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Since 1941, the Forest Research Labo-
ratory-part of the School of Forestry
at Oregon State University in Corval-
lis-has been studying forests and why
they are like they are. A staff of more
than 50 scientists conducts research to
provide information for wise public and
private decisions on managing and using
Oregon's forest resources and operating
its wood-using industries. Because of
this research, Oregon's forests now
yield more in the way of wood pro-
ducts, water, forage, wildlife, and recre-
ation. Wood products are harvested,
processed, and used more efficiently.
Employment, productivity, and profita-
bility in industries dependent on forests
also have been strengthened. And this
research has helped Oregon to maintain
a quality environment for its people.

Much research is done right in the
Laboratory's facilities on the campus.
But field experiments in forest genetics,
young-growth management, forest
hydrology, harvesting methods, and re-
forestation are conducted on 12,000
acres of School forests adjacent to the
campus and on lands of public and
private cooperating agencies throughout
the Pacific Northwest.

With these publications, the Forest
Research Laboratory supplies the re-
sults of its research to forest land
owners and managers, to manufacturers
and users of forest products, to leaders
of government and industry, and to the
general public.

As a research bulletin, this publication
is one of a series that comprehensively
and in detail discusses a long, complex
study or summarizes available informa-
tion on a topic.

the authors
James S. Schmidt, formerly a forest
economics consultant, is now a forest
economist for the U.S. Forest Service,
Mt. Baker-Snoqualmie National Forest,
Seattle, Washington. Philip L. Tedder is
Assistant Professor, Department of
Forest Management, School of Forestry,
Oregon State University, Corvallis.

disclaimer
This project was accomplished througf
partial funding by the Pacific Northwes-
Regional Commission. The statements
findings, conclusions, recommendations
and other data are solely those of tht
Grantee, and do not necessarily reflec
the view of the Pacific Northwesi
Regional Commission.

This report is the result of tax-supportec
research and as such is not copy-
rightable. It may be reprinted in part or
whole with customary crediting of the
source.

acknowledgments
We extend our thanks to the Oregon
State University School of Forestry for
its multifaceted support of this
project-in particular, to Carol Small
who singlehandedly edited the four
TREES manuals.

to order copies
The TREES manuals may be ordered
from

Forestry Accounting
School of Forestry
Oregon State University
Corvallis, Oreg. 97331

at $6 per manual prepaid (including
postage and handling). Contact P. L.
Tedder directly for information on the
TREES tape and a source listing. Copies
of Timber for Oregon's Tomorrow
(Beuter et al. 1976), Res. Bull. 19, as
well as other Forest Research
Laboratory publications, are available
from

Forest Research Laboratory
School of Forestry
Oregon State University
Corvallis, Oreg. 97331

Please include author(s), title, and
publication number if known.



contents
3 Preface
3 Introduction
4 Harvest Scheduling Methods
4 Absolute Amount

4 applying the method
4 policy considerations

5 Percent of Inventory
5 applying the method
5 policy considerations

6 Area Control
6 applying the method
6 policy considerations

7 Even-Flow of Volume (EFV)
8 applying simple EFV (AD)

11 applying simple EFV (DD)
14 policy considerations: the simple case
15 applying sequential EFV (AD and DD)
15 policy considerations: the sequential case

16 Even-Flow of a Function of Volume (EFFV)
16 applying simple EFFV (AD)
17applying simple EFFV (DD)
17 applying sequential EFFV (AD and DD)
17 policy considerations: simple and sequential cases

18 Present Net Worth (PNW)
21 solution methods: optimality and feasibility
24 stability characteristics
28 optimality re-examined
30 linkage equation with a changing demand intercept
31 linkage equation with age-dependent harvest price and costs
33 cultural treatment costs
33 exogenous harvests
34 incorporating productivity classes
35 ending-condition checks
35 policy considerations

35 Present Net Benefit PN B
35 applying the method
36 policy considerations

38 Growth Algorithms
38 AD Options

38 standard yield
38 approach to normality
40 growth after thinning

41 DD Options
41 mortality
42 diameter growth
43 ingrowth and upgrowth



51 Literature Cited
52 Appendix A-Detailed Algorithms for the Variable Harvest Scheduling Methods
52 Variable Definitions
53 EFV and EFFV
54 PNW and PNB
56 Appendix B-Optimization Detail Report
56 Fixed Method Report
56 Even-Flow Report
57 PNW and PNB Report
59 Appendix C-Quadratic Interpolation Routine for PNW and PNB Algorithms
63 Appendix D-Equation Limits



preface
TREES (Timber Resource Eco-
nomic Estimation System) is a

forest management and harvest
scheduling simulation model
designed to predict future timber
harvest volumes and the ensuing
effects on forest inventory. The
system can respond to a wide
variety of management problems
at a reasonable cost from the
national to local woodlot level.

The model was developed by K.
Norman Johnson, H. Lynn Scheur-
man, and John H. Beuter to
provide a means of answering
questions about future timber har-
vests in Oregon and resulting
impacts. Their findings are
reported in Timber for Oregon's
Tomorrow, An Analysis of
Reasonably Possible Occurrences
(1976), familiarly known as the
Oregon Timber Study.

The TREES package-a set of four
manuals-contains explicit informa-
tion on all aspects of the system:

TREES-Vol. 1: A User's Manual
for Forest Management and Har-
vest Scheduling

TREES-Vol. II: Mathematical
Analysis and Policy Guide

TREES-Vol. III: Example
Problem Guide

TREES-Vol. IV:
.

Computer
Analyst's Guide

The User's Manual and Math/
Policy Guide not only supply
complete operating instructions
but also, for the first time, present
detailed analyses of modern forest
management techniques, harvest
scheduling methods, and inter-
action of the two.

introduction
This Mathematical Analysis and
Policy Guide reveals the mathe-
matical relationships underlying
the harvest scheduling methods,
growth algorithms, and special
functions in the TREES model.

Algorithm steps are presented for
each of the fixed harvest schedul-
ing methods (absolute amount,
percent of inventory, and area

control) and for the more complex
variable methods (even-flow of
volume, even-flow of a function of
volume, present net worth, and
present net benefit), which require
multiple iterations to set the
harvest level. Consideration of the
effects of each method on key
harvest policy variables, including
ending inventory, harvest volume
flow, acres cut, and cash flow,
make this manual an invaluable
guide for forest managers and
resource analysts both to more
accurately determine which
method(s) meet policy goals and
to avoid unnecessary and expen-
sive computer runs.

Growth algorithms are explained
to show how the user-specified
yield values (for even-aged inven-
tories) and growth rates (for
uneven-aged inventories) are
handled in the model. For both
approaches, explicit detail is

provided in order that the user
may fully understand the complex
relationships that mortality,
ingrowth, upgrowth, and basal area
have within the growth routines.
Growth options for the period
after thinning in the even-aged
approach are detailed, and the
uneven-aged approach is contrasted
with the nonlinear interpolation
and big Q methods of TRAS
(Larson and Goforth 1974).

The appendices will be especially
useful to the computer specialist.
Algorithm steps for the variable
harvest scheduling methods are
expressed in terms of computer
program variables. Program vari-
ables also are defined for the
optimization detail, available in
three distinct reports. Also
detailed are routines for quadratic
interpolation, which is used by the
PNW and PNB methods to smooth
the transition between dis-
continuous yield-table values and
equilibrium conditions, and for
setting the equation limits that
produce the internal program table
values used in the model.

The Math/Policy Guide, in con-
junction with the other three
TREES volumes, will enhance
users' understanding of the struc-
ture of TREES and increase their
facility in running the model.
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harvest scheduling methods
TREES incorporates both fixed
and variable harvest scheduling
methods (see the harvest schedul-
ing methods sections, User's
Manual).

The three fixed methods-absolute
amount, percent of inventory, and
area control-are those for which
entries in the allowable cut (ACC)
file predetermine harvest levels.
Absolute amount and percent of
inventory may be applied to either
even-aged (AD) or uneven-aged
(DD) stands; area control applies
to AD only. These methods do
not use an iterative search to find
the harvest level. No optimization
occu rs.

The four variable methods-even-
flow of volume, even-flow of a
function of volume, present net
benefit (PNB), and present net
worth (PNW)-use a multiple itera-
tion search to set the harvest level.
The even-flow methods may be
used for either AD or DD stands;
however, PNB and PNW apply to
AD only.

Absolute Amount

applying the method
The user selects a harvest priority
(oldest age first, maximum value,
or minimum growth) and requests
N volume to be harvested for each
period the method is in effect.
(Harvest priorities are described in
Appendix C, User's Manual, and in
later sections of this volume.) The
algorithm proceeds:

Step 1. Check the requested volume
for feasibility. If the requested vol-
ume is less than the exogenous
harvest, take the exogenous harvest;
if it is greater than the volume
available, take the volume available
according to the harvest priority
chosen. If neither, take the volume
consistent with the selected harvest
priority.

Step 2. Check the period. If the last
period, stop. If not, grow the inven-
tory and go to Step 1.

Exogenous harvests are thinnings,
mortality salvage, and species con-
version and will always be taken if
user specified.

policy considerations

Absolute amount offers extreme
flexibility for achieving a given
harvest policy. Its application is

simple but predicting its effects
difficult.

For a nondeclining, even-flow
harvest, absolute amount will be
successful for the planning horizon
if current and future inventories
can fill the volume requested. If
the forest is not initially regu-
lated, acres harvested each period
may fluctuate dramatically. Addi-
tionally, unless the volume
requested can be sustained by the
forest when regulated at a desired
rotation age or diameter-class dis-
tribution, inventory will either be
depleted or continue to become
regulated at a rotation age or
diameter distribution other than
that desired. If the volume
requested can be sustained for the
planning horizon to just equal
growth, regulation will occur, with
the volume harvested each period
equal to growth. The time
required to achieve regulation will
depend on how close- the forest
initially is to this goal. If the
forest is irregular in stocking or

For AD forests, regulation occurs when
equal numbers of acres are in every age
class in a given productivity class, with
the oldest age class at the desired

harvest age. For DD forests, regulation
theoretically occurs when the ideal

diameter-class distribution has been

reached.
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age, the conversion period may be
several rotations long.

When applied to a nondeclining
even-flow harvest, absolute amount
is insensitive to economic condi-
tions. For example, if mill demand
or capacity is balanced with har-
vest, economic stability in an area
could be reasonably assured. But if
the real price of timber were rising
and the absolute volume requested
caused excess inventory buildup,
resulting low stumpage prices
would probably attract new mills.
Forest inventories would be

pressed to produce even greater
harvests. In this example, absolute
amount is actually the same as
even-flow of volume (EFV),
except that no ending condition
can be specified.

Where volume requests are calcu-
lated by an exogenous method not
directly associated with the forest,
such as econometric analysis,
future supply-and-demand equil-
ibrium points could be calculated
and those volume levels entered as
absolute requests.

Absolute Amount Highlights

Percent of Inventory

applying the method

The user requests a proportion of
the available inventory to be

harvested each period. This pro-
portion may be constant or a

linear function of the period, with
minimum and maximum limits.
The algorithm proceeds:

Step 1. Calculate the proportion of
available inventory to be harvested in
the period.

Step 2 Multiply that proportion by
the inventory above minimum age
class2 or diameter class for harvest to
arrive at a volume request.

Step 3. Check for feasibility. If the
volume requested is less than the
exogenous harvest, take the exog-

enous harvest; if it is greater than the
harvest volume available, take the
volume available according to the
harvest priority chosen. If neither,
take the volume requested consistent
with the selected harvest priority.

Step 4. Check the period. If the last
period, stop. If not, grow the inven-
tory and go to Step 1.

diameter-class distribution the
forest will become regulated. The
lower the percentage specified, the
larger the resulting rotation age
(assuming, of course, that the
proportion harvested remains con-
stant). The proportion may be
held constant or varied, but when
the proportion is varied, ending
inventory is uncertain. Therefore,
final inventory must be examined
thoroughly to determine its desir-
ability. Adding or deleting inven-
tory or intensifying management
practices will certainly affect
future volumes harvested.

Percent of inventory will probably
result in either even-flow of
volume or gently rising (or falling)
harvest flows with an even-flow
ending. No ending conditions
apply. Like absolute amount, per-
cent of inventory is insensitive to
economic conditions.

Percent of Inventory Highlights

Simple to specify, but long-term
effects are difficult to assess.

Simple to execute, but its effects
on the forest are difficult to
project.

Would not be affected by adding
or deleting inventory unless the
amount requested were not
achievable.

Regulation may occur but at an
unknown time.

Ending conditions cannot be
specified.

Volume harvested is insensitive
to economic conditions.

policy considerations

Percent of inventory ties harvest
volume to the physical inventory
on hand for a specific time period.
Although applying percent of
inventory is straightforward, evalu-
ating its long-term impact is

difficult.

The percent of inventory to be
harvested is critical for deter-
mining at which rotation age or

2 For shelterwood, available volume
includes residual volumes from various
shelterwood cuts plus the volume har-
vested at first entry of uncut stands.

Percentage may be constant or
variable.

Adding or deleting inventory will
immediately change harvest vol-
u me.

Acres harvested may fluctuate.

Ending inventories are not
considered.

Regulation will occur eventually
but at an unknown time if a

constant percentage is used.

Volume harvested is insensitive
to economic conditions.



Area Control

applying the method

The user first selects a desired
rotation length (in periods). The
algorithm proceeds:

Step 1. Divide total number of acres
available for harvest by rotation
length to determine the cut.

Step 2. Calculate harvest volume by
determining the volume available if
acres are harvested on an oldest-first
priority; add the exogenous harvest
volume.

Step 3. Allocate the harvest according

to the priority chosen.

Step 4. Check the period. If the last
period, stop. If not, grow the inven-
tory and go to Step 1.

Area control is designed to achieve
forest regulation as rapidly as pos-
sible. A forest so structured will
yield equal harvests every period.
However, this method may not pro-
duce perfect regulation because:

Acres may be shifted into or
out of the inventory over time,
causing each period's harvest to
vary.

Many productivity classes may
be combined into one harvest
(allowable cut) unit. Even if the
same number of acres exists in
every age class, age classes may
be distributed among different
sites. Harvest volumes will fluc-
tuate as acres of differing pro-
ductivity are cut.

policy considerations

Area control, one of the oldest,
simplest types of harvest schedul-
ing methods, is designed to regu-
late the AD forest in a specific

time period (see footnote 1; also,
Davis 1966). Stated differently:
Area control creates areas of equal
physical productivity in each age
class after a conversion period.

The number of acres to be har-
vested each period is determined
by dividing total available acres by
prespecified rotation age. If inven-
tory remains unchanged, the forest
will convert to a fully regulated
state in the time required for
newly regenerated acres to reach
rotation age. A harvest priority is
then determined and acres are cut.
To ensure constant harvest levels
in the post-conversion period, the
average productivity of acres har-
vested should be the same each
period.

Area control is simple as long as
inventory remains constant; how-
ever, adding or subtracting acres
means that regulation must start
all over again. For example, if a
large section of forest (under area
control) were sold, achieving regu-
lation would require a new conver-
sion period the length of one
rotation age. Similarly, changing
management intensity (MI) during
the conversion period will cause
productivity differences among age
classes and changes in volume
flows from future harvests.

It is vitally important to consider
the volume flow of timber needed
during conversion and after regula-
tion. If the stocking levels of
unconverted inventory vary
greatly, harvesting the same
number of acres each year will
cause the conversion-period harvest
to fluctuate wildly. Rotation age
determines volume production in
the post-conversion period. Rota-
tion ages less than or greater than
the age at which volume per acre
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divided by age culminates result in
reduced post-conversion harvest.3

Fluctuating harvest-volume flow
during conversion goes hand-in-
hand with fluctuating net revenue.
Because area control is insensitive
to economic conditions, using this
harvest scheduling method on large
parcels could aggravate the local
economic situation depending on
the prevailing economic climate.

Area control may be most useful
when a forest is almost regulated
at the predetermined rotation age.
Harvest-volume fluctuations will be
minimized, although the problem
of economic insensitivity will
remain.

Area Control Highlights

Simple to execute.

Equal areas harvested each
period.

Achieves regulation in a speci-
fied time period.

Needs a specified conversion
period (rotation age).

Regulation must start over after
adding or deleting inventory.

Fluctuating harvest volumes will
probably yield fluctuating rev-
enues during conversion.

Volume harvested is insensitive
to economic conditions.

3Rotation ages with growth rates less

than or greater than the discount rate
may reduce post-conversion economic
returns.
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Simple and sequential EFV harvest
schedules.

Even-Flow of Volume (EFV)

EFV may be either simple or
sequential.

Simple EFV is patterned after the
SIMAC technique used by the
Bureau of Land Management
(Sassaman et al. 1972). The algo-
rithm searches for the highest EFV
harvest sustainable over a specified
look-ahead period (the inner or
optimization cycle) compliant with
the ending condition selected. The
harvest level found is the harvest
taken in each period of the
simulation.

Sequential EFV, patterned after
the SORAC technique (Chappelle
and Sassaman 1968), solves the
simple EFV problem starting

anew each simulation period. The
algorithm searches for the highest
EFV sustainable over a specified
look-ahead compliant with the
ending condition imposed. But the
harvest level found is the harvest
taken in the first period of the
look-ahead only. After first-period
harvest, the remaining inventory is
adjusted for growth and the high-
est EFV harvest again calculated.
The new (adjusted) inventory is

the starting point for the next
look-ahead, which extends one
period further into the future.
Sequential EFV continues for the
number of periods specified (the
outer or number-of-optimizations
cycle).

Simple and sequential EFV sched-
ules are compared in Figure 1. The
declining sequential EFV schedule
indicates a forest with excess
inventory; conversely, a rising
sequential EFV would indicate an
understocked forest.

7
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applying simple EFV (AD)

The simple EFV problem may be
formulated as a linear program
(LP) for AD stands (Johnson and
Scheurman 1977). To simplify
notation, assume a single site class,
species type, stocking level, and
MI; instantaneous regeneration;
and no thinning.

Let

xij = acres harvested from age class
i in period j, where i is

the period of stand
establishment. For a

given acre, i changes
only at harvest.

Vij = volume per acre, age class i,
period j (changes with
the period).

hj = total harvest, period j

j-Z

I Vijxij.

i=-M

N = number of periods in the
look-ahead.

Z = number of periods before
regenerated stands are
eligible for harvest.

-M = period of stand establishment
for the oldest age class
relative to the start of
the simulation. The
minus indicates that the
stand was established M
periods before the simu-
lation began.

Ai = number of acres in age class i
at the start of the simu-
lation.

The objective function is:

j-Z
Maximize Vijxij [1]

i=-M

or, equivalently, maximize h1

(first-period harvest).

Constraints on the objective func-
tion are:

N

I xij < Ai [2]

j=1

i = -M, ..., 0.

Acres harvested from an age class
existing at the start of the plan-
ning period cannot exceed the
acres originally in that age class.

N j-Z

1: xjk < X xij [3]

k=j+Z i=-M

j = 1, 2, ..., N.

Acres harvested from the age class
(xjk) created by harvest in year j
cannot exceed the acres harvested
in year j (xij).

[4]

Harvest in all periods must equal
the first-period harvest.

xij>0 [5]

i = -M, ...,
j = 1, ...,

j-Z

N.

Acres harvested cannot be

negative.

