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NOMENCLATURE

mass of link i.

moment of inertia of link i with respect to its center of mass.
moment of inertia of link 1 about its center of rotation.

distance from center of rotation of link i to its center of mass.
length of link i.

x coordinate of the center of mass of link i.

y coordinate of the center of mass of link i.

positive constants defined in Equation I1.2.2.

coefficient of friction of each link.

constant shown in Figure 1.1 which is determined from stepper motor
specification and the gear ratio.

k/k,

constant relating the input to the output of the voltage to frequency
converter (see Figure II.1).

significant elements of the linearized matrix A defined in

Equation II.3.9.

positive constant defined as y=ac-b’

state vector defined in Equation 11.3.2.

state derivative vector defined in Equation I1.3.3.



NOMENCLATURE continued

degree of the polynomial element of highest degree in matrix(.)

aL]

.. degree of the polynomial element of highest degree in the j-th column

of matrix (.).

T[] the constant matrix consisting of the coefficient of the highest degree

s terms in each column of (.).



EVALUATION OF A POLE PLACEMENT CONTROLLER

FOR A PLANAR MANIPULATOR

I. INTRODUCTION

1.1 BACKGROUND

This thesis is concerned with the effectiveness of pole placement linear control
of a two joint robot arm constrained to move in a horizontal plane (planar
manipulator).[22] A robot is a mechanism, composed of links connected by joints
into an open kinematic chain, which can be directed to do a variety of tasks without
human supervision. The number of joints determines the manipulator’s degrees-of-
freedom (DOF). The Robot Institute of America (RIA) defines a robot as " a
reprogrammable, multi-functional manipulator designed to move material, parts,
tools, or specialized devices, through variable programmed motions for the
performance of the variety of tasks."[14] The robot manipulator is a highly coupled
nonlinear multivariable system. Controller design for the manipulator is concerned
with correctly positioning the end effector in the manipulator’s work space during the

time allotted for a task.
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In this thesis a pole placement linear control algorithm is applied to the planar
manipulator dynamic model linearized around an equilibrium point.[Wolovich, 22]
In general, linear control is valid for a neighborhood of an equilibrium point.
Consequently, the main objective of the thesis is to determine the linear controller’s
capability to effectively control the planar manipulator outside the linear operating

region.

1.2 STATEMENT OF THE PROBLEM

The system under consideration is a planar manipulator constrained to move

in a horizontal plane as shown in Figure I.1.

Figure 1.1: Two Joint Planar Manipulator.
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The inputs to the planar manipulator are voltages coming from the controller.
The outputs are voltages which measure the joint angles. It is assumed that the only
measurable signals (states) of the system are the inputs and the outputs. Since for
the compensation of the system, knowledge of other states are also required, a
Jfrequency domain pole placement algorithm based on the frequency domain state

estimation and feedback is employed.[22] This control system is shown Figure 1.2.

The Given System
v(s) Q) us)=P(s)z(s) x z(s) V(S)‘R(S)Z(SZ
= G L) Pls) R(s) .
+\1
Ks)—X *—[H(s)k
F :
(s)z(s) 01(3)

Figure 1.2: Frequency Domain Compensation Scheme.

In Figure 1.2, H(s), K(s), Q'(s) are polynomial matrices of the complex frequency
s=o+jw and G is a constant matrix. The goal is to choose these four matrices such

that the overall closed loop system performs as desired. The open loop transfer
matrix of the system must be of the form of T(s)=R(s)P"(s) where R(s) and P(s)
must be relatively right prime polynomial matrices.[22] Furthermore R(s), and P(s)

must have certain properties as discussed later.



1.3 ORGANIZATION OF THE STUDY

The first attempt at linear control of the planar manipulator utilized a linear
output feedback (l.o.f.) algorithm to arbitrarily assign the n closed loop poles of the

system. The algorithm is defined as the control law

u(s) = Hy(s)+Gv(s) 1.3.1

where H and G are constant (m x p), and (mx m) gain matrices respectively, and v(s)
is a m-vector external input. The advantage of l.o.f. method over the linear state
estimation feedback (l.s.e.f) algorithm is that it does not increase the system order
and therefore less complexity is associated with it. However, it can be shown that
if for a given system pm<n, then the lLo.. algorithm fails.[22] For the planar
manipulator considered here m=2, p=2, and (as shown later) n=6. Hence pm<®6.

Consequently the l.o.f. algorithm was abandoned.

The state model of the planar manipulator under consideration is both
controllable and observable. Observability of the system model implies the ability
for estimating those states of the system model which are not directly measurable.
Controllability together with observability enables one to employ the l.s.e.f. algorithm
to arbitrarily place the n closed loop poles of the system at any desired position in
the left half s plane. But why not use adaptive control, or self-tuning control, or etc?

The major reason is the cost for a controller. After all if the cost was not of concern,
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all the states of the open loop system could be measured directly using some

expensive transducers, and perhaps a simpler algorithm could have been employed.

The planar manipulator is discussed in Section II.1. Its dynamic equations are
derived in Section II.2. The planar manipulator linearized model and state
representation are derived in Section I1.3. The pole placement frequency domain
algorithm [22] is presented in Chapter III. Section IIL.1 includes four major steps
involved in deriving the linear controller. Section IIL.2 includes some preliminaries
and the main theorem for the compensation algorithm which is proved in Section
I11.4. A single-input single-output linear second order system is considered in Section
ILS. Linear controller for the planar manipulator is derived in Section IV.1.
Section IV.2 includes the planar manipulator control scheme used for simulation.
Simulation results are presented in Chapter V. Conclusions and recommendations
are presented in Chapter VI. Certain algebraic manipulations are included in

Appendices A through E.



II. PLANAR MANIPULATOR

IL.1 INTRODUCTION

The Planar manipulator is shown in Figure I.1. The arm is driven by two
input torques provided by two identical stepper motors. Arm motion is constrained
to a horizontal plane. Figure II.1 shows the two-input two-output planar manipulator
open loop block diagram together with its stepper motors and drives. The stepper
motor and controller constants k,, and k, can be obtained from motor specifications
or determined experimentally. Figure I1.2 shows a reasonable approximation to the
stepper motor torques versus torque angle character. For a permanent magnet
stepper motor, the torque angle is the angle between the stator resultant magnetic
field vector and the magnetic field vector of the rotor permanent magnet. For a
reluctance stepper motor, the torque angle is the angle between the stator resultant
magnetic field vector and its rotor position for minimum reluctance. If the torque
angle 86 is too large, then not enough torque can be generated to meet load torques
and slipping occurs. The stepping motor model is linearized around 60=0 and does
not include the capability for slipping which occurs if the acceleration is too high, i.e.
if |60|>80,.,. The linear range of operation is considered to be 45° <86<45°

(electrical degrees) as indicated in Figure I1.2.



Jolnt 1 , -
Motor 1 k Xs Xg 691 k T.'
Controller : "Ry + " Ke :
mpm ................................................ Planar
l Manipulator
amics - Joi
Joint 1 Stepper Motor 7 Dyn X 01 A:: r:;‘
—Ix=f(x,u) o
Joint 2 Stepper Motor ¥ ’ » Joint 2
' X0, Angle
Joint2 ‘ T
Motor k Xo [1] X b N e
Controlier v S|+ T
Input -

Figure IL.1: Block Diagram of a Planar Manipulator Including the Stepper Motors
and Drives.

Torque-Angle Curve For Stepper Motor

7 (N.m)
Tl —
|
o b o
-45 145
[
50 30
I max Electrical
I Degree
j Ll

Region of Lincar Operation

Figure I1.2: Torque-Angle Characteristic of Stepper Motor.
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For the particular stepper motors available in the laboratory, 7,,=.8
(N.m)=115 (oz.in). In obtaining the constant k,, 7,,, of the stepper motor at 45°
together with the gear ratio and the number of poles inside the stepper motor have
been taken into account. k, is determined assuming the maximum speed of the

stepper motor is achieved when the inputs u,, and u, are 10 volts.

I1.2 DYNAMIC EQUATIONS OF MOTION

There are two categories of manipulator modeling equations which apply to
the control of a manipulator. Kinematic equations describe relationships, including
position, orientation, and velocity, as well as acceleration of the links of the
manipulator. These equations are used for the trajectory planning of robot motion
and for deriving the dynamic equations of motion. Dynamic equations are the
expressions of the necessary forces or the torques to be applied to the different joints
of a manipulator as a function of position, velocity, and joint acceleration. The

planar manipulator dynamic equations are discussed now.

Using Cartesian coordinates, the manipulator top view is shown in Figure I1.3.
The motion of the arm is constrained to a horizontal plane. The arm is driven by
the two input torques produced by two identical stepper motors. The links are

considered to be rigid bodies. Table II.1 gives the data which have been



Top View

Center of mass variables are indicated by a bar (7)

A

y

Link 2

Figure I1.3: Two-degree of freedom manipulator.
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experimentally determined for a particular planar manipulator available in the
Electrical and Computer Engineering Control System Laboratory. The links were
taken apart and their masses were measured. The moment of inertias, were
calculated assuming that the links are made of aluminum and then using the formula
for the inertia of a rectangular bar with respects to its center of mass. The moment
of inertia of link 1 was also calculated with respect to its center of rotation. The
center of mass was located, using a very sharp edge to balance each link. To
calculate the coefficient of friction, the table was positioned vertically with only one
link attached to it (imagine a vertical pendulum). Then, the link was released at
different initial angles. The trajectory of the link was observed. Data points were
taken. The vertical link was simulated for different values of k; until the same

trajectory as the experimental one was obtained.

m, = 3.343 Kg-mass m, = 4813 Kg-mass
I, =0073 Kg.m? I, =0.156 Kg.m?
L, = 0.084 m L, = 0.16 m
L, = 0.42 m L, = 0.42 m
I, = 0.0966 Kg.m? (moment of inertia of link 1 about its
center of rotation. Used to find k).
k; = 0.2 N.m.s?/rad’ (coefficient of friction).
k, = 342 rad/v.s k, = 949.2 N.m/rad

Table II.1: Data Obtained in the Laboratory.
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The planar manipulator dynamic equations are derived in Appendix A using
Lagrange’s method. This method is based on the relation between the potential and
the kinetic energy of the system. The planar manipulator dynamic equations of

motion are as following:

0”1(k2+2klcosez)-20’|B’Zklsinez+0”2(k,cos62+k3)—(6'2)2klsin02] ] [r,—k,e’,l 2.1

8" (k,cos8,+k,) +6" k; +(8')k,sind, t, k0,

where k,, k,, and k; are constants defined as

k, a mlei2

.

k, & 1+7 2””112 ””2(1‘? +172') 1.2.2

1

>
—~

-
ky & I,+m)L,

Equation I1.2.1 can be expressed as

a |0%| |a 11.2.3
a, ks eﬂz

where

a, = k,+2k cos0,

)
Y
I}

k,+k,cos6,

k)
w
{

= ~k;sing, 11.2.4

Q
N
il

1,-a,(0',)2-2a,0",6/, —k,B’ .

8
w
§

= r2+a3(e/1)2 _kﬁ/2
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Note that a, through a, are function of 7,, 7,, 6';, 8',, and 0,.

1", and 6," can be expressed as

0", = (ajky-a)"'(kya,-a,0))

I1.2.5
0", = (alks"‘;)_l(axas'azao
Notice that Equation I1.2.5 is always valid since
ak,-a> = LL+m (L) +mI (LY +m m,(L)XL,)*+
1937y = Difp Ty ) iy (L) m o Ly ) Ly 12,6

m, 1L} +myL}(L,)’sin*(8,)

is always greater than zero. Equation IL.2.5, is used for nonlinear simulation. In the
next section the dynamic equation linearization and system state representation are

discussed.

IL.3 LINEARIZED MODEL AND STATE REPRESENTATION OF THE SYSTEM

The general form of the state representation for a dynamical system can be

expressed as

x' = fo,u)

y = g(x,u)

I1.3.1

where x (nXx1) is the state vector, y (pX1) is the output vector, and u (mx1) is the



13

input vector. f and g are vector functions of the system state and input. The state

vector for the open loop system given in Figure 1.1, is defined as

'x,. 6,
xz 62
x o’
c=120=" 11.3.2
X, 9’2
xs xs
x6 I.x6-
The state vector derivative is
- (Al ] r b
A E:
/
f, 0, X4
e// e//
¥ = fs I N 1 I1.3.3

f; e//2 9//2
f5 X /5 k u

fe x/ k,u,

where
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07, = [k, -k} -klzcosz(xz)]'l *
[k3k‘((x5 =X |) "'(x6 _xz)) +
k Jessinx,) (x +x3 +22,,) -
k,k_cos(x,)(xg-x,) +
Sqsin@e)rs+

k() +hyxcos(x))] I.3.4

0", = [kk,—k;-kicos’(xy] '+
[k (ky(xg=x,) ~ks (x5 =x,)) +
kK cos(x,)(2(xg-x)) —(x5—%,)) ~

Kisin(2x,) (x5 +1x #2559~

k sin(x,)(kpxs +kxs +2kx,x,)+
kk cos(x,)(x;-2x) +kyx; -k x )]

The output vector is

8 I13.5
0, Xy

To employ the pole placement linear controller algorithm depicted in Figure 1.2,
Equation I1.3.3 must be linearized around an equilibrium point. The linearized state

variable equations have the form

x' = Ax+Bu 11.3.6
y = Cx+Du
where
A= _"£|o . B = ;’!lo
& u 11.3.7

. _ 9
c=-%_ ; p-=%|,
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In Equation I1.3.7, subscript "o" indicates evaluations at the equilibrium point.

In Appendix B, it is shown that the planar manipulator linearized system

matrices around an equilibrium point are

o, o, &) 001 0 0 O]

& o & 00 0 1 0 O

%%...:’.fa abkagkb-a-b
A:l

x| - 11.3.8
. bckdpke -b -c

o ¥ A 00 0 0 0 O
[ % &, 100 0 0O O O]

where

a & -kk H,
b & (kcos(x,,)+k)k_ H,
¢ & —(2kcos(x,,)+k )k H,
k IL.3.9
k, s L
kf
H, k-l -kicos¥(x, )] !

I:alk3_a22]_1 ‘o

I1.3.10

I

|
EFEGEEEEEEE)
o O O O O

i
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wwm  w
c-|™% & 100000 1L3.11
#wm ®m (010000
ary A axgj,,
a a
p-|*™ _00 113.12
@ wm oo
ay x,

Therefore the state representation of the linearized planar manipulator model is
given by Equation I1.3.6 where the system matrices, A, B, C, and D are given by
Equation I1.3.8 and Equations II1.3.10 through I1.3.12 respectively. The pole

placement algorithm is discussed in the next chapter.
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III. DERIVATION OF POLE PLACEMENT CONTROLLER

I1II.1 INTRODUCTION

As stated in Section 1.2, the pole placement state estimation algorithm relies
on the ability to determine a transfer matrix, T(s), as the product R(s)P"(s). The
polynomial matrices R(s) and P(s) must be relatively right prime, defined shortly. This
implies the (complete state) observability of any equivalent time domain realization and
therefore the ability for estimating the entire state of the system.[22] The following are

four major steps involved in deriving the linear controller.

1. The system matrices must be transformed into a controllable companion
form which implies that the system must be state controllable.

