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cus on identifying and estimating attrition (missing) parameters under the non-ignorable
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Inference about Missing Mechanisms in Longitudinal Studies with a

Refreshment Sample

1 Introduction

Compared to traditional cross-sectional data, panel or longitudinal data provide richer

information (Hirano et al., 2001). In a longitudinal study, each unit or object is observed

repeatedly over a period of time so that each unit yields a series of observations. If

designed properly, a longitudinal study often is more efficient and requires a smaller

sample to achieve the same power as a cross-sectional study with the same number of

subjects. This is because repeated measurements from the same subject are often cor-

related, and subjects serve as natural blocks that reduce the variability of random errors

(Liang and Zeger, 1986; Hirano et al., 2001; Fitzmaurice et al., 2008; Si et al., 2014).

For this reason, longitudinal studies have been widely used in many scientific areas such

as clinical trials, psychology and economics.

However, longitudinal studies often suffer from attrition where some of the subjects

are unable to provide a response in the follow-up portion of the study. This results in

incomplete panel data to which traditional statistical methods cannot be applied directly.

For example, the Netherlands Institute for Transport Policy Analysis has been conduct-

ing the Netherlands Mobility Panel since 2013 (Hoogendoorn-Lanser et al., 2015). This

panel currently involves two waves of data collection completes two-wave of data. The

initial wave consists of 2380 households as experimental units. With almost 30% drop-

ping out, there are only 1685 households remaining in the study at the time of the sec-
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ond wave. Bias can be introduced in statistical inferences if attrition is ignored and the

missingness is in fact systematically related to responses. It is important to understand

the missing mechanism before making any statistical inferences about the population.

Unfortunately, partially observed panel data alone are insufficient for distinguishing be-

tween missing mechanisms (Rubin, 1976; Hirano et al., 2001; Fitzmaurice et al., 2008;

Deng et al., 2013; Si et al., 2014).

Researchers have proposed different models to explain the attrition process (Rubin,

2004). Statistical methods are then proposed to handle missingness and make valid

inferences about the population, under these missingness assumptions.

Three different models have been proposed to explain the attrition process (Rubin,

2004). The first model is Missing Completely at Random (MCAR). This model assumes

that the missingness is independent of both variables that are always observed and vari-

ables that are potentially missing. MCAR implies that the complete set, which consists

of subjects who provide complete information, can be considered as a representative

random sample from the population. Therefore, traditional methods for longitudinal

data applied to the complete set can provide valid inferences.

The second model is Missing At Random (MAR), or the ignorable missingness

model. This model assumes that the missing mechanism depends solely on variables

that are always observed. For example, in a drug study, individuals might tend to drop

out of the study and refuse to provide future response due to pre-treatment examination

results that make them feel worried or embarrassed; the missingness of responses de-

pends only on examination results which are always observed for every individual in the

study. This missing mechanism makes the complete set no longer a representative sam-
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ple of the population. Any inferences drawn from the complete set are subject to bias.

Extensive efforts have been made to develop methods that can properly analyze MAR

data. Imputation is the primary technique. The key implication of the MAR assumption

is that the relationship between observed variables and missing variables is the same

among subjects who provide complete information (the complete set) and those who

do not (the incomplete set). Usually, a model for this relationship is built based on the

complete set and used to impute missing values in the incomplete set. Single imputa-

tion is an approach that replaces each missing value with a reasonable guess. Statistical

methods can be applied to the imputed panel as if it were fully observed (Rubin, 2004).

A clear drawback of single imputation is that it is unable to take into account the un-

certainty associated with the imputed values. An improvement is offered by multiple

imputation which replaces each missing value with multiple guesses drawn from an im-

putation model (Rubin, 2004; Fitzmaurice et al., 2008). As a result, multiple panels are

produced to give multiple estimates for parameters, which will be properly combined at

the end to give the final estimates. The uncertainty of imputation is incorporated in the

computation of standard errors, which accounts for both the variation in estimation and

the variation in multiple imputations. Imputation techniques rely on the MAR assump-

tion. Violations of the assumption can lead to biased estimation and inference (Deng

et al., 2013).

The third model is Missing Not At Random (MNAR), or the non-ignorable missing

model. It further relaxes the assumption for the missing mechanism and allows the

missingness to depend on both the observed variables and variables that are potentially

missing. This model has identification issues as the information provided in the panel
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data is not enough to make inferences about the population (Rubin, 1976, 2004; Hirano

et al., 2001; Fitzmaurice et al., 2008). Hausman and Wise (1979) developed a special

case of the MNAR model that assumes the missingness depends solely on the variables

that are potentially missing. This restriction on the missing mechanism makes the model

identifiable, and it is usually referred to as the HW model in literature. Hausman and

Wise (1979) showed that parameters can be estimated through a maximum likelihood

approach for this special attrition model. Hirano et al. (2001) pointed out the pitfalls

of assuming the MAR model or the HW model in panel studies. Even though they are

both theoretically plausible and identifiable given the panel data, they can lead to very

different inferences, and one is unable to distinguish between them.

Hirano et al. (2001) first proposed the use of additional information from refresh-

ment samples in longitudinal studies to make the MNAR model identifiable. A refresh-

ment sample is a new random sample taken from the target population during follow-up

waves when attrition starts to occur. Many large panel studies now routinely include

refreshment samples (Deng et al., 2013). For instance, many of the longer longitudinal

studies of the National Center for Education Statistics, including the Early Childhood

Longitudinal Study and the National Educational Longitudinal Study, refill their samples

once or multiple times during the study. The National Educational Longitudinal Study,

for example, followed 21,500 eighth graders every two years from 1988 until 2000 and

included refreshment samples in years 1990 and 1992. The Netherlands Mobility Panel

completed its initial survey data in 2013. A follow-up survey was administrated in 2014

and a refreshment sample was considered and incorporated.

Methods have been developed to analyze MNAR data with the use of a refresh-



5

ment sample. Hirano et al. (2001) proposed an additive non-ignorable model that takes

MCAR, MAR and HW models as special cases to gain insights and make inferences

for the attrition process. They provided and proved the fundamental identification the-

ory and developed an estimation procedure for a two-wave binary response with no

covariate. Nevo (2003) exploited the refreshment sample to compute weights that apply

to the panel data. Parameters of interest were estimated through the method of mo-

ments, comparing between moments of the weighted panel and those of the refreshment

sample. Bhattacharya (2008) converted Hirano’s fundamental identification theory into

conditional moment restrictions to make inferences about the attrition process. Com-

pared to the method of Hirano et al. (2001), Bhattacharya’s offers a simpler proof under

weaker conditions. Kim et al. (2009) extended the model to account for sample attri-

tion in the presence of population attrition. They proposed using a generated counter

factual sample and the refreshment sample to identify both attrition processes. Deng

(2012) and Deng et al. (2013) extended the additive non-ignorable model by includ-

ing two sets of refreshment samples to handle three-wave binary response data. They

took a fully Bayesian approach and used Markov chain Monte Carlo for estimation.

Si et al. (2014) presented a semi-parametric additive non-ignorable model to analyze

multivariate categorical responses in a two-wave panel with one refreshment sample.

This approach adopted the additive non-ignorable model for the attrition process and

modeled the multinomial survey responses with a Dirichlet process mixture.

In this dissertation, we present two new approaches that handle MNAR data in a

two-wave panel with one refreshment sample. The first method is a fully parametric

method based on likelihood. Inferences for the population are made through maximum
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likelihood estimators. Adaptive Gaussian quadrature is used to overcome the integra-

tion difficulty introduced by the missing data in the construction of the likelihood. The

second method is a semi-parametric approach where the kernel density estimator serves

as the non-parametric component of the method and the additive non-ignorable attri-

tion model (Hirano et al., 2001) is adopted as the parametric component. When the

likelihood is correctly specified, the full-likelihood approach gives the most efficient

estimators and acts as the benchmark for comparing different methods that analyze

MNAR data in a two-wave panel. However, when the likelihood is misspecified, the

full-likelihood method can result in bias and invalid inferences. The semi-parametric

method, on the other hand, drops the requirement of a distributional specification and

provides consistent inferences for the attrition process under different population con-

ditions. In simulations, the kernel density based semi-parametric estimators perform

better in terms of the mean square errors than the method of Bhattacharya (2008).

We first provide a more thorough literature review in chapter 2. In particular, we use

a two-wave study to illustrate the three main missing mechanisms and common meth-

ods for analyzing the corresponding data. In chapter 3, we introduce the refreshment

sample as a source of important supportive information for analyzing missing data. We

then formally set up the scenario which is the primary focus of this dissertation: two-

wave panel data with one refreshment sample. In chapter 4, we present the first method,

a full-likelihood parametric method, and provide details on constructing the likelihood

with adaptive Gaussian quadrature. The kernel density based semi-parametric model is

introduced as the second method. Its asymptotic properties are investigated. Extensive

simulation results are given in chapter 5 to understand the finite-sample performance of
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the proposed methods and to verify and confirm our theoretical findings. A real data

application using the Netherlands Mobility Panel is then attempted. In chapter 6, the

semi-parametric method is extended to incorporate a time-invariant binary covariate.

Corresponding asymptotic properties are assessed by simulations. Chapter 7 summa-

rizes the present research and discusses future research.
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2 Literature Review

In this chapter, we focus on simple two-wave panel data where only responses are

measured with no covariate. We use these data to illustrate the implications of various

missing mechanisms and the corresponding consequences on statistical inferences. We

also describe common methods for dealing with the various types of missing data.

2.1 Two-Wave Panel Data

Let Y i = (Yi1,Yi2), i = 1,2, ...,N, be bivariate responses obtained in a two-wave lon-

gitudinal study, with i indexing subjects. It is assumed that the responses in the first

wave Yi1 are always observed, while responses in the second wave Yi2 are potentially

missing. Let Wi be the indicator of missingness for Yi2 with Wi = 1 if Yi2 is observed

and Wi = 0 otherwise. For a given sample from the population, we assume there are

nc subjects that have both observations in Y , which are referred as the “completers” in

literature. The data set associated with completers is called the complete set. The re-

maining N− nc subjects (“incompleters”) have Y2 missing, and the corresponding data

set is referred to as the incomplete set. Table 2.1 shows the structure of the data.

We assume observations from different subjects are independent and identically dis-

tributed. The joint distribution of Y i and the attrition (missingness) model are denoted
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Obs Y1 Y2 W

Complete
set

1 Y11 Y12 W1=1
...

...
...

...
nc Ync1 Ync2 Wnc=1

Incomplete
set

nc +1 Y(nc+1)1 WNc+1=0
...

...
...

N YN1 WN=0

Table 2.1: Case study data set

as follows:

(Y i | θ)∼ f (y | θ),

(Wi = 1 | yi1,yi2,β )∼ Bernoulli(π(yi1,yi2,β )),

π(yi1,yi2,β ) = P(Wi = 1 | yi1,yi2,β ), (2.1)

where θ are parameters of the population distribution and β are the attrition parameters

for the attrition model denoted by P(Wi = 1 | yi1,yi2,β ). Then the observed likelihood

of a given data set is as follows:

Lobs(θ ,β | y,w) =
N

∏
i=1

f (wi,yi1,yi2 | θ ,β )

=L(completers)L(incompleters)

=
nc

∏
i=1

f (Wi = 1,yi1,yi2 | θ ,β )
N

∏
i=nc+1

f (Wi = 0,yi1 | θ ,β )

=
nc

∏
i=1

f (yi1,yi2 | θ)P(Wi = 1 | yi1,yi2,β )
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×
N

∏
i=nc+1

∫
f (yi1,y2 | θ)P(Wi = 0 | yi1,y2,β )dy2, (2.2)

where Lobs denotes the observed likelihood of the data. Since we do not observe Y2

for the incomplete set, the likelihood for the observed part of the incomplete set is ob-

tained by integrating the full likelihood f (y1,y2 | θ)P(W = 0 | y1,y2,β ) with respect to

y2. Three different classes of models have been considered for the missing mechanism

which determines the form of P(W = 1 | y1,y2,β ).

2.2 MCAR

The first type of missing mechanism is Missing Completely At Random. It assumes

that the missingness is completely independent of both variables that are always ob-

served and variables that are potentially missing. In our simple two-wave scenario, the

MCAR assumption implies that missingness is independent of both Y1 and Y2 so that

P(Wi = 1 | yi1,yi2,β ) = P(Wi = 1 | β ).

The likelihood (2.2) can then be factorized into

Lobs(θ ,β | y,w) =
nc

∏
i=1

f (yi | θ)
nc

∏
i=1

P(Wi = 1 | β )
N

∏
i=nc+1

f (yi1 | θ)
N

∏
i=nc+1

P(Wi = 0 | β ).
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The MCAR assumption removes the dependency of missingness on responses. The

attrition model moves outside of the integral, which extremely simplifies the likelihood.

Inferences about θ can then be based upon the information provided by observed Y i’s

alone, ignoring the part related to the attrition model, because the two sets of parameters

spaces θ and β are separable. That is, we can ignore the likelihood of missingness

and use the likelihood of observed responses only, ∏
nc
i=1 f (yi | θ)∏

N
i=nc+1 f (yi1 | θ), to

estimate parameters of interest, provided the joint distribution is correctly specified.

This missing mechanism model is ignorable as one can separate inferences between the

θ and β in the likelihood. The MCAR assumption also implies that the completers can

be treated as a random representative sample from the population. So if one deletes the

incomplete set and uses only the complete set to analyze the panel data, valid inferences

can also be obtained but with the efficiency being compromised.

2.3 MAR and Imputation

The second type of missing mechanism is Missing At Random. In terms of the simple

case study, we say Y2 is MAR if the probability of observing Y2 depends on the value of

Y1, but not on the value of itself:

P(Wi = 1 | yi1,yi2,β ) = P(Wi = 1 | yi1,β ).

In other words, if complete and incomplete cases with exactly the same value of Y1

have a systematic difference in the value of Y2, then the data do not satisfy the MAR
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assumption. Under this model, the observed likelihood (2.2) can be factorized into

Lobs(θ ,β | y,w) =
nc

∏
i=1

f (yi | θ)
nc

∏
i=1

P(Wi = 1 | yi1,β )
N

∏
i=nc+1

f (yi1 | θ)
N

∏
i=nc+1

P(Wi = 0 | yi1,β ).

This factorization is due to the fact that the missingness is independent of Y2 given Y1.

The attrition model can also be moved outside of the integral. With the complete sep-

aration in likelihoods between θ and β , the MAR is also an ignorable model. If the

attrition parameters β are not the primary interest, we can ignore the attrition model’s

contribution to the likelihood and obtain the maximum likelihood estimates for θ by

maximizing the likelihood of observed responses, ∏
nc
i=1 f (yi | θ)∏

N
i=nc+1 f (yi1 | θ). In

contrast to the MCAR model, the complete set can no longer be considered as a repre-

sentative sample from the population when data are MAR. As a result, inferences based

on only the complete data are invalid under MAR.

The fact that missingness is independent of Y2 given Y1 implies that the conditional

distribution of Y2 given Y1 is the same in both completers and incompleters. That is,

f (yi2 | yi1) = f (yi2 | yi1,Wi = 1) = f (yi2 | yi1,Wi = 0). (2.3)

This provides us the idea of building an imputation model as the conditional distribution

of Y2 given Y1 from completers and make predictions for the missing Y2 values of the

incompleters. Once the imputation for every missing value is completed, we can pretend

that we have fully observed panel data. Rubin (1976); Rubin and Schafer (1990) proved

the validity of imputation in the analysis of longitudinal MAR data. The relationship

among conditional distributions in (2.3) not only provides the foundation for making
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imputations but also allows us to ignore the specification of a specific attrition model

when analyzing MAR data.

In single imputation, one replaces each missing value with an imputed value to create

complete panel data. Traditional statistical procedures for complete data analysis can

then be applied. For instance, one can impute each missing value in a variable by the

mean of its own observed values or by the conditional mean given other variables. Single

imputation is easy to use, but it implicitly treats missing values as known and fixed,

which fails to account for the variability of these missing values. As a consequence, the

resulting standard errors of estimators will be biased downward.

Improving upon single imputation, Rubin (1987) introduced multiple imputation to

account for the uncertainty of the imputed value and obtain valid statistical inferences.

The idea of multiple imputation is that one imputes the missing data from an imputation

model multiple times. Since we assume MAR, the conditional distribution of Y2 given

Y1 is equivalent to the conditional distribution of Y2 given Y1 in the complete set, that is,

f (yi2 | yi1) = f (yi2 | yi1,Wi = 1). Therefore, an imputation model f (yi2 | yi1) can be esti-

mated directly from the completers. The imputation process starts by filling up missing

data with random draws from this conditional distribution. For each imputed data set,

a traditional method can be applied to obtain a set of estimates and standard errors for

parameters of interest. Repeat this process several times, and one is able to produce mul-

tiple estimates and corresponding standard errors. Final estimates and standard errors

are given by aggregating these multiple results. It is important to understand that the

multiple imputation not only estimates missing values, but also preserves the variation

among them. Three main approaches have been developed to implement imputation.



14

There are the joint model approach, the conditional model approach and the likelihood

based model approach, which will be reviewed in the following subsections.

2.3.1 Joint Model

Consider our simple case study and assume that the conditional distribution of Y2

given Y1 can be modeled under the normality assumption as

Yi2 | Yi1 ∼ N(α0 +α1Yi1,σ
2).

This model is then fitted to completers who have observations on both Y1 and Y2 to

obtain estimates α̂ = (α̂0, α̂1) and σ̂2. The imputation process for each missing value

in Y2 proceeds by obtaining a new set of parameters (α∗0 ,α
∗
1 ,σ

∗) from the posterior

predictive distribution (Yuan, 2010):

(r−2)σ̂2

σ2 ∼ χ
2
r−2,

α ∼ N(α̂, σ̂2V−1).

where V = [1 Y 1]
T [1 Y1]. First, the σ∗ is drawn as

σ
∗2 =

(r−2)σ̂2

g
,
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where g is a random draw from χ2
nc−2, and nc is the number of completers. Then α∗ =

(α∗0 ,α
∗
1 ) can be drawn as

α
∗ = α̂ +σ

∗V−
1
2 Z,

where V−
1
2 represents the squared root of V−1, which can be obtained by the Cholesky

decomposition, and Z is a vector of two independent standard normal variables. The

missing value is imputed as

α
∗
0 +α

∗
1 y1 +σ

∗z,

where z is a realization from the standard normal distribution. One imputation set be-

comes complete after this whole process is repeated for every missing Y2 value. The

standard analysis can be applied to this imputation set to obtain estimates as if the data

were fully observed. Multiple imputation sets are produced in the same manner and

estimates are combined by rules introduced by Rubin (2004).

If one can assume the monotone missing pattern where subjects who , this method

is naturally extended to data with multiple waves of responses by creating a sequence

of imputation models. Let Y ∗i2 be the complete data at the second wave after imputation.

The distribution of the third wave Y3 is then modeled in the same manner as

Yi3 | Yi1,Y ∗i2 ∼ N(α30 +α31Yi1 +α32Y ∗i2,σ
2
3 ),

where α30, α31 and α32 are coefficients for building the imputation model for Y3. The

process continues until all missing values have been imputed, producing one complete

data set. Multiple imputation requires repeating this process to produce several complete
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data sets. The advantage of this approach is its simplicity. However, this model is subject

to the assumptions of the monotone missing pattern and the normality of the responses,

and it can fail when any of these additional assumptions is not met.

2.3.2 Conditional Model

When the monotone missing pattern is not present, one can specify a sequence of

conditional imputation distributions for each variable. For example, if we have p vari-

ables for each subject in the panel data, a set of full conditional models can be specified

as follows:

fk(yk | y1,y2, ...,yk−1,yk+1, ...,yp), k = 1,2, ..., p.

This is an attempt to define the joint distribution by specifying a conditional distribution

for every variable in the data. These conditional distributions are used to impute missing

values. Starting from simple guessed values, imputation is done by iterating over all

conditionally specified imputation models until convergence. One iteration consists of

one cycle through all p models (Rubin and Schafer, 1990; Van Buuren, 2007). The

advantage is that this method is able to model different types of variables naturally

– using, for example, a multiple regression model for a continuous variable, logistic

regression model for binary variable and log-linear regression for nominal categorical

variable. And it is convenient to incorporate interaction terms or non-linear terms if

necessary for each individual model. However, there is no guarantee that the distribution

of draws will converge to a valid posterior distribution (Fitzmaurice et al., 2008).
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2.3.3 Likelihood Based Model

Alternative to direct imputation as shown in the joint model and conditional model,

likelihood-based method is also use to estimate parameters of interest when data is sub-

jected to missing. Recall in (2.2), if the following two conditions are satisfied,

• the data is MAR,

• the parameters for missingness β and the parameters of interest θ are separable,

then the missing model becomes ignorable. The EM algorithm is an example of making

imputation through the likelihood, provided the likelihood is correctly specified. In a

sense, the EM algorithm imputes the missing values by the conditional mean given both

the observed variables and the parameters from the previous iteration (the expectation or

the E-step). The likelihood of the filled-in data is then maximized to produce a new set

of estimates of parameters (the maximization or the M-step) (Fitzmaurice et al., 2008;

Little and Rubin, 2014).

In our simple case study, let us assume that Y1 and Y2 have a bivariate normal distri-

bution with means µ1 and µ2, standard deviations σ1 and σ2, and correlation coefficient

ρ; and that Y2 is potentially missing. At the tth step, the expectation step imputes each

missing Y2 value with the conditional mean of Y2, given Y1 and the current parameter

values θ
t = (µ t

1,µ
t
2,σ

t
1,σ

t
2,ρ

t):

Y t+1
2 = E(Y2 | Y1,θ

t) = µ
t
2 + sign(ρ t)

σ t
2

σ t
1
(Y1−µ

t
1),
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Let Dt+1 denote the complete data for iteration t + 1 after the missing Y2 values have

been replaced by the conditional means. The maximization step then update the param-

eters as

θ
t+1 = argmax

θ∈Θ

L(θ | Dt+1),

where the θ
t+1 is the updated parameters of interest at (t + 1)th step. We repeat these

two steps until changes in the updated parameters are smaller than some pre-determined

thresholds. There is no need to specify a model for the missingness, but we do need a

correctly specified full joint distribution of (Y1,Y2), and any misspecification may lead

to biased estimates.