8



I n addition to the preceding con-
straints, the user may impose
either of two ending conditions:4

hN =

0 N-1 N-1 j-Z N-1

(Ai - I xij)(ViN Vi,N-1) + 2: ( X Xij - 2:
Xjk)(VjN - Vj,N-1)*

i=-M j=1 j=1 i=-M k=j+Z

Harvest in the last period of the
look-ahead (hN) equals growth
since the previous harvest, both on
the original inventory remaining
uncut and on the age classes
created through harvesting.

0 N-1 N-R j-Z N-1

hN = (Ai - > Xij)ViN + > ( X Xij - X xjk)VjN [7]
i=-M j=1 j=1 i=-M k=j+Z

Harvest in the last period of the
look-ahead (hN) equals the volume
in all age classes above age class R
in period N. If R is less than N, all
acres will be cut over at least once
during the look-ahead, and the
first term of Eq. [7] will drop
out.

Solution methods: optimality and
feasibility. As formulated, the
simple EFV problem could be

solved with an LP algorithm,
which simultaneously determines
harvest level and harvest priority.
The EFV algorithm in TREES, on
the other hand, requires selecting a
harvest priority before solving for
the harvest level. One of three
harvest priorities (oldest age first,
maximum value, or minimum
growth) may be chosen. Preselect-
ing the harvest priority greatly

41f no ending condition is imposed, the
EFV algorithm would not try to maxi-
mize harvest level but would choose the
first feasible even-flow harvest level

sustainable for the N-period look-ahead.

simplifies finding the highest EFV
because harvest levels are varied
only until the highest level meet-
ing all constraints is found. The
algorithm used in subroutine
ACSTHV (see the Analyst's Guide)
proceeds:

Step 1. Set the first-period harvest
level (hl).

Step 2 Check the harvest level to
ensure it is greater than or equal to 0
and less than or equal to the total
harvest volume available. If so, go to
Step 3. If not, go to Step 1 and

adjust the first-period harvest level up
or down.

Step 3. Allocate the harvest according

to the chosen priority.

Step 4. Check the period. If the last
period, go to Step 5. If not, grow the
inventory, set next-period harvest

equal to first-period harvest, and go
to Step 2.

Step 5. Check the ending condition.
If satisfied, stop. If not, go to Step 6.

[6]

Step 6. Check the range of possible
first-period harvests. If the difference
between the last trial harvest level
that proved too high and the last trial
harvest level that proved too low has
become too small, stop-assume the
problem has no feasible solution. If
not, go to Step 1 and adjust the
first-period harvest level.

(See Appendix A for more
detailed descriptions of simple and
sequential EFV algorithms; see

Appendix B for a discussion of the
optimization detail report which
aids interpretation of the iterative
search.)

Imposing a harvest priority adds a
further constraint. At best, the
EFV algorithm in TREES can
produce harvest levels as high as
those produced by the LP solu-
tion, which has no such constraint.
But EFV differs from LP to the
degree that the harvest priority
chosen is not optimal (i.e., is not
the priority that would have
resulted from solving the LP). For
the simple EFV problem (formu-

9



lated in Eqs. [ 11 to [5] ), an
oldest-first priority should prove
optimal if increases in age yield
decreasing growth rates. For more
complex problems, where param-
eters such as multiple site classes
and stocking levels introduce varia-
tions in volume-to-age relation-
ships, simple harvest priorities such
as those available in TREES may
prove suboptimal. Although
growth rates of current stands and
stands replacing current stands
affect the optimal harvest priority,
strong practical arguments can still
be made for choosing EFV over
LP. LP algorithms are limited in
the complexity of the problem
they can solve. Adding multiple
site classes, species types, stocking
levels, and Mls introduces con-
siderable complexity and may
rapidly outstrip the LP's capacity
or cause unacceptable run costs.
The EFV algorithm can handle
this with relative ease and at a
substantially lower cost.

TREES can simultaneously con-
sider up to 500 grouped resource
units (GRUs). Each GRU may
include up to 33 age classes, 3
stocking levels, and 7 MIs.
Theoretically, nearly 350,000 sepa-
rate classes of timber could be
eligible for harvest in a period.

To eliminate individually assigning
harvest priorities to all those

timber classes, the subroutine
ACALAD averages age-class

volumes, net values, and growth
for all GRUs into 99 composite
classes (33 age classes x 3 species
report-groups). The subroutine
ACALAG assigns the oldest-first
priority; the subroutine ACALGD
assigns maximum-growth or
minimum-value priorities. Given a
harvest level and harvest priority,
these subroutines determine the

proportion cut from each AD
composite class. The subroutine
RUHRVA applies these propor-
tions to the corresponding age
classes in individual GRUs irrespec-
tive of stocking level and MI. (See
the Analyst's Guide for subroutine
details.)

Of course, amalgamating age

classes in this fashion limits the
ability to order harvests among or
within individual GRUs. Conse-
quently, the harvest priority used
in the EFV algorithm will prob-
ably not be strictly optimal for
complex inventories. The potential
EFV will be understated, although
underestimation may not be signif-
icant because, in practice, harvests
rarely conform strictly to any
priority specified or solved for in a
harvest scheduling model.

In general, the EFV algorithm will
iterate until a feasible solution is
found. However, certain combina-
tions of inventory and ending
conditions can make solution
impossible. Large gaps in age-class
distribution commonly cause such
problems. For example, if the
starting inventory contains a pre-
ponderance of age classes too
young for harvest, the even-flow
harvest will be constrained to a
low level. Low harvest levels allow-
ing inventories to increase over
time could make it impossible for
harvest to equal growth by the
end of the look-ahead.

Exogenous harvests. Thinning,
species conversion, and mortality
salvage may be incorporated into
the EFV algorithm but only as
exogenous harvests. How those
harvests will take place must be
specified before the solution pro-
cess begins. Step 2 of the algo-
rithm must be revised to ensure

10



that trial harvest levels are at least
as high as the exogenous harvest
for the period-this, is equivalent
to adding a new constraint.

Let

EX = exogenous harvest volume
for period j.

The added constraint would be:

hj > EXj

j = 1, ..., N.

[81

Ending conditions must also be
appropriately modified.

To treat thinning as an exogenous
harvest, we assume that the speci-
fied thinning regime is optimal for
volume production and that vol-
ume from thinning is as desirable
as volume from final harvest. But
solving for the optimal thinning
regime and harvest level requires
mathematical programming tech-
niques or iterating with the EFV
method using different thinning
regimes to approximate the opti-
mal regime.

Difference tolerances. Even-flow
and ending-condition constraints
may be modified to allow harvest
levels that almost meet these
constraints. This difference toler-
ance is defined by multiplying a
specified proportion (PVLDTP in
the ACC file) by the first-period
harvest level (h1). The algorithm
will consider harvest levels within
h1 ± (PVLDTP x h1) sufficiently
close to the even-flow level. Like-
wise, it will consider harvest levels
within ± (PVLDTP x h1) of the
volume required to meet the
ending condition to have met that
constraint. Steps 2 and 5 of the

algorithm must be modified
accordingly.

Choosing the look-ahead period
and ending condition. Long-run
sustained yield (LRSY) of volume
production occurs when each dis-
tinct productivity class has an

equal number of acres in each age
class and when the harvest age of
each age class is at maximum
mean annual increment (MAI).
MAI is volume per acre divided by
stand age. If LRSY does not equal
maximum obtainable MAI, the
forest manager must decide how
best to convert to the ideal
structure. On public lands in the
western United States, where the
EFV algorithm technique has most
frequently been used, the problem
is usually one of converting from
old-growth inventory with high
volumes per acre to younger inven-
tory with lower volumes per acre.
Length of the conversion period,
harvest volume in the conversion
period, and post-conversion har-
vests are variables that must be
considered.

If volumes per acre and produc-
tivity are relatively uniform, then
simply taking the maximum even-
flow harvest over the length of
one maximum MAI rotation and
using the ending condition harvest
all age classes above the age class
indicated by maximum MAI (see
Eq. [7]) will convert the forest to
the desired structure. Because vol-
umes per acre in old-growth stands
are high, harvest levels will usually
drop to the LRSY level after
conversion. If such a falldown is
undesirable, the user can lengthen
the conversion period, impose the
ending condition harvest equals
growth (see Eq. [6] ), or both.
Lengthening the conversion period
will ration excess inventory over a

longer period. Imposing harvest
equals growth will also meter out
existing inventory for a smoother
transition to LRSY. Combining
the two strategies will produce
similar results.

applying simple EFV (DD)

We may formulate the simple EFV
problem for DD stands as a

nonlinear program (NLP) (Adams
and Ek 1974). To simplify nota-
tion, assume one site class, species
type, MI, stocking level, and stand
size-class.

Let

tdj = number of trees in diameter
class d, period j, after
harvest in period j.

TBj = vector of trees in each
diameter class, period j,
before harvest in period
j (Fig. 2).

TAj = vector of trees by diameter
class, period j, after har-
vest in period j (Fig. 2).

G(TAJ) = growth function yielding
trees by diameter class,
period j+1, given trees
by diameter class after
harvest in period
= TB,j+1

V(T. j) = volume function giving
total volume in period j
based on the distribution
of trees by diameter
class T. j.

The dot notation
indicates that either A
or B may be used.

Hj = vector of trees harvested by

diameter class, period j.
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V(TBJ - TAj) = V(H1) [11]

j = 2, N

or

Figure 2.

Harvest and growth pattern in an
uneven-aged forest.

12

N = number of periods in the
look-ahead.

D = number of diameter classes
into which the inventory
will be divided.

dH = largest diameter class left
after last-period harvest.

V[G(TA,j-1)
- TAj] = V(H1)

j = 2, ..., N. [12]

TAj > 0

j = 1, ..., N.

[13]

Harvest can never take more than
available inventory.

Either of two ending-condition
constraints may be imposed:

V(HN) = V(TBN - TA,N-1)[14]

Harvest equals growth. Equation
[14] may be rewritten:

V[G(TA,N-1) - TAN] = V[G(TA,N-1)

tdN = 0

d=aH+1, ..., D.
The objective function is:

Maximize V(TB1 - TA1) [9]

or, equivalently, maximize V(H1).

The constraints are:

V(Hj) = V(H1) [10]

j = 2, ..., N.

Harvests in all periods must equal
first-period harvest. Equation [10]
may be rewritten as either

The last-period harvest must leave
no trees in diameter classes above
the designated diameter class, d.

Solution methods: optimality and
feasibility. The growth function in
a DD forest tends to introduce
nonlinearities into the objective
function. Trees cut from one
diameter class affect growth rates
in other diameter classes. There-
fore, we cannot consider the
growth and yield of single diam-
eter classes when selecting trees

[16]



for harvest, as is possible in AD
stands. Provided the growth func-
tion is relatively simple, we can
use an NLP algorithm (Adams and
Ek 1974) to find trees to harvest
from each diameter class (cutting
rules) in each period and harvest
level.

In the EFV algorithm in TREES,
the user specifies a cutting rule
including the requested harvest-
volume proportion for each diam-
eter class and size classes 2, 3, and
4 [PVLRDC(di,sz) in the ACC
file] before the simulation begins.
Each period, the subroutine
A C A L D D m u l t i p l i e s
PVLRDC(di,sz) by the volume in
each corresponding diameter class
and sums the products. ACALDD
then divides the harvest requested
for the period by that sum to
form an adjustment ratio. This
ratio, multiplied by the original

TA,N-1]' E151

proportion [PVLRDC(di,sz)], gives
the adjusted proportion. If the
adjusted proportion is greater than
1, all volume in that diameter class
will be harvested; if not, the
adjusted proportion will differ
from the user-designated propor-
tion by a constant factor. (See
Appendix C, User's Manual.)

As in the AD case, preselecting the
harvest priority greatly simplifies
searching for the maximum EFV
harvest. The subroutine ACSTHV
tries ending-condition checks to
see if harvest levels meet all
constraints and adjusts levels until
the highest feasible harvest is

found. [See the simple EFV (AD)
section for an outline of the
algorithm.]

Imposing a harvest priority adds a
further constraint. At best, the
EFV algorithm in TREES .will
match harvest levels found through
an NLP solution. Because the
optimal cutting strategy is a multi-
dimensional problem that can

change over time, a cutting rule as
specified in TREES will probably
not be strictly optimal. For com-
plex problems, however, NLPs are
even more limited than LPs; thus,
the EFV approach may provide
the only satisfactory solution now
available. By varying harvest prior-
ities in successive runs of the EFV
algorithm, we can arrive at cutting
rules close enough to the optimal
for practical purposes.

Each GRU may contain as many
as four stand size-classes5, three
stocking levels, and seven MIs.
Each productivity class may com-
prise up to 13 diameter classes and
two fiber types. Thus, for each
GRU, up to 84 x 26 separate
classes of timber are possible.
Because up to 500 GRUs may be
defined, a single harvest calcula-
tion could require a cutting rule to
distinguish among more than one
million separate, possible classes of
timber.

To reduce harvest-priority specifi-
cations to reasonable dimensions
and reduce computer storage costs,
before each harvest the subroutine
RUAGVD sums acres and volumes
in each diameter class across all
GRUs by stand size-class and
diameter class. The user may enter
cutting rules for size classes 2, 3,
and 4 eligible for harvest. Sub-
routine ACALDD uses the 52 DD

5A stand size-class is determined by
assigning individual diameter classes a

size class (e.g., pole, sawlog). The size
class with the largest basal area in the
stand determines the stand size-class.

composite classes to determine
volume proportions to harvest
from each diameter class in each
size class. The subroutine
RUHRVD then applies the propor-
tion to individual GRUs by diam-
eter and size classes regardless of
species and fiber types and stock-
ing level. Although this harvest-
allocation method is undeniably
efficient, it sacrifices flexibility in
tailoring cutting rules to individual
stands.

Generally, the EFV algorithm will
iterate to a feasible solution.
Empirical stocking guides or NLP
solutions to sample problems may
provide clues for starting points in
the iterative search. But when
initial inventories are low, even-
flow harvest levels may be so low
that the ending condition imposed
may prove impossible to meet.

Exogenous harvests and difference
tolerances. Mortality salvage is the
only exogenous harvest that may
be specified for DD. The even-flow
harvest level must be at least as
great as the mortality salvage
proposed.

Difference tolerances identical to
those described in the AD case
may also be specified to modify
even-flow and ending-condition
constraints.

Choosing the look-ahead period
and ending condition. If long-run
sustained yield (LRSY) is the goal
of the forest manager6, the forest
structure for producing such a

harvest must be determined.
Adams and Ek (1974) have
demonstrated that an NLP algo-
rithm can find the best sustainable

6Not necessarily the goal of every forest
manager, LRSY has been the traditional
goal of public forest managers.
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diameter distribution as well as the
numbers of trees to remove from
each diameter class each period.
Lacking such a solution, we could
use empirically based stocking
guides; or a series of one-period
simulations could be run using
different initial diameter distribu-
tions and no harvest to determine
the distribution producing the
highest volume growth. The latter
should reasonably approximate the
best possible LRSY distribution.

specify the ending condition har-
vest equals growth (see Eq. [ 14] )

or lengthen the conversion period.
Such an approach may make
achieving the desired final distribu-
tion difficult or may delay conver-
sion to LRSY.

0

For stands lacking the desired
structure, the question is how best
to convert to that structure. If an
even-flow harvest is desired during
the conversion period, the simple
EFV algorithm could be applied
[or a second N LP problem solved,
as in Adams and Ek (1974)]. Set
the look-ahead period equal to the
desired conversion period; use the
ending condition harvest all
volume above the highest diameter
c/ass (see Eq. [16] ); and set the
harvest proportions to reflect the
initial distribution, desired final
distribution, and length of the
conversion period. Some experi-
menting with harvest proportions
probably will be necessary because
no hard-and-fast rule exists for
setting the conversion period. For
overstocked stands, the longer the
conversion period, the longer the
delay before achieving maximum
volume growth. Overall volume
production will suffer. For under-
stocked stands, the shorter the
conversion period, the more
difficulty in reaching the desired
distribution.

When stands are initially over-
stocked, converting to a specified
final distribution will cause a

production drop in the post-
conversion period (paralleling the
AD case). To avoid this falldown,

policy considerations: the simple
case

1

Simple EFV seeks the highest level
of even-flow harvest that can be
maintained throughout a single,
specified planning horizon and still
meet the prescribed ending condi-
tion. The highest harvest level is

determined through an iterative
search; but the smallest amount of
inventory available for harvest in
any one period dictates the highest
possible harvest level for all
periods. If management practices
do not increase volume available in
the critical period, no increase can
result. In some circumstances, no
reasonable harvest schedule can be
found due to the ending condition
specified and inventory structure.

Adding or deleting inventory or
intensifying management practices
will affect the immediate harvest
level (allowable cut effect).
Although an even-flow of volume
is ensured over the specified plan-
ning horizon, the number of acres
to be harvested each period may
be erratic. Forest regulation would
be purely coincidental-the only
certainty is that the ending condi-
tion would be met.

Simple EFV is generally insensitive
to economic conditions. However,
if a particular area were econom-
ically stable, this method might be
a sound choice because harvesting
an even-flow of volume would
continue to promote employment
and income stability.

0

0

I
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Simple EFV Highlights

Complex to specify.

Maximum harvest level limited
to the smallest inventory avail-
able for harvest in any period.

Ending conditions may be
specified.

Acres harvested each period
probably will be erratic.

Adding or deleting inventory
may or may not immediately
change volume harvested.

Regulation would be coinci-
dental.

Volume harvested generally is

insensitive to economic con-
ditions.

applying sequential EFV (AD and
DD)

Sequential EFV can be viewed as a
series of simple EFV problems
(except for harvest-flow con-
straints, discussed next; see the
simple EFV sections for ampli-
fication).

Harvest-flow constraints. In
sequential EFV, the user may
specify harvest-flow constraints to
limit the period-to-period change
in harvest levels. Proportional har-
vest increase (PVLICP) and
decrease (PVLDCP) are specified
separately in the ACC file and
take priority over the even-flow
constraint.

Figure 3.

Second-period harvest ht* 2 con-
strained above maximum EFV
level h2.

Where the proportional increase

and decrease are set to 0.10
(PVLICP = PVLDCP = 0.10) and
h1 is the maximum EFV harvest
level (five-period look-ahead) for
the first period, the harvest taken
in the second period must be
written ± (0.10 x h j) + hl of hl
(Fig. 3). If the maximum EFV
starting in period 2 falls outside
that range, the even-flow require-
ment is ignored and the harvest-
flow constraint (h*2) met, if
feasible. If h*2 is taken in period
2, harvest in period 3 must be
within ± (0.10 x h2) + h*2 of
h*2. Where a difference tolerance
has been specified (PVLDTP 0),
harvests within ± (harvest-flow
level) are considered satisfactory.

Choosing the look-ahead period
and ending condition. Sequential
EFV allows harvests to be grad-
ually phased into an LRSY level.
For understocked stands, harvest
levels will rise to the LRSY level.