2. The structure theorem must be employed to the controllable companion
form to find T(s) as the product of R(s)P(s).

3. It must be shown that the polynomial matrices R(s) and P(s) obtained from
structure theorem are relatively right prime.

4. The frequency domain state estimation and feedback must be employed to

derive the linear controller.
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The procedure for steps 1 and 2 are discussed in Appendix C. To establish

steps 3 and 4 the material presented in the next section are essential.

II1.2 PRELIMINARIES

The following definitions are established. These definitions are repeated in

Appendix C.

DEFINITION I11.2.1: The degree of a polynomial matrix M(s) is defined as the
degree of the polynomial element of highest degree in M(s). The degree of the j-th
column of M(S) denoted by the scalar d,[M(s)], is defined as the degree of the
polynomial element of highest degree in the j-th column of M(s). The constant
matrix consisting of the coefficients of the highest degree terms in each column of
M(s) is denoted by T.[M(s)]. Subscript "¢" implies column. To illustrate, consider

the following example:

EXAMPLE HI1.2.1: If

-3 1 2
M) = [4s+2 2 0 121

-s? s+3 -3s5+2

then d,,=2, d,=05=1, and
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1 0 2
L. [M$)] =({0 0 0 111.2.2
-11 -3

Note that T',[M(s)] is not of full rank since | [M(s)]|=0. The column j zeros in
I'.[M(s)] indicate that the corresponding polynomials are of lesser degree than

acj[M(s)]'

DEFINITION 111.2.2: A nxm polynomial matrix, M(s), is called column proper if
and only if I ,[M(s)] has full rank; i.e. rank{T'[M(s)]} =min(n,m). Hence a square

polynomial matrix M(s), is column proper if and only if |I'.[M(s)]| #O0.

DEFINITION 1I1.2.3: If three polynomial matrices satisfy the relation;
P(s) =H(s)G(s), then G(s) is called a right divisor of P(s), and P(s) is called a left
multiple of G(s). A greatest common right divisor (g.c.r.d.) of two polynomial
matrices P(s) and R(s) is a common right divisor which is a left multiple of every

common right divisor of P(s) and R(s).

DEFINITION I111.2.4: A unimodular matrix U(s) is defined as any square polynomial

matrix whose determinant is a nonzero constant.

DEFINITION I11.2.5: Two polynomial matrices R(s) and P(s) which have the same

number of columns, are said to be relatively right prime if and only if their g.c.r.d.
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are unimodular matrices.

EXAMPLE 111.2.2: For the following two polynomial matrices R(s) and P(s)

s - s* -1
R(s) = i P(s) = I11.2.3
01 -5 s?
then
s ~(s+1)
s -s|ls? 1 stes+l  stes+l
T(s) = R(s)P™\(s) = LS 111.2.4
0 1]|s s*)ls*-s 1 s
| -1 sl

Note that the system characteristic equation is determined only by |P(s)| since R(s)
and P(s) are both polynomial matrices. Also notice that pole zero cancellations
occur in all elements of T(s). It can be shown that the following square matrix is one

of the greatest common right divisors of R(s) and P(s)

s 0
G.(s) = 111.2.5
01

since

R(s) = 1 -s]-s 0]‘
(S) - _0 ’

110 1
- 111.2.6
P [s -1]s 0
s) =
(s) g 2o 1
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Notice that G,(s) is not a unimodular matrix since |G,(s)|=s is not a nonzero
constant. The transfer matrix of a system described by T(s)=R(s)P"(s) does not

satisfy the pole placement algorithm used later since G,(s) is not unimodular.

DEFINITION I11.2.6: A polynomial matrix, T(s), is called proper if the numerator
degree of each entry of T(s), i.e. Ty(s), is less than or equal to the corresponding
denominator degree. In the case of strictly proper transfer matrix, the degree of the
numerator of each entry, T;(s), of T(s) is equal to the corresponding denominator

degree.

The dynamical behavior of an m-input, p-output, linear time-invariant physical

system can always be represented by a proper p Xm transfer matrix, T(s), where

y(©8) = T(s)u(s) 111.2.7

and

-Tu(s) T, (5) - Tlm(s)1

T,(s) T,(s) ~ T, (s)
() = 21. n 2m I11.2.8

.TPI(S) T;,z(s) Tp,,.(s)_

where T;(s) is a proper transfer function, i.e. the degree of the numerator of Ti(s) is

less than or equal to the degree of its denominator.
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Given a state controllable model of a system having a proper transfer matrix
T(s), then the structure theorem of Appendix C guarantees that it is always possible

to express T(s) as

T(S) = R(S)P-I(S) 111.2.9

where R(s) and P(s) are polynomial matrices, viz.

Ry(5) Ry(s) - Ryy(S)]
Ry (s) Ry(s) ~ R,,(5)

R(s) = ;
R6) Rys) - R,
I11.2.10
P(s) Py(s) ~ P (s)]
Pls) = P, (s) Py(s) ~ P, (s)

Po®) Prfs) = Ppl®)

P(s) must be column proper and the degree of each column of R(s) must be less than
or equal to the degree of the corresponding column in P(s). Define d; as the degree

of the j-th column of P(s). i.e.

31P@)] = d, 1.2.11

then

3[R <d, 11.2.12
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The following theorem due to Wolovich, is essential in determining the closed

loop transfer matrix of the compensated system shown in Figure 1.2.

THEOREM 111.2.1 (page 239, [22]): Given the pXm open loop transfer matrix,
T(s)=R(s)P(s), of Figure 1.2 where 3,[R(s)] <d.[P(s)] and P(s) is a mXm column
proper polynomial matrix, i.e. |I'[P(s)]| #0, with d,4[P(s)]=d,>1 for all j=1,2,..,m,
if R(s) and P(s) are relatively right prime polynomial matrices, then for any

arbitrary mxm polynomial matrix F(s) which fulfills

3 [F(s)]1<a,[P(s)] 111.2.13

polynomial matrices H(s), K(s), and Q(s) of Figure 1.2 exist which satisfy the
following:
1- The zeros of |Q(s)] lie in the stable half-plane Re(s) <0 which implies that

Q'(s) is a stable transfer matrix.

2- HS)R(s) +K(s)P(s) = Q(s)F(s) 111.2.14

3- Both Q'(s)H(s) and Q' (s)K(s) are (stable) proper transfer matrices.

Results obtained in the proof of this theorem play a significant role in
designing the linear controller. Its significance from a point of view of the frequency
domain compensation scheme of Figure 1.2 is presented in the next section. Then

the theorem is derived.
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111.3 DERIVATION OF THE DESIRED CLOSED LOOP TRANSFER MATRIX

It is assumed that the matrices H(s), K(s), Q(s), and F(s) satisfy the
requirement of Theorem I11.2.1. Equating the signals at the first summing junction

in Figure 1.2 results in the following:

u(s) = P(s)z(s) = GW(s)+Q (S)K(S)P(s)z(s) +H(S)R(5)z(s)] IL3.1

or

[Q(S)P(s)-K(S)P(s) -H(s)R(s)]z(5) = Q(s)GW(s) I11.3.2

By substituting Equation III.1.2 into Equation III.3.2 the following is realized:

2(s) = [P()-F(5)]'Q ' (5)Q(s)GH(s) 111.3.3

Note that Q(s) has stable poles (Theorem III.2.1). Consequently any pole zero
cancellation in Q*(s)Q(s) do not lead to problems from a dynamical point of view.

Since y(s)=R(s)z(s), it follows that

¥(s) = RSP (5)G(s) 1134

where

P(s) & P(s)-F(s) 111.3.5



25

Note that

3,[PHs)] = 3[P(s)] 111.3.6

since d.[F(s)]<d.[P(s)] from Equation IIL.2.13.

The closed loop system satisfies y(s) =T.(s)v(s). Hence, from Equations II1.3.4

and II1.3.5 the closed loop transfer matrix of the compensated system is given by

T.(s) = RS)P; ()G = ROIGPL)]™ 111.3.7

Since Theorem II1.2.1 is satisfied then stable physically realizable compensation
scheme of Figure 1.2 can be employed to achieve any desired closed loop transfer
matrix of the form given by Equation II1.3.7. The proof of the theorem given in the
next section also yields the procedure for selecting the appropriate polynomial

matrices H(s), K(s), and Q(s).

111.4 PROOF OF THEOREM II1.2.1

Wolovich’s theorem is rederived here for completeness. The following
example helps in understanding the proof of Theorem IIL1.1.
Example I11.4.1: Let R(s) and P(s) be the following polynomial matrices with

d[R(s)] =0.[P(s)]
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+1 + 2,
R(s) =[S S] . PGs) =[s 4 s 4] I1L.4.1

Form the polynomial matrix W(s) as

s+l s
5?42 §?
we) = 2] 2 |-mn - 111.4.2
P(s) )
s+4 s°+4
s3+2  s?

Define d;=d,[P(s)]; i.e. d;=3, d,=2. Then is it possible to find a constant matrix M

such that W(s)=MS where

T
s 0
s2 0
30

S = s 111.4.3
0 1
0 =
s2_

Note that each column of S is of degree d,[P(s)]. Also note that the scalar product

is zero for all different column vectors in S. Having defined S as such the following

can be established
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o)
s 0
s+l s ] )
1100]010]|s* O
5242 st ,
2010]00 1 0
W) = |--- ——-| = | s 11.4.4
i g [F1OOT40 1
+ +
st s 200110010 1
s3+2  s? | 0 s
0 s?

In general, it is always possible to find a unique constant matrix M such that for any
R(s) and P(s) which satisfy 4 [R(s)] <. [P(s)], W(s)=[R(s)" P(s)']" can be written as

W(s)=MS=M][S,,S,~S,] where

1 O 0
5
sh
0 1
s - ) ) dj = ac,[P(S)], j=1’2""’m 11L4.5
S/, =0 for i*0
%
0 1
A
dﬂ
S J
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Now consider the polynomial matrices R(s) and P(s) of dimensions p Xm and
m X m, respectively, with a.[R(s)] <d.[P(s)], P(s) column proper, and 9,4[P(s)]=d,>1

for all j=1,2,...,m where n is defined by

naYd 111.4.6

In view of these assumptions it follows that for k=1,2,-- the k(m+ p) Xm polynomial

matrix

[R7(5),SRT(5),...,s* 'R (5),PT(s),....s* ' PT(s)]" 111.4.7

can be expressed as the product of a constant k(m+ p) X (n+ mk) matrix, M, and an

(n+mk) Xm matrix, S4(s), consisting of monic single term polynomial elements; i.e.
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1 0 0
s 0 0
dek-l o 0
[ R(s) ] 0 X
SR(s) 0 .
sEIR(s) '
=M s) = M d,+k-1 I11.4.8
P(s) ¢ksek( ) ek g ) . 0
sP(s)
0
s¥1P(s)] .
s
0 0 stk ]

for a unique constant matrix M,, which depends on k. Note that M,, is a square

matrix if and only if n=kp.

DEFINITION I11.4.1: The eliminant matrix, M., of the two polynomial matrices R(s)
and P(s) with P(s) column proper and 4 [R(s)] <d.[P(s)] is defined as M,, where » is
the least integer k in Equation 111.4.8 for which n+mk-rank[M,] is a minimum. S_(s)

is then defined as S,,(s).

THEOREM I11.4.1: The polynomial matrices R(s) and P(s) employed in Definition

II1.4.1 are relatively right prime if and only if their eliminant matrix has full rank
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(n+mvp).[22]

COROLLARY II1.4.1: Given the relatively right prime polynomial matrices R(s) and
P(s) with 8.[R(s)] = a.[P(s)], P(s) column proper, and d[P(s)] =d,> 1 for all j=1,2,--,m,
then a constant gain matrix [H,K] can be chosen such that
[H,K]M,S.(s) =H(s)R(s) + K(s)P(s) equals any m Xm polynomial matrix B(s)=08S.(s)

where B is an arbitrary constant matrix which satisfies:

9, [B(s)]sd;+v-1 for j=12,...,n. I11.4.9

It is assumed that R(s) and P(s) satisfy the requirements of Corollary II1.4.1.
Since R(s) and P(s) are relatively right prime polynomial matrices, then by Theorem
II1.4.1 their eliminant matrix has a full rank; i.e. rank[M.]=n+m». To establish the
corollary, M, is defined as the nonsingular matrix consisting of the first n+mvy linearly
independent rows of M, and [A,K] is defined as the mx(n+mp) matrix obtained
from [H,K] by deleting those columns of [H,K] which correspond to the same
numbered rows of M, which were eliminated to form M,. In view of Equation IIL4.8,
any arbitrary mXm polynomial matrix, B(s) =8S.(s) which satisfies Equation 111.4.9

can be obtained by solving:

(A,KIMS(s) = BS,(5) 111.4.10

for [A,K]; i.e.
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[A,K] = pM.' 11.4.11

To find an appropriate [H,K], identically zero columns, corresponding to those
columns of [H,K] which were eliminated to form [A,K] are now inserted into [A,K].
Then it follows that [F,K]M,=[H,K]M,=8 and therefore in view of Equation 111.4.8
and Equation 111.4.10, the following can be established for some appropriate

polynomial matrices H(s) and K(s).

CRE) ]
SR(s)

sV IR(s)
[HKIM,S (s) = [H,K]
P(s) 111.4.12
sP(s)

sV 1P(s))
= H(S)R(s)+K(s)P(s) = BS,(s)
From the results obtained above, the fact that the polynomial matrices

H(s),K(s), and Q(s) can be chosen to satisfy the three conditions of theorem IIL.1.1

can be verified now. In particular, by setting



s*t 0 . 0  q,0
-1 st o .. 0 Q)
0 -1

Qs) =0 0

0 0 0.. -1 s'l4q (9
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111.4.13

and evaluating | Q(s) | by last column minors, the following expression can be

derived

m
Q] = 3 gy oseDegne d

i=1

Define q;,(s) for i=1,2,--,m as follows

v-2

%nl®) = -2;(‘1(:'-1)0—1)*;)”' p o i=1.2,mm
=

where qg.iy,-1y+; are constants. Hence |Q(s)] is given by

lQ(S)I = q0+qls+"'+qmv—m—lsmv_m—1 +sm“"’"

111.4.14

111.4.15

111.4.16

where the real constants qy, q;, - Qu,.m are chosen such that the roots of |Q(s)| are

in the left half s plane. Therefore, any arbitrary polynomial of degree my-m can be

chosen as | Q(s) | . If F(s) is any arbitrary m Xm polynomial matrix which satisfies

Equation 111.2.13; i.e. 3[F(s)}<d.[P(s)], then it can be verified that the product of

Q(s) and F(s) is a polynomial matrix of column (j) degree < d;+»-1. Therefore,
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QE)F(s) = B(s) = BS,(s) 111.4.17

for some constant matrix 8. If [H,K] is now chosen such that

[HKIM.S,(s) = QE)F(s) = BS,(5) 111.4.18

then for this particular choice of §(s), given by Equation II1.4.17, it follows in view

of Equation I11.4.12, that

H(s)R(s)+K(5)P(s) = Q(S)F(s) 111.4.19

where both 3, [H(s)] <»-1 and d,[K(s)] <»-1 for all i=1,2,..,m (see Equation II1.4.12).
Since 9,[Q(s)]=v-1, it can be shown that if all of the zeros of | Q(s) | are chosen to
lie in the stable half-plane, Re(s)<0, then both Q'(s)K(s) and Q'(s)H(s) will be
stable proper transfer matrices, and as a result Equation II1.4.19 is satisfied.