2.4 MNAR

Missing Not At Random is the third type of missing mechanism where the probability

of being missing depends not only on variables that are always observed but also on the

variables that are potentially missing. In our simple two-wave scenario, MNAR implies

that there is a systematic difference in Y2 between completer and incompleter even when

they have the same Y1 value. We no longer have the conditional distribution relationship

that we do in the MAR model, and

f (yi2 | yi1,Wi = 1) 6= f (yi2 | yi1,Wi = 0).

That is, the conditional distribution of Y2 given Y1 for the completers is different from

that for incompleters. Therefore, it is no longer valid for one to recover the missing
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information by imputing them from an imputation model based on the complete data.

From the likelihood perspective, (2.2) can no longer be simplified as in the case of

MCAR or MAR, and the computation of the integral is inevitable:

Lobs(θ ,β | y,w) =
nc

∏
i=1

f (yi | θ)P(Wi = 1 | yi,β )
N

∏
i=nc+1

∫
f (yi | θ)P(Wi = 0 | yi,β )dy2.

This fact complicates the computation of standard estimators, such as the MLE. More

importantly, identification of parameters becomes an issue when the inferences are based

on the panel data alone. Fitzmaurice et al. (2008) pointed out that the lack of identifiabil-

ity leads to not only inferential problems such as estimators having high variability, but

also computational problems such as the EM algorithm failing to converge or converg-

ing slowly. Furthermore, when data are MNAR, most standard analyses lead to invalid

estimates for the parameters of interest.

Two modeling approaches for tackling MNAR data are the selection model and the

pattern mixture model (Fitzmaurice et al., 2008). We briefly review these two modeling

approaches, which differ in how the joint distribution of Y and W is factored, in the

following subsections.

2.4.1 Selection Model

The selection model factors the joint distribution of Y and W into the joint distribu-

tion of responses Y and the conditional distribution of W given Y :

f (yi,wi | θ ,β ) = f (yi | θ) f (wi | yi,β ).
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This factorization is natural in a sense that we first specify a probability model for re-

sponses followed by a model for the missingness given the responses. The two sets of

parameters are separated naturally with θ being of primary interest and β pertaining

to missingness. From this perspective, our simple case study in (2.1) belongs to the

selection model where

(Y i | θ)∼ f (y | θ),

(Wi | yi,β )∼ Bernoulli(π(yi,β )),

π(yi,β ) = P(Wi = 1 | yi,β ).

The corresponding observed likelihood is

Lobs(θ ,β | y,w) =
nc

∏
i=1

f (yi | θ)P(Wi = 1 | yi,β )
N

∏
i=nc+1

∫
f (yi | θ)P(Wi = 0 | yi,β )dyi2.

Maximum likelihood estimation under MNAR requires iterative techniques such as the

EM algorithm. However, the model is not identifiable based on the panel data alone.

Constraints have to be made on the attrition model to resolve the identification problem,

which usually changes the original MNAR assumption into what is effectively an MAR

assumption (Rubin, 1976; Fitzmaurice et al., 2008; Little and Rubin, 2014).

2.4.2 Pattern Mixture Model

The pattern-mixture model specifies a model for the missing mechanism first and

then models the conditional joint distribution of responses given the missingness indi-



21

cator. It assumes

f (yi,wi | γ, p) = f (wi | p) f (yi | wi,γ),

where p is the parameter of the marginal distribution of the missingness indicator and γ

contains the parameters of primary interest. In our simple case study, the pattern-mixture

model can be specified as follows

(Wi = 1 | p)∼ Bernoulli(p),

(Y i |Wi = 1,γ)∼ N2(µ
(1),Σ(1)),

(Y i |Wi = 0,γ)∼ N2(µ
(0),Σ(0)),

where µ(0), Σ(0) and µ(1), Σ(1) are means and variance-covariance matrices of the re-

spective conditional distributions. Fitzmaurice et al. (2008) points out that the pattern-

mixture model also cannot be identified from panel data alone. Some constraints have to

be placed on the model to make valid inferences on parameters. Little and Rubin (2014)

give a comprehensive review of the application of the normal pattern-mixture model to

missing data. They also show that additional restrictions on parameters are necessary

for model identification.

This chapter illustrates three main missing mechanisms and common methods used

to address the problem. The validity of statistical methods depends on correct assump-

tions about the missing mechanism. However, panel data alone cannot distinguish be-

tween these mechanisms. One has to make an untestable assumption about the mecha-

nism before analyzing missing data. Panel data provides sufficient information to iden-

tify parameters of interest only in MCAR and MAR scenarios as the missing model
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can be ignored. However, the estimation problem becomes intractable when data are

MNAR.
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3 Refreshment Sample

In chapter 2, we discussed how the presence of missing data requires careful consid-

eration of assumptions about the missing mechanism. These assumptions are untestable

given the panel data alone. Moreover, the attrition model becomes unidentifiable if data

are MNAR. Additional restrictions on parameters are needed, which in turn alters the

MNAR problem to either a MCAR or a MAR problem. Hirano et al. (2001) proposed

to exploit the refreshment sample, a random sample from the same population, to not

only resolve the identification problem in the MNAR model but also make the missing

mechanism testable. In this chapter, we introduce the use of a refreshment sample in ad-

dressing the MNAR problem in section 3.1. In section 3.2, we revisit the two-wave panel

data with a logistic attrition model. A closely related method proposed by Bhattacharya

(2008) is then introduced in section 3.3, and it will be compared with our methods in a

later chapter.

3.1 Introduction

The refreshment sample is an additional independent random sample from the same

population and has fully observed data for variables that are partially missing in the

panel. Many large panel studies include refreshment samples (Deng et al., 2013). For

instance, the longitudinal studies of the National Center for Education Statistics, includ-
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ing the Early Childhood Longitudinal Study and the National Educational Longitudinal

Study, added new samples of panelists at certain points in the studies. The National

Educational Longitudinal Study surveyed 21,500 eighth graders every two years from

1988 until 2000 and included refreshment samples in 1990 and 1992. The 2007-2008

Associated Press - Yahoo! News Poll (APYN) consisted of an 11-wave survey with 3 re-

freshment samples aimed to measure attitudes about the 2008 U.S. Presidential election

and politics (Hirano et al., 2001; Deng, 2012). Starting in 2013, Hoogendoorn-Lanser

et al. (2015) conducted the Netherlands Mobility Panel (MPN) study, a multiple wave

longitudinal study with a refreshment sample, to understand changes in travel behavior.

Hirano et al. (2001) introduced an idea of using a refreshment sample to identify the

missing mechanism. They proposed an additive non-ignorable model for two-wave data

with the attrition model specified as

P(W = 1 | y1,y2,x) = g(κ0(x)+κ1(y1,x)+κ2(y2,x)), (3.1)

where g is a monotone function bounded in (0,1), and κ1(·), κ2(·), κ3(·) are arbitrary

functions. The covariates are denoted by x. This additive non-ignorable model includes

the MCAR and the MAR models as special cases. In particular, it leads to the MCAR

model if both κ1 and κ2 are identically 0, and to the MAR model if only κ2 is iden-

tically 0. When κ2 is nonzero, the data are MNAR. It also provides an approach to

test for MCAR or MAR mechanisms through testing for non-zero κ’s. This model still

has an untestable assumption that the missingness depends on the two responses in an

additive way without any interactions. Hirano et al. (2001) showed that this additive
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non-ignorable model is the weakest assumption that is identifiable and estimable using

a refreshment sample, in the sense that more complex models are no longer identifiable.

For two-wave binary response data with no covariates, they provided two fundamental

constraints which make the attrition parameters identifiable. They proposed to estimate

the parameters using the method of moments. An implementation of the additive non-

ignorable model was not given for continuous responses.

With the refreshment sample showing promise in the analysis of missing data (Hi-

rano et al., 2001), researchers began to explore different ways to use its information.

Nevo (2003) exploited the refreshment sample to compute weights for adjusting the

panel data. The method of moments was used to estimate parameters by comparing

moments between the weighted panel and the refreshment sample. Bhattacharya (2008)

converted Hirano’s fundamental identification theory into conditional moment restric-

tions, and a set of non-parametric regressions with B-splines were used to construct the

objective function for estimation. This method is closely related to Hirano’s and han-

dles missing data in the two-wave continuous response scenario which is the focus of

our methods. Details of Bhattacharya’s method are discussed in a later section, and the

comparison of its performance with our methods will be demonstrated in a later chapter.

Kim et al. (2009) extended the model to account for sample attrition in the presence of

population attrition. They used a generated counter factual sample and the refreshment

sample to identify both attrition processes. Deng (2012); Deng et al. (2013) extended

the additive non-ignorable model by including multiple refreshment samples to handle

three-wave binary response data. They took a fully Bayesian approach using Markov

chain Monte Carlo for estimation. Si et al. (2014) presented a semi-parametric additive
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non-ignorable model to analyze multivariate categorical responses in a two-wave panel

with one refreshment sample. Their approach adopted an additive non-ignorable model

for the attrition process and modeled the categorical survey responses with a Dirichlet

process mixture.

In the following section, we revisit the joint model for two-wave data and a logistic

attrition model to represent the missing mechanism. In section 3.3, we then describe

the conditional moment restriction model proposed by Bhattacharya (2008), which is an

indirect implementation of Hirano’s two constraints.

3.2 Two-Wave Panel with Logistic Attrition Model

Let Y i = (Yi1,Yi2), i= 1,2, ...,N, be i.i.d. bivariate responses observed on N subjects.

We assume that the responses in the first wave {Yi1}N
i=1 are always observed, while

responses in the second wave {Yi2}N
i=1 are potentially missing. Let Wi be the indicator

of missingness of Yi2 with Wi = 1 if Yi2 is observed and Wi = 0 otherwise.

We assume non-ignorable missingness and allow the conditional distribution of the

attrition process W to depend on the values of both Y1 and Y2. In particular, we assume

an additive non-ignorable attrition model with a logistic regression form:

P(W = 1 | y1,y2) =
exp(β0 +β1y1 +β2y2)

1+ exp(β0 +β1y1 +β2y2)
, (3.2)

where β0, β1, β2 are attrition parameters. The logistic regression model is a popular

parametric form used in the literature to describe the missing mechanism (Rubin, 1976;
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Hirano et al., 2001; Nevo, 2003; Bhattacharya, 2008; Kim et al., 2009; Little and Rubin,

2014). It can be extended to a more flexible regression model with either a nonparamet-

ric link function instead of the logistic form, or an additive function of y1 and y2 instead

of the linear functional forms of y1 and y2.

The refreshment sample provides additional information in the form of an indepen-

dent sample from the second wave population. Let
{

Y r
i2
}n

i=1 be the refreshment sample

with sample size n. Appending the refreshment sample to the original data, we have the

data structure shown in Table 3.1.

Obs Y1 Y2 W

Complete
set

1 Y11 Y12 W1=1
...

...
...

...
nc Ync1 Ync2 Wc=1

Incomplete
set

nc +1 Y(nc+1)1 Wnc+1=0
...

...
...

N YN1 WN=0

Refreshment
sample

1 Y r
12

...
...

n Y r
n2

Table 3.1: Case study data set with refreshment sample

The goal is to estimate the attrition parameters β = (β0,β1,β2) given the data ob-

served in Table 3.1.

3.3 Conditional Moment Restriction Model

Bhattacharya (2008) adopted Hirano’s constraint equations and transformed the con-
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straints into two conditional moment equations. The unknown parameters are estimated

by minimizing these conditional moment equations. Bhattacharya (2008) showed that

under the additive model assumption (3.1), the following two conditional expectation

equations make the attrition parameters identifiable:

m1(Y1;β ) =E

{
W

g(Y1,Y2;β )
−1 | Y1

}
= 0,

m2(Y2;β ) =E

{
W

g(Y1,Y2;β )
−1 | Y2

}
= 0.

Estimation proceeds with non-parametric regressions of the new variable

U−1 =

{
W

g(Y1,Y2;β )
−1

}

onto the B-spline spaces expanded by Y1 and Y2 respectively.

Recall the data in Table 3.1 consist of three parts: the complete set, the incomplete

set and the refreshment sample. Let B1, Bnc
2 and B∗2 be three B-spline bases expanded at

complete Y1, complete Y2 and the refreshment sample Y r
2 , respectively. Notice that both

Bnc
2 and B∗2 share the same bases since Y2 and the refreshment sample come from the

same second wave. Let m̂1(Y1;β ) and m̂2(Y r
2 ;β ) be the sample analogues to m1(Y1;β )

and m2(Y2;β ), formulated as follows:

m̂1(Y1;β ) = B1(BT
1 B1)

−1BT
1 (U− jN), (3.3)

m̂2(Y
r
2 ;β ) = B∗2

(
B∗2

T B∗2
n

)−1{
1
N

BncT
2 Unc− 1

n
B∗2

T jn

}
, (3.4)
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where U = {Ui}N
i=1 =

{
Wi

g(Yi1,Yi2;β )

}N

i=1
with N being the total number of observations

in the panel. Furthermore, nc is the number of observations in the complete panel, Unc

denotes a sub-vector of U for complete observations, and n is the number of observations

in the refreshment sample. Here jN (or jn) is a vector of 1’s of length N (or n).

Since Ui = 0 when Wi = 0, U can always be calculated in the panel even when Y2

is missing. The regression of U − jN on Y1, in Equation (3.3), is obtained by projecting

U − jN onto the B-spline basis expanded at Y1. The regression of U − jN on Y2, in

Equation (3.4), however, is complicated due to the potential for missing Y2 values. If

Y2 is fully observed with no missing values, then one can construct an estimator for m2

similar to (3.3) by replacing B1 with B2, which is the B-spline basis expanded at full

panel data points:

m̃2(Y2;β ) = B2(
BT

2 B2

N
)−1
{

1
N

BT
2 U− 1

N
BT

2 jN

}
. (3.5)

When there are missing Y2 values, Bhattacharya (2008) proposed to use the refreshment

sample to span the B-spline basis instead and m̂2(Y
r
2 ;β ) in (3.4) uses data from differ-

ent sources to estimate the components in (3.5). The parameters β are estimated by

minimizing the following sum of squares:

β̂ = minimize
β

{
1
N ∑ m̂2

1 +
1
n ∑ m̂2

2

}
.

This method transforms Hirano’s constraints to conditional moment restrictions and

constructs an objective function through spline regressions. The B-spline basis is used
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to approximate the expectation of U − 1 conditional on either Y1 or Y2. This method

has the advantage of easily incorporating covariates, but it can suffer from the curse of

dimensionality when too many covariates are included.
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4 The Proposed Methods

In chapter 3, we reviewed the use of a refreshment sample to resolve problems posed

by MNAR data. In particular, Hirano et al. (2001) proposed the use of a refreshment

sample to identify an additive non-ignorable attrition model when data are MNAR in a

two-wave binary response study.

We aim to develop methods to handle two-wave MNAR data with continuous re-

sponses, instead of binary responses. In this chapter, we introduce two new methods

which use a refreshment sample. First, we describe a likelihood-based, fully parametric

model in section 4.1. Then in section 4.2 we introduce a kernel density based semi-

parametric method to estimate attrition parameters directly from Hirano’s constraints.

The asymptotic theory of the semi-parametric estimators is developed in section 4.3.

Finally, we describe hypothesis tests for the attrition parameters and estimation of the

corresponding power functions in section 4.4.

4.1 Full-Likelihood Parametric Method

In this section, we propose to estimate the attrition parameters β by maximizing the

full likelihood function. To construct the full likelihood function, we now assume our

data are normally distributed. In particular, we assume the joint distribution of the first

and second wave responses, Y1 and Y2, are bivariate normal. The population parameters

θ consist of µ1, the marginal mean of Y1; µ2, the marginal mean of Y2; σ2
11, the variance
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of Y1; σ2
22, the variance of Y2; and ρ = σ12

σ11σ22
, the correlation coefficient between Y1 and

Y2. Then Y1

Y2

∼ N2


µ1

µ2

 ,
σ11 σ12

σ12 σ22


 .

We have mentioned that the parameters (θ ,β ) in the observed likelihood (2.2) are

unidentifiable in general when the missingness is non-ignorable. However, the existence

of a refreshment sample resolves the issue. The three subsets of the data contribute to

the likelihood independently. In the complete set, both responses been observed. The

likelihood for the complete data is

Lcomp(θ ,β ) =
nc

∏
i=1

f (yi,Wi = 1 | θ ,β )

=
nc

∏
i=1

f (yi1,yi2)P(Wi = 1 | yi1,yi2)

=
nc

∏
i=1

1

2π
√

σ11σ22(1−ρ2)
exp
{
− zi

2(1−ρ2)

}
× exp(β0 +β1yi1 +β2yi2)

1+ exp(β0 +β1yi1 +β2yi2)
,

where zi =
(yi1−µ1)

2

σ11
− 2ρ(yi1−µ1)(yi2−µ2)√

σ11σ22
+ (yi2−µ2)

2

σ22
and ρ = σ12√

σ11σ22
.

In the incomplete panel, we only observe the first wave responses. The likelihood

contributed from these observations can be expressed as

Lincmp(θ ,β ) =
N

∏
i=nc+1

f (yi1,Wi = 0 | θ ,β )

=
N

∏
i=nc+1

∫
f (yi1,y2)P(Wi = 0 | yi1,y2)dy2
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=
N

∏
i=nc+1

∫ 1

2π
√

σ11σ22(1−ρ2)
exp
{
− zi

2(1−ρ2)

}
× 1

1+ exp(β0 +β1yi1 +β2y2)
dy2.

In the refreshment sample, we only observe the second wave observations whose

likelihood contribution is

Lre f resh(θ) =
n

∏
i=1

f (yr
i2)

=
n

∏
i=1

1√
2πσ22

exp
{
−
(yr

i2−µ2)
2

2σ22

}
.

Then the full likelihood is the product of above three pieces:

L(θ ,β ) = Lcomp(θ ,β )×Lincmp(θ ,β )×Lre f resh(θ).

The maximum likelihood estimates (θ̂ MLE , β̂ MLE
) can be obtained by maximizing this

full likelihood with respect to all parameters.

The calculation of the likelihood for the incomplete set is the most challenging part

since it involves the integral of a joint density over Y2, and this integration needs to be

evaluated for each incomplete data point. In addition, there is no closed form solution to

this integral problem. We use the Gaussian-Hermite quadrature to numerically approxi-

mate the integration. The Gaussian-Hermite quadrature has been used in the generalized

linear mixed models (Molenberghs and Verbeke (2005), section 14.5). For any function
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f (x), the Gaussian-Hermite quadrature provides an approximation to the integration as

∫
f (x)φ(x)dx≈

Q

∑
q=1

wq√
π

f
(√

2xq

)
,

where φ(·) is the standard normal density function, xq are solutions to the Qth order

Hermite polynomial and wq are corresponding weights.

The drawback of this method is that the approximation accuracy of the integral

heavily depends on the location of the mode of the function f (x)φ(x). It works well

only when the mode of f (x)φ(x) is located near 0. The integral is not well approx-

imated if the mode of f (x)φ(x) deviates from 0. Due to this drawback, the adaptive

Gaussian-Hermite quadrature (Skrondal and Rabe-Hesketh, 2004; Rabe-Hesketh et al.,

2005; Skrondal and Rabe-Hesketh, 2009) has been adopted to accommodate such situ-

ation. The idea of adaptive Gaussian quadrature is to treat f (x)φ(x) as a normal density

function by applying the Laplace approximation. Then move nodes to the center of ap-

proximated f (x)φ(x) and scale weights correspondingly. This method works better than

the Gaussian-Hermite quadrature when the integrated function f (x)φ(x) is not centered

around 0. The drawback is that it requires additional computation. In particular, one has

to find the mode of f (x)φ(x), which can be difficult.

Let x̂ be the mode of f (x)φ(x) or ln[ f (x)φ(x)] and σ̂GQ =
[
− ∂ 2

∂x2 ln[ f (x)φ(x)] |x=x̂

]− 1
2 .

Then the adaptive Gaussian-Hermite quadrature gives

∫
f (x)φ(x)dx≈

Q

∑
q=1

w+
q f (x+q ),
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where

x+q =x̂+
√

2σ̂GQxq,

w+
q =σ̂GQ

φ(x+q )

φ(
√

2xq)

wq√
π
.

We apply the adaptive Gaussian-Hermite quadrature to the integration involved in

calculating the joint distribution of (Y1,W = 0). In the incomplete set, only the first

wave responses are observed. The likelihood function is as follow

Lincmp(θ) = f (y1,W = 0 | θ) =
∫

f (y1,y2,w = 0 | θ)dy2

=
∫

f (y1,y2,w = 0)φ−1(y2)φ(y2)dy2,

where

f (y1,y2,w= 0 | θ)= 1

2π
√

σ11σ22(1−ρ2)
exp
{
− z

2(1−ρ2)

}
1

1+ exp(β0 +β1y1 +β2y2)
.

Let g(y2) = f (y1,y2,w = 0)φ−1(y2). The adaptive Gaussian-Hermite quadrature is cal-

culated as follows:

Lincmp(θ ,β ) =
∫

g(y2)φ(y2)dy2 ≈
Q

∑
q=1

w+
q g(x+q ).

We need to compute the mode ŷ2 of g(y2)φ(y2). Since the logarithm transformation

is monotone, the mode of g(y2)φ(y2) is the same to the mode of ln[g(y2)φ(y2)] =

ln f (y1,y2,w = 0). In addition, we also need to compute the second derivative of
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ln[g(y2)φ(y2)] in order to obtain the standard deviation of g(y2)φ(y2) based on the

Laplace approximation.

The first order derivative of ln[g(y2)φ(y2)] can be found as

∂

∂y2
ln f (y1,y2,w = 0) =

∂

∂y2

[
− log

(
2π

√
σ11σ22(1−ρ2)

)
− z

2(1−ρ2)

− log(1+ exp(β0 +β1y1 +β2y2))]

=
ρ(y1−µ1)

(1−ρ2)
√

σ11σ22
− (y2−µ2)

(1−ρ2)σ22
− β2exp(β0 +β1y1 +β2y2)

1+ exp(β0 +β1y1 +β2y2)
.

