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The present article establishes connections between the structure of the deterministic Navier-Stokes

equations and the structure of (similarity) equations that govern self-similar solutions as expected

values of certain naturally associated stochastic cascades. A principle result is that explosion criteria

for the stochastic cascades involved in the probabilistic representations of solutions to the respective

equations coincide. While the uniqueness problem itself remains unresolved, these connections

provide interesting problems and possible methods for investigating symmetry breaking and the

uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains,

including a dilogarithmic branching random walk on the multiplicative group (0,1), naturally arise

as a result of this investigation. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913236]

The role of scaling in the question of uniqueness of mild

solutions to 3D Navier-Stokes equations is the central

theme of this investigation. In particular, we describe a

framework where the uniqueness for both scale-invariant

and general problems is re-cast in terms of a non-

explosion property of associated stochastic cascades.

Thus, if the explosion event of the self-similar cascade is

probabilistically different from the explosion event for

the general, non-symmetric cascade in appropriate set-

tings, then we would have a manifestation of symmetry

breaking in the Navier-Stokes uniqueness problem–the

scaling-invariant case being qualitatively different. While

we are only able to prove partial results related to the

associated explosion problems, the main conclusion of

this paper is that the self-similar (scaling-invariant)

explosion and the general, non-symmetric explosion (in

appropriate functional settings) are the same, suggesting

that scaling symmetry may be directly involved in the

eventual solution of the outstanding Navier-Stokes

well-posedness problem. We note that the idea of employ-

ing scaling-invariant solutions in the context of well-

posedness goes back to Leray,25 while the idea to use

stochastic cascades to prove existence of mild solutions is

due to Le Jan and Sznitman.
21

I. INTRODUCTION

A. Navier-Stokes equations and their scaling
properties

The physics of unrestricted three-dimensional incom-

pressible fluid flow is mathematically encoded in the corre-

sponding set of Navier-Stokes equations (NSE) governing

the time evolution of velocity (momentum) u and pressure

p in three dimensional Euclidean space. Letting uðx; tÞ
denote the velocity of an incompressible fluid at the position

x 2 R3 and time t� 0, essentially Newton’s law of motion

may be cast as

@u

@t
þ u � ru ¼ �Du�rpþ g;

r � u ¼ 0; u x; 0þ
� �

¼ u0 xð Þ; x 2 R3; t > 0;

(1.1)

where � > 0 is a positive (viscosity) parameter, r ¼
ð@=@xjÞ1�j�3; D ¼ r � r is the (vector) Laplacian operator,

and g is an (external forcing) function with values in R3.

More generally (1.1) may be posed on a domain in R3 with

boundary. However, for convenience in this paper we will

consider the free-space model without boundary or an exter-

nal force.

The term @u=@tþ u � ru represents the acceleration of

a fluid parcel within a Lagrangian reference frame. In partic-

ular, the non-linearity u � ru is intrinsic to this description

of the flow and cannot be eliminated. The viscous force �Du

is the result of a linearization of stress-strain forces between

fluid parcels composing the fluid, and the divergence-free
condition r � u ¼ 0 provides conservation of mass; also

referred to as incompressibility. The pressure gradient term

rp is a fourth unknown in the set of four equations describ-

ing the n¼ 3 coordinates of velocity u ¼ ðu1; u2; u3Þ and the

scalar pressure p. We refer to Refs. 24 and 31 for more back-

ground on the physical derivation of the Navier-Stokes

equations.

The unique determination of u from the given viscosity

parameter � > 0, external forcing g (in our case g ¼ 0), and

initial data u0 is an obvious question for both the physics and

the mathematics of fluid flow. After more than one-hundred

years of research, it remains unknown whether smooth initial

data u0 leads to the existence of unique smooth (regular) sol-

utions, valid for all time. It is believed that mathematical

progress on this issue is closely connected to understanding

the physical phenomenon of turbulence. As a consequence,

the resolution of the uniqueness and regularity problem for

the Navier-Stokes equations ranks among the most important
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open problems of contemporary applied and theoretical

mathematics.

The current state of the regularity issue may be viewed

through the prism of natural scaling (symmetry) peculiar to

of the Navier-Stokes equations as follows:

If uðx; tÞ; pðx; tÞ is a solution to ð1:1Þ;
then for any scaling parameter r > 0;

urðx; tÞ ¼ ruðrx; r2tÞ; prðx; tÞ ¼ r2pðrx; r2tÞ is also a solution

with initial data ru0ðrxÞ: (1.2)

The quantities of the flow (typically represented by cer-

tain norms of u) that preserve this scaling are called critical,
the ones that grow as r ! 0 are super-critical, and the ones

that decrease are sub-critical. For example, since the pio-

neering work of Leray in the 1930s (see Ref. 25, which still

remains a benchmark for the regularity problem), it is known

that NSE possesses global-in-time weak solutions that are

bounded in L2. If we re-scale the L2-norm of u according to

the scaling above, we obtain

kurk2
2;1 :¼ sup

t2 0;1½ Þ
kur tð Þk2

2 ¼ sup
t2 0;1½ Þ

ð
R3

r2ju rx; r2t
� �

j2dx

¼ 1

r
kuk2

2;1;

and so k � k2;1 is a super-critical quantity. Yet, according to

Leray’s result, the solution is regular as long the L2 norm of

the (vector) gradient remains bounded

krurk2
2;1 :¼ sup

t2½0;1Þ
krurðtÞk2

L2

¼ sup
t2½0;1Þ

ð
R3

r2
X3

i;j¼1

ð@xi
ujðrx; r2tÞÞ2dx ¼ rkruk2

2;1;

i.e., Leray’s regularity condition is sub-critical.

More modern regularity criteria still suffer similar scal-

ing defects: The Escauriaza, Seregin and �Sver�ak criterion

involving boundedness of the L3-norm (see Ref. 12), as well

as the Koch and Tataru condition of smallness of the initial

data in the BMO�1 functional space,20 are each critical in

nature.

This gap between what is known for the solutions of

NSE (all of which are super-critical) and the sufficient condi-

tions for regularity, is one of the manifestations of the impor-

tant role scaling plays in the NSE well-posedness problem.

There is a growing consensus that functional and

harmonic analysis techniques alone would not be sufficient

to break the regularity problem by obtaining a super-

critical condition for well-posedness. Specifically, there

are examples on NSE-like systems that blow-up in finite

time despite many functional properties characteristic to

NSE.11,18,27,30

This suggests a necessity of developing new approaches

to understand NSE and non-linear systems in general. In par-

ticular, our results suggest that the stochastic multiplicative

cascade framework introduced by Le Jan and Sznitman21

may provide new insights into the NSE regularity problem.

Indeed, in this note we establish a new scaling-critical condi-

tion for uniqueness of solutions, as well as provide evidence

of a connection between the issue of uniqueness and natural

scaling of the NSE.

A natural way to explore the role of scaling in the theory

of NSE is to consider scaling-invariant or self-similar solu-

tions, i.e., the solutions satisfying

ur ¼ u; pr ¼ p; 8r > 0: (1.3)

Leray25 observed that if u; p is a self-similar solution to

(1.1), then upon choosing r � rðtÞ ¼ 1=
ffiffi
t
p

for fixed t> 0,

one has

u x; tð Þ ¼
1ffiffi

t
p u

xffiffi
t
p ; 1

� �
¼ 1ffiffi

t
p U

xffiffi
t
p
� �

;

where

�DU� 1

2
U� 1

2
X � rð ÞUþ U � rð ÞU ¼ �rP; r �U ¼ 0:

(1.4)

Leray himself had the idea to use this self-similarity (back-

wards in time, with rðtÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
T � t
p

) to produce an example

of blow-up in the NSE problem. This was eventually proved

impossible due to the work of Tsai,32 as well as Nečas,

Rů�zička, and �Sver�ak28 (see also Ref. 24) who established

that backward-in-time the only self-similar solution is 0.

Study of forward in time self-similar solutions, particularly

of Eq. (1.4), revealed several important existence and

uniqueness as well as regularity results.9,14,15,26 In particular,

Meyer26 provided a framework of constructing solutions

that are unique in a weak L3-space starting from “small” ini-

tial data. We note that the self-similar solutions must invari-

ably possess singularity at the origin, as they are

homogeneous functions of degree �1. The weak-L3 space is

a natural functional space for such functions. Later,

Grujić15 showed that the solutions built by Meyer are in

fact smooth (outside the origin). More recently, Jia and
�Sver�ak16,17 proved existence of smooth solutions for (1.4),

without a smallness assumption, pointing to a potential for

lack of uniqueness of self-similar solutions for “large” ini-

tial data and showing a pathway of how such solutions

might be used to produce blow-up in Navier-Stokes equa-

tions. Cannone and Karch10 also argued for the connections

between the theory of self-similar solutions with large ini-

tial data and possible emergence of singularities in the

NSE.

The fact that self-similar solutions could be used to

prove/disprove well-posedness for general NSE is another

manifestation of the particular importance of scaling symme-

tries in the Navier-Stokes equations.

B. The question of symmetry breaking—The
description of the main results

In this paper, we seek to provide an approach to both

self-similar, as well as general NSE problems that could

075402-2 Dascaliuc et al. Chaos 25, 075402 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.193.162.224 On: Wed, 02 Sep 2015 16:35:51



shed light into the specific issue related to this natural scal-

ing, to be referred to as symmetry breaking, namely:

Is the uniqueness of solutions to NSE tied to the unique-
ness of self-similar solutions?

