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Under the electric dipole approximation, second harmonic generation is

forbidden by symmetry for centrosymmetric media. As a consequence, second harmonic

radiation can only arise from a few atomic layers in the surface region where the

symmetry is broken in the direction of the surface normal. Surface second harmonic

generation (SSHG) can thus provide information about surfaces and surface phenomena.

The first part of this thesis deals with the development of the self-consistent

microscopic field formulation of SSHG. The exact second harmonic field from the

surface of a crystal is calculated using an incident plane wave, the polarizabilities a(w)

and a(2w), and the second-order susceptibility 13(2wm,w), all of which may vary with

distance from the surface into the bulk. A self-consistent formulation in the Lorentz

gauge has been used, including up to 100 discrete layers and a semi-infinite bulk with

both long and short range dipolar interactions. The precise interpretation of SSHG

measurements in terms of the local fields and susceptibilities requires this approach as

opposed to the macroscopic formulations.

The second part of this thesis deals with experimental measurements of SSHG,

including studies of the surface of the rutile (TiO2) crystal and of thin films of amorphous
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carbon (a-C:H). With the surface effect dominating the total SHG signal, SSHG

provides the means to probe the adsorption and photodesorption of oxygen on the rutile

(001) surface. On the other hand, the amorphous carbon films are found to be very

photo-active. Second harmonic generation is accompanied by either photo-ablation or

irreversible changes in the optical properties of the films.
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THEORY AND APPLICATION OF OPTICAL SECOND HARMONIC
GENERATION ON DIELECTRIC SURFACES

CHAPTER I

INTRODUCTION

In second harmonic generation (SHG), matter responds to an incident optical

wave in a nonlinear way such that an optical wave emerges at a frequency twice that of

the incident wave. This process is forbidden under the electric dipole approximation for

matter with inversion symmetry. In the surface region of a centrosymmetric medium,

SHG is no longer forbidden because of the breaking of symmetry along the direction of

the surface normal. Although SHG can still arise from the bulk by either electric

quadrupole or magnetic dipole transition moments, the SHG due to the electric dipole

transition moments from the surface provides at least a comparable signal level with that

from the bulk. Hence, SHG becomes a sensitive technique in the study of surfaces and

surface phenomena.

In surface studies, it is difficult to detect signals from a small number of surface

atoms in the presence of a large number of bulk atoms. Many surface-sensitive

techniques use electrons, atoms or ions as probing particles,' which need to have a low

penetration depth to avoid a signal contribution from the bulk. Since these particles

have to have a long mean free path to be able to strike and exit the sample and then

reach the detector without colliding with other gas-phase molecules, the experiments are

required to be performed in a high vacuum system. X-ray and ultraviolet photoelectron

spectroscopies1 are two common methods involving photons as the surface probes.



SHG is uniquely capable of gathering the surface information under conditions ranging

from ultra high vacuum to atmospheric environments with relatively low energy photons.

From the perspective of the surface atoms (molecules), in one direction there

exist only identical atoms (molecules), while in the other direction there may be only a

vacuum or a single layer of another type of atoms (molecules). This condition not only

breaks the bulk symmetry but also creates a region where the local electric field is

different from that of the bulk region. The local field is the microscopic field acting on

the medium and is represented by the superposition of the external field and the induced

dipole fields from the surrounding medium. It is the local field that the atoms (or

molecules) respond to, linearly or nonlinearly. Thus, the interpretation of the interaction

between the matter and an external field requires the knowledge of the local field in the

medium. Since detecting the SHG from the surface region is our main interest, the

surface local field calculation is a subject we have pursued in this study.

The local field calculation involves the summation over the field contributions

from the surrounding medium. The basic difficulty of this summation problem is the

slowness of convergence because of the 1/R dependency of the electric dipole field. The

degree of difficulty can be greatly reduced if we are dealing with the summation over the

sites of an infinite perfect lattice. Lattice sums occur in many problems of crystal

physics, such as calculations of the lattice energy of ionic crystals, considerations of the

stability of the various lattice types, and investigations of the electromagnetic, optical, or

elastic properties of crystals. The summation recipe usually consists of the

transformation of the lattice sum into a more rapidly converging form, e.g. the Fourier

transform of a smooth function is a function which approaches zero rapidly for

increasing argument. The essential mathematical technique in our approach to the lattice

sum of the dipole fields was due to Ewald.2 The method was originally developed on

the basis of a three dimensional Fourier transform3,4 to deal with the bulk properties of
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the 3-D perfect crystal lattice. Motivated by the need to solve problems involving the

geometry of a slab, Nijboer and de Wette5 modified the Ewald method and developed

the planewise lattice sum which sums over the two dimensional lattice sites, with the

help of the 2-D Fourier transform, and later treats the lattice sum of the third dimension

(in the direction of surface normal) separately.

Under the framework of a planewise lattice sum Litzman6 formulated a

microscopic theory of reflection and transmission of light by a dielectric slab by

proposing that the induced dipole moments, which interacted with the retarded

electromagnetic field, could be decomposed into an infinite number of dipole waves in

the medium. The resulting formulae include both the effects known in the dynamical

theory of X-ray diffraction as well as Snell's law and Fresnel's formulae for visible light.

Poppe and Wijers et al.7,8 later developed a double cell technique to calculate the surface

local field by matching a freely chosen surface layer to the underlying bulk described by

Litzman's decomposed dipole waves. The technique is a local model based on the

discrete dipole approach. They calculated the bulk and surface contributions to the

anisotropic reflectance of the (110) surface of GaP and obtained results as good as the

best delocalized treatments.?

Following the guidance of references 6, 7 and 8, we present a complete

derivation of the microscopic treatment of the surface local field in Chapter II. After

working out the algebraic details, there are discrepancies between our results and the

previous works8'9 in the expressions of the lattice sum (see pages 20 and 22), although

they are not significant in the numerical computations. Meanwhile, based on our

numerical calculations, we found that the near fields of the induced dipole moments can

not be ignored when considering the bulk contribution to the optical property of a

dielectric medium. This conclusion is in contradiction to what has been stated by the

other researchers.6,1° With the numerical results as well as an analytical argument, we
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also show that the radiation damping of the electric dipole radiation has to be included in

describing the medium response to an external field. The microscopic treatment of the

discrete point dipole approach was put to a test when the numerical results of the local

field in the medium and the reflected field in the vacuum were compared to the classical

results of the Lorentz local field and Fresnel's formulae for reflection.

In Chapter III, we first review the argument that SHG is capable of providing

surface information in the presence of the bulk background. Three models to obtain the

analytical expressions of surface second harmonic generation (SSHG) are also discussed.

We then go on to calculate SSHG using the complete microscopic treatment and the

surface local field obtained in Chapter II.

The numerical calculation of SSHG in Chapter III is important to the

measurements of the exact value of the nonlinear susceptibility 15(20m,co). These

measurements require the careful calibrations of the signal conversion factors from

materials of well known 13. But the SSHG experiments we report in Chapter IV were

not set up for this purpose. The primary goal of the experiments we have performed

was to use SSHG to monitor the surface changes under the various environments. The

calculations thus do not help in any way to interpret the observations in these

experiments but will be essential to future studies.

The pulsed laser system and the experimental apparatus are introduced in section

4.1. The typical signal level of SSHG is also estimated. Examples of photon counting

statistics are presented in section 4.1.4. In section 4.2, we report the SSHG

observations of the surface phenomena of the rutile (Ti02) crystal. We have paid special

attention to the unique observation of the adsorption and photodesorption of oxygen on

the rutile surface, which has been studied for years by other researchers" using other

surface-sensitive techniques and much more energetic photons or electrons.

Experimental results of the amorphous hydrogenated carbon (a-C:H) thin film are
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summarized in section 4.3. So far as SSHG is concerned, the carbon film experiments

are not successful because laser pulses change the film, not just the surface, properties.

The temperature rise in the film due to heating of the laser pulse has been estimated

using the thermal properties of the graphite and the quartz substrate. Photo-ablation and

photo-induced changes in the presence of vacuum, oxygen, nitrogen and methanol vapor

have been observed.
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CHAPTER II

SURFACE LOCAL FIELD CALCULATION
WITH DISCRETE POINT DIPOLE MODEL

In the point dipole model, the medium responds to an external field through the

induced dipole moment of each unit cell ofa crystal. The dipole moment is

approximated as a local response so that the model is ideal for materials such as ionic

solids and rare gas solids, in which the electrons are confined to the closed shells, and

the weakly interacting molecular solids. The unit cell polarizability of these materials

can be evaluated as a local quantity from theoretical calculations.'2 The nonlocal part of

this response process is solely attributed to the dipolar interaction which will be treated

explicitly in this study.

An induced dipole moment at lattice site i with unit cell polarizability tensor a, is

p(r,,t)= a, E (rt)= a, Eoe,kr,-," E (r t)loc

J*,
(2.1)

where the local electric field is the superposition of the external field and the electric

dipole field from all lattice sites in the system except itself. It is assumed that the

external field is a monochromatic plane wave. Here we exclude the self-interaction

term, but later we will consider the self-field" in treating the dipole radiation, which is

equivalent to including a radiation damping 13 term in the polarizability, to prevent the

solution of the dipole moment from diverging.



2.1 Electric Dipole Radiation

7

To describe the radiation from an electric dipole in vacuum, we start with the

microscopic Maxwell equations:

VE = 47rp, (2.2a)

V B = 0, (2.2b)

VxE+-1 ii=0' (2.2c)

47cVxB--1 E=J. (2.2d)
c c

The equations are written in the Gaussian unit system. The charge density p(r, t) and

the current density j(r, t) in each cell are induced by the external field. From vector

analysis of Eq.(2.2b) and Eq.(2.2c), there is a vector potential A and a scalar potential D

satisfying

B=VxA and (2.3a)

1E = --A Vl). (2.3b)

These potential functions can be specified by the remaining Maxwell equations. Upon

substituting Eq.(2.3a) and Eq.(2.3b) into Eq.(2.2a) and Eq.(2.2d), with the help of the

vector identities VxVx = VVV2 and VV -= V2, we obtain

and

02A

V21:13--1
c2

A

c

V A cip) (2.4a)

(2.4b)

+ 1 = j,
C

1(VA+13)=-47rp.
at

There are four equations to solve for the four functions A and (I), but Eq.(2.4a) and

Eq.(2.4b) are not independent. If we apply the operator V to Eq.(2.4a) and 1 a to
c at



Eq.(2.4b), and then combine these two equations, the left hand side of the equation will

be zero while the right hand side also is zero due to the continuity equation

V j+ = O. (2.5)

This means that one of the four equations is redundant, and one more condition has to

be imposed in order to find A and (I). One possibility is to use the so called "Lorentz

condition", 13,14,15

then Eqs.(2.4) become

and

V-A+1 (130=0,

1 1- 4n
V2 = --j,

C-

, --
V-11)

1

= 47cp .

These inhomogeneous wave equations have solutions131415

A(r,t)= 1 fj(ri,tR/c)dvi,
c R

p(r'J Ric)
dv',

(2.6)

(2.7a)

(2.7b)

(2.8a)

(2.8b)

8

where R= Ir-ril and the integration is to be carried throughout the whole space. These

solutions are the retarded potentials of outgoing spherical waves. If we substitute the

solutions of Eq.(2.8) into Eq.(2.6), it is obvious that the Lorentz condition is consistent

with the equation of continuity. Since the current and charge densities are related in the

same way as the vector and scalar potentials are related, we can now define a single

source vector function P and a single vector potential function Z while they appear

together in a single inhomogeneous wave equation. They are introduced by the relations

. a
J=atP, (2.9a)

p=VP, (2.9b)



aA = --Z,
c at

(I) = V Z.

Function Z is known as Hertz vector.'415 Eq.(2.7) can be converted into

1

V-, Z Z = 47cP,
c-

and the retarded solution of this wave equation is similar to that in Eq.(2.8),

Z(r,t) = P (r1 ,t R 1 c)
dv'

R

(2.9c)

(2.9d)

(2.10)

(2.11)

When p, j, and P are induced by the external electromagnetic field in Eq.(2.1), their

monochromatic nature can be represented by

P(e,t)= P(r'

When applying this to Eq.(2.11), we have

Z(r,t) = e-zot
f P(r' )e1kR

dv'
R

(2.12)

eikR
where k = Ikl = co/c. When is expressed in terms of a multipole expansion, the

lowest order of the integral in Eq.(2.12) gives the electric dipole moment of this source

distribution, and the Hertz vector becomes

eikR eikRZ(r,t) = r
P )dv' = p(ro) (2.13)

The electric dipole moment p is the same as that in Eq.(2.1), R = Ir-rol and r is the

position of the point dipole moment.