Theorem I11.2.1 is therefore established.

The preceding can be summarized by noting that if T(s)=R(s)P'(s) is a
proper transfer matrix and if R(s) and P(s) are relatively right prime polynomial
matrices where d.[R(s)] <d.[P(s)] and P(s) is column proper with 8,[P(s)]=d; = 1 for
all j=1,2,...,m, then one can achieve any desired stable closed loop transfer matrix
Tr o(s) =R(s)Py"(s) =R(s)[G'P,(s)] " via the compensation scheme depicted in Figure

1.2, where the only requirements on G'Py(s) are the following:
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1. The determinant of G'Py(s) is the desired characteristic equation of the
closed loop system.

2. G'Pg(s) is a column proper polynomial matrix which shares the same
ordered d; as P(s) (see Equations I11.2.13 and II1.3.5).

3. G exists which implies that G must be nonsingular.

To facilitate understanding the linear controller derivation for the planar
manipulator, a linear single-input single-output second order system is considered in

the next section.

II1L.S POLE PLACEMENT LINEAR CONTROLLER DESIGN FOR A LINEAR

SINGLE-INPUT SINGLE-OUTPUT SECOND ORDER SYSTEM

The intention of this section is to facilitate understanding the problem of the
planar manipulator which is presented in the next chapter. Consider a controllable
and observable linear single-input single-output second order system (p=m=1) which

is described by the following transfer function:

s+2 s+2

= = HL5.1
(+1)(s-3)  §2-25-3

T(s)

Note the presence of a pole in the right half s plane (s=3). The objective is to use

the frequency domain pole placement algorithm to derive a linear controller for the
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system such that the closed loop poles of the system can be placed at any desired

location in the left half s plane. The compensator scheme depicted in IIL5.1 is used

to achieve this objective.

v(s)

u(s)-p(s)z(s)

The Given System

z(s)

r(s)

Yis)r(s)z(s)

-®

-+

f(s)z(s)

q(s)

Figure IIL.1: The Scalar Compensation Scheme

4

h(s)

To implement the compensation scheme given in Figure IIL1, the open loop

system transfer function must be transformed into the form T(s) =1(s)p™(s) where r(s)

and p(s) must be relatively prime polynomials. For the scalar case this implies that

1(s) and p(s) must not have any common polynomial factors. By inspection of T(s)

the following can be established:

r(s)

d,

It

s+2

= 2 ;

p(s) = (s+1)(s-3) = s*-2s-3
n=2

II1.5.2
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For the compensation scheme depicted in Figure III.1, notice that if k(s), h(s),
and q(s) are chosen such that for any arbitrary polynomial, f(s), of degree no greater

than (n-1), the following are satisfied

1- q(s) is a stable polynomial.

2- k(s)p(s) +h(s)r(s) =q(s)f(s) I11.5.3

3- Both q'(s)k(s) and q'(s)h(s) are (stable) proper transfer functions.

then it follows that this scalar compensation scheme yields any desired closed loop

transfer function of the form

t()=r@s)p; ()8 = rs)g'p /)™ 1L5.4

where p(s) is defined as

pfs) & p(s)-RS) IIL5.5

From Equation II1.5.5 notice that the zero of the system has not been affected by the

pole placement algorithm. Also the following two equations are satisfied

ApLs)] = AAp(s)] IIL5.6

Tip(s)] = Tlp(s)] 1IL5.7
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(8=degree of a polynomial and I =coefficient of the highest degree term in a
polynomial). This is due to that fact that 9[f(s)]<n-1 while d[p(s)]=n (recall that p(s)
is the characteristic equation of the open loop system). From this observation the

nonsingularity of p((s) is noticeable.

Now, suppose it is required to place the two poles of the closed loop system
at s=-3 and s=-4. This implies that the characteristic equation of the closed loop

system must have the following form

a5) = k(s+3)(s+4) = k(s?+75+12) I11.5.8

where k is a constant to be chosen such that the design requirement is satisfied.
From Equation II1.5.4 notice that the characteristic equation of the closed loop

system is given by

als) = g‘lp/(s) 111.5.9

Equating Equations IIL.5.8 and IIL.5.9 the following is obtained

87'pfs) = k(s?+75+12) 111.5.10

Consequently

1
5) = s4Ts+12  ;  g=— I11.5.11
pLs) 81
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since from Equation IIL.5.7 the coefficient of the highest degree in p(s) must equal

to the coefficient of the highest degree in p(s) given by Equation II1.5.2.

To derive k(s), h(s), and q(s) the eliminant matrix of r(S) and p(s) must be
obtained first. From Definition 111.4.1 and Equation II1.4.8, since m=1 and
d,=degree of p(s)=2, it can be shown that for k=2, n+mk-rank[M,,] is minimum

and hence v=2. Consequently

(2 1 0 0 1]

vy o|02 10 S = | 11L.5.12
¢ -3 -2 10 ’ € 52
0 -3 -2 1 5

Since 1(s) and p(s) are relatively prime polynomials their eliminant matrix must have
full rank. Indeed, this is the case and M, is given by

08 -02 02 0

gt |06 04 040 11513

) 12 02 080
06 16 04 1

Existence of M, indicates that M_1=M_1,

Since v =2, from Equations II1.4.13 and 111.4.15 the following expression for

q(s) is obtained:
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q(s) = 5O V+q,(5) = s+q, 111.5.14

where q, must be chosen such that the pole of ((s) is in the left half s plane. For the

problem under consideration q, is chosen to be 5. Hence

q(s) = s+5 I11.5.15

From Equations I11.5.2, IIL5.5, and IIL.5.11 the following expression for f(s)

is derived

As) = p(s)—pj(s) = -(9s+15) IL.5.16

Notice that f(s) is a polynomial of first degree which satisfies the requirement

d[f(s)]<n-1 since n=2 for the given system. The expression for q(s)f(s) follows:

B(s) = g(AS) = -(95*+60s5+75) I1.5.17

At this point a constant 1x4 matrix 8 can be chosen such that Equation

I11.4.17 is satisfied. In particular

B(s) = g(s)As) = -(95>+60s+75) = [-75 -60 -9 0] .| = [I1.5.18

B =[-75 -60 -9 0]

Now, Equation I11.4.11 (recall that M, =M, which implies that [h,k] = [h,k]) together

with Equation 111.4.12 can be employed to derive h(s) and k(s). In particular



40

08 -02 02 0
-06 04 -04 0
12 02 08 O I1L.5.19
06 16 041

[hK] = BM.' =[-75 -60 -9 0]

- [-348 -10.8 1.8 0]

and since from Equation II1.4.12 the following must be satisfied

)
sr(s)
p(s)
5p(5),

[h,K] h(s)r(s) +k(s)p(s) ; or

. 111.5.20
r(s)

sr(s)
p@s)
5p(s),

[-34.8 -10.8 1.8 0] -(10.85+34.8)r(s) +1.8p(s)

h(s)r(s) +k(s)p(s)

therefore h(s) and k(s) are given by

h(s) = -(10.85+34.8) ; k(s) = 1.8 111.5.21

Hence, if g, q(s), and {h(s),k(s)} given by Equations IIL5.11, IIL5.15, and
I11.5.21 are employed in the compensation scheme of Figure III.1 the desired closed
loop poles of the system will be placed at s=-3 and s=-4; i.e the closed loop transfer

function will have the following form
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ris) s+2

t(s) = =
g PJ(S) k(s+3)(s+4)

H1.5.22

There is a pole zero cancellation in t(s), namely the zero (s+5) is canceled
by the pole (s+5). Hence, the poles of the compensated system are at s=-3, -4, and
-5. The transfer function t(s) does not accurately reflect the value of the time initial
condition response which must include terms arising from the pole at s=-5. The pole
placement linear controller design for the planar manipulator is discussed in the next

chapter.
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IV. LINEAR CONTROLLER DESIGN FOR THE PLANAR

MANIPULATOR

IV.1 LINEAR CONTROLLER DESIGN

The open loop transfer matrix of the planar manipulator is derived in
Appendix C. It is shown that the open loop transfer matrix of the system can be
expressed as T(s) =R(s)P'(s) where R(s) and P(s) are polynomial matrices given by

the following

R(s) = -k, IV.1.1

[a bl s*-kas*-as -(kbs®+bs)
. P(s) =
~(k bs?+bs) s*-kcs*-cs

Later, when the eliminant matrix of the two polynomial matrices R(s) and P(s)
is derived, it will be shown that R(s) and P(s) are relatively right prime polynomial
matrices and therefore the correct form of the planar manipulator open loop transfer
matrix has been obtained. Consequently the compensation scheme depicted in
Figure 1.2, can be applied to derive the linear controller. Derivation of the linear

controller is discussed now.
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To derive the linear controller for the planar manipulator, one can select any
desired closed loop transfer matrix which satisfies the three conditions stated in the
Section II1.4. It was shown that for the compensation scheme of Figure 1.2, the
closed loop transfer matrix is, T,(s) =R(s)[G"'Pg(s)]". This implies that the closed
loop poles of the compensated system are given by the determinant of G'Py(s). In
particular G"'Py(s) can be chosen as any arbitrary polynomial of degree six (n=6), such

that the six closed loop poles of the system are placed at s=pg;, Pas Pas» Pas> Pas, and

Pas-

It is desirable to have a diagonal (decoupled) closed loop transfer matrix. In

Appendix D, it is shown that the following choice of G'Pg(s)

awl(-') b"'l(-")
-1 - a 1 Iv.1.2
G Ps) =-k, o) e
€ 5]
where
wi(s) = (-p)sPR)ES-Py) 3 € = -pyP
1 d1 a2 d3 1 d1P adP a3 V.13

Wy(8) = Py )PPy 3 € = “PaPusPas

not only satisfies the three conditions, but also results in a diagonal (decoupled)

closed loop transfer matrix of the form
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wy(s)
T(s) = . IV.1.4
Wy(s)

To find G, and F(s) such that the closed loop transfer matrix of Equation

IV.14 is achieved, notice that from Equation I11.2.13 and Equation IIL3.5 the

following can be established

I [Ps)] = TIPS)] V.15
Consequently
TIGPUS)] = G'TIPLS)]) = G 'TIP(S)] IV.16
and therefore G is given by
G = T [POITGPLs)])! IvV.1.7

From Equation IV.1.1 it follows that
10
L IP@s)] =

IV.1.8
01

and from Equation IV.1.2 and Equation IV.1.3:

(I‘C[G—lP,(S)])_l = —kv 1 IV.1.9

O e
Ny
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therefore

8 8n| kx| be, -ac,

&n g"J _ 1 ['“1 bcz] IV.1.10

where y;=ac-b? (it can be shown that y,=ac-b*=(k,H,)%(a,k,-a,2) >0; see Equation
I1.2.6). At this point, only the general procedure for determining H(s), K(s), and

Q(s) is discussed. More details are given in Appendix E.

To derive Pg(s), matrix G given by Equation IV.1.10 is premultiplied by
G™'Pg(s) as given by Equation IV.1.2. Once Pr(s) has been derived, Equation I11.3.5
together with Equation IV.1.1, are employed to obtain an expression for F(s). For
the system under the consideration it is shown that v=3, and therefore employing

Equation IIL4.13 together with Equation I11.4.15 yield the following expression for

Q(S)

st qi5+4o J IV.1.11

-1 sz+q3s+q2

Q@) = [

where qy,q;,q,, and q; are arbitrary real constants to be chosen such that the roots
of the | Q(s)| =s*+q;5°+q,s>+qs+q, remain in the left half s plane. At this point,
since Q(s)F(s) is known, corollary I11.4.1 can be employed to find the constant matrix

B. In particular, since for the system under study, S,(s) is given by the following
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IV.1.12

G
W
HOOOOOOJ

t

then by setting the arbitrary polynomial matrix B(s)=8S.(s) equal to Q(s)F(s), an
expression for the constant matrix 8 is found. For the planar manipulator under the
consideration, the eliminant matrix of R(s) and P(s) is a nonsingular 12x 12 square
matrix. Therefore M,=M, and hence [H,K]=[K,H] (see Appendix E). Equation
I11.4.11 and Equation 1I1.4.12 can now be employed to derive the expressions for H(s)

and K(s). The final expressions for H(s), and K(s) are as following

p‘15‘92“"1:;‘9J'l"11 p'16‘92"“14544112
H(s) =

2 2
BosS T Ha3S*tHy HogS *HogStHp

IV.1.13

hy (8) 1)
A
hy (5) hy,(s)

and
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BigS*thi7 Bi105tBs
HaoStHa7 Hg105t B2

IV.1.14

kyy(s) ku(s)]

K(s) = A
[ ky () ky(s)

where the constant coefficients u’s are given in Appendix E.

If the polynomial matrices H(s), K(s), and Q(s) given by Equations IV.1.13,
IV.1.14, and IV.1.11 together with G given by Equation IV.1.10 are now employed
in the feedback scheme depicted in Figure 1.2, then the desired (decoupled) closed
loop transfer matrix given by Equation IV.1.4 is achieved. For the simulation
purposes Figure 1.2 must be rearranged to its more suitable form. This is discussed

in the next section.

IV.2 BLOCK DIAGRAM FOR SIMULATION PURPOSES

For the planar manipulator there are two inputs, u, and u,, and two outputs,
y, and y,. For the controller presented here, two command inputs v, and v, are used

(see Figure 1.2). Thus:

W(s)

[V,(S)

)

uGs) = ["‘(s)l Iv.2.1

~ uyls)
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En En V2.2

821 8n

ey, ()
_kzl(s)
-hl 1(5)
_h21(s)
91,65)
_(72 Q)

klz(s).
kzz(s)d

hyy(5)]
hy(S)]

612(5).

R0

Iv.2.3

where for all i,je(1,2) k;(s) and h;(s) are polynomials given in Equations IV.1.13 and

IV.1.14, and ﬁij(s) are rational polynomials in s given by the following

=~ _ 5%+qy5+, — _ —(g;5+qy)
q,,(®) = 06 6) q,,(8) = —AQ(S)
3 () = —— 7(s) = S 1V.2.4
W 00 2 = Lo
aQ(s) = s4+q3s3+q2s2+qls+qo
Consequently
Us) = GV(s)+Q (s)K(s)U(s)+Q () H(s)Y(s) IvV.2.5

or



-gu 812{[V1(®)

821 822

u,(s)
u,(s)

k) (5) ky,(s5)

3, 3,®|[h,, () hH][y,(5)
_‘721(5) ‘722(3) hzl(s) hzz(s) )’2(S)

V,(9)| |20 4,,05)

lE,l(S) q,,(5) ru(S) kix(s)

Expanding Equation 1V.2.6 gives

u(s) = £,1V1(5)+81,v,(8) +
(@11 (5) 455V ()t ) +
(a1 (Vky5(5) +4,, (Vs ()Y, () +
4,1 ()hy,(5) +4,5(S)hy ())y, () +
(2,1(D15() +4,5()hy())y,()

and

Uy(S) = 83V1(5)+8xV,(8) +
(221K, (8) +5 () () (5) +
(01 (Ve 15(5) + @ () (S))uy(5) +
(321()11(5) +@55(8)hy ()Y, () +
(021D 15(8) +5 () (5))y, ()

49

u,(s)
+
u,(s)
IV.2.6
Iv.2.7
IV.2.8

Figure IV.1 shows the block diagram for the complete control system when Equations

IV.2.7 and 1V.2.8 are employed to determine inputs to the planar manipulator using

the rational polynomials defined in Equation IV.2.9.
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1l 4(3)

15 Cs(s)

91-x

7
4
Vi) ¢+/u;)
1
0 X

PLANT

;f\_
T
v

V()

kll C 7(3)

$C5)

Figure IV.1: Planar Manipulator Closed Loop Compensation Scheme.