If the solutions to (1.4) are unique, yet the solutions to

(1.1) are not, then we have a manifestation of symmetry

breaking in NSE, signaling that a possible lack of well-

posedness could be the result of a mechanism that magnifies/

creates deviations from natural scaling present in the initial

data. On the other hand, if the uniqueness for (1.4) is closely

tied to the uniqueness in (1.1), then the well-posedness prob-

lem is essentially connected to the natural symmetries of

Navier-Stokes equations. Thus, the notions of scaling invari-

ance and self-similarity, considered from the perspective of

symmetry breaking, provide the central focus of the present

paper.

We consider this issue in the framework of Le Jan-

Sznitman stochastic multiplicative cascades, developed in

Ref. 21, combined with the idea of majorizing kernels, intro-

duced in Ref. 3, to investigate existence and uniqueness of a

mild solutions to the NSE (see (2.2) below). In this frame-

work, a multiplicative cascade process is associated to the

mild formulation of NSE in Fourier space, and a solution is

recovered form the initial data via an expected value of a

certain recursive product along a generated tree. The space

of initial data allowed is in part governed by the choice of

the majorizing kernel (see Sec. II for details).

In order to guarantee finiteness of the tree, a thinning
procedure is usually employed. The thinning, which involves

a chance of artificially terminating a branch, is guaranteed to

generate a finite cascade, producing a unique mild solution

to NSE, but at an expense of shrinking the smallness condi-

tion on the initial data.

In contrast to the classical Le Jan-Sznitman approach,

we will not employ a thinning procedure to terminate the

cascade (see Sec. II). Elimination of thinning is a step

towards accommodating wider families of initial data by

relaxing, and eventually removing the aforementioned small-

ness condition. However, in the absence of thinning, one has

to deal with a possibility of the formation of infinite cascade

trees in finite time—the phenomenon called explosion, and

our main object of study.

In particular, we will not be concerned with the issue of

existence of mild solutions built with such procedure (the

solution is guaranteed to exist as long as the cascade is non-

exploding and the associated expected values are finite—see

Sec. II). Also, we will not study regularity properties of such

solutions (a difficult question, especially for more general

spaces of initial data). Instead, our goal is to show that the

explosion phenomenon in such cascades can be used as a

surrogate for uniqueness for the solutions of the NSE in a

certain functional class, allowing us to classify the associated

uniqueness problems by the corresponding explosion time

random variables.

Specifically, we use this approach to study two families

of NSE initial data: one governed by the Bessel majorizing

kernel (2.6) (in which case we are able prove the non-explo-

sion), as well as the dilogarithmic kernel (2.5) (which allows

for a much wider space of initial data, but with a more

nuanced explosion problem).

We also adapt this approach to the study of scaling-

invariant solutions (see Sec. III). This forces a very different

choice of the scaling parameter r (see (3.1)) than the one in

(1.3), partly because the problem is posed in the Fourier set-

ting. Nevertheless, we show that the self-similar mild formu-

lation we use—(3.2), and the Leray equation (1.4) are in fact

equivalent (Proposition 3.4). Moreover, although the result-

ing cascade is quite different from the general NSE case

described in Sec. II, the dilogarithmic density appears natu-

rally in the context of scaling-invariance (see (3.2)).

The explosion problems themselves are defined in terms

of the explosion time random variables in both non-

symmetric and scaling-invariant cases (see Definitions 2.1

and 3.1)—critical (with respect to the scaling) quantities.

Using the Le Jan-Sznitman martingale argument, we show

that in the case of general NSE, the non-explosion of the

associated multiplicative cascade provides a scaling-critical
sufficient condition for uniqueness—see Proposition 2.1 and

Remark 2.2.

A natural question is to compare the case of dilogarith-

mic majorizing kernel in general, non-symmetric setting to

the scaling-invariant case. While we were unable to fully

resolve the associated explosion problems, the main conclu-

sion of this analysis—see Theorem 3.1—is that at the level

of cascades, one has:

The explosion problem is the same in both self-similar and
general case (in dilogarithmic settings)

This result provides evidence for a lack of symmetry

breaking in the Navier-Stokes problem.

The rest of the paper is organized as follows.

In Sec. II, we will use the Le Jan-Sznitman cascade

without thinning, together with the idea of majorizing ker-

nels, to formulate an explosion problem (Definition 2.1)

closely connected to the issue of uniqueness of solutions to

the mild NSE formulation (2.2)—see Proposition 2.1. Two

particular kernels are considered (see (2.6) and (2.5)). In the

case of Bessel kernel, hb, we can prove the non-explosion

(see Theorem 5.1 in the Appendix). In the case of less re-

strictive dilogarithmic kernel, hd, we prove that the explosion

is related to the uniqueness property of a certain solution to a

non-linear PDE (see Proposition 2.2).

In Sec. III, an analogous procedure will be employed to

arrive to an explosion problem in the self-similar case

(Definition 3.1). In particular, we relate the solutions

obtained with this method to the solutions of the above-

mentioned Leray equation (Proposition 3.4), and prove

(Theorem 3.2) that the explosion itself is a zero-one event

(i.e., it is essentially deterministic). We also show in

Theorem 3.1 that this explosion event has the same distribu-

tion as the explosion in the dilogarithmic case described in

Sec. II—the evidence towards similarity between the two

uniqueness problems.

Section IV is devoted to comparison of the general

and self-similar cases from the point of view of the sym-

metry breaking question, and discusses some open

problems.
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Finally, the Appendix containing the proofs of the tech-

nical results related to the Bessel and dilogarithmic random

walks, which appear in the functional settings adopted in

Sec. II. It is worth noting here that dilogarithmic random
walk (which arises naturally in the context of this paper)

appears to be a new multiplicative stochastic process that

may be of broader interest, e.g., see Refs. 19, 22, and 23 for

other occurrences of the dilogarithmic distribution in

physics.

II. NAVIER-STOKES CASCADES AND AN EXPLOSION
PROBLEM

Next, we will describe the mathematical framework we

use to analyze the existence and uniqueness problem for the

Navier-Stokes equations more precisely, by specifying the

meaning of “solution.” Due to lack of existence results for

smooth (classical) solutions, the notion of solution in the

weak sense is frequently used, where derivatives are in the

distributional sense, as this allows one to search among func-

tions u that are locally square-integrable in space. Namely, a

divergence-free vector field uðtÞ is called a weak solution if

for all v : R3 ! R3—smooth, divergence-free functions

with compact support

huðtÞ; vi � huð0Þ; vi

¼
ðt
0

ð �huðsÞ;Dvi þ huðsÞ; ðuðsÞ � rÞ vi Þ ds;

under the implicit assumptions on u that make the integrals

above valid. Here, hu; vi ¼
Ð

R3 u � �v dx is the (complex) L2

inner product. This definition was introduced by Leray to

provide a mathematical framework that would accommodate

the possibility that velocities may not be smooth at some

“small set” of points where “turbulence” is present. Indeed,

Leray’s approach is proven to produce solutions that are

smooth except possibly a singular set of one-dimensional

Hausdorff measure zero (see Ref. 8).

Taking Fourier transform in x in the equation above, we

notice that

hûðtÞ; v̂i � hûð0Þ; v̂i

¼
ðt
0

ð��hjnj2ûðsÞ; v̂i þ hûðsÞ;F½ðuðsÞ � rÞv�iÞ ds;

where ŵðnÞ ¼ F½w�ðnÞ ¼ ð2pÞ�3=2Ð
R3 wðxÞ e�ix�ndn is the

Fourier transform of w.

Using the reality condition ûð�nÞ ¼ ûðnÞ, the last term

can be written as

hû sð Þ;F u sð Þ � rð Þv½ �i ¼ 1

2pð Þ3=2
hû sð Þ; ûk sð Þ � inkv̂ð Þi

¼ �i

2pð Þ3=2
hnkûk sð Þ � û sð Þ; v̂i;

where v � wðnÞ ¼
Ð

R3vðn� gÞwðgÞ dg is the convolution of

functions v and w. Moreover, to incorporate divergence-free

property in the first term of the inner product above, we can

write

�i

2pð Þ3=2
nkûk sð Þ � û sð Þ; v

* +

¼ jnj
2pð Þ3=2

ð
R3

û g; sð Þ	nû n� g; sð Þ dg; v

* +
;

with

v̂ðg1Þ	nŵðg2Þ ¼ �iðen � ŵðg2ÞÞpn? v̂ðg1Þ; (2.1)

where en ¼ n=jnj and pn?v ¼ v� ðen � vÞen is the projection

of v onto the plane orthogonal to n.