HARVEST VOLUME
hj
r_Y-

hi

h 2

h2

To achieve such a phase-in, set the
look-ahead (NPDVPP) to the rota-
tion age where MAI is maximum
and require all volume in age or
diameter classes above maximum
MAI to be harvested by the end of
each look-ahead. Of course, no

single maximum MAI rotation
length can be applied to all timber
classes with multiple site classes

and Mls-an average figure must be
chosen for the entire inventory.
The time required to reach LRSY
will depend on the inventory
structure; in complex situations, a
stable LRSY level may never be
reached. Set the number of outer
cycle periods (NPDOCP) equal to
the number of periods for which
harvest reports are desired.

policy considerations: the sequen-
tial case

Sequential EFV attempts to deter-
mine the maximum volume that
can be harvested in a specific

HARVEST-FLOW CONSTRAINT, PERIOD I

_--- HARVEST-FLOW CONSTRAINT,
PERIOD 2- -

L ACTUAL HARVEST

HARVEST SUSTAINABLE FOR
LOOK-AHEAD

I I I I 1I

I 2 3 4 5
PERIOD

6 7 1
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period and sustained for a prede-
termined number of periods yet
still meet the prespecified ending
condition. This period of sustain-
ability (look-ahead) and the ending
condition will dictate whether the
forest will be regulated at the end
of the planning horizon; however,
unless the forest is approaching
regulation, volume flow and acres
cut per period will probably be
uneven due to composition of
current inventory, number of acres
initially cut, and future produc-
tion. If we specify a sustainability
check and an ending condition,
the forest should gradually
approach regulation, but composi-
tion at regulation will depend
primarily on the ending condition
specified. Adding or deleting
inventory or intensifying manage-
ment practices in future periods
could affect current harvest levels
due to sustainability requirements.

Economic conditions will not alter
the calculated harvest schedule
because harvest flow is based
solely on the productive capacity
of the timber land.

Sequential EFV Highlights

Complex to specify.

Ensures a period of sustain-
ability.

Ending conditions may be

specified.

Regulation will
occur.

Even-Flow of a Function of Vol-
ume (EFFV)

EFFV is identical to EFV except
that the variable for which a

maximum sustainable level is

sought is a linear function of
volume rather than volume itself.
Volume-dependent variables might
be employment or gross revenue.
The linear function, which predicts
the dependent variable, is user
specified. Slope and intercept of
the linear function may be shifted
over time to reflect changes in the
relationship between the depen-
dent variable and harvest volume-
for example, slope and intercept
might be shifted over time to
simulate reduced employment per
unit of volume harvested due to
technological change. Like EFV,
EFFV may operate in the simple
or sequential mode and, in either
case, may be applied to AD or DD
stands.

applying simple EFFV (AD)

The simple even-aged EFFV prob-
lem requires only that the even-
flow-of-volume constraint (Eq.
[4]) be changed to an even-flow
of the volume-dependent variable.

Let

Qj = quantity dependent on vol-
ume harvested in period j
= C1 j + C2jhj.

eventually C1j = intercept of the function
relating Qj to hj.

Based solely on the productive
capacity of the forest.

Volume harvested is insensitive
to economic conditions.

C2j = slope of the function
relating Qj to hj.

The new constraint may be writ-
ten:

16



Qj = Ql [17]

j = 2, ... , N.

The dependent variable in all per-
iods must equal the first-period
value. Equation [17] may be re-
stated:

Clj + C2jhj = Q1

j = 2, ..., N
or, rearranging terms,

[18]

hj = (Q1 - Clj)/C2j. [19]

Solving for EFFV and EFV is the
same, except that Step 4 of the
EFV algorithm must be modified
to:

Step 4. Check the period. If last
period, go to Step 5. If not, grow the
inventory and set next-period harvest
(h1) equal to (Q1 - C1j)/C2j,

(See Appendix A for more detailed
explanation of the EFFV algorithm;
see Appendix B for the optimiza-
tion detail report, which aids inter-
pretation of the iterative search.)

applying simple EFFV (DD)

The simple uneven-aged EFFV
option requires the following
change in the even-flow constraint
(Eq. [10] ):

Let

Qj quantity dependent on
volume harvested in
period j
= C1j + C2j[V(Hj)].

C1j = intercept of the function
relating Q- to harvest
volume V(Hj).

C2j = slope of the function
relating Qj to harvest
volume V(Hj).

The new constraint may be

written:

Qj = Q1

j 2, ..., N.
[20]

Equation [201 may be rewritten:

(Q1 - Clj)/C2j [21]

j = 2, ..., N.

Solving for EFFV and EFV is the
same, except that Step 4 of the
EFV algorithm must be modified
to:

Step 4. Check the period. If last

period, go to Step 5. If not, grow the
inventory and set next-period harvest
V(Hi) equal to (Q1 - C21)/C2j.

applying sequential EFFV (AD
and DD)

Sequential EFFV and EFV are
identical, except for changes in the
constraints noted in Eqs. [171 and
[201. Note that the harvest-flow
constraints continue to operate on
harvest volumes, not on the quan-
tity dependent on harvest. If the
even-flow of the dependent vari-
able Qj requires a harvest level
that violates a harvest-flow con-
straint, the even-flow constraint
will be ignored and the harvest-
flow constraint satisfied.

policy considerations: simple and
sequential cases

Like EFV, EFFV may be simple
(one look-ahead) or sequential
(multiple look-aheads). In either
case, remember that the objective
value-the variable for which an

even-flow is specified-is not vol-
ume. Volume may vary over time
to achieve even-flow of the objec-
tive value-which might be
employment, dollars, or anything
else that can be specified as a
linear function of volume. Thus,
depending on the nature of the
objective, this policy could
become sensitized to economic
conditions.

Although key factors cannot be
described without knowing the
objective value, we can safely
assume that volume flow and acres
cut each period will probably be
uneven. The forest may or may
not become regulated even though
an ending condition is specified.
However, it is difficult to predict
how adding or deleting inventory
or intensifying management prac-
tices will affect the objective
value.

Simple and Sequential EFFV
Highlights

Complex to specify.

Objective value is the key
variable.

Ending conditions may be

specified.

Regulation may or may not
occur.

Volume and acres harvested (by
period) would probably be

uneven.

Effects of adding or deleting
inventory or intensifying man-
agement practices would be

difficult to assess.

Economic sensitivity may be
increased, depending on the
objective value.
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Present Net Worth (PNW)

The PNW algorithm is an advanced
version of the original ECHO
algorithm developed by Walker
(1971) to "provide a means of
optimizing harvest rates for a

timberland owner facing a nega-
tively sloped demand curve. This,
in turn, defines the optimal time
path to a long-run equilibrium
forest, starting from a non-
equilibrium condition." Available
for AD stands only, the PNW
algorithm uses the same basic
linkage equation as ECHO but
may be extended to more complex
situations.

The PNW problem may be formu-
lated as a quadratic program (QP)
(Johnson and Scheurman 1977).
In this simple formulation, we
consider only one site class,

species type, and stocking level; a
linear demand curve that is con-
stant over time; and harvest costs
that are constant per acre har-

vested. All harvests are taken at
the midpoint of each period.

Let

xij = acres cut in period j from age
class i, where i is the
period of stand establish-
ment, which does not
change as the stand ages.

Vij = volume per acre, age class i,
period j.

hj = total harvest, period j

j-Z

7, Vijxij.

i=-M

N = number of periods in the
planning horizon.

-M = period of stand establishment
for the oldest age class
in the starting inventory
relative to the start of
the planning horizon.
The minus indicates that
age class -M was estab-
lished M periods before
the start of the planning
period.

Z = minimum number of periods
before regenerated
stands are eligible for
harvest.

Cl = demand-curve intercept
(assumed constant over
time).

C2 = demand-curve slope (assumed
constant over time),
where Cl - C2hj is price
per unit volume.

C3 = harvest cost per unit
(assumed constant over
time and unaffected by
age class harvested).

r = annual discount rate.

p = period length (in years).

D1 = discount factor, period j7.

TCj = total harvest cost, period j,
undiscounted
= C3hj.

TRj total revenue, period j,
undiscounted
= price multiplied by
harvest level
= [(C1 - C2hj)hj] .

7 Like harvesting, discounting also is

calculated midperiod.
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Ai = acres in age class i in initial
inventory.

The objective function may be
written:

Maximize

TRj - Jr.
[22]

j=1 DJ

If we substitute for TRj and TCj,
the equation may be rewritten:

N Clhj - C
Maximize Z J

This formulation clearly shows the
nonlinearity of the objective func-
tion, given a linear demand func-
tion. The use of a nonlinear
demand function would lead to
third-degree or greater polynomials
in the objective function, which
causes nonconvexity problems-the
Kuhn-Tucker (K-T) conditionss
are no longer sufficient for
maximization.

Additional substitution for hj and
D1 gives the form:9

C3hj

[23]

j-Z j-Z j-Z

1 2 i=-M iJ 1J i=-M 1J ij 3 i=-M iJ 1J
Maximize L-i

j=1

8For discussion of Kuhn-Tucker condi-
tions, see Zangwill (1966); Wolfe
(1962), P. 365; Kunzi et al. (1966), p.
75; Wagner (1969), p. 600; or other
nonlinear programming textbooks.

9The QP solution is biased when N is
finite because harvests in periods beyond
N have no value in the objective

[(1 +
r)p](j-1/2)

function. Consequently, merchantable
inventory will usually be exhausted by
the Nth period. However, the larger N
becomes and the higher the discount
rate r, the closer the QP solution comes
to the true, optimal solution. In the
ensuing discussion, we assume that N
and r are sufficiently large to make the
difference negligible.

[24]
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For this formulation, we recognize
the following constraints:

N

Z xi < Ai [25]
j=1

i = -M, ..., 0.

Acres harvested (xij) from an age
class i existing in the starting
inventory cannot exceed acres in
the inventory for that age class
(Ai).

N j-?
I xjk < xi j

k=j+Z i=-M

j = 1, ..., N.

[26]

Acres harvested from an age class
(xjk) established in period j by
harvesting previous age classes (xij)
must not exceed the sum of those
age classes (Exij). To simplify
notation, we assume no regenera-
tion lag.

xij>0 [27]

i = -M,
j = 1,

j - Z
N.

Acres harvested from any age class
must not be negative.

Because the constraints are linear
and the quadratic objective func-
tion is concave, the K-T conditions
are both necessary and sufficient
for optimal harvest schedules. K-T
conditions for an optimal harvest
schedule are:

K-T 1

N

A- > x.>0
j=1

i = -M, ..., 0
20

j-Z NI
i=-M

x.. -
IJ xjk>0

k=j+Z

j = 1, ..., N

xij>0

i = -M, ..., j 7_

J = 1, ..., N.

An ptimal solution must meet all
the constraints (i.e., must be

feasii le).

There ust exist multipliers Xi, Qj,
and µij ch that Xi > 0, Qj > 0,
andµij0,and

i = -M, ..., 0

= 0

j-Z N

Qj(2: xij - L
i=-M k=j+Z

j = 1, ..

uij(xij) = 0

i = -M, ..., J - Z
j = 1, ..., N.

= 0

These are "complementary slack-
ness" conditions.

-

xjk)



K-T3

n ) V . . - G V.

DJ
-ai+,j+uij=0J 1J 1J

Z

l = 1, .. N.

Discounted marginal net revenue
must offset the opportunity costs
of harvests.

Noting that (Cl - 2C2hj)Vij is

6TR/8xij, we can define MRij, the
marginal change in revenue due to
a one-acre change in the acres
harvested from age class i in
period j.

Similarly, C3Vij is 8TC/5 xij,
defined as MCij, the marginal
change in total cost due to a

one-acre change in acres harvested
from age class i in period j.

Therefore, we can rewrite K-T3:

MR . - MC .

adding one unit to the acres in
age class i. Alternately, xi could
be viewed as the increase in net
discounted returns from future
harvests due to a one-acre
decrease in the cut from age
class i in period j-or the
opportunity cost of cutting an
acre from age class i in period j.
(The less cut from age class i in
period j, the more can be cut in
period j+1.)

The multiplier Qj is the increase
in the objective function from
harvests in stands replacing age
class i due to a one-acre increase
in xij. (The more cut now, the
sooner regenerated stands will
be available for cutting.) Thus,
Qj is the opportunity cost of not
cutting an acre from age class i

in period j. This term has also
= 1 - u J - u i J been

[281
cost
cost

j - Z
j = 1, N.

The marginal discounted net
revenue from harvesting an addi-
tional acre of age class i in period
j must equal the quantity on the
right-hand side of the equation.

The multipliers Xi, Qj, and pij may
be interpreted as the "shadow
prices" of the constraints, repre-
senting the increase in the objec-
tive function that could be
achieved by relaxing the con-
straints by one unit.

The multiplier Xi is the increase
in the objective function from

called the land-holding
because it represents the
of maintaining land in its

present state.

The multiplier pij is the total
net discounted return from cut-
ting an additional acre of age
class i in period j, including
current return and opportunity
costs.

solution methods: optimality and
feasibility

The QP solution to the con-
strained maximization problem
described in Eqs. [24] through
[27] could be finding the one
harvest schedule that satisfies all
K-T conditions. I n contrast, the
PNW algorithm uses K-T1, parts of

2 and 3, and several additional
assumptions about harvest priority
to search for the optimal harvest
schedule for period 1, which in
turn determines all subsequent
harvest levels.

Johnson and Scheurman (1977)
assume the following three condi-
tions must be met for the PNW
algorithm to yield a harvest
schedule equivalent to QP:

1-Harvests can be optimally pre-
ordered by age class. The PNW
algorithm in TREES can use

any of the three harvest prior-
ities available in the model.10

2-In every period j, one age class
exists for which xij > 0 and
xij+1 > 0-this is the "linkage"
age-class, which is harvested in
both the current and succeeding
periods.

3-For the linkage age-class har-
vested in periods j and j+1, Qj -

Qj+1 = 0. That is, the oppor-
tunity cost of delaying regenera-
tion and future harvests on an
acre of the linkage age-class is
constant between periods j and
j+1. Because constant costs do
not affect optimality, assuming
Qj = Qj+1 is equivalent to
ignoring the opportunity cost of
delaying future harvests. This
assumption is equivalent to the
"simple financial maturity"
approach (the Type A analysis)
in Duerr (1960).

10The original ECHO algorithm (Walker
1971) was based on an oldest-first
harvest priority. A newer version,

developed by Walker and Hamilton
(personal communication, 1978) for the
Simpson Timber Company, Shelton,
Washington, allows a variety of harvest
priorities to be specified.
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In addition to the three preceding
Johnson-Scheurman (J-S) assump-
tions, we will add:

4-The first harvest schedule feas-
ible over N periods and meeting
the requirements of the PNW
linkage equation is also optimal.

Suppose we know the harvest level
in period j. From J-S1 , we can
determine the last age class har-
vested
class i

in period j (xij), where age
is the linkage age-class.

K-T3 requires that, for xij:

[(MRij - MCij)/DJ] - ai + xj + uij = 0. [29]

We can derive a similar condition
for xij+1:

[(MRi,j+l - MCij+1)/DJ+l] - Ai + tj+l + 11i,j+1 = 0. [30]

From K-T2:

uijxij = 0 and ui,j+1xi,j+l = 0.

From J-S2:

xij > 0 and xi,j+1 > 0.

Therefore, µ ij and µ i,j+1 = 0.

Equating Eqs. [29] and [30] and
combining terms:

(MRi j - MCi j)DJ [(MRi ,j+l - MCij+1)/DJ+l] - (kj - Xj+1).

From J-S3:

X j - kj+1 = 0.

We can rewrite Eq. [31 ]

(MRij - MCiJ)/DJ = (MR .,j+1 - MCi,j+1)/DJ+1.

[31]

[32]
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Substituting for MR and MC, we
can rewrite Eq. [321:

[(Cl - 2C2hj)Vij - C3Vij]/DJ = [(C1 - 2C2hj+1)Vi,j+l -
C3Vi,j+1]/Dj+1

.

[33]

An acre cut from age class i must
return the same discounted
marginal net revenue in each pair
of periods harvested.

Because we have already chosen hj
and because C1, C2, C3, Vij,
Vi j+1, D1, and D1+1 are known,
we can solve for the harvest level
required in j+1 to meet the linkage
equation [331.

Let

C4 = C1 - C3.

hj+1 = C4/2C2[1 - D(Vij/Vi,j+1)]
+

D(Vij/Vi,j+1)hj.

The PNW algorithm, derived from
Eq. [34], is outlined as:

Step 1. Select a harvest level (hi)

for the first period (j = 1).

Step 2. Check the feasibility of the
harvest level:

If hj > volume available for
harvest, go to Step 1 and
reduce the first-period harvest
level.

If hj < 0, go to Step 1 and
increase the first-period
harvest level. If exogenous
harvests are included,
exogenous harvest volume
replaces 0.

If 0 < hj < available volume,
allocate the harvest according
to the priority chosen and go
to Step 3. If exogenous
harvests are included,
exogenous harvest volume
replaces 0.

[34]

Step 3. Check the period. If the
last period, stop. If not, grow the
inventory and go to Step 4.

Step 4. Using J-S1, find the last age
class harvested in period j. Using
J-S2 and Eq. [341, determine hj+1
(the next-period harvest level). Set j
= j+1 (increment the period), and
go to Step 2.

The PNW algorithm stops: (1)
when a feasible harvest schedule
for all N periods is found using
Eq. [341, based on our implicit
assumption that the first feasible
schedule is also optimal, or (2) if
no feasible harvest schedule can be
found. The search terminates when
the difference between successive
trial levels for the first-period
harvest becomes smaller than the
user-specified tolerance or when
h1 becomes less than 1. (See

Appendix A for details on the
PNW algorithm and Appendix B

for details on the iterative search
process.)

The PNW algorithm may be

viewed as attempting to find a

"window" through which the har-
vest path must travel to assure
feasibility. Initial harvest levels are
adjusted until one "makes it
through the window" or until it is
apparent that no window exists.

The ECHO algorithm (Walker
1971) differs from PNW in that
run length is not specified. The
simulation proceeds until harvest
levels in successive periods are

close enough to meet certain
stability criteria. If no feasible
harvest schedule meeting these
criteria can be found and if the
last two trial levels are arbitrarily
close, the lower schedule is fol-
lowed until it begins to diverge
from the higher schedule. At that
point, the linkage equation is
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ignored, and the algorithm begins
again using the inventory at the
point of divergence. ECHO allows
a harvest schedule to be specified
in any situation but does so by
violating the optimality criteria
embodied in the linkage equation.

For example, in a three-iteration
PNW search (Fig. 4):

The first-period harvest level
(h1 1) causes negative harvest
volume in a later period.

The first-period harvest volume
is raised to h12, resulting in an
hj greater than the volume
available for some j less than N.

AVAILABLE

N

VOLUME

The first-period harvest volume
(h13) is set midway between
the previous harvest levels, pro-
ducing a feasible harvest
sequence for all periods.

For a given demand function, the
starting point of each iteration
determines all subsequent harvests.
Increasing h1 raises all subsequent
harvests, though not necessarily
uniformly.

stability characteristics

We will now examine the ability
of the PNW and ECHO algorithms
to converge on an equilibrium-
and then return to the question of
optimality.

SUCCESSFUL PATH
-----UNSUCCESSFUL PATH

--yj\ \\\hi > VOLUME
I

hj FEASIBLE \\ h<O
IN N PERIODS \\1

I

PERIOD

Figure 4.

Three-iteration PNW search.