The radiation field of the electric dipole moment is obtained by substituting

Eq.(2.9c) and Eq.(2.9d) into Eq.(2.3b)

Or

1 a2 elkR
E (r,t) =

e2 at2
z +vv z= (k2 + V V -)e-t" p

IkR

E (r) = + VV )R p(ro ). (2.14)

9



2.2 Self-consistent Calculation

Consider a single crystal surface at the plane z = 0 (Fig. 2.1). An external field,

Eoeikr, impinges upon the surface from the vacuum with an angle 0 and wave vector

k = (lc ky, = ) Each lattice site in the medium of the lower half-space is the

center of a unit cell. With the result of Eq.(2.14), Eq.(2.1) can be rewritten as

p(r,)= a E,0c (r1)= a, E,,ed"' 1H, p(r ) (2.15)

10

The tensor Hi) represents the electric dipole field at site i from a dipole moment at site j,

and its element, according to Eq.(2.14), is

) o[(Huv exP(iklr rj1)uav +k20o =
Irril (2.16)

where u, v = x, y, z. The position vector can be expressed in terms of the planar lattice

structure (Fig. 2.2) by

r = + zz and

rinm= + zzi = snm ZZ = ri snm, (2.17)

where z is the unit vector in z-axis and i is index for the lattice planes parallel to the

surface. r "1 describes the origin of the two dimensional lattice sn, of plane i with integers

ri, m =

snm = nsi + ins, = a(n +Em, gym, 0),

s, = a(1, 0, 0),

s2 = a(4, C, 0),

(2.18)
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Fig. 2.1 The surface coordinate system. Surface layers are labelled as i = 0,1,
,L. z is in the direction of surface normal. k is wave vector of the incident field. The
index m = is relevant only for the analysis of the semi- infinite medium. The
rectangle indicates the scattering plane.

i-th plane

(0,0,0)

mAmilw
AFASTryMAW

location of
a point dipole

Fig. 2.2 Coordinate system of the i-th lattice plane. r "1 is on the plane.
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and a is the lattice constant. The x-axis is chosen to be in the direction of the planar

lattice vector s,, and (1) is the angle between the x -axis and the plane of incidence

(Fig. 2.1). For the square lattice, we have = 0 and C = 1. Other possibilities of and C

provide the general basis vectors of the 2-D lattice. The non zero r" allows possible

displacement between the lattice planes. The external field can now be written as

E0eikr. ze ks, We assume that, in the surface region, the polarizability varies only layer

by layer. Then the induced dipole moment within a lattice plane i has a simple phase

relation, p(r) = piexp(ilivs,n) where pi = p( ri), due to the translational symmetry. This

allows the lattice sum of flij to be performed in the planewise fashion and pi to be solved

layer by layer self-consistently.

pi in Eq.(2.15) becomes

Pi = ai E0e
k.r ±IIHu = ai Eoelk.r + pj

J =0 r=ri 1 =0

. (2.19)

The summation over n, m excludes the point (0,0) just for the case of i = j to prevent the

self-interaction. The tensor Fu represents the electric dipole field at the 2-D lattice origin

(n = m = 0) of plane i from all the dipole moments of plane j, and is defined by

)"" =

Once F is determined,

[(aua, +k2suv)si(r,k)jr=r,

exp(ikIr jnm I)
(aua,

r =ri
(2.20)

(2.21)

-Fk28ajE
n,m I r rj,nm I

Eq.(2.19) can be rearranged into

,ik.ri=E0
j=0

and p, can be solved exactly for a system of a finite number layers from this linear set of

equations.
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2.3 Planewise Lattice Sum

The two dimensional lattice sum of Eq.(2.20) converges poorly because of the

slow decrease of 1/R. The Ewald method2.3 '453 6 divides the lattice sum into a sum in the

real space and a sum in the reciprocal space, the latter space being based on the Fourier

transform of a perfect crystal structure. The real space sum takes into account the

rapidly changing near field, and the low frequency components of the reciprocal space

sum represent the slowly varying far field.

Using the integral identity

eikR 2

(see

-
exp(-R

0( )

is converted

j.

Appendix

-
exp

(0,

A-1)

2
k2

2 )at

dt.

(2.22)

(2.23)

R

the function Si defined in Eq.(2.20)

S. (r,k) =1_1, eik.s,,n

n,m

t ,
4t2

into

-I r r j,nml2 t2
4t- )

According to Eq.(2.23), the sum over the two dimensional crystal lattice could converge

rapidly for large values of the integration variable t. So the scheme is to choose a

positive real parameter E such that the sum with the integal E 00 converges

sufficiently rapidly in the real lattice space. On the other hand, in order to perform the

Fourier transformation of the lattice sum in Eq.(2.23), we assume the case of interaction

between different lattice planes, i.e. i j, so that the lattice point m= 0 is included in

the summation. If i = j, then

Sji (r,k)=2
n,m*CI

exp -I r t2 +
2

dt,nm
4/2

2 s exp( r2 2 k 2= Si (r )dt (2.24)
Vic (0) 4t2
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2.3.1 Two Dimensional Reciprocal Space Sum

With Eqs.(2.17), Eq.(2.23) can be rearranged into

xf exp z

2
S ( ,k ) = exp[ik (r' r °)]

2 2 k2
L exp [ ik (

j'n
r ") I j r .nrn t idt,

4t2 um,

(
= -1/27E exp[ik (r' ri1) )]$ e xp (z z1)2 t2 +

4t
f (rho ,t)dt . (2.25)

Sincef(e, t) = f(ra s,n, t) in the last equation, it is periodic in the two dimensional

lattice space, and we can expand it in a Fourier series:

,t) = Ih(gpq,t)exp(igpq (2.26)
P,9

where p, q = -00,...,-1,0,1,...,00 and gpq = pg, + qg, is the vector of a reciprocal lattice

point. From Eq.(2.18) and the requirment3 s,gf 27c5 (i, j= 1, 2), we find that

g1 g2 = 211 (0,1,0), and gpq = 271 (pC,qA,0).
a

The Fourier component h(gpq, t) is determined by multiplying both sides of

Eq. (2.26) with exp(-igp,q.14) and integrating over the area of one planar unit cell.

ff f (r' ,t)exp(ig r )drIl = h(gpq,t)5$exp(igpq r )exp(igp,q, r" )drII,
Pone 9 one

cell cell

= yh(gpvt)opp.6,q A.
p,q

The 2-D unit cell area is A = a2c The delta functions are the results of integrations of

periodic functions over period. We now have

h(gpq,t) = Aft f (r" , t)exp(ig
P9

r")drIl ,

one
cell
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exp[ik (r .run r")-Ir" jmni 12 t2]exp(-igpq r" )dr ".J
A one n"

cell

IIexp ( -igpq ri )
exp -/ .(k" + gpq ) 1,"12 t2 '&11.

A

The last equation is obtained by changing the integration variable e (r"+ r",,,,) and

the fact that spmgpq = 2tcxinteger. The integration is to be done over the whole two

dimensional space due to the sum over n, m. By introducing a new vector knpq= ku + gpq,

and with the integral identity in Appendix A-5:

Eq.(2.26) becomes

ffexp(-ik". rll _1.1(2t2)dril
CAPr-

kil2

4t2

/
f t) = Iexp k

Pq expfigpq (r11 ()) .

At- 4tP9

Upon substituting the last equation into Eq.(2.25), we reach the desired result:

S (r,k) = 2'n
Iexp[ikil (r" exp -(z

A Pq
-1 (0 )

PA

)2 t2
\K- 1

Pq

2

dt, (2.27)
4t2 t

where Kpq = Jk2I k'p' qI2 . The sum in Eq.(2.27) over reciprocal lattice points converges

rapidly not only for large values of the variable t, but also as t 0. This is because in

the long wavelength limit X >> a and k =2711X« Igpql if (p,q) (0,0), so we have

K00 = Ik21 and

Pq
= ilxpgI for (p,q) # (0,0). (2.28)

Furthermore, by applying the integral identity from Appendix A-2,

k

eikr 2 - k2 ) 1
=

(0)

Iexp -1-`t 2 +
4t2 t2

ut,
to Eq.(2.27), we have



2 ni e p(hcpq I: zi I)
Si (r,k)=

A
jexplikiplq ( r;' )1

Pq

The planar electric dipole transformation tensor Ff., (i j) can be obtained by applying

the operator in Eq.(2.20) to the last equation, and the result is

where

2rci k" + k25u,
(Fii )1" (k) = exp[ikpq (r, )

A
P.q Kpq

k = +gpq, k' = + g" andpq

(2.29)

I z z I

= K
Pq " )
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The sum in Eq.(2.29) converges due to the factor exp(ixpqlz, zil) and Eq.(2.28).

Rapidity of the convergency depends on the distance between two planes involved. On

the other hand, as the distance lz, zil increases, the short range part of the dipolar

interaction between planes, represented by the sum of (p,q) # (0,0) in tensor F, (i #j),

decreases exponentially, while the long range part of the interaction, which is the dc

term in the Fourier series (p, q = 0), gives a traveling wave with wave vector

2.3.2 Lattice Sum in the Real and Reciprocal Spaces

In the long wavelength limit, e.g. photon energy of 2.0 eV and a lattice constant

of 2.5 Angstroms (ka 27r/2480), most of the sums in Eq.(2.29) converges up to seven

digits precision with Ipl + lql 3. But for lz, z 15 a, the convergence slows down

drastically, and we have to bring in Eq.(2.23) to combine with Eq.(2.27) to increase the

computational efficiency. As in the previous discussion, Eq.(2.23) is efficient for large

values of the integration variable t, while Eq.(2.27) is good for small values of t. By

choosing a real parameter E, the function Si(r, k) can be separated into two parts:

Si(r,k)=S1i(r,k)+Sill(r,k),



with Sl (r,k)=
2

Ideas' exp -Ir r t- + , dt, (2.30),nrn 4t

and ,S," (r, k) = exp[ik',' (r" rj )] exp
A

17

K
2

\ I
Z P dt. (2.31)

4t-

Before applying the differential operator in Eq.(2.20) to both functions, we

convert the integrals in the functions into the complementary error functions with

complex variables. Using the integal identity in Appendix A-3

2 - k [ 'kr ik
exp + )dt = e` erfc(rE++e.c.1,

E 4t2 2r 2E
)

Eq.(2.30) becomes

(r,k)= 1
ik

erfc(Ir r IE+),,/1711 2E2 L4nm I r r j,nnil

+e 1-ikir-r i,^^,lerfc ik
(I r r1,,. 2E

) (2.32)

Also using the integal identity in Appendix A-4

2 r -r-t- k 2 dt
-T
t

-1[ -ik ikik rerfc(rE--)1,(0)exp 4t-
e erfc,HE )+e

2E 2E

Eq. (2.31) becomes

exp[ik% 1KS (r ,k)= I I ) e erfc(-Iz z 1E Pq )
A 2EPq

1K
+e 1Z--: erfc (I zz IE

2 E
Pg ) . (2.33)

The complementary error function is introduced by erfc(x) = J- exp( -t2
V-7,7 x

-
Considering an integral function f(x)= f h'(t)dt=[h(t)]7, we have the derivative of
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the function as
df.(x)

=
dh(A- )

. So the derivative of a complementary error function
dx dx

2
xisjust e p(--x ).

av

We first take the first derivative of Eq.(2.32):

eik.s,,, ik=-1 [ (v rj,,1E + )+c.c.+ eik.s,,,

2 I r 2E lrr. 1n,m

ik(vrV ) ik
x-

j,nm ezklr-r),
lerfc (I r rjann 1E+ ) +

1
I r ri.,nm 1 2E

ikxEexp[(1r r J,1E+)-1+ c.c. ,

2E

1 x--1 ik s

= e
2

)(v r° )jmni

) 1r ri.nm

ik (ry )nm[
e

klr-r I
1)

erfc(Ir rjnm 1E+ )+c.c. +
2E I r 12

ikeiklr-rj,,,I[ erfc(I r ri, I E+-Lk)_2E
(

, 1r rJ,IIIII2E ,Fc
12 E2 + k2

4E2)+
C.C.

When the operator in Eq.(2.20) is applied, we find that

oua, 1 eik

j 2 n.m I r r.,,nm Ir r.,run I r 1

x eiklr-r'Ierfc Or r. IE +)+ c.c.[ ik (v rj`:,,) ik (u rju,,)
eiklr-r'."'lerfc (I r r I E +ik )j,,Im1,'" 2E Irr 13 1r r. I 2Ejnm i,nm

ddr-r, 2E (11 r'nm) ik 2
e '." expf Or r IE + ) ]

1,17,1
+ C. C.

VTE I r rj, I 2E
2(v riv.,)(urj",,n)

1r r 12jmn r barn

1k 2E
[

(vr' )
J,I1171X iketklr-r '''''

lerfc(Ir rj,nm I E+)--,_ exp( I r r 12 E2 + ---k2,, )+ C.C. +j,nm2E VTC 4E- Irr,nnt 12
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(ik)2 )
. run k ik ik

e lerfc(Ir r IE + ikewr-rilexp1(Ir r I E +yjJun nrn1r r. I 2E E

2E (ur,,,) 2E (ux exp ( 1r + )( E2 )21r r I + c.c.
V7t VIr 4E2nm

When the last equation is evaluated at r = r,, then

1 ik kir lerfc(Ir r IE += _ye )
2 2E

3ik(r,v )2 (

Ir r
/71

14,,t1

2E k2+[--,_ exp (I r + )
4E2

",)(r,

Ir, r Ir r I
1 .111,1

e )(ru ) ik8 k28nm uv uv

1r r I3 Ir rj.
rn .1

I- Ir. r.
11,/71 I,n

3(r. r1,,,,,,)(ri" ik(riv )(r" r" ),nni ),ntn

1 rj, 14 ),nmi3

2E2 (riv 8v+ +c.c. . (2.34)
Iri rj,,12

When applying the operator in Eq.(2.20) to Eq.(2.33), we examine the result in three

different cases.

Case I: u = v = z, with ki,:q=xpq
I I Iz z .l

and Ez = E ,
. The tensor element is

(z1 z1) (z z )

""t./ A

(ikr eticrqlzzilerfc(_. iK .

P9 I I Z IE )P eK z

P.9 P9 2E

X-2Ez exp[(-1z, z. IE
iK

P9 2) ][24k z
iK

+2Ez(Iz z. I Pq )] + (ik q)-
/
e

-1K
Pq

IZ' I

2E P9 2E

ix iK 1,_z 12E ix
x e e p[(1z, z.IE P q )2 ][-2ik (Iz z .IE

2E ,/IC 2E P9

2E

K iK iK

2E
P9 )2Ez]+ k2[emPliz zilerfc(-1z z IE Pq e IKPq'z z''erfc(lz z IE Pq )]



II , 1.11,,
2 ,expkk ( r,Y. J )1 2

A K pq

20

+ A-f, )+ +
4E-

x[2iVpq 21zi z _1E3 +2ik;gE: +21zi zi

K ) 4iE K-
=

A
le PI Pq (A+pq A-pq ) + exp( I zi z 12

E2 4EPq2)
(2.35)

P,q Pq

iK
where A+pq e erfc(Izz.IE Pq ), and Acq = e-iKPqlz-`'lerfc (1 z IE pq

2E 2E

Case II: u z and v = z,

uz u) zu -kpVpq
(

) (F
A

(A Pq A pq) (2.36)
Pq Pq

Case III: u # z and v # z,

ik (r,'
k.26 k"Eu

Pq Pq (A4-
( + A ).pq pq

A
Pq

(2.37)

Equations (2.34, 2.35, 2.36, and 2.37) can all converge rapidly because the

complementary error functions drop to zero drastically as the arguments approach unity.

