and the unfavorable 

profile section for this phenomenon is attributed to the visible twisting of some verticals of 

the Astoria-Megler Bridge. 

 

To determine the frequency for the vortex shedding, the natural frequency and the Strouhal 

number of the critical section needed to be known. 

 

2.1.1 Strouhal Number of a Bluff Body 

Nakamura (1966) derived the Strouhal number for nine different bluff bodies, with 

different shapes and different L/D ratios (where L is the depth and D is the width of the 

cross-section), using wind tunnel tests. The nine shapes were split into four groups; the 

grouping for the rectangular bluff body, the bluff body of interest for this research project, 

is shown in Figure 2.2. 

Figure 2.2: Rectangular bluff body group (values in mm) (Nakamura, 1966) 
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2.1.2 Natural Torsional Frequency of an I-Beam 

Carr (1969) developed approximate torsional frequency equations based on simple beam 

functions for fixed-fixed and for fixed-simply supported boundary conditions. The 

equation for the torsional frequency (ωtorsion with units of rad/sec) for a fixed-fixed 

boundary condition is given as: 

 
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[2.2]

 

where E is the modulus of elasticity, G is the shear modulus of elasticity, J is the polar 

moment of inertia of the cross section, Jw is the warping constant, Jt is the torsional 

constant, ρ is the mass density of the material used, L is the length of the beam, ξ is the 

non-dimensional length, k and K are parameters in the beam function and are given by Carr 

for fixed-fixed boundary conditions for the first torsional mode as k = 4.73 and K = 0.9825, 

respectively. 

 

The equation for the torsional frequency (ωtorsion) for fixed-simply supported boundary 

conditions is given as: 
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[2.3]

 

For the simply supported boundary conditions, the beam parameters k and K for the first 

torsional mode were given as k = 3.9270 and K = 1.0, respectively. 

 

2.2 Torsion 

Boresi and Sidebottom (1985) provide equations for torsional beam behavior with different 

boundary conditions for I-sections with one end restrained to warping. Their approach 

separates the torque force (T) into two parts. The first part (T1) is the lateral shearing force 

(V’) in the flanges of an I-section multiplied by the distance between the centers of the 

flanges (h). The second part (T2) is the twisting part and is given by multiplying the 

torsional constant (J) with the shear modulus of elasticity (G) and the angle of twist per 

unit length (θ). The final equation for the torque force is: 

'T JG V h   [2.4]

 

From this equation, the following equation for the total angle of twist (β) at the free end of 

an I-section with a given torque (T) was found as: 
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tanh
T L

L
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 
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 [2.5]

 

L is defined as the total length of the I-section and α is defined as: 

2
yEIh

JG
   [2.6]

 

Where h is the total height of the I-section minus one flange thickness, E is the modulus of 

elasticity and Iy is the weak axis moment of inertia of the entire cross section. 

 

The horizontal moment (M) in the flanges of the I-section at any point along L is given as: 

sinh
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where x is a distance measured from the fixed end of the beam. 

 

To conclude, Boresi and Sidebottom provide an equation for warping stresses at the fixed 

end: 

2
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where b is the flange width, t is the flange thickness and If is the strong axis moment of 

inertia of the flange. 

 

In the Steel Design Guide Series 9 (2003), Torsional Analysis of Structural Steel Members, 

Seaburg and Carter’s approach the torsional problem of different sections with different 

boundary conditions similar to Boresi and Sidebottom (1985). Seaburg and Carter’s basic 

equation for the torsional moment resistance of an open cross section is: 

' wT GJ EC    [2.9]

 

Equations [2.4] and [2.9] are similar, where the first part of the equation describes the 

torque in a section which is not restrained against warping, and the second part deals with 

the warping effects. In Eqn. [2.9], θ΄ is the angel of rotation per unit length, which is shown 

as the first derivative of the rotation (θ) with respect to z, where z is the distance measured 

from the left support along the beam. θ΄΄΄ is the third derivative of θ with respect to z. The 

equation for the warping constant (Cw) is different for different cross sections. The 

equation for the Cw of an I-section is given as: 

2

4
y

w

I h
C   [2.10]

 

The torsional constant (J), for an I-section, can be calculated with two different equations. 

The approximation is given as: 

3

( )
3

bt
J    [2.11]
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A more accurate equation for J for an I-section is given as: 
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For these equations, bf is the width of the flange, tw and tf are the web thickness and the 

flange thickness, respectively. R is defined as the fillet radius in a rolled cross section. 

 

From the equations shown previously, Seaburg and Carter derived equations for the shear 

stress due to warping, the shear stress due to pure torsion and the normal stress due to 

warping along the length of different I-sections and for different boundary conditions. Sign 

convention and locations of the different stresses are shown in Figure 2.4. 
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Figure 2.4: Location and orientation of different stresses in an I-section with applied torque. 
(Steel Design Guide Series 9, 2003) 

 

The equation for the pure torsional shear stress (τt) is: 

t Gt   [2.15]

 

The variable t is either the flange thickness or the web thickness (whichever part of the 

beam is analyzed). To determine the shear stress due to warping (τws) at any point in the 

flanges, the following equation can be used: 

ws
ws

S
E

t
     [2.16]
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Sws is the warping statical moment at any point s along the flange as shown in Figure 2.5, 

and is defined as: 

4
ns f f

ws

W b t
S   [2.17]

 

where Wns is the normalized warping function located at the same point s along the I-

section flange as shown in Figure 2.6. The equation for Wno for an I-section is given as: 

4
f

no

hb
W   [2.18]

 

The variable h is the total profile height (d) minus one flange thickness (tf). 

 
Figure 2.5: Distribution of the warping statical 

moment in the flanges of an I-section. 
(Steel Design Guide Series 9, 2003) 

Figure 2.6: Distribution of the normalized 
warping function in the flange of an I-section.

(Steel Design Guide Series 9, 2003) 

 

As shown in Figure 2.6, the normalized warping function is a linear function and therefore 

any value can be interpolated over the entire flange. With these values, the warping statical 

moment can be calculated at any point in the flanges. 
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The values for normal stresses due to warping at any point in an I-section are given as: 

ws nsEW   [2.19]

 

where θ΄΄ is the second derivative of θ with respect to z. 

 

Seaburg and Carter give the general equation for the rotation (θ) for a constant torsional 

moment (T) as: 

cosh sinh
z z Tz

A B C
a a GJ

          
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 [2.20]

 

where z is the distance along the Z-axis from the left support as shown in Figure 2.4. A, B 

and C are constants which are determined according to the boundary conditions. 

 

The equation for rotation was presented by Seaburg and Carter for different boundary 

conditions and graphs corresponding to these results can be found in the appendix of their 

document. Solutions to this equation, which are used in this research project, can be found 

in Chapter 4 and the design charts for these boundary conditions are attached in 

Appendix E. 
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2.3 Fatigue 

There are two types of fatigue which typically occur in civil infrastructure applications: 

low cycle fatigue and high cycle fatigue. The differences between these two regimes are 

the amplitude of the stress range and the number of cycles. 

 

Low cycle fatigue is characterized by relatively large applied stress range and a 

correspondingly low number of life cycles, usually less than 104. The material accumulates 

plastic damage as the applied stress range is above the elastic limit. The plastic damage 

reduces the number of loading cycles required to fracture the material. 

 

High cycle fatigue is characterized by relatively low amplitude applied stresses with 

corresponding number of life cycles that are usually greater than 104. After a crack is 

initiated at a defect, imperfection, or stress concentration, crack propagation occurs at 

elastic stress levels until the member fractures. 

 

For this project, high cycle fatigue is the focus of the investigation. The wind induced 

twisting of the truss members was anticipated to produce elastic stress ranges and the life 

of the members needs to be evaluated. 

 

The design stress range for fatigue life calculations is given in the AISC Steel Manual 

(2005) as: 

1/3
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AISC Steel Manual: 

(A-3-1) 
[2.21]
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where FSR is the design stress range, Cf is the constant for the governing fatigue category 

(AISC Steel Manual Table A-3.1 shown in Figure 2.7), N is the number of stress range 

fluctuations in the design life and FTH is the threshold fatigue stress range defined for each 

fatigue category given in the AISC Steel Manual in Table A-3.1. The detail considered in 

the present research is the bolt holes in the truss vertical at the gusset plate connection. 

These are considered as Category B in the AISC Specification. 

Figure 2.7: Table A-3.1 Fatigue Design Parameters (AISC Steel Manual, 2005) 
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2.4 Previous Research Conducted on the Astoria-Megler Bridge 

Higgins and Turan (2009) conducted analytical studies of the overall structure of the 

Astoria-Megler Bridge, as well as individual verticals, using finite element analyses. The 

main focus of this study was to find the natural frequency of the overall structure and for 

selected individual members throughout the bridge. From the computed natural 

frequencies, the critical wind speeds that excite the torsional natural frequencies of the long 

truss bridge verticals were determined. 

 

2.5 Bridges with Wind Induced Torsional Problems 

2.5.1 Commodore Barry Bridge, Delaware 

Maher and Wittig (1980) investigated wind induced torsional problems of long H-shaped 

tensile members in the Commodore Barry steel cantilever bridge after several of these 

hangers cracked during construction of the bridge as shown in Figure 2.8. 

 
Figure 2.8: Cracked H-shaped tensile member in the Commodore Barry Bridge 

(Maher and Wittig, 1980) 
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Maher and Wittig conducted wind tunnel testing of selected H-sections, one with a scale of 

1 to 6.25 and one with a scale of 1 to 8.35. For both models aerodynamic coefficients and 

angle of rotations were determined. 