N
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Sessions (1978) outlined the con-
ditions required for a stable
harvest level for the simple linkage
equation (Eq. [34] ):

No change in demand curve
over time

Constant unit costs

No thinning

No quality premium11

Let

A
D one-period discount factor

Vi,j+l/Vii one-period volume growth ratio'

Substituting in Eq. [34]

h,j+1 = (C4/2C2) (1-A) + Ah,j.

Noting that

Ahj = (1 - A)(-hj) + hi f

[35]

hj+1 = hj + (1 - A) [ (C4/2C2) - hi ] . [36]

If we assume negative net marginal
revenues cannot be optimal in any
period, then C4 - 2C2hj > 0 or
C4/2C2 > hj. Therefore, the term
[(C4/2C2) - hj] in Eq. [36] must
be greater than or equal to 0. This
allows us to state the following
stability conditions for harvest
levels:

1. A = 1. If the volume growth
ratio exactly equals the discount
factor, then hj+1 = hj.

2. (C4/2C2) - hj = 0. If the
marginal net revenue in period
hj is 0, then hj+1 = hj.

"Quality premium is the increase in

value per unit of wood due to improved
wood quality as trees grow larger.

When neither of these conditions
is met, harvest levels will change
from period to period. For posi-
tive marginal net revenues, the
direction of change is determined
by A:

3. A > 1. If the volume growth
ratio is less than the discount
factor, hj+1 < hj, and harvest
falls.

4. A < 1. If the volume growth
ratio is greater than the dis-
count factor, hj+1 > hj, and
harvest rises.

If marginal net revenues are nega-
tive, conditions 3 and 4 are
reversed: A > 1 increases harvest,
and A < 1 decreases it.

For an overstocked forest in a

typical PNW run (Fig. 5), the
volume growth ratio of the linkage
age-class is less than the discount
factor in the early periods (A >
1), and harvest levels fall. As the
last age class cut each period
declines in age, the growth ratio
increases and A becomes smaller.
If the linkage age-class in a period
has a volume growth ratio equal to
the discount factor (i.e., is the
"equilibrium" age-class), then A =
1; the next period's harvest will
remain at the same level. Con-
tinued stability requires that the
last age class cut in any subse-
quent period be the equilibrium
age-class. Such a requirement
implies that the steady-state har-
vest in all periods must be greater
than growth into age classes above
the equilibrium age-class but less
than that growth plus the volume
in the equilibrium age-class. That,
in turn, implies that the forest is
nearly regulated such that harvest
equals growth in each period.

We can restate the stability condi-
tions when marginal net revenue is
positive:

1-An age class exists for which A
= 1 (equilibrium age-class).

2-The equilibrium age-class must
be the last age class harvested in
some period j (i.e., hj+1 = hj).

3-The term hj must be greater
than the volume growing into
age classes above the equilib-
rium age-class in j+1 but less
than that volume plus the vol-
ume in the equilibrium age-class.
Otherwise, the equilibrium age-
class will not be the last class
harvested in period j+1 and hj+2
* hj+1.
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HARVEST VOLUME

hj

A> I

HARVEST SCHEDULE FOR
OVERSTOCKED STAND

----HARVEST SCHEDULE ALTER-
NATIVES DEPENDING ON A

PERIOD
Figure 5.

Possible PNW harvest schedules.

4-The forest must be nearly
regulated in period j so growth
and harvest are balanced. Other-
wise, stability (which implies
forest regulation) is not guaran-
teed beyond j+2.

However, simultaneously fulfilling
these stability conditions is not
guaranteed by the PNW solution
procedure.

First, condition 1 may not hold. If
the discount rate is high, no age
classes may be growing fast
enough for A = 1. Or, because we
are using discrete age classes, age
classes may exist for which A > 1
and A < 1 but not for which A =
1.

The original ECHO program
(Walker 1971) used annual age

classes and harvest periods to
minimize the discontinuity in

growth rates between age classes.
The PNW option in TREES uses a
unique quadratic interpolation
routine to make age-class growth
rates continuous even with 5- or
10-year age classes. Volume per
acre is assumed a quadratic func-
tion of age, and age of the last
acre harvested is assumed to vary
in proportion to the amount of
the last age class harvested (see

Appendix C).

Even if we use the quadratic
interpolation routine, condition 2
may not be met. Harvesting
exactly the right proportion of the
last age class so that A = 1 may be
difficult. Very small changes in
initial harvest level can cause
substantial differences in the pro-
portion of an age class harvested
10 or 20 decades in the future.

Even if we assume that conditions
1 and 2 hold, conditions 3 and 4
may not. If 4 is true but not 3,
then the harvest level in period j
does not equal volume growth. A
harvest level in excess of growth
will eventually cause the age of
the last age class harvested to fall
below the equilibrium age, increas-
ing A above 1. Harvest levels will
rise, further depleting inventory
and increasing A. At some point,
inventory will be exhausted. Con-
versely, a harvest level less than
growth will cause the age of the
last age class harvested to rise
above the equilibrium age (A < 1).
Harvest levels will fall, further
increasing inventory and reducing
A. Eventually, harvest levels will
become negative.

If 3 is true but not 4, then
harvests may oscillate for a time as
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the linkage age-class rises and falls
with growth. Because growth in
excess of harvest levels will cause
harvests to decline and growth
below harvest levels will cause
harvests to increase, the algorithm
is inherently unstable.12 If N is

large enough, the harvest level will
eventually either exceed available
inventory or become negative.

In searching for harvest schedules
that remain feasible over N per-
iods, the PNW algorithm seeks the
most stable harvest schedules.
(Harvest levels that become stable
are more likely to "make it
through the window.") However,
the search process does not guar-
antee ultimate stability. The
smaller N is, the larger the
"window" through which harvest
schedules must pass, in which case
feasible harvest levels need exhibit
little or no stability. On the other
hand, large N values, small inven-
tories, high interest rates relative
to growth rates, or nearly hori-
zontal demand curves can cause
instances where no harvest
schedule is sufficiently stable to
remain feasible over the projection
period.

How different demand curves
affect the harvest schedule is

illustrated in Figure 6. As inter-
cept increases and slope decreases
(i.e., as the demand curve becomes
more horizontal), the term C4/2C2
in Eq. [361 becomes larger.
Period-to-period changes in harvest
levels increase, affecting forest
structure as the equilibrium age-
class is approached and increasing
subsequent stability problems.

12Walker (1971) refers to this instability
as an oscillating equilibrium, but it is

not clearly an equilibrium.

HARVEST VOLUME

hj

.......... C4/2C2 = hj
C4/2C2 > hj

C4/2C2»hj

N
.............................................

PERIOD

Figure 6.

Effect of changing demand inter-
cept and slope on PNW schedule.

To summarize: The PNW
algorithm with stable demand
curve will often find harvest paths
leading to approximately regulated
forest structures simply because
such structures lead to greater
harvest stability and the likelihood
of a feasible harvest path in all
periods. How close the algorithm
comes to equilibrium depends on
N, inventory size, demand-curve
slope and intercept, and growth
and discount rates. Where demand
curves change over time, stable
harvest levels and harvests equaling
growth are not compatible.

Starting the algorithm again at the
point of divergence (as ECHO

does) may postpone infeasible har-
vests and improve the algorithm's
ability to achieve regulation. In
some situations, however, the
original ECHO algorithm (Walker
1971) is so unstable that it must
start over every period. Incorpor-
ating the quadratic interpolation
routine might improve per-
formance.
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optimality re-examined

Under what conditions do J-S

assumptions 1 through 3 and our
assumption 4 hold? If these are
violated, how close does the PNW
algorithm come to finding an

optimal harvest sequence?

Definitive answers to these ques-
tions await further development of
the ECHO theory. However, we
can offer some tentative con-
clusions.

J-S1-harvest priority is optimal. If
volume per acre increases with age
but at a decreasing rate, then an
oldest-first harvest priority will be
optimal (Walker 1971). For the
simple case with which we have
been concerned, such a rule is

equivalent to harvesting age classes
in order of decreasing marginal
value growth percent (MVGP).
Such an ordering is indeed optimal
if we accept the "simple financial
maturity" criterion. But when vari-
able harvest costs and quality
premiums are introduced or
multiple productivity classes

included, the relationship between
MVGP and age may not be

straightforward. MVGP may not
decrease uniformly with age in a
given site class and, in different
site classes, may vary widely for a
given age class.

Because the PNW option currently
cannot order harvests in individual
stands on the basis of MVGP, all
stands are combined into 33 age
classes and three species report-
groups to allocate harvests. Thus,
per-acre volumes, costs, and
growth assigned to each age class
or species report-group are

weighted averages of the values for
individual stands.

Harvest priorities are assigned to
the combined harvest unit (ACU).
The oldest-first priority can be

modified by taking harvest pro-
portions from various age classes;
once those have been harvested,
the algorithm reverts to oldest
first. When the harvest level has

been found, the proportion to be
taken from each age class or
species report-group is determined
according to the harvest priority
chosen and is then applied uni-
formly to the corresponding age
class in each site class.

Although the PNW algorithm
efficiently handles large numbers
of stands, it does not specifically
order stands according to MVGP
and sacrifices gains in optimality
by treating age classes on each site
class individually. In contrast,
although the most recent version
of ECHO 13 apparently allows
ordering according to MVGP
among age or site classes, the
number of productivity classes

that may be considered simulta-
neously is limited.

J-S2-xij > 0 and xi,j+1 > 0 for
the linkage age class, all j. This
assumption is probably the most
critical to PNW optimality. If
harvesting acres in every period or
harvesting part of some linkage
age-class in every pair of successive
periods is not optimal, then the
PNW harvest schedule will differ
from that of the QP solution. At

13A version of ECHO used by the
Washington State Department of Natural
Resources (personal communication,
1978) can consider up to 160 stands. In
contrast, TREES can simultaneously
consider 500 GRUs, 33 age classes, 3
stocking levels, and 7 Mls-or nearly
350,000 classes of timber-to specify
growth and management.

i
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least two cases exist where this
assumption apparently holds.

Case 1: No feasible PNW solu-
tion can be found over N
periods. We know that QP has
at least one feasible solution
(hj = 0, j = 1, ...,N); there-
fore, it has at least one optimal
solution. But the PNW pro-
cedure cannot find an optimal
schedule that involves no har-
vest in some period or a harvest
that just exhausts the last age
class cut in some period.
Assumption (2) has been vio-
lated. When no feasible harvest
level can be found, the PNW
algorithm stops.

In ECHO, a nonoptimal path
may be followed until diver-
gence occurs, at which point the
search procedure starts again.

Implicit is the assumption that,
at the point of divergence,
exhausting the last age class

harvested (thus destroying the
linkage) would have been opti-
mal. Although this procedure
allows a harvest to be deter-
mined for every period, the
computational requirements
may be significant.

Case 2: Marginal net revenue for
the last age class cut in some
period is negative. Recall Eq.

[291 :

exceeded by the discounted
return from future harvests by
cutting that acre in period j.
This could occur if age class i

were poorly stocked and would
be replaced by a much more
vigorous stand or if the demand
curve were shifting over time.
However, under a stable demand
curve and single stocking level, a

negative net marginal revenue

will probably not be optimal.
Thus, J-S2 may lead to a

nonoptimal, though feasible,

harvest schedule.

Using a "simple financial matu-
rity" criterion, we may assume
that Qj = 0 and add a check to
the algorithm that treats nega-
tive marginal net revenue as

infeasible. ECHO incorporates
such a check but PNW does not.
Refusal to consider negative
marginal net revenue does not
ensure that the chosen level of
marginal net revenue is optimal
(see the
cussion).

assumption 4 dis-

Case 1 conditions arise more
frequently where the demand-
curve slope is small relative to the
intercept (C4/2C2 is large) or
where demand is large relative to
inventory size. As previously
noted, extremely elastic demand
curves require higher initial levels.
If inventories are not large enough

(MRii - MCij ) /DJ = ai - ki . [37]

(uij = 0 because uijxij = 0 and xii > 0.)

If the marginal net revenue is to support those levels, infeasi-

less than 0, then Xi < ij. In bilities result. On the other hand,
other words, the discounted case 2 conditions may occur with
return from cutting an acre of large inventories and steep demand

age class i in period j+1 is curves. Although case 2 causes

rising harvests over time (Fig. 5),
large inventories may avoid feasi-
bility problems over the N periods
of the planning horizon.

We may then hypothesize that
extremes in demand-curve slope
and in the relationship between
demand and inventory will cause
PNW solutions to diverge from the
optimal solution to the problem
stated in Eqs. [241 through [271.
If growth rates were continuous,
rather than changing discretely
between age classes, then harvest-
ing only part of an age class every
period (leaving the rest for the
next period) might be optimal.

However, J-S2 continues to be

violated, though less frequently,
even using the PNW quadratic
interpolation routine (Scheurman
and Johnson 1975).

J-S3-Qj - Qj+1 = 0. Ignoring the
opportunity costs of delaying
future harvests will generally lead
to smaller immediate and larger
future harvests than are optimal.
The lower the discount rate and
the higher the growth rate, the
greater the difference between the
optimal and PNW schedules.

Assumption 4-the first feasible
PNW solution is optimal. Even if
the three J-S assumptions hold,
assumption 4 may not. Often,
several feasible harvest schedules
with different net returns can be
found. The range of possible
solutions widens as N decreases
and inventory increases.

Given J-S 1 through 3, the exis-
tence of multiple solutions implies
that the linkage equation provides
necessary but not sufficient condi-
tions for an optimal solution.
Insufficiency follows because only
part of Eq. [281 (rewritten K-T3)
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was used in developing the algo-
rithm. Though the algorithm en-
sures that marginal net revenues
are equated over time, it cannot
determine that the level of mar-
ginal net revenue is optimal.

To summarize: It is not clear
when the PNW or ECHO solution
procedures will yield harvest
schedules that closely parallel the
QP solution. How close the solu-
tions come depends on the
demand-curve slope, inventory
size, number of simulation periods,
harvest-priority specification, and
cost of delaying future harvests.

linkage equation with a changing
demand intercept

In the PNW algorithm, the
demand-price intercept may be
varied at a constant or changing
rate between the first and any
future period. Let a = rate of
change in the demand-equation
intercept such that

Thus, we see that h]+1 will be
increased by a(Ci]/2C2) when a is
positive and the demand intercept
shifts by (a x 100) percent (Fig.
7). The starting harvest level may
need to be reduced to maintain
feasibility. Increasing the demand-
curve intercept also raises the age
of the equilibrium age-class.

From Eq. [40], letting

A D [ Vij 1,

Vij

CA

hj+1 =
2C2

3

[41]1 - A + Ah i + a 2CJ2)

Rearranging terms in Eq. [41] and
noting that Ah] = (1-A)(-h]) + h],

hj+1 = hj + (1 - A)(C4/2C2 - hj)

Therefore, h]+1 will equal h] when

(1 + a)Clj =
C1,j+1 [38]

1j(1 - A)(C4/2C2 - hj) + a
2

Substituting into Eq. [33], we can
derive the new linkage equation:

+ a

0 [43]

(C1j - 2C2hj)Vij -
C3Vij

[(1 + a)Clj - 2C2hj+1]Vi,j+1 C3Vi,j+1.

Dj
Dj+1

Letting

C4 = (C1j - C3),

C4

hj+1
2C2

+ D j + a
[40]

[39]

[42]
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or, equivalently, when

A=1+

[44]

Assuming the marginal net revenue
is positive (C4 - 2C2hj > 0) and a
> 0, then A > 0 when hj+1 = hi.
The growth rate must be less than
the discount rate.

A decreasing growth rate in the
last age class cut implies that the
age of that class is increasing and
that harvest is less than growth.
Forest regulation and stable har-
vests seem impossible to achieve
simultaneously when the demand
curve is shifting each period.

linkage equation with age-

dependent harvest price and costs

Price per unit harvested may
depend on stand age as well as
overall demand because wood
quality changes with age. Per-acre
and per-unit harvest costs also are
often age related. The 'PNW algo-
rithm incorporates age-dependent
quality premiums and harvest costs
as follows:

Let

BPij

BPav =

base price per unit of
volume harvested, age

class i, period j. Base

price is the price
received in the base year
for timber that was the
same age as age class i in
year j.

price per unit of volume
received for an average-

aged tree in the base

year.

CAij

CU__

cost per acre harvested
from age class i, period
j. Cost per acre as a

function of age remains
constant over time in

the PNW option but
may change as stand age
changes.

cost per unit of volume
harvested, age class i,

period j. Cost per unit
of volume as a function
of age remains constant
over time in the PNW
option but may change
as stand age changes.

HARVEST VOLUME

hj

MCij change in total cost in

period j due to a one-
acre change in the har-
vest from age class i.

HARVEST LEVEL WITH
CI j=Cl,j+I

---- HARVEST LEVEL WITH
CI j (I+a)=CI,J+1

5-

1

N

PERIOD

Figure 7.

Effect of demand intercept
increase when the starting harvest
level is held constant.

J
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These are incorporated into the

linkage equation [39] :

[BPjjl F(,ij - 2C2hj)Vij

LBPa,, J L
Dj

Let

MCij = CAij + CUijVij.

MC ij+1 = CAij+1 + CUi,j+lVi,j+l'

Rearranging terms:

hj+1= C1j

Let

R=D/

(1 + a) -

BPav 1

-9 -)
+1 2C2

(BPI+11(v,+1'
(IV i j BPij

)

Cij
hj+1= (1+a) - R+Rhj+

2 C
2

Ii
Vi,j+1/

CAij + CUijVij

+ D

BPij+1

BPav

[D(MCij) - MCij+1J.

discount factor
value growth ratio

BPav

BP i j+1

Di

D(MCij) - MCi,j+1

2C2Vi,j+1

[(1 + a)Cij - 2C2hj+1

Dj+1

(BPJ

\\" Pij+1

[46]

[47]

,j+1
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PRICE PER UNIT HARVESTED
CAi,J+l + CUi,J+1Vi,j+1

D i+1 ------ DEMAND CURVES ADJUSTED
FOR QUALITY PREMIUMS

N

BASE DEMAND-CURVE[45]

The quality-premium feature of
the PNW algorithm presumes that
price calculated from the demand
curve is based on an average-sized
tree, which remains constant over
time. Trees differing from average
size would command different
prices. The average or base price
determined from the demand
curve is adjusted to reflect those
differences according to the rela-
tionships existing between tree age
and price in the base year. How-
ever, even though demand curves
in all periods are based on the
average-sized tree in the base

period, actual tree size is not
assumed constant over time. In
each period, the algorithm adjusts
the base demand-curve to reflect
the age of trees actually harvested,
in effect creating a new demand
curve for each age class (Fig. 8).
Price per unit harvested adjusts to
reflect quality premiums existing
in the base year.

cultural treatment costs

Harvest costs may include future
expenditures necessitated by har-
vesting (for example, planting
costs). To incorporate these into
the linkage equation:

Let

CTC = future costs per acre
attributable to harvest,
discounted to the time
of harvest.

HARVEST VOLUME

Figure 8.

Demand curve adjustments for
quality premiums. For a given

harvest level (hj), Pg is the price
for age classes with BPij > BPav;
Pav for age classes with BPij =
BPav; and Pt for age classes with
BPij < BPav.

MCij = CAij + CUijVij + CTC.

MC1'j+1 = CAi,j+l + CUi,j+lVi,j+l
+ CTC.