Cy(5) & qy;(5)kyy(5)*q,,(5)kyy(5)
Cy(5) & g, ()k,y(5)+q,,(5)k,(s)
Cy(s) & ¢,,(Dhy () +q,(Dh, (s)
C(s) & q,,()h(5)+ G, (S)hyy(s)
Cy(5) 4 Gy, (k5 (5)*+ @,y (8)k,(5)
Cs(s) & gy, (8)ky () + @) (S)ky ()
Cy(s) & gy ()hy5(8)+ Gy ()hyy(s)

Cy(5) & 5 ()hy,(5)+ G5(S)hyy (5)

IvV.2.9



51
From Equations IV.1.13,IV.1.14,1V.2.3, IV.2.4, and 1V.2.9 the following expressions

for C(s) rational polynomials are obtained

1
C,(s) = E(o3s3+02s2+ols+ 0p)

Cy(s) = ——(05°+0s*+a5+0,)

AQ(s)
1
Cy) = A—Q(j)(01254+01153+°1052+°9‘5+°8)
1 2
C5) = N s)(°17s4+°16s3+°155 +01,5+0 )

IV.2.10

- 1 3 2
Cs(s) = @'(0215 +0x8 +0,5+0 )

1
Cyls) = :@(oﬁs3+024s2+023s+022)

C,(s) = 13)(030s4+ 0g8 + 0,082+, 5+ Oy6)

A

o 4 3 2
Cyls) = @(0355 +04,5 4033574 0,,5+0,)

where o’s are constants given by the following
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9 = ©H1779Hy U1 = Pig

LS TR LS VAL PY ST SL2Y A (1 5T O19 = H110
Oy = G979 P29t Pyy O = K

O3 = Hy O21 = Pa,0
9, = GH13 9 2 On = By

Os = G315+ 92H 1,107 9128 " ToP 2,10 O = By

Os = d3b1,107%1M2,00"P1s O = By

97 = K10 O25 = Ky

Os = 411790l O = P12 V211
Gy = QB4 P37 H2 " T2 Ox = Py

O10 = 3b13+ 9215791 P23 " dobas O = Pis*P2
O = d3bys~diBast P O = By

O12 = Hys O3 = Mo

013 = 2127 %M O3 = By

O14 = §3P12 DB 91P 2 oM O3 = By3

Op5 = d3bia 2ol 167 91P2a " Dot 26t 1o O33 = Paithys
O16 = B3k16 P26 P1a O34 = K3

017 = Pis O35 = Mas

In Equation IV.2.11 u’s are constants given in Appendix E. At this point all the
parameters of the compensators given in Figure IV.1 are known and the closed loop
compensated system can be simulated. The simulation results are given in the next

chapter.
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V. SIMULATION RESULTS

A program was written to simulate the planar manipulator dynamics. The

variable step size Runge-Kutta Fehlberg integration method was used. Inputs to the

simulation program are:

1- Initial position of the links in degrees.
2- Magnitude of the command signals in degrees for different type of inputs.
3- g/’s for 1=0,1,2,3 (see Section IV.1).

4- Location of desired closed loop poles (Py;;Pazs--sPas)-

Simulations for different values of closed loop poles and ;s were performed. After

considerable experimenting with the program, the following parameters were selected

since the controlled system responded favorably:

q, = 08250 q, = 3.7750 q, = 0050 qgy=4.10

pa = ( -3.20, -.20) P = ( -3.00, -1.00)
Pz = ( -3.20, .20) pes = ( -3.00,  1.00)
Pz = (-900.00, .00) P = (-800.00, .00)

The particular values for g;’s were selected such that the poles of | Q(s)| are placed

at s=-0.5,-1,-1.1,-1.5 (Q(s) is given by Equation 1I1.4.13).
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For the particular stepper motors in the laboratory the maximum torque for
the linear region of operation is 0.63 N.m. The maximum external torque that can
be applied at each joint is directly proportional (through the gear ratio constant=6.9)
to the maximum torque of the stepper in the linear region. Hence, the magnitude

of the maximum torque available at each joint is 4.3 N.m.

For the compensators parameters given in Table V.1 the simulation results
around 8,,=0" and 8,,=0° are shown in Figure V.1 through Figure V.3; Figure V.1-
(a) shows the response of the linearized model of the planar manipulator for
command step changes of 10° to both joints; i.e. §v,=6v,=107 Figure V.1-(b) shows
the corresponding response of the non-linear model. The error between the non-
linear simulation and the linearized model simulation is less than 0.127 Notice that
the torques do not exceed 4.3 N.m. and hence the stepper motors do not slip. Figure
V.2 shows the same simulations for joint command step changes of v, =§v,=307
Note the difference between the linear and non-linear model responses. The linear
model has no overshoot while the non-linear model demonstrates a peak overshoot
of less than 0.5° for link 1 and a peak overshoot of about 2.5° for link 2. The settling
time for the nonlinear case is about 7 seconds longer than the linear model. From
Figure V.2-(c) notice that the error in this case is larger than the error in the
previous case by about 37 Also From Figure V.2-(d) notice that the maximum
torque available (4.3 N.m) is excceded. This implies that the stepper motor is

operating out of region of linearity and therefore slippage will occur. To overcome
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the slippage problem one can apply ramp inputs instead of step inputs. This is
discussed later. Figure V.3 shows the same simulations for joint command step
changes of §v,=6v,=50" for which the maximum error between the linear and non-
linear model is about 17 Note the very different response for the non-linear model.
The linear region has been "exceeded". However, notice that the commanded angles

are realized after about 9 seconds.
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When the arms are initially at:

0,, = .00 (deg) 8, = .00 (deg.)

If the following parameters are selected to compensate the system;
gy = 5335 q; = 4.1000

g, = .1486 qQ = 6.0500

gy = 1718 q = 3.7750

gy = 0689 Qo = 8250

g, = -1134.644 o, = 709.052

o, = -10014.253 g, = 3590.971

o, = -9904.339 o, = -29336.570

o, = -30396.398 o, = -15116.413

Oy = 32.260 Oy = -20.924

o3 = 290.688 O = -105.330

O = 285.371 O = 856.639

gy, = 886.519 oy = 441.366

oy = -.440 O3 = -.123

O, = -575.060 O,y = -106.708

gy = 7418300 o, = -5432.814

O = 709.052 0,3 = -1134.644

g = -1486.994 g, = -5765.036

Oy = 16.623 Oy = 2.493

Oy = -217.176 gy = 157.805

028 = ‘21.192 033 = 31.754

Oy = 43.209 g5, = 167.831

O, = -.057 0y = -.142

then the closed loop poles of the linearized system are:

Py = ( -3.20, -20) Paa = ( -3.00, -1.00)
Pez = ( -3.20, .20) pss = ( -3.00, 1.00)
pss = (-900.00, .00) Pss = (-800.00, .00)

Table V.1: Parameters Used for Compensation Around Equilibrium Point 8,,=0°
and 6,,=0"
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Position (deg) v.s. Time () Position (deg) v.s Time (3)
1 = 0->10 (deg) 62 = 0->10 (deg) 81 = 0->10 (deg) 62 = 0->10 (deg)
1 1 Ve 10
= 9
10 04 = .
~ O T
) ) - ¢ o
[} L] [ Q0
Z 5 & Ze s &
- N - 4 Q
o ., 0 0, 0
3
2 2 2
1
0 0F— 0
34 05 6§ 7 8 3 10 0 1 2 3 4 5 6 71 8 9 10
Time (3) Time (s)
-8, - BZJ HINEAR SIMULATION -8, - 8 NONLINEAR SIMULATION
(a) (b)
Error (dcg? vs. Time Ss) Torque (N.m) v.s. Time (s)
(61 = 0->10 {deg) 62 = 0->10 {deg) ) (81 =0->10 (deg) 62 = 0->10 (deg) )
5 012 35
v =
I ot - 3
a 0.08 - - fé\ 2.5
o - - ;2
; 0061 - Z Maximum Lorque not excecded
A Co- 151
0 ool -
o 0.04 - ¥ g
co02{ I -
o] - - - 0.5
=~ 0 - | N
[ st 0
L e
® -0.04 e A ; ;
1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 S 6 7 8 9 10
Time (5) Time {s)
[—am—m, - N6l | —xl, - 2 | NOMUNEAR SMULATION
(c) (d)

Figure V.1: Planar Manipulator Response: 10° Step Command Applied to Both Joints
Around 6,,=0" and 8,,=0 (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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Position (deg) v.s. Time (s) Position (defg) vs Time (s)
01 = 0->30 (deg) 62 = 0->30 (deg) 81 = 0->30 (deg) 62 = 0->30 (deg)
30 35 35 3
5 [ 30 30 __;"\ 30
5 t25 51 3 25
3 F cle 5
s A "3
- HS o w15 15
5| § !
Ho 101 10
3 5 51 5
0 0 0 0
0 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 3 10
Time (s) Time (s)
—6, - & LINEAR SIMULATION —e, - ® NONLINEAR SIMULATION
(a) (b)
Error (deg) v.s. Time (s) Torque (N.m) v.s. Time (s)
(61 = 0->30 (deg) 62 = 0->30 (deg) ) (81 =0->30 (deg) 62 = 0->30 (deg) )
37 - 10
v 3 =
N - : 8“
Rl B ’E‘ Maximum torque available
R Z !
v N c
AL B - v _]
°o | I = 4
N “ g
i T < T
Z -05 V
8 -1 T T T T T T T T T -2 T T T T T T T T T
0 1 2 3 4 5 6 7 & 9 10 o 1 2 3 4 5 6 7 8 3 10
Time (5) Time (s)
|“—91N-91L , - 62N-82], | —q, - NONIINEAR SIMULATION
(c) (d)

Figure V.2: Planar Manipulator Response: 30° Step Command Applied to Both Joints
Around 6,,=0" and 8,,=07 (a) Linear Model Response. (b) Nonlinear Model
Response. (¢) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.



Position (deg) v.s. Time (s)
81 = 0->50 (deg) 62 = 0->50 (deg)

Position (deg) v.s. Time (s)
Bl = 0->50 (deg) 62 = 0->50 (deg)
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®ooy I ZE
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Z s
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Time (s) Time {s)
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(© (d)

Figure V.3: Planar Manipulator Response: 50° Step Command Applied to Both Joints
Around 6;,=0" and 6,,=07 (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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For the compensators parameters given in Table V.2 the simulation results
around 0,,=0° and 6,,=30" are shown in Figure V.4 through Figure V.6. The overall
closed loop poles of the system are the same as the previous case. Figure V.4-(a)
shows the linear response for §v,=év,=10 Figure V.4-(b) shows the corresponding
non-linear response. The error between the non-linear simulation and the linearized
model simulation is shown in Figure V.4-(c). The torque applied to each link is
shown in Figure V.4-(d). Notice that the torques do not exceed 4.3 N.m. and hence
the stepper motor will not slip. Comparison of Figure V.4-(d) with Figure V.1-(d)
shows that when the initial position of link 2 is 8,,=30; less torque is required for
the same amount of angular movement. Figure V.5 shows the same simulations for
§v,=6v,=30] Notice that the non-linear response shown in (b) is not as nice as the
previous case. From Figure V.5-(c) notice that the error in this case is larger than
the error in the previous case. Also from Figure V.5-(d) notice that the maximum
torque available is exceeded. Figure V.6 shows the same simulations for

§v,=6v,=50"
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When the arms are initially at:

0,, = .00 (deg.) 0,, = 30.00 (deg.)

If the following parameters are selected to compensate the system;
gy = 25.4405 qQ; = 4.1000

g, = 6.8944 qQ = 6.0500

gy = 7.9734 q = 3.7750

g = 3.4430 Q = .8250

o, = -1075.292 g, = 539.240

o, = 9721232 g, =  2831.178

o, = -13026.752 o, = -20468.911

g, = -30476.822 g, = -14456.266

0y, = 1528.943 07 = -797.291

o = 14111740 o = -4156.325

o, = 18843.999 o, = 29871829

o, = 44448.836 0,4 = 21105.446

gy = -20.988 g3 = -5.688

Oy = -634.885 Oy = -85.096

o = 4495861 o, = -4372.722

O = 539.240 0, = -1075.292

og = ~-1776.393 g, = -5633.772

Oy = 919.470 O3 = 95.161

O, = -0580.547 oy = 06344497

o =  -811.226 0, =  1506.145

Oy = 2583.567 gy, = 8202.306

026 = '2.840 031 = '6.578

then the closed loop poles of the linearized system are:

P = ( -3.20, -20) pes = ( -3.00, -1.00)
Pz = ( -3.20, .20) pes = ( -3.00, 1.00)
pes = (-900.00, .00) Pes = (-800.00, .00)

Table V.2: Parameters Used for Compensation Around Equilibrium Point 6,,=0°
and 8,,=307
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Figure V.4: Planar Manipulator Response: 10° Step Command Applied to Both Joints
Around 6,,=0° and 6,,=30] (a) Linear Model Response. (b) Nonlinear Model
Response. (¢) Error Between Linear and Nonlinear Model Response. (d) Nonlinear

Model Torque Applied to Each Link.
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Figure V.5: Planar Manipulator Response: 30° Step Command Applied to Both Joints
Around 8,,=0° and 0,,=30° (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear

Model Torque Applied to Each Link.



Position (deg) v.s Time (32
0L = 0-550 (deg) 62 = 30-560 (deg

64

Position (deg) v.s. Time (s
Bl = 0-550 (deg) 62 = 30-580 (o)

50 90 §0 100
451 = 90
w{ |7 80 Mooz ~
I . 4 :80
/-\35 = 70 . 401 hd \/\/_——_———_ ~
po| § 3 w3
T 50 & T30 3
- 204 [\ - 60 N
o 50 O 0y, 0
151 50
10
Lo 101 ©
5]
0 . 30 0 , 30
O 1z 3 4 5 6 7 8 9§ 10 0 7 3 4 5 6 7 8 9 10
Time (5) Time (s)
-—6, - 8 JINEAR SIMULATION —6, - 6 NONLINEAR SIMULATION
(a) (b)
Error (Ic%v) vs. Time (s) Torque (N.m) v.s. Time (s
(01 = 0->50 (deg) 82 = 30-80 (deg) ) (61 = 0-550 (deg) 62 = 30-580 (deg) )
520 16
9 = "
._] |5' _——: A'Z"
M .
, I - Z s Maximum torque available
N -
51 2 - LS ‘
° - - i & - UV
. A - S = .Y o T
:«J ’ = = ‘:: /\// ; ‘]
7 s o1
Z ]
O -10 T -4 T T
O 1 2 3 4 S 6 7 8 93 10 0 1 2 3 4 S5 6 71 8 9 10
Time () Time (s)
‘~—BIN-61L, - BN-62L —| —yl, - 42 | NONUNEAR SIMULATION
(c) (d)

Figure V.6: Planar Manipulator Response: 50° Step Command Applied to Both Joints
Around 6,,=0" and 8,,=30° (a) Linear Model Response. (b) Nonlinear Model
Response. (¢) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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Figure V.7 through Figure V.14 are simulation results for different joint
command inputs, év’s, and different initial 8,’s. The explanations are similar to the
previous cases. In all of these simulations, the closed loop poles of the system are
kept the same. One important observation from the graphs is that as the initial 6,
gets closer to 180° or -180; less torque is required for the angular movements. This
is due to the fact that the effective inertia "seen" at joint 1 gets smaller as the arm

"bends" towards that joint.
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8,

o

E11
B2
821
g2

26

Pai
Pa2
Pa3

o nu

.00 (deg.)