The Ewald cut -off parameter has been chosen to be on the order of the inverse lattice

constant to maintain balance between aE for Eq.(2.34) and 11(aE) for the reciprocal

lattice sums. Numerical evaluation of the complementary error function with complex

argument is discussed in Appendix A-6. The expressions we obtain here mostly agree

with the results by other groups8,9 except that we have an extra term:

ik(riv r;nni)(r," r,.",) 2E k2exp (I r
, 1

r
nm

12 E2 + ) in Eq.(2.34), although
Ir, 13

, 4E2

this will not affect the numerical outcome since this term is canceled by its own complex

conjugate. It might have just been ignored without explanation because of its lack of

contribution.
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The tensor describing the electric dipole field from all the dipole moments of the

lattice plane containing the point of interest, i.e. i = j, is C. We have to go back to

Eq.(2.24) to delete the self-interaction term from the contribution for n = m = 0. With

the Ewald cut-off parameter, we rewrite Eq.(2.24) as

ir->0
exp -r-t- +

E

2 - ( k2
+

4t-
[ 2 r

exp + dt
4t2

The first integral can be eliminated directly from the real lattice sum in Eq.(2.30) and

Eq.(2.32) by excluding the term n = m = 0. The second integral, which has been

incorporated in the reciprocal lattice sum of Eq.(2.31) and Eq.(2.33), has to be treated

through a polynomial expansion of exp(-r2t2). Define a tensor D as

2 E ( k 2
DI" [(a

va + k26,)f exp -r 2

t- +)dti = Dtr +
(0) 4t2 r-->0

Now, each element of C is

C"' = ' + (F11: )UV + Day , (2.38)

where ' is to be evaluated with Eq.(2.34) without the lattice point n = m = 0.

Continuing with the calculation of D,

D;° =
2 a >r exp + tk2 )d

(o) 4t2 r-40

= va )
-vm (0)

r4t4 r6t6r-t- +
2! 3!

k2 dti)exP( 42 r-->0

With r2 = x2 + y2 + z2 and u, v = x, y, z, we have the following derivatives of the

polynomials: avr 2 = 2v, avr4 = 2r2avr2, andave = 3r4a,r2. When applying these

formulas to the last equation, the derivation continues with

2E2 t4 3r4 t6
Dav '[= (a

),
)(-2v t2 )dt]Jr

2!
+

3! 4t2 r->0



2 k2
= , [26 (r2 2t4 )exp dt+2vf (0-2ut4 +-- --)exp

k.2

1/7t (o) 2! (0)

=

2r t2 exp
1(2 jdt

. Integration by parts,
4t2

2
2 exp

k2
t=E

k2
21E

2t-3k2jt3
4t2 3

t3 exp(
o

(0 3 4r )
(

4
)dt

We now evaluate the second part of the tensor, which is

Dully =
2 E k2

k28 exp r2t- + --T)dtuv

)
4t- = 6uv,

r-->0

dt

.1.(Eoexp( dt.4kt22 )

1')

Tensor D turns out to be diagonal. After combining the last two equations, it becomes

2 [2E3 k2 (k2 k2D =buy
foiexi°,FT 3 4E2 3 4t2 /dt

= 6
2 {2E3 k2 2k2r

Nin 3
ex

k2

4E2 3

k2 k2

imt exP 4t2 )
dt + texp

4E ( k2 8 k4 2 SE lexp
6,4 (E2 k2 )exP( 4E2 ) IFE (°) t23,17C

k2

4t2

I k2i)dt

t=E

Using the integral identity in Appendix A-4 (taking r = 0), we have the final expression:

4E k2 21k3 ik
ED"v= ( )exp

4E- 3 2E
ouv erfc(--). (2.39)

3,r)i

Eq.(2.39) is compared with the results from three other groups:

(I) Poppe et al.8 reported that

4E ,
Duv = 6 , (k- )exp1

k2
-I- 8a

211(3
erfc(k ),

3-Jic 4E2 3 2E
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which differs from our result by an over all minus sign and another minus sign for the

argument of the complementary error function. Note that erfc(-x) = 2 erfc(x). It is not

clear how they evaluated the tensor for the limit r O. The differences could be just

printing errors.

(II) Litzman and D b9 reported the expression

{47E1 E
Duv = 6,

3

k2 ( 21-7-c( ik ik W(1+
2E,)exp' \ 4E" 2E

e (
2E

)
3

ou,{ 4E k" )exp( k" 211c 1 1 ik

/7-c

1}.
3 2 4E' 3 L2 2 2E

where erf(x) = 1-erfc(x). We are not able to track down the article describing the

derivations of this expression, so we do not know what kind of approaches they took.

Numerically, their result would have little difference from ours if k << E = 1/a, which is

valid in the long wavelength limit.

(III) Vlieger'7 derived an approximate expression for the tensor C by splitting the sum

over all points of the infinite two-dimensional lattice except the origin into a sum over

sn. with Is.' < r, (a « r«27c1k) and integrals over the rest of the lattice. The result

is

C = I sn. 13 + 2 nika-2 sin ' 0 sec 0
n.m*o 3

2ik3

3C"
2

XIS run + 2nika-2 cos()
21k

3n,rn*0

c =
1

LlsnmH 2iCika sec e
21k3

2 n,m*0 3

(2.40)

where 0 is the angle of incidence. The infinite lattice sum for a square lattice was

obtained by Van der Hoff and Benson,18

a3 ISnm I -3 = 9.0336217.
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A numerical check for both the real and imaginary parts, shows that the analytical

expressions in Eq.(2.40) are excellent approximate results. They present good numerical

agreements with our result (see Tables 2.1, 2.2 and 2.3 for li jl = 0), although they are

limited to the case of a square lattice and small values of k.

In Eq.(2.39), erfc(-ik/2E) is almost equal to 1 because E >> > k in the long

wavelength limit. The imaginary term -(2/3)ik3, although very small, cancels the

radiation damping term in the polarizability a in Lorentz oscillator model of radiation

from a bound charge.13,1739 The radiation damping is a radiative interaction to describe

the energy loss through radiation and the subsequent effect on the motion of the source

charge while the motion produces radiation. Tensor D of Eq.(2.39) is added to obtain

tensor C in Eq.(2.38) in order to subtract the contribution from the self-interaction of

the electric dipole moment. Thus the cancellation of -(2/3)ik3 in Eq.(2.39) is consistent

with the dipole moment interacting with its own radiation field. Later in the treatment of

a semi-infinite bulk, with the approximate analytical expression in Eq.(2.40), we shall

show that, without the cancellation due to radiation damping in a system with a real

polarizability, -(2/3)ik3 will cause the solution of the self-consistent dipole moment to

diverge.

2.3.3 Numerical Results

The convergent results of equations (2.34)-(2.39) and (2.29) are demonstrated in

the following three Tables (2.1-2.3). The calculation was performed on a lattice with a

square structure, = 0 and = 1 in Eq.(2.18), of a = 2.5 Angstroms. The photon

energy is 2 eV, the angle of incidence is 45 degree, and the plane of incidence is along

the x-axis. N and P are the maximum values of Inl + Iml and Ipl + lql, respectively, for

each sum, in real and reciprocal lattice spaces, to converge up to seven significant digits.
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Table 2.1: a3(Fii)xx of a cubic lattice with ka = 2n/2480 and 45° incidence.

101 E = N.P E = 2/u N.P E = 5Ia N,P

0 4.51680e+0 + i1.12562e-2 5 2 4.51681e+0 + i1.12562e-2 3 3 4.51683e+0 + i1.12562e-2 3 7

1 -1.63753e-1 + i1.12562e-2 5 2 -1.63753e-1 + i1.12562e-2 3 3 -1.63753e-1 + i1.12562e-2 3 4

2 -3.17821e-4 + i1.12562e-2 0 3 -3.17821e-4 + i1.12562e-2 3 3 -3.17821e-4 + i1.12562e-2 3 3

3 -6.10103e-5 + i1.12561e-2 0 2 -6.10103e-5 + i1.12561e-2 3 2 -6.10103e-5 + i1.12561e-2 3 2

4 -8.06618e-5 + i1.12559e-2 0 2 -8.06618e-5 + i1.12559e-2 3 2 -8.06618e-5 + i1.12559e-2 3 2

5 -1.00826e-4 + i1.12558e-2 0 1 -1.00826e-4 + i1.12558e-2 3 1 -1.00826e-4 + i1.12558e-2 2 1

6 -1.20990e-4 + i1.12556e-2 0 1 -1.20990e-4 + i1.12556e-2 3 1 -1.20990e-4 + i1.12556e-2 2 1

7 -1.41154e-4 + i1.12553e-2 0 1 -1.41154e-4 + i1.12553e-2 3 1 -1.41154e-4 + i1.12553e-2 2 1

8 -1.61317e-4 + i1.12551e-2 0 1 -1.61317e-4 + i1.12551e-2 3 1 -1.61317e-4 + i1.12551e-2 2 1

9 -1.81480e-4 + i1.12548e-2 0 1 -1.81480e-4 + i1.12548e-2 3 1 -1.81480e-4 + i1.12548e-2 2 1

10 -2.01643e-4 + i1.12544e-2 0 1 -2.01643e-4 + i1.12544e-2 3 1 -2.01643e-4 + i1.12544e-2 2 1

Table 2.2: a3(Fii)YY of a cubic lattice with ka 22T/2480 and 45° incidence.

101 E = N,P E = 2Ia N,P E = 5Ia N,P

0 4.51680e+0 + i2.25125e-2 5 2 4.51681e+0 + i2.25125e-2 3 3 4.51683e+0 + i2.25125e-2 3 7

1 -1.63773e-1 + i2.25124e-2 5 2 -1.63773e-1 + i2.25124e-2 3 3 -1.63773e-1 + i2.25124e-2 3 4

2 -3.58150e-4 + i2.25123e-2 0 3 -3.58150e-4 + i2.25123e-2 3 3 -3.58150e-4 + i2.25123e-2 3 3

3 -1.21506e-4 + i2.25121e-2 0 2 -1.21506e-4 + i2.25121e-2 3 2 -1.21506e-4 + i2.25121e-2 3 2

4 -1.61323e-4 + i2.25119e-2 0 2 -1.61323e-4 + i2.25119e-2 3 2 -1.61323e-4 + i2.25119e-2 3 2

5 -2.01651e-4 + i2.25116e-2 0 1 -2.01651e-4 + i2 25116e -2 4 1 -2.01651e-4 + i2.25116e-2 2 1

6 -2.41980e-4 + i2.25112e-2 0 1 -2.41980e-4 + i2.25112e-2 3 1 -2.41980e-4 + i2.25112e-2 2 1

7 -2.82308e-4 + i2.25107e-2 0 1 -2.82308e-4 + i2.25107e-2 4 1 -2.82308e-4 + i2.25107e-2 2 1

8 -3.22635e-4 + i2.25102e-2 0 1 -3.22635e-4 + i2.25102e-2 3 1 -3.22635e-4 + i2.25102e-2 2 1

9 -3.62961e-4 + i2.25095e-2 0 1 -3.62961e-4 + i2.25095e-2 3 1 -3.62961e-4 + i2.25095e-2 2 1

10 -4.03286e-4 + i2.25089e-2 0 1 -4.03286e-4 + i2.25089e-2 3 1 -4.03286e-4 + i2.25089e-2 2 1
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Table 2.3: a3(Fii):: of a cubic lattice with ka = 27r/2480 and 45° incidence.

ii j1 E N.P E =21a N.P E = 5/a N.P

0 9.03363e1) + i1.12562e-2 5 2 -9.03362e0 + i1.12562e-2 3 3 -9.03360e0 + i1.12562e-2 3 6

1 3.27445e-1 + i1.12562e-2 5 2 3.27445e-1 + i1.12562e-2 3 3 3.27445e-1 + i1.12562e-2 3 4

2 5.14649e-4 + i1.12562e-2 0 3 5.14649e-4 + i1.12562e-2 3 3 5.14649e-4 + i1.12562e-2 3 3

3 -5.94668e-5 + i1.12561e-2 0 2 -5.94668e-5 + i1.12561e-2 3 2 -5.94668e-5 + i1.12561e-2 3 2

4 -8.06589e-5 + i1.12559e-2 0 2 -8.06589e-5 + i1.12559e-2 3 2 -8.06589e-5 + i1.12559e-2 3 2

5 -1.00826e-4 + i1.12558e-2 0 1 -1.00826e-4 + i1.12558e-2 3 1 -1.00826e-4 + i1.12558e-2 2 1

6 -1.20990e-4 + i1.12556e-2 0 1 -1.20990e-4 + i1.12556e-2 3 1 -1.20990e-4 + i1.12556e-2 2 1

7 -1.41154e-4 + i1.12553e-2 0 1 -1.41154e-4 + i1.12553e-2 3 1 -1.41154e-4 + i1.12553e-2 2 1

8 -1.61317e-4 + i1.12551e-2 0 1 -1.61317e-4 + i1.12551e-2 3 1 -1.61317e-4 + i1.12551e-2 2 1

9 -1.81480e-4 + i1.12548e-2 0 1 -1.81480e-4 + i1.12548e-2 3 1 -1.81480e-4 + i1.12548e-2 2 1

10 -2.01643e-4 + i1.12544e-2 0 1 -2.01643e-4 + i1.12544e-2 3 1 -2.01643e-4 + i1.12544e-2 2 1

For li jl 2, the F9 in the third (E = 2/a) and fourth (E = 5/a) columns are

calculated from Eqs.(2.34)-(2.37), while those of the second column (E = 1 /a) are

calculated simply by Eq.(2.29) in which the calculation does not involve the parameter E

and N = 0 is irrelevant. The numbers in these Tables demonstrate that the choice of the

parameter E does not affect the calculated results but only the computational efficiency.