Then the mode ŷ2 can be found as the zero solution of the first order derivative

∂

∂y2
ln f (y1,y2,w = 0) |y2=ŷ2= 0.

In addition, the second order derivative of ln[g(y2)φ(y2)] is given by

∂ 2

∂y2
2

ln f (y1,y2,w = 0) =− 1
(1−ρ2)σ22

−
[

β 2
2 exp(β0 +β1y1 +β2y2)

1+ exp(β0 +β1y1 +β2y2)

−
β 2

2 exp2(β0 +β1y1 +β2y2)

(1+ exp(β0 +β1y1 +β2y2))2

]
.

Then we obtain

σ̂GQ =

[
− ∂ 2

∂y2
2

ln[g(y2)φ(y2)] |y2=ŷ2

]− 1
2

.

Finally the likelihood Lincmp(θ ,β ) is approximated

Lincmp(θ ,β ) =
∫

g(y2)φ(y2)dy2 ≈
n

∑
q=1

w+
q g(x+q )
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=
Q

∑
q=1

σ̂GQ
φ(x+q )

φ(
√

2xq)

wq√
π

f (y1,x+q ,w = 0)φ−1(x+q )

=
Q

∑
q=1

σ̂GQ ·wq ·
√

2
exp(−x2

q)
f (y1,x+q ,w = 0),

where x+q = ŷ2 +
√

2 · σ̂GQ · xq.

This is the likelihood based parametric method. The refreshment sample helps to

identify the population parameters θ and attrition parameters β in the observed likeli-

hood. Without the refreshment sample, this parametric method is infeasible in general

non-ignorable missingness scenarios. The likelihood of the incomplete set is obtained by

integrating out the missing variable Y2, which is accomplished through adaptive Gaus-

sian Quadrature. The maximum likelihood estimators are the most efficient if the under-

lying population and attrition model are correctly specified. However, misspecification

of either the population or attrition models can lead to biased estimation and inference.

In the next section, we introduce a semi-parametric method which does not require

specifying the population density and extends Hirano’s constraints to the continuous re-

sponse setting. The parametric method is a useful benchmark with which to assess the

performance of the proposed semi-parametric method in our simulation studies.

4.2 Kernel Density Based Semi-parametric Method

The main idea of this approach is to estimate attrition parameters β by using the

two identification equations provided by Hirano et al. (2001) along with the refreshment
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sample:

∫ P(W = 1)
logistic(β0 +β1y1 +β2y2)

f (y1,y2 |W = 1)dy2 = f1(y1),∫ P(W = 1)
logistic(β0 +β1y1 +β2y2)

f (y1,y2 |W = 1)dy1 = f2(y2). (4.1)

The integrand which is common to the two equations constructs the joint density f (y1,y2)

from the observed part f (y1,y2 |W = 1) by re-weighting each observed likelihood with

a factor of P(W=1)
logistic(β0+β1y1+β2y2)

. If the attrition model is correctly specified, the integrand

becomes the marginal joint density f (y1,y2) with true attrition parameters β
0:

P(W = 1)
logistic(β 0

0 +β 0
1 y1 +β 0

2 y2)
f (y1,y2 |W = 1) =

f (y1,y2,W = 1)
P(W = 1 | y1,y2)

=
f (y1,y2,W = 1)

f (y1,y2,W = 1)/ f (y1,y2)

= f (y1,y2).

By taking the integral, the left hand side of Equation (4.1) produces the marginal density

functions. Figure 4.1 provides a visual understanding of the main idea of estimating the

attrition parameters. The right hand side of Figure 4.1 shows the joint distribution of

Y1 and Y2 in the population. This is the population we should have seen if there were

no missing data. The color of each data point represents the probability of Y2 being

observed. The lighter the color, the higher the probability. This particular missingness

pattern is exactly specified by the logistic additive attrition model P(W = 1 | y1,y2) =

logistic(β0+β1y1+β2y2). This attrition model can be seen as laying a logistic function

over the joint distribution of Y1 and Y2. The red line represents a 50% missing rate line
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on which the equation β0+β1y1+β2y2 holds and there is a 50% probability of Y2 being

missing.

Figure 4.1: Illustration of the logistic additive attrition model.

The left hand side of Figure 4.1 shows the joint distribution we actually see due to

the missing data in the second wave. The scatter plot represents the joint distribution of

Y1 and Y2 in the complete set f (y1,y2 |W = 1). If the attrition model is correctly speci-

fied, the idea of estimating attrition parameters is to find the values of β that transform

the joint density in the complete set (left Figure 4.1) back into the joint density in the

population (right Figure 4.1). When we examine the marginal density functions from

this transformed joint density by taking the integrals (left hand side of Equation (4.1)),

they should match with the true marginal density functions (right hand side of Equation
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(4.1)).

The estimation starts with a 2-dimensional kernel density estimator for the observed

joint density f (y1,y2 |W = 1). For any given y = (y1,y2)
T , the kernel density estimator

is defined as

f̂H(y1,y2 |W = 1) = f̂H(y |W = 1) =
1
nc

nc

∑
i=1

KH(y−Y i),

where Y i = (Yi1,Yi2)
T , i = 1,2, ...,nc are data points in the complete set; H is a 2× 2

bandwidth matrix which is symmetric and positive definite; and KH(y)= |H|−1/2K(H−1/2y),

where K is the bivariate normal kernel function defined as K(y) = (2π)−1exp(−yT y/2).

The kernel density estimator can viewed as setting bivariate normal densities with cen-

ters at each data point (Yi1,Yi2). For any given y, the kernel density estimator f̂H is

obtained by taking the average of these bivariate normal densities evaluated at y. Next,

P(W = 1) can be consistently estimated by P̂(W = 1) = nc/N, the proportion of com-

plete data in the panel. For a given β = (β0,β1,β2)
T , we can construct an estimator for

the joint density f (y1,y2) as,

f̃ (y1,y2 | β ) =
P̂(W = 1)

logistic(β0 +β1y1 +β2y2)
f̂H(y1,y2 |W = 1).

Then we can compute the marginal densities of Y1 and Y2 by numerically integrating

the joint distribution f̃ (y1,y2 | β ). In particular, for a given grid point y1, the marginal
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density of Y1 can be computed by

f̃1(y1 | β ) =
∫

f̃ (y1,y2 | β )dy2 ≈
ngrid

∑
i=1

f̃ (y1,y2i | β )×∆y2

=
ngrid

∑
i=1

f̃ (y1,y2i | β )×
range(y2)

ngrid
,

where y2i is the ith grid point on Y2, and ngrid denotes the number of grid points in the

2-dimensional kernel density estimator. We use the same number of grid points for Y1

and Y2 in our application. Here the integration is approximated by the summation over

the grid points expanded in the range of the second wave data. For a given y2, f̃2(y2 | β )

can be defined similarly. It is worth mentioning here that the range of Y2 cannot be

used to expand the the grid points due to missing data in the second wave. To get a

representative range of Y2, we use the range of the refreshment sample to expand the

grid points. The resulting marginal density estimates f̃1(y1 | β ) and f̃2(y2 | β ) are the

semi-parametric estimators, which rely on the attrition model. They can consistently

estimate the true marginal densities only when the attrition model is correctly specified.

On the right hand side of Equation (4.1), we are able to obtain estimates of both

marginal densities directly from the first wave and the refreshment sample. Let {yi1}N
i=1

be the data from the first wave and
{

yr
i2
}n

i=1 be the refreshment sample. We define the

following one-dimensional kernel density estimators:

f̂1(y1) =
1
N

N

∑
i=1

Kh1(y1− yi1), f̂2(y2) =
1
n

n

∑
i=1

Kh2(y2− yr
i2),

where K is the univariate normal density function, and Khi(y) = h−1
i K(y/hi) with hi
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being the corresponding bandwidth for i = 1,2.

The H and hi are bandwidth selectors, and they play an important role in estimating

and evaluating kernel density estimators. Several bandwidth selectors are available, and

they can be divided into two classes based on the complexity of derivation (Wand and

Jones, 1994). The first class is called quick and simple selectors; they have simple com-

putable formulas with the goal of providing reasonable bandwidth for a wide range of

situations, but without mathematical guarantees of being close to the optimal bandwidth.

The second class is called hi-tech selectors; they commonly involve more mathematical

arguments and computational effort and specially aim to minimize the Mean Integrated

Square Error (MISE).

In the quick and simple class, the normal scale bandwidth selector, also known as

the “rule of thumb” for choosing the bandwidth of a Gaussian kernel density estimator,

is the minimizer of asymptotic MISE for a normal density with the same scale as that

estimated for the underlying density (Silverman, 1986; Bowman, 1985). This bandwidth

selector provides reasonable estimates for optimal bandwidth when the data are close to

normal. It comes with the risk of over-smoothing and masking important multimodality

features of a multimodal distribution.

In the hi-tech class, there are four commonly used bandwidth selectors, namely

least squares cross-validation (LSCV) selector (Rudemo, 1982; Bowman, 1984), biased

cross-validation (BCV) selector (Scott and Terrell, 1987), direct plug-in (DPI) selector

(Scott et al., 1977) and smoothed cross-validation (SCV) selector (Hall et al., 1992).

Wand and Jones (1994) conducted comprehensive simulations to compare the perfor-

mance of these hi-tech bandwidth selectors. LSCV selector is relatively unbiased in
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estimating the optimal bandwidth, but it has the largest variation. Both BCV and SCV

selectors have more accuracy and less variation in estimating the optimal bandwidth,

but a notable bias is present. The DPI selector shows a better combined performance in

both bias and variation. In our application, the simple normal scale bandwidth selector

is used due to the normal population setting and its computational efficiency.

The estimators of the attrition parameters β are the minimizer of the objective func-

tion MN,n(β ), which is defined as,

β̂ = argmin
β

MN,n(β )

= argmin
β

{
MN(β )+Mn(β )

}
= argmin

β

{
1
N

N

∑
i=1

{
e1(yi1)

[
f̃1(yi1 | β )− f̂1(yi1)

]}2
+

1
n

n

∑
i=1

{
e2(yr

i2)
[

f̃2(yr
i2 | β )− f̂2(yr

i2)
]}2
}
, (4.2)

where e1(·) and e2(·) are given weight functions. Intuitively, MN(β ) and Mn(β ) in (4.2)

measure the differences between two types of marginal density estimators: the semi-

parameteric estimators constructed based on the attrition model and the nonparametric

kernel estimators using the fully observed data in the first wave or the refreshment sam-

ple. Only for the true attrition parameters β do the semi-parametric estimators provide

consistent estimates of the marginals and make the objective function MN,n be close to

zero. Therefore, our estimator β̂ is the one such that MN,n(β̂ ) is as close to zero as

possible.
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In (4.2), the additional weight functions e1 and e2 enable us to adaptively compare

the differences between two types of estimators of the marginal densities. For example,

it is well known that the performance of kernel density estimators is less satisfactory at

the boundary due to the edge effect. Therefore, the comparison at the boundary may add

unnecessary noise into the objective function and lead to numerically unstable estimates

of β . In our simulation, we have chosen the weight functions e1(·) and e2(·) such that

the summation in MN(β ) focuses on the middle 70% of the first wave panel data and the

middle 70% of the refreshment sample.

Figure 4.2: Marginal comparison

Figure 4.2 shows the intuition behind the estimation process from the marginal per-

spective. Green density functions represent the estimates of the true marginals. On

the left hand side, the green density function is the true marginal density estimate of
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Y1, f̂1(y1), based on first wave panel data. On the right hand side, the green density

function is the true marginal estimate of Y2, f̂2(y2), based on the refreshment sample.

These are the density estimates on the right hand side of Equation (4.1). Red density

functions are the marginal density functions of the complete set. They are obtained by

integrating the joint density of the complete set without applying the re-weighting factor
P(W=1)

logistic(β0+β1y1+β2y2)
on the left hand side of Equation (4.1). The difference in the two

density functions is due to missing data. Thus, the idea behind the proposed method of

estimating the attrition parameters is to find the values of β which re-weight the joint

density of the complete set so that the red density functions shift to match the green

density functions as closely as possible.

4.3 Asymptotic Theory for Kernel Density Based Semi-parametric Esti-

mators

In previous sections, we introduced two new methods in analyzing a two-wave

MNAR continuous response data with the help of the refreshment sample. The focus

of these methods is primarily on identifying the missing mechanism in order to provide

support and validation for the main data analysis. In the following section, we develop

the asymptotic theory for the kernel density based semi-parametric estimators.
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4.3.1 Preliminary Notation and Conditions

Let the joint distribution of (Y1,Y2) and the conditional distribution of (Y1,Y2) given

W = 1 respectively have density functions f (y1,y2) and f (y1,y2 |W = 1), with respect

to the (product) Lebesgue measure. Let P(W = 1) be the marginal probability of Y2

being observed. We assume the attrition model P(W = 1 | y1,y2) = logistic(β 0
0 +β 0

1 y1+

β 0
2 y2), with β

0 = (β 0
0 ,β

0
1 ,β

0
2 ) being the true parameters. Let MN,n(β ) be the objective

function for estimating β as defined in Equation (4.2). Let P̂(W = 1) be the estimate

of P(W = 1) and f̂H(y1,y2 |W = 1) be the two-dimensional kernel density estimate of

f (y1,y2 |W = 1) respectively. Let Pn be the empirical expectation operator defined as

Pn f = 1
n ∑

n
i=1 f (Xi) and P be the expectation operator defined as P f =

∫
f dP=E( f (X)).

Within the objective function MN,n(β ), let

f1(y1 | β ) =
∫ f (y1,y2 |W = 1)P(W = 1)

logistic(β0 +β1y1 +β2y2)
dy2

=
∫ f (y1,y2 |W = 1)P(W = 1)

1/(1+ exp(−β0−β1y1−β2y2))
dy2

denote the proposed density function of y1 given β . Let

f̃1(y1 | β ) =
∫ f̂H(y1,y2 |W = 1)P̂(W = 1)

logistic(β0 +β1y1 +β2y2)
dy2

=
∫ 1

N ∑
N
j=1 w jKh1

(
y1− y j1

)
Kh2

(
y2− y j2

)
1/(1+ exp(−β0−β1y1−β2y2))

dy2

be the semi-parametric estimate of f1(y1 | β ), where w j is the missingness indicator, and

K(·) is the kernel function with bandwidth h1 or h2. Let f1(y1) be the first wave marginal
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density function and f̂1(y1) =
1
N ∑

N
j=1 Kh1

(
y1− y j1

)
be the kernel density estimate of

f1(y1). Let

A1β (y1) = f1(y1 | β )− f1(y1),

B1β (y1) = f̃1(y1 | β )− f1(y1 | β ),

C1(y1) = f1(y1)− f̂1(y1). (4.3)

Let e1(y1) be the weight function when constructing the empirical objective function on

first wave.

In the same manner, let

f2(y2 | β ) =
∫ f (y1,y2 |W = 1)P(W = 1)

logistic(β0 +β1y1 +β2y2)
dy1

=
∫ f (y1,y2 |W = 1)P(W = 1)

1/(1+ exp(−β0−β1y1−β2y2))
dy1

denote the proposed density function of y2 given β . Let

f̃2(y2 | β ) =
∫ f̂H(y1,y2 |W = 1)P̂(W = 1)

logistic(β0 +β1y1 +β2y2)
dy1

=
∫ 1

N ∑
N
j=1 w jKh1

(
y1− y j1

)
Kh2

(
y2− y j2

)
1/(1+ exp(−β0−β1y1−β2y2))

dy1

be the semi-parametric estimate of f2(y2 | β ). Let f2(y2) be the second wave marginal

density function and f̂2(y2) =
1
n ∑

n
j=1 Kh2

(
y2− y j2

)
be the kernel density estimate of
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f2(y2). Let

A2β (y2) = f2(y2 | β )− f2(y2),

B2β (y2) = f̃2(y2 | β )− f2(y2 | β ),

C2(y2) = f2(y2)− f̂2(y2). (4.4)

Let e2(y2) be the weight function when constructing the empirical objective function on

the second wave.

To establish our asymptotic results, we need the following conditions:

(A1) Let S = {(y1,y2) : f (y1,y2) > 0} be the support of the joint density function of

(Y1,Y2). Without loss of generality, assume S = [−t, t]× [−u,u] is compact. The

support of f (y1,y2 |W = 1) coincides with S;

(A2) the density functions f (y1,y2) and f (y1,y2 |W = 1) are both continous;

(A3) the parameters β = (β0,β1,β2) belong to a compact set Θ, and without loss of

generality, we assume β0 ∈ [−b0,b0], β1 ∈ [−b1,b1] and β2 ∈ [−b2,b2];

(A4) K(y) is the kernel function with

(a)
∫

K(y)dy = 1,

(b)
∫
|K(y)|dy <+∞,

(c) K(y)→ 0 as |y| →+∞,

(d)
∫
|y log |y||1/2 |dK(y)|<+∞;
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(A5) H = Hnc is the bandwidth matrix for the 2-dimensional kernel, where nc is the

complete panel size, and

(a) H→ 0 as nc→+∞,

(b) ncH4→+∞ as nc→+∞;

(A6) h1 and h2 are the bandwidths for the 1-dimensional kernel with

(a) h1→ 0 and h2→ 0,

(b) (Nh1)
−1 logN→ 0 as N→+∞ and (nh2)

−1 logn→ 0 as n→+∞, where N

is panel size and n is the refreshment sample size.

4.3.2 Identifiability

In this section, we show that the attrition parameters β = (β0,β1,β2) are well iden-

tified based on the two marginal distributions of Y1 and Y2.

Lemma 4.1. Suppose conditions (A1) and (A2) are satisfied, then for almost all (y1,y2)∈

S, there is a unique set of parameters (β0,β1,β2) satisfying

∫ P(W = 1)
logistic(β0 +β1y1 +β2y2)

f (y1,y2 |W = 1)dy2 = f1(y1),∫ P(W = 1)
logistic(β0 +β1y1 +β2y2)

f (y1,y2 |W = 1)dy1 = f2(y2). (4.5)

Proof of Lemma 4.1. The proof follows directly from Theorem 1 of Hirano et al. (2001)

�
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Theorem 4.1. The two constraints in Equation (4.5) are uniquely satisfied by the true

parameters β
0 = (β 0

0 ,β
0
1 ,β

0
2 ).

Proof of Theorem 4.1. Given the attrition model as P(W = 1 | y1,y2) = logistic(β 0
0 +

β 0
1 y1 +β 0

2 y2), it is sufficient to show that β
0 satisfies Equation (4.5) with

P(W = 1)
logistic(β 0

0 +β 0
1 y1 +β 0

2 y2)
f (y1,y2 |W = 1) = f (y1,y2). �

4.3.3 Consistency

The estimator of the parameters β is defined as the minimizer of the objective func-

tion

MN,n(β ) = MN(β )+Mn(β )

=
1
N

N

∑
i=1

[
f̃1(yi1 | β )− f̂1(yi1)

]2
+

1
n

n

∑
i=1

[
f̃2(yi2 | β )− f̂2(yi2)

]2

=
1
N

N

∑
i=1

mβ (yi1)+
1
n

n

∑
i=1

mβ (yi2).

Notice that we drop the concentration weights e1(yi1) and e2(yi2) from the objective

function for simplicity. To show consistency of the minimizer β̂ , we proceed in two

steps. First, we show the uniform convergence of MN,n(β ) to its probability limit. Sec-

ond, we show that this probability limit has an unique minimizer β
0. Then the consis-

tency follows from Theorem 5.7 of Van der Vaart (2000).

Focusing on the first part of MN,n(β ), using notations defined in Equation (4.3), we



51

have

MN(β ) =
1
N

N

∑
i=1

[
f̃1(yi1 | β )− f̂1(yi1)

]2

=
1
N

N

∑
i=1

{[
f1(yi1 | β )− f1(yi1)

]
+
[

f̃1(yi1 | β )− f1(yi1 | β )
]

+
[

f1(yi1)− f̂1(yi1)
]}2

=
1
N

N

∑
i=1

{
A1β (yi1)+B1β (yi1)+C1(yi1)

}2

=
1
N

N

∑
i=1

A1β (yi1)
2 +

1
N

N

∑
i=1

[
2A1β (yi1)B1β (yi1)+Aβ (yi1)C1(yi1)

+B1β (yi1)C1(yi1)+B1β (yi1)
2 +C1(yi1)

2
]
.

First we show that the leading term 1
N ∑

N
i=1 A1β (yi1)

2 uniformly converges to its proba-

bility limit under mild conditions.

Lemma 4.2. For any θ in a compact set Θ, let x 7→ fθ (x) be a given measurable func-

tion. Suppose θ 7→ fθ (x) is continuous for every x and suppose that there exists a

function F such that | fθ | ≤ F for every θ ∈Θ, and PF <+∞, then

sup
θ∈Θ

|Pn fθ −P fθ |
P−→ 0.

This result is shown in section 19.2 of Van der Vaart (2000).

Lemma 4.3. Suppose (A1)–(A4) are satisfied. The set of functions
[

f1(y1 | β )− f1(y1)
]2

=



52

A1β (y1)
2 indexed by β is in the Glivenko-Cantelli class and

sup
β∈Θ

∣∣∣PNA2
1β
−PA2

1β

∣∣∣ P−→ 0.

Proof of Lemma 4.3. The proof is given in the appendix. �

Lemma 4.4. Suppose conditions (A4), (A5) and (A6) are satisfied. Then

sup
β

{
1
N

N

∑
i=1

[
2A1β (yi1)B1β (yi1)+A1β (yi1)C1(yi1)+B1β (yi1)C1(yi1)+

B1β (yi1)
2 +C1(yi1)

2
]}

= op(1).

Proof of Lemma 4.4. The proof is given in the appendix. �

Lemma 4.5. Under (A1) – (A6), MN(β ) uniformly converges to its probability limit

E
[

f1(Y1 | β )− f1(Y1)
]2

. That is,

sup
β∈Θ

∣∣∣∣MN(β )−E
[

f1(Y1 | β )− f1(Y1)
]2
∣∣∣∣ P−→ 0.

Proof of Lemma 4.5. The proof follows from Lemmas 4.3 and 4.4. �

Lemma 4.6. Under (A1) – (A6), MN,n(β ) uniformly converges to its probability limit

E
[

f1(Y1 | β )− f1(Y1)
]2

+E
[

f2(Y2 | β )− f2(Y2)
]2

.