Since jnj
Ð

R3 ûðg; sÞ	nûðn� g; sÞ dg is divergence-free,

we conclude that weak solutions satisfy

û tð Þ � û 0ð Þ ¼a:e:
ðt
0

��jnj2û sð Þ þ
jnj

2pð Þ3=2

 



ð

R3

û g; sð Þ	nû n� g; sð Þ dg

!
ds;

which leads to the following mild formulation of the Navier-

Stokes equations:

û n; tð Þ ¼ û n; 0ð Þe��jnj
2t þ

ðt
0

e��jnj
2s jnj

2pð Þ3=2



ð

R3

û g; t� sð Þ	nû n� g; t� sð Þ dg ds: (2.2)

We note that weak solutions automatically satisfy the

above mild formulation, and the solutions to (2.2) are weak

solutions provided they are (uniformly locally) square inte-

grable in both space and time variables.24

The stochastic cascade framework in Fourier space

was introduced in Ref. 21 for the analysis of (2.2). The

basic ingredients of the recursively defined stochastic

object (cascade) associated with the problem (2.2) con-

sists of (i) a continuous time binary branching Markov

process in three-dimensional Fourier wavenumber space

and (ii) an algebraic operation 	n defined in (2.1). The

stochastic process is initiated with a Fourier mode

0 6¼ n 2 R3, where it holds for an exponentially distrib-

uted length of time Tn with intensity �jnj2. Upon expira-

tion of time Tn, the particle either dies or splits into a

pair of frequencies (modes) ðW1;W2Þ 2 R3 
R3. The

random events of either dying or splitting occur with

equal probabilities and independently of Tn. In the case

of a split, the new frequencies are subject to the local

conservation of frequencies condition

W1 þW2 ¼ n; (2.3)

and distributed according to
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Ef W1;W2ð Þ ¼
ð

R3
f g; n� gð Þ

h gð Þh n� gð Þ
h � h nð Þ dg; (2.4)

where h : R3 n f0g ! ð0;1Þ is a measurable function with

full support for which h � hðnÞ <1 for each n 6¼ 0, intro-

duced in Ref. 3 as a majorizing kernel for (1.1). The two spe-

cial choices given in Ref. 21 involved

hd nð Þ ¼ 1

jnj2
; n 6¼ 0; (2.5)

hbðnÞ ¼ e�jnj=jnj; n 6¼ 0; (2.6)

for which one has the identities

h � hðnÞ ¼ cjnjhðnÞ; (2.7)

with c¼ c1¼p3 if h¼ hd, and c¼ c2¼ 2p if h¼ hb. We will

refer to hb as the Bessel majorizing kernel, and to hd as dilo-
garithmic majoring kernel. The connection with Bessel and

dilogarithmic distributions will be given in Propositions 2.4

and 2.3 (see also Remark 2.6).

We define the conditional densities

Hd g j nð Þ ¼
hd gð Þhd n� gð Þ

hd � hd nð Þ ¼ jnj
p3jn� gj2jgj2

;

Hb g j nð Þ ¼
hb gð Þhb n� gð Þ

hb � hb nð Þ ¼ ejnj

2p
e�jgje�jn�gj

jgjjn� gj :

If the particle dies, the (Fourier transformed) forcing

term, evaluated at its parent mode and appropriately scaled,

is attached to the terminal node. Otherwise, if branching

occurs this rule is repeated from each of the nodes at respec-

tive frequencies W1 and W2. The focus of the present article

is the unforced (g¼ 0) equation (1.1), in which case such a

convention may be viewed as a “thinning” operation, that

may not be necessary so long as there are only finitely many

branches by any finite time t. If thinning is applied, however,

then the associated genealogical tree is that of a critical

binary Galton-Watson process and therefore in fact almost

surely finite, e.g., see Refs. 1 and 2.

To be clear, in the case of no-forcing (g¼ 0) the Le

Jan-Sznitman algorithm results in a thinning of the full

binary tree that may be ignored so long as the branching pro-

cess is non-explosive. This observation will be elaborated

upon as a point of focus in the present paper.

The algebraic operation 	n is applied to a vector-

valued function of the offspring ðW1;W2Þ 2 R3 
R3, pro-

vided by the initial data û0 : R3 ! R3, at each node of the

genealogical tree having parental wavenumber n as defined

by

û0ðg1Þ	nû0ðg2Þ ¼ �iðen � û0ðg2ÞÞpn? û0ðg1Þ; (2.8)

where en ¼ n=jnj and pn?v ¼ v� ðen � vÞen is the projection

of v onto the plane orthogonal to n. Figure 1 shows a geomet-

ric interpretation of (2.8).

This stochastic cascade provides a weak solution to

(1.1) for initial data u0 as an expected value of a cascade

product under the algebraic operation 	n

ûðn; tÞ ¼ jnj�2
EnXðstÞ; (2.9)

where XðstÞ refers to a 	n-product of initial data and forcing

at wave numbers determined by the branching Markov chain

over nodes of the genealogical tree st at time t, provided that
the indicated expectations exist. The latter existence of

expected values is an essential proviso whether the cascade

is thinned or not.

Of course the indicated expected values are to be inter-

preted component-wise when applied to vector quantities. In

addition to the obvious decay required on the magnitude of

the algebraic multiplications for existence of expectation

integrals, the rate of growth of the tree is also a significant

issue. Specifically, we will be interested in the possibility of

an explosion event in which infinitely many branchings occur

within finite time.

The phenomena of “explosion” of Markov processes

and its relationship to uniqueness/non-uniqueness of solu-

tions to the corresponding Kolmogorov equations is well-

known in the theory of stochastic processes; e.g., see Refs. 2,

13, and 29. The essence of explosion is that the stochastic

process may leave the state space in finite but random time f,

and then be instantaneously returned to the state space

according to some arbitrary distribution. Moreover, this

regenerative extension can then be repeated to obtain a

Markov process whose transition probabilities also satisfy

the same Kolmogorov (backward) equations. However, this

is a linear Markov process theory that does not directly apply

to (1.1). Nonetheless, the associated branching process is a

Markov process for which, in the absence of thinning, explo-

sion cannot a priori be ruled out. In this context we consider

the following.

Definition 2.1. The explosion time of the Fourier mode
cascade genealogy originating at n0 is the (possibly infinite)
random variable given by

f ¼ fðn0Þ ¼ lim
n!1

min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj;

where for each n � 1; jsj ¼ n, denotes a genealogical
sequence s ¼ ðs1; :::; snÞ 2 f1; 2gn, and for j � n, sjj ¼
ðs1;…; sjÞ is the restriction of s to the first j generations. The
random variables Ts; s 2 [1n¼1f1; 2g

n, are i.i.d. mean one
exponentially distributed random variables independent of
the Fourier modes Ws; s 2 [1n¼1f1; 2g

n: The event ½f <1�
is referred to as an explosion event.

FIG. 1. Geometric interpretation of û0ðg1Þ	nû0ðg2Þ.
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Define also

fn ¼ min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj;

and note that by monotonicity one has f ¼ limn!1fn:
Various general conditions for explosion/non-explosion

will be given below. A consequences of non-explosion is as

follows.

While the full connection is incomplete, the following

provides some further evidence of a connection between

explosion and the uniqueness problem for (1.1).

Proposition 2.1. If there is no explosion then the sto-
chastic cascade solution provides the unique mild solution to
Navier-Stokes equations whenever the indicated expectations
exist.

Proof. If explosion does not occur then the stochastic

cascade is recursively well-defined and the same martingale

(inductive) arguments of Ref. 21 may be applied. �

Remark 2.1. For the converse case that explosion can
be shown to occur, one may construct the regenerative exten-
sions as mentioned above. However, it is not clear whether
or not this is a pathway to non-uniqueness.

Remark 2.2. Note that if we re-scale NSE according to
scaling (1.2), then the explosion time random variable for
the re-scaled cascade, fr, and f from Definition 2.1 have the
same distribution. Thus, the non-explosion provides a criti-
cal (or scaling invariant) condition for uniqueness of the
Navier-Stokes equations.

From the point of view of the uniqueness of solutions to

associated PDEs, it is interesting to note that the absence of

explosion does correspond to the uniqueness of solutions for

an evolution equation. In order to state this equation we first

define an operator K by

Kðf ÞðxÞ ¼ F�1ðjnjf̂ ðnÞÞðxÞ; (2.10)

where F�1 denotes inverse Fourier transform.

This operator acts to increase the higher frequency

oscillations of f ðxÞ by the same magnitude as differentia-

tion. As this operator is closely related to differentiation, it

is known as a pseudo-differential operator. The evolution

equation associated to the branching process as follows,

which contains this pseudo-differential operator, is as

follows.

Proposition 2.2. Let h¼ hd or h¼ hb and assume that
the pseudo-differential equation

@v

@t
¼ Dvþ cK v2ð Þ

v x; 0ð Þ ¼ F�1 hð Þ xð Þ

8><
>:

with c ¼ p3 or c ¼ 2p, respectively, has a unique mild solu-
tion satisfying jv̂ðn; tÞj � hðnÞ for all t� 0. Then explosion
does not occur, i.e., Pð½f <1�Þ ¼ 0:

Proof. Fix h¼ hd, or h¼ hb and c ¼ p3 or c ¼ 2p,

respectively. Let, Zðn; tÞ denote the number of offspring by

time t� 0 for the Fourier mode cascade genealogy starting at

time t¼ 0 at frequency 0 6¼ n 2 Rk. In particular, after an

exponentially distributed time with parameter jnj2, the parent

particle is replaced by two particles of frequencies g; n� g

where g has probability density

HðgjnÞ ¼ hðn� gÞ=ðch � hðnÞÞ: (2.11)

For k� 1, let

mðn; t; kÞ ¼ PnðZðn; tÞ ¼ kÞ: (2.12)

In particular mðn; t; 1Þ ¼ expð�jnj2tÞ. Explosion does not

occur if and only if PnðZðn; tÞ ¼ 1Þ ¼ 0, or equivalentlyP1
k¼0 mðn; t; kÞ ¼ 1.