These consistent results provide us with great confidence in both the mathematical

derivation and the computer programming.

In the next Table, the third column is calculated from the contribution ofp = q =

0 in Eq.(2.29) only. It can be seen clearly that the long range electric dipole field, i.e.

the dc term of the reciprocal lattice sum, dominates the planar interaction for li jl 2.

But for the neighboring planes, li jl = 1, the short range field also contributes, and the

calculation has to count on the presence of Ipl + lql up to 4 in Eq.(2.29). We shall revisit

this point later in the bulk treatment of the dipole wave decomposition.
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Table 2.4: a3(F,i)xx of a cubic lattice with ka = 2m/248 and normal incidence.

li-j1 Complete formula Eq.(29) with p=q=0

0 4.51493 +10.15919 0. + i 0.15919

1 -0.16777 +10.15914 -4.03e-3 +10.15914
2 -8.34e-3 +10.15898 -8.06e-3 +10.15898
3 -1.21e-2 +10.15873 -1.21e-2 +1 0.15873

4 -1.61e-1 + i 0.15837 -1.61e-1 +10.15837

5 -2.01e-2 + i 0.15791 -2.01e-2 +10.15791

2.4 Calculation for a Finite Number of Layers

Now, Eq.(2.21), [ ] p1 = E eLk.i; , is ready to be solved as aJ.0

matrix equation. The external field on the right hand side is a composite column vector

of 3x(L+1) elements for a system of finite (L+1) layers. The matrix on the left hand

side is also a composite square matrix of 3x3 matrices with total dimension [3x(L+1)].

The matrix equation is solved by a computer program, modified for complex numerical

computation, from Numerical Recipes in C2° using the LU decomposition, back-

substitution and an iterative improvement procedure for solutions to linear equations. L

and U stand for lower and upper triangular matrices. The computation time scales as

[3x(L+1)]3 for the matrix operations. For L = 100, it would take about 1.5 Mbytes of

memory to store a matrix, and about 20 minutes for a 486 machine at 33 MHz to

execute the program.

The induced dipole moment in Fig. 2.3 is calculated from a cubic lattice with a =

2.5 A. The external field (1E01 = 1) is linearly polarized along the x-axis at normal

incidence. A rather high frequency field of 20eV is chosen in order to observe the full

modulation of the dipole moment within 101 layers of thin film. The input polarizability

tensor is diagonal and isotropic with a-3a - 0.187, which is equivalent to a refractive

index of 3.4 according to the Lorentz-Lorenz relation,
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.4758

a

.6226

50
Surface layer index

Fig. 2.3 Dipole moments from a 101 finite layer calculation. n = 3.4,
ka = 2n/248, A = 0°.

p

Fig. 2.4 Radial and transverse components of the electric dipole field in the
spherical coordinate system.
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where n is the refractive index. We consider the high index case here to show the

sizable wiggle1021 22 at both interfaces. When the angle of incidence is not zero, the

tangential components of the dipole moment exhibit the wiggle, but the normal (.7)

component does not. The magnitude of the normal components of dipole moments of

the first few surface layers differs little from the rest.

The insensitivity of the normal component of the local field to the missing dipole

moments on the other side of the surface can be illustrated by the sin() dependency,

where 8 is the angle between a dipole vector and the radial vector, of the electric dipole

field. For a dipole moment along the polar axis of a spherical coordinate system as in

Fig. 2.4, the electric field is"

E dip = eB Ee + er E
r

3 1 1= eolplk [ [sin Oe"' e 21ple[ ]cosOei(kr-`°".
(kr)- (kr)2 kr (1(03 (kr)-

The radial component, which has a cos() dependency, only contributes in the near zone

where kr << 1. When we sum over the field from an infinite medium, a large number of

dipole moments contribute from the far zone through the transverse component,

especially the -Iplk2sin0/r term. The normal component of the surface local field thus

sees more contributions from the dipole moments on the same surface plane and cares

less about the missing dipole moments above the surface, while the tangential

components see it in a different way.

The reflected field can be calculated by summing the long range parts of the

electric dipole fields arising from all the dipoles in the medium. Define two tensors, D

and B, from the expression in Eq.(2.29),



, 2ni k uP9 P9
+ 65,.

exp[ikp, Jr; r.)1,A t
P9

= 1(D
P9

)"' exp[ik (r rj )] if z > z I , (2.42)
P,9

= )' exp[ik
P4 P4

P.9

(r r3)1 ifz 1<zj.
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Then we have the reflected field (with the phase of the field chosen to be zero at r = 0)

Er =ID 00 p, exp(ikoo r, ),
i=t)

where koo = (kx, P,11(21). The calculated magnitude of Er is plotted against the number of

layers in Fig. 2.5 with the same input parameters as in Fig. 2.3. The modulation is

expected as the result of interference between the upper and lower surface reflections

with varying thin film thickness. In real situations, we usually do not see the interference

from a macroscopic object with a beam of finite size. But in our treatment of a finite

number layers, the interference is inevitable even with non zero angle of incidence

because we only handle the infinite plane wave. The goal of eliminating this interference

became our motivation to develop a treatment of the optical response of a semi-infinite

bulk medium.

2.5 Dipolar Interaction of the Surface and the Bulk

The semi-infinite system is separated into a surface region consisting of a finite

number of layers and a bulk region with the same lattice structure and unit cell

polarizability tensor ab. The planar index of surface region is i = 0,....,L, and that of

bulk region is m = (Fig. 2.1). The z-component of the position vector for a

lattice plane in the bulk region is z. = zL (m+1)a. The basic equation to solve for an

induced dipole moment in the surface region is
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50
Number of layers

1 00

Fig. 2.5 The magnitude of reflected field vs the number of layers in the
calculation. n. = 3.4, ka = 27c/248, 0 =



L

[cC:113ii ] pj skr, bulk (2.43)
m=0

The basic equation to solve for an induced dipole moment in the bulk region is

L
surfkx, ;15.1 ] p = Eoe ik-r, + E (r, ) = E e' + F pi . (2.44)

j=0 z=0

The left hand side of Eq.(2.44) can be rewritten as

E[abt8mj Fmj]p =.2.,[(ab C)64 F,*;] Pi.
J.0

Eq.(2.42) has introduced two tensors (D and B) for the interplanar dipolar interaction,

and we repeat it here for the proper bulk layer index:

(Fm= j
2.7ci k" + k28

= "Pg exp[ik` (z z )],
A

119
119

. P9

= 1(D
P9

)" exp[hcpq (2'm z1)] if z
II

> (2.45)lz. '
P.9

= /(B )"v eXp[/Kpq(Zm 27 ) if z < zpq m

P.9
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where we have taken the origin of each planar lattice r". = 0, as it should be for a single

system, so that rm = zzm = z[zc(m+1)a]. The definitions of Eq.(2.45) provide us with

J.0
= I{[B

1)(1

P9
J =0

m-1

2.6 Dipole Wave Decomposition

1

1((mi)a ± Dpq y, I V
j=m+1

il (PIUTn)a (2.46)

It has been suggested that the field response from a bulk medium can be

decomposed into an infinite number of modes of dipole waves in the medium.6 The

dipole moment of lattice plane m is expressed as

pin = vhuh exp(itifhina), (2.47)
h=0



where 1 is the z-component of the wave vector of dipole wave mode h, u, is the

polarization vector and v, the magnitude. Substituting Eq.(2.47) into Eq.(2.46) yields

IF,,, p = B ye hja IK plIM

.1=0 11=0 p j=0

[+ D u 1 e-whiae (J-p)a
Pq h

j=m+1

(2.48)

33

To evaluate the summation series in the brackets of the last equation, we use the

following identities:

and

n n-1-1

=
t=0 X

= 1 1 =
(=I 1 x 1 x

(2.49)

(2.50)

In Eq.(2.50), x < 1 is required so that the infinite series converges.

With the identity of Eq.(2.49), the first series in the right hand side of Eq.(2.48)

becomes

m-1 m-1 )ma

hia eiKpq(m-l)a = e
iK

Pq
ma X-1Le -i(t< 1 h)ja

e
iK

Pq

ma 1 e

.1=0 j=0

e hma eiKpqma

e-L(Kp,i+kvoa _1 (2.51)

Also, the second series in Eq.(2.48), with the help of Eq.(2.50), becomes

hi a eiK Pq('-'n)a = N1
Ow ei(K pq-4, h 1( "Oa e hma Iei(K-wh)fa

j=m+1 j=m+1 1=1

i(K -410a

= e-i41 hma e e-nv ,,na

1 e`(Kiw-vh)° e Fq
-1(K h )a 1

(2.52)

When applying the series identity to obtain the last result, we have assumed that

et(K Pq-Nj h)a < 1. This condition can hold only if Im(xpq-w,) 0. Since Koo = Ikz1= -lc or
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P9
= iIi I by definition, we only need wh to have a zero or negative imaginary part.P4

This conclusion is consistent with the expression in Eq.(2.47), where the positive

imaginary part of wh will cause the dipole moment pin to blow up as m --> °°.

Substituting the results of Eq.(2.51) and Eq.(2.52) into Eq.(2.48), Eq.(2.44) then

becomes

lhs = E[(ocl C)6, F., ]- p = (ae' C)(Evhuhe'hma )
j=0 h=0

hma 1K ma

E V h Dpq u h i(K )a Bpq U h

e 1
rq h 1h=0 p,q

h=0 pje 1
D Bpq

c's

= (:)E _,(,,,,,P:), uhe "a

Bpq
h pqma-FIvhy --,(K+,1, 0.

h=0 p,q e

while rhs = E 0 +
i=0

(2.53)

L
Koo(ma+,-,L) B e ma+aZ L+z I) pi. (2.54)LI P4

t=0 p,q

The last expression in Eq.(2.54) is the direct result of the definition in Eq.(2.45) that the

bulk region lies underneath the surface region in our geometry. There are two wave

components in Eq.(2.53), one represented by wave vector z-component tifh and the other

by icpq. But the electric field in Eq.(2.54) is only represented by wave vector component

icpq. For Eq.(2.44) to be true for any arbitrary dipole wave mode h in Eqs.(2.53) and

(2.54), it requires

and

(oc' C)
Dpq

et(Kpq-iv Oa +{
B

P4

1 e-1(1(Pq+Nih)a 1P,4

u L
00(0,0+0-z,) + v B fic00(ma-F.-zi.1-z))

P4c'or<5

i =0 p,q

uh = 0, (2.55)

I VhI --i(Kpl+w ,e
pq h ma

h =0 p,q e 1 . (2.56)
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For each pair (p,q), there is a 3-D vector equation according to Eq.(2.56). But one

equation requires special attention, that being the contribution of the (0,0) term,

Boo uh L

1
D00

h.° e i=0

= Ee

or v 'Boo

U h

h 1(x lefico.(azo p = E0.00

i=0h=0 e

(ma+a:L)

(2.57)

The physical interpretation of Eq.(2.57) is analogous to the Ewald-Oseen extinction

theorem.141923 The external field Eoekr is cancelled at every point within the medium

due to interference with the emitted electric dipole field and replaced by the field

propagating with the correct phase velocity. The theorem was derived for the

continuous medium in the form of integral equations in the Lorentz gauge by Born and

Wolf.14 Sipe and van Kranendonk23 also obtained the microscopic extinction theorem

with the discrete lattice model, but the electric dipole field was treated in the Coulomb

gauge, that is with instantaneous rather than retarded fields.

2.6.1 The Solutions

Eq.(2.55) can hold for nontrivial solutions for tr, only if the 3x3 matrix is

singular. That is the determinant of that matrix has to be zero,

{detA = det (ai-,1 C) II ' + ' = 0 . (2.58)
-w )(1 e-t(KIN-1-4100

D B

Since detD, = detBp, from the definition in Eq.(2.45), detA is an even function of 11111.

The positive real part of iv, describes the dipole wave propagating upward in the

medium, and the negative one the downward propagating wave. For a semi-infinite

medium in the lower space, the downward propagation is wanted because there is no

lower boundary to reflect the waves upward. These downward propagating dipole

waves give rise to the reflected field into the upper space off the vacuum/medium
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interface. In the case of a finite number of layers, the treatment, which we have

presented in the previous section, includes implicitly both the upward and downward

propagating dipole waves in the self-consistent calculation. The result is an interference

modulation in the reflected field as the number of layers increases, as shown in Fig. 2.5.

Therefore, the discussions of Nil, from here on in our semi-infinite model will only refer

to xv, with negative values.

The number of roots of Eq.(2.58) depends on the number of terms of (p,q).

Generally, each (p,q) term is associated with two roots, but, in the case of normal

incidence the two become degenerate. In the long wavelength limit, only two tvh,

associated with -Koo = kz, have nonzero real parts (Fig. 2.6), and they represent the

propagating components of these decomposed dipole waves in the medium. We label

these two dipole wave modes as h = 0 and 1. The other modes, due to the pure

imaginary nature of wh, represent the evanescent waves and they are exponentially

damped. The evanescent modes are important to evaluate the exact dipole moments

near the bulk boundary (small m). But the real material boundary is in the surface region

(i.e. i = 0 for a single medium). This bulk boundary (m = 0) is just an artifact in our

treatment. The two propagating modes of dipole waves are sufficient to represent the

bulk dipole contribution to the surface local field, as long as the choice of the number of

surface layers, L+1, is large enough to match the bulk dipoles in the lower surface

region. According to the numerical results that we will present later (section 2.8), L = 5

is a good enough choice for the usual low to moderate polarizability medium, while the

extremely polarizable medium requires no more than 10 layers.

