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NOMENCLATURE

mi = mass of link i.

= moment of inertia of link i with respect to its center of mass.

= moment of inertia of link 1 about its center of rotation.

= distance from center of rotation of link i to its center of mass.

= length of link i.

= x coordinate of the center of mass of link i.

= y coordinate of the center of mass of link i.

k1, k2, k3 = positive constants defined in Equation 11.2.2.

kf = coefficient of friction of each link.

k, = constant shown in Figure II.1 which is determined from stepper motor

specification and the gear ratio.

= kdkr

= constant relating the input to the output of the voltage to frequency

converter (see Figure II.1).

a, b, c = significant elements of the linearized matrix A defined in

Equation 11.3.9.

'Y1 = positive constant defined as y =ac-b2

x = state vector defined in Equation 11.3.2.

x' = state derivative vector defined in Equation 11.3.3.



NOMENCLATURE continued

a[.] = degree of the polynomial element of highest degree in matrix(.)

= degree of the polynomial element of highest degree in the j-th column

of matrix (.).

re[.] = the constant matrix consisting of the coefficient of the highest degree

s terms in each column of (.).



EVALUATION OF A POLE PLACEMENT CONTROLLER

FOR A PLANAR MANIPULATOR

I. INTRODUCTION

I.1 BACKGROUND

This thesis is concerned with the effectiveness of pole placement linear control

of a two joint robot arm constrained to move in a horizontal plane (planar

manipulator).[22] A robot is a mechanism, composed of links connected by joints

into an open kinematic chain, which can be directed to do a variety of tasks without

human supervision. The number of joints determines the manipulator's degrees-of-

freedom (DOF). The Robot Institute of America (RIA) defines a robot as " a

reprogrammable, multi-functional manipulator designed to move material, parts,

tools, or specialized devices, through variable programmed motions for the

performance of the variety of tasks."[14] The robot manipulator is a highly coupled

nonlinear multivariable system. Controller design for the manipulator is concerned

with correctly positioning the end effector in the manipulator's work space during the

time allotted for a task.
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In this thesis a pole placement linear control algorithm is applied to the planar

manipulator dynamic model linearized around an equilibrium point.[Wolovich, 22]

In general, linear control is valid for a neighborhood of an equilibrium point.

Consequently, the main objective of the thesis is to determine the linear controller's

capability to effectively control the planar manipulator outside the linear operating

region.

1.2 STATEMENT OF THE PROBLEM

The system under consideration is a planar manipulator constrained to move

in a horizontal plane as shown in Figure I.1.

Figure 1.1: Two Joint Planar Manipulator.
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The inputs to the planar manipulator are voltages coming from the controller.

The outputs are voltages which measure the joint angles. It is assumed that the only

measurable signals (states) of the system are the inputs and the outputs. Since for

the compensation of the system, knowledge of other states are also required, a

frequency domain pole placement algorithm based on the frequency domain state

estimation and feedback is employed.[22] This control system is shown Figure 1.2.

V(S) u(s) =P(s)z(s)

F(s)z(s)

The Given System

K(s)

z(s)

Q (s)

R(s)
y(s) R(s)z(s)

Figure 1.2: Frequency Domain Compensation Scheme.

H(s)

In Figure 1.2, H(s), K(s), Q-'(s) are polynomial matrices of the complex frequency

s = a+ jw and G is a constant matrix. The goal is to choose these four matrices such

that the overall closed loop system performs as desired. The open loop transfer

matrix of the system must be of the form of T(s)=R(s)13-1(s) where R(s) and P(s)

must be relatively right prime polynomial matrices.[22] Furthermore R(s), and P(s)

must have certain properties as discussed later.
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1.3 ORGANIZATION OF THE STUDY

The first attempt at linear control of the planar manipulator utilized a linear

output feedback (1.o.f.) algorithm to arbitrarily assign the n closed loop poles of the

system. The algorithm is defined as the control law

u(s) = Hy(s)+Gv(s) 1.3.1

where H and G are constant (m x p), and (m x m) gain matrices respectively, and v(s)

is a m-vector external input. The advantage of l.o.f. method over the linear state

estimation feedback (l.s.e.f) algorithm is that it does not increase the system order

and therefore less complexity is associated with it. However, it can be shown that

if for a given system pm < n, then the l.o.f. algorithm fails.[22] For the planar

manipulator considered here m =2, p =2, and (as shown later) n=6. Hence pm < 6.

Consequently the l.o.f. algorithm was abandoned.

The state model of the planar manipulator under consideration is both

controllable and observable. Observability of the system model implies the ability

for estimating those states of the system model which are not directly measurable.

Controllability together with observability enables one to employ the l.s.e.f. algorithm

to arbitrarily place the n closed loop poles of the system at any desired position in

the left half s plane. But why not use adaptive control, or self-tuning control, or etc?

The major reason is the cost for a controller. After all if the cost was not of concern,
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all the states of the open loop system could be measured directly using some

expensive transducers, and perhaps a simpler algorithm could have been employed.

The planar manipulator is discussed in Section II. 1. Its dynamic equations are

derived in Section 11.2. The planar manipulator linearized model and state

representation are derived in Section 11.3. The pole placement frequency domain

algorithm [22] is presented in Chapter III. Section III.1 includes four major steps

involved in deriving the linear controller. Section 111.2 includes some preliminaries

and the main theorem for the compensation algorithm which is proved in Section

111.4. A single-input single-output linear second order system is considered in Section

111.5. Linear controller for the planar manipulator is derived in Section IV.1.

Section IV.2 includes the planar manipulator control scheme used for simulation.

Simulation results are presented in Chapter V. Conclusions and recommendations

are presented in Chapter VI. Certain algebraic manipulations are included in

Appendices A through E.



H. PLANAR MANIPULATOR

II.1 INTRODUCTION
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The Planar manipulator is shown in Figure I.1. The arm is driven by two

input torques provided by two identical stepper motors. Arm motion is constrained

to a horizontal plane. Figure 11.1 shows the two-input two-output planar manipulator

open loop block diagram together with its stepper motors and drives. The stepper

motor and controller constants k, and k can be obtained from motor specifications

or determined experimentally. Figure 11.2 shows a reasonable approximation to the

stepper motor torques versus torque angle character. For a permanent magnet

stepper motor, the torque angle is the angle between the stator resultant magnetic

field vector and the magnetic field vector of the rotor permanent magnet. For a

reluctance stepper motor, the torque angle is the angle between the stator resultant

magnetic field vector and its rotor position for minimum reluctance. If the torque

angle 60 is too large, then not enough torque can be generated to meet load torques

and slipping occurs. The stepping motor model is linearized around 60=0 and does

not include the capability for slipping which occurs if the acceleration is too high, i.e.

if I MI> 60.x. The linear range of operation is considered to be 45 < (50< 45

(electrical degrees) as indicated in Figure 11.2.



Joint 1 . .
Motor U

1

Controller
Input

Joint 2 u
Motor 2

Controller
Input

k v
1

S

Ti

k v

I
Joint 1 Stepper Motor

Joint 2 Stepper Motor

I

'
x6

+ 'I'

t

Planar
Manipulator
Dynamics

. i=f(x,u)
x 0 Joint 1

I ',. Angle

Joint 2
xr 0 Angle

7

Figure ILL Block Diagram of a Planar Manipulator Including the Stepper Motors
and Drives.

Torque-Angle Curve For Stepper Motor

I-4 NH
Region of linear Operation

Figure 11.2: Torque-Angle Characteristic of Stepper Motor.
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For the particular stepper motors available in the laboratory, r,x=.8

(N.m)= 115 (oz.in). In obtaining the constant k,,, 7-,x of the stepper motor at 45

together with the gear ratio and the number of poles inside the stepper motor have

been taken into account. k,, is determined assuming the maximum speed of the

stepper motor is achieved when the inputs ul, and u2 are 10 volts.

11.2 DYNAMIC EQUATIONS OF MOTION

There are two categories of manipulator modeling equations which apply to

the control of a manipulator. Kinematic equations describe relationships, including

position, orientation, and velocity, as well as acceleration of the links of the

manipulator. These equations are used for the trajectory planning of robot motion

and for deriving the dynamic equations of motion. Dynamic equations are the

expressions of the necessary forces or the torques to be applied to the different joints

of a manipulator as a function of position, velocity, and joint acceleration. The

planar manipulator dynamic equations are discussed now.

Using Cartesian coordinates, the manipulator top view is shown in Figure 11.3.

The motion of the arm is constrained to a horizontal plane. The arm is driven by

the two input torques produced by two identical stepper motors. The links are

considered to be rigid bodies. Table II.1 gives the data which have been
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Top View

Center of mass variables are indicated by a bar (7 )

Figure 11.3: Two-degree of freedom manipulator.
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experimentally determined for a particular planar manipulator available in the

Electrical and Computer Engineering Control System Laboratory. The links were

taken apart and their masses were measured. The moment of inertias, were

calculated assuming that the links are made of aluminum and then using the formula

for the inertia of a rectangular bar with respects to its center of mass. The moment

of inertia of link 1 was also calculated with respect to its center of rotation. The

center of mass was located, using a very sharp edge to balance each link. To

calculate the coefficient of friction, the table was positioned vertically with only one

link attached to it (imagine a vertical pendulum). Then, the link was released at

different initial angles. The trajectory of the link was observed. Data points were

taken. The vertical link was simulated for different values of kf until the same

trajectory as the experimental one was obtained.

m1 = 3.343 Kg-mass m2 = 4.813 Kg-mass

T, = 0.073 Kg.m2 T2 = 0.156 Kg.m2

L, = 0.084 m L2 = 0.16 m

LI = 0.42 m L2 = 0.42 m

II = 0.0966 Kg.m2 (moment of inertia of link 1 about its
center of rotation. Used to find kf).

kf = 0.2 N.m.s2/rad2 (coefficient of friction).

k,, = 34.2 rad/v.s k, = 949.2 N.m/rad

Table II.1: Data Obtained in the Laboratory.
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The planar manipulator dynamic equations are derived in Appendix A using

Lagrange's method. This method is based on the relation between the potential and

the kinetic energy of the system. The planar manipulator dynamic equations of

motion are as following:

0 fil (k2 + 2kicos02) -20/10/2kIsin02+0"2(kicos02+k3) -(0 /2)2kIsin02

0 ill (kIcos02+ k3) + 0112k3 + (0 /d2kisin02

sl-k10/1

s2 -kf012

11.2.1

where k1, k2, and k3 are constants defined as

ki A m2L1L2

2
k2 A 11 4-/2 +M

1L l+m2(L12 +L2) 11.2.2

. . - . 72
k3 A /2 +m2....,2

Equation 11.2.1 can be expressed as

where

a1a2

a2 k3 ° 2
as

11.2.3

a1 = k2+2k1cos82

a2 = k3 +k1cosO2

a3 = -Icisin02 11.2.4

a4 =tit -a3(02)2-2a30/102 -k10/1

as = T2+a3(0/1)2-1y32



Note that a1 through a5 are function of r1, 7-2, 0'1, 0'2, and 02.

01", and 02" can be expressed as

0"1 = (a ik3 ab-1(k3a4-a2a5)

2, _10//2 = (a 1k3- a2) (a 1a5 -a2a4)

Notice that Equation 11.2.5 is always valid since

a
1
k

3 -a2 = 1112 +ml I2(L1)2 +m2/1
(L2)2 +M

1
M2(L1

)2(L 2)2 +

2 2 2M2/2/ +M2Li2(L2)2SIII (02)

12

11.2.5

11.2.6

is always greater than zero. Equation 11.2.5, is used for nonlinear simulation. In the

next section the dynamic equation linearization and system state representation are

discussed.

11.3 LINEARIZED MODEL AND STATE REPRESENTATION OF THE SYSTEM

The general form of the state representation for a dynamical system can be

expressed as

xl = f(x,u)

y = g(x,u)
11.3.1

where x (n x 1) is the state vector, y (p x 1) is the output vector, and u (m x 1) is the
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input vector. f and g are vector functions of the system state and input. The state

vector for the open loop system given in Figure II.1, is defined as

XI 0 1

X2 62

x=
X3

=
611 11.3.2

X4 0/2

X5 ;
X6 ;

The state vector derivative is

X/

where

A 1 x3

f2
02 x4

r ell ell
f3 1 1

= =

f4 011 "2 02
f5 x'5 kill

f6 x1 k"142-6

11.3.3



The output vector is

On, = [k2k3-g-ki2cos2(x2)] -1*
[k3k,((x5-x1)-(x6-x2))+

kik3sin(x2)(x32+4+2x3x4)-

k,k,cos(x2)(x6-x2) +

2
Ik,2sin(2x2)x3+

kAk3(X4-x3)+krx,4cos(x2))]

0112 = [k2k3-4-k2,cos2(x2)] -1 *

[kr (k2(X6 -X2) -k3(x5 -x1)) +

kikTCOS(X2)(2(X6 -X2) -(x5 -x1))
1

ki2 sin(2x2)(x3
2

+-2,x4
2

+x3x4)

kisin(x2)(k2x32+k34+2k3x3x4)+

klkicos(x2)(x3 -2x4) +k3x3 k2x4)]

Y
igi 13l ,111 {xi}

82 ''2 X2

14

11.3.4

11.3.5

To employ the pole placement linear controller algorithm depicted in Figure 1.2,

Equation 11.3.3 must be linearized around an equilibrium point. The linearized state

variable equations have the form

where

xl = Ax+Bu
y = Cx+Du

A = AI ; B = 11ax 0 a 0

allax 0 a, 0

11.3.6

11.3.7
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In Equation 11.3.7, subscript "o" indicates evaluations at the equilibrium point.

In Appendix B, it is shown that the planar manipulator linearized system

matrices around an equilibrium point are

where

A=

aft afi afi... ___

axt a2 ar6

aft aft af2

axt ax2 a6

af6 af6 af6

a1 ax2 ax6
0

0 0 1 0 0 0.
0 0 0 1 0 0

a b kda kdb -a -b
b c kdb kdc -b -c

0 0 0 0 0 0

0 0 0 0 0 0_

11.3.8

a A k3kT H1

b A (kiCOS(X2n)+k3)k, H1

C A (21CICOS(X2n)+k2)kT H1

k
k A 1-

d k,

H1 A [k2k3k32 -lc,2cos2
(x2o)] -1

= [a1k3 -222] -110

B=

afi afi

&I au2

aft aft

aui au2

af6 a/6

au au22-0

= lc

0 0
0 0
0 0
0 0
1 0
0 1

11.3.9

11.3.10
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agi agi ag,

C=
ax1 ax2 acs {1 0 0 0 0 0

11.3.11
ag2 ag2 age_ 0 1 0 0 0 0
ax1 ax2 aV6- 0

agi agi

aut au2 0
D =

[0
11.3.12

ag2 ag2

01

°al au2 0

Therefore the state representation of the linearized planar manipulator model is

given by Equation 11.3.6 where the system matrices, A, B, C, and D are given by

Equation 11.3.8 and Equations 11.3.10 through 11.3.12 respectively. The pole

placement algorithm is discussed in the next chapter.
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III. DERIVATION OF POLE PLACEMENT CONTROLLER

III.1 INTRODUCTION

As stated in Section 1.2, the pole placement state estimation algorithm relies

on the ability to determine a transfer matrix, T(s), as the product R(s)P-1(s). The

polynomial matrices R(s) and P(s) must be relatively right prime, defined shortly. This

implies the (complete state) observability of any equivalent time domain realization and

therefore the ability for estimating the entire state of the system.[22] The following are

four major steps involved in deriving the linear controller.