Then the linkage equation [45]
still holds.

exogenous harvests

Harvests for commercial thinning,
mortality salvage, and species con-
version require two changes in the

PNW algorithm. First, because

these harvests are predetermined,
they must be taken as

specified-that is, thinning cannot
be reduced when harvest calcu-
lated from the linkage equation is
less than the amount to be taken
in thinning.

Second, it is assumed in the
linkage age-class that acres cannot
be clearcut and thinned in the
same period. This assumption is

made only for the linkage age-class
and only to compute the net
marginal return of the last acre
cut. Reported volumes and costs
of intermediate (thinning) and

final harvests are unaffected by
this assumption. If the last acre
clearcut in a period were thinned
the same period, the net return
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from clearcutting would be the
increase in marginal net revenue
from clearcutting over and above
what would have been gained from
thinning.

The following linkage equation is
used in TREES:

Let

MRij = marginal revenue from a
clearcut on age class i,

period j
= (C1j - C2hj)Vij.

MRij+1 = marginal revenue from a
clearcut on age class i,

period j+1
= [(1 +a)C1j - 2C2hj+1]
(Vi,j+1 - Tij).

MCij = marginal cost from a

clearcut on age class i,

period j
= CAij + CUijVij + CTC.

MCi j+1 = marginal cost from a
clearcut on age class i,

period j+1
= CAij+1 + CUi,j+1
(Vi,j+1 - Tij) + CTC.

MRTij = marginal revenue from
thinning age class i, per-
iodj
= (C1j - C2hj)Tij.

MCTij = marginal cost from thin-
ning age class i, period j
= CATij + CUTijTij.

Tij = thinning taken in age class i,
period j.

CATij = cost per acre of thinning
age class i, period j.

CUTij = cost per unit of volume
taken in thinning age

class i, period j.

Thus the linkage equation [45]
becomes

MRij MCij

Dj Dj

7BPIj

BPavJ

Next-period harvest could be

found by rearranging terms and
breaking hj and hj+1 out of the
marginal revenue terms:

Let

R' = D/

hj+l

I BPij
II

Vi j - Tij

+1J i,j+l - Ti,j+1

Clj

2C2

(1 + a) R'+R'hj+

incorporating productivity classes

To calculate the proportions of
each age class to be harvested on
all management units, unit vol-
umes are summed together by age
class and species report-group (see
User's Manual). Cutting proceeds
according to the harvest priority
on the summed volumes until the
harvest is satisfied. The last age
class and species report-group to
be cut become the linkage age-
class and species report-group. For
each G R U, the proportion har-
vested from the linkage age-class is
applied to the proper age class and
species report-group for all MIs
and stocking classes. Resulting
harvest volumes, harvest costs, and
base revenues are adjusted by
quadratic interpolation of the stan-
dard values for the appropriate
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(MRTij
l_

MCTi j

Di) Dj

(BPI
,
+MRi,+_

BP Dj+1 Dj+1
av

= discount factor
value growth ratio, net of thinning

Mls. Adjusted quantities are sum-
med over all GRUs. The sums of
harvest volumes in the last age
class, harvest costs, and, base-price
total revenues are then divided by
total acres harvested in the final
age class to determine per-acre
values. The final values represent
weighted averages of the values for
individual management units.

ending-condition checks

One of two ending conditions may
be specified in the PNW algorithm
in TREES: (1) harvest equals
growth (see Eq. [6] ), or (2)
harvest all volume above a spec-
ified age class (see Eq. [7] ). Using
an ending condition requires an
additional feasibility check on
last-period harvest-if last-period
harvest is too high, lower the

[48]

harvest and begin again; if too
low, return to the first period and
raise the harvest. Ending condi-
tions may limit feasible PNW
harvest schedules to a narrower
range than was previously the case.
In fact, including ending condi-
tions often will cause infeasi-
bi l ities.

policy considerations

The PNW method, highly complex,
produces a harvest schedule that
would maximize profits to the
producer. Producer profits are at a
maximum when marginal cost
(including opportunity costs) of
the last unit harvested equals
marginal revenue. PNW finds a

harvest schedule for which the last
(marginal) acre in any period
would not contribute more to net

discounted profits if held until the
next period's harvest. A demand
curve must be specified to deter-
mine marginal revenues. Compared
with PNB, PNW reduces harvest
volume and raises stumpage prices.
(See the policy considerations for
the PNB approach for more
detail.)

Present Net Benefit (PNB)

applying the method

The PNB harvest scheduling
method is analogous to PNW
except that, instead of attempting
to maximize discounted net
revenue, PNB seeks to maximize
consumer-plus-producer surplus,
the net discounted difference
between the area under the
demand curve (a measure of the
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consumer's "willingness to pay")
and total cost. Consumers, in this
case, would be purchasers of
stumpage.

Assuming a static linear demand
curve and constant unit costs, we
may formulate the maximization
problem as:

Maximize

j=1 0

N h-

1
FC1 - C2hj - C3

LDJ

Once integrated, Eq. [50]
becomes

Maximize U
j=1

C2hJ2

C3h.
2

DJ

For this objective function and the
constraints previously mentioned,
we can derive K-T3 by differentia-
tion with respect to xij. Equation
[51] (the profit function 1r)

becomes

671

c;xi j

dhj. [50]

[51]

- C2hj)Vij - C3Vij =

i = 1, j - Z
j=1, N.

This differs from K-T3 for PNW
only in that the slope term C2 has
a coefficient of 1 rather than 2.
Multiplying the slope term by 1

will generally produce higher har-
vest levels in early periods and
lower levels later on (Fig. 9).
Stability conditions remain
unchanged.

N

Xj - uij [52]

policy considerations

The PNB method is extremely
complex, producing a harvest
schedule maximizing the sum of
the benefits accruing to consumers
and producers of stumpage. Net
discounted benefits are at a maxi-
mum when marginal costs of the
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HARVEST VOLUME
hj

PNW

N N N

difficult to identify. An over-
abundance of species or sites may
increase stability problems and,
thus, the chances of an infeasible
harvest.

PNB and PNW Highlights

Very complex to specify.

Volume flows are probably
erratic, depending on initial
inventories.

--- PNB

Acres initially cut will be erratic.

Adding or deleting inventory
produces uncertain results.

Regulation (or close to it) may
occur during the planning hori-
zon if a feasible harvest is

found.

Figure 9.

PERIOD

PNW and PNB harvest schedules.

last unit harvested equal price.
(Marginal costs must include
opportunity costs as well as direct
harvest costs.) Harvest volumes are
allocated over time so that the last
(marginal) acre harvested in any
period would not contribute more
to net discounted benefits if held
for harvest until the next period.
A demand curve for stumpage
from the stumpage supplier(s)
must be specified to calculate
marginal benefit.

Three vital elements must be
weighed in examining such a

harvest schedule: demand curve,
value growth rate, and discount

rate. Rotation age will equal the
age where the value growth rate
just equals the discount rate.
Although the growth rate (and,
thus, value growth rate) is largely
uncontrollable, we know that the
specified demand curve and dis-
count rate will significantly affect
the resulting harvest schedule,
assuming a feasible harvest sched-
ule exists. Therefore, determining
a demand curve and discount rate
is a major policy step.

Volume flows and acres cut will
initially be erratic, depending on
starting inventory, but regulation
may occur if a feasible solution is
found. Yet the effects of adding
or deleting inventory or intensify-
ing management practices are

Only economic criteria are con-
sidered in setting harvests.
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growth algorithms
AD Options

Growth and yield in AD stands are
based on volume tables. Seven
different tables, one for each MI,
may be entered for each GRU;
each one gives "standard" or
"normal" estimates of live volume
per acre for every age class for the
MI selected. These volume tables
serve as base estimates of yield
that may be used in several
different ways, depending on the
stocking level of the stand and the
growth option chosen.

Volume tables may be entered as
tables, as equations predicting net
yield as a function of age, or as a
combination of the two. Constant,
linear, quadratic, or cubic func-
tions of age may be used. Equa-
tion limits may be specified to
narrow the range of estimates
predicted by the equation (see

Appendix D).

standard yield

We will assume that standard
yields are defined by the cubic
equation

acres in a GRU are assumed to
have the standard volume for their
respective age classes and Mls. No
adjustments are made for differ-
ences in stocking levels defined by
the starting inventory. For
second-entry shelterwood stands,
volume is assumed to be the
standard volume multiplied by the
proportion of volume left after
first entry. If thinning is to occur,
both the volume decrease and the
growth pattern after thinning must
be reflected in the standard vol-
ume equation itself.

approach to normality

The standard yield option gener-
ally is applied to cases in which
the user wants simply to estimate
inventory and growth. But for
more pragmatic problems, an
approach-to-normal option14 may
prove more satisfactory. Approach
to normality is based on the
presumption that stands not
normally stocked will tend to
become so over time (see Bruce's
treatment in McArdle et al. 1949).

SV1 = b0 + b1Ai + b2(A1)2 + b3(Ai)3 [53]

where:

SVi = standard volume per acre,
net of mortality, age

class i.

Ai = midpoint age of age class i.

b0,b1,b2,b3 = user-defined coeffi-
cients.

In TREES, the approach-to-normal
option can be applied either to
normal net growth (the difference
between normal yields in two
periods) (U.S. Forest Service
1963) or to normal volume
(McArdle et al. 1949). In either
case, the user estimates the normal
or standard yield per acre by age
class for each MI and specifies a
linear approach-to-normal function
to predict the proportion of nor-
mality after growth, given the

volume entered in the BRU inven- 14Normality is defined here as full or
tory. After the first harvest, all optimal stocking with respect to volume.

In the standard yield option, the
volume per acre in each age class
in the first simulation period is the

38



proportion before. Yield predic-
tion proceeds as described in
Johnson et al. (1976).

Approach-to-normal volume:

Vi+1,.]+l = SVi+l a + 8 Iv
Vi

Equation [54] may be rewritten:

Vi+l,j+1

X

where:

i+l+b2

a + 8 I
1 b0 +

Vij = actual net volume per acre,
age class i, after harvest
in period j.

Vi+1,j+1 = volume per acre, age
class i+1, before harvest
in period j+1.

Ai = midpoint age (in years) of
age class i.

Ai+1 = midpoint age (in years) of
age class i+1.

SVi = standard or normal volume
per acre, age class i.

SVi+1 = standard or normal vol-
ume per acre, age class
i+1.

b0,b1,b2,b3 = user-supplied con-
stants defining standard
values as functions of
age.

[54j

(Ai +

1

2 + b3 (Ai+l 3

Vii
b1Ai + b2(Ai)2 + b3(Ai)3

1-i

a,O = user-supplied constants defin-
ing the approach-to-
normal function.

If Ai is the maximum age class,
then SVi+1 = SVi (i.e., no change
in standard volume, but actual
volume may change through the
approach-to-normal function).

Approach-to-normal growth:

Vi+l,.]+l Vi j + csvi+1 - SVi

where:

SVi+1 - SVi = normal growth

or, equivalently,

[55]

[56]
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- b1Ai - b2(Ai) 2 b3(Ai)Vi+l,j+l
Vij +

b0 + b1Ai+1 + b2(Ai+1)2 + b3(Ai+1)3 - b0

x a +
Vii

b0 + b1Ai + b2(Ai)2 + b3(Ai)

When Ai is the maximum age
class, SVi+1 equals the standard
volume for the oldest age class and
SVi, the standard volume for the
next oldest age class (i.e., standard
normal growth of the last age class
is the same as standard growth of
the next-to-last age class).

growth after thinning

If the user chooses approach to
normality, three options are avail-
able for growth after thinning. 15
Growth may (1) continue accord-
ing to approach to normality, (2)
be specified as a percentage of
normal net growth, or (3) be
specified as a percentage of normal
gross growth.

For the first option, yield after
growth is defined by either Eq.
[54] or (561, where Vij is the
volume per acre left in age class i

after thinning.

For the second option,

Vi+l,j+l Vij + p(SVi+1 - SVi) [58]

15 The only option available to the
oldest and next oldest age classes for
growth after thinning is approach to
normality. Thinning would not normally
occur in these age classes; however, in
areas where the rotation age is low, this
restriction for the two oldest age classes
will hold.
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where:

Vij = volume per acre remaining in
age class i after thinning
in period j.

p = user-specified proportion.

For the third option,

and diameter growth estimated on Let
the remaining live trees.

The assumed form of the relation-
ship is:

predicted mortality rate
for diameter class i in
period j.

MRPij = b0 + b1[BAi /(Di)3] [60]

Vi+1,,7+1
Vij + P(SVi+1 - SVi + SMi+1) [59]

where:

SMi+1 = standard mortality per
acre for age class i+1,
specified as a function
of age in the same man-
ner as standard net
yield.

where:

MRPij

BAj = total stand basal area per
acre (in square feet)
after harvest in period j

DD Options

Growth in DD stands is assumed
to take place between harvests
(i.e., between the midpoints of
each simulation period). Estimat-
ing growth includes estimating (1)
mortality, (2) diameter growth,
and (3) ingrowth and upgrowth,
all of which are calculated sepa-
rately for softwoods and hard-
woods in each stand size-class in a
GRU.

mortality

The proportion of trees in a

diameter class that die each period
is considered a function of the
midpoint diameter of that class
and of the total stand basal
area. 16 After mortality rate for
each diameter class has been deter-
mined, the appropriate number of
trees is removed from each class

16 Stand refers to a given size class in a
GRU.

MRSi = standard mortality rate
(mortality rate in diam-
eter class i) measured for
the stand in a chosen
base period.

BAS = standard basal area (basal
area of the stand in the
base period for which
stand mortality rate is

measured).

MRij = mortality rate calibrated to
stand conditions, diam-
eter class i, period j.

MRSPi = mortality rate predicted
for diameter class i using

[(Di)2(Ti] - cij)(0.00545415)].

Di = midpoint diameter (in inches) Eq. [60] with standard
of the ith diameter class. basal area substituted for

total stand basal area.
Tij = trees per acre in diameter

class i before harvest in
period j.

Cij = trees per acre harvested from
diameter class i in period
j.

b0,b1 = user-supplied constants
entered for softwoods
and hardwoods.

Estimates of the coefficients b0
and b l may be based on data
from a wide variety of stand types
and site classes. The program
calibrates estimates to the stand
conditions for an individual GRU
by the following adjustment:

The adjusting equation is:

MRij = MRSi

= MRSi

b0 + b1(BAi /Di3)

b0 + b1(BAS/Di3)

MRPij

MRSPi
[61]

When the basal area diverges from
the standard, the change in actual
mortality rate (MRij) from stan-
dard mortality rate (MRSi) is
proportional to the change in
mortality rate predicted using Eq.
[601.
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Equation [60] and its adjustment
in [611 are derived from the U.S.
Forest Service TRAS growth-
estimation procedure used in the
Pacific Northwest (Larson and
Goforth 1974). Equation [60]
predicted annual mortality rates
on U.S. Forest Service growth
plots with R2 = 0.80 and SE =
±0.0017 (personal communication
from Thomas D. Farrenkopf, U.S.
Forest Service, Portland, Oregon,
1971).

Over the long term, basal areas
may build up beyond the range
used in estimating Eq. [601. At
such high basal areas, mortality
rates predicted by Eq. [611 may
prove too low. A maximum limit
may be placed on basal area to
prevent unreasonable buildup so
when that limit is reached, the
stand is frozen; no further changes
occur in stand distribution through
mortality or growth. Should har-
vest reduce the stand basal area
below the maximum limit, mor-
tality again will be estimated with
Eq. [611.

diameter growth

Estimating diameter growth is sim-
ilar to estimating mortality rates.
After diameter growth for each
diameter class has been deter-
mined, trees are moved from one
diameter class to another to reflect
this growth. Equations are used to
predict standard diameter growth
rates and to adjust those rates for
changes in basal area. Diameter
growth is assumed to be a func-
tion of the diameter-class mid-
point, total net basal area per acre,
and the cross product of the two.

where:

DGPij diameter growth (in
inches) predicted for
diameter class i, period j.

Di = midpoint diameter of diam-
eter class i.

BAN1 = net basal area per acre,
period j, after harvest
and mortality have been
subtracted.

b0,b1,b2,b3 = user-estimated coef-
ficients.

Equation [62] is again taken from
TRAS estimates of growth rates in
the Pacific Northwest (Larson and
Goforth 1974). When applied to
U.S. Forest Service plot data, it
predicted annual radial growth
with R2 = 0.95 and SE = ±0.008
inches (personal communication
from Thomas D. Farrenkopf, U.S.
Forest Service, Portland, Oregon,
1971). To calibrate Eq. [62] to
the growth of an individual stand,
the user estimates stand diameter
growth at the same standard basal
area used to estimate mortality.
The adjustment equation is:

where:

DGij = diameter growth (in inches)
for diameter class i, per-

iod j.

DGSi = standard diameter growth,
diameter class i, at the
standard basal area per
acre.

BAS = standard basal area.

DGSPi = predicted diameter
growth using Eq. [62]
with standard basal area
substituted for net basal
area.

In Eq. [631, actual diameter
growth is adjusted for changes in
basal area from the standard basal
area in the same proportion as the,
predicted diameter growth rates

using Eq. [621. This adjustment
procedure, as well as that estimat-
ing mortality, allows Eqs. [60]
and [62] to be based on different
period lengths than the standard
diameter growth and mortality
rates. I n Timber for Oregon's
Tomorrow (Beuter et al. 1976),
for example, Eqs. [60] and [62]

b0 + b1Di + b2BANJ + b3Di(BANJ)2
DG i, DGSi

b0 + b1Di + b2BAS + b3Di(BAS)2

= DGS
DGPPJ

[63]i DGSPi

DGPiJ = b0 + b1Di + b2BANJ + b3Di(BAN J)2 [62]
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predicted annual mortality rates
and radial growth, whereas Eq.
[611 predicted mortality rates for
a 10-year period.

ingrowth and upgrowth

Ingrowth-the number of trees
growing into the smallest diameter
class-is assumed to be at least
enough to maintain a constant
number -of trees in that diameter
class at the level of the starting
inventory. The user may increase
ingrowth into that diameter class
but may not. decrease it below the
minimum. Thus, in each period j:

classes. The number of trees avail- Mij = trees that die in diameter
able for harvest in period j+1 in class i, period j, after
diameter class i is harvest in period j.

Tij+i Tij Cij Mij + Uj-i,j -Uij [65]

where: Ui-i,j = upgrowth into diameter
class i from smaller

Tij = trees in diameter class i, diameter classes in per-

period j, before harvest iod j.
in period J.

Uij = upgrowth from diameter
class i, period j.Ti1j+i = trees in diameter class i,

period j+1, before har-
vest in period j+1.

Ii j = Cij + Mij + Uij + IN [64]

where:

11j = ingrowth into the smallest
diameter class, period
j. 17

Cjj = trees cut from the smallest
diameter class, period j.

Mij = trees that die in the smallest
diameter class, period j.

Cij = trees harvested from diam-
eter class i, period j.

TREES

U1j = trees that grow out of the
smallest diameter class,
period j.

IN = additional ingrowth specified
by the user (entries may
be made for both soft-
woods and hardwoods).

Upgrowth is the number of trees
growing into higher diameter

17To avoid confusing and complex
subscripts, the theory presented is based
on one growth cycle per period. The
TREES model is capable of growing the
stand a variable number of times during
a period interval.