17.457
3.443
3.981
3.443

-935.855
-8601.861
-19963.543
-28579.399

1342.577
12595.464
29052.660
41709.069

-14.402

-775.406
-2591.923
129.855
-3005.254

1126.747
3773.636
-212.333
4380.147

-2.840

-3.20,
-3.20,
-900.00,

When the arms are initially at:

4
0
8
0

-20)
20)
.00)

6,

0

qs
Jz
i
Yo

Pa4
Pas
Pds

1N T O | B 1

oo

It

1 | TR T |

90.00 (deg.)

If the following parameters are selected to compensate the system;

4.1000
6.0500
3.7750

8250

129.855
454.310
-1111.696
-16043.449

-194.946
-672.599
1601.298
23440.629
-2.840

-29.878
-1567.703
-935.855
-4937.645

29.351
2270.039
1335.944
7201.699

-3.285

then the closed loop poles of the linearized system are:

( -3.00,
( -3.00,
( -800.00,

-1.00)
1.00)
.00)

Table V.3: Parameters Used for Compensation Around Equilibrium Point 0,,=0°

and 6, =90’
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Figure V.7: Planar Manipulator Response: 10° Step Command Applied to Both Joints
Around 6,,=0° and 6,,=90° (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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Position (deg) v.s. Time (s) Position (deg) v.s. Time (s)
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Figure V.8: Planar Manipulator Response: 30° Step Command Applied to Both Joints
Around 8,,=0" and 6,,=90° (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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Position (deg) v.s. Time (s)

Position (deg) v.s. Time (s)
Bl = 0-550 (deg) 62 = 90->140 (deg) 61 = 0->50 (deg) 62 = 90->140 (deg)
50 150 60 160
1 H50
w{ [ 140 504 ___:’\‘-
I B < : 0
B E 3o . 0 [ Z "
$301 F iy H 30 o
Tas 120 8 S | 3
20, N - E 120 o
° Lo @ @ /2 °
151 E 10
1] 00 104 100
54
0 — % 0 , . %
0 1 2 3 4 5 6 7 8 ] 10 0 1 2 3 4 5 6 7 8 9 10
Time (s) Time (5)
—o, - 8 LINEAR SINULATION —8l , - 62 | NONUNEAR SIMULATON
(a) (b)
Frror (dcfg) v Time (s) Torque (N.m) v.s. Time (s
(61= 0-550 (deg) 2= 90->140 (deg) ) (81 = 0-550 (deg) €2 = 90->140 {cg) )
o 15 10
:}D
I 8
o 10 ~ - Maximum lorque available
8 5z £ s *
| -z z
A WA - = — — — —
- = o
© S e B Y
j e - 01
° t V
7 2
5 -4 T T T T T T T T T
8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (5) Time (s)
|—61N-91L, - BN-02L | —t, - 2| NONUINEAR SMULATION
(c) (d)

Figure V.9: Planar Manipulator Response: 50° Step Command Applied to Both Joints
Around 6,,=0" and 6,,=90” (a) Linear Model Response. (b) Nonlinear Model
Response. (¢) Error Between Linear and Nonlinear Model Response. (d) Nonlinear

Model Torque Applied to Each Link.
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i uwn I | TR | I | S | I

135.00 (deg.)

4.1000
6.0500
3.7750

.8250

18.398
-32.078
3270.428
-15652.593

-29.136
49.570
-4781.757
22881.239
-516

-6.762
-355.818
-907.355

-4315.803

8.068
519.872
1321.739
6306.553
-.596

When the arms are initially at:

0,, = .00 (deg.) 0,5,
If the following parameters are selected to compensate the system;
gy, = 10.9393 s
g8n = 6250 q,
En = 7228 q
gy = 3.4430 Jo
g, = -907.355 o
o, = -8010432 o
o, = -21835.497 as
g, = -25817.058 o,
O, = 1315.173 047
o, = 116068.306 016
o, = 31843.892 Ogs
g, = 37698.519 014
oy = -9.025 013
0, = -804.057 Oy
o, = -4074.530 Oy
O = 18.398 O3
Oy = 1168.807 O35
O = 5939.495 O34
Oy = 4581.272 (%
O, = -2.840 O3
then the closed loop poles of the linearized system are:
Pa = ( -320, -20) Paa
P = ( -320, .20) Pas
pd3 = ( ‘900.00, .00) pd()

( -3.00, -1.00)
( -3.00, 1.00)
(-800.00,  .00)

Table V.4: Parameters Used for Compensation Around Equilibrium Point 6,,=0°

and 0, =1357
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Position (deg) v.s. Time (s) Position (deg) v.s. Time (s)
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Figure V.10: Planar Manipulator Response: 10° Step Command Applied to Both
Joints Around 0,,=0" and 6,,=1357 (a) Linear Model Response. (b) Nonlinear
Model Response. (c) Error Between Linear and Nonlinear Model Response.

(d) Nonlinear Model Torque Applied to Each Link.
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Position (deg) v.s. Time (s) Position (deg) v.s. Time (s)
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Figure V.11: Planar Manipulator Response: 30° Step Command Applied to Both
Joints Around 0,,=0" and 0,,=1357 (a) Linear Model Response. (b) Nonlinear

Model Response. (c) Error Between Linear and Nonlinear Model Response.
(d) Nonlinear Model Torque Applied to Each Link.
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Figure V.12: Planar Manipulator Response: 50° Step Command Applied to Both
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When the arms are initially at:

0,, = .00 (deg) 0,, = -45.00 (deg.)

(o] 0

If the following parameters are selected to compensate the system;

g1 = 23.9755 qQ; = 4.1000
8o = 6.2611 qQ = 6.0500
g1 = 7.2409 q = 3.7750
gn = 3.4430 gy = 8250
o, = -1028.453 o, = 404.527
o, = -9440.135 g, = 2120.897
o, = -15395.273 gs = -13765.620
o, = -30256.619 o, = -14554.364
o, =  1463.666 ;= -599.605
oy, = 13707.120 o, = -3117.369
o, = 22319.111 o, = 20077.049
g, = 44133.185 o = 21251569
oy = -19.780 O3 = -5.165
oy = -682.095 Oy = -67.743
o0y = 2149454 g, = -3506.152
09 = 404.527 o, = -1028.453
o3 = -2112.573 0p = -5479.206
gy = 989.151 Oy = 72.420
g, = -3156.507 oy = 5082435
o =  -614.175 o =  1443.834
0, = 3075.058 05, = 7979475
Oy = -2.840 gy = -5.974

then the closed loop poles of the linearized system are:

Pa = ( -320, -20) paa = ( -3.00, -1.00)
P = ( -320, .20) pss = ( -3.00, 1.00)
Pz = (-900.00, .00) Pus (-800.00,  .00)

Table V.5: Parameters Used for Compensation Around Equilibrium Point 6, =0°
and 0, =-45°
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Figure V.13: Planar Manipulator Response: 10° Step Command Applied to Both
Joints Around 8,,=0" and 6,,=-45] (a) Linear Model Response. (b) Nonlinear
Model Response. (c) Error Between Linear and Nonlinear Model Response.

(d) Nonlinear Model Torque Applied to Each Link.
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Figure V.14: Planar Manipulator Response: 30° Step Command Applied to Both
Joints Around 8,,=0° and 0,,=-457 (a) Linear Model Response. (b) Nonlinear
Model Response. (c) Error Between Linear and Nonlinear Model Response.

(d) Nonlinear Model Torque Applied to Each Link.
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To overcome the slippage problem of the stepper motor, the input given in
Figure V.15-(a) is applied to the system. The interval for the ramp part of the input
is 0.625 second. The compensators parameters are identical to those of Table V.1.
Comparing Figure V.15-(d) with Figure V.3-(d), it is observed that by applying the
ramp input, the maximum external torque applied to each link has been decreased
significantly. The maximum 66 of the stepper motor in this case was 43.2° Also
from Figure V.15-(b) and Figure V.3-(b) notice that the non-linear response has not
been changed significantly; i.e. for the ramp input the response has been slowed

down only a little bit.
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Figure V.15: Planar Manipulator Response: Ramp Command Applied to Both Joints
Around 6,,=0° and 8,,=0° (a) Command Applied to Both Joints. (b) Nonlinear
Model Response. (¢) Error Between Linear and Nonlinear Model Response.

(d) Nonlinear Model Torque Applied to Each Link.
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The compensators parameters given in Table V.6 are for the case when the
planar manipulator has been commanded to draw a straight line. The simulation
results for two different time intervals are shown in Figures V.16 and V.17. Figure
V.16-(a) shows the command inputs to the system such that the end effector moves
in x direction (straight line) from -70 cm to 70 ¢cm in 20 seconds. Notice that both
v, and v, have changed more than 1307 The end effector trajectory and the error
is shown in Figure V.16-(b). Figure V.16-(c) and Figure V.16-(d) show the external
torques applied to link 1 and link 2 respectively. Notice that the torques are small
and therefore no stepper motor slippage is present. Figure V.17 is similar to Figure
V.16 except that the robot arm has been commanded to draw the same straight line
in 60 seconds. Comparison of Figure V.17-(b) with Figure V.16-(b) indicates that

when the time interval has been longer the trajectory is much better.
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When the arms are initially at:

0,, = 133.95 (deg.) 8, =32.61 (deg.)
If the following parameters are selected to compensate the system;
g, = 5045 qQ; = 4.1000

g, = 1360 g, = 6.0500

gy = 1573 q = 3.7750

gn, = .0689 qQ = .8250

g, = -1067.052 g, = 515.601

g, = -9675.195 g, =  2713.240

o, = -13449.214 o = -19271.199

g, = -30457.453 o, = -14434.692

O, = 30.347 0,7 = -15.252

g, = 280.908 Oy = -79.678

O = 389.270 O = 562.431

g, = 888.429 Oy = 421.486

og = -416 O3 = -112

0y = -643.190 Oy = -82.069

o, =  4085.635 0, = -4222.549

O = 515.601 0, = -1067.052

o, = -1828.767 g, = -5610.092

Oy = 18.635 O35 = 1.822

Oy = -119.737 Oy = 122.513

O, = -15.533 Oy = 29.900

0y = 53.203 0y = 163.363

02() - '.057 031 = '.130

then the closed loop poles of the linearized system are:

P = ( -3.20, -20) Pes = ( -3.00, -1.00)
P = ( -320, .20) pes = ( -3.00, 1.00)
pss = (-900.00, .00) Pas (-800.00, .00)

Table V.6: Parameters Used for Compensation Around Equilibrium Point
8,,=133.95° and 6,,=32.61°
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Figure V.16: Planar Manipulator Response: Straight Line Trajectory Is Desired in 20
Second. (a) Command Applied to Each Joint. (b) End Effector Trajectory and Error.
(¢) Torque Applied to Link 1. (d) Torque Applied to Link 2.



Inpul Command (deg) v.s. Time (s)

10— 130
120{ . 9 2
\ = = H110
1001 = =
= = 100
W = Y %
e = N )
NI = o
= — 60
20 = =
- %0
01 ="l
20— T ' . : -Lw
0 0 20 3 40 50 60
Tine (3)
== 5 = W
(a)
. Torque Applied to link 1
0.
0.2
0.1 il
. [ it
I i il
Ll R
H g
7.
402
-
}.
03
-0.4
05
0.6 1 T T T T T
0 10 20 30 40 50 60
Time (s)
()

v2 (deg)

Eind Effector Trajectory & Error

(Cartesian Coordinales)

50 0.25
457 End Effector Trajectory 9.2
40 =¥ 0.15
351 0.1

~ 30 0.05

: [

8251 4o
%120 »Error iny [0
151 ; -0.1
10- ‘ -0.15
] Length of Simulafion = 60 Sec. et

0 r T v T T T T -0.25
-80 -60 -40 =20 0 20 40 60 80
x (cm)
(b)
o Torque Applied to Link 2
0.05

30 40 50

Time (s)

10 20

(d)

60

82

Error in y (cm)

Figure V.17: Planar Manipulator Response: Straight Line Trajectory Is Desired in 60
Second. (a) Command Applied to Each Joint. (b) End Effector Trajectory and Error.
(¢) Torque Applied to Link 1. (d) Torque Applied to Link 2.
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For the cases considered so far, both links have been commanded to move
simultaneously. The intention has been to consider the worst cases. However, for
completeness Figures V.18 and V.19 are also included. Figure V.18 shows the
simulation results when link 1 has been commanded to move 50° from its initial
position and link 2 has been commanded to stay at its initial position. Figure V.19
shows the simulation results when link 1 has been commanded to stay at its initial
position and link 2 has been commanded to move 50° from its initial position.
Comparing Figure V.18-(b) with Figure V.19-(b) it can be seen that the nonlinear
model behaves more like the linear model for the case when only link 1 is
commanded to move. Note that the maximum error is 0.003 degree in this case
while the maximum error is -3.3 degree when only link 2 is commanded to move.
Hence, it follows that the error between the linear model and the nonlinear model
is introduced mostly due to the movement of link 2. Also from Figure V.18-(d) and
Figure V.19-(d) note that when only link 2 is commanded to move, less torque is
required as expected. This is because when only link 1 is commanded to move it has
to carry link 2 also i.e. more mass is involved for the movement and therefore more

torque is required.
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Figure V.18: Planar Manipulator Response: 50° Step Command Applied to Joint 1
Around 8,,=0" and 0,,=0" (a) Linear Model Response. (b) Nonlinear Model
Response. (¢) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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Figure V.19: Planar Manipulator Response: 50° Step Command Applied to Joint 2
Around 8,,=0" and 8,,=0. (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear

Model Torque Applied to Each Link.



86

For all the previous simulations the desired closed loop poles of the planar

manipulator system have been selected as following

Pa = ( -320, -20) pa = ( -3.00, -1.00)
pe = ( -320, .20) pss = ( -3.00,  1.00)
Piz = (-900.00, .00) Pes = (-800.00, .00)

Figure V.20 shows the simulation results around 8,=0" and 8,=0° for év,=6v,=10"

where the desired closed loop poles of the system have been changed as follows

P = ( -320, -20) Pes = ( -3.00, -1.00)
Py = ( -320, 20 pss = ( -3.00,  1.00)
ps; = ( -90.00, .00) P = ( -80.00, .00)

The compensators parameters are given in Table V.7. By comparing Figure
V.20 with Figure V.1 the following two observations can be made; 1- as the real
poles of the closed loop system are moved toward the origin of the s plane, the
external torques applied to the links do not change significantly, 2- the nonlinear
model response is not as well behaved as it was when the real poles were further
from the origin. Perhaps this implies that the reduced ordered model can be used
to describe the planar manipulator arm. By reduced order model it is meant that the

two real poles of the system can be placed at infinity; i.e. they can be ignored.
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When the arms are initially at:

0,, = .00 (deg) 8,, = .00 (deg.)