 

2.5.2 Dongping Bridge in Guangdong, China 

Chen, et al. (2012) completed a study of the Dongping arch bridge located in China. The 

13 longest vertical hangers in the bridge showed cracking after a single strong wind event, 

as shown in Figure 2.9. 

Figure 2.9: Cracked H-shaped tensile member in the Dongping arch bridge 
(Chen et al., 2012) 

 

Chen, et al. conducted wind study tests on a sectional 1 to 4 scale model and on an 

aeroelastic 1 to 16 scale model of the cracked hanger. The overall behavior, as well as the 

influence of web and flange perforations, were reported. 
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Based on review of the technical literature, no previous structural tests have been 

conducted on twisting induced response of large I sections to characterize fatigue 

performance of the members. To fill this gap, the present research was undertaken. 
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3 EXPERIMENTAL PROCEDURE 

3.1 Selection of Laboratory Specimen Details 

To determine which member to investigate in detail under laboratory conditions, past 

performance observations from the bridge were reviewed. Key vertical hangers were 

identified by analyzing a video file which was filmed in 2002 on the Astoria-Megler 

Bridge. The movie showed several of the open section hangers twisting at a relatively low 

reported wind speed of 10.7 m/s (24 mph). The locations of the vibrating I-sections were 

found with the help of the original bridge drawings and pictures of the bridge. 

 

Each of the verticals that exhibited twisting response under wind excitation was evaluated 

and one was chosen for the full-scale experiment. One of the main criteria was a low 

torsional stiffness of the vertical. The torsional stiffness is governed by member length, 

boundary conditions and cross sectional properties. In the actual bridge, there are two 

different types of web design: solid web plate and web plate with perforations. I-sections 

fixed at the flanges with web openings have a lower torsional stiffness than ones without 

perforations as shown in Appendix F. The other important criterion was the connection 

detail (gusset plate) between the vertical and horizontal truss members. Since the research 

project was first concerned with possible gusset plate fatigue, identifying a gusset plate 

connection that joins only the vertical to the truss chord was desirable. 

 

Higgins and Turan (2009) suggested that member U12-L12 should be instrumented, since 

this member had the lowest reported critical wind speed (17.0 m/s (38mph)). This member 

was initially considered, but later abandoned due to the following factors. The gusset plate 
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This I-Section has web perforations, and the gusset plate connection joins only the vertical 

to the truss lower chord as seen in Figure 3.3. 

Figure 3.3: Original gusset plate connecting the vertical truss to the horizontal chord 
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3.2 Experimental Setup 

3.2.1 Boundary Conditions 

The experimental setup was designed to represent the boundary conditions and a full-size 

portion of the vertical hanger in the Astoria-Megler Bridge. Due to limitations in the height 

of the structural laboratory, the vertical was oriented in a horizontal position. This 

orientation also simplified the fixation of the load application system and access to the 

member for instrumentation and observation as shown in Figure 3.4 and Figure 3.5, 

respectively. The experimental length of the member was half the actual vertical length due 

to the symmetric behavior of the vertical. The resulting length was modified to the 

laboratory floor hold-down locations (finite locations where a reaction frame can be fixed 

to the strong floor) which gave the final length of 10.3 m (33.6 ft).  

Figure 3.4: Load application system mounted 
 to the critical truss 

Figure 3.5: Critical vertical, orient horizontally 
 in the laboratory  

 

3.2.2 Necessary Changes for the Test-Setup Design 

As described above, only half the vertical length was reproduced in the laboratory. To 

produce twisting moment into the vertical, an endplate was welded onto the end as shown 

in Figure 3.4. This location would typically be the center of the vertical truss in the actual 

bridge. Adding this plate detail altered the stress distribution in the vertical in the location 
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near the end plate. The presence of the end plate used for loading the laboratory specimen 

resulted in stress concentrations at this location whereas the vertical in the bridge is 

continuous at this location with uniform loading along the length. Although the nontypical 

stress distribution at the loaded end of the vertical was not desirable, the plate was 

necessary to induce twisting into the member. Importantly, the member stresses at the 

gusset plate connection to the chord were located far away from the end plate boundary 

condition so as to not be affected as will be described later. 

 

3.2.3 Drawings and Fabrication 

To reproduce and fabricate the laboratory vertical specimen, new drawings using 

AuotCAD 2010 were made (see Appendix B). All of the major dimensions, except the 

length, were the same as those in the original drawings. The he laboratory specimen cross 

section is shown Figure 3.6. 

Figure 3.6: Cross-sectional of laboratory vertical representing member L13-M13 
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Eight perforations equally spaced at 1.3 m (48 in) with dimensions as shown in Figure 3.7 

were cut into the web. Their position was adapted to the shorter length of the reproduced 

vertical. 

 
Figure 3.7: Perforations in the reproduced vertical 

 

All of the steel plates were ASTM A36. The material properties of the steel plates are listed 

in Table 3.1 in which fy is the yield strength, fu is the ultimate strength, and εu is the fracture 

strain of steel. The position numbers refers to the fabrication drawings in Appendix B. 
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Table 3.1: Steel plate material properties used to reproduce the vertical truss 

Part name: Position no.:
Thickness:

(mm) 
[in] 

Average fy: 
(MPa) 
[ksi] 

Average fu: 
(MPa) 
[ksi] 

Average εu: 
[%] 

Reaction box P.3 
50.8 
[2.0] 

262.35 
[38.05] 

482.29 
[69.95] 

33 

Reaction box P.4 
19.05 
(3/4) 

275.79 
[40] 

481.25 
[69.8] 

26 

Reaction box P.5 / P.6 
25.4 
[1.0] 

293.37 
[42.55] 

490.22 
[71.1] 

25 

End plate P.12 
19.05 
(3/4) 

275.79 
[40] 

481.25 
[69.8] 

26 

Web P.2 
7.9 

[5/16] 
326.12 
[47.3] 

437.82 
[63.5] 

29 

Flanges P.1 / P.1A 
12.7 
[1/2] 

304.06 
[44.1] 

427.47 
[62] 

39 

Gusset Plates P.7 / P.8 
9.5 

[3/8] 
289.58 

[42] 
489.53 

[71] 
30 

Fill Plates 
P.9 / P10 / 

P11 
19.05 
(3/4) 

275.79 
[40] 

481.25 
[69.8] 
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A few changes were made for practical fabrication considerations and are described here. 

The gusset plate in the actual bridge was not perpendicular to the horizontal truss as can be 

seen in Figure 3.3. This feature was neglected to simplify the experimental setup as shown 

in Figure 3.8.  

 

The reaction box, which acts as the horizontal chord of the truss, was also modified. 

Instead of using multiple layers of steel plates per side, as used in the actual structure, one 

side plate with the same overall thickness was used. To keep the box as rigid as possible, 

head plates were welded onto the reaction box as shown in Figure 3.9. 
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Figure 3.8: Reproduced laboratory vertical with
 gusset plate perpendicular to the 
 reaction box 

Figure 3.9: Reaction box with head plates 
 welded to the side 

 

Four fill plates were used in the existing bridge connection as shown in Figure 3.3. These 

plates were necessary to adapt the distance between the width of the horizontal chord and 

the vertical. Since both the reaction box and the vertical were reproduced with the original 

dimensions, similar fill plates were also used for the experimental specimen. 

 

Two different gusset plates were used for both the near side (N.S) and far side (F.S) 

connection between the reaction box and the flanges of the I-section as shown in 

Figure 3.10. 
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Figure 3.10: Experimental vertical with reaction box, gusset plates and fill plates 

 

The bolt pattern and bolt diameters were reproduced from the existing drawings and 

adapted to the new gusset plate orientation as shown in Figure 3.8. The original connection 

used rivets, but the laboratory specimen used A325 structural bolts with identical diameters 

ø 25.4 mm (1 in) and ø 22.2 mm (7/8 in). 

 

All steel assemblies for the experimental setup were produced by a local fabricator and 

delivered to the structural laboratory on the campus of Oregon State University. 

 

3.2.4 Connections 

The reaction box was connected to the strong wall in the structural laboratory as shown in 

Figure 3.10. The connection consisted of 4 x ø 31.8 mm (1 ¼ in) treaded rods of ASTM 

A193-B7. As discussed previously, the reaction box and the vertical specimen were 

connected with two gusset plates using the original hole pattern and bolt diameters. The 

vertical specimen was connected to the reaction torque load cell with 8 x14.3 mm (9/16 in) 

A574 bolts. 
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3.3 Instrumentation 

3.3.1 Instruments 

The specimen was instrumented with different strain, displacement, and angular sensors. 

To measure strains in the laboratory vertical, uniaxial strain gages and strain rosettes were 

installed. Uniaxial strain gages measure strains only in one direction, whereas strain 

rosettes measure strains in three different directions. The strain gage sizes used in this 

experiment are listed in Table 3.2. 

Table 3.2: Uniaxial strain gage and strain rosette specifications 

Description: 
Length: 

(mm) 
[in] 

Width: 
(mm) 
[in] 

Angle between 
gages: 

(degrees) 

Uniaxial strain gage 
6.99 

[0.28] 
3.05 

[0.12] 
N/A 

Strain rosettes 
6.1 

[0.24] 
7.6 

[0.30] 
45 

 

Using data from each gage, the stress at its location was calculated. Using data from the 

strain rosettes, stresses in every direction could be calculated at the specific measuring 

point, by applying the principle of Mohr’s circle. 