Although we have concluded that we only need to find roots Nro and Nil from

Eq.(2.58), the matrix elements of A still have to be the convergent results of the

reciprocal lattice sum. This is because the near field arising from terms (p,q) # (0,0) also

contributes to the propagating dipole waves. Table 2.5 shows the varying real part of ivo
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Fig. 2.6 DetA of 4(2.58) vs real part of wh. There are two roots of detA =
with nonzero real part of wh. n = 3.4, ka 21t/2480, 0 = 45°.
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and VI with P being the maximum Ipl lql used in the reciprocal lattice sum.

yr J =
Csingii) is the corresponding wave vector from the continuum

approach, the result of Snell's law.

Table 2.5: Convergent numerical results of wave vectors No and Nil
(the real part) with the near field contributions included in Eq.(2.58).

P

(n=4.0/0=30°/ka=0.025)

-11/0

(n=4.0/0=30°/ka=0.0025)

-11f0

(1.5/0V0.0025)

-11f°

0 0.1264182 0.1275498 0.01266025 0.01276917 0.003835753
1 0.1023665 0.1024883 0.01023767 0.01024658 0.003803743
2 0.1005734 0.1006069 0.01005780 0.01005799 0.003800373
3 0.1005428 0.1005748 0.01005474 0.01005478 0.003800314
4 0.1005422 0.1005742 0.01005468 0.01005471 0.003800313

0.1005468 0.01005468 0.003800314

The values of Ivo and Nr, do not change for P beyond 4. If we take the bulk results from

calculations with P = 0 or 1, the equivalent refractive index of the bulk will be different

from that of the surface region and we will still have interference due to the extra

reflection at the surface/bulk boundary.

2.7 Divergent Dipole Moment and Self-interaction

The discussion after Eq.(2.52) leads to the conclusion that wh must have a zero

or negative imaginary part in order to prevent divergent dipole moments in the semi-

infinite medium. This conclusion also presents an argument for keeping the (2/3)ik3 self-

interaction term in the lattice summation problem. For simplicity we consider the case

of an external field, with s-polarization, linearly polarized along the y-axis. We also

ignore the contribution from terms of (p,q) # (0,0) in the evaluation of elements of



b" d' ,0,d'
matrix A. We have = 0,V,0 and D, = 0, d", 0 because k' =

,(1,b-- 0, d"

For an isotropic medium with a cubic lattice, both ab and C are diagonal. The

polarization vector u of one dipole wave mode is (0,1,0). Eq.(2.55) reduces to

d"(-1 yy
ah =

e -Incoo-tv)a e-Iticoo-i-41)a

According to Eq.(2.45), we have bYY =dY).= 2nia-2k2/1k1 = 2/cia-2k/cos0. The last

equation becomes (G' YYCb (e-i(Koc-4/)a _1)(e-i(x0+14/)a
h" t'a + 2)

-1 yy Ve-IK"a (2 cos ay! 2e' )= a b C
(2cosaw)+ 1

= 0.

After some rearrangements of the last eqution, we have

(<1 cYY )(cos aic,, cosay)= bY''(cosay cosaK, i sin mc,, ),

(cc,' cYY + )(cosay cosalcoo)--, lb" sin alc.,

and ib" sin atcoo
cos aw = cos at( 00 +

a Cy Y+ bYYb

COS aK
2ica-'k2`

We bring in here the analytical expression for cYY by Vlieger17 as in Eq.(2.40):

3
21k3e" =1

2nika-2 sec 0
2ik

= A +13"
n,rn*0 3 3

where A =
1

Is I is real. Our expression for w becomes
2 n,m *()

2na-1k2
cos ayl = cosaico,

(a,-; A)+2ik3 13.

If ab in Eq.(2.59) is real, i.e. not a damping term, we then have

2ma-1k2 (<1 A 2ik3 /3)
cos aw = cos alcoo

A)2 +(2k3 / 3)2

(2.59)

(2.60)
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The imaginary part of the last term is positive. For an arbitrary complex number

cos z = cos(u+ iv) = (e e- + e-i"ey )=
2

[cosu(e +ev )+isin u(e c )].
2

The last expression shows that cos(z) can have a positive imaginary part only if u and v

have opposite sign (v < 0). The presence of 2ik3/3 in Eq.(2.60) assures that we will

obtain yr with a negative real part and a positive imaginary part. In order to prevent

divergent dipole moments, 2ik3/3 has to be eliminated either by including a self-field in

the lattice summation for tensor C or by including the radiation damping in a. The

equivalence of these two approaches can be justified by a classical harmonic oscillator

mode1.19

2:7.1 Self-interaction and Radiation Damping

Consider a particle of mass m and charge q bound by a spherically symmetric,

linear, restoring force mcoo2r, in the presence of a given external field Eeiwt. The

equation of motion is: m(r + co2or tif ) = qEe'ffir , (2.61)

where 't = (2q213mc3) is the radiation damping constant.I3 The steady-state solution is

q Eeto,
r

m coo2 co2

The induced dipole moment is obtained by p = qr = aEei", and the complex

polarizability is = 92 1

7-
3c3T I 2

(02, _0)2 i(031 0)20 -w2 -i0)31
(2.62)

Eq.(2.61) can be written in a form which includes a contribution from the self-field

instead of the radiation damping, m(1+0)00= q(E,f +E)e'". (2.63)

q (E sf +E)ez"
The solution becomes r = , and the real polarizability according to

m coo- co



Eq.(2.63) is
1 3c3t/2

ao =

By comparing Eq.(2.62) and Eq.(2.64), it is obvious that

= a 2ic.o3 / 3c3 = a-1 21k3 / 3.

(2.64)

(2.65)
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When this complex polarizability is introduced to Eq.(2.59), the cancellation of 2ik3 /3

guarantees us to have a non-positive imaginary solution for yr. The result of this analysis

is proved to be quite general by the numerical solutions to Eq.(2.58). When 2ik3/3 was

kept in the tensor C, the numerical solutions of and yr, contained a positive imaginary

part on the order of 10-11. When 2ik3/3 was removed from the tensor C, the imaginary

part became negative and had a value of about the machine error (10-'7 to10-21 in double

precision) in a non-absorptive bulk medium.

2.8 Self-consistent Dipole Moments and Local Fields

tvo and kvi are determined numerically from Eq.(2.58) using a combination of

Newton-Raphson and bisection methods.2° xvo and tv, are then put back into Eq.(2.55)

to evaluate u0 and u, respectively. The two resultant polarization vectors are mutually

orthogonal. One of them is in the plane of incidence, which is dictated by the wave

vector k; the other is perpendicular to it. Finally, the magnitudes of the dipole wave

modes vo and vt are determined self-consistently together with the surface dipole

moments as we explain next.

In Eq.(2.43), the bulk contribution to the electric dipole field at the surface

region can be expressed as

Eby (r \
pqdip , i Fim P rn IVhID uh hma

m=0 h=0 p,q m=0

1

pq U hel
,hia

en(
maLe

h=0 p,q m.0



= vh pq
11=0 p,q

eil(P,(Z,-;L+a)
U h cl11(1,1-4 1 Oa (2.66)
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The series identity in Eq.(2.50) has been used to obtain this equation, and the convergent

condition for that series is the same as the discussion after Eq.(2.52). Eq.(2.43)

becomes

e IK
7
(Z,-ZL-f-a)

Ifoc718.. F..]p IvhID pq h ein pg-ty hia = E
.1=0 h=0 p,q

ikr, (2.67a)

This is a set of 3x(L+1) linear equations for 3x(L +l) +2 unknowns of pi plus vo and v1.

Two additional equations are obtained from Eq.(2.57), which originated from Eq.(2.44):

IL Be"`"z' + L1

v
u Boo uh

Oo = uo E (2.67b)) p h

e-; Pq" h)' 1
0

i=0 h=0

ul B uh
= u EIu1 Booe '`"z1 pi +Ivh _ (2.67c)1 0.

i=0 h=0 1
In Eq.(2.56), we have

L

=0

Bpi uh
vh -1(Kpg-i-t

h=() e
=0

for each pair of (p,q) # (0,0). These equations can be included in Eqs.(2.67) if we have

to determine vh for h> 1 (e.g. ka = 1, the short wavelength case).

Eqs.(2.67) are solved numerically using the same method used for the finite thin

film case, except that the size of the matrix is expanded to [3x(L+1)+2]x[3x(L+1)+2].

Once the induced dipole moments are determined by the matrix equations, the

microscopic local field of each surface lattice site is obtained by multiplying the inverse

tensor of the polarizability with the resultant dipole moment, according to the first

relation in Eq.(2.1). We calculate the uniform, cubic, isotropic case so that the results

can be compared to the Lorentz local field. The lattice structure and unit cell

polarizability in the surface region are all taken to be identical to the bulk parameters.
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The lattice constant a is 2.5 Angstroms. The linearly polarized incident field is lE1= 1

for either s- or p-polarization. To see the modulation of the local electric field at each

lattice site for the discrete point dipole model, we use 101 surface layers and 20 eV for

the photon energy. Although the energy is quite high, it is still within the long

wavelength limit, ka = 0.025. It is chosen so that 100 layers are on the order of one

wavelength of the field in the medium. For the very polarizable medium, i.e. very high

index of refraction, the tangential components of the local field of the first couple of

layers behave quite differently from the rest of the surface layers (Fig. 2.7(a)). The

normal component exhibits a smaller surface anomaly (Fig. 2.7(b)). For more moderate

cases of polarizability, only the topmost surface layer has a local field different from the

others in an isotropic, uniform medium. The wiggles in the end of surface region, that is

at the last discrete layer as seen in Fig. 2.3, disappear when we include the correct bulk

contributions, the propagating dipole wave modes, from both the long and short range

dipolar interactions. The depth of the surface anomaly in Fig. 2.7(a) confirms that

5 L 10 are good choices for the number of surface layers for efficient computation.

The magnitude of the local electric field Eloc(r,) for i > 5 from our calculation is

identical to the Lorentz local field for the isotropic, cubic lattice.

Lorentz local field =
n2 + 2

E
n2 + 2 cos 0 n cos 8,

E, for s-polarization,
3 3 cos0+ncosOt

112 +2 neose cos()
E, for p-polarization.

3 ncos0+cosOt

The transmitted field is obtained from Fresnel formulas and 0, is the angle of the

refracted ray. Deviations from Lorentz local fields of the first surface layer in our

calculations, with a photon energy of 2 eV, are presented in Fig. 2.8, versus refractive

index, and in Fig. 2.9, versus angle of incidence.
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Fig. 2.7 Variation in the surface local field from the semi-infinite model. The
incident field is p-polarized. n = 4.0, ka -, 2n/248, 8 = 45°. (a) the tangential
component. (b) the normal component.
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Fig. 2.8 The local field at the surface compared to the Lorentz bulk field
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Fig. 2.9 The local field at the surface compared to the Lorentz bulk field
(n = 2.5). ka = 2n/2480 in the calculation.
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The reflected field is just the summation of the long range electric dipole field

contributions (evaluated at r= 0), which propagates into the upper space. By using

4(2.66), it is

L
1 oo(:L+a)

Er = IDoo pi exp(ik 00 -ri)+IvhDoo uh iIK ,a.0 h.1)

where k) = (kx, 10,1kz1). This result is numerically identical to the Fresnel formula for

reflection up to 6 digits for index n = 1.5 (Fig. 2.10(a)), and 5 digits for ii = 4 except in

the vicinity of the Brewster angle (Fig. 2.10(b)). The big spike in Fig. 2.10(b) occurs at

the Brewster angle of a very polarizable medium. Calculations with a finer angular

stepsize show that the reflectivity in the microscopic treatment does not approach zero

while the macroscopic result does (Fig. 2.11). An explanation of this phenomenon can

be extracted from the results in Fig. 2.7 through Fig. 2.9. The zero reflectivity at the

Brewster angle is generally explained by the fact that the induced dipole moments

oriented in the direction of propagation of the reflected field can not radiate in that

direction due to sine dependency of the transverse dipole field (see discussions in

section 2.4). In the microscopic calculation, because the tangential component of the

surface dipole has a more profound variation from the bulk dipole than the normal

component does, the surface dipole has a different orientation than the bulk dipole. This

allows the surface dipole to contribute to the reflected field at the bulk Brewster angle

while the bulk dipole can not. Also the number of layers to display the surface effects

does not depend on the wavelength, but only on the polarizability (compare Fig. 2.7 and

Fig. 2.12). So the ratio of the number of surface dipole moments to the number of bulk

dipole moments (characterized by the wavelength) is greater in the short wavelength

case. This results in a higher reflectivity from a shorter wavelength calculation at the

Brewster angle in Fig. 2.11.
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Fig. 2.10 The reflected field of the microscopic calculation compared to the
macroscopic Fresnel result. ka = 27t/2480 in the calculation. The differences of the two
results are less than 2.1x10 -7 for n = 1.5 (a), and less than 3.4x10-6 for n = 4.0 except in
the vicinity of the Brewster angle (b).



.025

ka = 2 rr/248

0
75.5

Fresnel result

76
angle of incidence

76.5

48

Fig. 2.11 The reflected field at the Brewster angle for an index 4.0 medium. The
stepsize in the calculation is 0.01°.
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Fig. 2.12 The surface local field of a long wavelength calculation. Only the real
parts are plotted. The incident field is p-polarized. n = 4.0, ka 27r/2480, 0 = 45°.
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2.9 Conclusion

The microscopic calculation of the optical response of a semi-infinite medium in

the discrete point dipole model has reproduced the macroscopic results of the bulk local

field and the reflected field. Yet the microscopic calculation also provides the surface

local field which is important to the study of surface phenomena. The formalism we

develop here is applicable to cases beyond the macroscopic, cubic, and isotropic model.

The polarizability tensor (a,), the planar lattice structure (a, C, 0,) and the surface

layer spacing (;) can all vary layer by layer to treat any particular surface system. The

polarizability tensor can also contain complex elements to treat the absorptive medium.