Upgrowth for each class is esti-
mated with a unique combination
of curvefitting to the distribution
of trees by diameter and calcula-
tion of areas beneath the esti-
mated curve (Fig. 10). This dis-
tribution of trees by diameter is

2
......... b0+bi (D)+b2(D)

i,j+I

CW 2CW 3CW

DIAMETER

Figure 10.

Estimating upgrowth for DD
stands. The area under the curve
from 0 to CW is NTij.

D
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assumed to be a quadratic func-
tion of diameter whose parameters
(b0, b1, and b2) are estimated
within the program using the trees
in diameter class i and the next
two larger diameter classes. If trees
are quadratically distributed, the
area under the estimated curve in
each diameter class must equal the
number of trees in that class.

Therefore, we can form three
equations in the three unknowns
(b0, b1, and b2) and solve for the
coefficients:

CW

2 = NT..b0 + b1(D) + B2(D) [66]

0

2CW

b0 + b1(D) + b2(D)2 = NTi+,J1J [67]

CW

3CW

b0 + b1(D) + b2(D) 2 = NTi+25,7 [68]

2CW

where:

CW = width (in inches) of one
diameter class.

D = tree diameter.

NTij = net trees per acre in period
j, diameter class i, after
subtracting harvest and
mortality.

Performing the integrations, we
may rewrite Eqs. [66] through
[68] as:

b0(CW) + b1
C

+ b2 NTij. [69]
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2 3
b0(CW) + b1 32W + b2 73W

= NTi+1,j' [70]

11

b0(CW) + b1 T_)
+ b

2 3

2 3
5CW 19 W = NT +2,j' [71]

Solving this system, we find:

b0 =
[11(NTij) - 7(NTi+1,j) + 2(NTi+2,j)]

6CW

L-2(NT) + 3(NT. ) - NT ]
= +l,j i+2,j .b 1

b 2 32CW

Diameter growth (DGi]) is calcu-
lated for diameter class i as shown
in Eq. [63] . If we assume all trees
in a diameter class grow at the
same rate as trees having the
midpoint diameter18, all trees in
class i within DGij of the upper
class boundary will grow out of
the class. The number of trees
growing out of the class can be
estimated by finding the area
under the curve between CW-DGij

18 As diameter class width increases or
as growth periods decrease, the average
diameter of trees moving out of a class
is probably above midpoint. If rate of
diameter growth is increasing with diam-
eter, then upgrowth will be under-
estimated; if the converse, upgrowth will
be overestimated.

6CW2

[72]

[73]

[NTij - 2(NTi+l,j) + NTi+2,j] [74]
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and CW (Fig. 10). This can be
written:

CW

b0 + bl(D) + b2(D2) = Uij.

CW-DGij

If we use the values b0, b1, and
b2 from Eqs. [72] through [74],
integrating and evaluating Eq.

[ 7 51 yields the upgrowth
estimate:

DGi
U = 3 NTij (CW + DGij)(2CW + DG ij)

6CW

+ NTi+l,j(5CW + 2DGij)(CW - DGij)

- NTi+2,.(CW
+ DGij)(CW'- DGij) .

After upgrowth from diameter
class i has been estimated, Uij is

subtracted and Ui_1,j added to the
number of trees in diameter class
i; then i is incremented (i=i+1) and
upgrowth calculated for the suc-
ceeding diameter classes using the
same procedure until only two
classes remain. When i is the
next-to-last class, upgrowth is cal-
culated using a curve fitted to the
trees in classes i-1, i, and i+1.
Because the trees in class i+1 have
already been adjusted to reflect
growth, this procedure may cause
some inconsistency in upgrowth
estimates for the next-to-last diam-
eter class. No upgrowth is calcu-
lated for the last diameter class,
which is assumed to include all
trees above the lower class bound-
ary.

As upgrowth is calculated, the
decision must be made into what

X75]

[76]

class or classes trees will be
moved. In TREES, the following
rules apply:

If DGij < CW, move Uij to one
class above.

If DGij > 2CW, move Uij to
two classes above.

If CW < DGij < 2 CW, move
Uij [2 - (DGij/CW)] trees one
class above and move Uij
[(DGij/CW) - 1] trees two
classes above.

The third rule assumes that trees
to be moved are evenly distributed
by diameter (in contrast to the
assumption used to calculate up-
growth). For most downward-
sloping distribution curves, trees

moving into the next diameter
class will be underestimated; those
moving to the diameter class two
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classes above will be over-
estimated. Trees can, at most, skip
one diameter class during the
growth period; if selected growth
periods are long or diameter class
widths narrow, this limit sup-
presses the specified diameter
growth.

Calculating upgrowth in TREES
may be contrasted with the pro-
cedures used in TRAS (Larson and
Goforth 1974), which uses either
the Q method or the nonlinear
interpolation (NLI) method. In
both instances, curves are fitted
successively to cumulative distribu-
tion curves, and upgrowth is calcu-
lated by shifting the cumulative
curves by the amount of diameter
growth.

The Q method assumes that the
cumulative distribution curve is

exponentially distributed (Fig. 11).

AT =
Ke-a(D)

[77]

where:

AT = cumulative number of trees
larger than diameter D.

D = diameter.

K, a = constants to be estimated.

For a given diameter class i,

upgrowth is calculated by fitting
an exponential curve at ATij and
ATi+1,j where ATij is the number
of trees greater than the lower
limit of diameter class i (DLi) in
growth period j, including the
trees that will die in growth period
I.

The estimated curve is shifted
horizontally by the diameter
growth of a tree with the diameter

DLi+1 (i.e., trees growing out of
diameter class i are assumed to be
growing at the same rate as trees
at the lower limit of the next
class). Upgrowth can then be

directly calculated as the differ-
ence in number of trees larger
than DLi+1 before and after
growth (ATi+1,j+1 - ATi+11j) A
new curve is estimated and up-
growth similarly calculated for
each diameter class.

Assuming that the cumulative dis-
tribution curve is exponentially
distributed between DLi and
DLi+1 implies that the underlying

ATij - ATi+1,J TiJ Cij

[78]

or, equivalently,

-a(DL.)
-

Ke-a(DL 1+1)
Ke 1

DLL+1

DLi

f(D). [79]

distribution of trees in diameter Equation [79] can be true only if
class i is also exponential. If f(D) f(D) = aKe-a(D) [i.e., if f(D) is

is the distribution of trees per acre exponentially distributed over

by diameter, then according to the diameter class i] . Because the
Q method cumulative distribution curve must

Figure 11.

The Q method.
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decline with diameter, "a" must
be positive, implying that trees per
acre must decline exponentially
within a diameter c/ass.

The NLI method assumes that the
cumulative distribution curve over
any three lower-class boundaries
can be described by a second-
degree function of diameter (a

parabola, as in Fig. 12). In con-
trast to the Q method, the curve is
fitted after diameter growth has
taken place; but like the Q
method, a new curve is estimated
to calculate upgrowth for each
diameter class except the last two.

A cumulative distribution curve
that is quadratic implies that the
actual distribution of trees per
acre by diameter is linear over
classes i and i+1. Let f(D) be the
distribution of trees by diameter.
Then the NLI method implies: 19

Several differences between the
TREES and TRAS methods for
calculating upgrowth are signifi-
cant:

E Mortality-TREES subtracts
mortality before fitting a curve
to calculate upgrowth, but
TRAS carries mortality until
after upgrowth has been calcu-
lated. Where mortality is sub-
stantial, the differences in treat-
ments could cause differences in
upgrowth estimates.

Trees moving to higher classes-
TREES allows trees to be

moved up two diameter classes
in one growth period; in TRAS,
trees may move up one class
only.

Diameter growth-In TREES,
diameter growth is specified at
the diameter-class midpoint; in

ATi,j+l - ATi+l,j+1
- Ti,j+l [80]

and ATi+l,j+l - ATi+2,j+1 - Ti+1,j+1 [81]

or, equivalently,

b0 + b1(DLi) + b2(DLi) 2 - [b0 + b1(DLi+1) + b2(DLi+1)21

DLi+2

[82]

DLi+1

But Eq. [821 implies that f(D) = TRAS, at the upper class

b1 + 2b2(D) (i.e., the distribution boundary. If diameter growth is
of trees by diameter over diameter increasing with diameter, TRAS
classes i and i+1 is linear). will calculate greater upgrowth

estimates.

19Ti,j+l includes mortality for growth
period j.

Last class-Using a cumulative
distribution curve in TRAS
avoids problems in estimating
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distributions when the last
diameter class is open ended. In
TREES, trees per acre in the
last class are treated as if
distributed over the width of
one class when estimating curves
for the next two lower classes.
If trees accumulate in the last
class, upgrowth from lower
classes may be overestimated.

Type of distribution
assumed-As indicated pre-
viously, the Q method assumes
that the distribution of trees
within each diameter class is

exponential [aKe-a(D)]. Because
the cumulative distribution
curve is always downward
sloping, "a" is necessarily
positive. This implies that the
number of trees must decline
exponentially within each class.

The NLI method was designed
for cases in which the exponen-
tial decline does not accurately
portray the distribution. How-
ever, NLI presumes a linear
distribution of trees within each
diameter class, in effect describ-
ing a distribution with a series
of linear segments. Inevitably,
applying NLI to curvilinear dis-
tributions causes some inaccu-
racy. For example, NLI
overestimates the number of
trees at the lower boundary of
diameter class i (Fig. 13); thus,
upgrowth estimates will be

biased downward.

TREES assumes that the distri-
bution of trees by diameter

Figure 13.

Overestimating trees at lower
boundary of diameter class i when
using NLI method.

TREES PER ACRE
AT

.. ....bo+bl(D)+b2(D)2

ATi j
ATi+ I, j+l

ATi+I1 j

ATi+2,j

Figure 12.

The NLI method.
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within each diameter class may
be described by a quadratic
function of diameter. Because

quadratic curves can closely
approximate exponential and

linear forms as well as other
curvilinear distributions, TREES
offers greater flexibility than
TRAS.

Inconsistent upgrowth
estimates- Unlike the Q me-
thod, NLI and TREES may
give rise to upgrowth estimates
exceeding the trees available in
the class. When large differences_
exist between trees per acre in\
adjacent classes, the curves fit
using NLI and TREES may
become negative within the class
for which upgrowth is to be
calculated. (Exponential curves

TREES

NTI j=O

cannot become negative.) For
the distribution shown in Figure
14 (no trees in diameter class i),
the curve fit using TREES has a
net area of 0 over class i, as

required. However, the zero net
area is achieved by a large

negative area offsetting an

equally large positive area. The
positive area occurs at the upper
class boundary, causing a posi-
tive estimate of upgrowth.

Such occurrences can be mini-
mized by aggregating stands
over sufficient area to eliminate
gaps in diameter distribution. In
addition, TREES requires that
harvest increase with increasing
diameter, which may prevent
such gaps from appearing during
a simulation.

DISTRIBUTION
ASSUMED BY THE
TREES METHOD

V

N TI+) 1

o

NT42 jl

DIAMETER

Figure 14.

Positive upgrowth predicted for
diameter class i in period j when
the number of trees in that class is
0.

D
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appendix A- detailed algorithms for the
Variable Definitions

All capitalized names are computer
program variables. When program
variables are used in expressions,
FORTRAN notation, including
computational hierarchies, is used.

ITRMCZ = harvest flag: 0 =
unsuccessful-try again;
1 = infeasible-stop; or 2
= successful-go to the
next period.

NPDECG = period to check ending
condition. Last period of
the look-ahead for EFV,,
and EFFV; last period
of the inner cycle for
PNW and PNB.

NPDIG = current inner-cycle per-
iod.

NPDIX = NPDIG+1, the
FORTRAN subscript
corresponding to
NPDIG.

NPDOG = current outer-cycle
period.

NVPOPC = number of outer
cycles. Because TREES
starts with cycle 0,
NVPOPC-1 is used for
comparison.

MXPDOG = last period of the
outer cycle (planning
horizon).

OBJVL = objective function for
EFV and EFFV.

PVLBIP = proportion used to set
the initial binary search
step-size.

PVLDCP = proportion used to set
the maximum decrease

in outer-cycle' harvest
volumes from one period
to the next for EFV and
EFFV.

PVLDTP = proportion used to set
the difference tolerance
(i.e., how much the har-
vest can differ from the
volume meeting the con-
straints and still be con-
sidered satisfactory).

PVLICP = proportion used to set
the maximum increase in
outer-cycle harvest vol-
umes from one period to
the next for EFV and
EFFV.

PVLITP = proportion used to set
the minimum binary
search step-size.

VLBSIL = binary search step-size
(amount by which
VLBSPL is changed in
the iterative search).

VLBSPL = trial harvest level.

VLEXC = exogenous harvest vol-
ume (including thin-
nings, mortality salvage,
and species conversion).

V LD I F L = difference between
proposed harvest volume
and a harvest meeting
one of the constraints.

VLHPPP = first trial harvest level,
when no fixed harvest

1 Outer cycle harvests are those actually
taken in the sequential EFV option, as
opposed to inner cycle harvests, which
are potentially taken. The current outer
cycle is the first period of the current
inner cycle.
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variable harvest scheduling methods

scheduling method pre-
cedes the variable
method.

(a) Set VLBSPL = VLTRC
(NPDIX-1). If (NPDOG = 0),
set VLBSPL = VLHPPP.

VLPRQL = harvest volume exactly
satisfying the linkage
equation.

VLRQCL = harvest volume exactly
satisfying the ending
condition.

VLTAVL = volume available for
harvest (including exo-
genous harvest).

VLTRC(NPDIX) = harvest level
for the current inner
cycle.

VLTRC(NPDIX-1) = harvest level
for the last period.

EFV and EFFV

Step 1. Initiate the outer and
inner cycles.

(a) Set NPDOG = 0 plus the num-
ber of fixed method periods if a
fixed harvest scheduling meth-
od precedes EFV or EFFV.

(b) Set NPDIG = NPDOG.

Step 2. Shift utilization standards
and Mls; adjust stocking levels;
calculate the exogenous harvest;
and check the period.

(a) If the first period of the
look-ahead (NPDIG =
NPDOG), go to Step 3.

(b) If not, go to Step 5.

Step 3. Set the trial harvest level
for the first period of the look-
ahead and the initial search step-
size.

(b) Set V LBSI L = VLBSBL
PVLBIP.

(c) Set VLTRC(NPDIX)
VLBSPL.

(d) If EFV, OBJVL =

VLTRC(NPDIX); if EFFV, set
OBJVL = C1j + C2j
[VLTRC(NPDIX)j where C1j
and C2j are the EFFV coeffi-
cients (see ACC, Card 08, User's
Manual).

(e) If no harvest-flow constraints
=are imposed (PVLDCP

PVLICP = 0), go to Step 7.
Otherwise, continue on to Step
4.

Step 4. Check the trial harvest
level to see that it meets the
harvest-flow constraints. If it does
not, reset the harvest so the
constraints are met.

(a) If VLTRC(NPDIX) >
VLTRC(NPDIX-1) *
(1 +PV L ICP), reset
V L T R C ( N P DIX
V LT R C(N PD IX- 1)
(1+PVLICP).

(b) If VLTRC(NPDIX) <
VLTRC(NPDIX-1) *
(1 -PV LDCP), reset
V L T R C (N P D I X
V LT RC(N PD IX- 1)
(1-PVLDCP).

(c) Go to Step 7.

Step 5. In the period immediately
preceding the ending-condition
check, store the target harvest
volume. If NPDIG = NPDECG-1
and an ending condition is

imposed, set VLRQCL equal to
the harvest volume required to
meet the ending condition.

Step 6. Set the target harvest for

the next period.

(a) If EFV, VLTRC(NPDIX) _
OBJVL = VLBSPL.

(b) IF EFFV, VLTRC(NPDIX) _
OBJVL - C1j/C2j.

Step 7. Check the trial harvest
level to see that it is greater than
the exogenous harvest and less

than the volume available for
harvest.

(a) If VLTRC(NPDIX) < VLEXC,
set VLDIFL = VLEXC -

VLTRC(NPDIX), reset
VLTRC(NPDIX) = VLEXC,
and go to Step 8.

(b) If VLTRC(NPDIX) >
VLTAVL, set VLDIFL =

VLTAVL - VLTRC(NPDIX),
reset VLTRC(NPDIX) _
VLTAVL, and go to Step 8.

(c) If neither, go to Step 9.

Step 8. Check to see that the
revised harvest level is sufficiently
close to the target level to satisfy
the difference tolerance.

(a) If the absolute value of
VLDIFL < VLBSPL
PVLDTP, go to Step 9.

(b) If the requested harvest has
been reset to meet the
harvest-flow constraint (Step
4), go to Step 9.

(c) If neither, go to Step 14.

Step 9. Set the successful harvest
flag and write the optimization
detail.
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(a) Set ITRMCZ = 2.

(b) Write the optimization detail
on TAPE33 (see Appendix B).

Step 10. Determine the proportion
of acres or trees to be harvested
from each composite class accord-
ing to the harvest priority chosen
and increment the period (set
NPDIG = NPDIG+1).

Step 11. Apply the calculated
proportion uniformly to the indi-
vidual components of each com-
posite class.

Step 12. Adjust the inventory for
changes in utilization standards,
regeneration, and growth; check
the period.

(a) If not the period for checking
the ending condition
(NPDIG < NPDECG), go to
Step 2.

(b) If the period for checking the
ending condition, continue on
to Step 13.

Step 13. Check the ending con-
dition.

(a) Set VLDIFL = VLRQCL -

VLTRC(NPDIX).

(b) If absolute value of VLDIFL <
VLBSPL * PVLDTP, or if the
harvest has been forced to a
harvest-flow constraint in Step
4:

(1) Set ITRMCZ = 2.

(2) Write the optimization
detail on TAPE33 (see

Appendix B).

(3) Go to Step 15.

(c) If not, go to Step 14.
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Step 14. Adjust the first-period
trial harvest through the binary-
search routine.

(a) If the current step VLBSIL is
less than the step-size tolerance
V LBSPL * PVLITP, set
ITRMCZ = 1, write the optimi-
zation detail, and stop.

(b) If not, calculate a new step
size using the binary-search
technique and reset VLBSPL =
VLBSPL ± VLBSIL.

(c) If VLBSPL < 1, set ITRMCZ
= 1, write the optimization
detail, and stop. If not, set
ITRMCZ = 0, write the optimi-
zation detail, and go to Step
3(c).

Step 15. Check if this is the last
period of the planning horizon.

(a) If NPDOG < MXPDOG, set
NPDOG = NPDOG+1, and go
to Step 1(b).

(b) If NPDOG = MXPDOG, pre-
pare reports and stop.

PNW and PNB

Step 1. Initiate the outer cycle.

(a) Set NPDOG = 0 plus the
number of fixed method per-
iods if a fixed harvest schedul-
ing method precedes PNW or
PNB.

(b) Set NPDIG = NPDOG.

Step 2. Shift utilization standards
and MIs; adjust stocking levels;
calculate the exogenous harvest;
and check the period.

(a) If the first period of
look-ahead (NPDIG
NPDOG), go to Step 3.

the

(b) I f not, go to Step 4.

Step 3. Set the trial harvest level
for the first period of the look-
ahead and the initial search step-
size.

(a) Set VLBSPL = VLTRC
(NPDIX-1). If NPDOG = 0, set
VLBSPL = VLHPPP.