Let vðn; t; kÞ ¼ hðnÞmðn; t; kÞ: Then trivially vðn; t; 1Þ
¼ hðnÞ expð�jnj2tÞ. Moreover, conditioning on the time

of the first branching, it follows using (2.7) that for k � 2;
vðn; t; kÞ satisfies the integral equation

vðn; t; kÞ ¼ cjnj
Xk�1

j¼1

ðt

0

ð
R3

vðg; t� s; jÞ

vðn� g; t� s; k � jÞdge�jnj
2sds; vðn; 0; kÞ ¼ 0:

(2.13)

Let v̂ðn; tÞ ¼
P1

k¼1 vðn; t; kÞ: This series converges since

all terms are non-negative and the partial sums are clearly

bounded above by hðnÞ. Note also that

v̂ðn; tÞ ¼ hðnÞ
X1
k¼0

mðn; t; kÞ: (2.14)

Summing (2.13) for k� 2, and adding the missing term

vðn; t; 1Þ one finds that v̂ satisfies

v̂ðn; tÞ ¼ hðnÞ expð�jnj2tÞ þ cjnj
ðt

0

ð
R3

v̂ðg; t� sÞ


 v̂ðn� g; t� sÞdge�jnj
2sds: (2.15)

It follows that vðx; tÞ; the inverse Fourier transform of

v̂ðn; tÞ; satisfies the following reaction-diffusion equation of

Ref. 27

@v

@t
x; tð Þ ¼ Dv x; tð Þ þ cK v2ð Þ x; tð Þ; (2.16)

with initial data vðx; 0Þ ¼ F�1ðhÞðxÞ.
One may easily check that with �h ¼ F�1ðhÞ

D�h þ cKð�hÞ2ðxÞ ¼ 0: (2.17)

By hypothesis, vðx; tÞ ¼ �hðxÞ and thus, using (2.14),

Pnðf > tÞ ¼ PnðZðn; tÞ <1Þ ¼
X1
k¼1

mðn; t; kÞ ¼ 1; 8n; t:

(2.18)

Remark 2.3. Note that since hd and hb are radially
symmetric, the cascade, hence mðn; t; kÞ and mðn; tÞ
�
P1

k¼0 mðn; t; kÞ are also radially symmetric. In particular,
it follows that with H defined by (2.11)

075402-6 Dascaliuc et al. Chaos 25, 075402 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.193.162.224 On: Wed, 02 Sep 2015 16:35:51



mðjnj; tÞ ¼ expð�jnj2tÞ þ jnj2
ðt

0

ð
R3

mðjgj; t� sÞ


 mðjn� gj; t� sÞHðgjnÞ dge�jnj
2s ds: (2.19)

Remark 2.4. In 2007, Chris Orum has announced the
equation of Proposition 2.2, and its role in the explosion
problem in a session of the 32nd Conference on Stochastic
Processes and their Applications, Champaign-Urbana.
However, the uniqueness/explosion problems remain
unsolved for general majorizing kernels h as initial data.

We conclude this section with a small further elabora-

tion on the probabilistic significance of the two kernels hd,

hb. Additional features are discussed in the Appendix.

Let

a nð Þ ¼ h nð Þjnj2

h � h nð Þ : (2.20)

Then, for either kernel h¼ hd or h¼ hb, one has that

aiðnÞ ¼ c�1jnj, i¼ 1, 2 (2.20) with c ¼ p3 or c ¼ 2p, respec-

tively, defines the same pseudo-differential operator given

by a positive multiple of
ffiffiffiffiffiffiffi
�D
p

. However, the following two

propositions dramatically distinguish the associated branch-

ing Markov chains.

Proposition 2.3. Assume that hðnÞ � hdðnÞ ¼ jnj�2; 0 6¼
n 2 R3: Then for each s 2 f1; 2g1, the sequence
fjWsjjþ1j=jWsjjj : j ¼ 0; 1;…g; Wsj0 ¼ n, is an i.i.d.
sequence under Pn, such that

Pn

jWsjjþ1j
jWsjjj

2 dr

 !
¼ 2p�2ln

1þ r

1� r

����
���� dr

r
; r > 0;

Pn ln
jWsjjþ1j
jWsjjj

2 dt

 !
¼ 2p�2lnjcoth t=2ð Þj dt; t 2 R:

Proof. Part (ii) is an immediate consequence of (i) by a

change of variables formula. As noted above, the distribution

of jWj was computed as (1.22) of Ref. 21. Essentially, the

same calculations apply to the ratios of magnitudes as fol-

lows: For non-negative and integrable g on (0, 1), one has,

since h � hðnÞ ¼ p3=jnj, and using (2.4) that

Eng
jWsj1j
jnj

 !
¼ p�3jnj

ð
R3

g
jgj
jnj

� �
dg

jgj2jn� gj2

¼ p�3

ð
R3

g jvjð Þ dv

jvj2ju� vj2
; u ¼ n

jnj

¼ p�3

ð
R3

g jvjð Þ dv

jvj2 jvj2 � 2 u � vþ 1
� �

¼ p�3

ð1
0

ð
jwj¼1

g rð Þ dw dr

r2 � 2r u � wþ 1

¼ 2p�2

ð1
0

ðp

0

g rð Þ sin / d/ dr

r2 � 2r cos /þ 1

¼ 2p�2

ð1
0

g rð Þln j1þ rj
j1� rj

dr

r
: �

Definition 2.2. The multiplicative random walk
fjWsjjþ1j : j ¼ 0; 1;…g on (0, 1) will be referred to as the
dilogarithmic random walk, or dilog random walk for short.

Proposition 2.4. For arbitrary n 2 R3, let W denote the
random vector in R3 with density

Hb g j nð Þ ¼ ejnj

2p
e�jgje�jn�gj

jgjjn� gj :

Then

P jWj 2 drð Þ ¼

1

jnj e
�2r e2jnj � 1ð Þ for r � jnj

1

jnj 1� e�2rð Þ for 0 � r � jnj:

8>><
>>:

In particular, along any path s, the sequence jW1j ¼
jnj; jWsj1j; jWsj2j;…; is a Markov chain with stationary tran-
sition probability density

p u; vð Þ ¼

1

u
e�2v e2u � 1ð Þ for v � u; u > 0

1

u
1� e�2vð Þ for 0 � v � u; u > 0:

8>><
>>:

Moreover,

EnjW1j ¼
jnj þ 1

2
: (2.21)

Proof. For arbitrary n 2 R3nf0g, let W denote the random

vector in R3 with density

Hb g j nð Þ ¼ ejnj

2p
e�jgje�jn�gj

jgjjn� gj :

Let u ¼ jnj; and use spherical coordinates with q ¼ jgj.
Direct calculations exploiting the cylindrical symmetry of

the distribution give

P jWj> rð Þ¼ eu

2p
2pð Þ
ð1

r

e�qq



ðp

0

expð� q2�2qucos/þu2
� �1=2Þ

q2�2qucos/þu2ð Þ1=2
sin/d/dq;

¼ eu

u
�1ð Þ

ð1
r

e�q e� qþuð Þ �e�jq�ujð Þdq;

¼ eu

u

ð1
r

e�qe�jq�ujdq�e�u

2
e�2r

� 	
:

For r � u; the integral in the last expression is ðeu=2Þe�2r so

that in this case,

P jWj > rð Þ ¼ e�2r

2u
e2u � 1ð Þ :

Similarly, for r� u one obtains that

ðu

r

þ
ð1

u

� 	
e�qe�jq�uj dq ¼ e�u u� r þ 1

2

� �
;
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so that in this case,

P jWj > rð Þ ¼ 1

2u
1� e�2rð Þ þ u� r

u
;

and the result follow by differentiation. �

Remark 2.5. The calculation of the marginal distribu-
tion of jW1j can be found in (Ref. 21, Proposition 2.1) for
h¼ hd. A similar calculation was provided here for ease of
reference. The Markov property follows by exploiting the
construction together with the form of the transition proba-
bilities as functions of the norms; see (Ref. 2, pp. 502–503).

Remark 2.6. Euler’s dilogarithmic function may be
defined by

Li2 rð Þ ¼ �
ðr

0

ln 1� uð Þ du

u
; r < 1: (2.22)

The dilogarithmic function is a special case of polylogarith-
mic functions LisðxÞ whose domain of definition may be
extended to include complex values of both x and s. An exten-
sive literature is available for properties and relationships
between polylogarithmic functions, with connections to
Bose-Einstein and Fermi-Dirac statistics, e.g., see Refs. 19,

22, and 23.

The explosion problem is solved for the Bessel kernel in

the Appendix (Theorem 5.1), but it remains quite illusive for

the dilogarithmic kernel. However, as will be seen in Sec.

III, the dilogarithmic kernel is somewhat singled out by the

self-similarity cascade.

III. SELF-SIMILAR (NAVIER-STOKES) CASCADE AND
ITS ASSOCIATED EXPLOSION PROBLEM

In this section, we obtain a stochastic cascade associated

to the Navier-Stokes equation when self similar solutions are

considered. It should be remarked from the outset that the

kernel Hd occurs naturally in this situation, as a direct conse-

quence of the scaling properties of the solutions of the

Navier-Stokes equations. We present first the mild formula-

tion of the Fourier transform of the Navier-Stokes equations

for self similar solutions. A probabilistic representation for

the solution of the resulting equation is given in terms of

what we call the self similar cascade. We show that impor-

tant statistical properties of this self similar cascade and the

Navier-Stokes cascade obtained using the dilogarithmic

kernel Hd are identical.