Proof of Lemma 4.6. Similar to Lemma 4.5, one can show that Mn(β ) uniformly con-
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verges to its probability limit E
[

f2(Y2 | β )− f2(Y2)
]2

, where

Mn(β ) =
1
n

n

∑
i=1

[
f̃2(yi2 | β )− f̂2(yi2)

]2

=
1
n

n

∑
i=1

{[
f2(yi2 | β )− f2(yi2)

]
+
[

f̃2(yi2 | β )− f2(yi2 | β )
]

+
[

f2(yi2)− f̂2(yi2)
]}2

.

Together with Lemma 4.5, this proves Lemma 4.6. �

Theorem 4.2. The minimizer β̂ of MN,n(β ) converges in probability to β
0, the unique

minimizer of E
[

f1(Y1 | β )− f1(Y1)
]2

+E
[

f2(Y2 | β )− f2(Y2)
]2

.

Proof of Theorem 4.2. By Lemma 4.1, if the attrition model is correctly specified, then

β = β
0 is the unique set of parameters that satisfies Equation (4.5),

∫ P(W = 1)
logistic(β 0

0 +β 0
1 y1 +β 0

2 y2)
f (y1,y2 |W = 1)dy2 = f1(y1),∫ P(W = 1)

logistic(β 0
0 +β 0

1 y1 +β 0
2 y2)

f (y1,y2 |W = 1)dy1 = f2(y2).

That is, for almost all (y1,y2) ∈ S, β = β
0 is the unique set of parameters that have

f1(y1 | β 0)− f1(y1) = 0 and f2(y2 | β 0)− f2(y2) = 0.

Thus β
0

is the unique minimizer of

E
[

f1(Y1 | β )− f1(Y1)
]2

+E
[

f2(Y2 | β )− f2(Y2)
]2
.
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Combining with Lemma 4.6, the consistency of the minimizer β̂ to β
0 follows from

Theorem 5.7 of Van der Vaart (2000). �

4.3.4 Asymptotic Normality

The estimator β̂ based on the objective function MN,n

(
β

)
is an M-estimator. The

asymptotic properties of β̂ can be evaluated through the form of a Z-estimator by taking

the derivative of MN,n

(
β

)
. There are two parts in MN,n

(
β

)
, namely MN

(
β

)
and

Mn

(
β

)
. In the following we will tackle each part separately and put them back together

at the end to obtain the asymptotic properties of β̂ .

4.3.4.1 The First Part, MN

(
β

)
Using the notation in Equation (4.3), the first part of the objective function MN,n

(
β

)
is

MN

(
β

)
=

1
N

N

∑
i=1

{
e1 (yi1)

[
f̃1(yi1 | β )− f̂1(yi1)

]}2

=
1
N

N

∑
i=1

{
e1 (yi1)

[
A1β (yi1)+B1β (yi1)+C1(yi1)

]}2
.

Then the first order derivative of MN

(
β

)
is
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ϕN

(
β

)
=

∂

∂β
MN

(
β

)
=

2
N

N

∑
i=1

e2
1 (yi1)

[
A1β (yi1)+B1β (yi1)+C1(yi1)

][
∂

∂β
A1β (yi1)+

∂

∂β
B1β (yi1)

]
.

When ϕN

(
β

)
is evaluated at the truth β

0, f1(yi1 | β 0) = f1(yi1), and A1β
0(yi1) = 0.

Then

ϕN

(
β

0
)
=

2
N

N

∑
i=1

[
e2

1 (yi1)
∂

∂β
A1β

0(yi1)
(

B1β 0
(yi1)+C1(yi1)

)
+e2

1 (yi1)
∂

∂β
B1β

0(yi1)
(

B1β
0(yi1)+C1(yi1)

)]

≈
1
N

N

∑
i=1

[
2e2

1 (yi1)
∂

∂β
A1β

0(yi1)
(

B1β
0(yi1)+C1(yi1)

)]
.

The approximation is due to the fact that B1β
0(yi1), C1(yi1) and ∂

∂β
B1β

0(yi1) are op (1).

Thus, the first term is the dominant term. Define ∂

∂β
A1β

0(yi1)= g(yi1)= [g1 (yi1) ,g2 (yi1) ,g3 (yi1)]
T

with

g1 (yi1) =
∫

f (yi1,y2 |W = 1)P(W = 1)exp
(
−β

0
0 −β

0
1 yi1−β

0
2 y2
)
(−1)dy2

=
∫ f (yi1,y2)

1+ exp
(
β 0

0 +β 0
1 yi1 +β 0

2 y2
) (−1)dy2,

g2 (yi1) =
∫ f (yi1,y2)

1+ exp
(
β 0

0 +β 0
1 yi1 +β 0

2 y2
) (−yi1)dy2,

g3 (yi1) =
∫ f (yi1,y2)

1+ exp
(
β 0

0 +β 0
1 yi1 +β 0

2 y2
) (−y2)dy2.
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Define a function

T1 (x,y,z,w) =
∫ wKh1 (z− x)Kh2 (y2− y)

1/
(
1+ exp

(
−β 0

0 −β 0
1 z−β 0

2 y2
))dy2−Kh1 (z− x) .

Then we have

ϕN

(
β

0
)
≈

1
N

N

∑
i=1

[
2e2

1 (yi1)
∂

∂β
A1β

0(yi1)
(

B1β
0(yi1)+C1(yi1)

)]

=
1
N

N

∑
i=1

[
2e2

1 (yi1)g(yi1)

(∫ 1
N ∑

N
j=1 w jKh1

(
yi1− y j1

)
Kh2

(
y2− y j2

)
1/
(
1+ exp

(
−β 0

0 −β 0
1 yi1−β 0

2 y2
)) dy2

− 1
N

N

∑
j=1

Kh1

(
yi1− y j1

))]

=
1

N2

N

∑
i=1

N

∑
j=1

[
2e2

1 (yi1)g(yi1)T1
(
y j1,y j2,yi1,w j

)]
.

Let X i = [Yi1,Yi2,Wi]
T and X j =

[
Yj1,Y j2,Wj

]T be independent samples from the

panel. Define a symmetric function

h
(
xi,x j

)
= e2

1 (yi1)g(yi1)T1
(
y j1,y j2,yi1,w j

)
+ e2

1
(
y j1
)

g
(
y j1
)

T1
(
yi1,yi2,y j1,wi

)
.

Then

ϕN

(
β

0
)
≈

1
N2

N

∑
i=1

N

∑
j=1

h
(
xi,x j

)
is a V-statistic.

Lemma 4.7. Assume (A1) - (A6). Define h1 (X i) = E
[
h
(
X i,X j

)
| X i
]

and Σ1 =
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Var [h1 (X)]. Then one has E
[
h
(
X i,X j

)]
≈ 0, and

√
NϕN

(
β

0
)
∼ N (0,4Σ1) .

Proof of Lemma 4.7. The proof is given in the appendix. �

Lemma 4.8. The probability limit of the second derivative of MN

(
β

)
is

E

[
∂ 2

∂β
2 MN

(
β

0
)]
≈ 2E

[
e2

1 (Y1)g(Y1)g(Y1)
T
]
.

Proof of Lemma 4.8. The proof is given in the appendix. �

4.3.4.2 Second Part, Mn

(
β

)
Using the notation in Equation (4.4), the second part of the objective function MN,n

(
β

)
is

Mn

(
β

)
=

1
n

n

∑
i=1

[
e2 (yi2)

[
f̃2(yi2 | β )− f̂2(yi2)

]]2

=
1
n

n

∑
i=1

[
e2 (yi2)

[
A2β (yi2)+B2β (yi2)+C2(yi2)

]]2
.

The first order derivative of Mn

(
β

)
is



58

ϕn

(
β

)
=

∂

∂β
Mn

(
β

)
=

2
n

n

∑
i=1

e2
2 (yi2)

[
A2β (yi2)+B2β (yi2)+C2(yi2)

][
∂

∂β
A2β (yi2)+

∂

∂β
B2β (yi2)

]
.

When ϕn

(
β

)
is evaluated at the truth β

0, f2(yi2 | β
0) = f2(yi2), and A2β

0(yi2) = 0.

Then

ϕn

(
β

0
)
=

2
n

n

∑
i=1

[
e2

2 (yi2)
∂

∂β
A2β

0(yi2)
(

B2β
0(yi2)+C2(yi2)

)
+e2

2 (yi2)
∂

∂β
B2β

0(yi2)
(

B2β
0(yi2)+C2(yi2)

)]

≈
1
n

n

∑
i=1

[
2e2

2 (yi2)
∂

∂β
A2β

0(yi2)
(

B2β
0(yi2)+C2(yi2)

)]
.

The approximation is due to the fact that B2β
0(yi2), C2(yi2) and ∂

∂β
B2β

0(yi2) are op (1).

Thus, the first term is the dominant term. Define ∂

∂β
A2β

0(yi2) = k (yi2) =

[k1 (yi2) ,k2 (yi2) ,k3 (yi2)]
T with

k1 (yi2) =
∫

f (y1,yi2 |W = 1)P(W = 1)exp
(
−β

0
0 −β

0
1 y1−β

0
2 yi2

)
(−1)dy1

=
∫ f (y1,yi2)

1+ exp
(
β 0

0 +β 0
1 y1 +β 0

2 yi2
) (−1)dy1,

k2 (yi2) =
∫ f (y1,yi2)

1+ exp
(
β 0

0 +β 0
1 y1 +β 0

2 yi2
) (−y1)dy1,

k3 (yi2) =
∫ f (y1,yi2)

1+ exp
(
β 0

0 +β 0
1 y1 +β 0

2 yi2
) (−yi2)dy1.
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Define a function

T2 (x,y,z,w) =
∫ wKh1 (y1− x)Kh2 (z− y)

1/
(
1+ exp

(
−β 0

0 −β 0
1 y1−β 0

2 z
))dy1− f2(z).

Then we have

ϕn

(
β

0
)
≈

1
n

n

∑
i=1

[
2e2

2 (yi2)
∂

∂β
A2β

0(yi2)
(

B2β
0(yi2)+C2(yi2)

)]

=
1
n

n

∑
i=1

[
2e2

2 (yi2)k (yi2)

(∫ 1
N ∑

N
j=1 w jKh1

(
y1− y j1

)
Kh2

(
yi2− y j2

)
1/
(
1+ exp

(
−β 0

0 −β 0
1 y1−β 0

2 yi2
)) dy1

− f2(yi2)+ f2(yi2)−
1
n

n

∑
l=1

Kh2 (yi2− yl2)

)]

=
1

nN

n

∑
i=1

N

∑
j=1

[
2e2

2 (yi2)k (yi2)T2
(
y j1,y j2,yi2,w j

)]
+

1
n2

n

∑
i=1

n

∑
l=1

[
2e2

2 (yi2)k (yi2)( f2(yi2)−Kh2 (yi2− yl2))
]

=ϕ
(1)
n

(
β

0
)
+ϕ

(2)
n

(
β

0
)
.

Lemma 4.9. Define h(1)1
(
X j
)
= E

[
2e2

2 (Yi2)k (Yi2)T2
(
Yj1,Yj2,Yi2,Wj

)
| X j

]
and

Σ
(1)
2 =Var

[
h(1)1 (X)

]
. Then

√
Nϕ

(1)
n

(
β

0
)
∼ N

(
0,Σ(1)

2

)
.

Proof of Lemma 4.9. The proof is given in the appendix. �
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Note that ϕ
(2)
n

(
β

0
)

is a V-statistic. Let

h(2) (yi2,yl2) =e2
2 (yi2)k (yi2)( f2(yi2)−Kh2 (yi2− yl2))

+ e2
2 (yl2)k (yl2)( f2(yl2)−Kh2 (yl2− yi2)) ,

where yi2 and y j2 represent independent refreshment samples. Then

ϕ
(2)
n

(
β

0
)
=

1
n2

n

∑
i=1

n

∑
l=1

h(2) (yi2,yl2) . (4.6)

Lemma 4.10. Define h(2)1 (Yi2) = E
(

h(2) (Yi2,Yl2) | Yi2

)
and Σ

(2)
2 =Var

[
h(2)1 (Y )

]
. Then

E
[
h(2) (Yi2,Yl2)

]
≈ 0 and

√
nϕ

(2)
n

(
β

0
)
∼ N

(
0,4Σ

(2)
2

)
.

Proof of Lemma 4.10. The proof is given in the appendix. �

Lemma 4.11. The probablity limit of the second derivative of Mn

(
β

)
is

E

[
∂ 2

∂β
2 Mn

(
β

0
)]
≈ 2E

[
e2

2 (Y2)k (Y2)k (Y2)
T
]
.

Proof of Lemma 4.11. The proof is given in the appendix. �

Theorem 4.3. Let N = rn, where r is the ratio between N and n, and define

Σcov =Cov
[
h1 (X) ,h(1)1 (X)

]
.
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Then we have the following asymptotic property for β̂

√
N
(

β̂ − β̂
0

)
∼ N

(
0,
(
V−1)

Σ
(
V−1)T

)
,

where Σ = 4Σ1 +Σ
(1)
2 +4rΣ

(2)
2 +4Σcov and V = E

[
∂ 2

∂β
2 MN

(
β

0
)]

+E
[

∂ 2

∂β
2 Mn

(
β

0
)]

.

Proof of Theorem 4.3. The proof is given in the appendix. �

4.4 Hypothesis Testing

Our primary goal of using the asymptotic theory, which was developed in the pre-

vious section, is to establish hypothesis tests for missing mechanisms. Testing missing

mechanisms can be accomplished by testing attrition parameters β1 and β2 in the addi-

tive non-ignorable model as follows:

H0 : Data are MCAR ⇐⇒ H0 : β1 = 0 and β2 = 0.

H0 : Data are MAR ⇐⇒ H0 : β2 = 0.

H0 : Data are MCAR ⇐⇒ H0 : β2 6= 0.

A Wald-type test statistic can be constructed given the asymptotic normality of the semi-

parametric estimators:

Z =
β̂i−βi0

SE
β̂i

=
β̂i

SE
β̂i

∼ N(0,1), for i = 1,2, (4.7)
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where β̂i’s are semi-parametric estimators and SE
β̂i

’s are corresponding standard errors.

The 100(1−α)% confidence interval can also be defined as

CI : β̂i± z1−α/2SE
β̂i
, for i = 1,2,

where z1−α/2 is the (1−α/2)th quantile of the standard normal distribution. The asymp-

totic theory of the semi-parametric estimators gives the asymptotic formula for comput-

ing the standard errors. However, this computation requires both the true population

density functions and the true attrition parameters, which makes the asymptotic formula

an unrealistic approach to obtaining standard errors for the construction of both test

statistics and confidence intervals in real data applications. We propose to use the boot-

strap technique to numerically approximate standard errors. Bootstrapping treats the

empirical distribution of the observed data as the population distribution. Then boot-

strapped samples from this empirical distribution are treated as if they were repeated

samples from the population. The sampling distribution based on bootstrapped samples

is taken as an approximation to the true sampling distribution, and its standard deviation

SEboot is the bootstrap standard error of the semi-parametric estimator. The accuracy of

this bootstrap SE can be assessed numerically by comparing to the empirical SE based

on the simulation. In particular, the comparison is made through power functions of

hypothesis tests based on the test statistic defined in (4.7). Let the level α test function
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φ(Y1,Y2,W ) be defined as

φ(Y1,Y2,W ) =


1, reject null if |Z| ≥ z1−α/2

0, fail to reject otherwise
. (4.8)

And let Q1(β1) and Q2(β2) be the power functions for β1 and β2 respectively, defined

as

Qi(βi) =P(Reject the null | βi is the true parameter)

=Pβi(φ(Y1,Y2,W ) = 1), for i = 1,2. (4.9)

The test statistic in (4.7) depends on the choice of the SE, so the power function in

(4.9) does also. For each attrition parameter βi, power functions based on different SE’s

can be formed. The accuracy of the bootstrap SE is assessed by seeing how well the

bootstrap-based power function reproduces the simulation-based power function.

In this chapter, we introduced two new methods in analyzing MNAR continuous

response data with the help of a refreshment sample. The focus of these methods is

to estimate attrition parameters and reveal missing mechanisms. The first method, the

full-likelihood parametric method, serves as a performance benchmark to which the

second method, the kernel density based semi-parametric method, will be compared.

The asymptotic theory for the semi-parametric estimators was developed to investigate

their large sample behaviors. Finally, hypothesis tests were established to fulfill the goal

of making inferences about the missing mechanism.
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5 Numerical Results

In this chapter, we demonstrate the numerical performance of the proposed meth-

ods. We compare finite-sample performance of different methods in section 5.1. In

section 5.2, we consider some insights from the asymptotic variance formula for the

proposed semi-parametric estimator and use simulations to validate properties of the

asymptotic variance. In section 5.3, we illustrate the application of bootstrapping to

the previously described hypothesis tests. Finally, we show an application of the semi-

parametric method to real data from the Netherlands Mobility Panel in section 5.4.

5.1 Finite-Sample Performance

We use simulation studies to compare finite-sample performance of the parametric

and semi-parametric methods proposed in chapter 4. We also compare the proposed

methods with Bhattacharya’s conditional moment restriction method. The numerical

performance of different estimators is evaluated in terms of mean square errors. A total

of 1000 data sets is generated, and different methods are applied to yield 1000 estimates

from which the empirical squared bias, variance and mean square error are calculated.

This process is repeated with different panel sizes and refreshment sample sizes. Our

focus is on the performance of β̂1 and β̂2 since they are the parameters that determine

the underlying missing mechanism.



65

5.1.1 Bivariate Normal Population

We generate data from a bivariate normal distribution with mean 0, marginal vari-

ances of 10 and correlation coefficient of 0.5. The true attrition model has the form of

a logistic regression with true attrition parameters of β0 = 0, β1 = 0.3, β2 = 0.4. Three

methods are applied to obtain estimates of attrition parameters. Figure 5.1 compares the

finite-sample performances in terms of empirical squared bias, variance and MSE for

β̂1 and β̂2 respectively. On the x-axis are different panel size and refreshment sample

size combinations with both sample sizes increasing along the x-axis. The parametric

method is plotted in green, the semi-parametric method is in blue and Bhattacharya’s

conditional moment restriction method is in red (denoted as CMR). In addition, for all

three methods, dash, dotted dash and solid lines stand for empirical squared bias, vari-

ance and MSE respectively. Figure 5.1 clearly shows that MSEs of both parametric

and semi-parametric methods decrease as the sample sizes increase, which supports our

asymptotic results. In addition, we see that both the parametric and the semi-parameter

methods perform better than Bhattacharya’s method, with the CMR method having the

largest MSE for all sample size combinations.
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(a) Finite-sample performance of β̂1 (b) Finite-sample performance of β̂2

Figure 5.1: Comparison of finite-sample performance with normal responses. (True
parameters: β0 = 0, β1 = 0.3, β2 = 0.4). Parametric method is plotted in green, semi-
parametric method is in blue and Bhattacharya’s conditional moment restriction method
is in red. For all three methods, dash, dotted dash and solid lines stand for empirical
squared bias, variance and MSE, respectively.

Tables 5.1 and 5.2 give results for a panel size of 5000 and a refreshment size of

2500. Most of the MSE is due to the variance of the estimators. The parametric esti-

mator of β1 has about one third the variance of the semi-parametric estimator, which in

turn has about one third the variance of the CMR estimator. Due to the attrition in the

second wave, we do not have as much information to estimate β2 as we do to estimate

β1. This might be one reason why the variances of β̂2 are larger for all three methods.

The parametric estimator of β2 has about half the variance of the semi-parametric esti-

mator, which in turn has about half the variance of the CMR estimator. Therefore, in
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the following we will focus on the comparison between parametric and semi-parametric

methods to get a better understanding of their finite-sample performance.

Squared Bias (10−5) Variance (10−5) MSE (10−5)

CMR 2.89 235.25 238.15

Semi-parametric 16.68 74.72 91.41

Parametric 0.06 24.08 24.14

Table 5.1: Empirical squared bias, variance and MSE of β̂1 for three different methods
with panel size of 5000, and refreshment sample size of 2500.

Squared Bias (10−5) Variance (10−5) MSE (10−5)

CMR 0.82 330.59 331.40

Semi-parametric 18.36 178.23 196.68

Parametric 0.03 88.12 88.15

Table 5.2: Empirical squared bias, variance and MSE of β̂2 for three different methods
with panel size of 5000, and refreshment sample size of 2500.

In Figure 5.2, the parametric method is plotted in red and the semi-parametric method

is in cyan. The parametric method under the normality assumption performs better than

the semi-parametric method. This is expected since the parametric method makes full

use of the density functions to construct the likelihood. The parametric method is most

efficient in this scenario and can be treated as the benchmark. The semi-parametric es-

timators give reasonable performance with both squared bias and variance approaching

0 as sample size increases. In addition, as sample size increases, the difference between
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the two methods decreases.

(a) Finite-sample performance of β̂1 (b) Finite-sample performance of β̂2

Figure 5.2: Comparison of finite-sample performance with normal responses (True pa-
rameters: β0 = 0, β1 = 0.3, β2 = 0.4). Parametric method is plotted in red and semi-
parametric method is in cyan. For both methods, dash, dotted dash and solid lines stand
for empirical squared bias, variance and MSE, respectively.

5.1.2 Gamma-t population

In real data applications, we often encounter non-normal data. It is of interest to

compare the performance of the parametric and semi-parametric methods when the dis-

tribution is misspecified.

Copulas are useful for creating a non-normal joint density with given marginals and

controlled correlation (Yan et al., 2007). For the following simulations we created a
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Gamma-t joint distribution with the first wave following a Gamma(3,2) marginal dis-

tribution and the second wave following a t distribution with degree of freedom of 6.

In order to make this non-normal joint distribution comparable to the previous bivariate

normal case, the Gamma distribution is shifted to center at 0, and the t distribution is

scaled by 3. A correlation coefficient of 0.5 is generated by the Copula method. As a

result, the non-normal joint distribution centers at zero, and the Gamma marginal has

variance of 12 while the t distribution has variance of 13.5. Compared with the bivari-

ate normal distribution, the non-normal distribution has the same means (0) and slightly

larger marginal variances. Figure 5.3 plots this non-normal Gamma-t distribution, where

Y1 has the Gamma marginal distribution and Y2 has the t marginal distribution. The sam-

ple correlation coefficient, in this particular sample, is 0.5.