(b) Set VLBSIL = VLBSPL
PVLBIP.

(c) Set VLTRC(NPDIX)
V LBSPL.

(d) Set VLPRQL = VLTRC
(NPDIX).

(e) Go to Step 6.

Step 4. In the period immediately
preceding the ending-condition
check, store the target harvest

volume. If NPDIG = NPDECG-1
and an ending condition is

imposed, set VLRQCL equal to
the harvest volume necessary to
meet the ending condition.

Step 5. Calculate the harvest

volume required in this period
based on VLPRQL and on values
calculated in Step 11 in the
previous period and the linkage
equation (see Eq. [491 in PNW
harvest scheduling method
section).

(a) Set VLTRC(NPDIX) = linkage
equation value where hj =

VLPRQL.

(b) Set VLPRQL = VLTRC
(NPDIX).

Step 6. Check the trial harvest
level to see if it is greater than the
exogenous harvest for the period
and less than the volume available.



(a) If VLTRC(NPDIX) < VLEXC,
set VLDIFL = VLEXC -

VLTRC(NPDIX); reset
VLTRC(NPDIX) = VLEXC;
and go to Step 7.

(b) If VLTRC(NPDIX) >
VLTAVL, set VLDIFL =
VLEXC - VLTRC(NPDIX);
reset VLTRC(NPDIX) _
V LTAV L; and go to Step 7.

(c) If neither, go to Step 8.

Step 7. Check to see if the revised
harvest level is sufficiently close to
the target harvest level to satisfy
the difference tolerance.

(a) If the absolute value
VLDIFL < VLBSPL
PVLDTP, go to Step 8.

(b) If not, go to Step 14.

of
*

[Note that the difference toler-
ance is defined using first-
period rather than current-
period harvest level
(VLPQQL)].

Step 8. Set the successful harvest
flag and write the optimization
detail.

(a) Set ITRMCZ = 2.

(b) Write the optimization detail
on TAPE25 (see Appendix B).

Step 9. Determine the proportion
of acres to be harvested from each
composite class according to the
harvest priority chosen. Determine
the last composite class harvested
(i.e., linkage class) and increment
the period (set NPDIG
NPDIG+1).

Step 10. Apply the calculated
proportion uniformly to the indi-

vidual components of each com-
posite class.

Step 11. Compute values needed
for the linkage equation (Step 5).

(a) For each GRU containing the
linkage class, interpolate the
volume and cost per acre and
the cost and revenue per unit
volume for the last acre har-
vested this period and the first
acre harvested next period.
Calculate volume, cost, and
revenue by multiplying per-
acre values by number of acres
and per-unit-volume values by
volume. The number of acres
for the last class harvested this
period is the number cut this
period; the number for the
first class harvested next per-
iod is the number remaining
after this period's harvest. Sum
number of acres, volume, cost,
and revenue for the last and
first classes over GRUs.

(b) Divide sums by total number
of acres to compute volume,
cost, and revenue, all per acre,
for the last and first classes.

Step 12. Adjust the inventory for
changes in utilization standards,
regeneration, and growth; check
the period.

(a) If not the period for checking
the ending condition
(NPDIG < NPDECG), go to
Step 2.

(b) If the period for checking the
ending condition
(NPDIG = NPDECG), con-
tinue on to Step 13.

Step 13. Check the ending condi-
tion.

(a) Set VLDIFL = VLRQCL -

VLTRC(NPDIX).

(b) If the absolute value
VLDIFL < VLBSPL
PVLDTP:

(1) Set ITRMCZ = 2.

of
*

(2) Write the optimization
detail on TAPE25 (see

Appendix B).

(3) Prepare reports and stop.

(c) If not, go to Step 14.

Step 14. Check the binary search
step-size. Reset the first-period
search level.

(a) If VLBSIL < VLBSPL *
PVLITP, set ITRMCZ = 1;

write the optimization detail;
and stop.

(b) If not, set VLBSIL equal to
the new binary search step-
size.

(c) Set VLBSPL = VLBSPL ±
VLBSI L.

(d) If VLBSPL < 1, set ITRMCZ
= 1; and stop.

(e) If not, set ITRMCZ = 0; write
the optimization detail; and go
to Step 3(c).
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appendix B- optimization detail report
The optimization detail lists signif-
icant variables primarily to allow
interpretation of the success or
failure of the variable (multiple
iteration) harvest scheduling
methods. This report is particu-
larly valuable for determining why
a variable method stops before
finding a solution for all periods.
The optimization detail, written
on TAPE25 (see the Example
Guide), appears in three versions:
(1) fixed method report (for
absolute amount, percent of inven-
tory, and area control); (2) even-
flow report (for EFV and EFFV);
and (3) PNW and PNB report.
When switching from a fixed
harvest scheduling method to a
variable one, the fixed method
report precedes the variable report.

Fixed Method Report

Five variables are printed for each
outer cycle. I n order of appear-
ance across the page, variables are:

ITRMCZ = harvest flag (2 for all
fixed method periods).

Even-Flow Report

Thirteen variables are printed on a
line for each period of an inner
cycle iteration or trial; two lines
are printed for the last period, one
before the ending-condition check
and one after.

In order of appearance across the
page, the variables are:

NPDOG = outer cycle period. The
first outer-cycle period is
0; the last outer-cycle
period is NVPOC-1,
where NVPOCP is the
number of optimization
cycles entered in the
ACC file. If any fixed
method precedes an

even-flow method, then
NPDOG includes the
fixed method periods.

NPDOG = outer cycle (planning
period), with 0 as the
first period.

NPDIG = inner cycle (look-ahead);
for fixed methods,
NPDIG = NPDOG.

VLTAVL = total volume available
for harvest in the period.

VLTRC(NPDIX) = harvest volume
for the period (NPDIX =
NPDOG+1, for subscript-
ing). VLTRC(NPDIX)
may differ from the
requested volume in the
ACC file if the requested
volume is less than
exogenous harvests or
greater than the volume
available.

NPDIG = inner cycle period.
NPDIG = NPDOG in the
first period of each inner
cycle (look-ahead).
NPDIG = NPDOG +
NPDVPP in the last
period of each successful
inner-cycle trial.
NPDVPP is entered in
the ACC file as the inner
cycle length.

VLTAVL = total volume available
for harvest in the period.

VLTRC(NPDIX) = total harvest
for the period (NPDIX =
NPDIG+1, for subscript-
ing). VLTRC(NPDIX) is
the EFV or EFFV har-

vest level unless that
level is greater than the
amount available or less

than the exogenous har-
vest. In those cases,

VLTRC(NPDIX) is reset
to the volume available,
exogenous harvest level,
or level required by the
harvest-flow constraint.
VLDIFL will represent
the difference between
the EFV or EFFV har-
vest l evel and
VLTRC(NPDIX).

ITRMCZ = harvest flag.

0 if VLDIFL > VLBSPL *

PVLDTP, VLBSPL > VLBSPL *
PVLITP, and VLBSPL > 1. The
difference between
V LT R C(NPDI X) and some
desired harvest level exceeds the
difference tolerance. Find a new
level for harvest in the first
period of the inner cycle and
try again.

1 if VLDIFL > VLBSPL *
PVLDTP and (a) V LBSI L <
VLBSPL * PVLITP, or (b)
VLBSPL < 1. In (a), the binary
search step-size has become
smaller than the step-size toler-
ance; in (b), the first-period
harvest level for the next itera-
tion is < 1. In either case, the
search for an available harvest in
the outer cycle period is aban-
doned. If only one look-ahead
period is used (NVPOCP = 1),
the run will terminate. If
NVPOCP > 1, proceed to the
next outer-cycle period without
taking a harvest in the current
outer-cycle period and without
growing the stand.

2 if (a) harvest level successfully
meets the even-flow or ending
conditions or (b) trial harvest
level has been forced to the
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harvest-flow constraint bound-
aries. When ITRMCZ = 2, the
algorithm proceeds to the next
inner-cycle period or, if the
ending condition has been met,
to the next outer-cycle period.

IBGOPP = optimization phase.

0 if in the second (or greater)
iteration in searching for an
inner cycle harvest schedule.

1 if in the inner cycle trial of
the first variable harvest period.

2 if in the first inner-cycle trial
after incrementing the outer
cycle period.

level is not feasible, the closest
feasible harvest is taken.

4 if upper and lower bounds on
the optimal harvest level have
been found.

VLBSIL = binary search step-size,
or change in the trial
harvests for successive
inner-cycle iterations,
except when IBSSTL =
1 , case (b). When
VLBSIL < VLBSPL *
PVLITP and the differ-
ence tolerance is vio-
lated, the search for a
harvest level for the cur-
rent outer-cycle period is
abandoned (see ITRMCZ

!BSSTL = binary-search stage. = 1).

1 if (a) the first inner-cycle trial
of the first period of a variable

VLBSPL = trial or target harvest
level for the first period

harvest scheduling method or of the inner cycle, when
(b) t
cycle

he last period of the inner
has been reached in two

NPDIG = NPDOG.
VLBSPL remains the

succe
harve
endin

ssive iterations, but the
st level has not met the
g condition and upper and

same as long
= 2. When IT
VLBSPL is a

as I
RM
dju

TRMCZ
CZ = 0,
sted by

lower harvest bounds have not the amount of V LBSI L.
been found. In this case, the If VLBSPL < 1, then
step size will be increased by ITRMCZ = 1, and the
multiplying VLBSIL by NSTPL search for a current
(number of steps). NSTPL
depends on the magnitude of
V LDI F L or on the distance to
an upper or lower periodic
harvest-flow constraint, if in
effect.

2 if upper and lower bounds
have not yet been found.

3 if the trial harvest level has
been forced to one of the
harvest-flow constraint bound-
aries. If IBSSTL = 3, the target
harvest level is the constraint
level in subsequent trials. If that

outer-cycle harvest level
ceases.

OBJVL = objective value. OBJVL
= VLBSPL for the EFV
method, or the target
level for the volume-
dependent variable for
the E F F V method.

VLHPOL = volume harvested in
the previous outer-cycle
period.

VLHPIL = volume harvested in the
previous inner-cycle

period, defined only if
the periodic harvest-flow
constraints are in effect.

VLDIFL = volume difference; can
be (a) the exogenous
harvest, when the target
harvest is less than the
exogenous harvest; (b)
the volume available,
when the target harvest
is greater than the vol-
ume available; or (c) the
ending-condition volume,
when checking the end-
ing condition at the last
period of each inner
cycle. If the absolute
value of VLDIFL, as

defined in all three
cases, exceeds the dif-
ferent tolerance (i.e.,
VLDIFL > VLBSPL *
PVLDTP), then a new
target harvest level is

computed, beginning a

new inner-cycle
iteration.

PNW and PNB Report

The 14 variables, printed in order
of appearance across the page, are:

NPDOG = outer cycle period
(constant in PNW and
PNB runs).

NPDIG = inner cycle period. In
the first inner-cycle
period, NPDIG
NPDOG.

VLTAVL = total volume available
for harvest in the period.

VLTRC(NPDIX) = harvest for the
current period.

ITRMCZ = harvest flag.
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0 if (a) harvest determined from
the linakge equation is greater
than the volume available
(VLTAVL), and the absolute
value of VLDIFL (the differ-
ence between the two) is greater
than the difference tolerance
[ABS(VLDIFL) > VLBSPL *
PVLDTP] , or (b) harvest deter-
mined from the linkage equa-
tion is less than the exogenous
harvest (VLEXC), and the abso-
lute value of VLDIFL (the
difference between the two) is
greater than the difference toler-
ance [ABS(VLDIFL) >
VLBSPL * PVLDTP]. In either
case, a new value will be chosen
for VLBSPL, the harvest in the
first period of the inner cycle.

1 if (a) the next trial harvest
level for the first period of the
inner cycle is < 1, or (b) the
difference tolerance has been
violated (see ITRMCZ = 0) and
the current binary search step-
size (VLBSIL) is not greater
than the step-size tolerance
(VLBSIL < VLBSPL
PVLITP). In either case, the
search for a feasible PNW or
PNB schedule will be aban-
doned.

2 if the harvest taken
[VLTRC(NPDIX)] is within the
difference tolerance of the
linkage-equation harvest or the
ending condition, if specified. If
not in the last period, the
next-period harvest is calculated
from the linkage equation and
from the linkage-equation har-
vest level in the current period
(VLPRQL), which may differ
from VLTRC(NPDIX) by
VLDIFL.

I BGOPP = optimization-phase
indicator.

0 if in the second (or greater) PDLDRC(NPDIX) = current-period
iteration in searching for a PNW discount factor.
or PNB solution.

1 if in the
searching for
solution.

first iteration in
a PNW or PNB

IBSSTL = binary-search stage.

1 if (a) in the first iteration of
the search for a PNW or PNB
solution, or (b) ending condi-
tions are specified; two succes-
sive iterations fail as a result of
not meeting the ending condi-
tions; upper and lower harvest,,
bounds have not yet been
found; and the change in
VLDIFL in the two previous
iterations is less than one-fifth
of VLDIFL. If all these condi-
tions prevail, then the binary
search ste -size (VLBSIL) will

-DAFHLL = marginal net return,
undiscounted, from
clearcutting the last acre
in the previous period. A
negative value in the
printout indicates
negative net return
the last acre cut.

a

for

-DATHLL = marginal net return,
undiscounted, from
thinning on the last acre
clearcut in the previous
period if that acre was
thinned in the period. A
negative value in the
printout indicates a

negative marginal net
return for the last acre
thinned.

p DVDRVL = gross marginal revenue
be multiplied by VLDIFL per unit volume,
divided by the change in

PNWd
VLDIFL.

2 if upper and lower harvest
bounds have not yet been
found.

4 if upper and lower harvest
bounds have been found.

VLBSIL = binary search step-size
(the change in
first-period harvest levels
in successive iterations).
When IBSSTL = 1 or 2,
VLBSIL = VLBSPL *
PVLBIP. When IBSSTL

4, VLBSIL =

VLBSIL/2.

VLBSPL = trial harvest level for
the first period of the
current iteration. If
ITRMCZ = 0, VLBSPL
is the trial harvest level
for the next iteration.

, inundiscounte
runs or gross marginal
benefit per unit volume,
undiscounted, in PNB
runs.

VLDIFL = volume difference; can
be: (a) VLEXC minus
the linkage-equation
harvest level, where
VLEXC is exogenous
harvest volume; (b)
V LTAV L minus the
linkage-equation harvest
level, where V LTAV L is
total volume available
for harvest; or (c)

V LPRQL minus the
linkage-equation harvest
level, where VLPRQL is
the harvest needed to
meet the ending
condition. VLDIFL is

redefined only when the
harvest does not exactly
meet all requirements.
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appendix C - quadratic interpolation routine for
PNW and PNB algorithms

If we assume ages are evenly
distributed within each age class,
the proportion of the last age class
harvested will determine the exact
age of the last acre harvested. The
volume growth ratio for that acre
is found by XXQINF using a

quadratic interpolation. A quad-
ratic function of age is fit to the
standard volume per acre for the
last age class cut and for the next
oldest and next youngest age

classes (Fig. C-1). From the result-
ing curve, we can estimate the
standard growth rate for the last
acre cut. In addition to adjusting
volume growth, the quadratic
interpolation can adjust harvest
costs, base price per unit volume,
and thinning volumes on the last
acre harvested.

Suppose 80 percent of the
45-year-old age class, the last to be
harvested in period j, is to be
taken. We estimate the age of the
last acre to be cut at 42 years.
From our first estimated volume
curve, we find the volume per acre
at age 42 to be 500 cubic feet. At
age 52 (after one growth period),
the volume of the last acre,
estimated from the second volume
curve, would be 600 cubic feet for
a 10-year growth rate of 600/500
or 1.2 (slightly less than the
growth rate estimated from the
age-class midpoints). Consequently,
hj+1 is lower than if no interpola-
tion is done.

Using this routine, we can focus
on virtually any growth rate
between that of the fastest and
slowest growing age classes. The
chances of finding a growth rate
close to the discount rate are
much improved, and harvests tend
to remain stable longer (Scheur-
man and Johnson 1975). However,
the interpolation relies entirely on

the standard volume estimates for
the MI of the last class harvested.
No adjustments are made for the
effects of stocking level on growth
rates (i.e., approach to normality)
nor are changes in MI reflected in
growth rates.

Mathematically, the adjustment
process is:

Let

Vij = volume per acre, age class i,
period j, where age class
i is the last age class
harvested.

SVi = standard volume per acre,
age class i.

SV'i interpolated standard vol-
ume for last acre har-
vested from age class i.

VOLUME PER ACRE

SV'i+1 = interpolated standard
volume for the first acre
harvested from age class
i+1.

V,ij interpolated actual volume
from the last acre har-
vested, age class i, period
j

V'i j+1 = interpolated actual vol-
ume from the first acre
harvested, age class i,

period j+1.

S a--V . = V ii ViJ J

Q,

ViJ+1 Vij

i
600

500

ESTIMATED VOLUME CURVES

- - -PERIOD j
...... PERIOD j+I

I_ -A -A
35 42 45 52 55

Figure C-1.

Interpolated volume per acre for
last acre cut in period j and the
same acre if left to grow to period
j+1.

1
65

AGE
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Vi,j+1 Ski+1 = interpolated volume growth ratio
Vij SVi

Equivalent terms used in TREES are:

Vij = VAMA (IAGX, IMIX, I2SLX)

SVi = VATTA (IAGX, IMIX)

SV'i = XXQINF (PACHVC (IAGX, ISPCX), IAGX, VATTA (1, IMIX), 1)

SV'i+1 = XXQINF (PACHVC (IAGX, ISPCX), IAGX+1, VATTA (1, IMIX), 1)

V'ij = VLFHLC/ACFHLC

V'i,j+1 = VLFHFC/ACFHFC

SV

0.0<p<1.0
SVi+1

SVi
SV'1

I

I

oX2+bX+c

-0.5 0.0 0.5 p 1.0 1.5

PROPORTION OF LAST CLASS HARVESTED

Figure C-2.

Relationship between standard vol-
ume (SV) and proportion of last
class harvested.

To adjust volume per acre on the
last acre harvested, the inter-
polation process proceeds:

Let

X1, Y1 = -0.5, SVi+1

X2, Y2 = +0.5, SV i

Xg, Y3 = 1.5, SVi-1

(See Fig. C-2.)
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From three equations with three
unknowns a, b, and c:

a + b(-0.5) + c(-0.5)2 = SVi+1.

a + b(+0.5) + c(+0.5)2 = SV.,

a + b(1.5) + c(1.5)2 = SVi-1'

Solving for a, b, and c:

SVi-1(-0.25) + SVi(1.5) + SVi+1(0.75)
a =

2

b=
SVi(2.0) + SVi+1(2.0).

The equivalent equation in coded
form is:

XXQINF = [XXTBLZ (IAGX-1)
PM1HL * PP1HL - 2.

* XXTBLZ (IAGX)
* PP1HL * PM3HL
+ XXTBLZ (IAGX+1)
* PM1HL * PM3HL]/2.

where:

XXQINF = SV i

XXTBLZ(IAGX-1) = SVi_1

PM1HL = (p - 0.5)

PP1HL = (p + 0.5)

XXTBLZ(IAGX) SVi

PM3HL = (p - 1.5)

XXTBLZ(IAGX+1) = SVi+12

SVi-1 + SVi(-2.0) + SVi+1.
C=

2

Substituting p (proportion of the
last class harvested) into the esti-
mated equation, we obtain SV i,
the adjusted standard volume for
the last acre harvested.