In the treatment of the bulk contribution, we have stressed that the near field has

to be included properly in the solutions of the propagating dipole waves even in the long

wavelength limit. The energy loss due to dipole radiation (radiation damping), although

it is a very small factor, has to be taken into account to prevent the dipole moment in the

semi-infinite bulk from diverging.
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CHAPTER HI

THEORY OF SURFACE SECOND HARMONIC GENERATION

3.1 Nonlinear Susceptibility

The higher order interactions between electromagnetic (EM) waves and atomic

matter describe the nonlinear response of matter to the EM waves. The high intensity

and coherence of laser light sources makes observations of these processes possible. In

second harmonic generation, cot = api, two fundamental photons are annihilated and one

harmonic photon is created with energy of the field being conserved. This process is

also referred to as coherent three photon scattering or three wave mixing. The

macroscopic response of a medium is characterized by an induced nonlinear polarization

Pnis (2(0= x(2) (20);(0,0)):E, (co)Et (Co), (3.1)

where Et is the macroscopic field in nonlinear response region, and X(2) the macroscopic

second order susceptibility tensor.

For a centrosymmetric medium, the susceptibility tensor is invariant under the

inversion operator. Elements of the rank three susceptibility tensor are
x(2) (2)

where a, b, c = x, y, z. The invariance with respect to inversion results in
.x(2):be (2) x(2)

and suggests a zero second order nonlinear optical response. This conclusion can also

be seen from the microscopic point of view. The rank three molecular susceptibility

tensor can be determined through the expression from third-order perturbation

theory24'25
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(ilal k)(klbl j)(jIcli)
Rab,(2em,co).1

k,k (Ek 2 hco iFk )( iFj)

(ilblk)(klal j)(jIcli)
+

(ilblk)(k1c1j)(jIali)
(Ek hco irk )(E, hco iFf ) (Ek + hko irk )(E + Thu) )

(3.2)

where is the ground state and lj) and lk) are intermediate states. E and F are the eigen

energy relative to E and the damping constant, respectively. Three time-ordered

diagrams corresponding to the three terms in the summations of Eq.(3.2) are listed in

Fig. 3.1.

1 la
li> a

car li>
lb

c1

(a) (b) (c)

Fig. 3.1 Three time-ordered diagrams of Eq.(3.2). (a) There are two possible
resonance enhancements. (b) One possible resonance enhancement. (c) No possible
resonance enhancement in this diagram since all the intermediate states have to be below
the ground state.

If a molecule has inversion symmetry, then all its eigenstates, li), lb, and lk), have to be

labeled with either g or u. g means that the state is symmetric upon inversion, and u that

it is antisymmetric. Since the electric dipole operator is an odd function, integrals for the

transition moments in Eq.(3.2) are zero if the initial and final states are both g or both u.

The third order processes described in Eq.(3.2) are forbidden because at least one of the

three consecutive transitions is not allowed. For example, g--->u--->g>g is forbidden

because the last transition is not allowed. However, introduction of an electric

quadrupole or magnetic dipole transition moment may lead to a nonzero 13(20);(0,w) for

a centrosymmetric matter.
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Although it is prohibited in the centrosymmetric bulk within the electric dipole

approximation, a second harmonic generation signal can rise from a very thin surface

region of this medium because the symmetry is broken along the direction of the surface

normal. This makes surface second harmonic generation (SSHG) an interesting surface-

specific probe for surface characterizations, surface phenomena, surface interactions

etc., and for any interface accessible to light.26 However, in a SSHG measurement, the

detector collects the total signal from both the surface (electric dipole transition) and the

bulk (electric quadrupole or magnetic dipole transition). The contribution of a surface

nonlinear polarization to the SH field is less than that of a bulk nonlinear polarization

roughly by a factor of 270/X,27 where d is the thickness of the surface region and X the

optical wavelength. Meanwhile, the electric dipole transition moment is greater than the

electric quadrupole and magnetic dipole transition moments by a factor of X/27w, where

a is the dimension of the source of the multipole moments. Putting these two factors

together, the surface contribution could at least have the same order of magnitude as the

bulk contribution. The following calculations will concentrate primarily on the surface

contribution within the electric dipole approximation.

The calculation of SSHG involves two distinct parts. The first is the

determination of the nonlinear response, that consists of finding 13(2w;0 o,co). The second

is to determine the actual microscopic fundamental and harmonic fields, given the

applied field.

The macroscopic nonlinear susceptibility is related to its microscopic counterpart

through the Lorentz local field factor for a medium of cubic symmetry.25 The

fundamental field is expressed as

E, = Erna, +-47c

3
P =

47t
+ 3 ivar-ioc, (3.3)



where N is number density. The Lorentz-Lorenz relation provides the connection

between the macroscopic dielectric constant (c) and the microscopic polarizability (a),

that is

E 1 47r
Na.=

c + 2 3

By substituting Eq.(3.4) into Eq.(3.3), the Lorentz local field factor is defined as

For the harmonic field, we have

(Na)-1 p12: E E 2,:c

where

c 2
E = ELuc

47t c,2) 47t n2w 4TC
1- E mac 1- rim 1- rni
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(3.4)

(3.5)

P1" = Nr3(2a);(o,w):E'l,E;',),, (3.6)

is the source of the medium nonlinear response at 2w. In Eq.(3.5) the local field at one

lattice site has contributions from both the linear and nonlinear dipole moments at other

sites. The interaction between nonlinear dipole moments at different lattice sites has

been ignored (Eq.(3.6)) since the nonlinearity is considered as a small perturbation. By

using the relationship in Eq.(3.4), Eq.(3.5) can be rearranged into

pail Na2"
E 26

Na2" 47c p20
e?(

E +
e23

p 2(.0
mac 47c 3 nl4rc mac1

4rc
Na.2" 1 Na2"

3 3

From this result, the macroscopic electric displacement field Da° can be expressed as

D2°
= E2cuc 4 Tcpn210) 2a) E Roc

E2wEmac
4

2'6

3

+2
4 rc n1',

(3.7)

where Prils is the effective nonlinear source term for the Maxwell's equations. Compare

Eqs.(3.1), (3.6) and (3.7), and we have

X(2)(20);(10,(0)= NP(20);(0,(0)
3 3 3

ca° +2 e" +2 ew +2
(3.8)
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3.2 Continuous Medium

With the expression of Eq.(3.7), two of the macroscopic Maxwell's equations for

the harmonic fields in the nonlinear medium are

1' a(p)V xE2 + 1-1
mac = 0, and

c

Vx11.1 alf- 20)a(e2c0E,) 4n aPnis

c at c at c at

Consider the nonmagnetic medium, i_t=1, and we have the inhomogeneous wave

equation for the field at the harmonic frequency in the nonlinear medium,

xVxE
22E20

+
e 6, -NV,2: Mae

C2 ate

3.2.1 Thin Slab Model

4n a2pnis

c2 at2
(3.9)

Bloembergen and Pershan28 were the first to derive the analytical results of

SSHG by considering a slab of nonlinear dielectric medium with boundaries at z = 0 and

z = -d, embedded between two exclusively linear dielectrics (Fig. 3.2). The field in the

nonlinear slab was taken from the solutions to Eq.(3.9). Boundary conditions were

applied to both interfaces to determine the reflected (z > 0) and transmitted (z < -d)

harmonic fields. They then took the limit of the slab thickness small compared to a

wavelength and obtained the following results:

(I) reflected and transmitted fields in s-polarization:

1E2 t2 (,) 2 WCI

C 112' cos(m + cose'

(II) reflected field in p-polarization:

E2" = i4 TcP' (
2wd cosOn, sin a + sin O. cosy

c ) n2' cos0 + cosem

(III) transmitted field in p-polarization:

(3.10)

(3.11)



=
,

1, s(
2wd c o sO sin a sin On, cosa ri2"

n2° COS 0 ± COS

The nonlinear polarization components in the equations are defined by

pnis = ypnis xpn"is sin (cosa),

(3.12)

(3.13)
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where a is the angle between the p-polarized Pni, field and the negative z-axis. The

scattering plane is the x-z plane. 8 is the angle of incidence of the fundamental field and

also the reflection angle of the harmonic field. This is because of the conservation of

tangential component of wave vector, e.g. from Eq.(3.1), e = e e = e

Also because the vacuum has no dispersion, it follows that (2w/c)sin02. = =

= 2(w/c)sin0 and that the reflection angle of the harmonic field (02ffl) equals 0. 0, is the

refraction angle at 2w, and sin() = n26)sin0,72 where n26) is the refractive index for 2w.

2w
P

lin
P

n1

2w

Z=0
x

y

z = -d as d <<X,

Fig. 3.2 A thin slab model for surface second harmonic generation.

The reflected field in the vacuum has the Cartesian coordinate components

E2,(1) eo+Erao yEr2Q),± xEr2,0,11
( cos 0) + zEr2°).lisin 0. (3.14)

Consider a diagonal tensor of Fresnel transmission coefficients for the field entering from

the vacuum into a medium with refractive index n and refraction angle 0,:

2cose
(V) )" = t 1 =

cos 0 + cose
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La) xx tfl( cosem 2 cos() cos 8,n 2 cos 0

cos() n' cos() + cos() cos()
)=

cos() + cos() ,'
)=

sin Om 2cose sin Om 2cos0
sin 0 ft' cos() + cosem sin 0 it" cos0 + cosOn,

(ttl'( ) = ).

With expressions of Eq.(3.13) and Eq.(3.14), the reflected harmonic field in Eq.(3.10)

and Eq.(3.11) becomes

= i47t (
0)61)

1 IL2' x(2' (2c0;c0,(0):[L" Ecill-°) Eoll. (3.15)
c cos°

For the electric field as a real quantity, we have

E °(t) = eE'e-" + c.c.= e(21E'l)cos(tut).

The radiation power density associated with the electromagnetic field is the time average

of the Poynting vector,

I = c <1E" (t)12>= c I E'12 1 IT COS2 (cot)dt = c I E'12,
47t it T 27t

and Eq.(3.15) can be converted into

3271 0) 2

2/20) = sec2 011e0, 1,2"1- X(2) (20);0),(0):(Le) e0_1[11° e0_]1

where ea is the polarization unit vector for incident fundamental field, and e for the

harmonic reflected field. The volume polarization (dipole moments per unit volume) is

usually written as surface polarization (dipole moments per unit area) for surface studies,

ctPnis Pnis or equivalently x(2) --> x(2). Then we reach the often quoted result of

SSHG29

327E30)2
/2(0 = sect 81[e°± 1.26) X(2) (20);(.0,(0):[L" eo_ ]lt," e°_ ]1` I. (3.16)

3.2.2 Nonlinear Polarization Sheet

Mizrahi and Sipe3° took a different phenomenological approach. They treated

the region that contributes to SSHG as an induced nonlinear polarization sheet sitting in
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vacuum at z = 0+ (Fig. 3.3). The nonlinear polarization sheet is induced by the

fundamental field in the medium (z = 0-) with a surface nonlinear susceptibility tensor

x(2)(2w;o),co). The electromagnetic field generated by the induced dipole sheet, which is

treated as a macroscopic source term, is obtained from a Green-function formalism.31

The reflected SSHG has two contributions, the directly generated upward-propagating

wave and the downward-propagating wave reflected upward by the vacuum/medium

interface at z = 0 (Fig. 3.3). The transmitted SSHG is just the downward-propagating

wave picking up the Fresnel transmission coefficient at the interface. Their result in s-

polarization is identical to that of 4(3.10). Their p-polarization results are:

= (
, 20) cos 0. sin a + (n2')2 sin 0. cccos

tits for reflection, and
n2" cos0+ cos0.

2w) cosesin cc /12' sin O. cosa

c n'' cos() + cos0
Eta') = i4nPn Is for transmission. When

compared to Eqs.(3.11), (3.12) and (3.13), it is the contribution from z-component of

nonlinear polarization, the -Pn'isi cosa term, that differs by a factor (0))2. This

discrepancy is the result of bringing the nonlinear polarization source outside the linearly

responding medium. Recall that the tangential component of the electric field and the

normal component of the displacement field (D = n2E) are continuous across the surface.

The model considered by Mizrahi and Sipe is reasonable only when the nonlinearity

arises mainly from molecules adsorbed on a surface and the local field factor of the

molecules is negligible. The latter point may be justifiable if the surface coverage is so

low that the effective dielectric constant of the adsorbing layer is very close to one.
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PnLs

2w 2 co, u.)

2w

z = 0+
z -0

Fig. 3.3 A nonlinear polarization sheet at z = 0+ contributes to SSHG.

3.2.3 Nonlinear Dipole Sheet--A Semi-microscopic Model

We have taken another phenomenological approach to obtain the SSHG field by

integrating the radiation field from a continuous sheet of nonlinear dipole moments.

Each induced microscopic nonlinear dipole moment constituting the nonlinear dipole

sheet inside the medium at z = 0- (Fig. 3.4) is

(r) = P(20);(1),(0):1Elocea,,,,j[Eloced, ]8(z (3.17)

2ikx

where p is the unit vector for the nonlinear dipole moment, r = (x, y, z), and the incident

field is in the x-z plane so that k = (kx, 0, k,) with kx= (co/c)sin8 and k. = -(co/c)cose.

The electric local field in Eq.(3.17) can be the Lorentz local field or the numerical result

of our complete microscopic treatment in Chapter II. The electric dipole field of this

nonlinear dipole moment in a continuous medium of refractive index n at field frequency

2w isI3

1
eiKIR-r1Edip (R, r) = V

pn1 (r) I R rl'

2 eiKIR-r1K iK IR rl iKIR-r1

IR rl
(n x pn, ) x n + 3n(n Fon,

n' I R r13
)e

where K = (20)1c)tz. n = (R r)/IR r1= R'/R' is the unit radial vector with R' = (Rx-x,

Ry-y, Rz-z). Since the field, either in reflection or the transmission, is observed far away
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from the source point (z = 0-), we could ignore terms of R'-2 and R' -', and the remaining

is the typical radiation field.