1. The system matrices must be transformed into a controllable companion

form which implies that the system must be state controllable.

2. The structure theorem must be employed to the controllable companion

form to find T(s) as the product of R(s)P-1(s).

3. It must be shown that the polynomial matrices R(s) and P(s) obtained from

structure theorem are relatively right prime.

4. The frequency domain state estimation and feedback must be employed to

derive the linear controller.
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The procedure for steps 1 and 2 are discussed in Appendix C. To establish

steps 3 and 4 the material presented in the next section are essential.

111.2 PRELIMINARIES

The following definitions are established. These definitions are repeated in

Appendix C.

DEFINITION 111.2.1: The degree of a polynomial matrix M(s) is defined as the

degree of the polynomial element of highest degree in M(s). The degree of the j-th

column of M(S) denoted by the scalar .34M(s)], is defined as the degree of the

polynomial element of highest degree in the j-th column of M(s). The constant

matrix consisting of the coefficients of the highest degree terms in each column of

M(s) is denoted by re[M(s)]. Subscript "c" implies column. To illustrate, consider

the following example:

EXAMPLE 111.2.1: If

M(s) =

then ac, = 2, act = ac3 = 1, and

s2-3 1 2s

4s+2 2 0

-s2 s+3 -3s+2

111.2.1



P' [M(s)] =

1 0 2
0 0 0
-1 1 -3

19

111.2.2

Note that rc[M(s)] is not of full rank since I rc[M(s)] I =0. The column j zeros in

Fc[M(s)] indicate that the corresponding polynomials are of lesser degree than

adM(s)].

DEFINITION 111.2.2: A nxm polynomial matrix, M(s), is called column proper if

and only if Pc[M(s)] has full rank; i.e. rank{Tc[M(s)]) =min(n,m). Hence a square

polynomial matrix M(s), is column proper if and only if I r[M(s)] 1 0.

DEFINITION 111.2.3: If three polynomial matrices satisfy the relation;

P(s)=H(s)Gr(s), then Gr(s) is called a right divisor of P(s), and P(s) is called a left

multiple of Gr(s). A greatest common right divisor (g.c.r.d.) of two polynomial

matrices P(s) and R(s) is a common right divisor which is a left multiple of every

common right divisor of P(s) and R(s).

DEFINITION 111.2.4: A unimodular matrix U(s) is defined as any square polynomial

matrix whose determinant is a nonzero constant.

DEFINITION 111.2.5: Two polynomial matrices R(s) and P(s) which have the same

number of columns, are said to be relatively right prime if and only if their g.c.r.d.



are unimodular matrices.

EXAMPLE 111.2.2: For the following two polynomial matrices R(s) and P(s)

then

R(s) =
s

{0

-s

1

; P(s) =
[ s2

-s

-1

s2

-1
[S -.1 152 1 1T(s) = R(s)P (s) =
0 1 s s21(s4-s

s -(s+1)

s2 +s + 1 s2 +s + 1

1 s
s3-1 s3-1

20

111.2.3

111.2.4

Note that the system characteristic equation is determined only by I P(s) I since R(s)

and P(s) are both polynomial matrices. Also notice that pole zero cancellations

occur in all elements of T(s). It can be shown that the following square matrix is one

of the greatest common right divisors of R(s) and P(s)

since

{s 0
G (s) -

0 1

1 -s s 0
R(s) =

0 1 0 1 '

-1s0
P(s) = {s

-1 s2 i 0 1

111.2.5

111.2.6
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Notice that Gr(s) is not a unimodular matrix since I G1(s) I =s is not a nonzero

constant. The transfer matrix of a system described by T(s)=R(s)13-1(s) does not

satisfy the pole placement algorithm used later since Gr(s) is not unimodular.

DEFINITION 111.2.6: A polynomial matrix, T(s), is called proper if the numerator

degree of each entry of T(s), i.e. Tii(s), is less than or equal to the corresponding

denominator degree. In the case of strictly proper transfer matrix, the degree of the

numerator of each entry, Tij(s), of T(s) is equal to the corresponding denominator

degree.

The dynamical behavior of an m-input, p-output, linear time-invariant physical

system can always be represented by a proper pxm transfer matrix, T(s), where

and

T(s) =

y(s) = T(s)u(s)

Til(s) T12(s) Tim(s)

T21(s) T22(s) T2.(s)

7, (s) Tp2(s) Tpm(s)

111.2.7

111.2.8

where T1(s) is a proper transfer function, i.e. the degree of the numerator of T1(s) is

less than or equal to the degree of its denominator.
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Given a state controllable model of a system having a proper transfer matrix

T(s), then the structure theorem of Appendix C guarantees that it is always possible

to express T(s) as

7(s) = R(s)P-1(s)

where R(s) and P(s) are polynomial matrices, viz.

R(s) =

P(s) =

Rii(s) R12(s) Rim(s)

R21(s) R22(s) R2in(s)

R,1(s) Rp2(s) Rpm(s)

PP) P12(s) Plm(S)

P21(S)
P22(S) P2m(S)

P mi(s) P.2(s) P.m(s)

111.2.9

111.2.10

P(s) must be column proper and the degree of each column of R(s) must be less than

or equal to the degree of the corresponding column in P(s). Define d; as the degree

of the j-th column of P(s). i.e.

then

ajP(s)] = di 111.2.11

acj[R(s)] s dj 111.2.12
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The following theorem due to Wolovich, is essential in determining the closed

loop transfer matrix of the compensated system shown in Figure 1.2.

THEOREM 111.2.1 (page 239, [22]): Given the p x m open loop transfer matrix,

T(s)=R(s)13-1(s), of Figure 1.2 where ac[R(s)] 09,[P(s)] and P(s) is a mxm column

proper polynomial matrix, i.e. I rc[P(s)] I 0, with aci[P(s)]= 1 for all j= 1,2,...,m,

if R(s) and P(s) are relatively right prime polynomial matrices, then for any

arbitrary mxm polynomial matrix F(s) which fulfills

ac[F(s)] < ac[P(s)] 111.2.13

polynomial matrices H(s), K(s), and Q(s) of Figure 1.2 exist which satisfy the

following:

1- The zeros of I Q(s) I lie in the stable half-plane Re(s) <0 which implies that

Q-1(s) is a stable transfer matrix.

2- H(s)R(s) + K(s)P(s) = Q(s)F(s) 111.2.14

3- Both Q-1(s)H(s) and Q-1(s)K(s) are (stable) proper transfer matrices.

Results obtained in the proof of this theorem play a significant role in

designing the linear controller. Its significance from a point of view of the frequency

domain compensation scheme of Figure 1.2 is presented in the next section. Then

the theorem is derived.
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111.3 DERIVATION OF THE DESIRED CLOSED LOOP TRANSFER MATRIX

It is assumed that the matrices H(s), K(s), Q(s), and F(s) satisfy the

requirement of Theorem 111.2.1. Equating the signals at the first summing junction

in Figure 1.2 results in the following:

or

u(s) = P(s)z(s) = Gv(s)+ 42-1(s)[ K(s)P(s)z(s) + H(s)R(s)z(s)]

[Q(s)P(s) K(s)P(s) H(s)R(s)]z(s) = Q(s)Gv(s)

111.3.1

111.3.2

By substituting Equation 111.1.2 into Equation 111.3.2 the following is realized:

z(s) = [P(s) F(s)]-1Q -1 (s)Q(s)Gv(s)
111.3.3

Note that Q(s) has stable poles (Theorem 111.2.1). Consequently any pole zero

cancellation in Q-I(s)Q(s) do not lead to problems from a dynamical point of view.

Since y(s)=R(s)z(s), it follows that

where

y(s) = R(s)PFl(s)Gv(s) 1113.4

PAS) 4 P(s)-F(s) 111.3.5
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apF(s)] = ap(s)] 111.3.6

since ac[F(s)]<ac[P(s)] from Equation 111.2.13.

The closed loop system satisfies y(s) =Te(s)v(s). Hence, from Equations 111.3.4

Note that

and 111.3.5 the closed loop transfer matrix of the compensated system is given by

Tc(s) = R(s)PF1(s)G = R(s)[G-1131.(s)] -1 111.3.7

Since Theorem 111.2.1 is satisfied then stable physically realizable compensation

scheme of Figure 1.2 can be employed to achieve any desired closed loop transfer

matrix of the form given by Equation 111.3.7. The proof of the theorem given in the

next section also yields the procedure for selecting the appropriate polynomial

matrices H(s), K(s), and Q(s).

111.4 PROOF OF THEOREM 111.2.1

Wolovich's theorem is rederived here for completeness. The following

example helps in understanding the proof of Theorem III.1.1.

Example 111.4.1: Let R(s) and P(s) be the following polynomial matrices with

adR(s)] ac[P(s)]



R(s) =

Form the polynomial matrix

W(s)

s +1 s

S2 +2 s2

W(s) as

=
rP(s)

(s)
1

P(s)

=

s+1

s2 +2

s +4

s3 +2

s +4

s3 +2

s2

s2 +4

s2 +4

s2
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111.4.1

111.4.2

Define di = adP(s)]; i.e. d1=3, d2=2. Then is it possible to find a constant matrix M

such that W(s)-- MS where

S=

1 0

s 0

s2 0

s3 0

0 1

0

0 s2

111.4.3

Note that each column of S is of degree a6[P(s)]. Also note that the scalar product

is zero for all different column vectors in S. Having defined S as such the following

can be established
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W(s) =

s+1

2S +4

s+4

s3+2

s
2S

s2+4

s2

1

2

4

2

1

0

1

0

0

1

0

0

0

0

0

1

1

1

1

1

0

0

4

0

1

0

0

0

0

1

1

1_

1

S2

S3

0

0

O

0

0

0

1

s

S2

111.4.4

In general, it is always possible to find a unique constant matrix M such that for any

R(s) and P(s) which satisfy ac[R(s)] ..ac[P(s)], W(s) = [R(s)T P(s)T]T can be written as

W(s) = MS = M[SI,S2,,S,] where

S

1 0 0

S
di

0 1

S

S d2

0 1

Sdm

d = a '.[P(s)] j=1 2 m

SiTSJ = 0 for it()
111.4.5
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Now consider the polynomial matrices R(s) and P(s) of dimensions p xm and

m x m, respectively, with ac[R(s)] 5- ac[P(s)], P(s) column proper, and ajP(s)] = 1

for all j=1,2,...,m where n is defined by

n A E d. 111.4.6

In view of these assumptions it follows that for k = 1,2, the k(m+p) xm polynomial

matrix

[Rr(s),sRT(s),...,sk-1 RT(s),, pT(s)7T 111.4.7

can be expressed as the product of a constant k(m+p) x(n+mk) matrix, Mek, and an

(n+ mk) x m matrix, Sek(s), consisting of monic single term polynomial elements; i.e.
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R(s)

sR(s)

sk-1R(s)

P(s)

sP(s)

sk-1 P(s)

mcksek(s) M,

1

s

Sdi+k-1

0

0

0

0

0

0

0

1

s

S(12+"

0

0

0

0

0

0

1

s

111.4.8

0 0 ... S
d

14

+k-1

for a unique constant matrix Ma, which depends on k. Note that Ma is a square

matrix if and only if n = kp.

DEFINITION 111.4.1: The eliminant matrix, me, of the two polynomial matrices R(s)

and P(s) with P(s) column proper and ac[R(s)] ac[P(s)] is defined as M where p is

the least integer k in Equation 111.4.8 for which n+ mk-rank[M] is a minimum. Se(s)

is then defined as S(s).

THEOREM 111.4.1: The polynomial matrices R(s) and P(s) employed in Definition

111.4.1 are relatively right prime if and only if their eliminant matrix has full rank
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(n + my). [22]

COROLLARY 111.4.1: Given the relatively right prime polynomial matrices R(s) and

P(s) with ac[R(s)] LC- ac[P(s)], P(s) column proper, and acj[P(s)] = dj 1 for all j = 1,2,,m,

then a constant gain matrix [H,K] can be chosen such that

[H,K]MeSe(s)=H(s)R(s)+ K(s)P(s) equals any m x m polynomial matrix 0(s) =,3Se(s)

where /3 is an arbitrary constant matrix which satisfies:

aci[ (3(s)] s di + v 1 for j=1,2,...,m. 111.4.9

It is assumed that R(s) and P(s) satisfy the requirements of Corollary 111.4.1.

Since R(s) and P(s) are relatively right prime polynomial matrices, then by Theorem

111.4.1 their eliminant matrix has a full rank; i.e. rank[Me] = n+ my. To establish the

corollary, Me is defined as the nonsingular matrix consisting of the first n+ my linearly

independent rows of Me and [ft,k] is defined as the m x (n+ my) matrix obtained

from [H,K] by deleting those columns of [H,K] which correspond to the same

numbered rows of Me which were eliminated to form In In view of Equation 111.4.8,

any arbitrary m x m polynomial matrix, /3(s) = f3Se(s) which satisfies Equation 111.4.9

can be obtained by solving:

eSe(s) = (s)

for [c1,IZ]; i.e.

111.4.10



[0] = p fi; '

To find an appropriate [H,K], identically zero columns, corresponding to those

columns of [H,K] which were eliminated to form MSC] are now inserted into [f I,1].

Then it follows that [11,K]M,=[H,K]Me=i3 and therefore in view of Equation 111.4.8

and Equation 111.4.10, the following can be established for some appropriate

polynomial matrices H(s) and K(s).