As noted in the introduction, the scaling invariance of

the Navier-Stokes equations show that if uðx; tÞ; pðx; tÞ is a

solution then for any r > 0; urðx; tÞ � ruðrx; r2tÞ; prðx; tÞ
¼ r2pðrx; r2tÞ is also a solution of the Navier-Stokes equa-

tions. Assuming the initial data is also scale invariant,

uniqueness would imply the self-similarity property ur ¼ u:
In the Fourier domain, this scale invariance corresponds to,

with v ¼ ur;

v̂ n; tð Þ ¼ 1

r2
û

n

r
; r2t

� �
;

so, with r ¼ jnj;

v̂ n; tð Þ ¼ 1

jnj2
û en; jnj2t

 �

; (3.1)

where en ¼ n=jnj: Thus, since v̂ satisfies (2.2) it follows that

a self similar solution of the Navier-Stokes equations satisfies

û en; jnj2t

 �

Þ ¼ e�tjnj2 û0 enð Þ þ 2pð Þ�3=2
ðt

0

e�jnj
2 t�sð Þjnj3



ð

û eg; jgj2s

 �

	nû en�g; jn� gj2s

 �


 1

jgj2jn� gj2
dgds:

The change of variables g ¼ jnjg0; s0 ¼ jnj2s; and with

k ¼ jnj2t; gives

ûðen; kÞ ¼ e�kû0ðenÞ þ 2pð Þ�3=2
ðk

0

e� k�sð Þ



ð

û eg; jgj2s

 �

	nû een�g; jen � gj2s

 �


 1

jgj2jen � gj2
dgds:

Recall that HdðgjenÞ ¼ ðp3jgj2jen � gj2Þ�1
so one has

ûðen;kÞ¼e�kû0ðenÞþðp=2Þ3=2

ðk

0

e�ðk�sÞ



ð

ûðeg; jgj2sÞ	nûðeen�g; jen�gj2sÞHdðgjenÞdgds:

(3.2)

We refer to the parameter k> 0 as the similarity horizon.

A probabilistic interpretation for (3.2) follows similar

steps as those introduced before. Consider a binary tree

rooted at 1 with vertices indexed by V ¼ [n�1f1; 2gn
—see

Figure 2 for an illustration. Denote by @V ¼ f1; 2gN:
Elements in each of these sets are denoted by s and hsi,
respectively. Let fTs; s 2 Vg be a collection of i.i.d. random

variables with an exponential distribution with parameter 1.

Given a direction es, let ~Ws1 be a random variable with dis-

tribution HdðgjesÞ; set ~Ws2 ¼ es � ~Ws1 and for j ¼ 1; 2;

define the directions esj ¼ ~Wsj=j ~Wsjj: Finally, given a hori-

zon ks; define for j¼ 1, 2 ksj ¼ j ~Wsjj2ðks � TsÞ: On each

hsi 2 @V; the branching process stops at level

Nhsi ¼ inffm � 0 : khsjmi < Thsjmig: (3.3)

Completely analogous to (2.9), the solution of (3.2) is

then given as an expected value of a recursive product

involving the algebraic operation 	en
provided this expecta-

tion is finite. Furthermore, the evaluation of this recursive

product can be done if and only if along any path in the

binary tree, the random variable Nhsi defined in (3.3) is finite.

From the definition of the random variables, one has

khsjni�Thsjni¼ðð:::ðððk1�T1Þj ~Whsj1ij2�Thsj1iÞj ~Whsj2ij2

�Thsj2iÞ:::Þj ~Whsjnij2�ThsjniÞ

¼
Yn

k¼0

j ~Whsjkij2
 !

k1�
Xn

j¼0

Thsjji
1Qj

k¼0 j ~Whsjkij2

 !
:
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where we have used that j ~Whsj0ij2 ¼ 1: Thus, for given k1
and hsi 2 V; the event ½Nhsi ¼ n� equals the event

inf m � 0 :
Xm

j¼0

Thsjji
1Qj

k¼0 j ~Whsjkij2
� k1

( )
¼ n:

This motivates the following definition.

Definition 3.1. For a fixed unit vector e0; the similarity
explosion horizon is the (possibly infinite) random variable

~f e0ð Þ ¼ lim
n!1

inf
jsj¼n

Xn

j¼0

Thsjji
1Qj

k¼0 j ~Whsjjij2
:

The self similar explosion event is defined as Ae0

¼ [m�1½~fðe0Þ < m�, so that PðAe0
Þ is the probability of self

similar explosion.
Note that with

~fn e0ð Þ ¼ inf
jsj¼n

Xn

j¼0

Thsjji
1Qj

k¼0 j ~Whsjjij2

one has, by monotone convergence, that ~fðe0Þ ¼ limn!1
~fnðe0Þ:

While the self-similar cascade construction is quite dis-

tinct from that of the Navier-Stokes cascade, one may note

that for fixed hsi 2 @V; the random variables ~Rj ¼
j ~Whsjjij; j � 1 are i.i.d. with the dilogarithmic distribution

with density

D rð Þ ¼ 2

p2

1

r
ln
j1þ rj
j1� rj

� �
:

Indeed, since the distribution of ~Whsj1i depends only in the

unit vector e0; the proof of Proposition 2.3 shows that ~R1 has

the dilogarithmic distribution. The claim for ~Rj follows by

induction.

In order to relate the explosion problems for the self

similar cascade and the Navier-Stokes cascade, we have the

following result.

Proposition 3.1. For any n� 0, the distribution of ~fn is
independent of the initial direction and

~fn e0ð Þ¼D inf
jsj¼n

Xn

j¼0

Thsjji
1Qj

k¼0

j ~Rjj2
;

where ~R0 ¼ 1; and f ~Rjg1j¼1 is a sequence of i.i.d. random
variables with density DðrÞ:

Proof. Let Q be an orthogonal 3 
 3 matrix and e a unit

vector in R3: Let ~g; g] be random vectors distributed accord-

ing to HdðgjQeÞ and HdðgjeÞ, respectively. It follows easily

that in distribution, ~g and g] are equal and thus independent

of the particular initial direction e used in H. The proof is

completed, since as noted above, DðrÞ is the density of ~Rj. �

As a consequence of Proposition 3.1, the distribution of

the sequence khvjji; j � 1 is also independent of the initial

direction e0:
Moreover, comparing the ~fn above with fn—defined in

the context of Definition 2.1 for the kernel hd—we obtain

our main result connecting the self-similar and dilogarithmic

uniqueness problems.

Theorem 3.1. The events ½fnðjnjÞ > t� for a dilogarith-
mic density and ½~fnðenÞ > tjnj2� have the same distribution
independent on the choice of the initial wavenumber n or ini-
tial direction en, and hence the explosion time f from
Definition 2.1 for the dilogarithmic kernel, and the eventual
explosion f from Definition 3.1 have the same distribution,
independent of the choice of n0 or e0.

Proof. Recall that when the dilogarithmic kernel is used

to determine the distribution of the branching frequencies, it

follows that for any hsi 2 @V

Rk ¼
jWhsjkij
jWhsjk�1ij

; k � 1

is a sequence of iid random variables with density DðrÞ.
Now, with Wsj0 ¼ n; one has

fnðjnjÞ ¼ inf
jsj¼n

Xn

j¼0

jWsjjj�2Tsjj

¼ 1

jnj2
inf
jsj¼n

Tsj0 þ
Xn

j¼1

Yj

k¼1

jWsjk�1j2

jWsjkj2
Tsjj

¼D 1

jnj2
inf
jsj¼n

Xn

j¼0

Tsjj
1Qj

k¼0

jRkj2
;

where R0¼ 1. Thus, the we obtain the equality, in distribu-

tion, of the events ½fnðjnjÞ > t� and ½~fnðenÞ > tjnj2� �

In analogy with Proposition 2.10, one has the following:

Proposition 3.2. Let

Zðk0Þ ¼ 1þ
X1
n¼0

X
jvj¼n

1½Tv < kv�:

FIG. 2. Self-similar cascade with explosion cartoon.

075402-9 Dascaliuc et al. Chaos 25, 075402 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.193.162.224 On: Wed, 02 Sep 2015 16:35:51



Define ~mðk; kÞ ¼ PðZðkÞ ¼ kÞ: Let ~mðkÞ ¼
P1

k¼1 ~mðk; kÞ.
Then,

~mðkÞ ¼ e�k þ
ðk

0

e�ðk�sÞ
ðp

0

ð1
0

~mðr2sÞ


 ~mðð1� 2r cos hþ r2ÞsÞ ~Hðh; rÞ drdhds: (3.4)

Moreover, if ~mðkÞ ¼ 1 is the unique non-negative solution
then there is no similarity explosion.

Proof. Note that Zðk0Þ represents the number of

branches of the self-similar branching process started with

horizon k0. Recall that from the definitions of ks, Z is inde-

pendent of the initial direction. Each time the indicator

does not vanish, a branching occurs increasing the number

of branches by 1. The extra term is to count the initial

branch.

For k� 2, condition on the time of the first branching to

get

~mðk; kÞ ¼
Xk�1

j¼1

ðk

0

e�ðk�sÞ
ð

~mðjgj2s; jÞ


 ~mðje0 � gj2s; k � jÞHdðgje0Þ dgds; (3.5)

where e0 is arbitrary.