Figure 5.3: Non-normal data generated by the Copula method and modeled with Y1 ∼
Gamma(3,2) centering at 0 and 1

3Y2 ∼ t6. The sample correlation coefficient is 0.5.
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Figure 5.4 plots the pairs (y1, y2) for the complete set only (left), and the full panel

assuming no attrition (right). The colors of the points represent the probability of Y2

being observed. The lighter the color, the higher the probability. The red line consists

of points (y1,y2) that satisfy β0+β1y1+β2y2 = 0 in the additive non-ignorable attrition

model (3.2). As a result, data points on this line have 50% probability of Y2 being

observed.

Figure 5.4: Non-normal population with attrition. Left: Data in the complete set only,
with missing data deleted. Right: Full panel data assuming no attrition.

For the performance of β̂1, Figure 5.5 shows that the parametric method still has

better performance in terms of MSE. However, as sample size increases, the paramet-

ric method has non-decreasing bias while the semi-parametric method has decreasing

bias. The variance of the semi-parametric estimator β̂1, though, is still larger than the
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parametric one. Overall, the departure from normality does not penalize the numeri-

cal performance of β̂1 much in terms of MSE, but it does introduce a small bias into

the parametric estimator. Table 5.3 shows numerical results comparing between semi-

parametric and parametric estimators for panel size of 5000 and refreshment sample size

of 2500.

(a) Finite-sample performance of β̂1 (b) Finite-sample performance of β̂2

Figure 5.5: Comparison of finite-sample performance with gamma-t responses (True
parameters: β0 = 0, β1 = 0.3, β2 = 0.4). Parametric method is plotted in red and semi-
parametric method is in cyan. For both methods, dash, dotted dash and solid lines stand
for empirical squared bias, variance and MSE, respectively.
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Squared Bias (10−5) Variance (10−5) MSE (10−5)

Semi-parametric 0.74 116.92 117.66

Parametric 21.61 30.26 51.83

Table 5.3: Non-normal Gamma-t population scenario. Empirical squared bias, variance
and MSE of β̂1 for both parametric and semi-parametric methods with panel size of
5000, and refreshment sample size of 2500.

For β̂2, the semi-parametric method performs much better than the parametric method.

The departure from normality introduces a much larger bias to the parametric β̂2 than

it does for β̂1. Table 5.4 compares results between semi-parametric and parametric es-

timators for panel size of 5000 and refreshment sample size of 2500. In this large sam-

ple case, the much larger bias of the parametric estimator overwhelms its advantage in

the variance, which results in a larger empirical MSE compared to the semi-parametric

estimator. This demonstrates that the semi-parametric method is quite robust against

non-normality in the response distribution.

Squared Bias (10−5) Variance (10−5) MSE (10−5)

Semi-parametric 18.38 177.55 195.94

Parametric 424.40 124.51 548.91

Table 5.4: Non-normal Gamma-t population scenario. Empirical squared bias, variance
and MSE of β̂2 for both parametric and semi-parametric methods with panel size of
5000, and refreshment sample size of 2500.

In summary, we have made comparisons of the finite-sample performance among

different methods. Our proposed parametric and semi-parametric methods have better
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performance than CMR. When the joint distribution is correctly specified, the parametric

method performs the best. When the distribution is misspecified, however, there will

be bias in the parametric estimator, while the semi-parametric estimator, being free of

distributional assumptions, gives consistent performance in the presence of non-normal

populations. In the next section, we will take a closer look at the asymptotic variance of

the semi-parametric estimator. In particular, we want to investigate effects of different

population parameters and data transformation on the asymptotic variance of the semi-

parametric estimator.

5.2 Understanding of Asymptotic Variance of Semi-parametric Estimator

The asymptotic variance formula in Theorem 4.3 helps us to better understand the

large sample performance of the proposed semi-parametric method under different sce-

narios. In particular, it provides guidance on how different population parameters affect

the performance of β̂ . In this subsection, several scenarios have been considered, based

on which theoretical results are calculated through asymptotic variance formula along

with the verification through simulations.

5.2.1 Effect of Marginal Variation

First we investigate the effect of the variances of Y1 and Y2 and the correlation co-

efficient ρ on the variability of β̂ with both waves’ marginal means, panel size and

refreshment sample size fixed. We consider five correlation coefficient settings: ρ =
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0.1,0.2, ...,0.5. For each setting the standard errors of β̂ are calculated through the

asymptotic formula at different combinations of the two waves’ marginal variances,

with both marginal variances ranging from 0 to 10.

Figure 5.6 shows the effect of the marginal variances σ2
1 and σ2

2 on the standard

errors of β̂1 and β̂2 computed through the asymptotic formula. Both plots show the

trend that the asymptotic standard errors increase as the correlation coefficient increases

across different marginal variance combinations. The left plot shows that the asymptotic

standard error of β̂
1

decreases as the first wave marginal variance σ2
1 increases. The right

plot shows a similar relationship between the asymptotic standard error of β̂
2

and the

second wave marginal variance σ2
2 . Less correlation and more variability in the marginal

distributions give more stable estimates of attrition parameters.

Table 5.5 compares standard errors between simulation results and the asymptotic

formula for three settings. The simulation results verify the asymptotic findings above

except that the simulation produces systematically smaller standard errors than the asymp-

totic formula. This disagreement is the result of many Taylor expansion approximations

involved in the development of the asymptotic formula. Therefore, the standard errors

computed from the asymptotic formula can be considered as conservative estimates of

the true standard errors.
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(a) SE
β̂1

(b) SE
β̂2

Figure 5.6: The effect of marginal variances σ2
1 and σ2

2 on standard errors of β̂1 and
β̂2 computed from the asymptotic formula. The color represents the value of standard
error. The value is larger in the red direction and smaller in the blue direction. Plots are
separated by the levels of correlation coefficient ρ . The population is bivariate normal
with both marginal means of 0. The panel size is 5000 and refreshment sample size is
2500. True values of attrition parameters β1 and β2 are 0.3 and 0.4 respectively.
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Asymptotic Formula Simulation

σ2
1 σ2

2 SE
β̂1

SE
β̂2

SE
β̂1

SE
β̂2

1 1 0.105 0.161 0.081 0.131

5 5 0.043 0.066 0.036 0.055

10 10 0.035 0.048 0.028 0.041

Table 5.5: The effect of marginal variances σ2
1 and σ2

2 on standard errors of β̂1 and β̂2
computed from both the asymptotic formula and simulation. The population is bivariate
normal with both marginal means of 0 and correlation coefficient of 0.5. The panel size
is 5000 and refreshment sample size is 2500. True values of attrition parameters β1 and
β2 are 0.3 and 0.4 respectively.

5.2.2 The Effect of Marginal Mean

Now we want to verify our postulation that the standard errors of β̂
1

and β̂
2

are

invariant to the data location. Standard errors are calculated again through the asymp-

totic formula under five correlation settings at different combinations of two marginal

means with both means ranging from -10 to 10. Both marginal variances are set to be

10 and all other parameters are fixed as previously. Figure 5.7 confirms our postulation

and shows again that less correlation stabilizes the estimates. Table 5.6 gives numerical

results for five particular population centers, and the same conclusion can be made. This

invariance property implies that the same testing results for β̂
1

and β̂
2

can be obtained

after centering the data to zero mean.
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(a) SE
β̂1

(b) SE
β̂2

Figure 5.7: The effect of marginal means µ1 and µ2 on standard errors of β̂1 and β̂2
computed from the asymptotic formula. The color represents the value of standard error.
The value is larger in the red direction and smaller in the blue direction. Plots are
separated by the levels of correlation coefficient ρ . The population is bivariate normal
with both marginal variances of 10. The panel size is 5000 and refreshment sample size
is 2500. True values of attrition parameters β1 and β2 are 0.3 and 0.4 respectively.
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Asymptotic Formula Simulation

µ1 µ2 SE
β̂1

SE
β̂2

SE
β̂1

SE
β̂2

3 4 0.035 0.048 0.028 0.041

-5 2 0.035 0.048 0.028 0.041

-2 -4 0.035 0.048 0.028 0.041

3 -1 0.035 0.048 0.028 0.041

0 0 0.035 0.048 0.028 0.041

Table 5.6: The effect of marginal means µ1 and µ2 on standard errors of β̂1 and β̂2
computed from both the asymptotic formula and simulation. The population is bivariate
normal with both marginal variances of 10 and correlation coefficient of 0.5. The panel
size is 5000 and refreshment sample size is 2500. True values of attrition parameters β1
and β2 are 0.3 and 0.4 respectively.

5.2.3 Effect of The Rotation in Missing Direction

First, we introduce notation and concepts used in this subsection. The attrition model

consists of the logistic function P(W = 1 | y1,y2) = logistic(β0 +β1y1 +β2y2), which

can be thought of as a surface over the (y1,y2) plane. This surface gives the prob-

ability of Y2 being observed for every data point, and the missingness probability is

constant along any line where β0 +β1y1 +β2y2 is constant. For example, in Figure 5.8,

β0 + β1y1 + β2y2 = 0 corresponds to a line of data points that have 50% of having Y2

missing, which we refer to as the reference line. For all simulations, we set this refer-

ence line to go through the population mean, which results in about 50% of the Y2 data

missing if the population has a symmetric joint distribution such as the bivariate normal
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distribution we used. The vector (β1,β2)
T gives a direction that is perpendicular to the

reference line. We refer to this vector as the normal vector in the following context. The

probability of Y2 being observed increases in the direction of the normal vector. The

length of the normal vector,
√

β 2
1 +β 2

2 , indicates how fast the probability of Y2 being

observed increases. The surface of the logistic function increases gradually along the

direction of the normal vector if the length of the vector is relatively small, and it in-

creases dramatically otherwise. For a very large length, we will find that almost all Y2

data are observed on one side of the reference line, and hardly any Y2 data are observed

on the other side.

Figure 5.8: The definitions of the reference line, normal vector and rotation.
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In Figure 5.9, we consider two different lengths of normal vectors, 0.5 and 1. A

length of 0.5 results in a gradual missingness pattern and the probability of being ob-

served is bounded from 0 and 1 for almost all data points. A length of 1 shows a dramatic

missing pattern where part of data is almost always observed and the other part is miss-

ing most of times. The X-axis represents different rotation θ values. There are 8 equally

spaced rotations with the angular coordinate turning from 3
2π to 5

4π counterclockwise.

(a) SE
β̂1

(b) SE
β̂2

Figure 5.9: The effect of the normal vector rotation on standard errors of β̂1 and β̂2
computed from the asymptotic formula. The y-axis shows the value of the standard error.
The solid and dashed lines correspond to normal vector length of 0.5 and 1 respectively.
Plots are separated by the levels of correlation coefficient ρ . The population is bivariate
normal with both marginal means of 0 and variances of 10. The panel size is 5000 and
refreshment sample size is 2500.

Figure 5.9 shows that the semi-parametric estimator has larger variance when data

are dramatically missing (the length of normal vector = 1). When data are gradually
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missing, less correlation in the data results in less variability of the estimator. Further-

more, Figure 5.9 reveals that minimum asymptotic standard errors are achieved when

the normal vector parallels the major axis of the population contour. In our bivariate nor-

mal case, the joint distribution has a positive correlation coefficient and both marginal

variances are equal, which results in a population contour with a 45 degree major axis.

Two rotation scenarios give the parallel relationship between the normal vector and this

45 degree major axis, namely rotation scenarios of 4 and 8 (i.e. 1
4π and 5

4π respec-

tively). When the normal vector is perpendicular to the major axis, asymptotic standard

errors are at the maximum (i.e. 7
4π and 3

4π corresponding to rotation scenarios 2 and 6).

These results are verified in the numerical results for four particular cases given in Table

5.7. Again we see that the asymptotic formula gives conservative estimates for standard

errors.

Polar Coordinate Asymptotic Formula Simulation

β1 β2 radial angular SE
β̂1

SE
β̂2

SE
β̂1

SE
β̂2

0.354 0.354 0.5 π/4 0.0340 0.049 0.029 0.041

0.354 -0.354 0.5 7π/4 0.056 0.070 0.041 0.052

0.707 0.707 1 π/4 0.121 0.126 0.070 0.074

0.707 -0.707 1 7π/4 0.147 0.154 0.070 0.076

Table 5.7: The effect of the normal vector rotation on standard errors of β̂1 and β̂2
computed from both the asymptotic formula and simulation. The population is bivariate
normal with both marginal means of 0, variances of 10 and correlation coefficient of
0.5. The panel size is 5000 and refreshment sample size is 2500.
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5.2.4 Effect of Sample Size

Table 5.8 shows the effect of sample sizes on the standard error of the semi-parametric

estimators. As expected, the standard errors decrease as both sample sizes increase. In

addition, if the panel size is fixed, standard errors decrease with increasing refreshment

sample size.

Sample Size Asymptotic Formula Simulation

Panel Refreshment SE
β̂1

SE
β̂2

SE
β̂1

SE
β̂2

500 250 0.111 0.152 0.079 0.118

1000 500 0.078 0.108 0.061 0.083

2000 1000 0.055 0.076 0.043 0.062

5000 1000 0.036 0.060 0.030 0.051

5000 2500 0.035 0.048 0.028 0.041

5000 5000 0.034 0.043 0.028 0.035

Table 5.8: The effect of the sample size on standard errors of β̂1 and β̂2 computed from
both the asymptotic formula and simulation. The population is bivariate normal with
both marginal means of 0, variances of 10 and correlation coefficient of 0.5. The true
attrition parameters β1 and β2 are 0.3 and 0.4 respectively.

5.2.5 Effect of Transformation

It is common to use transformations on the data set when performing data analysis.

We are interested in the effect that data transformation has on the asymptotic properties

of the estimator β̂ . In the following, we choose to examine how transformation changes
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the objective function. We will focus our attention on a common linear transformation,

namely shifting and scaling. Let’s assume that

y∗1 =
1
s
(y1− c1),

y∗2 =
1
s
(y2− c2),

where (y1,y2)
T is original data point, (y∗1,y

∗
2)

T is the transformed data point, s is the

common scaling factor for both responses, and c1 and c2 are the respective shifting

factors. Furthermore, let β̂
∗

be the minimizer of the objective function M∗N,n(β ) for

the transformed data. Let β
0∗ be the unique minimizer of E

[
f ∗1 (Y

∗
1 | β )− f ∗1 (Y

∗
1 )
]2

+

E
[

f ∗2 (Y
∗
2 | β )− f ∗2 (Y

∗
2 )
]2

. Here the asterisk notation indicates that corresponding terms

are based on transformed data. By Theorem 4.2, β̂
∗

is consistent for β
0∗. Given that β̂

converges in probability to β
0, it is sufficient to show the relationship between β̂

∗
and

β̂ by examining the relationship between β
0∗ and β

0. Then one has

β
0∗ = min

β
∗∈R3

{
E
[

f ∗1 (Y
∗
1 | β

∗)− f ∗1 (Y
∗
1 )
]2

+E
[

f ∗2 (Y
∗
2 | β

∗)− f ∗2 (Y
∗
2 )
]2
}

= min
β
∗∈R3

{
E
[∫ f ∗(Y ∗1 ,y

∗
2 |W = 1)P(W = 1)

1/(1+ exp(−β ∗0 −β ∗1 Y ∗1 −β ∗2 y∗2))
dy∗2− f ∗1 (Y

∗
1 )

]2

+E
[∫ f ∗(y∗1,Y

∗
2 |W = 1)P(W = 1)

1/(1+ exp(−β ∗0 −β ∗1 y∗1−β ∗2 Y ∗2 ))
dy∗1− f ∗2 (Y

∗
2 )

]2
}
.
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By change of variables, one can show that

β
0∗ = min

β
∗∈R3

E

[
s
∫ f (Y1,y2 |W = 1)P(W = 1)

1/(1+ exp(−β ∗0 +
β ∗1 c1

s +
β ∗2 c2

s −
β ∗1
s Y1−

β ∗2
s y2))

dy2− s f1(Y1)

]2

+E

[
s
∫ f (y1,Y2 |W = 1)P(W = 1)

1/(1+ exp(−β ∗0 +
β ∗1 c1

s +
β ∗2 c2

s −
β ∗1
s y1−

β ∗2
s Y2))

dy1− s f2(Y2)

]2


= min
β∈R3

s

{
E
[∫ f (Y1,y2 |W = 1)P(W = 1)

1/(1+ exp(−β0−β1Y1−β2y2))
dy2− f1(Y1)

]2

+E
[∫ f (y1,Y2 |W = 1)P(W = 1)

1/(1+ exp(−β0−β1y1−β2Y2))
dy1− f2(Y2)

]2
}

=β
0,

where β0 = β ∗0 −
β ∗1 c1

s −
β ∗2 c2

s , β1 =
β ∗1
s and β2 =

β ∗2
s is a mapping from parameter space

R3 to R3. As a result we should have the same relationship between β̂
∗

and β̂ as follows:

β̂
∗
0 =β̂0 + β̂1c1 + β̂2c2,

β̂
∗
1 =sβ̂1,

β̂
∗
2 =sβ̂2. (5.1)

Therefore, centering the data will not affect the estimation of β1 and β2. The correspond-

ing test procedure is invariant to centering as well. Scaling changes the point estimate,

but it also alters the standard errors by the same amount. Thus, the corresponding test

procedure is also invariant to scale transformation. In the following sections, we use

simulation to verify the invariant property of hypothesis testing for β1 and β2 when a
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linear transformation is applied to the responses.

5.2.5.1 Effect of Centering

We perform simulations where the original (Y1,Y2) population is centered at an ar-

bitrarily chosen location, and the data are centered so that post-transformation, the pop-

ulation is centered at the origin. As before, we let the reference line (50% missingness

probability) go through the population center. Let β be the original true attrition param-

eters and β
∗ be the post-centering true parameters. In Table 5.9, the original settings

describe the original population, while the centered settings describe the population af-

ter centering. Under each setting, the asymptotic variances of β̂1 and β̂2 are calculated

based on the asymptotic formula. We draw 1000 samples from the original population

and estimate the attrition parameters using both non-centered and centered data. Stan-

dard errors of β̂1 and β̂2 are computed from the corresponding sampling distributions.

Both asymptotic equation and simulation results show that centering data has no effect

on the standard errors of β
1

and β
2
. This invariance property means that the same

statistical inferences about β1 and β2 will result whether the data are centered or not.
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Original settings Centered settings

µ1 µ2 β0 β1 β2 µ1 µ2 β ∗0 β ∗1 β ∗2

3 4 -2.5 0.3 0.4 0 0 0 0.3 0.4

Asymptotic Simulation Asymptotic Simulation

SE
β̂1

0.03495 0.02740 SE
β̂1

0.03495 0.02740

SE
β̂2

0.04815 0.04220 SE
β̂2

0.04815 0.04221

Table 5.9: The effect of centering data on standard errors of β̂1 and β̂2 computed from
both the asymptotic formula and simulation. The population is bivariate normal with
both marginal variances of 10 and correlation coefficient of 0.5. The panel size is 5000
and refreshment sample size is 2500.

5.2.5.2 Effect of Scaling

The goal of this subsection is to show with simulation how hypothesis testing for β1

and β2 is invariant to scaling of the response data. For each of three scaling factors, we

generate 1000 samples from the bivariate normal distribution with both marginal means

of 0, variances of 10 and correlation coefficient of 0.5. The panel size and refreshment

sample size are again 5000 and 2500 respectively. The true attrition parameters β1 and

β2 are 0.3 and 0.4 respectively. Before estimating parameters, we divide the response

data by the scaling factor. Consequently, the true attrition parameters are changed after

the scaling according to (5.1). For example, the attrition parameters β1 and β2 become

0.6 and 0.8 if the scaling factor is s = 2. A set of point estimates for the post-scaling

attrition parameters β ∗1 and β ∗2 are obtained and the asymptotic variance is calculated

from the asymptotic formula using parameters based on this post-scaling population.
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The simulated standard errors are obtained by computing the standard deviation of the

empirical sampling distribution. We generate 1000 samples from the original popula-

tion, and the same scale constant is applied on these samples. Estimates of parameters

are obtained to form the empirical sampling distributions whose standard deviations are

calculated to represent simulated empirical SEs. Now the z-statistic can be constructed

with the point estimates and two different SEs. Table 5.10 shows results for the three

scaling factors. Again the simulated empirical SEs are systematically smaller than the

asymptotic SEs. The z-statistics is invariant with scaling, showing that one can still

obtain consistent test results (i.e. p-values) when the data are scaled.

Method s β ∗1 β ∗2 SE
β̂ ∗1

SE
β̂ ∗2

zβ ∗1
zβ ∗2

Asymptotic 2 0.6 0.8 0.062 0.096 10.38 6.69

1 0.3 0.4 0.035 0.048 9.20 6.66

0.25 0.075 0.1 0.009 0.012 9.20 6.65

Simulation 2 0.6 0.8 0.0548 0.084 11.74 7.59

1 0.3 0.4 0.027 0.042 11.73 7.60

0.25 0.075 0.1 0.007 0.011 11.75 7.61

Table 5.10: The effect of transforming data by a scaling factor (s) on standard errors of
β̂1 and β̂2 computed from both the asymptotic formula and simulation. The population
is bivariate normal with both marginal variances of 10 and correlation coefficient of
0.5. The panel size is 5000 and refreshment sample size is 2500. The prior-scaling true
attrition parameters β1 and β2 are 0.3 and 0.4 respectively.

In this section, we used the asymptotic formula in Theorem 4.2 to get a better un-

derstanding of the semi-parametric estimator’s performance. It helps us to understand
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when the semi-parametric method will work and warns us when it might fail. In the next

section, we will illustrate how bootstrapping can be used to obtain standard errors for

the semi-parametric estimators in real data applications.

5.3 Bootstrapping in Applications

As shown in previous sections, the asymptotic formula gives a systematically larger

standard errors than the empirical SEs obtained by simulation. This may be due to the

fact that all higher order terms are ignored and a Taylor expansion is repeatedly used

to simplify integrals involving kernel densities in the development of the asymptotic

theory.