[H,K]M ,S e(s) = [H,K]

R(s)

sR(s)

s" 1 R(s)

P(s)

sP(s)

s" 1 P(s)

= H(s)R(s) +K(s)P(s) = il Se(s)

111.4.12

From the results obtained above, the fact that the polynomial matrices

H(s),K(s), and Q(s) can be chosen to satisfy the three conditions of theorem III.1.1

can be verified now. In particular, by setting



32

s" 1 0 0 gas)

-1 s" -1 0 0 q2m(s)

0 -1

Q(s) = 0 0 .
111.4.13

0 0 0 ... 1 s" +q..(s).,

and evaluating I Q(s) I by last column minors, the following expression can be

derived

m

vs)1 = E qin(s)so-1)(v-o+sm(v-1) 111.4.14

i=1

Define qi,(s) for i = 1,2,...,m as follows

v -2

qim(S) = E (q0_0(v_1) +hs i=1,2,,m

where q0_0(,_,)+; are constants. Hence I Q(s) I is given by

1,2(s)1 go+gis+...4-qmv_m_is
my -m-1 +Smv -m

111.4.15

111.4.16

where the real constants go, 9 (1.1 are chosen such that the roots of I Q(s) I are

in the left half s plane. Therefore, any arbitrary polynomial of degree my -m can be

chosen as I Q(s) j . If F(s) is any arbitrary mxtn polynomial matrix which satisfies

Equation 111.2.13; i.e. ac[F(s)]<ae[P(s)], then it can be verified that the product of

Q(s) and F(s) is a polynomial matrix of column (j) degree < v-1. Therefore,
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Q(s)F(s) = 13(s) = itS e(s) 111.4.17

for some constant matrix O. If [H,K] is now chosen such that

[H,IC]MeS e(s) = Q(s)F(s) = 13S e(s) 111.4.18

then for this particular choice of /3(s), given by Equation 111.4.17, it follows in view

of Equation 111.4.12, that

H(s)R(s)+K(s)P(s) = Q(s)F(s) 111.4.19

where both ar11-1(s)1:5 v-1 and ari[K(s)] v-1 for all i= 1,2,...,m (see Equation 111.4.12).

Since aH[Q(s)] = v-1, it can be shown that if all of the zeros of I Q(s) I are chosen to

lie in the stable half-plane, Re(s) < 0, then both Q-1(s)K(s) and Q-1(s)H(s) will be

stable proper transfer matrices, and as a result Equation 111.4.19 is satisfied.

Theorem 111.2.1 is therefore established.

The preceding can be summarized by noting that if T(s)=R(s)P-1(s) is a

proper transfer matrix and if R(s) and P(s) are relatively right prime polynomial

matrices where ac[R(s)] ac[P(s)] and P(s) is column proper with ajP(s)] = di 1 for

all j= 1,2,...,m, then one can achieve any desired stable closed loop transfer matrix

Tr,o(s) =R(s)PF-1(s)=R(s)[G-113,;(s)r via the compensation scheme depicted in Figure

1.2, where the only requirements on G'PF(s) are the following:
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1. The determinant of G-1131:(s) is the desired characteristic equation of the

closed loop system.

2. G-1PF(s) is a column proper polynomial matrix which shares the same

ordered di as P(s) (see Equations 111.2.13 and 111.3.5).

3. G-1 exists which implies that G must be nonsingular.

To facilitate understanding the linear controller derivation for the planar

manipulator, a linear single-input single-output second order system is considered in

the next section.

111.5 POLE PLACEMENT LINEAR CONTROLLER DESIGN FOR A LINEAR

SINGLE-INPUT SINGLE-OUTPUT SECOND ORDER SYSTEM

The intention of this section is to facilitate understanding the problem of the

planar manipulator which is presented in the next chapter. Consider a controllable

and observable linear single-input single-output second order system (p = m = 1) which

is described by the following transfer function:

s+2 s+2
T(s) 111.5.1

(s+ 1)(s-3) s2-2s-3

Note the presence of a pole in the right half s plane (s =3). The objective is to use

the frequency domain pole placement algorithm to derive a linear controller for the
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system such that the closed loop poles of the system can be placed at any desired

location in the left half s plane. The compensator scheme depicted in 111.5.1 is used

to achieve this objective.

v(s)
g

u(s)=p(s)z(s)

f(s)z(s)

The Given System

z(s)
pls)

k (s)

r(s)

q is)

Figure I11.1: The Scalar Compensation Scheme

h (s) 4

y(s)-r(s)z(s)

To implement the compensation scheme given in Figure III.1, the open loop

system transfer function must be transformed into the form T(s)=r(s)p-1(s) where r(s)

and p(s) must be relatively prime polynomials. For the scalar case this implies that

r(s) and p(s) must not have any common polynomial factors. By inspection of T(s)

the following can be established:

r(s) = s+2 ; p(s) = (s+ 1)(s-3) = s2-2s-3

d1 = 2 ; n = 2
111.5.2
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For the compensation scheme depicted in Figure III. 1, notice that if k(s), h(s),

and q(s) are chosen such that for any arbitrary polynomial, f(s), of degree no greater

than (n-1), the following are satisfied

1- q(s) is a stable polynomial.

2- k(s)p(s) + h(s)r(s) = q(s)f(s) 111.5.3

3- Both q'(s)k(s) and q'(s)h(s) are (stable) proper transfer functions.

then it follows that this scalar compensation scheme yields any desired closed loop

transfer function of the form

where p1(s) is defined as

t c(s) = r(s)p f I (s)g = r(s) [g -1 pis)]-1

Pis) A P(s)-i(S)

111.5.4

111.5.5

From Equation 111.5.5 notice that the zero of the system has not been affected by the

pole placement algorithm. Also the following two equations are satisfied

a[p1(s)] = a[p(s)] 111.5.6

r[pi(s)] = r[p(s)] 111.5.7
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(a= degree of a polynomial and r =coefficient of the highest degree term in a

polynomial). This is due to that fact that a[f(s)]-1 while a[p(s)] =n (recall that p(s)

is the characteristic equation of the open loop system). From this observation the

nonsingularity of pf(s) is noticeable.

Now, suppose it is required to place the two poles of the closed loop system

at s = -3 and s=-4. This implies that the characteristic equation of the closed loop

system must have the following form

(S) = k(s+3)(s+4) = k(s2+7s+ 12) 111.5.8

where k is a constant to be chosen such that the design requirement is satisfied.

From Equation 111.5.4 notice that the characteristic equation of the closed loop

system is given by

A(s) = g-lpi(s)

Equating Equations 111.5.8 and 111.5.9 the following is obtained

Consequently

g-lpi(s) = k(s 2 +7s+ 12)

pis) = s2+7s+12 ;
1

111.5.9

111.5.10

111.5.1 1
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since from Equation 111.5.7 the coefficient of the highest degree in pf(s) must equal

to the coefficient of the highest degree in p(s) given by Equation 111.5.2.

To derive k(s), h(s), and q(s) the eliminant matrix of r(S) and p(s) must be

obtained first. From Definition 111.4.1 and Equation 111.4.8, since m =1 and

d1= degree of p(s)=2, it can be shown that for k=2, n +mk- rank[MCk] is minimum

and hence v =2. Consequently

Me =

2 1 0 0
0 2 1 0

-3 -2 1 0

0 -3 -2 1

; Se(s) =

1

S

S2

S3

111.5.12

Since r(s) and p(s) are relatively prime polynomials their eliminant matrix must have

full rank. Indeed, this is the case and Me-1 is given by

0.8 -0.2 0.2 0
-0.6 0.4 -0.4 0

1.2 0.2 0.8 0
0.6 1.6 0.4 1

Existence of Me-' indicates that Mc-1 = Me-1.

111.5.13

Since v =2, from Equations 111.4.13 and 111.4.15 the following expression for

q(s) is obtained:



q(s) = s("1)+q ii(s) = s+qo
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111.5. 14

where qo must be chosen such that the pole of q(s) is in the left half s plane. For the

problem under consideration qc, is chosen to be 5. Hence

q(s) = s + 5 111.5. 1 5

From Equations 111.5.2, 111.5.5, and 111.5.11 the following expression for f(s)

is derived

f(s) = p(s) -pi(s) = (9s + 15) 111.5.1 6

Notice that f(s) is a polynomial of first degree which satisfies the requirement

a[f(s)]-1 since n =2 for the given system. The expression for q(s)f(s) follows:

(s) = q(s)f(s) = (9 s2 + 60s+75) 111.5.1 7

At this point a constant 1 x 4 matrix 13 can be chosen such that Equation

111.4.17 is satisfied. In particular

1

(3(s) = q(s)f(s) = (9 s2 + 60s+75) = [-75 -60 -9 0]
S2 111.5.18

S3
13 = [-75 -60 -9 0]

Now, Equation 111.4.11 (recall that K4e-1= Mc-1 which implies that [h,k] = [h,k]) together

with Equation 111.4.12 can be employed to derive h(s) and k(s). In particular



[h,k] = 13 111;1 = [-75 -60 -9 0]

= [-34.8 -10.8 1.8 0]

0.8 -0.2 0.2 0
-0.6 0.4 -0.4 0

1.2 0.2 0.8 0
0.6 1.6 0.4 1

and since from Equation 111.4.12 the following must be satisfied

[h,k]

[-34.8 -10.8 1.8 0]

r(s)

sr(s)

p(s)

sp(s)_

r(s)

sr(s)

p(s)

sp(s)

therefore h(s) and k(s) are given by

= h(s)r(s) + k(s)p(s) ; or

= -(10.8s+34.8)r(s)+ 1 .8p (s)

= h(s)r(s) + k(s)p(s)

h(s) = -(10.8s+34.8) ; k(s) = 1.8
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111.5.19

111.5.20

111.5.21

Hence, if g, q(s), and {h(s),k(s)} given by Equations 111.5.11, 111.5.15, and

111.5.21 are employed in the compensation scheme of Figure III.1 the desired closed

loop poles of the system will be placed at s = -3 and s = -4; i.e the closed loop transfer

function will have the following form



r(s) 8+2

g Ws) k(s + 3)(8+4)
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111.5.22

There is a pole zero cancellation in tc(s), namely the zero (s + 5) is canceled

by the pole (s + 5). Hence, the poles of the compensated system are at s = -3, -4, and

-5. The transfer function tc(s) does not accurately reflect the value of the time initial

condition response which must include terms arising from the pole at s = -5. The pole

placement linear controller design for the planar manipulator is discussed in the next

chapter.
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IV. LINEAR CONTROLLER DESIGN FOR THE PLANAR

MANIPULATOR

IV.1 LINEAR CONTROLLER DESIGN

The open loop transfer matrix of the planar manipulator is derived in

Appendix C. It is shown that the open loop transfer matrix of the system can be

expressed as T(s) =R(s)13-1(s) where R(s) and P(s) are polynomial matrices given by

the following

11R(s) l
rb

c
-kdris2 -as -(kdbs2 +bs)1

P(s) =
-(kdbs2 +bs) s3 -k dcs2 -csi

IV.1.1

Later, when the eliminant matrix of the two polynomial matrices R(s) and P(s)

is derived, it will be shown that R(s) and P(s) are relatively right prime polynomial

matrices and therefore the correct form of the planar manipulator open loop transfer

matrix has been obtained. Consequently the compensation scheme depicted in

Figure 1.2, can be applied to derive the linear controller. Derivation of the linear

controller is discussed now.
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To derive the linear controller for the planar manipulator, one can select any

desired closed loop transfer matrix which satisfies the three conditions stated in the

Section 111.4. It was shown that for the compensation scheme of Figure 1.2, the

closed loop transfer matrix is, Te(s)=R(s)[G-IPF(s)]-1. This implies that the closed

loop poles of the compensated system are given by the determinant of G-IPF(s). In

particular G-113F(s) can be chosen as any arbitrary polynomial of degree six (n=6), such

that the six closed loop poles of the system are placed at s =1 o dIf Pat' Dd29 . d.3) i o d4, Pas,d59 and

Pd6

It is desirable to have a diagonal (decoupled) closed loop transfer matrix. In

Appendix D, it is shown that the following choice of G-113F(s)

where

G-'13,.(s) =-I,

an(s) bwi(s)

IV.1.2
c1

bw2(s)

c1

CW2(S)

C2 C2

wt(s) = (s-pdi)(s-pd2)(s-pd,) Cl Pd1Pd2Pd3

w2(s) (s-Pd4)(s-Pd5xs-Pdd ; c2 Pd4Pd5Pd6

IV.1.3

not only satisfies the three conditions, but also results in a diagonal (decoupled)

closed loop transfer matrix of the form



Tc(s) =

CI

w1(s)

0

0

C2

w2(s)
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W.1.4

To find G, and F(s) such that the closed loop transfer matrix of Equation

IV.1.4 is achieved, notice that from Equation 111.2.13 and Equation 111.3.5 the

following can be established

Consequently

11 c[P F(s)) = I' c[P (SA IV.1.5

rc[G-1PF(s)] = G-1 (I' c[P p(s)]) = G I r c[P (s)]

and therefore G is given by

G = r c[P(s)] arc [G-1 P F(s)])-1

From Equation IV.1.1 it follows that

rc[P(s)] = [10 01}

and from Equation IV.1.2 and Equation IV.1.3:

[(Pc[G-1PF(s)])-1 = -lc

a b_ _...
c 1 c 1

b c

c2 c2

\ -1

/

IV.1.6

IV.1.7

IV.1.8

IV.1.9
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[g11 g12 1
-cc1 bc 21G.

g21 g22I IcyJ bc1 -ace
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IV.1.10

where y1= ac-b2 (it can be shown that y1= ac-b2 = (k,H1)2(a1k3-a22)> 0; see Equation

11.2.6). At this point, only the general procedure for determining H(s), K(s), and

Q(s) is discussed. More details are given in Appendix E.

To derive PF(s), matrix G given by Equation IV.1.10 is premultiplied by

G-1PF(s) as given by Equation IV.1.2. Once PF(s) has been derived, Equation 111.3.5

together with Equation IV.1.1, are employed to obtain an expression for F(s). For

the system under the consideration it is shown that v =3, and therefore employing

Equation 111.4.13 together with Equation 111.4.15 yield the following expression for

Q(S)

Q(s) =
s2 qrs+qo

-1 s2+q3s+q2
IV.1.11

where q0,q1,q2, and q3 are arbitrary real constants to be chosen such that the roots

of the I Q(s) I =s4+q3s3+ q2s2+ (its + qo remain in the left half s plane. At this point,

since Q(s)F(s) is known, corollary 111.4.1 can be employed to find the constant matrix

13. In particular, since for the system under study, Se(s) is given by the following



Se(S) =

1 0

0

S2 0

S3 0

S4 0

S5 0

0 1

0 s2
0 S3

0 S4

0 S5
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IV.1.12

then by setting the arbitrary polynomial matrix P(s)=pSe(s) equal to Q(s)F(s), an

expression for the constant matrix p is found. For the planar manipulator under the

consideration, the eliminant matrix of R(s) and P(s) is a nonsingular 12x 12 square

matrix. Therefore 'Me = Me and hence [H,K] = [k,11] (see Appendix E). Equation

111.4.11 and Equation 111.4.12 can now be employed to derive the expressions for 11(s)

and K(s). The final expressions for H(s), and K(s) are as following

H(s) =

and

P15S2+P13S+Pl1 µ1e5
2

+µ14S +1112

/1255.2+ /123'3+1121 /1265.2 +1124S+ 1122

ii(s) h12(S)1
A

h21(s) ii22(S).1

IV.1.13
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K(s) =
1.119s+1117

µ29s +1127

PIA" -Pig

µ2,10S + µ2s

A
k11(s) k12(s)1

kn(s) 12(s).1
IV.1.14

where the constant coefficients A's are given in Appendix E.

If the polynomial matrices H(s), K(s), and Q(s) given by Equations IV.1.13,

IV.1.14, and IV.1.11 together with G given by Equation IV.1.10 are now employed

in the feedback scheme depicted in Figure 1.2, then the desired (decoupled) closed

loop transfer matrix given by Equation IV.1.4 is achieved. For the simulation

purposes Figure 1.2 must be rearranged to its more suitable form. This is discussed

in the next section.