 

To check boundary conditions and change in the angle of twist along the specimen, five 

displacement sensors were installed along the length of the vertical. To check the results of 

the inclinometers, an angular rate sensor, which is being used in as part of a field 

monitoring installation on the bridge, was installed at the loaded end of the vertical. 
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3.3.2 Instrumentation Plan (with Initial Configurations) 

The critical regions of the vertical specimen were at the gusset plate connection location, 

therefore, strain gages were concentrated in this area of the member (Sections 2 and 3) as 

can be seen in Figure 3.11 and Figure 3.12. However, to capture the stress distribution over 

the entire vertical, strain rosettes were distributed over the length of the vertical specimen 

as shown in Figure 3.11 and Figure 3.12. The locations of the strain gages from the edge of 

the I-section top flange are shown in Table 3.3. 

Table 3.3: Strain rosette distances from the edge of the top flange 

Section name: Gage name: 
Distance from edge of the flange: 

(mm) / [in] 

3 R 13 38.89 / [1.53] 

4 R 11 26.19 / [1.03] 

4 R 9 23.02 / [0.91] 

5 R 7 24.61 / [0.97] 

5 R 5 27.78 / [1.09] 

6 R 3 23.81/ [0.94] 

6 R 1 23.81/ [0.94] 

7 NR 2 28.58/ [1.125] 

7 NR 1 27.78/ [1.09] 
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Figure 3.11: Instrumentation overview of the entire test setup 
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Figure 3.12: Instrumentation details of the different sections of the specimen 
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Figure 3.18: Strain rosette distribution over top side of the top flange 

 

The rosettes located near the edge of the flange were placed approximately 25.4 mm (1 in.) 

from the edge (exact locations are listed in Table 3.3) whereas the other rosettes were 

placed along the centerline of the top flange. 

 

To compare stresses between the top and bottom flanges, strain rosettes were placed onto 

the bottom side of the bottom flange (Section 4: R12; Section 5: R8; Section 6: R4). To 

capture the angle of twist for the vertical specimen, inclinometers were positioned at the 

neutral axes in each of these sections (Section 4: INC3, Section 5: INC2; Section 6: INC1) 

as shown in Figure 3.19. 

Figure 3.19: Example inclinometer (INC1) positioned at the neutral axis of the vertical 
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Figure 3.21: Connection between the string 

potentiometer and the endplate 
Figure 3.22: String potentiometer on the 

strong floor to check the 
rotations at the endplate 

 

To measure the relative displacement of the endplate, two displacement sensors (DSP3 and 

DSP4) were mounted onto a special fixture that elevates them from the top flange and fixes 

them to the center line of the top flange, where the movement of the flange was assumed to 

be zero. This setup is shown in Figure 3.23. 

Figure 3.23: Displacement sensor (DSP4) measures displacements of the endplate 
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3.3.4 Instrumentation Plan (with Configurations for the Rotation Test) 

To obtain a finer detail of the angle of twist along the vertical specimen, the inclinometers 

(INC1-INC3) were mounted onto magnets and positioned closer to each other than in the 

regular tests done previously, as shown in Figure 3.24. These tight grouping of sensors 

were then moved along the length of the vertical specimen and the input motions repeated. 

 
Figure 3.24: Inclinometers positioned at a closer distance 

 

As a reference, the angular rate sensor (AR1) and one inclinometer (INC0) were left at 

their initial positions. In each test, three inclinometers were moved to a new location; 

therefore eight test runs were needed to collect the data that could precisely describe the 

rotation along the length of the vertical specimen. To align the overlapping data sets, one 

of the sensors in each test group was left at its previous position and only two of the three 

sensors where shifted to a new position. The positions of each inclinometer as well as their 

specific labels are shown in Table 3.4 and Figure 3.25.  
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Table 3.4: Position and name of the inclinometers in the rotation test 

Distance from the 
end of the vertical: 

(mm) / [in] 
Inclinometer: 

Inclinometer Label 
for Rotation test: 

Test run: 

10255.25 / [403.75] INC 0 INC0 All 

10188.58 / [401.13] AR 1 AR1 All 

9144 / [360] INC 1 # 1 1 

7924.8 / [312] INC 2 # 2 1 

6705.6 / [264] INC 3 # 3 1 / 2 

5486.4 / [216] INC 2 # 4 2 

4267.2 / [168] INC 1 # 5 2 / 3 

3048 / [120] INC 2 # 6 3 

1828.8 / [72] INC 3 # 7 3 / 4 

889 / [35] INC 2 # 8 4 

762 / [30] INC 1 # 9 4 / 5 

635 / [25] INC 2 # 10 5 

508 / [20] INC 3 # 11 5 / 6 

381 / [15] INC 2 # 12 6 

254 / [10] INC 1 # 13 6 / 7 

177.8 / [7] INC 3 # 14 7 

101.6 / [4] INC 2 # 15 7 / 8 

38.1 / [1.5] INC 3 # 16 8 
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Figure 3.25: Instrumentation overview with rotation test configurations 
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3.4 Load Induction 

To simulate the angle change in the vertical, a servo-hydraulic torque actuator with a 

torque capacity of 12.2 kNm (108 kip-in) was used. The actuator was mounted on a 

reaction frame which was connected to the strong floor as shown in Figure 3.27. The 

vertical and the actuator are connected through the load cell and the endplate as shown in 

Figure 3.28. 

Figure 3.27: Torque actuator fixed onto the reaction frame 

 

Figure 3.28: Torque actuator, load cell and vertical assembly 
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The twisting induced to the specimen was deformation controlled (angle control). The 

sensor used to control the rotational deformation at the torque actuator was a rotary 

variable differential transformer (RVDT) mounted onto a magnet and held in place by a 

fixture as shown in Figure 3.29 and Figure 3.30. The RVDT was validated with an 

independent string potentiometer that was also connected to the torque actuator as shown 

in Figure 3.30.  

 
Figure 3.29: RVDT mounted to the torque actuator 

 

Figure 3.30: Rotary variable differential transformer (RVDT) mounted to the torque actuator and 
connected to the reaction frame 
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3.5 Experimental Results 

3.5.1 Rotational Response of Specimen and Instrument Performance 

Initial tests were completed with the installed test setup. These tests were used to assess the 

fixity of the vertical to the strong wall, the functionality of the torque actuator, and to 

adjust instrumentation. Datasets were collected for these tests to get the stress distribution 

along the vertical and along the gusset plates. With this information, a finite element model 

(described in Chapter 4.1) was checked and updated to better correlate with the 

experimental results. With the help of the finite element model, the maximum rotation 

angle for elastic behavior was determined.  

 

The main purpose of the initial testing was to find the appropriate test frequency and angle 

change for the fatigue test. Two different angle changes (5 and 9 degree) were tested, and 

for each angle change, data sets with different frequencies were collected. The different 

testing frequencies were 0.05, 0.1, 0.5, 1.0, 2.0 and 3.0 Hz. Data were collected at a 

sampling rate varying from 100 to 400 Hz. With the collected data, the different 

instruments were evaluated and recalibrated as needed. 

 

After evaluating the instrumentation performance it was found that the strain gages, strain 

rosettes and the angular rate sensor were not affected by the amplitude of the angle of twist 

or different loading frequencies. However, the inclinometers (INC0-INC3) were credible 

only up to a loading frequency of 0.5 Hz. Data from these sensors at higher loading 

frequencies were not valid.  
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The resulting torque measured at the torque actuator (load cell) are shown in Figure 3.32 

Figure 3.32: Time-history plot of the torque force (T) at the torque actuator (target of +/- 9.0 
degrees) 

 

The angular rate sensor measured the angle change per second. Therefore, the results of 

this sensor were integrated over time to obtain rotation values. Since an integration 

constant occurs when a function is integrated, the trend of the integrated curve was 

manually removed as shown in Figure 3.33. 

 

Time history results for the different inclinometers along the length of the I-section were 

plotted in Figure 3.34. The location of these sensors can be found in Figure 3.11. 
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Figure 3.33: Time-history plot of the angular rate sensor (AR1) 

 

Figure 3.34: Time-history plot of the inclinometers (INC0-3) and angular rate sensor (AR1) along 
the vertical 
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The inclinometers used in this study, provided accurate measurements of twist angle up to 

a testing frequency of 0.5 Hz. For the higher frequencies tested, the results collected from 

the inclinometer were not credible. However, the angular rate sensor provided accurate 

results throughout the frequency ranges considered. The two different sensors (INC0 = 

Inclinometer and AR1=Angular rate sensor) are compared at a testing frequency of 1 Hz 

and a target angle of twist of  +/-9 degrees in Figure 3.35. As seen here, the inclinometer 

could not adequately capture the maximum twist angle.  

Figure 3.35: Time-history comparison of INC0 (inclinometer) and AR1 (angular rate sensor) at a 
testing frequency of 1 Hz 
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noise inherent of the data acquisition system. Therefore, zero slip between the strong wall 

and the reaction box was assumed. 

 

The time history data of DSP 3 and DSP 4 are plotted in Figure 3.36. This data shows a 

small displacement between the top flange of the I-section and the endplate. This 

movement indicates that the endplate does not fully restrain the warping deformations of 

the I-section flanges. 

Figure 3.36: Time-history displacement response at sensors DSP3 and 4 

 

Since time-history data for stresses are not a useful way to show results of strain rosettes 

and strain gages, only example results from each gage type are shown in Figure 3.37 and 

Figure 3.38. However, the stress results are synthesized for magnitude and distribution 

along the specimen as will be described subsequently. 
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Figure 3.37: Example time-history plot of a strain gage (SG13) 

 

Figure 3.38: Example time-history plot of strain rosettes (R5 and R7) 
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The peak-to-peak maximum and average stress values for the strain rosettes are listed in 

Table 3.6. The stress directions for Table 3.6 are defined as, x-axis in the west-east 

direction and the z-axis in the north-south direction as shown in Figure 3.11. 