The empirical standard errors in the simulation give the best approximation of the

truth, yet they are unavailable in practice. The asymptotic formula, on the other hand,

not only gives higher standard errors, but also depends on true values of parameters

and true population density functions. In section 4.4, we proposed the use of bootstrap

technique as an alternative approach to numerically approximate the standard errors of

semi-parametric estimators. We also proposed to compare different SEs by comparing

their associated power functions. In the following, we first illustrate the process of using

the simulation to approximate power functions based on different SEs. Then we discuss

the results from a visual comparison of these power functions.

A total of 200 samples with panel size 5000 and refreshment size 2500 are drawn

from a bivariate normal population with marginal means of 0, variances of 10 and cor-

relation coefficient of 0.5. Attrition parameters are estimated by the semi-parametric
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method in each sample. The SEs based on the asymptotic formula can be calculated by

plugging in the true parameters and the population distribution. The empirical SEs are

simulated separately as follows. First, another 1000 samples from the same population

are drawn. Estimates from these 1000 samples give the empirical sampling distribution

whose standard deviation gives the simulated empirical SE.

The bootstrap SE is generated as follows. For each of the original 200 samples, 500

bootstrap samples are created and attrition parameters are estimated through the semi-

parametric method. Each bootstrap sample consists of two parts: a bootstrapped panel

and a bootstrapped refreshment sample. The bootstrapped panel is a random sample

of the same size as the original panel, drawn with replacement from the original panel

data. The bootstrapped refreshment sample is a random sample of the same size as

the original refreshment sample, drawn with replacement from the original refreshment

data. The standard deviation of these 500 bootstrap estimates is the bootstrap SE.

The goal is to investigate whether the bootstrap method is a reasonable way to obtain

standard errors, since neither asymptotic nor empirical SE is feasible. The power func-

tion in (4.9) is used to compare the three methods. The power function of βi (for i= 1,2)

is calculated by holding all other parameters as fixed and changing only one βi within a

range of values. As mentioned previously, 200 samples are drawn from the population

and 200 estimates β̂i are obtained through the semi-parametric method. Three different

SEs, namely asymptotic formula SE, empirical SE and bootstrap SE, are used to con-

struct the test statistics defined in (4.7). These test statistics are compared with the level

α = 0.05 critical value to obtain test results, either rejecting the null hypothesis that

βi0 = 0 or not, according to the test function in (4.8). The proportion of null hypotheses
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rejected among those 200 tests for each method is calculated as an estimate of the power

function.

(a) Power function of β1 (b) Power function of β2

Figure 5.10: Power function comparison. The solid, dash and dot-dash lines represent
the power functions based on the bootstrap SE, the asymptotic formula SE and the em-
pirical SE respectively. The red dash line on the bottom is at the significance level, 0.05.
The power function of β1 is evaluated at (0, 0.05, 0.1, 0.2, 0.3). The power function of
β2 is evaluated at (0, 0.05, 0.1, 0.13, 0.2, 0.4).

In Figure 5.10, the solid, dash and dot-dash lines represent the power functions based

on the bootstrap SE, the asymptotic formula SE and the empirical SE. The red dash

line on the bottom is at the significance level, 0.05. The power functions evaluated at

βi = 0 give the empirical sizes of the tests. The three tests with different SE construction

methods are all well calibrated in the plot. In addition, the three power functions indicate

that the test is unbiased regardless of the means of constructing standard errors. More
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importantly, the power functions based on bootstrap and empirical SEs are close to each

other and both have overall higher power than the one based on the asymptotic formula

SE. This shows a good approximation of the bootstrap SE to the empirical SE. As a

result, the bootstrap method is valid to provide the SE for semi-parametric estimators

when performing hypothesis tests in real data applications.

5.4 Netherlands Mobility Panel

Since 2013, the Netherlands Institute for Transport Policy Analysis (KiM) has con-

ducted the Netherlands Mobility Panel (MPN), a multiple wave longitudinal study aimed

to understand changes in travel behavior over time. Hoogendoorn-Lanser et al. (2015)

provides more detailed information about the panel.

The MPN samples households as survey units and collects travel information by

distributing questionnaires to members in each household. Currently, the MPN has the

initial and second wave data available from years 2013 and 2014 respectively. The

database consists of three main parts: household data, personal data and individual travel

diary data. The household data are collected through a household questionnaire in which

one person representing each participating household answers a number of questions

about the household. The personal data are gathered through an individual questionnaire

in which every member within the household who is aged 12 or older answers several

questions about themselves. In the travel diary data, these members report their trip

information during three consecutive days and answer some additional questions. All

data are collected through a web-based survey.
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There were 3572 households in the initial wave and 4685 households in the second

wave based on the household data. A refreshment sample was included in the second

wave. Since travel behavior is the primary research interest, we will focus on those

households that completed their travel diary data. Not all households that agreed to par-

ticipate in the study provided travel diary data. Among those 3572 households in the first

wave, there were 2380 households that provided both household information and travel

diary data. Among those, there were 1685 households that continued to report their

travel behaviors during the second wave of data collection. The rest of the 695 house-

holds had no response on the travel dairy. A refreshment sample of 1382 households

with both household information and travel diary data was identified and separated from

the second wave data set. These three sets of households corresponding to the complete

set, incomplete set and refreshment sample, respectively, are summarized in Table 5.11.

Wave 1 Wave 2

2380 with travel dairy
1685 with travel dairy Complete set

Incomplete set

1382 with travel dairy Refreshment

Table 5.11: Two-wave Netherlands Mobility Panel data.

The primary use of the Netherlands Mobility Panel is to investigate travel behavior

over time. Several studies have analyzed the MPN data from different perspectives to

provide insights about travel behaviors. Kroesen et al. (2016) presented a research on

the mutual causality between travelers’ attitudes and their travel behaviors. Only the

complete set was used to draw their conclusions. Hoogendoorn et al. (2016) focused
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on estimating the nonresponse bias by modeling the nonresponse behavior. They used

an MAR assumption to model the attrition process through a logistic regression with

observed household and demographic covariates. La Paix et al. (2016) discussed the

measurement of non-random attrition effects on mobility rates using trip diary data.

Their analysis assumed that trip diary data were MAR as they evaluated attrition only

through observed demographic data.

The above literature either assumed MCAR and used the complete set to gain in-

sight about travel behavior or assumed MAR and incorporated an attrition model to

make inferences about the population. In our analysis, we relax the assumption about

missing mechanism in the Netherlands Mobility Panel, allowing for potentially MNAR

data, and use the refreshment sample to estimate MNAR attrition parameters and gain

useful insights for future studies. There are many variables relating to travel behavior in

the travel diary data. Each respondent reports travel information including purpose of

trip, distance of trip, main transportation mode and travel time. In our study, we use the

total travel time as the measurement of travel fatigue, and investigate whether the miss-

ing mechanism relates to this measurement. In the travel diary, respondents reported

every trip they made during the three-day survey. So we create the total travel time by

summing all travel time records from all members within each household and rescale

the sum by a natural log transformation. Figure 5.11 shows the comparison in marginal

densities of the log transformed total travel time on each wave. Here Y1 and Y2 are the

total travel time on the natural log scale at initial wave and second wave respectively.

In the left panel of Figure 5.11, the estimated marginal density of Y1 based on the com-

plete set is plotted in red while the one based on the full panel Y1 is plotted in green.
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In the right panel, the estimated marginal density of Y2 based on the complete set is in

red, and the estimated density based on the refreshment sample is in green. The esti-

mated marginal densities of Y1 and Y2 based on the complete set (in red) can be biased

due to missingness in the data. In contrast, full panel Y1 and the refreshment sample

provide more accurate estimates (in green) for the true marginal densities of Y1 and Y2

respectively.

Figure 5.11: Marginal density comparison

We consider three possible attrition models corresponding to the three possible miss-

ing mechanisms, namely MCAR, MAR and MNAR. Results are shown in Table 5.12.

Let Wi denote the missingness (attrition) indicator for the ith subject with Wi = 1 if Y2 is

observed for the subject i and Wi = 0 otherwise. We assume an additive logistic model
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for the probability of Wi = 1 as

π = P(Wi = 1 | y1,y2,β ) = logistic(β0 +β1y1 +β2y2). (5.2)

Under the MCAR assumption, the probability of Y2 being missing at the second wave is

independent of both responses Y1 and Y2. This can be modeled by setting both β1 and β2

to 0 in (5.2). As a result, the attrition parameter β0 can be estimated from an interception

only logistic regression of W ,

πMCAR = P(Wi = 1 | y1,y2,β ) = logistic(β0).

Under this MCAR assumption, subjects randomly drop out of the study and we estimate

the probability of observing Y2 at the second wave to be logistic(0.89) = 0.71. We have

95% confidence that this probability is from 0.69 to 0.73.

If the data are MAR – that is, if the attrition is associated with responses through the

value of Y1 only – we can specify the attrition model by setting β2 to be 0 so that

πMAR = P(Wi = 1 | y1,y2,β ) = logistic(β0 +β1y1).

A logistic regression model can be built with W as response and Y1 as the only covariate.

Since both W and Y1 are fully observed in the panel, we can easily estimate the attrition

parameters β0 and β1 in this logistic regression. This time, we estimate that the odds

for Y2 being observed at the second wave is e0.15 = 1.16 times greater with each unit

increase in Y1 (which, recall, is total travel time on the natural log scale). We have 95%
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confidence that this multiplicative change is from 1.06 to 1.27. The significance of β̂1

in the MAR model provides strong evidence against the MCAR assumption.

Finally, we extend our analysis by allowing for the possibility of MNAR data and

using the refreshment sample to estimate the MNAR model parameters. In particular,

we use (5.2) to model the attrition process. The attrition model in (5.2) allows the attri-

tion process to depend on both Y1 and Y2. The MAR model can then be justified through

(5.2) by testing for whether β2 = 0. We apply the kernel density based semi-parametric

method to obtain estimates of attrition parameters. Their 95% confidence intervals are

constructed through bootstrapping. Figure 5.12 plots the sampling distributions of the

bootstrapped semi-parametric estimators. The red vertical lines represent the point esti-

mates from the original data.

The results in Table 5.12 indicate that there is strong evidence that the missingness is

related to both Y1 and Y2, which implies that the data are MNAR. The positive estimate

of β1 indicates that the probability of Y2 being observed at the second wave increases as

the value of Y1 increases, given Y2 is fixed. The negative estimate of β2 indicates that

the probability of Y2 being observed decreases as the value of Y2 increases, given Y1 is

fixed. The latter finding is what we would expect from the marginal density comparison

for Y2 in Figure 5.11. The complete set in red has a density leaning toward lower values

of Y2 compared with the potential true marginal density in green. That is, it appears that

the larger Y2 values tended to go missing.
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Figure 5.12: Sampling distributions of bootstrapped semi-parametric estimators in
Netherlands Mobility Panel application.

Attrition model MCAR MAR MNAR

logit(π) = β0 β0 +β1y1 β0 +β1y1 +β2y2

β̂0 0.89 (0.80, 0.97) 0.03 (-0.47, 0.54) 7.11 (5.09, 8.91)

β̂1 0.15 (0.06, 0.24) 0.71 (0.50, 0.88)

β̂2 -1.64 (-1.97, -1.25)

Table 5.12: Point estimates and 95% confidence intervals for attrition parameters in
different attrition models for the Netherlands Mobility Panel.

We also provide a scatter plot of the complete set with the estimated reference line
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(50% missingness probability) and normal vector attached in Figure 5.13. Again, the

normal vector indicates the direction along which the probability of observing Y2 in-

creases. This result reveals that participants who have less travel time at the initial wave

but more travel time at the follow-up wave tend to have higher probability of a missing

second-wave response. Our attempt at explaining this finding is that the increasing bur-

den of reporting participants’ travel information as well as increasing travel fatigue they

are about to experience tends to dissuade them from staying in the MPN study.

Figure 5.13: Scatter plot of MNP complete set with estimated reference line and corre-
sponding normal vector direction. The normal vector points in the direction of a higher
probability of Y2 being observed.
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In this real data application, the refreshment sample helps to build a MNAR attri-

tion model (5.2), and attrition parameters are estimated through the kernel density based

semi-parametric method. Confidence intervals based on bootstrapping provide evidence

that neither MCAR nor MAR models can adequately explain the attrition process in the

Netherlands Mobility Panel. This application demonstrates how different missing mech-

anism assumptions can lead to different understandings of the attrition process. These

assumptions are untestable given the panel data alone. With the refreshment sample,

however, three missing mechanisms are characterized into the additive non-ignorable

attrition model (5.2) and can be estimated. As a result, we can provide more informative

knowledge of the missing process instead of making untestable assumptions. As a final

note, this testable attrition model still has an untestable assumption. That is, we need to

assume the missing process depends on data in this additive form as shown in (5.2).
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6 One Time Invariant Categorical Covariate Extension

In previous chapters, the missing mechanism is assumed to depend only on the re-

sponse variables through an additive non-ignorable model. Often times, this dependency

involves covariates, so it is desirable to incorporate covariates into our missing mecha-

nism model. In this chapter, we extend our semi-parametric model to incorporate one

time-invariant binary covariate. This covariate is related to both the responses and to

the missing mechanism. In section 6.1, we first describe the population and give a para-

metric specification for the missing mechanism model in this case. In section 6.2, we

explain the estimation procedure. Finally, in section 6.3, we show primary simulation

results.

6.1 Models for the Population and Missing Mechanism

Let Yi1 and Yi2 denote the ith responses at the first and second waves respectively. Let

Xi represent a time invariant categorical covariate for the ith observation. For simplicity,

we assume that Xi only takes value in two levels, 0 and 1. We further assume a linear

model for the relationship between the responses and covariate as follows:

Yi1 =α01 +α11Xi + εi1,

Yi2 =α02 +α12Xi + εi2, (6.1)
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where the α’s are the linear model coefficients and the ε’s are the random errors. Here

(εi1,εi2) is assumed to follow a bivariate distribution with mean 0 and variance covari-

ance matrix Σ. Let Wi be an indicator variable, with Wi = 0 indicating that Yi2 is missing.

An additive missing model is assumed for Wi, such that

P(Wi = 1 | yi1,yi2,xi) = logistic(β0 +β1yi1 +β2yi2 +β3xi).

This attrition model is for demonstration purposes only. Its simplicity means that there

is a straightforward interpretation for the covariate as the main effect on the odds ratio of

being observed. A more complex attrition model can be specified according to Hirano

et al. (2001) as shown in (3.1):

P(W = 1 | y1,y2,x) = g(κ0(x)+κ1(y1,x)+κ2(y2,x)),

where g is a monotone function taking on values in the interval (0,1), and κ1(·), κ2(·),

κ3(·) are arbitrary functions of the responses and the covariate. It is important, however,

to note that no interaction terms between y1 and y2 are allowed in this additive model.

In addition, a refreshment sample is also included at the second wave. Table 6.1

shows the observed data in this scenario. Similar to the no-covariate case, the observed

panel data can be separated into two sets according to the values of W . The complete set

consists of observations with W = 1, and we fully observe every variable in this set. The

rest of the panel data then form the incomplete set. Again, the goal is to understand the

attrition process by estimating the attrition parameters (β ) from the data that we observe

in Table 6.1.
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Obs Y1 Y2 X W

Complete
set

1 Y11 Y12 X1 W1=1
...

...
...

...
...

nc Ync1 Ync2 Xnc Wc=1

Incomplete
set

nc +1 Y(nc+1)1 Xnc+1 Wnc+1=0
...

...
...

...
N YN1 XN WN=0

Refreshment
sample

1 Y r
12 X r

1
...

...
...

n Y r
n2 X r

n

Table 6.1: Observed full data set with one categorical explanatory variable.

6.2 Method

Estimates of the attrition parameters (β ) can be obtained through Hirano et al.

(2001)’s two constraints on the covariate x,

∫ P(W = 1 | x)
logistic(β0 +β1y1 +β2y2 +β3x)

f (y1,y2 |W = 1,x)dy2 = f1(y1 | x),∫ P(W = 1 | x)
logistic(β0 +β1y1 +β2y2 +β3x)

f (y1,y2 |W = 1,x)dy1 = f2(y2 | x).

The idea for estimating the β parameters in this scenario is similar to what we have

done in the no-covariate case. We can consider the previous no-covariate situation as a

special case where the covariate X has only one level. With one binary covariate, we

can separate the data into two subsets defined by the levels of X . In each subset, we
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construct two constraints as follows. For X = 0, we have

∫ P(W = 1 | X = 0)
logistic(β0 +β1y1 +β2y2)

f (y1,y2 |W = 1,X = 0)dy2 = f1(y1 | X = 0),∫ P(W = 1 | X = 0)
logistic(β0 +β1y1 +β2y2)

f (y1,y2 |W = 1,X = 0)dy1 = f2(y2 | X = 0).

And for X = 1, we have

∫ P(W = 1 | X = 1)
logistic(β0 +β1y1 +β2y2 +β3)

f (y1,y2 |W = 1,X = 1)dy2 = f1(y1 | X = 1),∫ P(W = 1 | X = 1)
logistic(β0 +β1y1 +β2y2 +β3)

f (y1,y2 |W = 1,X = 1)dy1 = f2(y2 | X = 1).

The true attrition parameters β
0 are the only set of parameters that satisfy the above

constraints. As a result, the estimates for these parameters can be obtained by mini-

mizing the distance between the conditional density functions on both sides of these

four constraints. The estimation procedure starts with estimating the conditional density

components in the above constraints. In each subset, we estimate

f (y1,y2 |W = 1,X = i), P(W = 1 | X = i),

f1(y1 | X = i), f2(y2 | X = i),

where i = 0 or 1. We adopt similar notation to that of chapter 4 and consider the estima-

tion of these density components under the constraints for X = 1 as an example. First,
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we estimate the conditional joint distribution f (y1,y2 |W = 1,X = 1) as

f̂H(y1,y2 |W = 1,X = 1) = f̂H(y |W = 1,X = 1) =
1

n11

n11

∑
i=1

KH(y−Y i),

where Y i =(Yi1,Yi2)
T , i= 1,2, ...,n11 indexes the data points with both W = 1 and X = 1,

and H is a 2×2 bandwidth matrix that is symmetric and positive definite. Additionally,

KH(y) = |H|−1/2K(H−1/2y), where K is the bivariate normal kernel function defined as

K(y) = (2π)−1exp(−yT y/2). Next, P(W = 1 | X = 1) can be consistently estimated by

P̂(W = 1 | X = 1) = n11/N1, where N1 is the number of observations with X = 1. For a

given β = (β0,β1,β2,β3)
T , we can construct the following estimator of the conditional

joint density f (y1,y2 | X = 1):

f̃ (y1,y2 | X = 1,β ) =
P̂(W = 1 | X = 1)

logistic(β0 +β1y1 +β2y2 +β3)
f̂H(y1,y2 |W = 1,X = 1).

The conditional density of Y1 given X = 1 can be computed by integrating the condi-

tional joint distribution f̃ (y1,y2 | X = 1,β ) with respect to y2. This can be numerically

approximated as follows:

f̃1(y1 | X = 1,β ) =
∫

f̃ (y1,y2 | X = 1,β )dy2 ≈
ngrid

∑
i=1

f̃ (y1,y2i | X = 1,β )×∆y2

=
ngrid

∑
i=1

f̃ (y1,y2i | β )×
range(y2)

ngrid
,

where y2i is the ith grid point on Y2 and ngrid denotes the number of grid points in the

2-dimensional kernel density estimator. Similarly, for a given y2, the conditional density
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f̃2(y2 | X = 1,β ) can be defined in the same manner. The conditional density estimates

f̃1(y1 | X = 1,β ) and f̃2(y2 | X = 1,β ) are semi-parametric estimators that rely on the

attrition model. They consistently estimate the true marginal densities only when the

attrition model is correctly specified.

Let {yi1}N1
i=1 be the first wave responses with X = 1 and

{
yr

i2
}n1

i=1 be the refreshment

sample with X = 1. We define the following one dimensional kernel density estimators:

f̂1(y1 | X = 1) =
1

N1

N1

∑
i=1

Kh1(y1− yi1), f̂2(y2 | X = 1) =
1
n1

n1

∑
i=1

Kh2(y2− yr
i2),

where K is the univariate normal density function and Khi(y) = h−1
i K(y/hi), with hi

being the corresponding bandwidth for i = 1,2.

In the subset with X = 0, a set of similar conditional density estimators can be con-

structed, and they are denoted as

f̃1(y1 | X = 0,β ), f̃2(y2 | X = 0,β ),

f̂1(y1 | X = 0), f̂2(y2 | X = 0).

The objective function M(β ) takes the form of the mean squared differences between

the corresponding conditional density functions from the left and right hand sides of the
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four constraints,

M(β ) =MN0(β )+Mn0(β )+MN1(β )+Mn1(β )

=
1

N0

N0

∑
i=1

[
f̃1(yi1 | X = 0,β )− f̂1(yi1 | X = 0)

]2

+
1
n0

n0

∑
i=1

[
f̃2(yr

i2 | X = 0,β )− f̂2(yr
i2 | X = 0)

]2

+
1

N1

N1

∑
i=1

[
f̃1(yi1 | X = 1,β )− f̂1(yi1 | X = 1)

]2

+
1
n1

n1

∑
i=1

[
f̃2(yr

i2 | X = 1,β )− f̂2(yr
i2 | X = 1)

]2
.

Notice that there are four comparisons since there are four constraints. The vector of

semi-parametric estimators of the attrition parameters (β ) is the minimizer of the objec-

tive function M(β ):

β̂ =argmin
β

M(β ).

6.3 Simulation Results

Instead of developing the asymptotic theory, we use simulation to demonstrate the

large sample performance of the semi-parametric estimators in this one-covariate case.
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We generate data from the following model:

Yi1 = 2+Xi + εi1,

Yi2 = 1+3Xi + εi2,

ε =

ε1

ε2

∼ N


0

0

 ,
 1 0.3

0.3 1


 . (6.2)

The additive missing model is set up as

P(Wi = 1 | Yi1,Yi2,Xi) = logistic(−0.8+0.2Yi1 +0.4Yi2−1.4Xi). (6.3)

The attrition parameters are set up such that given any value of the covariate X , there

is a non-zero probability to observe the responses Y1 and Y2 almost everywhere on their

corresponding support. That is, given X = x, the support of f (y1,y2 |W = 1,x) coincides

with the support of f (y1,y2 | x). In this particular additive missing model setting, we are

able to control the probability of Y2 being missing so that it is about 50% on average and

ranges from 20% to 80% given either level of X .