If the following parameters are selected to compensate the system;
gy = 0534 q; = 4.1000

g, = 0149 qQ, = 6.0500

gy = 0172 q 3.7750

g22 = .0069 qo = .8250

(o -119.729 (o 72.770

o, = 462.093 g -2800.974

o, = 17264.549 o, = -53984.504

o, = 8612.644 o, = -29385.917

0, = 3.399 0,7 = -2.028

oy = -13.836 O = 84.133

O = -505.209 os = 1578.552

o, = -252.037 Oy = 859.174

og = -.044 g5 = -012

g, = -59.975 O,5 = -11.731

0, = 10746.536 o, = -3775.779

O = 72.770 O, = -119.729

o = -3391.740 Oy, = 908.699

Oy = 1.780 O35 = 299

Oy = -314.094 Oy = 110.271

Oy = -2.055 oy = 3.349

O = -.006 gy = -.014

then the closed loop poles of the linearized system are:

Pa = ( -320, -20) Paa = ( -3.00, -1.00)
Py = ( -3.20, .20) pes = ( -3.00, 1.00)
pis = (-900.00, .00) Pas (-800.00, .00)

Table V.7: Parameters Used for Compensation Around Equilibrium Point 6,,=0°
and 0,,=0" (Real Poles Shifted).
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Figure V.20: Planar Manipulator Response: 10° Step Command Applied to Both
Joints Around 6,,=0" and 6,,=0. (a) Linear Model Response. (b) Nonlinear Model
Response. (¢) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.



The results obtained from the simulations can be tabulated as following:

89

P -MR NLMR. | Max. |sM.
810 | 0 6V =6V, H H 9
PO. iST. |PO. iST. Err. | slip?
| o 10° o {25 | 0o { 4 | °| N
| o 30° 0° 1+ 25 | 2221 9 3.3° Y
0| o 50° 0° 1 25 | 15° 1 10 | 18° Y
0 | 30° 10° 0 ! 25 |05 8 | 08| N
0° | 30° 30° 0° 1 25 | 25 1 10 | 43° Y
0° | 30° 50° 0" 1+ 25 | 15° 1 125 | 17° Y
0° | 90° 10° o {25 | 5 {82 | £ | N
0° | 90° 30° 0° 1 25 | 3° i 115 | 37 Y
0° | 90° 50° 0° 1+ 25 | 10° ¢ 13 10° Y
0 | 13° | 1w ¢ {25 | 521 8 | 3| N
0° | 135° 30° 0° 1 25 | 151 8 2.5° N
0° | 135° 50° 0° 1 25 5 1 98 6’ Y
0° | 45° | 10 o {25 | ° 1 8 | 2| N
0" | -45° 30° 0° 1+ 25 1° 1 10 | 18 Y
0, = Initial Position of Link i.
8v; = Command Input to Link i.
L.M.R. = Linear Model Response.
N.LM.R. = Non-Linear Model Response.
P.O. = Peak Overshoot.
S.T. = Settling Time in Second.
Max. Err. = Maximum Error Between LM.R. & N.L.M.R.
S.M. Slip? = Stepper Motor Slippage Present? (Y =either one or both motors slip;

N =neither motor slips)

Table V.8: Tabulated Results.
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VI. CONCLUSIONS & RECOMMENDATIONS

In has been demonstrated that the multivariable pole placement algorithm for
linear systems can be applied to the nonlinear planar manipulator system. The
compensation procedure used is based on the ability to express the open loop
transfer matrix of a system as the product R(s)P''(s), where P(s) and R(s) are
relatively right prime polynomial matrices with P(s) column proper and degree of
each column of P(s) greater than or equal to the degree of the corresponding column
in R(s). It is shown by Wolovich [22] that for a controllable and observable system,
the transformation of the open loop transfer matrix to R(s)P"'(s) where R(s) and P(s)
satisfy the necessary requirements is guaranteed by employment of the structure
theorem. The pole placement algorithm in general requires a lot of calculation. It
might be noted that the compensation scheme has been done entirely in the

frequency domain with no reference whatsoever to the time domain notion of state.

The main question asked in this thesis is "How effective is the linear pole
placement controller for a nonlinear planar manipulator?" To answer this question,
simulations at different equilibrium points were performed. Simulation results are
summarized in Table V.8. Consider the case where the initial position of link 2 is

0% and command input of 30° is applied to each joint. Note that slippage is present
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i.e. at least one of the motors is slipping. Now consider the case where link 2 is

initially at 135° and the same command input as the previous case is applied to each

joint. Notice that the stepper motors are operating in their linear region i.e. slippage

does not occur. As link 2 moves towards link 1 the effective inertia around joint 1

gets smaller and hence less torque occurs for the same angular movement. To

compensate for the slippage of the stepper motor the following are recommended:
1- Use a stepper motor which is capable of producing higher torque.

2- Apply ramp inputs instead of step inputs.

Stability of the system even when the input command is as large as 50° is
noticeable. This implies the robustness of the system relative to the perturbation
around an equilibrium point. For further research one can study the robustness of

the system relative to pay load.

The effectiveness of the linear pole placement controller for the planar
manipulator was also demonstrated by commanding the planar manipulator to draw
a straight line in the x direction for a distance of 1.4 meter first in 20 seconds and
then in 60 seconds. It was shown that better result is obtained by allowing more time

for the planar manipulator to perform its task.

It was shown that as the two real poles of the closed loop system are moved

away from the origin of the s plane, better responses are obtained. This suggests that
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the sixth order system can be approximated by a fourth order system. However this
is still questionable and it is left for further research. Simulations when only one link
at a time is commanded to move were also performed. It was shown that the error
introduced between the linear and the nonlinear model of the planar manipulator is

mostly due to the movement of link 2.

Considering the rise times, peak overshoots, and settling times of all nonlinear
model responses (see Table V.8), it can be concluded that the pole placement
algorithm is effective for the nonlinear planar manipulator. As soon as the planar
manipulator is completed in the Oregon State University control laboratory the

results presented here should be experimentally verified.
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APPENDIX A

A.1 LAGRANGE METHOD

The motion equations in the Lagrange method are derived in terms of
generalized coordinates. Generalized coordinates are used to "locate" elements of the
system with respect to a reference system (positions, angles, independent node

potentials, independent loop currents, charges, etc.):

q,
q-= All
2,
The generalized forces acting on the system are
Fi(q)
F(@) =| : A.12
F(9)

If the generalized forces can be obtained from the gradient of a scalar function

V=V(q), ie:
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o
9q,

F = _%L’ _| A3
7 |
b w.-

then the system is called energy conservative and the function V(q) is called the
potential energy. The kinetic energy, T, is defined in terms of the generalized

coordinates and their derivatives, i.e:

T = Tg.q") Al4

The Lagrange function L, is now defined as

L = Lgq) = Tig.gH-g) ALS

and the Lagrange equations of the motion have a form

4Ly oL _ g ALG

dt 59" Oq

where R is nonconservative force vector.



97
A.2 EQUATIONS OF MOTION FOR THE PLANAR MANIPULATOR

Consider the planar manipulator shown in Figure II.3. To derive the
equations of motion the total kinetic energy of the manipulator must be computed.
Notice that the change in potential energy of the manipulator is zero since the
movement of the links are constrained in a horizontal plane. To derive the kinetic

energy of the system, the following equations are established. For link 1

X, = Lcosd
S A2.1
y, = L;sin@,
and for link 2
x, = L,cosO +—cos(9 +0.,)
2 1c0s0, +Ly 179 A22
y, = L;sinB, +L,sin(6, +0,)
The total kinetic energy is given by
T = —;—(m11712+71wf+m217§ +1,03) A2J3

where v; is velocity magnitude of the center of mass of link i, [, is the moment of
inertia of link i about its center of mass, and w; is the angular rotation rate of link

i. w, and w, are given as

A24
w, = 0 +0/2



98

Only horizontal planar motion is considered. Hence for link 1:

¥, = -0/ L;sin0
ooore A25
¥, = 0 Lcosd,
2 -p = )
W= T = oL A26
For link 2:
X', = -0/ \L;sin0,-(6/,+6',)L,sin(6,+0,)
2 11 1 1 2 L2 172 A2
¥, = 0 Lcos, +(8',+6/,)L,cos(6,+6,)
V=X Y = G’T(le+172+2LIIjzcosez)+
A28
0/7L; +26,6/,(L3+L, L,cos0,)
The following positive constants are defined:
ky = mLL,
k, = ’1+12+m1L1+mz(L1+L72) A29

Since the arm is moving in a horizontal plane, the change in its potential
energy is zero and therefore the Lagrange equations of motion given by Equation

A.1.6, simplifies to the following form (notice that q=8)

4.1y or _ p A2.10

dt o¢y° 00
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where

: /
e‘l; o - ell Az11

and R, the total nonconservative forces, is given by

Rl
R,

/
17k, 9 A2.12

R =

1:2—kj2 0’2

For the manipulator in the control laboratory, the masses of the links are very close
together. Hence it is assumed that the coefficient of friction, which is obtained
experimentally, is the same for both links i.e. ky; =kp, =k In fact several simulations
were done using different values of k; and nearly identical results were obtained.

With this assumption Equation A.2.12 becomes

Rl
R,

/
_ [k, A2.13

1:2—kf6’2

R =

In Equation A.2.13, 7, and 7, are the external torques applied to each link and k® ",

is the assumed friction for link i.
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From Equation A.2.10 through Equation A.2.13, the following can be written:

or
3/,

6’ (k,+2k,cos0,) +8,(k,+k, cos6,)

A.2.14
ar

- = o' k,+0' (k,+k, cos0,)
o,

%(:TT/‘) = 0" (k,+2k,cos0,)-26’,0/,k,sin6,+0" (k, +k,cos6,) -
1

02k sind, A2.15

d, oT .
E(w) = 0",k +6" (k,+k,cos0,)-0' 0k sinb,
2

9T o0
%,

A2.16
oT

36,

1]

~6"k,sin6,-0’,0/,k,sin0,

Substitution of Equation A.2.13, and Equation A.2.15 through Equation A.2.16 into
Equation A.2.10, will result in the following dynamical equations of the system

o | (ky+2k,c00,) -26/, 6/ k,sin6, + 6", (k, cosb, +k,) -6k sind,
6", (kcos8, +k;)+8" k; +6/7k;sind,

T,k

_rz—ka' 5

A2.17

Equation A.2.17, is used for the nonlinear simulation.
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APPENDIX B

B. DERIVATION OF THE LINEARIZED MODEL

Consider the open loop block diagram of the robot arm, including the stepper
motors and drives, shown in Figure II.1. In Section IL.3, it was shown that, if the

state vector is chosen as given by Equation 11.3.2, then the first order differential

state vector is described as

- [/ ] r 1
f 1 6 1 x3

f o X4
f; e//l 6//l
f4 e//2 e//2

f; X /5 kvul

B.1

o) |x p ki, |
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where

0", = [k2k3—k§ —kfcosz(xz)]“‘*
&,k ((x5-x)) - (x5-x,)) +
Kk sinx,) (3 +x2+2x,%,) -
k,k_cos(x,)(x¢-x,)+
%klzsin(sz)x:+
k/(k3(x4—x3)+klx4cos(x2))]

s

B.2

0, = kk,-k;-kicos*(x,)] *
[kt(ki(xts _xz) _k3(x5 -X l)) +
klkvcos(xz) (2(x6 —12) - (xs -X l)) -

klzsin(2.x2) (xf + %xf +X;%,) -

k,sinQe,)(exs +kyxy +2k,x,%,) +
k(e cos(x,)(x,-2x ) +kx3 -k x)]

fa

Notice that f; and f, given by Equation B.2 are nonlinear. To be able to write
Equation B.1 in a state representation form of x/ = Ax+ Bu, it must be linearized and

evaluated around an equilibrium point.

Having defined the state vector by Equation I1.3.2, it can be shown that a,

through a5 given by Equation I1.2.4, can be rewritten as

a, = 2k,cos(x,)+k,

k,cos(x,)+k,

-ksin(x,) B.3
a, = k‘(xs—xl)+klsin(x2)xf +2k sin(x,)x,x, -k, x,

ag = k‘(xﬁ—xz)—klsin(xz)x32 -k.x,
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Substitution of a, through a5 from Equation B.3 into the set of nonlinear equations

given by Equation 11.2.5, results in the following expressions for f; and f;:

fy = 0" = HixH, B.4
fy = 0"y = HxH,
where
H, = lkky-k;-kicos™(xy)] ™
H, = kk [(xs-x)-(xg-x)]+k,k;sin(x,) [xg +xf+2x3x4] -k,k _cos(x,)
(rg=x))+3kisin(2e,)x; +k Ty (x=x) +kycos(x)x,] B.S

H, = k [ky(xg-x,)-ky(x5-x,)] +kk_cos(x,)[2(xg—x,) - (xs—x,)]-
Kysin(2x,) (x5 + 524 5% ~ysine;) gty +eyry +2Ksxsx, ) +
k,{kl cos(x,)(x;-2x ) +kyx,-k,x,]

The general form of the state representation of a linearized model can be described

by the following [12]

8x' = Adx+Bdu B.6
8y = Cdx+Dbu

where the A, B, C, and D matrices (system matrices) must be evaluated at the
desired equilibrium point. It can be shown that the linearized system matrices for

the system under consideration are given by
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% %K ¥ [0 0 1 0 0 O]
& ax drg 0O 0 01 0 O
% % % Aoy Gpy Gy Qny Gox G
Ao mm T | 31 933 Q33 3y G35 Y36 B.7

; : Gy Gy Q43 Gy Q45 Gy
¥ o ¥, 0O 0 0 0 O O
| %% " &% | |0 0 0 0 0 O]

(the third and forth row of matrix A are derived shortly)

% %] [o O]
aulaul 00
¥ %
B=|am o100 B.3
: k[0 0
% % 10
Laulau,_ _014
wm
Czaxlaxz"'ax,=looooo B9
® @ & (010000
axl&l atG
a
po|™ ™ 00 B.10
@m0 0
Ouy  Ouy

By inspection of Equation B.7 through Equation B.10, one can see that the
only matrix which varies at different equilibrium points is the matrix A. The

elements in the third and the forth row of matrix A are as following:



a;, = {;’: = -HI(Klsin(2x,))H,+
H,[kk, +klk3cos(x2)(x§ +xf +2x3%,)+
k;k _sin(x,)(xs-x,) +k k_cos(x,)+
kfcos(2x2)x§ —klkf sin(x,)x,]
ay, = %: = H, [k sinx,)(2x, +2x,) +kisin(2,0x,~k k]
ay, = % _

~ Hl[klkssin(xz)(2x3+2x4)+kl(k3+klcos(x2))]
4
C¢
Q35 = ;2’ = Hikk,

Ay = o = H,(-k;k ~k k cos(x,))

a, = = = Hl(k3k1+klktcos(x2))

105

B.11

B.12

B.13

B.14

B.15

B.16

B.17
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‘= -H{(kjsin(2x,)H,+

a, =2
42 o,

H [ 'kzk: -k k sin(x,)(2(x4-x,) (x5 —x,)) -

B.18
2k,k _cos(x,) —2k12cos(2x2) (xi +-;-x3 +X,%,) -
kycos(x,)(kyx3 +kyxg +2k;xx) +k -k sin(x)(r,~2x,)]

a, = %‘3 = H,[-k’sin(2x,)(2x, +x,) -k sin(x,) * b o
(2kyx,+2kyx,) +k/(klcos(x2) +k,)]

a, = %: = H,[-KZsin(2x,)(x, +x;) -k sin(x,) + b2
(2kyx, +2k;x,) —k,(2klcos(x2) +k,)]

a5 = %‘5 = H(-k;k_~kk cos(x,)) B.21

Gy = -Z‘; = H,(kk +2k k cos(x,)) B.22

At any equilibrium point all the rates variable must be zero. This implies that

the following must be satisfied at any equilibrium point (see Figure II.1):

220 %=X B.23
x3=x4=0 Xg = X,
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Substitution of Equation B.23 into Equation B.11 through Equation B.22 results in

the following matrix A around any particular equilibrium point.