IV.2 BLOCK DIAGRAM FOR SIMULATION PURPOSES

For the planar manipulator there are two inputs, u, and u2, and two outputs,

yi and y2. For the controller presented here, two command inputs v1 and v2 are used

(see Figure 1.2). Thus:

V(s) = I. U(s) = [ill
v2(s) u2(s)

IV.2.1



G=
g 1 1 g12

g21 g22

k12(s)1

K(s)
k21(s) k22(s)]

ii(s)
H(s) =

h21(s) h22(s)

rq2i(s) qn(s)1
12-1(s) =

g21 (s) 22(5)]
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IV.2.2

IV.2.3

where for all i,j E (1,2) kii(s) and hii(s) are polynomials given in Equations IV.1.13 and

IV.1.14, and 41(s) are rational polynomials in s given by the following

g11(s)
S

2 +q3s+q2

Q(s)

1

eQ(s)

(q1S q0)
412(S)

tQ(s)

S2
22(s)

AQ(s)

eQ(s) = s4+q3s3 +q2s2+qis+qo

Consequently

U(s) = G V(s) + Q-1 (s)K(s)U(s) + Q- 1 (s)H(s)Y(s)

Or

IV.2.4

IV.2.5
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[u,(s)]

u2(s) 821 822.1 v2(s) 421(s) i22(s) k21(s) k22(s) u2(s)
IV.2.6

11(s)

(S)

12(s)

1/220)

11 h

h21(S) h220) y2(S)

Expanding Equation IV.2.6 gives

and

u1(s) = g11v1(s)+g12v2(s) +

(s)k1 i(s) +i12(s)k2 (s))ui(s) +

q11(s)k12(s) +412(s)k22(s))u2(s) +

RI (s)hi i(s) +ii2(s)h2i (s))yi (s) +

(s)h 12(s) +i 12(s)h22(s)p, 2(s)

u2(s) = g21v1(s)+g22v2(s) +

142 (s)ki i(s) +i22(s)k21(s))u (s) +

q21(s)ki2(s) 4722(s)k22(s))u2(s) +

(-42i(s)hi i(s) 4-T/22(S)h21 (s))), i(s) +

21(s)h 12(s) + 22(s)h22(s))y 2(s)

IV.2.7

IV.2.8

Figure IV.1 shows the block diagram for the complete control system when Equations

IV.2.7 and IV.2.8 are employed to determine inputs to the planar manipulator using

the rational polynomials defined in Equation IV.2.9.
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Figure IV.1: Planar Manipulator Closed Loop Compensation Scheme.

C1(s) a g11(s)k11(s) +g12(s)k21(s)

C2(s) a q11(s)ku(s)+q12Wk20)

C3(s) a qii(s)hil(s)+qi2(9)hzi(s)

C4(s) A q ii(s)11 12(s) + q u(s)h 22(s)

Cs(s) ( ) ( ) ),a -21 A kl2 A + -22-( khS- )(S-

C6(s) a q21(s)ki1(s)+q22(s)k21(s)

C7(s) ( ) ( ) a ( ) ( )a -21 ss-h 12 -S- + .. 22 -S, h22 S-

C8(S) a i21(S)ii1 i(S) +1722(s)h21(s)
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IV.2.9
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From Equations IV.1.13, IV.1.14, IV.2.3, IV.2.4, and IV.2.9 the following expressions

for C'(s) rational polynomials are obtained

Ci(s)
A

1 (a 3s3+a2s2+ais+00)
Q(s)

1

(s)

,C2(s) =
AQ

(cr7s 3 +06s2+0
5S 4 a 4)

C3(s) 1 (:112S4+CF11S3+°1052+°9S+08)eQ(s)

1 (0._7s4+0.16s3+01 _2+
C4(s) AQ(s) 1 ? Cr 14S+ an)

C5(s) =
A

1 (a
21

s3+020s2-foos+a18)vs)

C6(s)
1

k
f 3 2

Avs) a 25 S +Gus +°23s+°22)

1

s)
(cy

3°,4+029s3+028s2+027s+0.26)
C7(s) eQ(.'
C8(s) = 035S4

-F 034S 033S2 4- 032S+ GO

where a's are constants given by the following

IV.2.10
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GO q2 17 q0/127 018 1118

01 q3 V17 112P 19 1711127 q01129 019 111,10

02 = (131119 q1 P29 I- l'/17 $320 = 1128

03 1119 021 = 112,10

04 '72P-1s-7028 022 I/17

05 (131118 4.q2 /11,10 4711128 q0112,10 023 1119

06 q3111,10 -11 /12,10 + 11 is 024 = 1127

07 = 111,10 025 1129

08 q21-111 470P'21 026 P'12
IV.2.11

09 (131111 +821113 471 P21 qOP'23 027 /114

010 q31113+q21115 -4711123 -q01125+1111 028 = 11161-1122

all '4'31115 -411125+1113 029 = 1/24

012 1115 030 = 1126

013 q21112 q0/122 031 Pit

014 431/12412 // 14 (111122'10 1124 032 = 1113

015 = '731114 +421116 -1111124 -go1126+1112 033 = R21+1115

016 q31116-q1P26+1114 034 = 1123

017 1'116 035 1125

In Equation IV.2.11 's are constants given in Appendix E. At this point all the

parameters of the compensators given in Figure IV.1 are known and the closed loop

compensated system can be simulated. The simulation results are given in the next

chapter.
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V. SIMULATION RESULTS

A program was written to simulate the planar manipulator dynamics. The

variable step size Runge-Kutta Fehlberg integration method was used. Inputs to the

simulation program are:

1- Initial position of the links in degrees.

2- Magnitude of the command signals in degrees for different type of inputs.

3- gi's for 1=0,1,2,3 (see Section IV.1).

4- Location of desired closed loop poles (Pd11Pd21)Pd6)

Simulations for different values of closed loop poles and gi's were performed. After

considerable experimenting with the program, the following parameters were selected

since the controlled system responded favorably:

go = 0.8250 q i = 3.7750 i2 = 6.050 (13 = 4.10

Pal = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)
Pd2 = ( -3.20, .20) Pas = ( -3.00, 1.00)
Pd3 = ( -900.00, .00) Pd6 = (-800.00, .00)

The particular values for qi's were selected such that the poles of I (:)(s) I are placed

at s -0.5,-1,-1.1,-1.5 (Q(s) is given by Equation 111.4.13).
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For the particular stepper motors in the laboratory the maximum torque for

the linear region of operation is 0.63 N.m. The maximum external torque that can

be applied at each joint is directly proportional (through the gear ratio constant =6.9)

to the maximum torque of the stepper in the linear region. Hence, the magnitude

of the maximum torque available at each joint is 4.3 N.m.

For the compensators parameters given in Table V.1 the simulation results

around 010=0° and 0,0 =0° are shown in Figure V.1 through Figure V.3. Figure V.1-

(a) shows the response of the linearized model of the planar manipulator for

command step changes of 10° to both joints; i.e. 6v1= 6v, = 10°. Figure V.1-(b) shows

the corresponding response of the non-linear model. The error between the non-

linear simulation and the linearized model simulation is less than 0.12°. Notice that

the torques do not exceed 4.3 N.m. and hence the stepper motors do not slip. Figure

V.2 shows the same simulations for joint command step changes of Svi = 6v2=30`.'

Note the difference between the linear and non-linear model responses. The linear

model has no overshoot while the non-linear model demonstrates a peak overshoot

of less than 0.5° for link 1 and a peak overshoot of about 2.5° for link 2. The settling

time for the nonlinear case is about 7 seconds longer than the linear model. From

Figure V.2-(c) notice that the error in this case is larger than the error in the

previous case by about 3°. Also From Figure V.2-(d) notice that the maximum

torque available (4.3 N.m) is exceeded. This implies that the stepper motor is

operating out of region of linearity and therefore slippage will occur. To overcome
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the slippage problem one can apply ramp inputs instead of step inputs. This is

discussed later. Figure V.3 shows the same simulations for joint command step

changes of 6v1 = 6\12=50° for which the maximum error between the linear and non-

linear model is about 17°. Note the very different response for the non-linear model.

The linear region has been "exceeded". However, notice that the commanded angles

are realized after about 9 seconds.
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When the arms are initially at:

010 = .00 (deg.) 1320 = .00 (deg.)

If the following parameters are selected to compensate the system;

g11 .5335 13 4.1000

g12 .1486 q2 6.0500

g21 .1718 q1 = 3.7750

g22 .0689 q0 .8250

a 3 = -1134.644 a 7 = 709.052
a 2 = -10014.253 a 6 = 3590.971
Cl = -9904.339 as = -29336.570

a0 = -30396.398 04 = -15116.413

012 32.260 C17 -20.924

all 290.688 016 -105.330
285.371 a 15 = 856.639

a 9 886.519 014 441.366
as -.440 013 -.123

021 -575.060 a 25 = -106.708

020 7418.300 a24 = -5432.814
C19 709.052 a 23 = -1134.644

a18 -1486.994 022 = -5765.036

C30 16.623 035 = 2.493
C29 -217.176 C34 157.805
028 = -21.192 C33 31.754
027 = 43.209 a32 167.831

026 -.057 031 -.142

then the closed loop poles of the linearized system are:

Pdl = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)

Pd2 = ( -3.20, .20) Pds = ( -3.00, 1.00)

Pd3 = ( -900.00, .00) PdG = ( -800.00, .00)

Table V.1: Parameters Used for Compensation Around Equilibrium Point 010=00
and 020 = 0c.)
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Figure V.1: Planar Manipulator Response: 10° Step Command Applied to Both Joints
Around 010=0° and 020=0! (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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Figure V.3: Planar Manipulator Response: 50° Step Command Applied to Both Joints
Around 010=0° and 020=07 (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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For the compensators parameters given in Table V.2 the simulation results

around 010=0° and 020=30° are shown in Figure V.4 through Figure V.6. The overall

closed loop poles of the system are the same as the previous case. Figure V.4-(a)

shows the linear response for 8v1= (5\72=10°. Figure V.4-(b) shows the corresponding

non-linear response. The error between the non-linear simulation and the linearized

model simulation is shown in Figure V.4-(c). The torque applied to each link is

shown in Figure V.4-(d). Notice that the torques do not exceed 4.3 N.m. and hence

the stepper motor will not slip. Comparison of Figure V.4-(d) with Figure V.1-(d)

shows that when the initial position of link 2 is 020=30°, less torque is required for

the same amount of angular movement. Figure V.5 shows the same simulations for

Svi = Sv2 =30°. Notice that the non-linear response shown in (b) is not as nice as the

previous case. From Figure V.5-(c) notice that the error in this case is larger than

the error in the previous case. Also from Figure V.5-(d) notice that the maximum

torque available is exceeded. Figure V.6 shows the same simulations for

6v1= Sv2 =50!
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When the arms are initially at:

010 = .00 (deg.) 020 = 30.00 (deg.)

If the following parameters are selected to compensate the system;

g11 = 25.4405 q3 = 4.1000

g12 = 6.8944 q2 = 6.0500

g21 = 7.9734 q1 = 3.7750

g22 = 3.4430 go = .8250

C3 = -1075.292 a7 = 539.240

62 = -9721.232 66 = 2831.178
al = -13026.752 as = -20468.911

ao = -30476.822 a4 = -14456.266

C12 = 1528.943 a 17 = -797.291

an = 14111.740 a 16 = -4156.325
a 10 = 18843.999 a 15 = 29871.829
C9 = 44448.836 a14 = 21105.446
C8 = -20.988 a13 = -5.688

a21 = -634.885 C2.5 = -85.096
a20 = 4495.861 a24 = -4372.722
C19 = 539.24() a23 = -1075.292
a18 = - 1776.393 c 22 = -5633.772

a 30 = 919.470 a35 = 95.161
a29 = -6586.547 c34 = 6344.497
c 28 = -811.226 a33 = 1506.145
a

27 = 2583.567 a32 = 8202.306

a26 = -2.840 a31 = -6.578

then the closed loop poles of the linearized system are:

Pdl = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)

Pd2 = ( -3.20, .20) Pds = ( -3.00, 1.00)

Pd3 = ( -900.00, .00) Pd6 = ( -800.00, .00)

Table V.2: Parameters Used for Compensation Around Equilibrium Point 010=0°
and 020=3W
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Figure V.7 through Figure V.14 are simulation results for different joint

command inputs, 6v's, and different initial 02's. The explanations are similar to the

previous cases. In all of these simulations, the closed loop poles of the system are

kept the same. One important observation from the graphs is that as the initial 02

gets closer to 180° or -180°, less torque is required for the angular movements. This

is due to the fact that the effective inertia "seen" at joint 1 gets smaller as the arm

"bends" towards that joint.
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When the arms are initially at:

010 = .00 (deg.) 02. = 90.00 (deg.)

If the following parameters are selected to compensate the system;

g11 = 17.4574 q3 4.1000

g12 = 3.4430 q2 6.0500
g21 = 3.9818 q1 3.7750
g22 = 3.4430 q0 .8250

03 -935.855 C7 129.855
C2 = -8661.861 a 6 454.310
01 = -19963.543 a5 = -1111.696

00 = -28579.399 04 = -16043.449

012 = 1342.577 C17 -194.946

all = 12595.464 a 16 = -672.599
a 10 = 29052.660 a15 = 1601.298
09 = 41709.069 a14 23440.629
a 8 = -14.402 013 -2.840

a 21 -775.406 a25 = -29.878
a 20 -2591.923 a 24 -1567.703
019 = 129.855 a 23 -935.855

018 = -3005.254 622 -4937.645

a30 1126.747 035 = 29.351

a29 3773.636 a34 = 2270.039
028 -212.333 033 1335.944
027 4380.147 032 7201.699
a26 -2.840 a31 = -3.285

then the closed loop poles of the linearized system are:

Pd 1 = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)
Pd2 = ( -3.20, .20) Pd5 = ( -3.00, 1.00)

Pd3 = ( -900.00, .00) Pd6 = ( -800.00, .00)

Table V.3: Parameters Used for Compensation Around Equilibrium Point 010=00
and 020=90`!
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When the arms are initially at:

01. = .00 (deg.) 020 = 135.00 (deg.)