6.3.1 Large Sample Performance

The large sample performance of the semi-parametric estimators is examined by

computing the empirical mean squared errors (MSEs) using simulations. The true pa-

rameters are kept unchanged during the simulation; only the panel size and refreshment

sample size are increased. Under each sample size setting, we draw 1000 samples from
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the population. The attrition parameters are estimated by the semi-parametric method

for each sample. The squared bias and variance are calculated for each estimator based

on those 1000 estimates, and the corresponding MSE is computed. Figure 6.1 shows

plots of the MSE versus panel and refreshment sample sizes. Again, the X-axis repre-

sents the combination of panel size and refreshment sample size. The dashed, dot-dash

and solid lines represent the squared bias, variance, and MSE respectively. The de-

creasing trends of the empirical MSE suggest that the semi-parametric estimators are

consistent.

(a) β̂0 (b) β̂1

(c) β̂2 (d) β̂3

Figure 6.1: Large sample performance of semi-parametric estimators in the one-
covariate case. The dashed, dot-dash and solid lines represent the squared bias, variance,
and MSE respectively.
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6.3.2 Asymptotic Sampling Distribution

The asymptotic sampling distribution is simulated from the same population with

a panel size of 5000 and a refreshment sample size of 2500. The red vertical lines in

Figure 6.2 represent the true values of the attrition parameters. The Q-Q plots suggest

the asymptotic normality of the estimators.

Figure 6.2: Sampling distributions of the semi-parametric estimators in the one-
covariate case. These sampling distributions are based on a sample with a panel size
of 5000 and a refreshment sample size of 2500.
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6.3.3 Inference with Bootstrapping

In this section, we investigate inference using the bootstrap technique. The large

sample performance in the previous section shows the asymptotic normality of the semi-

parametric estimators, from which, an approach to inference can be developed. In the

following, we illustrate the setup for hypothesis testing in the one-covariate case. We

carry out the test by first computing confidence intervals and then rejecting the null if

the corresponding confidence interval does not contain the null hypothesized value. The

construction of confidence intervals requires the estimation of standard errors. We com-

pute the empirical standard errors using simulation. In real data applications, however,

simulation is not an option. Thus, the bootstrap technique is considered as an alterna-

tive approach to estimate standard errors. We use the power function to investigate the

performance of the bootstrap SE. Again, we focus on hypothesis testing for β1 and β2

in the one-covariate case. The null hypothesis is

H0 : βi0 = 0, for i = 1,2.

We define two types of confidence intervals based on two types of standard errors,

namely the empirical simulation SE and the bootstrap SE,

CIsim : β̂i± z1−αSEsim,

CIboot : β̂i± z1−αSEboot ,
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where z1−α/2 is the (1−α/2)th quantile of the standard normal distribution. The level

α test function φ(Y1,Y2,X ,W ) is then defined as

φ(Y1,Y2,X ,W ) =


1, reject null if 0 /∈CI

0, fail to reject otherwise
.

Let Q1(β1) and Q2(β2) be the power functions for β1 and β2 respectively, defined as

Qi(βi) =P(Reject the null | βi is the true parameter)

=Pβi(φ(Y1,Y2,X ,W ) = 1), for i = 1,2.

We now consider the parametric setup for estimating these power functions. We fix

all parameters appearing in (6.2) and (6.3). We only change the values of the attrition

parameters β1 and β2 when working with their power functions. Here, we take the

estimation of the power function of β1 as an example. We change the value of β1 from

0 to 0.2. At each value of β1, we draw 200 samples from the corresponding population

and obtain 200 estimates for β1 through the semi-parametric method. We then compute

the standard error in two different approaches. For the empirical simulation SE, we

draw another 1000 samples from the same population and obtain 1000 estimates. We

use these 1000 estimates to obtain an estimate of the empirical sampling distribution.

The standard deviation of this distribution is the empirical SE. This SE stays the same

during the construction of the confidence intervals. On the other hand, we compute

different bootstrap SEs for different samples. For each of the 200 samples, we generate
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500 bootstrap re-samples, from which we obtain estimates of β1. The bootstrap SE is

computed as the standard deviation of these 500 bootstrapped estimates. Now, we can

build confidence intervals for β1 with these two types of SEs. The power function is

approximated by calculating the proportion of confidence intervals that exclude the null

hypothesis β1 = 0. That is,

Q̂sim(β1) =
1

200

200

∑
i=1

1(0 /∈CIi
sim),

Q̂boot(β1) =
1

200

200

∑
i=1

1(0 /∈CIi
boot),

where 1(·) is the indicator function. The power function for β2 is created in the same

manner. Figure 6.3 shows the resulting power functions. Solid and dashed lines rep-

resent the power functions based on the empirical and bootstrap SEs respectively. The

horizontal dashed line on the bottom indicates the level of the test, α = 0.05. The boot-

strap method gives a close approximation to the empirical power function. These plots

demonstrate promising results for using bootstrap technique in the analysis of real data.
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(a) Power function of β1 (b) Power function of β2

Figure 6.3: Comparison of power functions in the one-covariate case. Solid and dashed
lines represent the power functions based on the empirical and bootstrap SEs respec-
tively. The power function is evaluated at 0, 0.05, 0.1, 0.15 and 0.2 for β1 and at 0, 0.1,
0.2 and 0.4 for β2.

In this chapter, we have extended our semi-parametric method by including a binary

time invariant covariate. The large sample performance and asymptotic sampling dis-

tribution of the semi-parametric estimators were assessed using simulation. The power

function based on bootstrap re-sample was constructed and the comparison with the

empirical power function showed the validity of using bootstrap technique in hypothe-

sis testing for real data applications.
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7 Discussion

Attrition in longitudinal studies is a common problem that one has to take into con-

sideration when making statistical inferences based on incomplete data. Depending on

whether the attrition process relates to variables that are always observed or variables

that are subject to missingness, three main missing mechanism models have been pro-

posed in the literature. The simplest model is missing completely at random (MCAR),

which assumes that subjects randomly drop out of a study. The missing at random

(MAR) model assumes that subjects drop out for reasons that only depends on variables

that are always observed, such as those contained in demographic or satellite data. The

missing not at random (MNAR) model allows for the attrition process to depend on

variables that are subject to missingness. For MCAR and MAR models, even though

many well developed methods are available, their assumptions are usually untestable

and this can lead to biased estimates and inference if the assumed missing mechanism

is in fact incorrect. On the other hand, given the panel data alone, the MNAR model is

not identifiable in most cases.

As a result, Hirano et al. (2001) proposed an additive MNAR model and illustrated

the use of a refreshment sample to better understand missing mechanisms. In particular,

they showed that the additive MNAR model becomes identifiable in the presence of a

refreshment sample. Moreover, this particular type of attrition model can characterize

all three missing mechanisms, and it is the weakest model that can be identified using a
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refreshment sample.

In this dissertation, two methods are proposed with the goal of making inferences

about missing mechanisms in two-wave panel data. Our methods are able to handle more

general continuous data instead of the binary data that has been considered by most of

the literature. Both methods adopt the additive non-ignorable missing mechanism model

proposed by Hirano et al. (2001) to characterize the attrition process. With a specifica-

tion of the population distribution, our first method computes the full likelihood of the

observed data, including both panel and refreshment samples. The attrition parameters

are estimated by maximizing the full likelihood. The elegance of this method lies in

its straightforward idea of using the likelihood function. The computation, however, is

complicated by the presence of attrition. In particular, the observed likelihood for the

incomplete set is constructed by integrating out missing variables. Since this integral

usually lacks a closed form, adaptive Gaussian quadrature is proposed to approximate

it, helping to resolve the analytical problem. The maximum likelihood estimators are

asymptotically efficient estimators. Therefore, the parametric method sets the bench-

mark for the comparison of different estimation methods in this setting.

Our second approach is a kernel density based semi-parametric method, which pro-

vides estimates for the attrition parameters using Hirano et al. (2001)’s fundamental

constraints. As the non-parametric component, kernel density estimators are used to

estimate all of the densities in the constraints. The attrition model is the parametric

component in this method, where the attrition probability is assumed to follow a logis-

tic regression model. The use of the refreshment sample provides the key estimate for

the second wave marginal density in the constraints. Semi-parametric estimators are
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shown to be consistent and asymptotic normally distributed. As a result, a Wald-type

test statistic is constructed to make inferences on the attrition parameters. A method

of constructing standard errors for semi-parametric estimators using the bootstrap tech-

nique is also proposed and its validity is confirmed through simulations.

With the correct specification of the population distribution, the full-likelihood es-

timator has a smaller asymptotic mean squared error than that of the semi-parametric

estimator, as expected. However, the full-likelihood method fails to give consistent es-

timates when the distribution is misspecified. This reveals an advantage of using the

semi-parametric method in real data applications, where it is difficult to specify the

population distribution. It always gives consistent estimators and inference, without

requiring the specification of a population distribution.

In summary, both of the proposed methods are able to identify the attrition process in

a more general two-wave continuous population with the help of a refreshment sample.

Compared to a closely related method, our two new methods are easier to understand

and enjoy better numerical performances. The finite sample performance of the full-

likelihood parametric estimators can be considered as the benchmark, while the semi-

parametric method is recommended for real data applications due to its distribution free

feature.

However, our methods have some limitations. First, it is not straightforward to nu-

merically carry out the computations for the proposed methods. Both methods estimate

attrition parameters by optimizing an objective function that does not have a closed-

form solution. Therefore, numerical optimization techniques are required to solve the

optimization problems. These techniques are computationally intensive, as the objec-
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tive function needs to be re-evaluated at each iteration in the optimization process. The

full-likelihood method requires the re-evaluation of the objective function using adap-

tive Gaussian quadrature, which requires the greatest computational effort. The semi-

parametric method, on the other hand, requires the calculation of both one- and two-

dimensional kernel density estimates in every iteration.

Even through we have extended our semi-parametric method to incorporate an addi-

tional binary covariate, it is still far from being able to accommodate complex datasets

that contain multiple covariates, which are common in real applications. The difficulty

of incorporating multiple covariates lies in estimating the conditional density of the re-

sponse variables given the covariates. When there is only one binary covariate, we can

separate the data using that covariate and estimate the conditional densities directly from

the separated data using kernel density estimators. When we add additional binary co-

variates, the size of each separated dataset gets smaller and the available information

for estimating the conditional densities using the kernel method is reduced. Therefore,

the performance of the kernel density estimator is largely compromised. As a result,

the estimates of attrition parameters become unstable, with large standard errors. If the

covariate is a continuous variable, it then becomes infeasible to follow the same idea

of partitioning the data into every value of the covariate and using the kernel method to

estimate the conditional densities.

Including covariates, both time invariant and time dependent, into the attrition model

is a possible direction for future research. The curse of dimensionality and the require-

ment of a large sample size limit the semi-parametric method because of its kernel

density-based nature. One cannot directly apply a similar method to data with a complex
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covariate structure, unless careful assumptions or modifications can be made to resolve

this problem. The likelihood-based method could be a good start here. Suppose that we

have one continuous, time invariant explanatory variable X . With two-wave panel and

refreshment samples, we could again separate the data into three sets: a complete set,

an incomplete set, and a refreshment sample. The likelihood can then be constructed for

these three sets separately. In particular, the observed likelihood of the complete set is

Lcomp =
nc

∏
i=1

f (yi1,yi2,Wi = 1 | xi)

=
nc

∏
i=1

f (yi1,yi2 | xi)P(Wi = 1 | yi1,yi2,xi).

The likelihood of the incomplete set, which requires integrating the joint distribution

with respect to y2 to compute, is

Lincmp =
N

∏
i=nc+1

f (yi1,Wi = 0 | xi)

=
N

∏
i=nc+1

∫
f (yi1,y2 | xi)P(Wi = 0 | yi1,y2,xi)dy2.

And the refreshment sample has likelihood function

Lre f resh =
n

∏
i=1

f (yr
i2 | xi).

The full observed likelihood is the product of these three parts. Parametric assumptions

are required for both the population and the attrition process. That is, we need to specify

f (y1,y2,W = 1 | x), f (yr
2 | x), and P(W = 1 | y1,y2,x). Computational techniques must
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be considered in order to solve the integral when constructing the likelihood of the

incomplete dataset as well.

Additionally, our current methods are limited to the analysis of longitudinal data

containing two waves, which restricts the extent to which our methods can be applied

to data containing three or more waves. Thus, another research direction is to extend

current methods to the multi-wave scenario. Deng (2012) developed methods for three-

wave binary responses where multiple refreshment samples are used. He considered

several missingness scenarios, and provided comprehensive discussions for each case.

The three-wave problem is more complex than the two-wave problem because it has

more missingness patterns. Table 7.1 shows the appearance of the panel data when

missingness is monotonic, which means that if subjects are missing at the sencond wave,

they cannot come back and are thus missing at the third wave as well. Table 7.2 gives

missing patterns for more general cases. That is, subjects are allowed to come back at

the third wave even if their observations are missing at the second wave. Considerations

should also be made with regard to the refreshment sample. In a three-wave problem,

two refreshment samples are usually allowed to supplement the panel data. One is

collected at the second wave and the other is collected at the third wave. Depending

on whether we follow up the refreshment sample taken at the second wave, the structure

of the observed data at the third wave will be different. This can be seen by comparing

Table 7.1 and Table 7.3.
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Wave 1 Wave 2 Wave 3

Y1 Y2 Y3 Complete set

Y1 Y2 Incomplete at wave 3

Y1 Incomplete at wave 2, 3

Y2 Refreshment 1

Y3 Refreshment 2

Table 7.1: The three-wave panel scenario with monotone missingness and no refresh-
ment follow-up.

Wave 1 Wave 2 Wave 3

Y1 Y2 Y3 Complete set

Y1 Y2 Incomplete at wave 3

Y1 Y3 Incomplete at wave 2

Y1 Incomplete at wave 2, 3

Y2 Refreshment 1

Y3 Refreshment 2

Table 7.2: The three-wave panel scenario with stochastic missingness and no refresh-
ment follow-up.
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Wave 1 Wave 2 Wave 3

Y1 Y2 Y3 Complete set

Y1 Y2 Incomplete at wave 3

Y1 Incomplete at wave 2, 3

Y2 Y3
Refreshment 1

Y2

Y3 Refreshment 2

Table 7.3: The three-wave panel scenario with monotone missingness and refreshment
follow-up.

One idea for modeling the missing process in a three-wave panel is to assume a

Markov property for consecutive missing mechanisms. That is, we assume whether or

not subjects are missing depends only on Y1 and Y2 at the second wave and only on

Y2 and Y3 at the third wave. The Markov property here specifies that the conditional

probability of being observed (or missing) at the next wave depends on all previous

responses only through the current one. Since the goal is to make inferences on these

consecutive missing mechanisms, the dataset can be divided into consecutive pairs. One

subset contains all of the information in both wave 1 and wave 2, and the other subset

contains all of the information in both wave 2 and wave 3. The first subset is used to

model the missing mechanism from wave 1 to wave 2. The second subset can be used to

build a different missing mechanism model for the attrition at wave 3. However, careful

attention must be paid when one models the missing mechanism at the third wave. For

instance, in Table 7.3, there are multiple sources of information about Y2 and Y3. For
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example, the information about Y2 comes from three different sources: the complete

set, the incomplete set, and the refreshment sample. Except for the refreshment sample,

none of the other sources are representative of the population at the second wave. One

needs to find ways to properly incorporate these details when modeling the attrition

process.

The analysis of missing data has a long history in longitudinal studies and has

brought enormous challenges to researchers. For the first time, the emergence of the

refreshment sample method gives researchers the ability to test missing mechanism as-

sumptions that were untestable in the past, helping to make more informative inferences.

The great potential of the refreshment sample in the analysis of missing data has opened

a promising field of research, to which our methods contribute.
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APPENDIX

A Lemmas and Proofs

Proof of Lemma 4.3. Under assumptions (A1), (A2) and (A3), for every β ,

∣∣∣A1β (y1)
∣∣∣2 = ∣∣∣ f (y1 | β )− f1(y1)

∣∣∣2
=

∣∣∣∣∣
∫ f (y1,y2 |W = 1)P(W = 1)

logistic(βy)
dy2− f1(y1)

∣∣∣∣∣
2

=

∣∣∣∣∫ f (y1,y2 |W = 1)P(W = 1)(1+ exp(−βy))dy2− f1(y1)

∣∣∣∣2
≤ F(y1),

for some F(y1) that only depends on y1 and E[F(Y1)]<+∞. The inequality holds since

all functions are continuous and have compact support. By Lemma 4.2 we have that
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1
N ∑

N
i=1 A1β (yi1)

2 uniformly converges to its probability limit EA1β (y1)
2, and

sup
β

∣∣∣PNA2
1β
−PA2

1β

∣∣∣ P−→ 0. �

Proof of Lemma 4.4. By the uniform convergence of the univariate density estimator

given in Theorem A of Silverman et al. (1978), we have

sup
y1

|C1(y1)|= sup
y1

∣∣∣ f̂1(y1)− f1(y1)
∣∣∣ a.s.−−→ 0 as N→ ∞.

As a result

0≤ 1
N

N

∑
i=1

C2
1(yi1)≤ sup

y1

|C1(y1)|2 = op(1). (A.1)

In addition, we can show that

B2
1β
(y1) =

[
f̃ (y1 | β )− f (y1 | β )

]2

=

[∫ P̂(W = 1) f̂H(y1,y2 |W = 1)
logistic(βy)

dy2−
∫ P(W = 1) f (y1,y2 |W = 1)

logistic(βy)
dy2

]2

=

[∫ P̂ f̂H−P f
logistic(βy)

dy2

]2

=

[∫ P̂ f̂H−P f +P f̂H−P f̂H

logistic(βy)
dy2

]2

=

[∫
(P̂−P) f̂H +P( f̂H− f )

logistic(βy)
dy2

]2

.
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By WLLN, one has

P̂(W = 1)−P(W = 1) =
1
N

N

∑
i=1

I(Wi = 1)−P(W = 1) = op(1). (A.2)

Furthermore, by the strong uniform convergence in multivariate case Devroye and Wag-

ner (1980), we can show that with (A5),

sup
y1,y2

∣∣∣ f̂H(y1,y2 |W = 1)− f (y1,y2 |W = 1)
∣∣∣ P−→ 0 as nc→ ∞. (A.3)

Combining (A.2) and (A.3), one has

1
N

N

∑
i=1

B1β (yi1)
2 = op(1). (A.4)

By Cauchy–Schwarz inequality, for any β , we have

1
N

N

∑
i=1

[
2A1β (yi1)B1β (yi1)

]
≤ 2

√
1
N

N

∑
i=1

A1β (yi1)2 1
N

N

∑
i=1

B1β (yi1)2 = op(1),

1
N

N

∑
i=1

[
2A1β (yi1)C1(yi1)

]
≤ 2

√
1
N

N

∑
i=1

A1β (yi1)2 1
N

N

∑
i=1

C1(yi1)2 = op(1),

1
N

N

∑
i=1

[
2B1β (yi1)C1(yi1)

]
≤ 2

√
1
N

N

∑
i=1

B1β (yi1)2 1
N

N

∑
i=1

C1(yi1)2 = op(1).

(A.5)

Therefore Lemma 4.4 follows from (A.1), (A.4) and (A.5). �
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Proof of Lemma 4.7.

E
[
h
(
X i,X j

)]
=E
[
e2

1 (Yi1)g(Yi1)T1
(
Yj1,Y j2,Yi1,Wj

)]
+

E
[
e2

1
(
Yj1
)

g
(
Yj1
)

T1
(
Yi1,Yi2,Y j1,Wi

)]
=I + II.

For I, conditional on X i

I = E
{

E
[
e2

1 (Yi1)g(Yi1)T1
(
Yj1,Yj2,Yi1,Wj

)
| X i
]}

= E
{

e2
1 (Yi1)g(Yi1)

∫
T1
(
y j1,y j2,Yi1,w j

)
f
(
x j | X i

)
dx j

}
.

Let u1 =
y j1−Yi1

h1
, y j1 = Yi1 + u1h1, dy j1 = h1du1, and u2 =

y j2−y2

h2
, y j2 = y2 + u2h2,

dy j2 = h2du2. Note that X i and X j are independent and
∫

w j f
(
w j | y j1,y j2

)
dw j =

E
(
Wj | y j1,y j2

)
=P

(
Wj = 1 | y j1,y j2

)
= 1/

(
1+ exp

(
−β 0

0 −β 0
1 y j1−β 0

2 y j2
))

. With change

of variable and the Taylor expansion, one has

I =E

{
e2

1 (Yi1)g(Yi1)

(∫ ∫ ∫ P
(
Wj = 1 | y j1,y j2

)
K (u1)K (u2)

1/
(
1+ exp

(
−β 0

0 −β 0
1 Yi1−β 0

2 y2
)) f

(
y j1,y j2

)
×dy2du1du2−

∫
K (u1) f1

(
y j1
)

du1

)}
≈E
{

e2
1 (Yi1)g(Yi1)

(∫ ∫ ∫
K (u1)K (u2)du1du2 f (Yi1,y2)dy2− f1 (Yi1)

)}
=E
{

e2
1 (Yi1)g(Yi1)

(∫
f (Yi1,y2)dy2− f1 (Yi1)

)}
=E
{

e2
1 (Yi1)g(Yi1)( f1 (Yi1)− f1 (Yi1))

}
=0.
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Also II approximates to 0 conditional on X j. Thus

E
[
h
(
X i,X j

)]
≈ 0.