’ﬁﬁ"ﬁ' 00 1 0 0 0]

& o dxg 00 0 1 0 O

oh & u

L . abkakb -a -b
A:axlaxl = ﬂdb

' bckhpke -b-c
o o ¥, 00 0 0 0 O
0

N A 00 0 0 O]

where

a s -kk H,
b a (kcos(x, ) +k )k H,

¢ & -(2kcos(x, ) +k )k, H,

k
A
kg 2

T

B.24

B.25

Notice that the evaluation of matrix A around any equilibrium point is

independent of the initial position of the first link.

The A, B, C, and D matrices given by Equation B.24, and Equation B.8

through Equation B.10, respectively, are the one which are used for the linearized

model. Consequently these matrices are used to derive the compensator of the

closed loop system.
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APPENDIX C

The structure theorem establishes a fundamental structure of dynamical
systems. In particular, if a given system is state controllable, the structure theorem
can be employed to write the transfer function of the system as T(s)=R(s)P(s)
where R(s) and P(s) have certain properties as discussed shortly. In order to
establish this theorem, the following definitions, some of which has been stated in

Section 11.4, are presented first.

C.1 PRELIMINARY DEFINITIONS

DEFINITION C.1.1: The degree of a polynomial matrix P(s), denoted by the scalar
d[P(s)] is defined as the degree of the polynomial element of highest degree in P(s).
The degree of the j-th column of P(S) denoted by the scalar 9,{P(s)], is defined as
the degree of the polynomial element of highest degree in the j-th column of P(s).
The constant matrix consisting of the coefficients of the highest degree terms in each

column of P(s) is denoted by ' [P(s)]. Subscript "c" implies column.
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DEFINITION C.1.2: The degree of the i-th row of P(S), denoted by the scalar

9,[P(s)], is defined as the degree of the polynomial element of highest degree in the
i-th row of P(s). The constant matrix consisting of the coefficients of the highest
degree terms in each row of P(s) is denoted by I',[P(s)]. Subscript "r" implies row.

To illustrate, consider the following example:

EXAMPLE C.1.1: If

p”(S) le(s)

P(s) = : : ;  with
Pri(S) = PynlS) C.11
. PE)I-1
P8) 8% ipyS el Y, ot
k=0
where
o, P 20 C.1.2
which implies [P;(s)]=;[P(s)], then
8,IP()] = Max {B,IP(S))),.;..) i
3,[P()] = Max ((B,[PO)D),.,.,)
Note that
9,P(s) <0, [P(s)] for all j
)% C.1.4

9,;P(s)<9 [P(s)] for all i
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In particular if

-3 1 2
P@s) = [4s+2 2 0 C.L5

-s2 s+3 -35+2

then 8, =2, 8,=84=1, 3,=3,=2, 3,=1 and

1 0 2 1 00
L[PGs)] ={0 0 O ; TJPE)] =4 00 C.1.6
-11-3 -100

The column j zeros in ' [P(s)] indicate that the corresponding polynomials are of
lesser degree than J,[P(s)]l. The row i zeros in I'[P(s)] indicate that the

corresponding polynomials are of lesser degree than 9,[P(s)].

DEFINITION C.1.3: A nxm polynomial matrix, P(s), is called column proper if and
only if T [P(s)] has full rank i.e. rank{r [P(s)]} =min(n,m). A nxm polynomial
matrix, P(s), is called row proper if and only if I [P(s)] has full rank i.e.

rank{T [P(s)]} = min(n,m).

DEFINITION C.1.4: If three polynomial matrices satisfy the relation;
P(s)=H(s)G,(s), then G(s) is called a right divisor of P(s), and P(s) is called a left
multiple of G(s). A greatest common right divisor (g.c.r.d.) of two polynomial

matrices P(s) and R(s) is a common right divisor which is a left multiple of every
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common right divisor of P(s) and R(s).

DEFINITION C.1.5: A unimodular matrix U(s) is defined as any square polynomial

matrix whose determinant is a nonzero constant.

DEFINITION C.1.6: Two polynomial matrices R(s) and P(s) which have the same
number of columns, are said to be relatively right prime if and only if their greatest

common right divisors are unimodular matrices.

EXAMPLE C.1.2: For the following two polynomial matrices R(s), and P(s)

2

s =S sc -1
- . _ C.1.7
R(s) = [0 1] ; P(s) [_s s2]

it can be shown that the following square matrix is one of the greatest common right

divisors of the two polynomial matrices R(s) and P(s).

s 0
G - C.1.8
A {o 1
In particular
RG) 1 -s|fs 0
s) = ;
0 1§01
j ) C19

K —1-[s 0]
P(s) =
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Notice that G/(s) is not a unimodular matrix since |G(s)|=s is not a nonzero

constant.

DEFINITION C.1.7: A polynomial matrix, T(s), is called proper if the numerator
degree of each entry of T(s), i.e. Ty(s), is less than or equal to the corresponding
denominator degree. In the case of strictly proper transfer matrix, the degree of the
numerator of each entry, Ty(s), of T(s) is equal to the corresponding denominator

degree.

C.2 EQUIVALENT SYSTEMS

Consider a dynamical system represented by:

x'(6) = Ax(t)+Bu(f)

C2.1
y(©) = Cx(t)+Du(t)
If the state of the system, x(t), is altered via the relationship
@) = Qx(r) C.2.2
where Q is a nxn nonsingular real matrix, then
x(t) = Qi C.23

Substitution of Equation C.2.3 into Equation C.2.1 yields the following
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Q'#()) = AQ'2(9)+Bu(f)

C.24
¥(&) = CQ4(®)+Du(r)
Equation C.2.4 can be rewritten as:
A/ = OA ~1a B
() = QAQ™ £(H)+QBu(r) C2.5
¥(&) = CQLi(®)+Du(r)
or
A/ - LA B‘
£'(t) = AL(D)+Bu(p C2.6
y(t) = Ci(t)+Du(®
where
A = QAQ! ¢ = cQ!
ohe ; © C2.7
B =0B D=D

Therefore the following can be established:

DEFINITION C.2.1: The state representations of Equation C.2.1 and Equation C.2.6
with states related by Equation C.2.2 are said to be equivalent and Q is called an
equivalence transformation. In other words, the system {A,B,C,D} and {AB,C,D}
are equivalent if and only if the following relationships hold for some nonsingular

real matrix Q:
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C.2.8

P}
|
Q
<

o
0
-}

the justification for the use of the term "equivalent" in Definition C.2.1 can be readily
demonstrated by noting that the solution of either system, x(t) or &(t), immediately

implies the solution of the other via Equation C.2.2.

C.3 CONTROLLABLE COMPANION FORM

Before starting the procedure for deriving the controllable companion form

the following theorem is stated.

THEOREM C.3.1: The following statements regarding the linear, time invariant

dynamical system x(t) =Ax(t)+Bu(t) are equivalent:

a. The system is completely state controllable.

b. The rank of the nxnm controllability matrix:

C = [B,AB,....A" 'B] C.a1

is n.
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If a system {A,B,C,D} in the state form given by Equation C.2.1 is completely
state controllable with B of full rank m<n, then it can be reduced via a nonsingular
transformation Q to an equivalent controllable system in a certain structured form
which is called a "controllable companion form". The procedure for deriving a

controllable companion form is now discussed.[22]

Consider any completely state controllable system of the form given by
Equation C.2.1. Since the system is assumed to be controllable, it follows from
Theorem C.3.1 that C has full rank (n). C is now defined as the nx n matrix obtained
by selecting from left to right the first n linearly independent columns of the
controllability matrix given by Equation C.3.1. Therefore, C has full rank n and
| €| #0. Since it is assumed that matrix B has full rank, therefore the first m columns
of Cis the matrix B. The nonsingular nxn matrix L is now constructed by simply
reordering the n columns of C, beginning with a "power ordering" of those first (d,)
columns of C which involve b,, the first column of B, and then employing those (d,)

columns of C which involve b, next and so forth. In particular,

L = [b,Ab,,...AY b b, Ab,,..A" b, A" b ] C3.2

Notice that d,,d,,...,d,, defined as such, satisfy the following condition

zm:d. =n C33

i
i=1
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The m positive integers d, ,for i=1,2,...,m, are now defined as the controllability

indices of the system, and the following is established

k
o = };di for k=12,.m C3.4
iz
which implies that:
o, = d1
02 = drdy C3.5

c, = d1+d2+‘..+dm =n

The controllability indices not only specify the dimensions of various diagonal
companion-form submatrices of A, but also determine the m ordered integers o, for

k=1,2,...,m, which denote the "nontrivial" rows of A and B.

At this point q,” is set equal to the o,-th row of L for k=1,2,...,m, and the

following nxn matrix Q is defined:
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4

0, A

/A%

Q=| o C.3.6

If Q, defined as so, is postmultiplied by L, it can be shown that |[QL| =1 in
"absolute" value which implies the nonsingularity of Q since |QL| =|Q]| |L|. This
particular choice of Q will reduces the given system to an equivalent state
representation form given by Equation C.2.6, where the pair {A,B} assumes a
particularly useful structured form, namely a multivariable controllable companion

form; i.e.
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It is important to notice that all the information regarding the equivalent state
matrix A can be derived from knowledge of the m ordered controllability indices d
and the m ordered o,-th rows of A. The same thing can be said of B, since only

these same ordered o, rows of B are nonzero.

C.4 CONTROLLABLE COMPANION FORM OF PLANAR MANIPULATOR

For the planar manipulator under consideration n=6 and therefore from

Equation C.3.1 the controllability matrix for the system is given by

C =[B AB A’B A’B A‘B A°B] Cdl

To find C, only the first n (6) independent columns of the controllability matrix are

needed. It turns out that the first 6 columns of C are independent and therefore

00 0 0 -a -b
000 0 -b -

- 00 -a -b d

C = [B AB A231=kv00_: o ; C4.2
100 0 0 O
010 0 0 0

where a,b, and c are given by Equation 11.3.9, and d,e, and f are:
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d = -kfa?+b?)
e = -kfa+c)b C43
f= —k,,(b2+c2)

The nonsingular matrix L is now constructed as the following

L =1[b, Ab, A*b, b, Ab, A%b)]

0 0 -a0 0 -b
0 0 -bO0 0 -c
- 0 -adoO-b e Cad
0 -b e 0 ¢ f
1 0 000 O
00 010 O]

Comparison of L with Equation C.3.2 suggests that the controllability indices are
d,=d,=3. By employing Equation C.3.4 to the planar manipulator problem, the

following can be established

1
o= Xd = d =3

2
0, =Edi =d+d, = 6

i=1

C4.5
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To find Q, inverse of L must be found first. It can be shown that L is

(0 0 0 0 10
09 UIO Ull 013 00
U, U; 0 0 00
L =7c1- 0 0 0 0 01 ca6
2 2 yp, Loo
U U 3
U, =— 0 000
L U’ P
where
U,-b0,
O, = e—-I_)é U, = ‘_1_0104 U, = 1778
a a aU,
U, =f_E U, = 05_206 G. - L, b?
a 1 2
2 a a“v,
b™-ac o ocar
03 = a ; U _ bUI Uz ; . oo
8 ~ Ty v .. = -
U, = b - @, O, 12 ac-b*
ac-b o) o
e O = -—s.b b
u, = <-0,0, U 7 a0, Vst —
a 3 ac-b
Now by defining the following
Yo = ax¢ C48
Y, = ac-b?

it can be shown that q," and g," which are the o,-th (third), and o,-th (sixth) rows

of the L! matrix are
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1 Ny
C4.9
q2’=-1-l-ioooo]
kv Y1 N
and therefore Q is
; --c b
rqlr i, 0 0 00O
T =< %
q7A 00 * 200
T,2
0 - S U I C.4.10
T k|5 :-a
q2 v YI Yl 0 0 O O
g, 4 00 & =290
T, Y1 Yy
9247) 0 -1 0 -k 01
It can also be shown that Q! is given by
a 0 0 b 0 O]
b 0 0 ¢ 0 O
1 0 a 00 Db O CAll
C="%lo b 00 ¢ o -
aka -1 bkbpb O
bkp 0 c ke -1
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Consequently the matrices A, B, and C are

01 0 00 0]
001 00 O
OakaObek
A = Q4Q7! = 4 & C4.12
00 0 01 O
00 0 00 1
0bkbOc kg
0 0
00
10
B=0B-= C4.13
Q 00
00
0 1]
é:CQ-1=_kaOObOO Cd.14
b 00 cO0O

Comparison of A and B with the controllable companion form given by Equation
C.3.7 and Equation C.3.8, indicates that the controllable companion form has been

achieved through transformation matrix Q.
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C.5 STRUCTURE THEOREM

Structure theorem establishes a fundamental structure of dynamical system
and provides a most useful relationship between time and frequency domain

representations for linear multivariable systems.

To establish the theorem A,, and B, must be defined first. Let A, and B,
be defined as the mxn matrix consisting of the m ordered o,-th rows of A, and the
mx m matrix consisting of the m ordered o,-th rows of B respectively. By inspection
of Equation C.3.8, it is noticeable that B_, thus defined, is an upper right triangular

matrix with ones along the diagonal; i.e.

[1 x x - x]
01x-x
B, - C5.1
0 x
000 - 1]

and is nonsingular since, by inspection, |B,,| = 1. A_ assumes no particular form.
If now S(s) is defined as the following nxm polynomial matrix with n nonzero,

monic, single-term entries
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1 0 0
s 0 0
st oo 0
0 1
0 s
S =0 5. o C.52
0 0
0
1
S
0 0 . s~

then the following theorem can be stated.

THEOREM C.5.1 (The Structure Theorem): If a state representation {A,B,CD} is
controllable with B of full rank mxn, its transfer matrix given by C(SI-A)’B+D, can

be expressed as: (proof of the structure theorem can be found in [23])

T(s) = CS(s)87'5)B,+D = [CS(s)+ DB ()] (B 8(s)]™! C.5.3
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where

sh o 0
0 s20 . .

5(s) = | . L -ASe G54
_0 sd"d

The most important aspect of the structure theorem, however, is that it
enables one to express the transfer matrix T(s) of a time domain dynamical system

as the product of a pxm polynomial matrix

R(s) = CS(s)+DB_'8(s) C.55

and the inverse of another mxm polynomial matrix

P(s) = B.'3(s) C.5.6

ie.