N
z 0

- 0-

Fig. 3.4 A nonlinear dipole sheet underneath the surface radiates at 2w.

With N being the surface number density, the total radiation field from the

nonlinear dipole sheet is

E(R) = N iffE (R,r)cLi-dydz ,

20)= Npni(), eziwox sin Bei(2.() /c)nif 1 (n x p) x ndxdy.
Rt

(3.18)

The double integrals in Eq.(3.18) can be solved by using the stationary phase

approximation,14

2766 fxo,vo )

ifg(x,y)eikf(--)
e

cixdy ,,)I ccp - yi g(xo,y (3.19)

The approximation can be viewed as having the main contribution to the integral coming

from some critical points (saddle and end points) if the amplitude g(x,y) changes more

slowly than the phase term eikflx4) along the integration path. In our case, the slope of the

amplitude is lar while the slope of phase term is in the order of k = 2m/X. As long as

we detect the field several wavelengths away, the condition 1/k2 << 27t/X is satisfied. In

Eq.(3.19), the critical point (xo,y) satisfies the conditions (-sr° ) = (-1-°) = 0.
ax ay



a,
The other parameters are: a. = ( ),_

ax

+1 for aP > 72 and a > 0,
and c = 1 for ar3 > y2 and a < 0,

i for ap < y2.

a2

y

a2f .

= (
al-ay

From Eq.(3.18), since f(x, y) = n[(Ry-x)2 + (Ry-y)2 + ki1r2 xsinO, we find

af
a 2R'

(-2)(Ry y) y0 = Ry, and (af
ax

) =
R'y

11

(Ry x)+ sin°
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IR !sin 0
it(Rx x0) = 11(Ry x + R 2 sin 0 R' oy= x = =IR Itan0,

sin 2 0

IR I

R' 0 = R' lya,y, =I R7.1 11
sin 2 0

=
n` sin 2 0

+ 1
cos0,

.

Snell's law, sin 0 = n sin Om 172 sin'` 0 n2 cost Am , has been applied. We also have

(n2 sin 2 0)3/2 n cos' 0

IR I

ncosOma
n2 IR I IR I

= = , P -= , y = 0, and a = 1. Eq.(3.18) becomes

Npn, (20) / c)2 2/cilR. ,(2./c)f(x. ,0) ,E(R) e gkxo , y )
ncos2 Om (2w /c)

Npn, (2w / c)2IciR'0
ei(2w/c)(11t,

kin' sin 2 + sin 0) 1--(no x p) x n0 ,ncosem R'

Npril(2a) I c)27ci .R
e [p (no p)no ],

ncosOm
(3.20)

where no = (Rioxgro, 0, R, /R') = (sine., 0, ±cosOm) and, incidentally, also IQ = K(sin0,,,

0, ±cos0m). The plus sign and the minus sign refer to upward (R,> 0-) and downward

(R. < 0-) propagation, respectively. The "reflected" harmonic field in vacuum is the

transmitted collective dipole field in Eq.(3.20) through the medium/vacuum interface

(Fig. 3.4). The "transmitted" harmonic field in the medium has contributions from the

downward-propagating dipole field and the reflection at the interface of the upward-

propagating dipole field. Fresnel transmission and reflection coefficients for waves

traveling from the medium of index n to the vacuum are:
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t n =

t II =
ncose +cosen,

2 n cos 0

cos 0 + n cos 0 m

ncos 0,

n COS 0 COS 0
1;1,, =

II

rno

cos 0 + n cos On,

cosem ncose
ncos0 + cos On,

For s-polarized dipole moments, p = y and ny = 0, the field amplitude of

Np;(2ai /c)27ti
Eq.(3.20) is Et1 = with el = y. We then have

n cos O.

1 / Npn (2o) c)47ti
E = E+ tno

cos0+ncosem

j_ Np 1(2co / c)47ti
E+rno = (3.21)

cos0+ncose

and also

For p-polarized dipole moments, p = xsina zcosa (see Eq.(3.13)), then

p (no p)n = xsina zcosa (sin°. sina T- cos Om cos a)(x sin 0, ± z cos 0, )

= (xcos0,, T- zsin )cos0, sin a (-Tx cos0, sine, +zsin2 0,)cosa.

Since the p-polarization vector for the electric field propagating in the medium is

= (T-x cos 6,, + z sine, ), we have as the field amplitude of Eq.(3.20)

E, = Npni (2(.0 / c)27ri
[p- (no p)no] e,II

ncos0,,

nNplli(ao / c)2ni(+cos0,
sinasine, cosa).

ncosI9,,

After applying the Fresnel coefficients, the harmonic field reflected from the medium is

2/v( / c)4nicos
sin a + sin 0, cosaErm EH ti

n0
pu

al (3.22)
ncos0 +cos°.

and the transmitted harmonic field in the medium is

cos() sin a sin 0 cos a 1 n
. (3.23)EtH E_n + E+11 r nl'o = Npfill' (20) /

ncos0+cosOni

The results in Eqs.(3.21)-(3.23) have the same angular dependence as those in

Eqs.(3.10)-(3.12). But the over all magnitude is off by a Lorentz local field factor
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((Ea' + 2)/3) due to the difference between and Npni (see Eq.(3.7)). This error

originates in the negligence of the dipolar interaction in the linear medium responding to

the dipole field of the nonlinear dipole moments. When a macroscopic field is to be

related to the corresponding microscopic field, it requires a self-consistent approach

(e.g. Eqs.(3.3) and (3.5)). Unfortunately, this is exactly what we did not do in

Eq.(3.18).

3.3 Microscopic Calculations of SSHG

Several research groups32-35 have pursued the complete microscopic treatment of

SSHG. In a discrete dipole approach with the electric dipole field calculated in the

Lorentz gauge, Wijers et a/.32 calculated the reflected SSHG from a Si(110) thin slab

(number of layers: 32 to 79) as a function of the angle of incidence. They found that

SSHG and SIOA, surface induced optical anisotropy, turned out to be closely related

phenomena. However the p-polarized SSHG, unlike SIOA, showed a high sensitivity

for the shape of the surface layer polarizability matrix. Munn et al.33 developed a

microscopic theory of nonlinear optical response in an assembly of ordered molecular

layers. Their local field calculation is formulated in the Coulomb gauge so that the

knowledge of the macroscopic field is needed. They also calculated the nonlinear

susceptibility x(2) of model Langmuir-Blodgett films34 by treating the molecules as a

string of beads. Their results showed that the tilt of the string away from the normal to

the film had a major effect on the pattern of components of x(2) tensor. The SSHG of

Langmuir-Blodgett monolayer was also the subject of a study by Cnossen et al.35 They

attributed the deviation from a linear dependence of SSHG with increasing surface

density in their systems to the local field effects. In the calculation of the local field for a

partially ramdon oriented system, they used an iterative procedure combined with a

Monte Carlo technique. For a crystallike model, the result of a lattice summation of a
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monolayer was adopted to give an analytical expression. Their results showed that both

models manifested qualitatively the same nonlinear behavior of SSHG versus surface

density, despite the fact that the calculated local fields for the two models were different.

3.3.1 The Self-consistent Calculation and Results

Following the microscopic calculation of the linear response at the fundamental

frequency in previous chapter, we can simply repeat the whole process at the harmonic

frequency with the external field replaced by the dipole fields from the nonlinear dipole

moments. It is assumed that only the topmost surface layer has a nonzero microscopic

second order susceptibility tensor 13(2com,0)) because of the broken symmetry in the

direction of the surface normal. A nonlinear dipole moment for SSHG subjected to the

local field E,c(co, (z = 0)), which deviates from the bulk value, can be evaluated through

pni(2()= 0(20.);(0,0)):[e(0)) p,=0(co)110(-01(0))p,,0(0))], (3.24)

where pi4)(0)) is the numerical result from Eqs.(2.67) and a0(w) the polarizability tensor

of the topmost surface layer. pril(2(o) then becomes the source ofan applied harmonic

field. With a given ab(2co), Wh(2w) and uh(2(.0) can be found for the bulk response as in

the linear calculation. In Eq.(2.67a), the external plane wave at the surface layer i,

E oe'"' , is replaced by the electric dipole field. Fi0(2(o)pn,(20)), generated by the

nonlinear dipole moments at i = 0. In Eqs.(2.67b) and (2.67c), the external field

amplitude, E0, in the bulk region is replaced by the downward long range dipole field

B00(20))1),,,(2(o). Only the contribution of p = q = 0 term is needed if the bulk region is

at least five layers away from the source dipole layer (L 5) in the long wavelength

applications (see the numerical results in Table 2.4). With ai being the polarizability

tensor for the surface layers at the harmonic frequency, we can again obtain the dipole

moments p,(20)) and vh(2W) self-consistently from the simultaneous linear equations:



L 1 iK
e PqDa-'6 F.]p. uh (2w)- pn,(2co), (3.25a)

1 =0 12=0 p,q

u,, B uh tKovaZL)tio Booe Pi + Vh i(tc 1,1-1-41h)a , e
=0 )1=0 e

(20.)), (3.25b)

1u .Booe`K"`' pi +Iv u Boo uh
h I(K = il B pril (2w). (3.25c)

i=0 h=0 e

Then the reflected harmonic field off the surface is

Er (2w) = Doo P, (2w) + Doo exP(ilcooz, ) p, (2w)
i=0

h D 00 u h
exp{hcoo (zL + a)]

h=0 exp[ i (iv h x )ai . (3.26)
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The first term in the last equation is the upward dipole field of the nonlinear dipole

moments. The next two terms are contributions of the surface layers and the bulk linear

responses to the downward dipole field of the nonlinear dipole moments.

Results of Eq.(3.26) are compared with the macroscopic results of Eq.(3.15) for

a system of equivalent refractive indices re' = 2.5 and 0° = 3.0, with both the incident

and outgoing fields having p-polarization. In Fig. 3.5, [3.:. = 50x10-30esu is the only

nonzero tensor element for the calculation. The number is typical for dielectric and

molecular materials with a large nonlinearity.36 In some cases, the surface has a lower

symmetry, like C2, than the isotropic bulk. There are seven nonzero elements in that

surface susceptibility tensor. In Fig. 3.6, they are 13
. = 13. = -50x10-3° esu, and 13,,,

= yzy = f3zxx = 13zyy = 13 = 50x10-"esu for the calculation. Our numerical results of

the SSHG calculations show a similar angular dependence compared to the analytial

macroscopic results, despite the discrepancy in the magnitude which is inherited from the

difference in the local fundamental field. This discrepancy demonstrates the importance

of the local field analysis in interpreting the microscopic nonlinear susceptibility from the

experimental measurement or vice versa.
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Fig. 3.5 The reflected surface harmonic field (pp) with a nonzero L. pp : both
the incident and outgoing fields are in p-polarization. The fundamental field amplitude is
1E01= 1. Eq.(3.15) is used to calculate the macroscopic result (the square) and Eq.(3.26)
for the line.

1.3

square: macroscopic model

line: this work

45 90
angle of incidence

Fig. 3.6 The reflected surface harmonic field (pp) with seven nonzero tensor
elements (C2). All the other calculation conditions are the same as that of Fig. 3.5.
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Since the tangential components of the surface local field deviate from the bulk

result more than the normal component does (see Fig. 2.8 and Fig. 2.9), the nonlinear

dipole moment of Eq.(3.24) should be different from the effective nonlinear polarization

Pffis of Eqs.(3.1 and 3.8) not only in the magnitude but also in the orientation. The latter

is the angle a in Eqs.(3.11 to 3.13), which varies with the incident angle 0. Although a

behaves differently in pni and Pnis against 0, the 0 dependences of SSHG, as shown in

Fig. 3.5 and Fig. 3.6, are still quite similar between the two calculations. In some cases

(combinations of nonzero tensor elements), the angles of the maximum SSHG in the

two calculations can differ by 1°, but the overall angular dependences are dominated by

the Fresnel coefficients at the fundamental and harmonic frequencies. The Fresnel

coefficients are the bulk properties and have no difference in the two models.

3.4 Conclusion

The nonlinear dipole moments at the harmonic frequency arise at the surface of a

centrosymmetric medium because of the breaking of symmetry. The surface local

fundamental field and the nonlinear susceptibility tensor determine the nonlinear dipole

moments. Since the cross section of the nonlinear process is small in general, the

interaction between the nonlinear dipole moments is ignored in our treatment. That is,

no energy loss in the fundamental field has been considered when the nonlinear dipole

moments are created. Meanwhile, the dipolar interaction between the linear dipole

moments at the harmonic frequency in the medium requires a self-consistent treatment in

order to obtain the correct medium response to the electric dipole fields of the nonlinear

dipole moments. Calculations of SSHG of nonlinear dipole moments generated by the

surface local fundamental field and by the bulk local fundamental field (macroscopic

model) only differ in the magnitude of SSHG. The angular dependency of SSHG is

dominated by the Fresnel's law of reflection and transmission.
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For a system consisting of multiple layers of different linear and nonlinear

polarizability tensors, the macroscopic model becomes very difficult by solving the

multi-boundary problem. On the other hand, the microscopic calculation is much

simpler to obtain a numerical result for this complicate system. The self-consistent

solution will follow the additions of the induced nonlinear dipole moments (similar to

that of Eq.(3.24)) of various layers to the right-hand side of Eqs.(3.25), as the source

terms, with the correct dipolar interaction operators.
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CHAPTER IV

EXPERIMENTS WITH SURFACE SECOND HARMONIC GENERATION

4.1 Apparatus

4.1.1 Laser and Optics

Since the output of second harmonic generation is quadratic in the power density

of incident radiation, intense laser pulses are required to generate measurable signals.