If the following parameters are selected to compensate the system;

g11

g12

g21

g22

03

a 2

al
ao

012

all
aio
a9

a88

a 21

a 20

019

a18

030

a 29

a28

a27
a 26

= 10.9393 q3 =
= .6250 q2 =
= .7228 11 =
= 3.4430 go =

= -907.355 a7 =
= -8010.432 a 6 =
= -21835.497 a5 =
= -25817.058 a 4 =

= 1315.173 a 17 =
= 11668.306 a16 =
= 31843.892 a

15 =
= 37698.519 a 14 =
= -9.025 a13 =

-804.057 c25 =
= -4074.530 a 24 =
= 18.398 a23 =
= -3142.823 a22 =

= 1168.807 a35 =
= 5939.495 a34 =
=

=
-49.341

4581.272
a

33

aa32

=

=
= -2.840 a31 =

4.1000
6.0500
3.7750

.8250

18.398
-32.078

3270.428
-15652.593

-29.136
49.570

-4781.757
22881.239

-.516

-6.762
-355.818
-907.355

-4315.803

8.068
519.872

1321.739
6306.553

-.596

then the closed loop poles of the linearized system are:

Pdl = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)
Pd2 = ( -3.20, .20) Pds = ( -3.00, 1.00)
Pd3 = (-900.00, .00) Pd6 = ( -800.00, .00)

Table V.4: Parameters Used for Compensation Around Equilibrium Point 010=00
and 020 =135°



Position (deg) v.s. Time (s)
Ot = 0->to (deg) 02 = 135>145 (deg)

Position (deg) v.s. Time (s)
Ot = 0>10 (deg) 02 = 135> I 45 (deg)

eD 0.3

01 , 02

(a)

LINEAR SBRIADON

Error (deg) v.s Time (s)
(01= 0>10 (deg) 02= 135 >145 (deg) )

0.2

2 3 4 5 6 7 8 9 10

lime (s)

01N-011, , 02N-021,

(c)

1.2

0.8

z
0.6

1-
0.4

0.2

-0.2
0

3 4 5

Time (s)

NONLINEAR SIMUIAllON01 , 02

(b)

71

146

144

140

CV

138

136

134
9 10

Torque (N.m) v.s Time (s)
(01. 0 >10 (deg) 02= I35>145 (deg) )

4 5

Time (s)

NONLINEAR SIMULATION,

(d)

10

Figure V.10: Planar Manipulator Response: 10° Step Command Applied to Both
Joints Around 010=0° and 02.=135°. (a) Linear Model Response. (b) Nonlinear
Model Response. (c) Error Between Linear and Nonlinear Model Response.
(d) Nonlinear Model Torque Applied to Each Link.



Position ((leg) v.s. Time (s)
01 = 0>30 (deg) 02 = 135>165 (deg)

30 170 35

25 165 30

20

a) 155 a) a) 20

15

150 0) 15

8101 0)

145 10

160 25

4 5 6

ime (s)

OI , 82

(a)

UNEAR SIMULATION

Error ((leg) v.s. Time (s)
(01= 0>30 (deg) 02= 135 >!65 (deg) )

10

140

135

BIN -OIL 02N-02L

(c)

Position (deg) v.s. Time (s)
01 = 0>30 (deg) 02 = 135>165 (deg)

170

3.5

3

2.5

Time (s)

NONLINEAR SIMULATION01 , 02

(b)

165

-160

-150

-145

-140

135
9 10

Torque (N.m) vs. Time (s
(01= 0>0 (deg) 02= 135>165 deg) )

2

1.5
CV

0.5-j

7-

0.5

1

Maximum torque not exceeded

4 5 6 7 8 9

Time (s)

NONLINEAR SIMULATIONYI ,

(d)

10

72

a)

Figure V.11: Planar Manipulator Response: 30° Step Command Applied to Both
Joints Around 010=0° and 020=135! (a) Linear Model Response. (b) Nonlinear
Model Response. (c) Error Between Linear and Nonlinear Model Response.
(d) Nonlinear Model Torque Applied to Each Link.



50

45

40

35

b1,0 30

25

-4 20

15

10

5

0

Position (deg) v.s. Time (s)
01 = O->50 (deg) 02 = 135->185 (deg)

4 5 6 1 8 9 10

Time (s)

01 , 02

(a)

IJNEAR SIMUIATION

Error (deg) v.s. Time (s)
(N. 0->50 (deg) 02= 135->185 (deg) )

73

Position (deg) v.s Time (s)
01 = 0->50 (deg) 02 = 135->1115 (deg)

190 60 190

180 50 180

170 . .. 40 170 ,..,
L:41 t4) LA
o 41 0

160 11.,
1:1

30 160 l

150 20 150
m
w

140 10 140

130

01N-01L , 02N-02L

(c)

5 6 1 8 9 10

Time (s)

NONLINEAR SIMULATION01 , 02

(b)

Torque (N.m) v.s Time (s)
(01. 0->50 (deg) 02= 135->185 (deg) )

130

Maximum torque available

-2
4 5 6

Time (s)

NONLINEAR SIMULATIONTI ,

(d)

10

Figure V.12: Planar Manipulator Response: 50° Step Command Applied to Both
Joints Around 010=0° and 020=135°. (a) Linear Model Response. (b) Nonlinear
Model Response. (c) Error Between Linear and Nonlinear Model Response.
(d) Nonlinear Model Torque Applied to Each Link.



74

When the arms are initially at:

010 = .00 (deg.) 020 = -45.00 (deg.)

If the following parameters are selected to compensate the system;

g11

g12

g21

=
=
=

23.9755
6.2611
7.2409

q3

12

q1 =

4.1000
6.0500
3.7750

g22
= 3.4430 qo .8250

a3 -1028.453 07 = 404.527
02 = -9440.135 a6 = 2120.897
al = -15395.273 a5 = -13765.620
ao = -30256.619 64 = -14554.364

a12 1463.666 017 = -599.605

611 13707.120 a16 = -3117.369
010 22319.111 a15

= 20077.049
a 9 44133.185 a 14 = 21251.569
a 8 -19.780 a13 = -5.165

a 21 -682.095 25 = -67.743

20 2149.454 a 24 -3506.152
(119 = 404.527 a 23 -1028.453
018 -2112.573 a22 -5479.206

a30 989.151 a35 72.420

629 -3156.507 5082.435
-614.175 033 1443.834

a 27 3075.058 03, = 7979.475
026 = -2.840 031 -5.974

then the closed loop poles of the linearized system are:

Pal = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)

Pd2 = ( -3.20, .20) Pd5 = ( -3.00, 1.00)

Pd3 = ( -900.00, .00) Pd6 = ( -800.00, .00)

Table V.5: Parameters Used for Compensation Around Equilibrium Point 010=0°
and 020 = -45!)
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To overcome the slippage problem of the stepper motor, the input given in

Figure V.15-(a) is applied to the system. The interval for the ramp part of the input

is 0.625 second. The compensators parameters are identical to those of Table V.1.

Comparing Figure V.15-(d) with Figure V.3-(d), it is observed that by applying the

ramp input, the maximum external torque applied to each link has been decreased

significantly. The maximum SO of the stepper motor in this case was 43.2°. Also

from Figure V.15-(b) and Figure V.3-(b) notice that the non-linear response has not

been changed significantly; i.e. for the ramp input the response has been slowed

down only a little bit.
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The compensators parameters given in Table V.6 are for the case when the

planar manipulator has been commanded to draw a straight line. The simulation

results for two different time intervals are shown in Figures V.16 and V.17. Figure

V.16-(a) shows the command inputs to the system such that the end effector moves

in x direction (straight line) from -70 cm to 70 cm in 20 seconds. Notice that both

v1 and v2 have changed more than 130°. The end effector trajectory and the error

is shown in Figure V.16-(b). Figure V.16-(c) and Figure V.16-(d) show the external

torques applied to link 1 and link 2 respectively. Notice that the torques are small

and therefore no stepper motor slippage is present. Figure V.17 is similar to Figure

V.16 except that the robot arm has been commanded to draw the same straight line

in 60 seconds. Comparison of Figure V.17 -(h) with Figure V.16-(b) indicates that

when the time interval has been longer the trajectory is much better.
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When the arms are initially at:

010 = 133.95 (deg.) 020 =32.61 (deg.)

If the following parameters are selected to compensate the system;

g11 .5045 q3 4.1000

g12 .1360 q2 6.0500

g21 .1573 ql 3.7750

g22 .0689 go .8250

03 = -1067.052 07 515.601
02 = -9675.195 06 = 2713.240

01 = -13449.214 as = -19271.199

60 = -30457.453 a 4 = -14434.692

012 30.347 017 -15.252
280.908 016 -79.678

010 389.270 015 562.431
888.429 014 421.486

08 -.416 013 -.112

021 -643.190 025 -82.069

20 4085.635 024 -4222.549
019 515.601 023 -1067.052
018 -1828.767 022 -5610.092

030 18.635 035 = 1.822
029 -119.737 034 = 122.513

028 -15.533 033 = 29.900
027 53.203 032 163.363

026 -.057 031 -.130

then the closed loop poles of the linearized system are:

Pd 1 = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)

Pd2 = ( -3.20, .20) Pd5 = ( -3.00, 1.00)

Pd3 = ( -900.00, .00) Pd6 = ( -800.00, .00)

Table V.6: Parameters Used for Compensation Around Equilibrium Point
010=133.95° and 020 =
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For the cases considered so far, both links have been commanded to move

simultaneously. The intention has been to consider the worst cases. However, for

completeness Figures V.18 and V.19 are also included. Figure V.18 shows the

simulation results when link 1 has been commanded to move 50° from its initial

position and link 2 has been commanded to stay at its initial position. Figure V.19

shows the simulation results when link 1 has been commanded to stay at its initial

position and link 2 has been commanded to move 50° from its initial position.

Comparing Figure V.18-(b) with Figure V.19-(b) it can be seen that the nonlinear

model behaves more like the linear model for the case when only link 1 is

commanded to move. Note that the maximum error is 0.003 degree in this case

while the maximum error is -3.3 degree when only link 2 is commanded to move.

Hence, it follows that the error between the linear model and the nonlinear model

is introduced mostly due to the movement of link 2. Also from Figure V.18-(d) and

Figure V.19-(d) note that when only link 2 is commanded to move, less torque is

required as expected. This is because when only link 1 is commanded to move it has

to carry link 2 also i.e. more mass is involved for the movement and therefore more

torque is required.
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Figure V.18: Planar Manipulator Response: 50° Step Command Applied to Joint 1
Around 010=00 and 020=0°. (a) Linear Model Response. (b) Nonlinear Model
Response. (c) Error Between Linear and Nonlinear Model Response. (d) Nonlinear
Model Torque Applied to Each Link.
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For all the previous simulations the desired closed loop poles of the planar

manipulator system have been selected as following

Pdl = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)

Pd2 = ( -3.20, .20) Pds = ( -3.00, 1.00)

Pd3 = ( -900.00, .00) Pdo = ( -800.00, .00)

Figure V.20 shows the simulation results around 01=0° and 02 = 0° for 6v1= 6v2= 10°

where the desired closed loop poles of the system have been changed as follows

pd = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)

Pd2 = ( -3.20, .20) Pd5 = ( -3.00, 1.00)

Pd3 = ( -90.00, .00) Pdo = ( -80.00, .00)

The compensators parameters are given in Table V.7. By comparing Figure

V.20 with Figure V.1 the following two observations can be made; 1- as the real

poles of the closed loop system are moved toward the origin of the s plane, the

external torques applied to the links do not change significantly, 2- the nonlinear

model response is not as well behaved as it was when the real poles were further

from the origin. Perhaps this implies that the reduced ordered model can be used

to describe the planar manipulator arm. By reduced order model it is meant that the

two real poles of the system can be placed at infinity; i.e. they can be ignored.
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When the arms are initially at:

010 = .00 (deg.) 020 = .00 (deg.)

If the following parameters are selected to compensate the system;

gn = .0534 q3 = 4.1000

g12 = .0149 q2 = 6.0500

g21 = .0172 q1 = 3.7750

g22 = .0069 clo = .8250

CY 3 = -119.729 a7 = 72.770

a 2 = 462.093 a 6 = -2866.974
al = 17264.549 a 5 = -53984.564

a0 = 8612.644 a4 = -29385.917

a12 = 3.399 a 17 = -2.028
all = -13.836 a16 = 84.133
c10 = -505.209 a15 = 1578.552
a 9 = -252.037 a14 = 859.174
a 8 = -.044 a 13 = -.012

a 21 = -59.975 a25 = -11.731
a20 = 10746.536 a 24 = -3775.779
a 19 = 72.770 a 23 = -119.729
a18 = -3391.740 a22 = 908.699

CI30 = 1.780 a35 = .299
a29 = -314.094 c34 = 110.271
a 28 = 2.055 Cr 33

= 3.349
a27 = 99.168 a32 = -26.644

a26 = -.006 a 31 = -.014

then the closed loop poles of the linearized system are:

Pal = ( -3.20, -.20) Pd4 = ( -3.00, -1.00)

Pd2 = ( -3.20, .20) Pas = ( -3.00, 1.00)

Pd3 = (-900.00, .00) Pd6 = ( -800.00, .00)

Table V.7: Parameters Used for Compensation Around Equilibrium Point 010=0°
and 020 = 0° (Real Poles Shifted).
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The results obtained from the simulations can be tabulated as following:

010 02o 5V 1= 6112
P.O.

L.M.R.

i S.T.

N.L.M.RN.L.M.R.

P.O. i S.T.

Max.
Err,

S.M.
slip?

0° 0° 10° 0°
I

2.5 0°
I

4 .11° N

0° 0° 30° 0° I

I

2.5 2.2° I

I
9 3.3° Y

0° 0° 50° 0° 2.5 15° 10 18° Y

0° 30° 10° 0°
I

2.5 .05° 8 .08° N

0° 30° 30° 0°
I

2.5 2.5°
I

I

10 4.3° Y

0° 30° 50° 0° 2.5 15° 12.5 17° Y

0° 90° 10° 0° 1

I

2.5 .5° 1

I

8.2 .4° N

0° 90° 30° 0°
I

2.5 3.° 11.5 3.7° Y

0° 90° 50° 0° 2.5 10°
I

13 10° Y

0° 135° 10° 0° 2.5 .5° 8 .3° N

0° 135° 30° 0°
I

2.5 1.5° 8 2.5° N

0° 135° 50° 0° 2.5 5°
I

9.8 6° Y

0° -45° 10° 0° 2.5 .1° 8 .2° N

0° -45° 30° 0° 2.5 1° 10 1.8° Y

Initial Position of Link i.
svi = Command Input to Link i.
L.M.R. = Linear Model Response.
N.L.M.R. = Non-Linear Model Response.
P.O. = Peak Overshoot.
S.T. = Settling Time in Second.
Max. Err. = Maximum Error Between L.M.R. & N.L.M.R.
S.M. Slip? = Stepper Motor Slippage Present? (Y = either one or both motors slip;

N=neither motor slips)

Table V.8: Tabulated Results.
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VI. CONCLUSIONS & RECOMMENDATIONS

In has been demonstrated that the multivariable pole placement algorithm for

linear systems can be applied to the nonlinear planar manipulator system. The

compensation procedure used is based on the ability to express the open loop

transfer matrix of a system as the product R(s)F1(s), where P(s) and R(s) are

relatively right prime polynomial matrices with P(s) column proper and degree of

each column of P(s) greater than or equal to the degree of the corresponding column

in R(s). It is shown by Wolovich [22] that for a controllable and observable system,

the transformation of the open loop transfer matrix to R(s)P-1(s) where R(s) and P(s)

satisfy the necessary requirements is guaranteed by employment of the structure

theorem. The pole placement algorithm in general requires a lot of calculation. It

might be noted that the compensation scheme has been done entirely in the

frequency domain with no reference whatsoever to the time domain notion of state.