Let ~Hðh; rÞ denote the average of Hd with respect to the

angle /;

~H h; rð Þ ¼ 2

p2

sin h
1� 2r cos hþ r2

:

Then, the independence of the above equation with respect

to the direction e0 is better illustrated in the following:

~mðk; kÞ ¼
Xk�1

j¼1

ðk

0

e�ðk�sÞ
ðp

0

ð1
0

~mðr2s; jÞ


 ~mðð1� 2r cos hþ r2Þs; k � jÞ ~Hðh; rÞ drdhds:

Summing on k the previous equation and adding the term

corresponding to k¼ 1, one has (3.4). It is clear that ~m � 1 is

a solution of this equation, so non explosion is equivalent to

showing that this is the only non negative solution that is

bounded by 1. �

While we can not prove that ~m � 1 is the only solution

of (3.4), we note that the behavior at infinity can be used to

determined if ~mðkÞ < 1 on a set of positive measure. In fact,

if for some � > 0, ~mðkÞ � ð1� �Þ on a set E of positive mea-

sure, then ~m is bounded by a decreasing function. Indeed, for

any k > 0; 0 � ~mðkÞ � 1; and from (3.4) one has

~mðkÞ � e�k þ
ðk

0

e�ðk�sÞ
ð1

0

~mðr2sÞDðrÞ dr

< e�k þ
ðk

0

e�s ds� �
ðk

0

e�s

ð
E

DðrÞ drds

¼ 1� �lðEÞð1� e�kÞ

where lðEÞ ¼
Ð

EDðrÞ dr:

We are now ready to establish one of the main results of

the paper. Define the finite horizon probability of explosion

in a similar way as that of self similar explosion. To be pre-

cise, let

~AðkÞ ¼ \n�1½~fn � k�:

Then, ~mðkÞ ¼ 1�Pð ~AðkÞÞ; and thus

lim sup
k!1

~mðkÞ ¼ a < 1() Pð ~AðkÞÞ > 0:

We then have the following;

Theorem 3.2. The self similar explosion event is a 0, 1
event and independent of the initial direction.

Proof. Note that since Pð ~AðkÞÞ is an increasing function

of k, ~mðkÞ is decreasing. Let 0 � a � 1 be defined by

limk!1 ~mðkÞ ¼ a: Using dominated convergence, one can

take limit as k!1 in (3.4) to get a ¼ a2; so a¼ 0 or 1.

The proof is completed, since PðAe0
Þ ¼ 1� a independent

of e0: �

An important consequence of this result is the following

corollary.

Corollary 3.1. For any n 6¼ 0; the explosion event for
the Navier-Stokes cascades defined in terms of the dilogar-
ithmic kernel Hd is a 0, 1 event.

Proof. The corollary follows from the equality, in distri-

bution, of the events ½fnðjnjÞ > t� and ½~fnðenÞ > tjnj2� (See

Theorem 3.1). �

Similarly, the integral equations (2.19) and (3.4) can be

shown to be equivalent in the case the Navier-Stokes cascade

is defined using the dilogarithmic distribution.

Proposition 3.3. Let mðjnj; tÞ be the solution of the inte-
gral equation

mðjnj; tÞ ¼ e�jnj
2t þ jnj2

ðt

0

e�jnj
2ðt�sÞ

ð
R3

mðjgj; sÞ


 mðjn� gj; sÞHdðgjnÞ dgds: (3.6)

Then

~mðkÞ ¼ mðjnj; k=jnj2Þ (3.7)

is a solution of (3.4) Conversely, given a solution ~mðkÞ of
(3.4), Eq. (3.7) defines a solution of (3.6).

Proof. Introduce new variables g ¼ jnjg0; s0 ¼ jnj2s; and

recall that HdðgjnÞ dg ¼ Hdðg0jenÞ dg0. Then changing varia-

bles in (3.6), and with k ¼ jnj2t; one has

mðjnj; k=jnj2Þ ¼ e�k þ
ðk

0

e�ðk�s0Þ
ð

R3
mðjnjjg0j; s0=jnj2Þ


 mðjnjjen � g0j; s0=jnj2ÞHdðg0jenÞ dg0ds0:

With ~mðkÞ as defined in (3.7), one has, dropping primes,

~mðkÞ¼ e�kþ
ðk

0

eðk�sÞ
ð

R3

~mðsjgj2Þ ~mðsjen�gj2ÞHdðgjenÞdgds:
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The proof is completed by noting that (3.4) is obtained from

this equation by integrating the angular variables and, to

obtain the converse, reversing the steps. �

A. Self Similar cascades and Leray equation

In this subsection, we show that the self similar stochas-

tic cascade can be obtained directly from the Leray forward

equations (1.4).

Proposition 3.4. Let UðXÞ be a solution of the Leray
equation (1.4), Û denote its Fourier transform. Then, with en

a unit vector in R3 and k> 0,

uðen; kÞ ¼ kÛð
ffiffiffi
k
p

enÞ;

satisfies (3.2). In particular uðen; 0Þ ¼ û0ðenÞ.
Proof. Recall that the forward Leray equations are

obtained assuming a solution of the Navier-Stokes equations

of the form

u x; tð Þ ¼
1ffiffi

t
p U x=

ffiffi
t
p� �

;

and are given by

�DU� 1

2
U� 1

2
X � rð ÞUþ U � rð ÞU ¼ �rP; r � U ¼ 0:

(3.8)

Taking Fourier transform and projecting on divergence

free vector fields, one gets

1þ jnj2
� �

Û þ 1

2
n � rð ÞÛ þ 2pð Þ�3=2jnj



ð

R3
Û n� gð Þ	nÛ gð Þ dg ¼ 0:

Let en ¼ n=jnj and define Vðen; rÞ ¼ ÛðrenÞ: Since

n � rÛ ¼ r
dV

dr
;

one has, with some abuse of notation

1þ r2ð ÞVþ 1

2
r

dV

dr
þ 2pð Þ�3=2

r

ð
R3

Û n� gð Þ	nÛ gð Þ dg ¼ 0:

Multiplying the equation by 2rer2

; one obtains

d

dr
r2er2

V
� �

¼ � 2pð Þ�3=2
2r2er2

ð
R3

Û n� gð Þ	nÛ gð Þ dg:

Let ~Vðe; rÞ ¼ r2Vðe; rÞ: Then

d

dr
er2 ~V
� �

¼ � 2pð Þ�3=2
2rer2

ð
R3

~V ere�g; jre� gj
� �


	n
~V eg; jgj
� � r

jre� gj2jgj2
dg: (3.9)

Note that one factor of r is used to get, up to a constant,

HdðgjreÞ:
One may easily check that

lim
r!0

~Vðe; rÞ ¼ û0ðeÞ:

Indeed, since ûðt; nÞ ¼ tÛð
ffiffi
t
p

nÞ, for n ¼ en we have

û0ðenÞ ¼ lim
t!0

ûðt; enÞ ¼ lim
t!0

t Ûð
ffiffi
t
p
; nÞ ¼ lim

t!0
tVðen;

ffiffi
t
p
Þ

¼ lim
t!0

~Vðen;
ffiffi
t
p
Þ:

Integrating Eq. (3.9), and accounting for the constant to

get Hd, we obtain

er2 ~Vðe; rÞ ¼ û0ðeÞ � ðp=2Þ3=2

ðr

0

2ses2

ð
R3

~Vðese�g; jse� gjÞ


 	n
~Vðeg; jgjÞHdðgjseÞ dg ds:

With the change of variables g ¼ sg0; and noting that ese�g ¼
ee�g0 and that HdðgjseÞ dg ¼ Hdðg0jeÞ dg0; we have, dropping

primes

er2 ~Vðe; rÞ ¼ û0ðeÞ � ðp=2Þ3=2

ðr

0

2ses2

ð
R3

~Vðee�g; sje� gjÞ


 	n
~Vðeg; sjgjÞHdðgjeÞ dg ds:

Let t¼ s2 to get

~Vðe;rÞ¼e�r2

û0ðeÞ�ðp=2Þ3=2

ðr2

0

e�ðr
2�tÞ



ð

R3

~Vðee�g;
ffiffi
t
p
je�gjÞ	n

~Vðeg;
ffiffi
t
p
jgjÞHdðgjeÞdgdt:

The proof is completed setting k ¼ r2 and defining

uðe; r2Þ ¼ ~Vðe; rÞ. �

Remark 3.1. As an aside, one may note that the choice
of the scaling parameter r is completely arbitrary.
Corresponding to the choices r ¼ 1=

ffiffi
t
p

made by Leray, and,
say, r ¼ 1=jxj, respectively, let u1ðx; tÞ ¼ ð1=

ffiffi
t
p
ÞUðx=

ffiffi
t
p
Þ;

and u2ðx; tÞ ¼ ð1=jxjÞVðx=jxj; t=jxj2Þ Let us note that U and
V can be related by an application of the Kelvin transform
T 1 with respect to the unit sphere in R3: To see this, recall
that T a½uðyÞ� � ða=jyjÞuðða2=jyj2ÞyÞ; defines the Kelvin
transform of u with respects to the sphere of radius a. Now,
letting X ¼ x=

ffiffi
t
p

one has

T 1 1=
ffiffi
t
p� �

U Xð Þ
� 


¼ 1ffiffi
t
p
jXj

U X=jXj2
� �

¼ 1

jxjU x
ffiffi
t
p
=jxj2

� �
¼ 1

jxj
~U x=jxj;

ffiffi
t
p
=jxj

� �
� 1

jxjV x=jxj; t=jxj2
� �

:

IV. CONCLUSIONS AND FURTHER DIRECTIONS

The primary goal of this article was to precisely formu-

late a notion of symmetry breaking for the three-dimensional

incompressible Navier-Stokes equations, and to provide an

approach to the resulting symmetry breaking vs or not di-

chotomy. The notion that is introduced builds on a variant of

classic scaling and self-similarity ideas of Leray.25 Namely,
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symmetry breaking is defined as a phenomenon in which one

has uniqueness of self-similar solutions, but non-uniqueness

of general solutions. The approach is derived from a stochas-

tic cascade representation (NSC) of the Navier-Stokes equa-

tions introduced by Le Jan an Sznitman,21 together with a

corresponding development of a cascade representation

(SSC) of (mild) self-similar solutions. The essence of the

approach is to exploit a notion of branching process explo-

sion as a surrogate to non-uniqueness. A branching random

walk cascade, namely, the binary branching dilogarithmic

random walk on (0, 1) viewed as a multiplicative group, is

obtained as a common element of both representations for

comparison. A principle result was the equivalence of the

explosion phenomena for (NSC) and (SSC). In addition, it is

shown that the explosion criteria are critical in the sense of

scaling, and a zero-one law is established for the explosion

event.