SVi = a+bp+cp2

When the last age class cut is age
class 33 (oldest age class), the
quadratic curve is estimated using
the standard values for age class
33 and the two preceding classes.
When the next-to-last age class
harvested has a zero standard
value, the quadratic curve is esti-
mated by assuming that, at the
lower boundary of the last class
harvested, the curve crosses the
x-axis (Fig. C-3).

SVi-1(-0.25 + p2) - 2SVi(-0.75 - p + p2) + SVi+1(0.75 - 2p + p2)

2

SVi-1(p - 0.5)(p + 0.5) - 2SVi(p + 0.5)(p - 1.5) + SVi+l(p - 0.5)(p - 1.5).

2
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In this instance,

SV' = SVi(-2)(p - 1)(p + 0.5)

+ SVi+1(2/3)(p - 0.5)(p - 1).

When adjusting thinning volume
per acre for the last class har-
vested, the estimated curve used
when the class above the last class
harvested has no thinning volume
is:

STV' = STVi_1(2/3p)(p-0.5)

+ STVi(-2p)(p - 1.5)

where:

STV standard thinning volume.

In that case, we assume that
thinning ceases at the upper class
boundary (Fig. C-4).

SV1+1

SVi

SV1-1=0

Figure C-3.

SV

I

0.0<p.1.0
........ axe+bx+c

X
-0.5 0.0 Q5 1.0 1.5

PROPORTION OF LAST CLASS HARVESTED

Estimating the SV curve when the
class below has no volume.

STV
.......... axe+bx+c

STV
i-I

STVi

STV. OL I i I I x
'*I -0.5 0.0 0.5 I.0 1.5

PROPORTION OF LAST CLASS THINNED

Figure C-4.

Estimating the STV curve when
the class above has no thinning
volume.

I

I
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appendix D- equation limits
If an equation is used to define
values for a variable, Generator
subroutines STCEAD and
EQTBAD evaluate the equation
and construct a table containing
one entry for each age- or
diameter-class midpoint. The
values predicted by the equation
can be modified using an indicator
for the type of equation limit
(ITEQ). Table values constructed
by combining an equation and
ITEQ may be overridden by direct
tabular entries for chosen age or
diameter classes. This appendix
describes the table values resulting
from all possible combinations of
equation type and limit. (For
flowcharts and further discussion
of STCEAD, see the Analyst's
Guide.)

Possible entries for ITEQ and
corresponding restrictions on equa-
tion values are:

Figure D-1.

Linear equation (ax + b) with a >
0 and ITEQ = 5. The indicates
values inserted in tables for
Figures D-1 through D-15.

ITEQ Constraint

0 f(x) = 1

1 f(x) ' 1 and nonincreasing [f'(x) < 0]

2 f(x) 1 and nonincreasing [f'(x) < 0]

3 f(x) 0

4 f(x) 0 and nondeclining [f'(x) > 0]

5 0 ' f(x) > 1 and nondeclining [f'(x) > 0]

Generally, these constraints
operate as described. An asterisk
(*) denotes the constraints
actually imposed that differ from
those previously described; the
deviation, in italics, follows the
description. If the constraints
described do not meet the user's
needs, we suggest that ITEQ be set
to 3 and table values substituted

where equation values are
unsatisfactory.

(1) When no equation values meet
the constraint imposed, the default
value for all table values is set to
1.0. The default value 1.0 is also
selected for all table values when
all coefficients entered for an
equation are 0 or when ITEQ = 0.

*(2) Only a nonzero constant is

entered for the equation
[f(x) = a] and ITEQ > 0. The
table is entirely filled with the
value entered for the nonzero
constant. Does not impose stated
limits.

(3) The equation entered is linear
[f(x) = ax + b].

(a) The function is increasing
[f'(x) = a > 01 .

(a-1) ITEQ = 1. Default values of 1.0
are used for all table values.

(a-2) ITEQ = 2. Default values of 1.0
are used for all table values.

(a-3) ITEQ = 3. Equation values are
used when positive; Os otherwise.

(a-4) ITEQ = 4. Equation values are
used when positive; Os otherwise.

(a-5) ITEQ = 5. Zeros or equation
values, when positive, are used until
equation values exceed 1.0. The value
1.0 is used for all other table values
(Fig. D-1).
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(b) The function is decreasing
[f'(x)=a<01.

(b-1) ITEQ = 1. Equation values are
used when > 1.0; the value 1.0 is

used for the remaining table values.

(b-2) ITEQ = 2. Equation values are
used when > 1.0; the value 1.0 is

used for the remaining table values.

(b-3) ITEQ = 3. Equation values are
used when positive; Os otherwise.

(b-4) ITEQ = 4. Default values of 1.0
are used for all table values.

(b-5) ITEQ = 5. Default values of 1.0
are used for all table values.

(4) The equation entered is quad-
ratic [f(x) = ax2 + bx + c1 .

(a) The function has a mini-
mum, i.e., the second derivative
is positive [f"(x) = 2a > 0] (see

Fig. D-2).

(a-1) ITEQ = 1.

*c - b2/4a > 1. Equation values are
used for all table values. Increasing
values are allowed.

c - b2/4a < 1. Equation values are
used until 1.0 is reached; the value
1.0 is used for all subsequent table
values (Fig. D-3).

Figure D-2.

Quadratic equation (ax2 + bx + c)
with a > 0.

1.0

c-b2/4a

Figure D-3.

Quadratic equation (ax2 + bx + c)
with a > 0, ITEQ = 1 or 2, and
(c - b2/4a) < 1.

-b/2a
x
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(a-2) ITEQ = 2.

c - b2/4a > 1. Equation values are
used as long as they are decreasing.
When the minimum is reached, all
subsequent values are set equal to c -
b2/4a (the minimum) (Fig. D-4).

c - b2/4a < 1. Equation values are

used until 1.0 is reached. The value
1.0 is used for all subsequent table
values.

(a-3) ITEQ = 3. Equation values are
used if positive; Os otherwise.

*(a-4) ITEQ = 4. Default values of
1.0 are used for all table values. Does
not use the increasing portion of the
curve.

*(a-5) ITEQ = 5. Default values of
1.0 are used for all table values. Does

Figure D-4.

not use the increasing portion of the Quadratic equation (ax2 + bx + c)
curve. with a > 0, ITEQ = 2, and

(c - b2/4a) > 1.
(b) The function has a maxi-
mum, i.e., the second derivative
is negative [f"(x) = 2a < 0]
(Fig. D-5).

Figure D-5,.

Quadratic equation (ax2 + bx + c)
with a < 0.
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*(b-1) ITEQ = 1. Default values of
1.0 are used for all table values. Does
not use the decreasing portion of the
curve.

*(b-2) ITEQ = 2. Default values of
1.0 are used for all table values. Does
not use the decreasing portion of the
curve.

(b-3) ITEQ = 3.

c - b2/4a < 0. Default values of 1.0
are used for all table values.

c - b2/4a > 0. Equation values are
used where positive; Os otherwise.

(b-4) ITEQ = 4.

c - b2/4a < 0. Default values of 1.0
are used for all table values.

c - b2/4a > 0. Equation values are
used when increasing and positive;
the value at the maximum (c - b2/4a)
is used thereafter (Fig. D-6).

(b-5) ITEQ = 5.

c - b2/4a < 0. Default values of 1.0
are used for all table values.

0 < c - b2/4a < 1.0. Positive

equation values are used up to the
maximum; the maximum value is

used thereafter (similar to Fig. D-6).

c - b2/4a > 1.0. Positive equation
values are used up to 1.0; the value
1.0 is used thereafter (Fig. D-7).

Figure D-6.

Quadratic equation
(ax2 + bx + c) with a < 0, ITEQ
= 4,and (c - b2/4a) > 0.

Figure D-7.

Quadratic equation (ax2 + bx + c)
with a < 0, ITEQ = 5, and
(c - b2/4a) > 1.
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(5) The equation entered is cubic
[f(x) = ax3 + bx2 + cx+ d]. Local
extrema can be found by setting
the first derivative equal to 0 and
solving for x by the quadratic
formula:

f'(x) = 3ax2 + 2bx + c = 0.

-b + b2 - 3ac.x=
3a

When b2 - 3ac < 0, x is not a real
number (i.e., no real extrema
exist). If b2 - 3ac 0, then
x = -b/3a. But x = -b/3a implies
that f(x) is an inflection point
because the second derivative
[f"(x) = 6ax + 2b] is 0 only if
x = -b/3a.

(a) No local extrema exist
(b2 - 3ac < 0), and the func-
tion is decreasing (a < 0) (Fig.
D-8).

(a-1) ITEQ = 1.

b2 - 3ac < 0. Equation values are
inserted unless f(x) < 1.0, in which
case table values are set to 1.0.

*b2 - 3ac = 0. When f(-b/3a) < 1,
equation values are inserted unless
f(x) < 1.0, in which case table values
are set to 1.0. When f(-b/3a) > 1, an
error exists in the code and resulting
values are uncertain. (Statement
250+1 should read GO TO 280 rather
than GO TO 480.) The code error is
the deviation from the stated restric-
tions

(a-2) ITEQ = 2.

*f(-b/3a) > 1.0. Uses equation values
to the left of the inflection point and
the value at the inflection point
[f(-b/3a)] thereafter. Does not use
the portion of the curve between the
inflection point and 1.0 (Fig. D-9).

Figure D-8.

C u b i c e q u a t i o n
(ax3 + bx2 + cx + d) with no
local extrema (b2 - 3ac < 0) and
a<0.

Figure D-9.

C u b i c e q u a t i o n
(ax3 + bx2 + cx + d) with no
local extrema (b2 - 3ac < 0), a
< 0, ITEQ = 2, and f(-b/3a) > 1.
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f(-b/3a) < 1.0. Equation values are
inserted unless f(x) < 1.0, in which
case table values are set to 1.0.

(a-3) ITEQ = 3.

Equation values are inserted unless
f(x) < 0, in which case table values
are set to 0.

(a-4) ITEQ = 4.

b2 - 3ac < 0. Default values of 1.0
are used for all table values.

*b2 - 3ac = 0. If f(-b/3a) < 0, default
values of 1.0 are used for all table
values. If f(-b/3a) > 0, equation
values are used to the left of the
inflection point and the value at the
inflection point is used thereafter.
Uses a decreasing function.

(a-5) ITEQ = 5.

b2 -3ac < 0. Default values of 1.0
are inserted for all table values.

*b2 - 3ac = 0. If f(-b/3a) < 0 or > 1,
default values of 1.0 are inserted for
all table values. If 0 < f(-b/3a) < 1,
equation values are used to the left
of the inflection point and the value
at the inflection point is used there-
after. Uses a decreasing function.

(b) No local extrema exist (b2 -
3ac < 0), and the function is

increasing (a > 0) (Fig. D-10).

(b-1) ITEQ = 1.

b2-3ac < 0. Default values of 1.0 are
used for all table values.

*b2 - 3ac = 0. If f(-b/3a) < 1,
equation values are used unless f(x) <
1.0, in which case table values are set
to 1.0. If f(-b/3a) > 1, an error in
the code is indicated and resulting
values are uncertain. Increasing values
are used in the first case,' the code

error is also a deviation from the
stated restriction.

f(x)

f(- b/3a)

Figure D-10.

C u b i c e q u a t i o n
(ax3 + bx2 + cx + d) with no
local extrema (b2 - 3ac < 0) and
a > 0.

(b-2) ITEQ = 2.

b2 - 3ac < 0. Default values of 1.0

are used for all table values.

*b2 - 3ac = 0. If f(-b/3a) > 1, use
positive equation values up to the
inflection point and f(-b/3a) there-

after. If f(-b/3a) < 1, equation values
are used unless f(x) < 1.0, in which
case table values are set to 1.0. Uses

an increasing function in either case.

(b-3) ITEQ = 3. Equation values are
used if positive; Os otherwise.

(b-4) ITEQ = 4.

*f(-b/3a) < 0. Default values of 1.0
are used for all table values. Does not
use the increasing portion of the
curve to the right of the inflection
point.

*f(-b/3a) > 0. If positive, equation
values are used up to the inflection

-b/30
X

point; thereafter, table values are set
equal to f(-b/3a). Does not use the
increasing portion of the curve to the
right of the inflection point.

(b-5) ITEQ = 5.

*f(-b/3a) < 0. Default values of 1.0
are used for all table values. Does not
use the increasing portion of the
curve to the right of the inflection
point.

*0 < f(-b/3a) < 1. Equation values, if
positive, are used up to the inflection
point; thereafter, the value at the
inflection point [f(-b/3a)] is inserted.

Does not use the increasing portion
of the curve between the inflection
point and 1.0.

f(-b/3a) > 1. Equation values, if
positive, are used up to 1.0; there-
after, 1.0 is inserted as the table
value.

(c) Local extreme exist
(b2 - 3ac > 0), and the maxi-
mum is first (a > 0) (Fig.
D-11). The equations for local

I

I
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maximum (XMAX) and mini-
mum (XMIN) are

XMAX = -b - b Sac.

3a

XMIN = -b + b2 - 3ac.
3a

(c-1) ITEQ = 1.

*f(XMIN) < 1.0. Find the highest
class midpoint (MP) less than XMIN
for which f(x) > 1.0. Equation
values, if positive, are used for all x
< MP; for all x > MP, the value 1.0
is inserted (Fig. D-12). May use an
increasing portion of the curve where
x < XMAX.

*f(XMIN) > 1.0. An error in the
code makes values uncertain. The

error is the deviation from stated
restrictions.

(c-2) ITEQ = 2.

*f(XMIN) < 1. Equation values are
used for x < MP where MP < XMIN
and f(MP) > 1.0; for x > MP, the
value 1.0 is inserted. May use an
increasing portion of the curve where
x < XMAX

*f(XMIN) > 1. Equation values, if
positive, are used until XMIN is

reached; for x > XMIN, table values
are set equal to f(XMIN). May use an
increasing portion of the curve where
x < XMAX.

(c-3) ITEQ = 3.

Equation values are used, if positive;
Os otherwise.

(c-4) ITEQ = 4.

Figure D-11.

C u b i c e q u a t i o n
NO + bx2 + cx + d) with local
extrema (b2 - 3ac > 0) and a >
0.

f(XMAX)

I

f(MP) = I.0 --+--- .

f(XMIN) ----t-----+---
I

XMAX MP XMIN

Figure D-12.

C u b i c e q u a t i o n
(ax3 + bx2 + cx + d) with. local
extrema (b2 - 3ac > 0), a > 0,
ITEQ = 1,and f(XMIN) < 1.

X

69

((XMIN)



(d) Local extrema exist
(b2 - 3ac > 0), and the mini-
mum is first (a < 0) (Fig.
D-13). The equations for local
minimum (XMIN) and maxi-
mum (XMAX) are

Figure D-13.

C u b i c e q u a t i o n
(ax3 + bx2 + cx + d) with local
extrema (b2 - 3ac > 0) and a <
0.
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*f(XMAX) < 0. Default values of 1.0
are used for all table values. Does not
use the increasing portion of the
curve for x > XMIN.

*f(XMAX) > 0. Equation values, if
positive, are used for all x < XMAX.
For x > XMAX, f(XMAX) is

inserted. Does not use the increasing
portion of the curve for which x >
XMIN.

(c-5) ITEQ = 5.

f(XMAX) < 0. Default values of 1.0
are used for all table values. Does not
use the increasing portion of the
curve for which x > XMIN.

*0 < f(XMAX) < 1. Equation values,
if positive, are used for x < XMAX;
f(XMAX) is inserted for table values
if x > XMAX. Does not use the
increasing portion of the curve where
x > XMIN.

*f(XMAX) > 1. Equation values, if
positive, are used for x < MP where
MP < XMAX and f(MP) < 1.0; for x
> MP, the value 1.0 is inserted. Does
not use the increasing portion of the
curve for x > XMIN.

XMIN = -b -c.
3a

XMAX
=.-b-b +Z - 3ac.

3a

(d-1) ITEQ = 1.

*f(XMIN) < 1.0. Equation values are
used for x < MP where MP < XMIN
and f(MP) > 1.0; for x > MP, table
values are set to 1.0. Does not use
the decreasing portion of the curve
for x > XMAX.

*f(XMIN) > 1.0. An error in the

code results in uncertain values.

(d-2) ITEQ = 2.

*f(XMIN) < 1.0. Equation values are
used for x < MP where MP < XMIN
and f(MP) = 1.0. For x > MP, table
values are set to 1.0. Does not use
the decreasing portion of the curve
for x > XMAX.

*f(XMIN) > 1.0. Equation values are
used for x < XMIN. Values are set to
f(XMIN) for x > XMIN. Does not use
the decreasing portion of the curve for
x > XMAX.

(d-3) ITEQ = 3.

*Where f(XMIN) < 0 and f(XMAX)
> 0, equation values are used for x <
XMIN; Os are inserted thereafter.
Does not use the positive equation
values for x > XMIN.

For all other cases, equation values, if
positive, are used; Os otherwise.



(d-4) ITEQ = 4

f(XMAX) < 0. Default values of 1.0
are used for all table values.

*f(XMAX) > 0. Equation values, if
positive, are used for x < XMAX.
For x > XMAX, values are set to
f(XMAX). May use decreasing por-
tions of the curve when x < XMIN
(Fig. D-14).

(d-5) ITEQ = 5.

f(XMAX) < 0. Default values of 1.0
are used for all table values.

*0 < f(XMAX) < 1. Equation values,
if positive, are used for all x <
XMAX; for x > XMAX, f(MAX) is
inserted. May use declining values for
x < XM/N.

*f(XMAX) > 1. For x < MP, where
MP < XMAX and f(MP) < 1.0, use
equation values, if positive. For x >
MP, set values to 1.0 (Fig. D-15). If
no such MP exists, then set all values
equal to 1.0. May use declining values
when x < XMIN.

Figure D-14.

C u b i c e q u a t i o n
(ax3 + bx2 cx + d) with local
extrema (b2 - 3ac > 0), a < 0,
ITEQ = 4,and f(XMAX) > 0.

Figure D-15.

C u b i c e q u a t i o n
(ax3 + bx2 + cx + d) with local
extrema (b2 - 3ac > 0), a < 0,
ITEQ = 5,and f(XMAX) > 1.
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The mathematical relations implicit in TREES (Timber Resource Economic
Estimation System), a forest management and harvest scheduling model, are
explained in this second of a four-volume series. Algorithm steps for applying
fixed harvest scheduling methods (absolute amount, percent of inventory, and
area control) are outlined and effects on harvest policy considered. Algorithms
for the more complex variable methods (even-flow of volume, even-flow of a
function of volume, present net benefit, and present net worth) are detailed;
solution feasibility, optimality, and stability evaluated; and effects on harvest
policy again considered. Growth options for even-aged stands (standard yield
and approach-to-normal growth or volume) and uneven-aged stands (mortality,
diameter growth, and ingrowth and upgrowth) are described. Appendices con-
nect algorithms for the variable methods to their computer implementation and
present supporting routines for performing quadratic interpolation and setting
equation limits.
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