The main question asked in this thesis is "How effective is the linear pole

placement controller for a nonlinear planar manipulator?" To answer this question,

simulations at different equilibrium points were performed. Simulation results are

summarized in Table V.B. Consider the case where the initial position of link 2 is

0° and command input of 30° is applied to each joint. Note that slippage is present
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i.e. at least one of the motors is slipping. Now consider the case where link 2 is

initially at 135° and the same command input as the previous case is applied to each

joint. Notice that the stepper motors are operating in their linear region i.e. slippage

does not occur. As link 2 moves towards link 1 the effective inertia around joint 1

gets smaller and hence less torque occurs for the same angular movement. To

compensate for the slippage of the stepper motor the following are recommended:

1- Use a stepper motor which is capable of producing higher torque.

2- Apply ramp inputs instead of step inputs.

Stability of the system even when the input command is as large as 50° is

noticeable. This implies the robustness of the system relative to the perturbation

around an equilibrium point. For further research one can study the robustness of

the system relative to pay load.

The effectiveness of the linear pole placement controller for the planar

manipulator was also demonstrated by commanding the planar manipulator to draw

a straight line in the x direction for a distance of 1.4 meter first in 20 seconds and

then in 60 seconds. It was shown that better result is obtained by allowing more time

for the planar manipulator to perform its task.

It was shown that as the two real poles of the closed loop system are moved

away from the origin of the s plane, better responses are obtained. This suggests that
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the sixth order system can be approximated by a fourth order system. However this

is still questionable and it is left for further research. Simulations when only one link

at a time is commanded to move were also performed. It was shown that the error

introduced between the linear and the nonlinear model of the planar manipulator is

mostly due to the movement of link 2.

Considering the rise times, peak overshoots, and settling times of all nonlinear

model responses (see Table V.8), it can be concluded that the pole placement

algorithm is effective for the nonlinear planar manipulator. As soon as the planar

manipulator is completed in the Oregon State University control laboratory the

results presented here should be experimentally verified.
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APPENDIX A

A.1 LAGRANGE METHOD

The motion equations in the Lagrange method are derived in terms of

generalized coordinates. Generalized coordinates are used to "locate" elements of the

system with respect to a reference system (positions, angles, independent node

potentials, independent loop currents, charges, etc.):

q=
q1

qn.

The generalized forces acting on the system are

F(q) =

F1(q)

Fn(q)

A.1.1

A.1.2

If the generalized forces can be obtained from the gradient of a scalar function

V = V(q), i.e:



av
aq

av
aq,

av

aq.
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A.1.3

then the system is called energy conservative and the function V(q) is called the

potential energy. The kinetic energy, T, is defined in terms of the generalized

coordinates and their derivatives, i.e:

T = T(q,q')

The Lagrange function L, is now defined as

L = L(q,q) = T(q,q1)-V(q)

and the Lagrange equations of the motion have a form

d , ar, D

dt aqi aq

where R is nonconservative force vector.

A.1.4

A.1.5

A.1.6
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A.2 EQUATIONS OF MOTION FOR THE PLANAR MANIPULATOR

Consider the planar manipulator shown in Figure 11.3. To derive the

equations of motion the total kinetic energy of the manipulator must be computed.

Notice that the change in potential energy of the manipulator is zero since the

movement of the links are constrained in a horizontal plane. To derive the kinetic

energy of the system, the following equations are established. For link 1

and for link 2

11 = Eicos01

yl =

= L1cos01+1,2cos(01+02)

y-2 = L1sin0 +L2sin(01 +02)

The total kinetic energy is given by

1 -2 -2T = (m
1

+/ lwi2 +m2v2 426)2)

A.2.1

A.2.2

A.2.3

where V; is velocity magnitude of the center of mass of link i, I; is the moment of

inertia of link i about its center of mass, and co; is the angular rotation rate of link

i. w1 and W2 are given as

A.2.4



Only horizontal planar motion is considered. Hence for link 1:

For link 2:

=
1
L

1
sine

1

= WiLicosei

2-2 -12 -a 0/2/.v1 X +y =
1 1L1

= -0/1L1sin01-(0/1+012)E2sin(01+02)

y-12 = Of1L1cos0 1+(0/ 1+01 2)1,2- COS(01+02)

v2
-2 = x 2

-a
+y 2
-a =

1
on(L2 +l22+2LiE2cose2) +

0 (+ COS02)12P+201 01
1 2 E22 i,

1

The following positive constants are defined:

k1 = in2L1L2

2k2 = /-1+/-2+MiL-21+MA+/2)

= /2+M21,2
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A.2.5

A.2.6

A.2.7

A.2.8

A.2.9

Since the arm is moving in a horizontal plane, the change in its potential

energy is zero and therefore the Lagrange equations of motion given by Equation

A.1.6, simplifies to the following form (notice that q =0)

A.2.10



where

0 = [011 0' =
02 0/2

and R, the total nonconservative forces, is given by

N I T1 -kf EY1

R=
I.R21 1.2-ki20/2
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A.2.11

A.2.12

For the manipulator in the control laboratory, the masses of the links are very close

together. Hence it is assumed that the coefficient of friction, which is obtained

experimentally, is the same for both links i.e. kn = km = kf. In fact several simulations

were done using different values of kf and nearly identical results were obtained.

With this assumption Equation A.2.12 becomes

R1

R=
I,R2.1 T241012

A.2.13

In Equation A.2.13, r1 and r2 are the external torques applied to each link and 1(10 '1

is the assumed friction for link i.
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From Equation A.2.10 through Equation A.2.13, the following can be written:

aT
eli(k2+2kicos02)+0/2(k3+kicose2)

ao',

aT
Al 2k34-ai ,(k3+k,coso2)

ao/2

d (-8T )- oll1(k2+21c1cos02)-20/10/2k1sin02+0112(k3+k1cos02)-
dt aol

02k1sin02

d aT
dt-

(
ao'2)

2k3 + 0
1
(1C3+k

1
COSO2)-01

1
Of2k1

sine2

aT = 0.0
ael

aT
.302

= -Onk sine -0/ 0/ k sine2 1 2 1 2

A.2.14

A.2.15

A.2.16

Substitution of Equation A.2.13, and Equation A.2.15 through Equation A.2.16 into

Equation A.2.10, will result in the following dynamical equations of the system

011i(k2+2kicos02)-20/10/2kisin02+0"2(kicos02+k3)-0(22kisin02

0 (k cogs +k )+0" k +Oak sin()2 3 2 3 1 2

T24/3/2

Equation A.2.17, is used for the nonlinear simulation.

A.2.17
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APPENDIX B

B. DERIVATION OF THE LINEARIZED MODEL

Consider the open loop block diagram of the robot arm, including the stepper

motors and drives, shown in Figure II. 1. In Section 11.3, it was shown that, if the

state vector is chosen as given by Equation 11.3.2, then the first order differential

state vector is described as

=

fl

f2

f3

f4

fs

f6

2

xis

X16

X3

X4

/3"1

oil
2

lcu2

B.1



where

f3 = 0 " 1

f4 = fr2

= [k2k3-14-1c12cos2(x2)]-1*

R31c((x5-x1)-(x6-x2)) +

kik3sin(x2)(x3+x42+2x3x4)-

kikcos(x2)(x6-x2)+

2k1Iksin(2x2)x3+

kik3(X4 -X3) + kiX4COS(X2))1

= [k2k3-14-4cos2(x2)]-1*

UcT(k2(x6-x2)-k3(x5-x1))+

kikcos(x2)(2(x6-x2)-(x5-x1))-

k2sin(2x2)(x32 + 1;2 +X3X4)

kisin(x2)(k2x32 +k3x42 +2k3x3x4)+

kik1cos(x2)(x3-2x4)+k3x3-k2x4)]

102

B.2

Notice that f3 and f4 given by Equation B.2 are nonlinear. To be able to write

Equation B.1 in a state representation form of x' =Ax+Bu, it must be linearized and

evaluated around an equilibrium point.

Having defined the state vector by Equation 11.3.2, it can be shown that al

through a5 given by Equation 11.2.4, can be rewritten as

al = 21cicos(x2)+k2
a2 = kicos(x2)+k3
a3 = -kisin(x2)

a4 = lc (x5-x1)+kisin(x2)x42 +2kiSi11(x2)X3X4 kf x3

a5 = ki(x6-x2)-kista(x2)x32-kix4

B.3
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Substitution of al through a5 from Equation B.3 into the set of nonlinear equations

given by Equation 11.2.5, results in the following expressions for f3 and f4:

where

13

14

= 011i

0112

= *H2

= H1 *H3

B.4

H1 = [k2k3-14-k2icos2(x2)]-1

H2 = k3kv [(X5 -.X1) (X6 -X2)] + kik3sin(x2) [x3
2

+x4
2
+2x3x4] -kiktcos(x2)*

(x6-x2)+1k2sin(2x2)3 x3+14k3(X4 -x3) + kiCOS(X2)X4]
1

H3 = kt[k2(x6-x2)-k3(x5-x1)1+kiktcos(x2)[2(x6-x2)-(x5-x1)]-

ki
2 2

S ui(.A.2) (X3
2 1
+ X4

2
+X3X4) -kiSill(X2)(k2t3

L.
+ 4I,k3.X3X4) +

k1[k1 cos(x2)(x3-2x4)+k3x3-k2x4]

B.5

The general form of the state representation of a linearized model can be described

by the following [12]

8x" = A8x+138u
8y = C8x+138u

B.6

where the A, B, C, and D matrices (system matrices) must be evaluated at the

desired equilibrium point. It can be shown that the linearized system matrices for

the system under consideration are given by



104

A=

(71

8X1

1V2

aX 1

af6

act

all

aX2

4e2

aX2

af6

ax2

ail

aX6

4'2

aX6

af6

8x6

0

0

a31

a41

0

0

0

0

a32

a42

0

0

1

0

a33

a43

0

0

0

1

a34

a 44

0

0

0

0

a35

a45

0

0

0"
0

a36

a46

0

0

B.7

(the third and forth row of matrix A are derived shortly)

aft aft

aut au2

aft aft

B= a"i au2

W6 ,Y6

8141 84,2

-0 0

0 0
0 0
0 0
1 0
0 1

C=

agt ast

art ax2

age 882

ail are

41__.
ax6

ag2

aX6

[1

0

0

1

D=

B.8

0

0

0

0

0

0

01

0
B.9

as, agi

ail aul 01

882 as2 0 0
aui au2

B.10

By inspection of Equation B.7 through Equation B.10, one can see that the

only matrix which varies at different equilibrium points is the matrix A. The

elements in the third and the forth row of matrix A are as following:



a32 =

a
31 Tx= q3 = H

1
(-k3ks)

=
Hi2(ki2sin(2x2))H2+

H1 [k3kt +kik3cos(x2)(4+4+2x3x4)+

kiksin(x2)(x6-x2) + kik, cos(x2) +

k2icos(2x2)x32-kikf sin(x2)x4l

afia33 =
3

= H
1
[k

1
k

3
sin(x2)(2x 3+2x4) +ki

2
sm(2x2)x3 -kfk]3

ailau = = H
1
[k

1
k

3
sin(x2)(2x

3 +254)+kik3 +kiCOS(X2))]

a/3a35 = = H1k3k

af3a36 Tc = H
1
(-k3

k
c -k

1
kICO* 2))

6

a41
i

= af4 = H
1
(k3kt +k 1k1

COS(X2))Tx
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B.11

B.12

B.13

B.14

B.15

B.16

B.17



g4 2 2a42 =
ax2

= H1 (k1SM(2X2))//3 +

H1 [ -k2kt -kiksin(x2)(2(x6-x2)-(x5-x1))-

2kiktcos(x2)-24cos(2x2)(x32 +-144-x3x4)-

k,cos(x2)(k2.4 +k3x42 +2k3x3x4)+ki-kisin(x2)(x3-2x4))]

af4 .a43 = = H1[-k l2 sm(2x2)(2x3 +x4)-k
1
sin(x 2) *

ax3

(2kzx3+2k3x4)+kikicos(x2)+k3)]

44
af4 .a = = H1[-k l2 sm(2x 2)(X4 +X3) -k

1
sin(x 2) *

ax4

(2k3x4+2k3x3)-ki(2kicos(x2)+k2)]

af4a45 = = H
1
(-k

3
k

x
-k

1
kIcos(x2 ))

ax3

afa46 = (k2kI +2k
1
k

x
cos(x2))47 = H

1
6
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B.18

B.19

B.20

B.21

B.22

At any equilibrium point all the rates variable must be zero. This implies that

the following must be satisfied at any equilibrium point (see Figure II.1):

U
1

= U2 =0

X3 = X4 = 0

X5 = x1

X6 = x2
B.23
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Substitution of Equation B.23 into Equation B.11 through Equation B.22 results in

the following matrix A around any particular equilibrium point.

where

A=

afi

av2

af2 af2

ax2

alb af6 6af6

a,1 ax2 0

O 0 1 0 0

O 0 0 1 0

a b kaa kdb -a

b c kdc -b

O 0 0 0 0

0 0 0 0 0

a A -k3kT Hl

b A (ICICOS(X20)+k3)k, Ht

c A -(21CICOS(X2d+k2)kt Hl

k, A kf

Notice that the evaluation

independent of the initial position

0

0

-b

-c

0

0

B.24

B.25

of matrix A around any equilibrium point is

of the first link.

The A, B, C, and D matrices given by Equation B.24, and Equation B.8

through Equation B.10, respectively, are the one which are used for the linearized

model. Consequently these matrices are used to derive the compensator of the

closed loop system.
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APPENDIX C

The structure theorem establishes a fundamental structure of dynamical

systems. In particular, if a given system is state controllable, the structure theorem

can be employed to write the transfer function of the system as T(s) =R(s)P -1(s)

where R(s) and P(s) have certain properties as discussed shortly. In order to

establish this theorem, the following definitions, some of which has been stated in

Section 11.4, are presented first.

C.1 PRELIMINARY DEFINITIONS

DEFINITION C.1.1: The degree of a polynomial matrix P(s), denoted by the scalar

a[P(s)] is defined as the degree of the polynomial element of highest degree in P(s).

The degree of the j-th column of P(S) denoted by the scalar acj[P(s)], is defined as

the degree of the polynomial element of highest degree in the j-th column of P(s).

The constant matrix consisting of the coefficients of the highest degree terms in each

column of P(s) is denoted by rc[P(s)]. Subscript "c" implies column.
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DEFINITION C.1.2: The degree of the i-th row of P(S), denoted by the scalar

ari[P(s)], is defined as the degree of the polynomial element of highest degree in the

i-th row of P(s). The constant matrix consisting of the coefficients of the highest

degree terms in each row of P(s) is denoted by rr[P(s)]. Subscript "r" implies row.