Table 3.6: Maximum and average peak-to-peak results for strain rosettes 

Target value: 9 Degrees 

Rosette Gage: Direction:

Normal Stress (σ) Shear Stress (τ) 

Max. Stress
(MPa) 
[ksi]

Avg. Stress
(MPa) 
[ksi] 

Max. Stress 
(MPa) 
[ksi] 

Avg. Stress
(MPa) 
[ksi] 

R1 

Z 
3.15 

[0.46] 
3.06 

[0.44] 
- - 

X 
2.04 

[0.30] 
1.95 

[0.28] 
23.92 
[3.47] 

23.84 
[3.46] 

R2 

Z 
2.13 

[0.31] 
2.07 

[0.30] 
- - 

X 
2.22 

[0.32] 
2.09 

[0.30] 
32.59 
[4.73] 

32.53 
[4.72] 

R3 

Z 
2.46 

[0.36] 
2.44 

[0.35] 
- - 

X 
2.25 

[0.33] 
2.12 

[0.31] 
23.73 
[3.44] 

23.69 
[3.44] 

R4 

Z 
8.69 

[1.26] 
8.65 

[1.25] 
- - 

X 
11.27 
[1.63] 

10.99 
[1.59] 

32.82 
[4.76] 

32.72 
[4.75] 

R5 

Z 
23.35 
[3.39] 

23.27 
[3.37] 

- - 

X 
1.20 

[0.17] 
1.14 

[0.17] 
22.42 
[3.25] 

22.38 
[3.25] 

R6 

Z 
1.76 

[0.25] 
1.72 

[0.25] 
- - 

X 
2.01 

[0.29] 
1.96 

[0.28] 
25.16 
[3.65] 

25.08 
[3.64] 
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R7 

Z 
24.11 
[3.50] 

24.04 
[3.49] 

- - 

X 
1.64 

[0.24] 
1.57 

[0.23] 
22.48 
[3.26] 

22.44 
[3.25] 

R8 

Z 
0.80 

[0.12] 
0.78 

[0.11] 
- - 

X 
2.22 

[0.32] 
2.14 

[0.31] 
24.80 
[3.60] 

24.76 
[3.59] 

R9 

Z 
42.78 
[6.20] 

42.72 
[6.20] 

- - 

X 
35.43 
[5.14] 

35.27 
[5.12] 

38.98 
[5.65] 

38.95 
[5.65] 

R10 

Z 
1.67 

[0.24] 
1.53 

[0.22] 
- - 

X 
7.55 

[1.10] 
6.91 

[1.00] 
15.67 
[2.27] 

15.63 
[2.27] 

R11 

Z 
58.09 
[8.43] 

57.99 
[8.41] 

- - 

X 
1.02 

[0.15] 
0.96 

[0.14] 
30.52 
[4.43] 

30.49 
[4.42] 

R12 

Z 
0.83 

[0.12] 
0.82 

[0.12] 
- - 

X 
0.93 

[0.14] 
0.84 

[0.12] 
14.92 
[2.16] 

14.88 
[2.16] 

R13 

Z 
47.52 
[6.89] 

47.47 
[6.88] 

- - 

X 
3.03 

[0.44] 
2.98 

[0.43] 
25.19 
[3.65] 

25.10 
[3.64] 

R14 

Z 
56.85 
[8.25] 

56.76 
[8.23] 

- - 

X 
2.57 

[0.37] 
2.48 

[0.36] 
28.57 
[4.14] 

28.49 
[4.13] 

R15 

Z 
48.87 
[7.09] 

48.83 
[7.08] 

- - 

X 
2.30 

[0.33] 
2.23 

[0.32] 
25.44 
[3.69] 

25.40 
[3.68] 
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R16 

Z 
41.10 
[5.96] 

41.02 
[5.95] 

- - 

X 
7.30 

[1.06] 
7.27 

[1.05] 
17.44 
[2.53] 

17.38 
[2.52] 

NR1 

Z 
72.58 

[10.53] 
72.50 

[10.52] 
- - 

X 
21.72 
[3.15] 

21.67 
[3.14] 

26.03 
[3.78] 

26.01 
[3.77] 

NR2 

Z 
71.25 

[10.33] 
71.11 

[10.31] 
- - 

X 
13.38 
[1.94] 

13.30 
[1.93] 

29.62 
[4.30] 

29.52 
[4.28] 

 

The peak-to-peak maximum and average stresses for the uniaxial strain gages are listed in 

Table 3.7. 

Table 3.7: Maximum and average peak-to-peak results for uniaxial strain gages 

Target value: 9 Degrees 

Strain Gage: Direction:

Normal Stress (σ) 

Max. Stress 
(MPa) 
[ksi] 

Avg. Stress 
(MPa) 
[ksi] 

SG1 Z 
44.20 
[6.41] 

44.08 
[6.39] 

SG2 Z 
27.50 
[3.99] 

27.44 
[3.98] 

SG3 Z 
33.71 
[4.89] 

33.54 
[4.86] 

SG4 Z 
32.52 
[4.72] 

32.47 
[4.71] 

SG5 Z 
16.20 
[2.35] 

16.09 
[2.33] 

SG6 Z 
14.21 
[2.06] 

14.16 
[2.05] 
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SG7 Z 
16.00 
[2.32] 

15.93 
[2.31] 

SG8 Z 
23.93 
[3.47] 

23.80 
[3.45] 

SG9 Z 
38.28 
[5.55] 

38.21 
[5.54] 

SG10 Z 
26.91 
[3.90] 

26.87 
[3.90] 

SG11 Z 
43.38 
[6.29] 

43.33 
[6.28] 

SG12 Z 
73.05 

[10.60] 
72.80 

[10.56] 

SG13 Z 
70.00 

[10.15] 
69.89 

[10.14] 

SG14 Z 
71.43 

[10.36] 
71.31 

[10.34] 

SG15 Z 
46.57 
[6.75] 

46.42 
[6.73] 

SG16 Z 
68.10 
[9.88] 

68.06 
[9.87] 

SG17 Z 
37.94 
[5.50] 

37.84 
[5.49] 

SG18 Z 
37.06 
[5.38] 

37.02 
[5.37] 

 

The maximum stress in the specimen was 73.05 MPa (10.60 ksi) and was measured at a 

uniaxial strain gage location (SG13) located on the vertical near the gusset plate. The 

maximum shear stress measured was found to be 38.98 MPa (5.65 ksi) and was recorded at 

strain rosette 9 (R9). 
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3.5.2 Rotation Testing 

The rotational behavior of the vertical was characterized along the entire length of the 

vertical. The instrumentation for this series of tests was modified as explained in Chapter 

3.3.4. Eight tests were conducted, all at a loading frequency of 0.05 Hz and with a 

maximum imposed rotation angle change of +/-9 degrees. Data were collected at a sample 

rate of 100 Hz. The data from the rotation tests were reduced by using the peak-to-peak 

average method as described in Chapter 3.5.1.2. The amplitude of the angle of twist along 

the length of the member is shown in Figure 3.39. 

Figure 3.39: Rotation along the span  

 

The rotation becomes zero as the vertical enters the gusset plates. The point of zero rotation 

was determined from Figure 3.39, when the magnitude of the measured rotation was at the 
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same magnitude as the inherent electrical noise in the data acquisition system it was no 

longer possible to distinguish movement. This occurs when the rotation magnitude is 0.05 

degrees. Therefore, the point of zero rotation was chosen where the rotational values were 

less than 0.05 degrees. This condition shifts the point of zero rotation to approximately 508 

mm (20 in) from the south end of the I-section as shown in Figure 3.40.  

Figure 3.40: Rotation along the span in the region of zero rotation (red line is amplitude of signal 
noise) 

 

This corresponds to approximately 50% of the connection length (top connection length = 

978mm (38.5in)). 
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The rotation curve in Figure 3.39 was adapted and the new graph is shown in Figure 3.41. 

The maximal rotation was determined to be 9.2 degree. 

Figure 3.41: Rotation along the span with new defined point of zero rotation 
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3.5.3 Natural Frequency Testing 

Several tests were conducted to characterize the natural frequency of the specimen. To 

characterize the natural frequency, test runs were performed over a range of loading 

frequencies (3 up to 11 Hz) and with small angles of rotation (+/- 0.25, 0.5 and 1 degree). 

 

The natural frequency was determined by analyzing the ring down of several test runs. The 

ring down is defined as end of the test run, where the torque actuator rotation is set to zero 

and the reaction torque cell measures the torque generated at the end, as shown in 

Figure 3.42. 

Figure 3.42: Example dynamic test with ring down location identified  
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where Xi is peak measurement of the ring down and Xi+n is any nonconsecutive peak 

measurement; n is taken as an integer. From the ring down tests, the value of damping in 

the experimental setup was determined to be 2%. 



63 

 

4 ANALYSIS METHODS 

Two different analysis methods were used to compare with the observed experimental 

results. These included finite element methods and available classical analytical 

expressions for rotation angle, torque, and stresses in members with idealized boundary 

conditions subject to torsion. The analysis methods are first described and then the results 

are collectively described. 

 

4.1 Finite Element Modeling  

Finite element models (FEMs) were developed as a part of this research project. The 

software used to develop these models was ABAQUS/Standard Version 6.8-2 (Hibbit, 

Karlsson &Sorensen, 2002; Abaqus User Manual).  