It remains to firm up the precise connection between

explosion and non-uniqueness. A related semilinear pseudo-

differential equation of Proposition 2.2 and an integral equation

of Proposition 3.2 can be associated with the branching num-

bers in such a way that uniqueness of solutions to either in an

appropriate space is shown to be equivalent to non-explosion.

In fact, although not obvious, as shown by Proposition 3.3, the

two equations are equivalent. However, the yet unproven con-

nection between explosion criteria and uniqueness is expected

to be that non-explosion corresponds to the uniqueness of mild

solutions represented by (NSC) and (SSC), respectively.

Proving this in appropriate function spaces is a substantial chal-

lenge to the overall approach. Assuming that this will be

achievable, the surrogate results will prove that the equations

are in fact not symmetry breaking.

ACKNOWLEDGMENTS

This work was partially supported by Grant Nos. DMS-

1408947, DMS-1408939, and DMS-1211413 from the

National Science Foundation.

APPENDIX: BESSEL AND DILOGARITHMIC MARKOV
CHAINS AND EXPLOSION

This Appendix records some general approaches to the

explosion problem that may eventually prove useful as we

learn more about the dilogarithmic branching random walk.

In fact, we are able to demonstrate their effectiveness when

applied to the simpler case of the Bessel kernel, which we

show to be non-explosive. At a heuristic level, it is the mean

reverting property (2.21) that makes the Bessel kernel sim-

pler to analyze.

The first approach to explosion exploits the monotonic-

ity in the sequence ffng.
Proposition 5.1. Let f be as in Definition 2.1, and

assume that for some k> 0,

2nEjnj
Yn

j¼1

k

kþ jWjj2
! 0; as n!1:

Then Pð½f ¼ 1�Þ ¼ 0:

Proof. To prove non-explosion it suffices to show that

for any B> 0,

Pjnjðfn > B eventuallyÞ ¼ 1;

or equivalently that

Pjnjð½f < B�Þ ¼ Pjnjð \
1

n¼1
½fn < B�Þ � lim

n!1
Pjnjðfn < BÞ ¼ 0;

where we have used the monotonicity of the sequence ffng:
For the latter observe that

Pjnjðfn < BÞ ¼ Pjnj min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj < B

 !

� 2nPjnj
Xn

j¼1

jW1jjj�2T1jj < B

 !

¼ 2nPjnj e
�k
Pn

j¼1

jW1jjj�2T1jj

> e�kB

� �
;

for any k> 0, where 1jj ¼ ð1; 1;…; 1Þ is on the fixed, but

otherwise arbitrary, tree path (1, 1,…). By the Markov

inequality, one has

Pjnjðfn < BÞ � 2nEjnje
�k
Pn

j¼1

jW1jjj�2T1jj

ekB

¼ 2nekBEjnj
Yn

j¼1

k

kþ jW1jjj2
;

which converges to 0 as n!1: �

As an illustration of this methodology, we provide a

proof of Theorem 5.1 below, establishing that the branching

Markov Chain defined using the Bessel kernel hbðnÞ to deter-

mine the distribution of the branching Fourier frequencies

does not explode. The mean reversion property (2.21) pro-

vides some indication as to why one may expect the corre-

sponding branching Markov chain to be non-explosive, as

will be shown is indeed the case. Namely,

Theorem 5.1. The explosion horizon is almost surely in-
finite for the Bessel Markov chain.

For the proof we first note the following more refined

property of the Bessel Markov chain.

Lemma 5.1. Assume that W is a non negative random
variable with probability density

pu wð Þ ¼

1

u
e�2w e2u � 1ð Þ for w � u; u > 0

1

u
1� e�2wð Þ for 0 � w � u; u > 0:

8>><
>>:

where u is an arbitrary positive constant. Then

Eu
k

kþW2
� p

ffiffiffi
k
p

; 8 u; k > 0:

Proof. Use integration by parts to note thatð
k

kþ w2
e�2w dw ¼

ffiffiffi
k
p

arctan w=
ffiffiffi
k
p
 �

e�2w

þ 2
ffiffiffi
k
p ð

arctan w=
ffiffiffi
k
p
 �

e�2w dw:
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One has

Eu
k

kþ w2
¼
ð1

0

k
kþ w2

pu wð Þ dw

¼ 1

u

ðu

0

k
kþ w2

dw� 1

u

ð1
0

k
kþ w2

e�2w dw

þ 1

u

ð1
u

k
kþ w2

e�2 w�uð Þ dw

¼ 1

u

ffiffiffi
k
p

arctan u=
ffiffiffi
k
p
 �

� 1

u
2
ffiffiffi
k
p ð1

0

arctan w=
ffiffiffi
k
p
 �

e�2w dw

� 1

u

ffiffiffi
k
p

arctan u=
ffiffiffi
k
p
 �

þ 1

u
2
ffiffiffi
k
p ð1

u

arctan w=
ffiffiffi
k
p
 �

e�2 w�uð Þ dw

¼ 2
ffiffiffi
k
p

u

ð1
u

arctan w=
ffiffiffi
k
p
 �

e�2 w�uð Þ � e�2wð Þ dw

� 2
ffiffiffi
k
p

u

ðu

0

arctan w=
ffiffiffi
k
p
 �

e�2w dw

� p
ffiffiffi
k
p

u

ð1
u

e�2 w�uð Þ � e�2wð Þ dw

¼ p
ffiffiffi
k
p 1

2u
1� e�2uð Þ:

The result follows by noting that ð1� e�xÞ=x � 1 for any x. �

Proof of Theorem 5.1
Note that successive use of conditional expectations on

F j; the sigma field generated by the branching process up to

the jth branching event, and Lemma 5.1 one has

Ejnj
Yn

j¼1

k

kþ jWjj2
¼Ejnj

Yn�1

j¼1

k

kþ jWjj2
EjWn�1j

k

kþ jWnj2

 !2
4

3
5

� p
ffiffiffi
k
p� �

Ejnj
Yn�1

j¼1

k

kþ jWjj2

2
4

3
5

� ðp
ffiffiffi
k
p
Þn:

The theorem follows applying Proposition 5.1 with

k < 1=ð2pÞ2: �

Use of the monotonicity approach is less transparent for

analysis of the dilogarithmic explosion problem. Another

approach is generally possible that builds on a variant of the

Biggins-Kingman-Hammersley (BKH), e.g., see Refs. 4–7,

computation of the speed of leftmost particle for additive

branching random walks in terms of multiplicative branching

random walk. It is potentially applicable to the dilogarithmic

kernel precisely because for any path s 2 f1; 2g1

jWsjnj ¼ jnj
Yn

j¼1

jWsjjj
jWsjj�1j

; n ¼ 1; 2;…; (A1)

and the ratios are i.i.d. That is, for any path s 2 f1; 2g1, the

sequence fjWsjjj : j ¼ 0; 1;…g is a random walk on the mul-

tiplicative group (0, 1) starting at jWsj0j ¼ jnj. That is, for

the dilogarithmic kernel the branching Markov chain is in

fact a branching random walk on the multiplicative group

(0,1).

First, let us recall the general heuristic underlying

(BKH) speed calculations on the additive group of real num-

bers: Suppose that fSn : n ¼ 0; 1; 2;…g is an additive ran-

dom walk on R with mean zero and starting at zero. Then by

the weak law of large numbers PðSn < ncÞ ! 0 as n!1
for any c< 0. Let mðhÞ ¼ EehS1 and consider the following

large deviation inequality:

mðhÞn ¼ EehSn

� enhcPðSn > ncÞ: (A2)

Thus,

PðSn > ncÞ � exp f�nðhc� lnmðhÞÞg; (A3)

and, in particular,

PðSn > ncÞ � exp �n sup
c<0

ðhc� lnmðhÞÞ
n o

¼ e�nIðcÞ; (A4)

where IðcÞ ¼ supc<0ðhc� lnmðhÞÞ is the Legendre transform

of lnmðhÞ at c. The Cramer-Chernoff theorem provides gen-

eral conditions for which

lim
n!1

lnP Sn > ncð Þ
n

¼ �I cð Þ:

To apply this to the computation of the speed of left-most par-

ticle of a branching random walk one reasons as follows: At

the nth generation, the expected number of particles located to

the left of c< 0 is 2ne�nIðcÞ for large n. Thus, the external

speed is given by c¼ c such that 2ne�nIðcÞ � 1. The (BKH)

theorem confirms this. For the calculations involved here, it is

actually enough to calculate a lower bound on the speed.