To illustrate, consider the following example:

EXAMPLE C.1.1: If

where

P(s) =

pii(s) pim(s)

Pni(s) P(s)
; with

at,tp(s)] -1
a iP(s)]

P ii(S) " a JAMS' E aek
k=0

CC av[P(s)] 00

which implies a[Pii(s)]=aii[P(s)], then

Note that

aci[p(s)] = Max {(30[P(s)])i.i...}

3 [P(s)] = Max f(ati[P(s)])/.1)

auP(s) sacj[P(s)] for all j

a uP(s) s 86[P(s)] for all i

C.1.1

C.1.2

C.1.3

C.1.4



In particular if
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P(s) =

s2-3

4s+2

-s2

1

2

s+3

2s

0

-3s+2

C.1.5

then 3,1=2, 0,2=8,3=1, 8,1=3,3= 2, 3r2 =1 and

rJP(s)] =

1

0

-1

0

0

1

2

0

-3

;

1

Fr[P(s)] = r=1.

-1

0

0

0

0

0

0

C.1.6

The column j zeros in rc[P(s)] indicate that the corresponding polynomials are of

lesser degree than 3,j[P(s)]. The row i zeros in rr[P(s)] indicate that the

corresponding polynomials are of lesser degree than ari[P(s)].

DEFINITION C.1.3: A n x m polynomial matrix, P(s), is called column proper if and

only if rc[P(s)] has full rank i.e. rank{rJP(s)j} =min(n,m). A n x m polynomial

matrix, P(s), is called row proper if and only if rr[P(s)] has full rank i.e.

rankfrr[P(s)]} =min(n,m).

DEFINITION C.1.4: If three polynomial matrices satisfy the relation;

P(s)=H(s)Gr(s), then Gr(s) is called a right divisor of P(s), and P(s) is called a left

multiple of Gr(s). A greatest common right divisor (g.c.r.d.) of two polynomial

matrices P(s) and R(s) is a common right divisor which is a left multiple of every
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common right divisor of P(s) and R(s).

DEFINITION C.1.5: A unimodular matrix U(s) is defined as any square polynomial

matrix whose determinant is a nonzero constant.

DEFINITION C.1.6: Two polynomial matrices R(s) and P(s) which have the same

number of columns, are said to be relatively right prime if and only if their greatest

common right divisors are unimodular matrices.

EXAMPLE C.1.2: For the following two polynomial matrices R(s), and P(s)

R(s) =
[O -11

s2 -1
P(s) ={1

-s S2
C.1.7

it can be shown that the following square matrix is one of the greatest common right

divisors of the two polynomial matrices R(s) and P(s).

In particular

01

Gr(s) =
0

-sts 01.
R(s) ={1

10 1 0 1

-1s0
P(s) =

-1 s2.10 1

C.1.8

C.1.9
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Notice that Gr(s) is not a unimodular matrix since I Gr(s) I =s is not a nonzero

constant.

DEFINITION C.1.7: A polynomial matrix, T(s), is called proper if the numerator

degree of each entry of T(s), i.e. Tii(s), is less than or equal to the corresponding

denominator degree. In the case of strictly proper transfer matrix, the degree of the

numerator of each entry, Tii(s), of T(s) is equal to the corresponding denominator

degree.

C.2 EQUIVALENT SYSTEMS

Consider a dynamical system represented by:

x'(t) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)

If the state of the system, x(t), is altered via the relationship

1(t) = Qx(t)

where Q is a n x n nonsingular real matrix, then

x(t) = Q -1.f(t)

Substitution of Equation C.2.3 into Equation C.2.1 yields the following

C.2.1

C.2.2

C.2.3



(2-111(t) = AQ-11(t)+Bu(t)

y(t) = CQ-11(t)+Du(t)

Equation C.2.4 can be rewritten as:

or

where

il(t) = QAQ-11(t)+QBu(t)

y(t) = C(2-11(t)+Du(t)

RI(t) = A 1(t)+hu(t)

y(t) = ox(t)+13u(t)

A = QAQ-1 6 = c(2-'

f3 = QB D =D

Therefore the following can be established:
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C.2.4

C.2.5

C.2.6

C.2.7

DEFINITION C.2.1: The state representations of Equation C.2.1 and Equation C.2.6

with states related by Equation C.2.2 are said to be equivalent and Q is called an

equivalence transformation. In other words, the system {A,B,C,D} and {A,1 ,t,I5}

are equivalent if and only if the following relationships hold for some nonsingular

real matrix Q:



A = QAQ-1

h = QB

6 = 024

D =D
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C.2.8

the justification for the use of the term "equivalent" in Definition C.2.1 can be readily

demonstrated by noting that the solution of either system, x(t) or k(t), immediately

implies the solution of the other via Equation C.2.2.

C.3 CONTROLLABLE COMPANION FORM

Before starting the procedure for deriving the controllable companion form

the following theorem is stated.

THEOREM C.3.1: The following statements regarding the linear, time invariant

dynamical system A(t) = Ax(t) + Bu(t) are equivalent:

a. The system is completely state controllable.

b. The rank of the n x nm controllability matrix:

C = [B,AB,...,An-1B]

is n.

C.3.1
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If a system {A,B,C,D} in the state form given by Equation C.2.1 is completely

state controllable with B of full rank m sit, then it can be reduced via a nonsingular

transformation Q to an equivalent controllable system in a certain structured form

which is called a "controllable companion form". The procedure for deriving a

controllable companion form is now discussed.[22]

Consider any completely state controllable system of the form given by

Equation C.2.1. Since the system is assumed to be controllable, it follows from

Theorem C.3.1 that C has full rank (n). C is now defined as the n x n matrix obtained

by selecting from left to right the first n linearly independent columns of the

controllability matrix given by Equation C.3.1. Therefore, C has full rank n and

C I *0. Since it is assumed that matrix B has full rank, therefore the first m columns

of C is the matrix B. The nonsingular n x n matrix L is now constructed by simply

reordering the n columns of C, beginning with a "power ordering" of those first (d1)

columns of C which involve b1, the first column of B, and then employing those (d2)

columns of C which involve b2 next and so forth. In particular,

L = [b1, Ab1,...,Adt-1b1 ,b2,Ab2,...,Ad2-1b2,...,Adm-ibm]

Notice that di,d2,...,dm defined as such, satisfy the following condition

nt

E di = n
i=1

C.3.2

C.3.3
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The m positive integers di ,for i=1,2,...,m, are now defined as the controllability

indices of the system, and the following is established

which implies that:

k

ak =
i=1

for k = 1,2,...,m

a
1

d
1

02 d
1
+d2

am = n

C.3.4

C.3.5

The controllability indices not only specify the dimensions of various diagonal

companion-form submatrices of A, but also determine the m ordered integers ak, for

k =1,2,...,m, which denote the "nontrivial" rows of A and 1.

At this point qkT is set equal to the ck-th row of 1:1 for k =1,2,...,m, and the

following n x n matrix Q is defined:



Q

T
q1

qiTA

T d -1
q1A 1

T
q2
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C.3.6

If Q, defined as so, is postmultiplied by L, it can be shown that I QL I =1 in

"absolute" value which implies the nonsingularity of Q since I QL I = I Q I ILI. This

particular choice of Q will reduces the given system to an equivalent state

representation form given by Equation C.2.6, where the pair {A,I1} assumes a

particularly useful structured form, namely a multivariable controllable companion

form; i.e.



O 10...0
O 0 1 0 . . 0

1XXX ...X

O 00...0O 00...0

XXX ...X
O 00...0O 00...0

A
XXX ...X

O 10...0
O 0 1 0 . . 0

1

XXX ...X

O 00...0O 00...0

XXX ... X

and

O 00...0O 00...0

XXX ...X

B =

0 0 - 0
0 0 - 0

O 0 - 0
O 0 - 0

0 1 x -

0 0 - 1

O 00...0O 00...0

XXX ...X
O 00...0O 00...0

XXX ... X

O 10...0
O 0 1 0 . . 0

1XXX ...X

118

C.3.7

C.3.8
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It is important to notice that all the information regarding the equivalent state

matrix A can be derived from knowledge of the m ordered controllability indices di

and the m ordered ak-th rows of A. The same thing can be said of ll, since only

these same ordered ak rows of A are nonzero.

C.4 CONTROLLABLE COMPANION FORM OF PLANAR MANIPULATOR

For the planar manipulator under consideration n=6 and therefore from

Equation C.3.1 the controllability matrix for the system is given by

C = [B AB A2B A3B A4B A3B] C.4.1

To find C, only the first n (6) independent columns of the controllability matrix are

needed. It turns out that the first 6 columns of C are independent and therefore

0 0 0 0 -a -b
0 0 0 0 -b -c

C = [B AB A2B] = k,
0 0 -a -b d e C.4.2
0 0 -b -c e f
1 0 0 0 0 0

0 1 0 0 0 0

where a,b, and c are given by Equation 11.3.9, and d,e, and f are:



d = -kd(a2+b2)
e = -kd(a+c)b
f = -kd(b2+c2)

The nonsingular matrix L is now constructed as the following

L = [b1 At*, A2b1 b2 Ab2 A2b2]

= lc
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C.4.3

0 0
0 0

-a 0 0
-b 0 0

-b
-c

0 -a d 0 -b e
C.4.4

0 -b e 0 -c f
1 0 0 0 0 0

0 0 0 1 0 0

Comparison of L with Equation C.3.2 suggests that the controllability indices are

d1=d2=3. By employing Equation C.3.4 to the planar manipulator problem, the

following can be established

1

cri . E di = d1 = 3
i..1
2

(72 = E di = di+d2 = 6
i=i

C.4.5



where

To find Q, inverse of L must be found first. It can be shown that I:1 is
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0 0 0

U9 U10 U11

0 1

U13 0

0

0

U12 U13 0 0 0 0

0 0 0 0 0 1
C.4.6

U7 Us
U13 1 0 0

U3 u 3

1
U4 0 0 0 0

03

bd d U1-bUsU = e-- U U6= 1U4 `-'10a a aU3
be b

U2 = f- U7 = U U 1 b2
a 5 a 6

ZS
+ 2a a U3

b2-ac
U3 ; b Ui U2 ;a Ug = -- c

b a U3 U3 U12U ac-b24

ac -b2 U6 b U7e Q., b
U5 = ...,-, ....,4 U

a ' 9 a a U3 U13
ac-b2

Now by defining the following

yo = a+c
y1 = ac-b2

C.4.7

C.4.8

it can be shown that q1T and q2T which are the a1 -th (third), and a2-th (sixth) rows

of the Ll matrix are



and therefore Q is

Q

T 1
q1 - [-- c b 0 0 0 0]k Yi T1

qf = LPL -.1. 0 001kLyiTi

q1

giTA

TA2

T
q2

q2TA

qTA 22

. 1

k

-c b

T1 T1

0 0

-1 0

b -a

Y1 Y1

0 0

0 -1

It can also be shown that Q-1 is given by

Q-1 = -k

122

C.4.9

0

-c

Y1

-kd

0

b
Ti

0

0 0

± 0
Ti

0 1

0 0

fil 0
T1

-kd 0

0

0

0

0

0

1

C.4.10

a 0 0 b 0 0"

b 0 0 c 0 0

0 a 0 0 b 0

0 b 0 0 c 0

a kda -1 b kb 0
b kdb 0 c kdc -1

C.4.11



Consequently the matrices A, A, and C are

A = QA(2-1 =

0 1 0 0 0 0

0 0 1 0 0 0

0 a kda 0 b kb
0 0 0 0 1 0

0 0 0 0 0 1

0 b kb 0 c kdc

h = QB =

0 0
0 0
1 0
0 0
0 0
0 1

[a 0 0 b 0 01
6 = 02-1 = -is b 0 0 c 0 0
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C.4.12

C.4.13

C.4.14

Comparison of A and 11 with the controllable companion form given by Equation

C.3.7 and Equation C.3.8, indicates that the controllable companion form has been

achieved through transformation matrix Q.
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C.5 STRUCTURE THEOREM

Structure theorem establishes a fundamental structure of dynamical system

and provides a most useful relationship between time and frequency domain

representations for linear multivariable systems.

To establish the theorem Am, and 11,,, must be defined first. Let A., and 11m

be defined as the m x n matrix consisting of the m ordered ak-th rows of A, and the

m x m matrix consisting of the m ordered crk-th rows of 11 respectively. By inspection

of Equation C.3.8, it is noticeable that IL, thus defined, is an upper right triangular

matrix with ones along the diagonal; i.e.

h. = C.5.1

and is nonsingular since, by inspection, 11m I = 1. An, assumes no particular form.

If now S(s) is defined as the following n x m polynomial matrix with n nonzero,

monic, single-term entries



S(s) =

1 0 0

0 0

sd
1-1

0 0

0 1

0

o sdr
0 0

0

1

0 0 S
dm-1

then the following theorem can be stated.

125

C.5.2

THEOREM C.5.1 (The Structure Theorem): If a state representation {A,B,C,D} is

controllable with B of full rank its transfer matrix given by C(SI-A)-1B+D, can

be expressed as: (proof of the structure theorem can be found in [23])

T(s) = e S (s ) 8 -1(s)tc+D = [e S(s)+ D 1 3 ; 1 8 (5)] [i (s)] 1 C.5.3



where

8(s) =

s(11 0 . . 0

0 sd2 0 .

0 . . S
dm

AmS(s)
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C.5.4

The most important aspect of the structure theorem, however, is that it

enables one to express the transfer matrix T(s) of a time domain dynamical system

as the product of a p x m polynomial matrix

R(s) = 6 S(s) + D it' 8 (s)

and the inverse of another m x m polynomial matrix

i.e.

P(s) = If? .1 8 (s)

T(s) = R(s)P -' (s)

C.5.5

C.5.6

C.5.7

The two polynomial matrices have certain important properties. In particular (see

Equation C.5.5 and Equation C.5.6):

1- P(s) is column proper since re[P(s)]=11.-1

2- aci[R(s)] < acj[P(s)] j=1,2,...m
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C.6 DERIVATION OF THE PLANAR MANIPULATOR OPEN LOOP TRANSFER

MATRIX

Structure theorem is employed to derive the open loop transfer matrix of the

planar manipulator. For the planar manipulator under the consideration, from the

results obtained in Section C.4 and from the definition of Am and fim given in Section

C.5 the following can be established:

0 a kda 0 b kdbl
A. =

ObkdbOckdd
[01 011

C.6.1

Notice that m=2, and di = d2=3 therefore the following expressions for S(s) is

obtained:

S(s) =

1 0

s 0

s2 0
0 1

0 S

0 s2.