 

The FEM of the truss vertical deployed general purpose conventional shell elements. These 

elements use thick shell theory as well as thin shell theory depending on the material 

thickness defined by the user. Transverse shears are allowed in these elements. To mesh 

the models, the S4R mesh element was used. This is a 4-node doubly curved general-

purpose shell with reduced integration with hourglass control and finite membrane strains. 

(Hibbit, Karlsson &Sorensen, 2002) 

 

During this research project several different finite element models were developed. An 

overview of the different models is given in Table 4.1. 
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Table 4.3: Material properties and general definitions used in the experimental vertical FEM 

Description: Variable: Value: 

Modulus of elasticity for steel Es 200000 MPa (29000 ksi) 

Poisson’s ratio for steel υs 0.3 

Material properties for steel fy / fu see Table 4.4 

Unit mass density for steel ρs 7.33x10-7 kip sec2/in4 

Modulus of elasticity for rigid parts Er 2.9*108 

Poisson’s ratio for rigid parts υs 0.3 

Material properties for rigid parts fy / fu N/A (elastic behavior) 

Unit mass density for rigid parts ρr 7.33x10-7 kip sec2/in4 

Connection elements - 
rigid MPC fasteners 

see Chapter 0 

Interaction stiffness ki 
87.6 N/mm (0.5 kip/in) 

see Chapter 4.1.1.4 
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Table 4.4: Steel material properties for the experimental vertical FEM 

Part Name: Steel State: 
Strength: 

(MPa) 
[ksi] 

Plastic Strain: 
[in/in] 

Reaction box side plates 
Fabrication drawing: P.3 

t = 2 in 

yield (fy) 
262.35 
[38.05] 

0 

fracture (fu) 
482.29 
[69.95] 

0.33 

Reaction box front plates 
P.4 / t = 3/4 in 

End plate 
P.12 / t = 3/4 in 

Fill plates 
P.9 and P.10 and P.11 / t = 3/4 in

yield (fy) 
275.79 
[40.00] 

0 

fracture (fu) 
481.25 
[69.80] 

0.26 

Reaction box 
top and bottom plates 

P.5 / P.6 / t = 1 in 

yield (fy) 
293.37 
[42.55] 

0 

fracture (fu) 
490.22 
[71.10] 

0.25 

I-section web 
P.2 / t = 5/16 in 

yield (fy) 
326.12 
[47.30] 

0 

fracture (fu) 
437.82 
[63.50] 

0.29 

I-section flanges 
P.1 and P.1A / t = 1/2 in 

yield (fy) 
304.06 
[44.10] 

0 

fracture (fu) 
427.47 
[62.00] 

0.39 

Gusset plates 
P.7 and P.8 / t = 3/8 in 

yield (fy) 
289.58 
[42.00] 

0 

fracture (fu) 
489.53 
[71.00] 

0.295 

 

ABAQUS develops the full stress-strain curves from the properties established in Table 

4.4. In the elastic region (σs < fy) the stress-strain relation is determined with Hook’s law 

and in the plastic region (fy < σs ≤ fu) as a linear function until the plastic strain is reached. 

An example is shown in Figure 4.5. 
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Figure 4.5: Schematic stress-strain diagram of steel 

 

Two different loading cases were analyzed. First, a general static analysis with a torque of 

22.6 kN-m (200 kip-in) was applied using force control in the model. From this analysis, 

the elasto-plastic behavior of the specimen was found. 

 

To characterize the overall behavior of the model, the torque-rotation response was 

determined as shown in Figure 4.6. From this curve in the elastic region, the predicted 

torsional stiffness of the specimen was computed to be 17.1 kN-m/rad (151.6 kip-in/rad). 
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Figure 4.6: FEM rotation angle-torque plot for the experimental setup 

 

To predict the inelastic behavior of the experimental specimen, a general static analysis 

was performed. A torque of 22.6 kN-m (200 kip-in) was applied to the loading plate. The 

predicted torque-angle of twist response at the loaded end is shown in Figure 4.6. The final 

angle of twist was 132.5 degrees.  

 

First yield within the specimen was observed in the top flange of the I-section, where the I-

section and the end plate were connected (as illustrated in Figure 4.7). The predicted 

normal stress – twist angle behavior of the element at the first yield location is shown in 

Figure 4.8. As seen here, first yield occurred at an applied torque of 5.8 kN-m (51 kip-in) 

and an angle of twist of 19.3 degree. 
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Figure 4.10: FEM predicted normal stress-rotation response at nodal region located near gusset plate 
of specimen (see Fig. 4.9) 

 

Subsequent finite element analyses were conducted using this model to compare with the 

experimental results and available AISC design guidelines. The FEM analysis conducted 

was a dynamic analysis using the load history data from the experimental test results as the 

input forcing function to the model. The test data were for +/- 9.0 degree angle change with 

a loading frequency of 0.05 Hz. The FE predicted responses were compared at the local 

and global levels including twist angle and stress distribution for the specimen. In addition, 

the FEM predicted and experimentally measured natural frequencies were compared. All 

results are compared after presentation of the AISC analytical methods, which are 

presented in the next section. 
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sinh tanh *cosh tanh cosh 1.0 sinh
Ta l l z z z

GJ a a

l

a a a a a

l                
 [4.1]

 

where G is the shear modulus of elasticity of steel, J is the torsional constant (given in  

Eqn. [2.11] or [2.12]), a is defined in Eqn. [2.6] (in this equation however a was defined as 

α), l is defined as the total length of the steel member, z is the location of interest measured 

from the fixed end and αl is the location of the load measured from the fixed end. 

 

As mentioned in Chapter 2.2, the first, second and third derivative of Eqn. [4.1] are used to 

calculate the stresses due to torsion in an I-section. These derivatives are shown below. 

 

First derivative of θ with respect to z: 

1
z z l l l l

cosh sinh sinh tanh cosh tanh
aT a a a a a a
GJ a



          
 
  

   [4.2]

 

Second derivative of θ with respect to z: 

2

z l l l l z
cosh sinh tanh cosh tanh sinh

aT a a a a a a
GJ a





        












 [4.3]

 

Third derivative of θ with respect to z: 



79 

 

3

z l l l l z
sinh sinh tanh cosh tanh cosh

aT a a a a a a
GJ a



           
 
 
 

 [4.4]

 

The design graphs developed by Seaburg and Carter for this boundary condition are shown 

in Appendix E. 

 

Using the results given by these derivatives, the stresses in an I-section were calculated 

with equation [2.15], [2.16], and [2.19]. To calculate the rotation, torque and stresses along 

the length of the vertical in the test-setup, a Microsoft Excel spreadsheet was developed 

and automated with Microsoft Visual Basic code. 

 

In the calculations, the length of the vertical was defined from the end plate (loaded end) to 

the point of zero rotation within the gusset plate as described in Chapter 3.5.2. This 

resulted in an equivalent member length of 9747.25 mm (383.75 in). Since the point of 

zero rotation was determined to be 508mm (20 in) away from the south end of the vertical, 

the calculated values from the modified equation [4.1] needed to be shifted to the new 

point of zero rotation. This shifting was performed for all analytical results and is 

illustrated in Figure 4.12. These shifted results, will be used in the subsequent discussion 

comparing the analytical results with the finite element model and the experiment. 
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Table 4.5: Finite element predicted model frequencies of the experimental setup 

Mode: Description: 
Value: 
[Hz] 

1 Weak axis bending 12.6 

2 First torsional 14.1 

3 Distortional (warping of the cross section) 27.0 

4 Strong axis bending 27.3 

5 Second torsional 28.7 

 

The natural frequencies for the experimental setup were also calculated with the equations 

described in Chapter 2.1.2. For the experimental setup, a fixed-simply supported boundary 

condition was assumed (Eqn. [2.3]). The first torsional frequency (ωtorsion) was 12.7 Hz. 

This corresponds closely to the FEM results for the first torsional mode. The 

experimentally measured first torsional mode was 12.7 to 12.9 Hz and was well captured 

by both the FEM and analytical expressions. The close match indicates that the specimen is 

well represented as a fixed-free ended member. The different torsional natural frequency 

results of the experimental vertical are summarized in Table 4.6. 
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considered in detail. The second stress maximum is located at 957.6 mm (37.7 in) away 

from the south end of the I-section in the top flange. This corresponds to the midpoint 

between the start of the top fill plate and the first row of bolts in the top flange and is 

located in the instrumentation as section 3 called out in Figure 3.11. From the finite 

element model, the maximum stress in the top flange tips of the I-section was found to be 

69.6 MPa (10.1 ksi) at the peak twist angle of 9.2 degrees. The location of the top flange 

stress maximum is at the same location that was predicted to show the onset of yielding as 

the torque increases as the second yield point in the I-section (438 mm (36.5in) away from 

the south end) and was shown in Figure 4.9. The maximum stress location in the bottom 

flange was located in the same region. Since the bottom flange gusset plate was shorter, the 

stresses in the bottom flange were smaller and closer to the end of the I-section. The 

maximum stress in the bottom flange was determined to be 66.2 MPa (9.6 ksi). 