This principle translates to the multiplicative group as

follows:

Proposition 5.2. Consider a binary branching random
walk on the multiplicative group (0,1). That is, the nth gen-
eration particle position for the genealogy s ¼ ðs1;…; snÞ 2
f1; 2gn is given by the product

Qn
j¼1 Ysjj, where ðYv�1; Yv�2Þ’s

are i.i.d random vectors with positive components. Then

lim
n!1

min
jsj¼n

Yn

j¼1

Ysjj

 !1=n

¼ ec;

where c is the speed of the additive branching random walk
with displacements lnYv; v 2 [1n¼1f1; 2g

n
.

Proof. Simply write
Qn

j¼1 Ysjj ¼ exp f
Pn

j¼1 lnYsjjg. Then

lim
n!1

min
jsj¼n

Yn

j¼1

Ysjj

 !1=n

¼ exp lim
n!1

min
jsj¼n

Pn
j¼1

lnYsjj

n

8><
>:

9>=
>;:

The assertion follows from the (BKH) theory since the expo-

nential function is a continuous bijection. �

This now provides the following approach to proving non-

explosion by exploiting the theory of the speed of extremal

(leftmost) particles in branching random walks. Namely,
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Proposition 5.3. For s 2 [1n¼1f1; 2g
n; let {Ts} be i.i.d.

mean one exponentially distributed random variables inde-
pendent of random variables in R3; and independent of
fWsg: Assume that

lim inf
n!1

min
jsj¼n

Yn

j¼1

jWsjjj�1

 !1=n

> 0: (A5)

Then Pð½f ¼ 1�Þ ¼ 0:
Proof. In view of the Borel-Cantelli lemma one has that

X1
n¼1

Pn min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj � M

 !
<1;

for each M > 0 (A6)

is a sufficient condition for explosion to be a null event.

Observe that for arbitrary M, k> 0,

Pn min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj � M

 !

¼ P e

�k min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj
� e�kM

0
@

1
A

� ekMEe

�k min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj
: (A7)

Also, since the mean of squares is larger than the square of

the mean, and since the arithmetic mean is larger than the

geometric mean, one has

min
jsj¼n

Xn

j¼1

jWsjjj�2Tsjj

¼min
jsj¼n

Xn

j¼1

jWsjjj�1
ffiffiffiffiffiffiffi
Tsjj

p
Þ2�nmin

jsj¼n

1

n

Xn

j¼1

jWsjjj�1
ffiffiffiffiffiffiffi
Tsjj

p !2
0
@

�nmin
jsj¼n

Yn

j¼1

jWsjjj�1 ffiffiffiffiffiffiffi
Tsjj

p !2=n

: (A8)

So the problem is reduced to showing that

lim inf
n!1

min
jsj¼n

Yn

j¼1

jWsjjj�1
ffiffiffiffiffiffiffi
Tsjj

p !1=n

> 0: (A9)

The indicated (positive) lower bound is possibly infinite. Since

min
jsj¼n

Yn

j¼1

jWsjjj�1 ffiffiffiffiffiffiffi
Tsjj

p !

� min
jsj¼n

Yn

j¼1

jWsjjj�1

 !
min
jsj¼n

Yn

j¼1

ffiffiffiffiffiffiffi
Tsjj

p !
;

the two multiplicative factors can be treated separately.

Moreover, the factor of n may in (A8) may be included in

either of these factors. The next calculation shows that it is

most effectively assigned to the first factor.

Namely, let c1 be the speed for
Qn

j¼1

ffiffiffiffiffiffiffi
Tsjj

p
. Then, c1 is

directly computable from the above variant Proposition 5.2

on (BKH). However, it is sufficient to bound c1 away from

zero. Accordingly one has the following simple estimate.

For M> 0 and u> 0, one has

X1
n¼1

P min
jsj¼n

Yn

j¼1

ffiffiffiffiffiffiffi
Tsjj

p
< M

 !
�
X1
n¼1

2nP
Yn

j¼1

ffiffiffiffiffiffiffi
T1jj

p
< M

 !

¼
X1
n¼1

2nP
1

2n

Xn

j¼1

ln T1jj
� �

< lnM

 !

¼
X1
n¼1

2nP e
�u

2

Pn

j¼1

ln T1jjð Þ
> e�unlnM

� �

�
X1
n¼1

en ln2þulnMþlnC 1�u
2ð Þð Þ: ðA10Þ

This series converges for Cð1� u
2
Þ < 1

2
M�u. Thus, taking

u¼ 1, the series converges for any M < 1
2
ffiffi
p
p : It now follows

from the Borel-Cantelli lemma that

c1 >
1

2
ffiffiffi
p
p > 0:

Regardless of the approach taken, the resolution of the

explosion problem clearly involves a thorough understanding

of the dilogarithmic branching random walk and its properties.

We conclude this Appendix with a few properties that may

prove useful to this end and, at least, provide some insight into

the technical nature of the problem in a future analysis.

To the best of our knowledge, the dilogarithmic random

walk is introduced in the present article for the first time.

However, an extensive treatment of the dilogarithm function,

its properties and a selection of other applications in both

physics and mathematics, is available in Ref. 19.

For the purposes of this article, let us note the invariance

(multiplicative group symmetry about the identity) of the

distribution of the ratios, one has

Pn

jWsjjþ1j
jWsjjj

� r

 !

¼
2p�2 Li2 rð Þ � Li2 �rð Þ½ � if 0 < r < 1

1� 2p�2 Li2

1

r

� �
� Li2 �

1

r

� �� 	
; if r > 1:

8><
>:

(A11)

On the other hand, it is a rather direct calculation to

check that

Proposition 5.4.

En

jWsj1j
jWsj0j

¼ 1; 8 0 6¼ n 2 R3;

Enln
jWsj1j
jWsj0j

¼ 0; 8 0 6¼ n 2 R3;

En ln
jWsj1j
jWsj0j

 !m

<1; 8m � 1; 0 6¼ n 2 R3:
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In particular, lnjWsjnj ¼ lnjnj þ
Pn

j¼1 ln
jWsjjj
jWsjj�1j ; n ¼ 1; 2;…;

is a martingale.
As a consequence one has the following

Corollary 5.1. The dilogarithmic random walk is 1-
neighborhood recurrent in the sense that for fixed but arbi-
trary s 2 f1; 2g1; for each d> 1

PðjWsjnj < 1þ d i:o:Þ ¼ 1:

In particular, the path-wise explosion times are a.s. infinite
for each path s.

Proof. By the Chung-Fuchs theorem it follows that

lnjWsjnj is 0-neighborhood recurrent. That is, given � > 0

PðjlnjWsjnj < � i:o:Þ ¼ Pðe�� < jWsjnj < e� i:o:Þ ¼ 1:

The assertion follows by taking � ¼ lnð1þ dÞ: �

Corollary 5.2.

E
a2R2

a2R2 þ h
¼ 2

p
arctan

affiffiffi
h
p
� �

; h > 0; a 2 R:

Proof. Define, gðxÞ ¼ E R2

R2þx2 : Justify differentiation under

the integral to get, with c ¼ 2=p2

g0 xð Þ¼cx

ð1
0

�2r

r2þx2ð Þ2
ln

1þr

1�r

����
����dr

¼cx

ð1
0

d

dr
r2þx2ð Þ�1


 �
ln

1þr

1�r

����
����dr

¼cx lim
�!0þ

ð1��

0

þ lim
M!1

ðM

1þ�

" #
d

dr
ððr2þx2Þ�1Þln 1þr

1�r

����
����dr

¼cx lim
�!0þ

1

1��ð Þ2þx2
ln

2��
�

� �
� 1

1þ�ð Þ2þx2

 


 ln
2þ�
�

� ��
�cx lim

�!0þ

ð1��

0

1

r2þx2

1

1þr
þ 1

1�r

� �
dr

 

þ lim
�!0þ

lim
M!1

ðM

1þ�

1

r2þx2

1

1þr
� 1

r�1

� �
drÞ

¼�c
2

1þx2
lim
�!0þ

arctan r=xð Þþ x=2ð Þ ln
1þr

1�r

� �� �����
r¼1��

r¼0

 

�c
2

1þx2
lim
�!0þ

lim
M!1


 arctan r=xð Þþ x=2ð Þ ln
1þr

r�1

� �� �����
M

r¼1þ�

 

¼ �c
2

1þ x2

p
2
¼ � 2

p
1

1þ x2
: (A12)

Note that g(1)¼ 1/2. Indeed, one has

ð1

0

1

1þ r2
ln

r þ 1

r � 1

����
���� dr

r
¼
ð1

1

r2

1þ r2
ln

r þ 1

r � 1

����
���� dr

r
:

Thus, with c ¼ 2=p2

g 1ð Þ ¼ c

ð1

0

1

1þ r2
ln

r þ 1

r � 1

����
���� dr

r
þ c

ð1
1

1

1þ r2
ln

r þ 1

r � 1

����
���� dr

r

¼ c

ð1
1

r2

1þ r2
ln

r þ 1

r � 1

����
���� dr

r
þ c

ð1
1

1

1þ r2
ln

r þ 1

r � 1

����
���� dr

r

¼ c

ð1
1

ln
r þ 1

r � 1

����
���� dr

r
¼ 1=2: ðA13Þ

Then, from (A12) and (A13) one has

g xð Þ ¼ 2

p
p
2
� arctanx

� �
¼ 2

p
arctan 1=xð Þ

and the result follows setting x ¼
ffiffiffi
h
p

=a: �

Corollary 5.3.

lim
n!1

Yn

j¼1

Qj
i¼1

R2
i

hþ
Qj
i¼1

R2
i

exists; h > 0:

Proof. The limit exists by virtue of being a positive super-

martingale. �
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