C.6.2



From Equation C.5.4, 5(s) can be expressed as:

8(s) =

=

[53 01[ 0 a kda 0 b kdbl

0 s3 0 b kdb 0 c lcdci

{s3 -kdas2 as -kdbs2 -bs

-kdbs2 -bs s3 -kdcs2 cs

1 0

s 0

s2 0
0 1

o s

0 s2

128

C.6.3

and since for the planar manipulator, D is a null matrix and 11m is an identity matrix

(see Equation C.6.1) the following expressions for R(s) and P(s) are obtained:

R(s) = CS(s) = -lc [a bcl

P(s) = fi ;18 (s) = 8(s) =
S3 -kdas2 -as -(kdbs2 +bs)

-(k dbs2 +bs) s3 -kdcs2-csi

C.6.4

C.6.5
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APPENDIX D

D.1 DIAGONALIZED CLOSED LOOP TRANSFER MATRIX FOR THE

LINEARIZED PLANAR MANIPULATOR

The objective is, to select G1PF(s) such that the overall closed loop transfer

matrix of the robot arm system, R(s)[G-1PF(s)]-1, is diagonal (decoupled). It can be

shown that if one selects the following

G I P F(s) =
g1w1(s) g3w3(s)

g4w4(s) g2w2(s)
D.1.1

where g1, g2, g3, g4, wl(s), w2(s), w3(s), and w4(s) are to be determined such that all

of the three requirements in section 111.3 is satisfied, then

[g Ig2w 1 (5) w2(s)-g3g4w3(s)w, (s) -g4w4(s) g1w1(s)

g2w2(s) g 3w3(s)1[G-1 P F(s)]-1 D.1.2



Also from Equation IV.1.1:

aR(s) = kv[b 1:1
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D.1.3

therefore form Equation D.1.2 and Equation D.1.3 the following can be written

where

T c(s) = R(s) [G 1 I F(s)]-1

k ag2w2(s) -bg 41 v 4(s) -ag3w3(s) +lig 11 vi(s)

A, bg2w2(s)-cg4w4(s) -bg3w3(s)+cg iw i(s)

Ac A gig2W1WW2(5)-g3g4W3WW4(5)

D.1.4

D.1.5

Since a diagonal form of the closed loop transfer matrix is desired, the off diagonal

entries are set equal to zero from which the following is obtained

bg1 bg,,

lvw 3(s) =
a g3wi(s) ; w4(s) = 2(s)

g4

D.1.6

Substitution of w3(s), and w4(s) from Equation D.1.6 into Equation D.1.4 will result

in the following diagonal (decoupled) closed loop transfer matrix:

T c(s) =

a kv

g 11 v i(s)

0

0

cicv

g2w2(s)

D.1.7



where

a lc,
/

ck,
Cl C2 4

$2

The nonzero constants c1 and c2 are derived later.
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D.1.8

From Equation D.1.6 , Equation D.1.8, and Equation D.1.1 the following

expression for G-1PF(s) can be written

Now by letting

G-1 P F(s) = -4,,

an(s) bwi(s)-

Cl c1

bw2(s) cw2(s)

C2 C2

w1(s) = (s-pdi)(s-Pd2Xs-pd)

w2(s) = (s-Pa)(s-Pdsxs-pdd

D.1.9

D.1.10

where D. dir-,Pd6 are the desired closed loop poles of the system, it can be shown that

G-1PF(s) satisfies all three conditions stated in section 11.4. In particular G-1PF(s) is

column proper since

I rc[G-113F(s)] I =

ak, bk,

c i Cl

bk ck,
....._

c 2 C2

= k 2 Yi
c I c 2

D.1.11
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is nonzero, and it also shares the same ordered di as P(s). Also the determinant of

G-1PF(s) is the desired characteristic equation of the closed loop system and

consequently G-1 exists which implies that G is nonsingular.

D.2 DERIVATION OF CONSTANTS c1 AND c2 USING FINAL-VALUE THEOREM

The constants c1 and c2 are derived by applying the final- value theorem to the

closed loop transfer matrix of the system given by Equation D.1.7. The theorem is

stated now.

THEOREM D.2.1 (final-value theorem): If y(t)..Y(s) and if the limit of y(t) as t- co

exists, then

lim y(t) = lien [sY(s)]
t-+oo s-0

From Equation D.1.7 one can write

Y1(s)
Y(s) =

/72(s)

= 7Ts) U(s) =

Cl

w1(s)

0

0

D.2.1

D.2.2



or

C2

5)
Y1 (s) =

C,
Ul(S) ; Y2(s) =

W2(
U2(s)

WI (S)

For a step input, u(t), the following steady state step response is desired:

But notice that

lim y(t) = 1
t-00

u(t) -
s

Considering Equation D.2.1 through Equation D.2.5 it can be shown that
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D.2.3

D.2.4

D.2.5

lim yi(t) = 1 = lim sY1(s) = Jim s ci c,
U1(s) = lim

c
1

WI(s) WI CO -Pd1Pd2Pd3
t-'00 S-0 s-0 s-O

and therefore c1 must satisfy the following

Cl = -Pd/Pd2Pd3 D.2.7

Using a similar approach it can also be shown that c2 must fulfil the following

C2 = -Pd4Pd5Pd6 D.2.8

Notice that determination of cl, and c2 automatically implies determination

of gl, and g2 through Equation D.1.8.
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APPENDIX E

E. DERIVATION OF COMPENSATORS IN DETAIL

It is shown in Section 111.4 that the matrix G is given as:

G=
[g11 gI2

.g21 g221

1
-CC1 bc 21

bCi -act
E.1

y ikv

If now, wi(s), and w2(s) given by Equation IV.1.3, are expanded, the following is

obtained:

where

Wl(S) (S-Pd/)(S-Pd2XS-Pd3) A .53+2s2+eis+co

w2(s) (s-Pa(s-Pds)(s-Pad A 53+42S2+41S÷40

0 A -Pand2Pd3 (0 A -Pd4Pd5Pd6

el A Pd1Pd2+Pd2Pd3+Pd3Pd/ (1 A Pd4Pd5+Pd5Pd6+Pd6Pd4

2 A -(Pd/ +Pd2+Pd3) C2 A -(Pd4+PeLS+Pd6)

and therefore from Equations IV.1.2, E.1, and E.2 it can be shown that

E.2

E.3



or

where

P F(s) = G(G-1PF(s))

1
acw1(s)-b2w2(s) bc(w1(s)-w2(s)),

Y ab(w2(s)-w1(s)) acw2(s)-b2w1(s)

PFil
pAs) = pp,p)

ace2112( -b2C -b2t
°)P (s) = s3+( -

2)s2+(
ace")s+( ac

e°Fli
'VI VI Ti

P F12(5) T,E1((E2 C 2)s2 + (e1- C i)s + (eo- C o))

PF2i(s) = 11by10(2e2)S2+((11)S+(COe0))

PF22(s) = s34-("C2-b2e2)s2+(accrb261)s+("c°42°)
Yi Ti yl

From Equation 111.3.5 the following can be written:

li 3s i2s+ni nes2-f1155 +714
F(s) = P(s) -PAs) =

119524-118s+% 11 us2+T111s+11io
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E.4

E.5

E.6

E.7



where

=

112 =

113 =

114

115 =

116 =

b2C0-aced

Ti

b2Crace1

Y1

b2(2-ace2

Y

bc(Co-go)

Ti
bc(Ct -ei)

Y1

bc(C2-e2) kdb
Y1

117

g

119

rho

'112

ab(eo-10)

Ti
abet -C11)

Yi

ab(e2-C7)
kdb

Yi

62e0 -acCo

Ti
b2ei-acli

Y

b2e2-acC2 kdC
Y1

which is consistent with the requirement that ac[F(s)]<ajP(s)].

with

Since for the system under consideration v =3, Q(s) is given by

g12(s)
Q(s) =

-1 s2 +q22(s)

q12(s) = E go_1x3_1)+k Sk Eqk Sk = q0 +q1s
k=0 k=0

1 1

n
(122

=
1 v(2-1)(3-1)4k Sk = Eq2+k Sk = q2+173S

k=0 k=0

136

E.8

E.9

E.10

where q0,q1,q2, and q3 are arbitrary coefficients to be chosen such that the roots of

the I Q(s) I .s4 q3s3+ q2s2+ chs+qo remain in the left half s plane.
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This particular choice of Q(s) will result in the following expression for

Q(s)F(s):

where

but since:

(tQF )1M (QF)12(s)1
Q(s)F(s) A

(QF)21(s) (QF)22(9).1

(Qf)ii(s) = 113s4+012+qinOs3+011+q01194-qinds2+
(q0118-w1 %7)s+q097

(QF)12(s) = n 6s4 + (95 +419 12153 + (9 4+40912+41911)52+

(40911+419 10+40110

(QF)21(s) = 1 9'54 + (98 +43903 +(97 +439 8 +429 9 11 02+

(4397+429 8 -92).5+(4297-9 1)

(QF)22(s) = 9 12.54 + (911 + 439 103 + (r1 io+q3nii+q2.1112-nds2 4"

(43%0-W21111-115)s+(q2r1 10-id

1 SS2 S3 S4 S' 00 0 0 0 OIT
Se(S) =

00 0 0 0 0 1 SS2S3 s4 S'

E.11

E.12

E.13

and p(s)---pSe(s)=Q(s)F(s), it can be shown that p which is a constant matrix, is

given by

P A

R11 P12 "13 P1,11 P1,12

P21 P22 P23 P2,11 P2,12

E.14



where

13n

1312

1313

1314

1315

1316

1317

1318

1319

= gon7
8011eg1i17

= ni+gon9-fq08
=

113=

=o
= gonw
= gorliffq010
= r1441012-fgoli

021 = 412717-111

1322 = q3/17412118-112

023 = 117+673118+172119-1 3

1324 = 118+83119

1325 =119
1326

1327

1328

1329

=o
(721110-114

= 1137110412111-11 5

= 1110+q3n11+q21112-116

131,10

131,11

131,12

115+a11112

116

=0

132,10

132,11

132,12

1111+831 12

= 1112
=o
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E.15

The following can be derived as the eliminant matrix of the two polynomial

matrices R(s) and P(s) for the planar manipulator:

-ka 0 0 0 0 0

-k,,b 0 0 0 0 0

0 -ka 0 0 0 0

0 -kb 0 0 0 0

0 0 -k,a 0 0 0

0 0 -kb 0 0 0
=

0 -a -kp 1 0 0

0 -b -kdb 0 0 0

0 0 -a -kda 1 0

0 0 -b -kdb 0 0

0 0 0 -a -kda 1

0 0 0 -b -kdb 0

-kb 0 0 0 0 0

-kc 0 0 0 0 0

0 -k,b 0 0 0 0

0 -k,c 0 0 0 0

0 0 -kb 0 0 0

0 0 -kc 0 0 0 E.16
0 -b -kdb 0 0 0

0 -c -kdc 1 0 0

0 0 -b -kb 0 0

0 0 -c -kdc 1 0

0 0 0 -b -kdb 0

0 0 0 -c -kdc 1



It can be shown that

I me I = l^vy
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E.17

which does

M;1=

not equal to zero. Me-1 is given by:

11 12 0000000000
0 0 123 124 00000000
000_0 t35 X36 000000
00E3 -0E45 0100000-

0 0 153 154 155 t5,5 157 158 1

00E 63 -64 E E E E E64 -65 -66 -67 -68 -69

t to 0000000000
00E 83 t 00000000-

0 0 0 0 95 196 000000
000E10.4 -0E10,6 010000-00EEEEE-11,3 -11,4 -11,5 -11,6 -11,7 t11.8 0

0 0 E E E E12,3 -12,4 -12,5 -12,6 -12,7 E12.8 t12.9

000
16,10

1

t 12,10

1

0 0

° 1

E.18

where



=

E12

t23

{24 =

t35 =

t36 =

{43

E 45 =

L53 =

kJ'

b

kji

Ell

t12

Ell

12

ki

E57 = kda

= kdb

a + E 123 = 644(a2+1,2) .3

p b1
a

En =
kv

t83 = t71

t = tn

t 95 Er 71

E 96n

mos =

k,
E 10,6 =

k,b

11,3

E 11,4 =

k21,

t11,5

1.4e
E11,6 =

t11:7 = kdb

E 55.8 = kdC

b+k(ab+be) 12,4

t64

ki(24.4(a2442)) 12,5 = 66
t 65

1426+4(esb+be))
kd(2.c.4024.e2))

C' 66
12,6

k.

t67 = +da 2 + b2) t12.7 = t

Eat = b+ei(ab+bc) t = C+db2+C)

`69 = 57

+ k ,20 2 + e 2 )

E6,10 = E38

12,9 = t

t 12,10 = 11,8
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E.19
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Since Me-1 exists therefore, Me= Me or Me-1= Me-1. Also [H,K] = [11,14 In view

of the preceding and using Equation 111.4.11 the following can be employed to derive

H(s) and K(s):

[H,K] = [IM;1

From Equations E.14, E.15, E.18, and E.20, it follows that

P11 P12 P1,11 P1,12 -1
= IPM

P21 1122 P2,11 112,12

where A's are given by

Pll = R1111 +131771

1112 = 011t12+017E72

P13 = 012123+014434-P15153+13 18183+ 11,11111,3

P14 = P12&24+P1554+P18&84+131,10&10,44-P1,11&11,4

P15 ' 01335+01445+015t55+01J95+01,11t11,5

416 = 1/13t 36+ 13 15 t 56+ 1319t96+ 01,10E10,6+ 01,11E11,6

P'17 = PleP15E5741,11E11,7

1118 = 015&58+ Duo+ P1,11E11,8

1119 = P15

111,10 = 01,11

P1,11 0

P112 = 0

E.20

E.21

E.22



1'21 = 1321 11 +1327 71

1122

1123

1124

1125

/126

1127

1128

1129

112,10

12,11

112,12

021 124- P 27E72

BE B
r 22-.23+r 2443+1-25

E
-.53+

=BE BE B
r 22 -24+r- 25 -54+ r28..F 84+

= 1323E35+1324E45+ P25 554-

= 1323E36+13 25 56.4- 132996+

.18 B
r 24+u 15

E
-'57+u 2,11 -11,7

1325
=E B

-'58+ r- 2,10+ 132,11 11,8

= P25

= 2,11

=0

=0

P28E113+ P2,11 11,3

132,10E 10,4+ 132,11 11,4

132995+ 132,11 11,5

13 2,10E 10,6+ 132,11 11,6

To find H(s) and K(s) Equation 111.4.12 is now employed i.e.

[H ,K] M S e(s) = [H ,K]

R(s)

sR(s)

s2R(s)

P(s)

sP(s)

s2P(s)

= H(s)R(s) +K(s)P(s)

= 13 S e(s) = Q(s)F(s)
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E.23

E.24



comparing Equation E.21 with Equation E.24 , it can be shown that:

and

11

//16S
2

+P14'9+1112
H(s) = 15s

2

11+13s-4.111

li2582 +R235+1/21 1/2682 +1124Si-1122

K(s) =
µ19s +1117 µ1.1o6 +1/18

11296 +1127 µ2.1o6 +1128
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E.25

E.26

If the polynomial matrices H(s), K(s), and Q(s) are now employed in the

feedback scheme depicted in Figure 1.2, the desired (decoupled) closed loop transfer

matrix is obtained.