 

Both the finite element model and the analytical equation [4.1] reasonably predicted the 

normal stresses in the flange tip of the I-section. The maximum stress found with the 

analytical equation [2.19], was 73.1 MPa (10.6 ksi). The finite element model predicted a 

maximum normal stress of 69.6 MPa (10.1 ksi) in the region of the gusset plate. The 

maximum stress in the region of the gusset plate, determined from the experimental results, 

was 73.1 MPa (10.6 ksi) as listed in Chapter 3.5.1.2. The maximum stress location differs 

slightly between the analytical calculation (508mm (20 in) away from the south end of the 

vertical) due to the analytical expressions ignoring the influence of the length of the gusset 

plate overlapping the member and the experimental data (438 mm (36.5in) away from the 

south end of the vertical).  
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assumption, the normal stresses due to warping in the gusset plate were calculated using 

equation [2.8]. The maximum normal stress in the top gusset plate was determined to be 

43.3 MPa (6.3 ksi). The resulting stress distribution in the top gusset plate is shown in 

Figure 4.17. 

 

The maximum stress location in the top gusset plate corresponds with the edge bolt axis, 

located at 38.1mm (1.5 in) from the edge of the plate (shown in Figure 4.17). The 

maximum normal stress in the top gusset plate was found to be 40 MPa (5.8 ksi). 

 

The finite element model as well as the analytical method reasonably predicted the normal 

stresses in the gusset plate due to warping. 

Figure 4.17: Comparison of the experimentally measured and predicted 
normal stresses in the top gusset plate 
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Figure 4.18: Comparison of the experimentally measured and analytical predicted 

normal stresses in the top flange of the I-section 
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Table 4.10: General sectional and overall dimensions of the existing vertical FEA model 

Description: Variable: Dimension: 

Total length (with reaction box) Lsetup 19989.8 mm / (787 in) 

System length Lsystem 19126.2 mm / (753 in) 

Length of the I-section LI-sectiom 18237.2 mm / (718 in) 

Total depth of I-section dI-section 657.2 mm / (25 7/8 in) 

Flange width bf 406.4 mm / (16 in) 

Flange thickness tf 12.7 mm / (1/2 in) 

Web height h 631.8 mm / (24 7/8 in) 

Web thickness tw 7.9 mm / (5/16 in) 

Area of one perforation Aperforation 150386.8 mm2 / (233.1 in2) 

Web area without perforations Aweb,tot 11522718.9 mm2 / (17860.25 in2) 

Web area with perforations Aweb,net 9417327.8 mm2 / (14596.9 in2) 

Decrease of web area - 18.3 % 

 

4.2.2 Analytical Expressions for the Existing Bridge Vertical  

The existing bridge vertical in the field was assumed to have fixed boundary conditions on 

both ends. Therefore, Case 6 from the AISC Steel Design Guide Series 9 was chosen as 

shown in Figure 4.23. The value for α was chosen to be 0.5, since symmetrical behavior 

over the bridge vertical can be assumed. Since a symmetrical behavior of the bridge 

vertical can be assumed, only the equation for the values of z between 0 and αl (0.5l) was 

considered. The equation for the other side of the vertical can be found in Appendix E. 
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Figure 4.23: Boundary conditions and definitions for Case 6 with an α of 0.5 
(Steel Design Guide Series 9, 2003) 

 

The solution for the differential equation for fixed-fixed boundary condition, for 0 ≤ z ≤ αl 

is given as: 
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where H is a constant and is defined as: 
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First derivative of θ with respect to z: 
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Second derivative of θ with respect to z: 
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Third derivative of θ with respect to z: 
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The design graphs for this case can be found in Appendix E. 

 



 

Using the d

The above 

existing bri

 

4.2.3 C

The results 

FEM and a

comparison

 

 N4.2.3.1

The first fiv

model were

shown in A

Table 4.11: F

Mode

1 

2 

3 

4 

5 

 

different deriv

expressions w

idge vertical a

Comparison of

are for an an

llows applica

ns between th

Natural Frequ

ve predicted n

e determined.

Appendix D. 

Finite element 

e: 

vatives of the 

were used to p

and are comp

f FEM and An

ngle of twist o

ation of the an

e laboratory r

uency of Exist

natural freque

 The values a

model frequen

De

Strong

Weak 

Firs

Second str

Seco

rotation, the 

predict the str

ared with the 

nalytical Met

of 9 degrees w

nalytical expre

results and th

ing Bridge Ve

encies of the e

are listed in T

ncies of the exi

scription: 

g axis bending

axis bending

st torsional 

rong axis ben

ond torsional

stresses due t

resses and twi

 FEM results 

thods for Exis

with remains i

essions. This 

e more likely

Vertical 

existing bridg

Table 4.11 and

isting bridge ve

g 

g 

nding 

to torsion can

isting deform

 below. 

sting Bridge V

in the elastic r

also allows s

y in-situ vertic

ge vertical fin

d their mode s

ertical 

V
[

1

n be calculated

mations in the 

Vertical 

range for the 

some 

cal response.

nite element 

shapes are 

alue: 
[Hz] 

4.7 

5.5 

6.5 

8.0 

12.8 

99 

d. 



100 

 

The natural frequencies for the existing bridge vertical were calculated with the equations 

described in Chapter 2.1. For the existing vertical, a fixed-fixed boundary condition was 

chosen (Eqn. [2.2]) and a first torsional frequency (ωtorsion) of 6.0 Hz was determined and is 

slightly less than that predicted with the FEM. This may be due to the rigid end connection 

assumption used in the analytical formulations. The torsional natural-frequencies for the 

existing vertical were summarized in Table 4.12. 

 

Since there was no experimental data available for the existing vertical, the analytical result 

and the finite element result were compared to the torsional natural frequency determined 

by Higgins and Turan 2009. The finite element results are reasonably close to the ones 

obtained by Higgins and Turan differing only by 3.1 %. The results obtained by the 

approximation of Carr are further off, differing by 7.7 %. 

Table 4.12: Natural frequency comparison for the existing vertical 

Description: Chapter: Eqn. / Table: 
Value: 
[Hz] 

Approximate analytical method (Carr) 2.1.2 [2.2] 6.0 

Finite element model 4.2.3.1 Table 4.11 6.5 

Higgins and Turan 2009 (U13-L13 after revision in 1997) 6.7 
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Figure 4.25: FEM normal stresses (σw,z) at the flange tips along the span length 
(z-axis stresses) for the existing bridge vertical 

 

Figure 4.25 shows a stress peak at the center location of the I-section. These stress peaks 

are a result from the load induction method chosen for this finite element model as 

described in Section 4.2.1. Only six single nodes in the cross-section of the I-section at the 

center of the existing vertical were used (as shown in Figure 4.21 and Figure 4.22) to 

induce the angle of twist of 9 degrees. Therefore, stress concentrations at these six 

locations were expected. Since these concentrations are an artifact of the selected modeling 

approach and are nonexistent in the existing bridge vertical, the stress peaks in Figure 4.25 

were removed and the resulting graph for the top flange tip is shown and compared to the 

analytical expression results in Figure 4.26. For the top flange, the stress maximum closer 

to the ends was determined to be 145.5 MPa (21.1 ksi) and the maximum at the center of 

the vertical was determined to be 160.7 MPa (23.3 ksi). The stress peaks at the end of the I-
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section are in the same location as described for the experimental setup in Chapter 4.1.3.6. 

The location of the stress concentration in the top flange was shown in Figure 4.9. It should 

be noted that since the results of the finite element model data for the normal stresses due 

to warping were modified, to remove stress concentrations, the peak stresses at the center 

location of the I-section may differ from the results shown in Figure 4.26. 

 

Normal stresses in the flange tips were also calculated using equation [2.19]. The 

maximum normal stress found in the region of the gusset plate for the analytical data was 

148.9 MPa (21.6 ksi) and 146.9 MPa (21.3 ksi) for the center of the vertical. 

Figure 4.26: Comparison of the analytically predicted normal stresses 
at the tips of the top flange for the existing bridge vertical 

 

The maximum normal stresses in the tips of the flanges due to warping in the existing 
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calculation was 88.3 MPa (12.8 ksi); and the one determined from the finite element model 

was 99.3 MPa (14.4 ksi), this is a difference of 12.5%. 

Figure 4.27: Comparison of the analytically predicted normal stresses 
in the top gusset plate for the existing bridge vertical 
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4.3 Further Evaluation of Comparative Results 

4.3.1 Boundary Condition: Both Ends Fixed, Uniformly Distributed Torque (AISC 

Steel Design Guide Series 9, Case 7) 

Based on findings comparing the analytical results and the laboratory results described 

previously, it was determined that Case 7 from the AISC Steel Design Guide Series 9 

would better and more conservatively predict the in-situ wind induced response of the 

bridge verticals. Case 7 has fixed-fixed boundary conditions and a uniformly distributed 

torque (t) along the span length, as shown in Figure 4.28. 

Figure 4.28: Boundary conditions and definitions for Case 7 
(Steel Design Guide Series 9, 2003) 

 

To determine the angle of twist from the uniformly distributed torque, the following 

equation is used: 

1 cosh
cosh 1.0 1 sinh

2 sinh

l
tla z z z za

lGJ a a l a
a



                
     

   

 [4.10]

 

The angle of twist and the normal stress due to warping have been calculated, based on the 

rotation equation [4.10] and equation [2.19], respectively. The results are shown in 

Figure 4.29. 
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Figure 4.29: Calculated rotation and normal stress along the I-section for the existing vertical with 
AISC Steel Design Guide Series, Case 7 (uniform torque along length) 

 

The maximum normal stresses due to warping were determined to be 202.4 Mpa (29.35 

ksi) and are located at the ends of the vertical at the gusset plates. 