For the variance Σ1,

h1 (X i) =E
[
h
(
X i,X j

)
| X i
]

=E
[
e2

1
(
Yj1
)

g
(
Yj1
)

T1
(
Yi1,Yi2,Yj1,Wi

)
| X i
]

=
∫ ∫ ∫

e2
1
(
y j1
)

g
(
y j1
) WiKh1

(
y j1−Yi1

)
Kh2 (y2−Yi2)

1/
(
1+ exp

(
−β 0

0 −β 0
1 y j1−β 0

2 y2
)) f

(
y j1,y j2

)
×dy2dy j1dy j2−

∫
e2

1
(
y j1
)

g
(
y j1
)

Kh1

(
y j1−Yi1

)
f1
(
y j1
)

dy j1.

Let u1 =
y j1−Yi1

h1
, y j1 =Yi1 +u1h1, dy j1 = h1du1, and u2 =

y2−Yi2
h2

, y2 =Yi2 +u2h2, dy2 =

h2du2. With change of variable, the Taylor expansion gives that

h1 (X i)≈
∫ ∫ ∫

e2
1 (Yi1)g(Yi1)

WiK (u1)K (u2)

1/
(
1+ exp

(
−β 0

0 −β 0
1 Yi1−β 0

2 Yi2
)) f

(
Yi1,y j2

)
×du2du1dy j2−

∫
e2

1 (Yi1)g(Yi1)K (u1) f1 (Yi1)du1

=e2
1 (Yi1)g(Yi1)Wi f1 (Yi1)

(
1+ exp

(
−β

0
0 −β

0
1 Yi1−β

0
2 Yi2

))
− e2

1 (Yi1)g(Yi1) f1 (Yi1) .

Then Σ1 = Var [h1 (X)] = E
[
h1 (X)h1 (X)T

]
=
{

E
[
hi j (X)

]}3
i, j=1, where hi j (X) is the
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i jth element in the matrix h1 (X)h1 (X)T such that

hi j (X) =e4
1 (Y1)gi (Y1)g j (Y1) f 2

1 (Y1)
[
W
(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))
−1
]2

=e4
1 (Y1)gi (Y1)g j (Y1) f 2

1 (Y1)W 2 (1+ exp
(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))2

−2e4
1 (Y1)gi (Y1)g j (Y1) f 2

1 (Y1)w
(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))

+ e4
1 (Y1)gi (Y1)g j (Y1) f 2

1 (Y1) .

Then we have for each element of the matrix h1 (X)h1 (X)T

E
(
hi j (X)

)
=E
[
e4

1 (Y1)gi (Y1)g j (Y1) f 2
1 (Y1)

(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))]

−E
[
e4

1 (Y1)gi (Y1)g j (Y1) f 2
1 (Y1)

]
=E
[
e4

1 (Y1)gi (Y1)g j (Y1) f 2
1 (Y1)exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
)]
.

By the relationship between V- and U-statistics introduced in Section 5.7.3 and Theorem

A in Section 5.5.1 Serfling (2009), based on Lemma A.1 one has asymptotic normality

of ϕN

(
β

0
)

as
√

NϕN

(
β

0
)
∼ N (0,4Σ1) . �

Proof of Lemma 4.8. Recall

MN

(
β

)
=

1
N

N

∑
i=1

[
e1 (yi1)

[
f̃1(yi1 | β )− f̂1(yi1)

]]2

=
1
N

N

∑
i=1

[
e1 (yi1)

[
A1β (yi1)+B1β (yi1)+C1(yi1)

]]2
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and

∂

∂β
MN

(
β

)
=

2
N

N

∑
i=1

e2
1 (yi1)

[
A1β (yi1)+B1β (yi1)+C1(yi1)

][
∂

∂β
A1β (yi1)+

∂

∂β
B1β (yi1)

]
.

Then

∂ 2

∂β
2 MN

(
β

)
=

2
N

N

∑
i=1

e2
1 (yi1)

[
∂

∂β
A1β (yi1)+

∂

∂β
B1β (yi1)

][
∂

∂β
A1β (yi1)+

∂

∂β
B1β (yi1)

]T

+e2
1 (yi1)

[
A1β (yi1)+B1β (yi1)+C1(yi1)

][
∂ 2

∂β
2 A1β (yi1)+

∂ 2

∂β
2 B1β (yi1)

]}
∂ 2

∂β
2 MN

(
β

0
)
≈ 2

N

N

∑
i=1

e2
1 (yi1)

∂

∂β
A1β

0(yi1)
∂

∂β
A1β

0(yi1)
T .

The approximation is due to the fact that B1β (yi1), C1(yi1) and ∂

∂β
B1β (yi1) are op (1).

Then the probability limit of the second derivative is

E

[
∂ 2

∂β
2 MN

(
β

0
)]
≈ 2E

[
e2

1 (Y1)g(Y1)g(Y1)
T
]
. �

Proof of Lemma 4.9. For ϕ
(1)
n

(
β

0
)

, we have

ϕ
(1)
n

(
β

0
)
=

1
nN

n

∑
i=1

N

∑
j=1

[
2e2

2 (yi2)k (yi2)T2
(
y j1,y j2,yi2,w j

)]
.



134

Then

h(1)1
(
X j
)
=E
[
2e2

2 (Yi2)k (Yi2)T2
(
Yj1,Yj2,Yi2,Wj

)
| X j

]
=
∫

2e2
2 (yi2)k (yi2)

∫ WjKh1

(
y1−Yj1

)
Kh2

(
yi2−Yj2

)
1/
(
1+ exp

(
−β 0

0 −β 0
1 y1−β 0

2 yi2
))dy1 f2 (yi2)dyi2

−E
[
2e2

2 (Yi2)k (Yi2) f2(Yi2)
]
.

Let u1 =
y1−Y j1

h1
, y1 = Y j1 +h1u1, dy1 = h1du1 and u2 =

yi2−Y j2
h2

, yi2 = Yj2 +h2u2, dyi2 =

h2du2. With change of variable and the Taylor expansion

h(1)1
(
X j
)
≈
∫

2e2
2
(
Yj2
)

k
(
Yj2
)∫ WjK (u1)K (u2)

1/
(
1+ exp

(
−β 0

0 −β 0
1 Yj1−β 0

2 Yj2
))du1 f2

(
Yj2
)

du2

−E
[
2e2

2 (Yi2)k (Yi2) f2(Yi2)
]

=2e2
2
(
Y j2
)

k
(
Y j2
)

Wj
(
1+ exp

(
−β

0
0 −β

0
1 Yj1−β

0
2 Yj2

))
f2
(
Y j2
)

−2E
[
e2

2 (Yi2)k (Yi2) f2(Yi2)
]
.

Then Σ
(1)
2 =Var

[
h(1)1 (X)

]
=E

[
h(1)1 (X)h(1)1 (X)T

]
=
{

E
{

h(1)i j (X)
}}3

i, j=1
, where h(1)i j (X)

is the i jth element in the matrix h(1)1 (X)h(1)1 (X)T such that

h(1)i j (X) =4e4
2 (Y2)ki (Y2)k j (Y2)W 2 (1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))2

f 2
2 (Y2)

−4e2
2 (Y2)ki (Y2)W

(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))

f2 (Y2)E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]

−4e2
2 (Y2)k j (Y2)W

(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))

f2 (Y2)E
[
e2

2 (Y2)ki (Y2) f2(Y2)
]

+4E
[
e2

2 (Y2)ki (Y2) f2(Y2)
]

E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]
.
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Then we have for each element of the matrix h(1)1 (X)h(1)1 (X)T ,

E
(

h(1)i j (X)
)
=4E

[
e4

2 (Y2)ki (Y2)k j (Y2)
(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))

f 2
2 (Y2)

]
−4E

[
e2

2 (Y2)ki (Y2) f2 (Y2)
]

E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]

−4E
[
e2

2 (Y2)k j (Y2) f2 (Y2)
]

E
[
e2

2 (Y2)ki (Y2) f2(Y2)
]

+4E
[
e2

2 (Y2)ki (Y2) f2(Y2)
]

E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]

=4E
[
e4

2 (Y2)ki (Y2)k j (Y2)
(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))

f 2
2 (Y2)

]
−4E

[
e2

2 (Y2)ki (Y2) f2 (Y2)
]

E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]
.

Define

U∗N =
1
N

N

∑
j=1

h(1)1
(
X j
)
.

By central limit theorem
√

NU∗N
d−→ N

(
0,Σ(1)

2

)
,

We want to show that ϕ
(1)
n

(
β

0
)

p−→U∗N , this is equivalent to show that

Var
[
ϕ
(1)
n

(
β

0
)
−U∗N

]
−→ 0 as N −→ ∞.

First we have
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Var
[
ϕ
(1)
n

(
β

0
)]

=
1

n2N2

n

∑
i=1

N

∑
j=1

Var
[
2e2

2(Yi2)k(Yi2)T2(Yj1,Yj2,Yi2,Wj)
]

+
1

n2N2

n

∑
i=1

N

∑
j=1

∑
j 6= j′

Cov
[
2e2

2(Yi2)k(Yi2)T2(Yj1,Yj2,Yi2,Wj),

2e2
2(Yi2)k(Yi2)T2(Yj′1,Y j′2,Yi2,Wj′)

]
+

1
n2N2

n

∑
i=1

N

∑
j=1

∑
i 6=i′

Cov
[
2e2

2(Yi2)k(Yi2)T2(Yj1,Y j2,Yi2,Wj),

2e2
2(Yi′2)k(Yi′2)T2(Yj1,Y j2,Yi′2,Wj)

]
≈ 1

nN
Var

[
2e2

2(Yi2)k(Yi2)T2(Yj1,Yj2,Yi2,Wj)
]
+

n(n−1)
n2N

Σ1

≈ 1
N

Σ
(1)
2 .

(A.6)

And

Var (U∗N) =
1
N

Σ
(1)
2 . (A.7)

And

Cov
[
ϕ
(1)
n

(
β

0
)
,U∗N

]
=Cov

 1
nN

n

∑
i=1

N

∑
j=1

[
2e2

2(Yi2)k(Yi2)T2(Yj1,Yj2,Yi2,Wj)
]
,

1
N

N

∑
j′=1

h(1)1

(
X j′
)

=
1

nN2

n

∑
i=1

N

∑
j=1

∑
j= j′

Cov
[
2e2

2(Yi2)k(Yi2)T2(Yj1,Yj2,Yi2,Wj),h
(1)
1
(
X j′
)]

=
1
N

Σ
(1)
2 .

(A.8)
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With Eq (A.6), (A.7) and (A.8)

Var
[
ϕ
(1)
n

(
β

0
)
−U∗N

]
=Var

[
ϕ
(1)
n

(
β

0
)]

+Var [U∗N ]−2Cov
[
ϕ
(1)
n

(
β

0
)
,U∗N

]
≈0.

Thus, ϕ
(1)
n

(
β

0
)

p−→U∗N and one has

√
Nϕ

(1)
n

(
β

0
)
∼ N

(
0,Σ(1)

2

)
. �

Proof of Lemma 4.10. We have

E
[
h(2) (Yi2,Yl2)

]
=E
[
E
[
e2

2 (Yi2)k (Yi2)( f2(Yi2)−Kh2 (Yi2−Yl2)) | Yi2
]]

+E
[
E
[
e2

2 (Yl2)k (Yl2)( f2(Yl2)−Kh2 (Yl2−Yi2)) | Yl2
]]

=E
[

e2
2 (Yi2)k (Yi2)

[
f2(Yi2)−

∫
Kh2 (Yi2− yl2) f2(yl2)dyl2

]]
+E

[
e2

2 (Yl2)k (Yl2)

[
f2(Yl2)−

∫
Kh2 (Yl2− yi2) f2(yi2)dyi2

]]
≈E
[
e2

2 (Yi2)k (Yi2) [ f2(Yi2)− f2(Yi2)]
]

+E
[
e2

2 (Yl2)k (Yl2) [ f2(Yl2)− f2(Yl2)]
]

=0.



138

Define

h(2)1 (Yi2) = E
(

h(2) (Yi2,Yl2) | Yi2

)
= E

[
e2

2 (Yl2)k (Yl2)( f2(Yl2)−Kh2 (Yl2−Yi2)) | Yi2
]

= E
[
e2

2 (Yl2)k (Yl2) f2(Yl2)
]
−
∫

e2
2 (yl2)k (yl2)Kh2 (yl2−Yi2) f2 (yl2)dyl2

≈ E
[
e2

2 (Yl2)k (Yl2) f2(Yl2)
]
− e2

2 (Yi2)k (Yi2) f2 (Yi2) .

Define Σ
(2)
2 = Var

[
h(2)1 (Y2)

]
= E

[
h(2)1 (Y2)h(2)1 (Y2)

T
]
=
{

E
[
h(2)i j (Y2)

]}3

i, j=1
, where

h(2)i j (y2) is the i jth element in the matrix h(2)1 (y2)h(2)1 (y2)
T such that

h(2)i j (y2) =
[
E
[
e2

2 (Y2)ki (Y2) f2(Y2)
]
− e2

2 (y2)ki (y2) f2 (y2)
]

×
[
E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]
− e2

2 (y2)k j (y2) f2 (y2)
]

=E
[
e2

2 (Y2)ki (Y2) f2(Y2)
]

E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]

−E
[
e2

2 (Y2)ki (Y2) f2(Y2)
]

e2
2 (y2)k j (y2) f2 (y2)

− e2
2 (y2)ki (y2) f2 (y2)E

[
e2

2 (Y2)k j (Y2) f2(Y2)
]

+ e4
2 (y2)ki (y2)k j (y2) f 2

2 (y2) .

Then we have for each element of the matrix h(2)1 (y2)h(2)1 (y2)
T ,

E
(

h(2)i j (Y2)
)
=E
[
e4

2 (Y2)ki (Y2)k j (Y2) f 2
2 (Y2)

]
−E

[
e2

2 (Y2)ki (Y2) f2(Y2)
]

E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]
.
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By the property of a V-statistics, one has

√
nϕ

(2)
n

(
β

0
)
∼ N

(
0,4Σ

(2)
2

)
. �

Proof of Lemma 4.11. Recall

Mn

(
β

)
=

1
n

n

∑
i=1

[
e2 (yi2)

[
f̃2(yi2 | β )− f̂2(yi2)

]]2

=
1
n

n

∑
i=1

[
e2 (yi2)

[
A2β (yi2)+B2β (yi2)+C2(yi2)

]]2
.

And

∂

∂β
Mn

(
β

)
=

2
n

n

∑
i=1

e2
2 (yi2)

[
A2β (yi2)+B2β (yi2)+C2(yi2)

]
[

∂

∂β
A2β (yi2)+

∂

∂β
B2β (yi2)

]
.

Then

∂ 2

∂β
2 Mn

(
β

)
=

2
n

n

∑
i=1

e2
2 (yi2)

[
∂

∂β
A2β (yi2)+

∂

∂β
B2β (yi2)

][
∂

∂β
A2β (yi2)+

∂

∂β
B2β (yi2)

]T

+e2
2 (yi2)

[
A2β (yi2)+B2β (yi2)+C2(yi2)

][
∂ 2

∂β
2 A2β (yi2)+

∂ 2

∂β
2 B2β (yi2)

]}
,

∂ 2

∂β
2 Mn

(
β

0
)
≈2

n

N

∑
i=1

e2
2 (yi2)

∂

∂β
A2β

0(yi2)
∂

∂β
A2β

0(yi2)
T .

The approximation is due to the fact that B2β (yi2), C2(yi2) and ∂

∂β
B2β (yi2) are op (1).

The leading term of each summation is e2
2 (yi2)

∂

∂β
A2β

0(yi2)
∂

∂β
A2β

0(yi2)
T . Then the
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probablity limit of the second derivative is

E

[
∂ 2

∂β
2 Mn

(
β

0
)]
≈ 2E

[
e2

2 (Y2)k (Y2)k (Y2)
T
]
. �

Proof of Theorem 4.3. Now we have three multivariate normal distributed vectors, namely

ϕN

(
β

0
)

, ϕ
(1)
n

(
β

0
)

and ϕ
(2)
n

(
β

0
)

. The sum of these vectors is again a multivariate

normal distributed vector. By the relationship between V-statistics and U-statistics and

the proof of asymptotic properties of an U-statistics, we can rewrite these three random

vectors as

ϕN

(
β

0
)
≈ ϕ̃N

(
β

0
)
=

2
N

N

∑
i=1

h1 (X i)∼ N
(

0,
4
N

Σ1

)
,

ϕ
(1)
n

(
β

0
)
≈ ϕ̃

(1)
n

(
β

0
)
=

1
N

N

∑
j=1

h(1)1
(
X j
)
∼ N

(
0,

1
N

Σ
(1)
2

)
,

ϕ
(2)
n

(
β

0
)
≈ ϕ̃

(2)
n

(
β

0
)
=

2
n

n

∑
l=1

h(2)1 (Yl2)∼ N
(

0,
4
n

Σ
(2)
2

)
,

where X i and X j represent the sample from the panel and Yl2 the sample from refresh-

ment, therefore they are independent. As a result

Cov
[
h1 (X i) ,h

(2)
1 (Yl2)

]
= 0 and Cov

[
h(1)1

(
X j
)
,h(2)1 (Yl2)

]
= 0.

The covariance contribution is between ϕN

(
β

0
)

and ϕ
(1)
n

(
β

0
)

. For i 6= j, we have

Cov
[
h1 (X i) ,h

(1)
1
(
X j
)]

= 0. And for i = j, we have

Σcov =Cov
[
h1 (X) ,h(1)1 (X)

]
= E

[
h1 (X)h(1)1 (X)T

]
=
{

E
[
hcov

i j
]}3

i, j=1 ,
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where hcov
i j is the i jth element of matrix h1 (x)h(1)1 (x)T and

hcov
i j =

[
e2

1 (y1)gi (y1)w f1 (y1)
(
1+ exp

(
−β

0
0 −β

0
1 y1−β

0
2 y2
))
− e2

1 (y1)gi (y1) f1 (y1)
]

×
[
2e2

2 (y2)k j (y2)w
(
1+ exp

(
−β

0
0 −β

0
1 y1−β

0
2 y2
))

f2 (y2)

−2E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]]

=2e2
1 (y1)e2

2 (y2)gi (y1)k j (y2)w2 (1+ exp
(
−β

0
0 −β

0
1 y1−β

0
2 y2
))2

f1 (y1) f2 (y2)

−2e2
1 (y1)gi (y1)w f1 (y1)

(
1+ exp

(
−β

0
0 −β

0
1 y1−β

0
2 y2
))

E
[
e2

2 (Y2)k j (Y2) f2(Y2)
]

−2e2
1 (y1)e2

2 (y2)gi (y1)k j (y2)w
(
1+ exp

(
−β

0
0 −β

0
1 y1−β

0
2 y2
))

f1 (y1) f2 (y2)

+2e2
1 (y1)gi (y1) f1 (y1)E

[
e2

2 (Y2)k j (Y2) f2(Y2)
]
.

Then

E
[
hcov

i j
]
=2E

[
e2

1 (Y1)e2
2 (Y2)gi (Y1)k j (Y2)

(
1+ exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
))

f1 (Y1) f2 (Y2)
]

−2E
[
e2

1 (Y1)e2
2 (Y2)gi (Y1)k j (Y2) f1 (Y1) f2 (Y2)

]
=2E

[
e2

1 (Y1)e2
2 (Y2)gi (Y1)k j (Y2) f1 (Y1) f2 (Y2)exp

(
−β

0
0 −β

0
1 Y1−β

0
2 Y2
)]
.

Let N = rn, r is the ratio between N and n. Then we have

√
N
[
ϕN

(
β

0
)
+ϕ

(1)
n

(
β

0
)
+ϕ

(2)
n

(
β

0
)]
∼ N

(
0,4Σ1 +Σ

(1)
2 +4rΣ

(2)
2 +4Σcov

)
.

Define Σ = 4Σ1 +Σ
(1)
2 +4rΣ

(2)
2 +4Σcov and V = E

[
∂ 2

∂β
2 MN

(
β

0
)]

+E
[

∂ 2

∂β
2 Mn

(
β

0
)]

.

By Theorem 5.21 Van der Vaart (2000) we have the asymptotic porperty for β̂ as follow

√
N
(

β̂ − β̂
0

)
∼ N

(
0,
(
V−1)

Σ
(
V−1)T

)
. �
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Lemma A.1. Relationship between U-statistics and V-statistics. Let h(x,y) be a sym-

metric function and let θ = E
[
h
(
Xi,X j

)]
, one has

√
n(Vn−θ)∼

√
n(Un−θ)

∼ N (0,4ζ1) ,

given ζ1 > 0 and E
[
h2 (Xi,X j

)]
<∞ , where ζ1 =Var [h1 (X1)]=Var [E (h(X1,X2) | X1)].

Proof of Lemma A.1. Let h̃(x,y) = h(x,y)−θ . Let Un be an U-statistics and Vn be the

corresponding V-statistics such as

Un =
1(n
2

)∑
c

h
(
xi,x j

)
,

Vn =
1
n2 ∑

i
∑

j
h
(
xi,x j

)
.

Define the corresponding centered Un and Vn as

Ũn =
1(n
2

)∑
c

h̃
(
xi,x j

)
=Un−θ ,

Ṽn =
1
n2 ∑

i
∑

j
h̃
(
xi,x j

)
=Vn−θ .

From Lemma 5.7.3 Serfling (2009) we have the relationship

n2 (Un−Vn) =
(
n2−n(2)

)
(Un−Wn) ,
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where n(2) = n(n−1) and Wn =
1
n ∑i h

(
xi,x j

)
. Then it leads to the centered version

n2
(

Ũn−Ṽn

)
=
(
n2−n(2)

)(
Ũn− (Wn−θ)

)
,

n2Ũn−n2Ṽn = nŨn−nW̃n,

n
(

Ṽn−Ũn

)
= W̃n−Ũn,

√
n
(

Ṽn−Ũn

)
=

1√
n

(
W̃n−Ũn

)
,

√
nṼn =

√
nŨn +

1√
n

(
W̃n−Ũn

)
.

Since 1√
n

n−→∞−→ 0, Ũn
wp1−→ 0 and W̃n

wp1−→ ∑
∞
k=1 λk, by Theorem A 5.5.1 Serfling (2009)

we have

√
n(Vn−θ)∼

√
n(Un−θ)

∼ N (0,4ζ1) ,

given ζ1 > 0 and E
[
h2 (Xi,X j

)]
<∞ , where ζ1 =Var [h1 (X1)]=Var [E (h(X1,X2) | X1)].
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