Ts) = RE&P™'(s) €57

The two polynomial matrices have certain important properties. In particular (see
Equation C.5.5 and Equation C.5.6):
1- P(s) is column proper since I'[P(s)]=B, .

2- 3,R(S)] < 9,{P(s)] j=12,..m
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C.6 DERIVATION OF THE PLANAR MANIPULATOR OPEN LOOP TRANSFER

MATRIX

Structure theorem is employed to derive the open loop transfer matrix of the
planar manipulator. For the planar manipulator under the consideration, from the
results obtained in Section C.4 and from the definition of A_ and B_, given in Section
C.5 the following can be established:

R 10
B - [0 1] C.6.1

0akaObkp
A =
m 0 bkbOc kg

Notice that m=2, and d;=d,=3 therefore the following expressions for S(s) is

obtained:

h~ 1 -

S(s) = C.6.2

h'—‘OOO_

~

‘o o o
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From Equation C.5.4, §(s) can be expressed as:

7]

0akaObkp
0 b kb Oc ke

[~}

3(s)

520
0 s°

™
V)D—‘OOO‘

C.6.3

(=]
3]

©c o o

-

s’-kas*-as -k pbs’-bs
| -k ps?-bs s*-k cs?-cs

and since for the planar manipulator, D is a null matrix and B_ is an identity matrix

(see Equation C.6.1) the following expressions for R(s) and P(s) are obtained:

R@s) = CS@) = -k, [" ”] C.6.4
b c

s*-k ps*-as -(k bs*+bs)
~(k bs?+bs) s3-kgest-cs

P(s) = B'8(s) = 8(s) = C.65
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APPENDIX D

D.1 DIAGONALIZED CLOSED LOOP TRANSFER MATRIX FOR THE

LINEARIZED PLANAR MANIPULATOR

The objective is, to select G'Px(s) such that the overall closed loop transfer
matrix of the robot arm system, R(s)[G'Pg(s)]”, is diagonal (decoupled). It can be
shown that if one selects the following

81w (8) gywy(s)
8,5 g,w,(5)

G 'PLs) = D.1.1

where g, g5, 83, 8, W,(5), W,(s), w;(s), and w,(s) are to be determined such that all

of the three requirements in section IIL.3 is satisfied, then

g2w2(s) -8 3W3(S)

-8 W () gw,(5)

[G_]PF(S)]-I - 1 D.1.2

£18271(SIW2(3)-838,W(5IW(5)
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Also from Equation IV.1.1:

RGs) = _kv[" b] D.13
b c

therefore form Equation D.1.2 and Equation D.1.3 the following can be written

T(s) = R(s)[G'PLs)]™
k, ag,w,(s)-bg,w(s) -ag,w,(s)+bg,w,(s) D.14
B A |bg,w,(5)—cg W, (s) -bg,wy(s)+cg w,(s)
where
Ac a glgzwl(s)wz(s)—g3g4w3(s)w4(s) D.1.5

Since a diagonal form of the closed loop transfer matrix is desired, the off diagonal

entries are set equal to zero from which the following is obtained

bg bg
wy(s) = ———lwl(s) ;o WS = ——zwz(s) D.1.6
ag, g,

Substitution of w,(s), and w,(s) from Equation D.1.6 into Equation D.1.4 will result

in the following diagonal (decoupled) closed loop transfer matrix:

(ak, ] [
T(s) = &) M@ D.L7
ck, c,
SO Wy() |
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where
ak ck
c,e— ; ¢ o — D.1.8
8 03

The nonzero constants ¢, and c, are derived later.

From Equation D.1.6 , Equation D.1.8, and Equation D.1.1 the following
expression for G'Py(s) can be written

aw(s)  bw(s)

-1 TR B ‘ D.1.9
G 'Ps) k, b o)

€ )

Now by letting

wi(8) = (5-Pg)(S-P)(s-Pys) D.L10

Wy(8) = (5-Pu)(s-P ) (S-P o)

where py;,..,Pgs are the desired closed loop poles of the system, it can be shown that
G'Pg(s) satisfies all three conditions stated in section IL4. In particular G™'Py(s) is

column proper since

_oh %
TGP | =| |- k22 D.111
¢ _f_kl ck, Vo

7] ]
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is nonzero, and it also shares the same ordered d; as P(s). Also the determinant of
G'Py(s) is the desired characteristic equation of the closed loop system and

consequently G exists which implies that G is nonsingular.

D.2 DERIVATION OF CONSTANTS ¢, AND ¢, USING FINAL-VALUE THEOREM

The constants c, and c, are derived by applying the final- value theorem to the
closed loop transfer matrix of the system given by Equation D.1.7. The theorem is

stated now.

THEOREM D.2.1 (final-value theorem): If y(t)»Y(s) and if the limit of y(t) as t-

exists, then

lim y() = lim [sY(s)] D.2.1
{00 s-0

From Equation D.1.7 one can write

<

wy(s)

Y, (s)
Y,(s)

Uy(s)
Uy(s)

Y(s) = = TG UG = D.2.2

0o =

Wz(s)
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or

2! <2
Yi(s) = —=U,(s) ; Y8 =

2 D.2.3
W) W 2

For a step input, u(t), the following steady state step response is desired:

lim y(¢) = 1 D.2.4
t—oo
But notice that
ut) - % D.2.5

Considering Equation D.2.1 through Equation D.2.5 it can be shown that

lim PR . 56 e ¢ ‘1 D26
(0 =1 = lim s¥,(s) = im ———U,(s) = lim = s
WI(S) WI(S) "p.updgpdg
t-c0 s-0 5-0 s-0
and therefore c¢; must satisfy the following
¢, = ~PyPuPs D.2.7

Using a similar approach it can also be shown that ¢, must fulfil the following

€2 = “PisPysPas D.2.8

Notice that determination of ¢,, and ¢, automatically implies determination

of g,, and g, through Equation D.1.8.
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APPENDIX E

E. DERIVATION OF COMPENSATORS IN DETAIL

It is shown in Section II1.4 that the matrix G is given as:

_ 1[—cc1 bczl £l

Y,k,| be, -ac,

811 812
82 82

If now, w,(s), and wy(s) given by Equation IV.1.3, are expanded, the following is

obtained:
wi(8) = (5-P)(s-P)(s-Pyy) & sP+est+e s+e, -
Wy(S) = (S-P)(S-Pg)5-Pye & 53+8,572+E 5+E,
where
€y & “PyPilP a3 Co & ~PaPusPas
€ & PuPur*PaPus*PaPar 1 & PaPus*PasPis*Pud is E3
€, & ~(Py*Pp*Pas) {2 8 ~PutPustPug)

and therefore from Equations I1V.1.2, E.1, and E.2 it can be shown that



PAs) = GG 'PLs)
acw ()-b?w,(s) bc(w,(s)-w,(s))

ab(wy(s)-w(8)) acw,(s)-b*w,(s)

1

T

or

Py u(s) P lz(s)

P(s) =
K P ) Py (5

where

-b? -b* -b?
Pp (5) = s%+(E2 g2, (Z g (200 K
n Y Y1 Y1

Pp(8) = (e C)s™+(e1- {5 +(ECo)

Pp,(9) = £(((me)s s (G me)s+(Cgmep)

_bl _bl _b2
P, () = s3+(Z5 02, (X oy, (Kb
2 Y1 Y ) £

From Equation III.3.5 the following can be written:

2 2
NS +NS+N; NS NS,
F(s) = P(s)-Pgs) = ) )
NS +MNeS+N; NS 4N S+ Ny
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E4

E.5

E.6

E.7
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where
b2y-acey _ ableg-Co)
= —%— M7 = Y1
b2c —ace - ab(el‘cl) _
N, = ———’;—lﬂ—a Ng 71 b
able;-)
b¥y-ac = -k
ny = S kg Ny = — —-kp
! E.8
b -ac(,
be(C —‘0) = € 0
Ny = :l Tho 1
- b2 ~ac
N, = be((y ¢|)_b Ny, = __e!y_'_c
11 1
be({y-e) ble,-act
Mg = — ‘121 ~kp M2 = — -k
which is consistent with the requirement that J.[F(s)] <d,[P(s)].
Since for the system under consideration v=3, Q(s) is given by
2
57 q,(8)
-1s +q22(s)
with
1 1
k E_
4,,(8) = Eq(l—l)(3—l)+k s = qu $° = Go+q,S
k=0 k=0 £.10

1 1
_ E_ E_
4,(5) = kz;q(2—1)(3-l)+k st = g‘lm §° = 4,%958

where qq,q;,q, and g, are arbitrary coefficients to be chosen such that the roots of

the |Q(s)| =s*+q,s°+q,s*+q;s+q, remain in the left half s plane.
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This particular choice of Q(s) will result in the following expression for

Q(s)F(s):

(@F),(5) (QF),(3)

F E.11
QP 4 [(oi)z,(s) @)

where

(QF);,(8) = ny5*+(My+qMPs®+(n+goNg+q s>+
(@gng+q,n7)s+qoN,

(QF) () = ng*+(MNs+q M )s*+(M+qoN 1o +q M )5+

(9N 119 M 105 +4qM
0'f11 1 10) 0'110 E.12

(QF)21(S) = 71954+(Tl s+113ﬂ9)53+(ﬂ7+‘13ﬂ8+qz119'11 3)s2+
(4317+4;Mg~ )5+ (@My-My)

(QF)H(S) =M 1234"‘(7] 1ntdsn 12)83+(T| 10793N 119N 12“ﬂ6)52+
(qgrl 109N 11—115)S+(Q2T| 10"7]4)

but since:

T

1 ss2s3s*s$ 000000
Se(s)=[ E.13

000 0O0O01ss?sPsts

and B(s)=p8S.(s)=Q(s)F(s), it can be shown that g which is a constant matrix, is

given by

A{Bu Blz Bxs Bl,ll 91,12] E.14
pzx Bzz pzs pz,u p2,12



where

But
B2
Bis
B
Bis
Bis
Bis
Bis
Bis

9",

= doNg*diNy
= MNy+tqeNe+tq Mg
= Mty

LLEY
0

= 9oMo

) 51,10 =

B1,11

51,12 =

N 11+ M0

N4*t9oN 12491y

Ns+*a Ny,

= Mg

0

B2,10

Pa,
B,,

= g,N;-N,

q3ﬂ7+(12118-'fl2
= Ng+qNg+q,Ng—"M;4

= NgtdsNy

1

= 9N N4

ANt 9N~ Ms
N0+t BN 11+ RN 127 N6
= NutdsNy,

=My
=0

11
12

Ny
0
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E.15

The following can be derived as the eliminant matrix of the two polynomial

matrices R(s) and P(s) for the planar manipulator:

0

S O O O O O © ©o o

-ka 0
kb 0

-k,a

-kp

o = O O O O O O

]
Canl

|

=

&

o - o 0o 0o 0 © © © o

O 0O O O O © © o <

8

.
B

—_

-b -kp 0

-kb O

-ke O
0 -kpb
0 -kc
0 0
0 0
0o =-b
0 -c
0 0
0 0
0 0
0 0

(=T T~}

- 0 © © © © O O

1
*
S5
|
> > ~ O 0 0 0 © © © © ©
= u

>

-b

|
S

-0 O O O O © O ©O © © ©

E.16
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It can be shown that

M) = -’ E17

which does not equal to zero. M, is given by:

£, €, O O O 0 0 0 0 009
0 0 &, §, O 0 0 0 0 00
0 0 0. 0 & E. O O O 0 0O
0o 0 £, O & O 1 0 0 0 00
0 Y E53 554 ESS E5(5 Es7 E58 1 0 Y
M_, - Y 0 E63 E64 565 €156 E67 E68 E69 E6.10 10 E.18
* &y & O O O 0O 0 0 0 0 00
0 0 §, & O O 0 0 0 0 00
0 0 0 0 § & O O O O 0O
0 0 0 &g, O Eo6 0 1 0 0 00
0 0 Ell} E11,4 E11,5 511,6 E11,7 511,8 0 1 00
_0 0 612,3 512,4 512,5 512,6 612,7 E12,8 E12,9 512,10 0 1.

where



511 = T

kv,
3
S = o
&5 = &
Eu = &p
& = &t
§36 = &2
1
Eo = 'Z
k
Cus = ‘f
ka
553 = 'f
kR
85y = 'T
hl:a
8ss = - K
Kb
8s6 = ‘T;
s = ka
s = kdb
aok:(a’ob’)
Eﬁ: = __T—
beK¥(abebo)
Egp = ——
L 2a+biad e b?)
s = S
E 25+ abebe))
E“ = -__...__’;_.__.

Eg = a+kia’+b?)

Eg = b+ki(ab+be)
o = &5
Ees.lo = L5y

$104
610,6
Ss
o
Cins

Ell.(i

E11,7

Ell.l
e12.3

C124

C125

512,6

EIZJ

Elz,!

512,9 =

140

_ lok:c E- 19

cok:(b’w’)
K

So

kd(2c+k3bec?)

E12,10 = Eu,s
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Since M, exists therefore, M, =M, or M, '=M_,™. Also [H,K]=[HA,K]. In view

of the preceding and using Equation II1.4.11 the following can be employed to derive

H(s) and K(s):

[HK] = ﬁM;l E.20

From Equations E.14, E.15, E.18, and E.20, it follows that

Pir B2z B Boge .
[HK] = - M E21
Bar Ba = B MBag
where p’s are given by
By = Buén+Piy
B = Byu&tbpin
Bis = Bpoos*Prelas+PrstsstPralas*Byiiins
Bro = Brolos*tPislsatPralestPrioioatPrinlise
Bis = Biaas*PeistPrslsstBrolostPririns
Hie = Bia€astBisEsstBiofostPrioiostBriilings £22

Pz = Br+Bisdst 91,11511.7

Big = Bislsg*Brio*Prubine
Ris = Bys

Ko = Pt

By =0

P =0
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Bor = Bydi*Byin
By = Buéu*Byuésn
Bas = PoofatBoulas+Poslss*Boslas*tBrnilins
Bog = Boolog*Basss+PoglastBriobioatParinbine
Bas = PoalastPoelastBoslsstBaolos+Panéins
Bas = BaafagtPasEss BaolostBriofios* Bauline .23
By = Bay*Bis€s*Brnnling
Bag = Bos&sa*Baio*Bribings
By = Bys
Ba10 = Bz,u
B = 0
Pypp = 0
To find H(s) and K(s) Equation 1I1.4.12 is now employed i.e.
[ R(s) ]
SR(s)
52R(s)
[(HKIM.S (s) = [HK]| --- | = H(s)R(s)+K(s)P(s)
P(s) E24
sP(s)
5%P(s)]

= BS,(5) = QEIF(s)
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comparing Equation E.21 with Equation E.24 , it can be shown that:

2
Hs) - BisS R 3SRy “16‘92+“14S+“12 E25
BasS" +ysS+hyy BaS iy iy
and
Ky - [umswn ux,wﬂun} .26
BagStHoy Ha10StHog

If the polynomial matrices H(s), K(s), and Q(s) are now employed in the
feedback scheme depicted in Figure 1.2, the desired (decoupled) closed loop transfer

matrix is obtained.