 

Unfortunately, no finite element results or experimental results were available to compare 

with the results determined in Figure 4.29. Applying uniform torque along the length of the 

member would produce stress concentrations that were observed for the concentrated 

torque seen previously. However, considering the close correlation between the AISC 

design guide and previous FEM and experimental results, the predicted stress magnitudes 

and distributions are credible. 
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4.3.2 Comparison of Experimental and Analytical Results 

All the results are shown in Figure 4.30. In this figure, the experimental results are shown 

as solid diamond symbols. The figure contains the above reported FEM results (circular 

symbols) for the laboratory specimen, existing bridge vertical with concentrated torque at 

mid-length, and existing bridge vertical with uniformly distributed torque along the length. 

The figure also contains the AISC design guide results (square symbols) for the laboratory 

specimen, existing bridge vertical with concentrated torque at mid-length, and existing 

bridge vertical with uniformly distributed torque along the length 

Figure 4.30: Summary of experimental and analytical (FEM and calculated) results 
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As the end plate in the experimental vertical is not fully rigid (as measured experimentally, 

as discussed in section 3.5.1), an additional finite element model (shown as “rigid end pl.” 

in Figure 4.30) was created to see what would happen if a more rigid end plate in the 

experimental vertical finite element model were used and how it might change the angle of 

twist and stress distribution. As seen in Fig. 4.30, using a more rigid end plate 

(approximately 16 in. thick) produced results between the experimental vertical finite 

element model and the existing bridge vertical.  

 

From Figure 4.30, it can be seen that using the AISC Steel Design Guide Series 9, Case 7 

resulted in the highest warping stresses in the existing bridge vertical (202.4 Mpa (29.35 

ksi)), and is therefore the most conservative approach to predicting the stress magnitude in 

the vertical at the gusset plate location.  
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5 Fatigue Life Development 

Higgins and Turan (2009) listed different verticals of the Astoria-Megler Bridge that were 

considered for possible wind induced vibrations. These verticals are listed in Table 5.1. 

Locations of these verticals can be found in bridge diagrams in Appendix A. 

Table 5.1: Bridge verticals considered for wind excited response 
 (edited from Higgins and Turan, 2009) 

Vertical: 
Torsional 

Frequency: 
[Hz] 

Member Length for 
Fatigue 

Calculations: 
(mm) / [in] 

U9-L9 6.002 25,833 / [1,017] 

U12-L12 4.857 19,042 / [750] 

U19-L19 5.992 25,860 / [1,018] 

U27-L27 
Before 1986 8.088 19,785 / [779] 

After 1986 7.528 19,785 / [779] 

U28-L28 
Simplified 5.122 19,839/ [781] 

Whole Frame 7.692 19,839/ [781] 

U13-L13 

U13-M13 (Before 1997) 4.154 25,146 / [990] 

U13-M13 (After 1997) 9.459 25,146 / [990] 

M13-L13 (Before 1997) 6.733 19,125 / [753] 

M13-L13 (After 1997) 6.733 19,125 / [753] 
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5.1 Fatigue Life Calculation 

To estimate the fatigue life of an existing bridge vertical, equation [2.21] given in Chapter 

2.3 was re-arranged to determine the number of cycles that can be applied for a given stress 

range and fatigue detail. The re-arranged equation is given as: 

0.333

1

0.333

f f
SR

SR

C C
F N

N
F

 
   
 

 [5.1]

 

The fatigue life of the vertical can be predicted by using equation [5.1], since the stress 

range of a specific angle of twist can be determined from analytical calculations (in this 

case, from AISC Steel Design Guide Series 9, Case 7, as described in Chapter 4.3). 

 

To calculate the fatigue life for the existing bridge verticals, an average value for the 

location of zero rotation in the member was assumed to be the full connection length 1016 

mm (40 in) from the work point of the gusset plate. This conservatively results in a shorter 

length member which produces higher warping stresses for a given angle of twist at mid-

length. The connection end distance was twice subtracted from the length of the verticals 

listed in Table 5.1 to account for the gusset plate chord connections above and below the 

verticals. This resulting member length was then used in stress range calculations. The 

stress range was calculated at the tip of the flanges of the I-section. 

 

To predict the total fatigue life of the bridge vertical, a one-hour long duration of vibration, 

occurring at the vertical member’s torsional natural frequency, were assumed. The 
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predicted fatigue life, based on different analytically predicted rotational angle ranges for 

bridge vertical L13-M13 (after 1997), are shown in Table 5.2. 

Table 5.2: Fatigue life prediction, for the L13-M13 (after 1997) bridge vertical 

Rotational 
Angle  

Range: 
(θ) 

[deg] 
(Angle of Twist) 

Stress Range: 
(FSR) 

(MPa) 
[ksi] 

Life Cycle :
(N) 

Category C

Life Cycle: 
(N) 

Category B

One-Hour 
Event Count: 

Cat C: Cat B: 

2 
(+/- 1o ) 

44.8 
[6.5] 

∞ ∞ ∞ ∞ 

4 
(+/- 2o ) 

89.6 
[13.0] 

1,991,032 ∞ 82 ∞ 

6 
(+/- 3o ) 

134.4 
[19.5] 

589,217 1,606,957 24 66 

8 
(+/- 4o ) 

179.2 
[26.0] 

248,361 677,349 10 28 

10 
(+/- 5o ) 

223.9 
[32.5] 

127,076 346,571 5 14 

12 
(+/- 6o ) 

268.7 
[39.0] 

73,499 200,452 3 8 

14 
(+/- 7o ) 

313.5 
[45.5] 

46,264 126,174 2 5 

16 
(+/- 8o ) 

358.3 
[52.0] 

30,981 84,493 1 3 

18 
(+/- 9o ) 

403.1 
[58.5] 

21,751 59,321 1 2 

20 (+/- 10o ) 
447.9 
[65.0] 

15,851 43,231 1 2 

 

The AISC Steel Manual defines the threshold fatigue stress range (FTH) for Category C as 

69 MPa (10 ksi) and for Category B as 110 MPa (16 ksi), as described in Chapter 2.3 and 
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shown in Figure 2.7. Therefore, the fatigue life for both fatigue categories with a given 

angle of twist range of 2 degrees (+/- 1 degree) or less is expected to be infinite. If 

Category B is the assumed stress category, then long life is expected up to an angle of twist 

range of 4 degrees (+/- 2 degrees). 

 

5.2 Fatigue Life Prediction 

To predict the fatigue life of the bridge verticals likely to be most influenced by torsional 

vibrations, it was assumed that three one-hour events occur each year. Therefore, the one-

hour event count for each vertical was divided by three and the results for the critical 

verticals for fatigue Category C are shown in Figure 5.1. 

Figure 5.1: Fatigue life prediction for critical bridge verticals (Category C) 
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The predicted fatigue life for the verticals in Table 5.1 for fatigue Category B are shown in 

Figure 5.2. As seen in these figures, if the twist angles are sufficient, some verticals may be 

approaching the end of their fatigue lives or even exceeded their anticipated fatigue lives. 

Figure 5.2: Fatigue life prediction for critical bridge verticals (Category B) 
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6 Summary and Conclusions 

Vortex shedding for some long truss verticals produced wind-induced torsional vibration in 

an important steel truss bridge. These vibrations can create large numbers of repeated stress 

cycles for which the members and connections were not designed. To assess the impact of 

this behavior on the service life of the bridge members, an experimental and analytical 

investigation was undertaken. A full-scale representation of a truss vertical that exhibited 

such induced torsional response was fabricated and tested. Experimental data were 

collected to characterize the rotational behavior and the stress distribution along the 

vertical. The experimental data were compared with existing analytical methods and 

predictions from finite element models. The expected fatigue lives of the existing bridge 

verticals were predicted based on assumed storm duration and recurrence.  

 

Based on the experimental and analytical results, the following conclusions are presented:  

 The experimental specimen was representative of a member with fixed end at the 

gusset plate and free end (warping unrestrained) at the location of the applied 

torque. 

 The end plate used in the experimental program for the load induction induced 

undesired stress concentrations in this region which do not occur in the actual 

bridge members. The high localized stress would likely be the location for crack 

initiation for the test specimen, which would not occur in-situ.  

 The FEM reasonably predicted the warping stresses in the experimental vertical 

along the length as well as within the disturbed regions: at the end plate as well as 

within the gusset plate connection.  
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 The experimentally measured location of the maximum fatigue stress range 

occurred in the vertical member as it entered the gusset plate connection (measured 

at the first row of fasteners). The finite element model, as well as the calculations 

using the AISC Steel Design Guide Series 9 also predicted the location for a 

possible fatigue crack initiation in the bridge vertical at the first bolt line 

connection to the gusset plate. This corresponds to similar locations identified for 

other bridges (Commodore Barry Bridge, Delaware, USA and Dongping Bridge, 

China) in previous research papers. 

 Experimentally measured and FEM predicted stresses in the gusset plate 

connection were smaller than those in the vertical and would not likely control the 

fatigue life. 

 The experimental results including twist angle, stress distribution, and stress 

magnitude were well captured by both the finite element model and the analytical 

equations. 

 Calculations using the AISC Steel Design Guide Series 9, Torsional Analysis of 

Structural Steel Members, showed good correlation with the experimental results 

for the angle of twist and warping stress magnitude in the vertical. However, to 

perform these calculations, the point of zero rotation in the existing bridge vertical 

is required. 

 The location of zero rotation was identified experimentally at approximately half 

the length of the gusset plate connection where it overlaps the vertical member.  

 The existing bridge verticals are best modeled as rigid-rigid end connections with 

uniformly distributed torque along the member length. The member length is 

conservatively estimated as the end of gusset plate to end of gusset plate (or fill 
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plate, whichever are longer). This produces the highest warping stress at the ends 

of the member for a given twist angle at mid-length for use in fatigue life 

estimation.  

 It was determined that fatigue in the existing bridge vertical (L13-M13) is unlikely, 

as long as the angle of twist of the vertical is below 2 degrees range of motion (+/- 

1 degree). 

 For the assumed storm duration and recurrence, if the angle of twist induced in-situ 

is sufficient, some of the bridge verticals may be approaching the end of their 

expected fatigue lives.  

The following recommendations are given: 

 To locate possible fatigue cracks in the Astoria-Megler Bridge, bridge inspectors 

should concentrate their efforts on to the first row of bolts in the vertical and 

inspect the gusset plates above the chord line. The mid-height elevation of the 

vertical is another location that shows relatively high twisting induced stress 

ranges and should be included for the longer bridge verticals. 

 To use the AISC Steel Design Guide Series 9, the location of zero rotation in the 

vertical must be defined. This research project suggests that the distance between 

the end of the vertical and the point of zero rotation is taken as half the distance 

between the end of the vertical and the end of the gusset plate or the fill plate, 

whichever is longer. It is conservative to use the shortest member length and this 

can be taken from the end of the gusset plate at the bottom of the member to the 

end of the gusset plate on the top of the member. 
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6.1 Further Research 

The primary interest of this research project was to design and conduct torsional tests for 

an oscillating vertical of the Astoria-Megler Bridge. To conduct fatigue tests of the vertical 

would require a different load induction system which eliminates the stress concentration 

at the end plate detail connecting the member to the torque actuator. It would be desirable 

to conduct a fatigue test to verify that cracking would initiate in the vertical at the gusset 

plate connection. However, a number of replicate specimens would be required to 

satisfactorily categorize the fatigue performance. 

 

The results from this research project may be used to develop retrofit strategies for the 

existing bridge verticals. The following alternative solutions could be analyzed: 

 Sloshing dampers 

 Tuned mass dampers 

 Adding torsional stiffness to the I-section (closing the open cross section) 

 Disturbing the wind flow around the cross section 
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APPENDIX A – SELECTED ORIGINAL BRIDGE DRAWINGS 

A. 	

  



 

Figure A.1 : Truss dimensiions main trussses 
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Figurre A.2 : Truss ddetail L13 
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APPENDIX B – FABRICATION DRAWINGS FOR THE 

EXPERIMENTAL SETUP 

B. 	
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Figure B.1 : New fabrication drawing, parts 
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Figure B.2 : New fabrication drawing, assembly 
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APPENDIX C – SELECTED FABRICATION DOCUMENTS 

C. 	
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Figure C.1 : Fabrication report for the laboratory vertical 
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Figure C.2 : Welding specifications for the laboratory vertical 
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Figure C.3 : Welding specifications for the laboratory vertical (continued) 
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Figure C.4 : Welding certifications 
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Figure C.5 : Welding certifications (continued) 
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Figure C.6 : Material certifications Steel 1 
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Figure C.7 : Material testing certifications Steel 1 
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Figure C.8 : Material testing certifications Steel 1 (continued) 
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Figure C.9 : Material testing certifications Steel 1 (continued) 
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Figure C.10 : Material testing certifications Steel 1 (continued) 
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Figure C.11 : Material certifications Steel 2 
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Figure C.12 : Material testing certifications Steel 2 
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Figure C.13 : Material testing certifications Steel 2 (continued) 
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Figure C.14 : Certificate of inspection for the bolts 

 

  



144 

 

Figure C.15 : Certificate of inspection for the bolts (continued) 
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APPENDIX D – FINITE ELEMENT MODE SHAPES 

D. 	
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Figure D.1 : Laboratory vertical FEM mode shape 1 

 

Figure D.2 : Laboratory vertical FEM mode shape 2 
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Figure D.3 : Laboratory vertical FEM mode shape 3 

 

Figure D.4 : Laboratory vertical FEM mode shape 4 
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Figure D.5 : Laboratory vertical FEM mode shape 5 

 

Figure D.6 : Bridge vertical (L13-M13) FEM mode shape 1 
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Figure D.7 : Bridge vertical (L13-M13) FEM mode shape 2 

 

Figure D.8 : Bridge vertical (L13-M13) FEM mode shape 3 
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Figure D.9 : Bridge vertical (L13-M13) FEM mode shape 4 

 

Figure D.10 : Bridge vertical (L13-M13) FEM mode shape 5 
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APPENDIX E – SELECTED DESIGN EQUATIONS AND DESIGN 

CHARTS FROM THE AISC STEEL DESIGN GUIDE 

SERIES 9 

E. 	
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Figure E.1 : Equation for the rotation of Case 6 (AISC Steel Design Guide Series 9) 
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Figure E.2: Design chart for θ Case 6 (AISC Steel Design Guide Series 9) 

 

Figure E.3: Design chart for θ’ Case 6 (AISC Steel Design Guide Series 9) 
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Figure E.4: Design chart for θ’’ Case 6 (AISC Steel Design Guide Series 9) 

 

Figure E.5: Design chart for θ’’’ Case 6 (AISC Steel Design Guide Series 9) 
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Figure E.6: Equation for the rotation of Case 7 (AISC Steel Design Guide Series 9) 

 

Figure E.7: Design chart for θ Case 7 (AISC Steel Design Guide Series 9) 
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Figure E.8: Design chart for θ’ Case 7 (AISC Steel Design Guide Series 9) 

 

Figure E.9: Design chart for θ’’ Case 7 (AISC Steel Design Guide Series 9) 
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Figure E.10: Design chart for θ’’’ Case 7 (AISC Steel Design Guide Series 9) 
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Figure E.11: Equation for the rotation of Case 9 (AISC Steel Design Guide Series 9) 

 

Figure E.12: Design chart for θ Case 9 (AISC Steel Design Guide Series 9) 
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Figure E.13: Design chart for θ’ Case 9 (AISC Steel Design Guide Series 9) 

 

Figure E.14: Design chart for θ’’ Case 9 (AISC Steel Design Guide Series 9) 
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Figure E.15: Design chart for θ’’’ Case 9 (AISC Steel Design Guide Series 9) 
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APPENDIX F – TORSIONAL STIFFNESS OF AN I-SECTION 

F. 	
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Finite element calculations were run to determine the stiffness of an I-section with and 

without openings in the web. The cross section of the I-section was modeled with the same 

dimensions as the one used in the test setup. The length of the I-section matches the length 

of the vertical rebuilt for the tests in the laboratory. To determine the stiffness of the two 

different I-sections, zero plasticity in the material was assumed. 

 

It must be mentioned that the web perforations did not have a great impact on the overall 

stiffness of the I-section. However, impacts of the boundary conditions were far greater. 

Therefore, the boundary conditions were chosen similar to those in the test setup. An 

endplate was placed onto one side of the I-section. The center point of the endplate and the 

I-section were located at the same place. At this location, the first boundary condition was 

placed (BC1). The displacements in all directions were restrained (Ux= 0, Uy= 0, Uz= 0; 

where U is the variable for displacement and the subscript is the axis in which the 

displacement is restrained), but the rotations were left unrestrained. On the other end of the 

I-section (BC2), the top and the bottom flange was restrained rigidly (Ux= 0, Uy= 0, Uz= 0; 

URx= 0, URy= 0, URz= 0; where UR is the variable for the rotational displacement and the 

subscript is the axis in which the rotation is restrained). The web was left unrestrained. A 

schematic drawing of the model is shown in Figure F.1. 

 

Figure F.1: Schematic drawing of the I-section boundary conditions 
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These boundary conditions were assumed to be close to the ones used in the test-setup. 

 

To build these models steel was used as a material. All material properties are listed in 

Table F.1 

Table F.1: Material properties used in the torsional stiffness of an I-section models 

Description: Variable: Value: 

Modulus of elasticity for steel Es 200000 MPa (29000 ksi) 

Poisson’s ratio for steel υs 0.3 

Material properties for steel fy / fu N/A (elastic behavior) 

 

All chosen dimensions are listed in Table 4.2. The decrease of the web area due to the 

perforations was calculated and is given in Table 4.2. 
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Table F.2: General sectional and overall dimensions of the experimental-setup FEA models 

Description: Variable: Dimension: 

Total length (with endplate) Lsetup 10255.3 mm / (403 ¾ in) 

Length of the I-section LI-sectiom 10236.2 mm / (403 in) 

Total depth of I-section dI-section 657.2 mm / (25 7/8 in) 

Flange width bf 406.4 mm / (16 in) 

Flange thickness tf 12.7 mm / (1/2 in) 

Web height h 631.8 mm / (24 7/8 in) 

Web thickness tw 7.9 mm / (5/16 in) 

Endplate thickness tendplate 19.1 mm / (3/4 in) 

Area of one perforation Aperforation 150386.8 mm2 / (233.1 in2) 

Web area without perforations Aweb,tot 6467487.1 mm2 / (10024.6 in2) 

Web area with perforations Aweb,net 5264406.4 mm2 / (8159.8 in2) 

Decrease of web area - 18.6 % 

 

The model was loaded at the endplate, as was done in experimental testing. A moment of 

50 kip-inches was applied at the center of the endplate and the rotation at this location was 

measured (URz). The model without perforations is shown in Figure F.2, and the model 

with perforations in Figure F.3. 



 

Figure F.2

 

Figure F
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Considering these results, the finite element models for the experimental setup and the 

existing vertical could have been modeled without perforations in the I-section web. 

However, since the web perforations influence the natural frequency of the I-section, the 

perforations were included. 