Experiments were performed with a Nd:YAG (neodymium +3 ions doped in yttrium

aluminum garnet) laser system (Quantronix model 116). The continuous wave (CW)

power in the TEM°, mode was 8 Watts, at 1064 nanometers (nm). When Q-switching

the average power was 1 Watt at 500 Hz repetition rate. Another intracavity modulator

(mode locker), also driven by 5-10 Watts of RF at 50 MHz, generates trains of

approximately 30 pulses spaced by 10 nanoseconds (ns) and having a duration of 100 ps

(picoseconds). While the shape of the Q-switched pulse depends on the power of RF

applied to the modulator, which is just a fused silica wedge, the typical pulse envelope is

about 400 ns. More than 95% of intensity of the pulse train is contained in 30 mode-

locked pulses, and this is the factor we use to estimate the pulse average power density.

The peak ML-pulse is about 1/20 of the fluence of the entire Q-switched pulse train.

The linearly polarized output radiation is produced by a thin optic flat positioned at

Brewster's angle inside the laser cavity.

The IR radiation is frequency doubled to obtain green light at 532 nm. Two

frequency doubling crystals have been used, KD *P (I<D2PO4 Potassium Dideuterium

Phosphate) and CD*A (CsD2AsO4 Cesium Dideuterium Arsenate), with conversion
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Fig. 4.1 Diagram of the experimental apparatus.
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efficiencies ranging from 25% to 35%. Both crystals were arranged for type I phase

matching so that the polarizations of IR and green were perpendicular to each other.

The two beams were separated by a calcite polarizer and a harmonic beam splitter.

Phase matching was achieved at room temperature by angle tuning, resulting in beam

"walk-off',37 for the KD *P crystal. We were able to damage the KD *P crystal with a

power density greater than 100 GW/cm2 of IR. The CD*A crystal, on the other hand,

was temperature-tuned at around 106°C to achieve phase matching at 90 degrees to the

optic axis. This 300 to 400 mW of green was the fundamental field for our surface

second harmonic generation experiments.

Two fresnel rhombs were set up to intercept the green before it was sent to

bounce off the sample surface. Each fresnel rhomb served as a quarter wave plate. The

first one converted the linearly polarized light into circularly polarized and the second

converted it back into linearly polarized but 90° to its original polarization. This allowed

us to rotate input polarizations, either p or s, conveniently. The angle of incidence on

the sample was 45 °. Since the second harmonic generation is a coherent process, the

signal emerges as a beam from the sample instead of scattered photons with a wide solid

angle. Lenses with long focal lengths, 35 to 50 cm, were used to focus the green onto

the sample. This was done to avoid signals arising from the windows of the vacuum

chamber and also to allow the detector to be set farther away from the sample so that

photons of incoherent scattering processes, e.g. two photon induced fluorescence, did

not interfere with detecting the UV SHG photons.

The SSHG signal (UV at 266 nm) and the reflected green propagated collinearly

and were separated by a dielectric mirror, which reflected 90% of 266 nm at 45° angle of

incidence while transmitting the most of the 532 nm. The linear reflectance of the

sample was constantly monitored through this transmitted green beam by a photodiode.

The UV beam was then directed through several pieces of color filter glass
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(Schott UG-5, 45% transmission at 266 nm) to remove the residual green photons. A

calcite polarizer (less than 40% transmission at 266 nm) was added in the beam path to

analyze the s and p components of the UV signal when needed. A fused silica lens (50c/c

transmission at 266 nm) focused the UV photons onto a bialkali (K,CsSb) cathode

photomultiplier tube (PMT, Hamamatsu R372, 20% quantum efficiency at 266 nm,

2.0x107 gain). The negative current of the PMT was integrated over each Q-switched

pulse train. After further amplification, the signal of each pulse train was passed through

an analog-to-digital converter (ADC, 12 bits, 0-10 volts, 2.5 mV per count) and

recorded and normalized in a computer. The normalization was done by using a UV

reference beam generated from a KD*P crystal.

4.1.2 Signals

Consider a green beam with an average power of 50 mW focused into a spot

with a diameter of 100 p.m. The photon energy is hcA = 3.7x10-19 joules/photon, and

we have:

energy per Q-switched pulse = 50x10-3 joules/500 = 10-4 joules;

photons per Q-switched pulse = 2.7x10'4;

energy per mode locked pulse = 10-4 joules/30 = 3.3x10-6 joules;

photons per mode locked pulse = 9.0x1012.

With a pulse duration of 100 ps and a sampling area of 1112/cose = 1.1x10-4cm2, the

average applied single pulse power density is 300 MW/cm2 or 3x1015 ergs/(seccm2). If

we ignore the local field factors and the angle dependent transmission coefficients (n(w)

n(2w) = 1), the average power density of UV from a sample of 13 = 0.5x10-30 esu,

which is a well-known value for urea ((N112)2C0), and number density N = 1.6x10'5 cm-2

327t3W2 2
is '20) =-- I N131 /(.i) = 2.4x103ergs/(sec.cm2). After multiplying the pulse

c-
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duration and the sampling area, the average SSHG signal we expect to observe is:

energy per mode locked pulse = 2.7x I0-" ergs;

photons per mode locked pulse = 3.5;

photons per Q-switched pulse = 1.1x102.

The integrated signal of each shot (a Q-switched pulse) is estimated as following: 100

(photons) ÷ 200 (loss through window, beam splitter, color filters, lens etc. before

reaching PMT) x 20% (eiphoton) x 2x107 (gain of PMT) x 1.6x10-'9 (coul/e-) ÷ 10-9

(farad, capacitance of integrator) x 60 (electronic amplification) = 19 mV. The signal

levels we had encountered were usually 10 to 100 times bigger than this.

4.1.3 Beam Size

As we have used in the previous estimation, the second order nonlinear signal is

inversely proportional to the sampling area. The focused incident beam size becomes a

handy adjustable parameter to maximize the harmonic signal before damaging the

sample. In order to estimate the incident power density, a razor blade was set up on a

translation stage, traveling across the beam, to measure the beam diameter. For /0 the

power density at the center of the Gaussian beam profile and r0 the radius (1/e), the total

power is obtained by the integration over the two dimensional Gaussian distribution,

Q

1-

0
I

('
e-r2 lr° 2 Icrdr = n/-024.

When the razor blade is moved toward the center of the beam, the residual power

measured behind the blade is

Q (s) = f I oe' r° 2,nrdr + f Ioe -r" 17'02 (27c 0)rdr ,

where s is the distance between the blade and center of the beam. 0 is 2cos-i(s/r) and, as

s approaches zero, Q'(0) = Q/2. These two integals in the last expression can be

rearranged into



2

Q' (s) =
0

I ,,e-r
2

11." 27trdr 1,,e-r2 Ordr = Q , t 2rcos (s / r)dr.

We have the residual power fraction

r
f (s) = Q' (s) =1 2.1,

r cos 1 (s / r)dr
7cl.(12.
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or f (n) = 1 (2 / n).1. ex2 cos-1 (n x)dx , where s = nro and r = xro. Numerical

results of this fraction function have f(1) = 0.921351,f(0.5) = 0.760251,f(0.2) =

0.611354,f(0.1) = 0.556234,f(0.01) = 0.505647. According to this analysis, the beam

diameter (1/e) can be determined by the displacement of the blade between 92% and 89c

of the residual power measured behind it.

The Gaussian beam waist of a tightly focused spot Ivo, with lens of focal length f,

can also be estimated as wo =
Xf

, where ws is the beam diameter at the lens and X the
NW,

wavelength.

4.1.4 Photon Detection

Using the parameters listed in section 4.1.2, we can estimate the signal level of

one single photoelectron event in our detecting system as 192 mV, which will register 77

counts from the ADC. Fig. 4.2 to Fig. 4.5 are the histograms of different signal levels of

photons sent into the PMT. Each one was the accumulation of 200,000 shots with a bin

size of one count. Fig. 4.2 had a signal level less than 250 mV, which was monitored by

a voltmeter in the input of ADC, and became an ideal example of single-photoelectron

distribution. The giant spike at 71 of 50,323 peak counts and about 8 ADC-counts wide

was the result of PMT dark current and electronic offset. This was related to a 160-170

mV of background noise when there was no light input to the PMT. The noise arising

from PMT dark current had been reduced tremendously by using a gated integrator.
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Fig. 4.2 Single-photoelectron distribution of 200,000 events (250 mV) collected
by a PMT. The signal level was about 80 mV above the background.

0 51_2
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Fig. 4.3 Histogram of 200,000 events (400 mV). The signal level was about
250 mV above the background. The two-photoelectron distribution also became
probable in the statistics.
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Fig. 4.4 Histogram of 200,000 events (400 mV). This PMT had a higher
background (position of the base line spike) and a lower gain (position of the
distribution of each photoelectons event), and was less noisy (width of the distribution).

0 51 2
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1024

Fig. 4.5 Histogram of 200,000 events (600 mV). The signal level was about
400 mV above the background.
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The little feature to the right, 72 ADC-counts away, demonstrated the Poisson

distribution, although not exactly,38 of the secondary electron emissions from the

successive dynodes in the PMT. The signal level in Fig. 4.3 was 350-500 mV. A small

shoulder at 226 ADC-counts, about 83 away from the first bump, represented the

increasing probability of a two-photoelectron response. Another PMT, which had higher

dark current and slightly lower gain, was tested and the results are shown in Fig. 4.4

(350-500 mV) and Fig. 4.5 (500-700 mV). The base line moved up to 95 and the single-

photoelectron response was about 35 ADC-counts. As the signal level increases, the

distribution becomes more and more symmetric (Fig. 4.5). The width of the distributions

in the histograms characterized the noisy nature of the detected signal. An averaging

process was required to increase the signal-to-noise ratio. Typically, 500-4,000 shots

were accumulated to obtain an averaged data point.

4.2 Rutile

Titanium dioxide exists as rutile, anatase and brookite, with rutile being the

thermodynamically stable form at standard conditions. The unique photodynamics and

its applications to protective surface coatings, photocatalysis etc., have made this

transition metal oxide an extensively studied material. Rutile TiO2 has a band gap of

3.05 eV (407 nm). It is yellowish in color and transparent in the visible range. The bulk

symmetry of rutile is D41,, which includes inversion symmetry. Because there is no bulk

signal in the electric dipole approximation, rutile is an ideal candidate for surface second

harmonic generation studies.

A rutile prism was set in a stainless steel chamber with a base pressure of less

than 10-8 ton when pumped by an ion pump. The pressure was not able to go below this

point because there were two viton o-rings to seal two high optical quality fused silica

windows. These windows had to allow the fundamental beam to pass into the vacuum
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chamber while preserving the beam quality, and the UV to pass out of the chamber with

low loss. We avoided the use of commercial UHV (ultra high vacuum) windows

because the metal/glass seal distorted the optical quality of the window. The crystal

surface we studied was the (001) surface subjected to a fine optical polish. The first

experiment we tried on this rutile prism was to determine how much laser intensity we

could apply to generate a large enough SSHG signal without damaging the surface. The

photo-ablation threshold was estimated to be about 490 MW/cm2 in vacuum

environment and about 650 MVV/cm2 when 1 ton of oxygen was present, using the 100

ps laser pulses.

The SH signal is supposed to vary with the incident power quadratically. In

order to verify this relationship four neutral density filters (82%, 65%, 42%, and 10%

transmission) were used to attenuate the incident beam. The reference beam for signal

normalization was not attenuated. The resulting power dependency, expressed as signal

versus Ion was n = 1.9 ± 0.2.

4.2.1 Surface Symmetry and SSHG

There are 18, out of 27 total, possible independent elements of the surface

susceptibility tensor x(2)(20);(0,(0) because of the degeneracy of the two input photons.

However, the actual number of independent nonvanishing elements is dependent on the

symmetry of the surface. The polarization dependent measurements of SSHG are thus a

way to probe the symmetry information about the surface. We refer to the total SH

signals arising from p-polarized and s-polarized fundamental beams as p-total and s-total,

and their polarization components as pp, ps and sp, ss, respectively, where the first letter

refers to the fundamental and the second to the harmonic. Ideally, p-total should be the

sum of pp and ps, multiplied by the attenuation factor of the analyzing polarizer. And, s-

total signal should be the sum of sp and ss multiplied by the attenuation factor of the
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analyzing polarizer. In Table 4.1, the independent nonvanishing elements of x121(2com,(0)

for several surface symmetry classes and their contributions to the polarization

dependent SH signals are listed. The listed tensor elements are similar, but with a few

corrections, to those given in reference.27

Either cv or C2, are the possible surface symmetries of a bulk with D41, symmetry.

Our sample was a mechanically polished surface, not a single crystal surface, and it was

supposed to be random and rough on the microscopic scale. The polarization dependent

SH signals, in arbitrary units, are shown in Fig. 4.6, for a vacuum environment, and in

Fig. 4.7, for an oxygen environment. A Schott KG-4 color glass filter, which transmits

visible and rejects UV, was used to establish the base line of the signal level from the

PMT. Both ps and ss components were not zero, which could be due to the contribution

from the electric quadrupole or magnetic dipole transition moments in the bulk xc-'). In

order to obtain more information about the surface symmetry, SH signals will need to be

taken as the sample is rotated about the surface normal. Experiments involving circularly

polarized light can also help to resolve the nonvanishing tensor elements.

4.2.2 Observation of Photodynamics of Oxygen on Rutile Surface

When comparing the signal levels in Fig. 4.6 and Fig. 4.7, the s-total was higher

in the oxygen environment while the p-total was slightly smaller in oxygen than in the

vacuum. The p-total signal rose from a lower level as the laser fluence upon the sample

surface in the vacuum increased. The lower signal was recovered by keeping the sample

in the vacuum (0, partial pressure 10-1° torr) for several days or flushing the chamber

with a few ton of oxygen. Oxygen gas was introduced into the chamber through a long

stainless steel coil which was cooled to 77 K to remove water vapor. In Fig. 4.8, a high

SH signal in the beginning was the result of previous exposure of the sample to the green
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Table 4.1: Nonvanishing elements of x(2)(2co:co,co) and their contributions to the
polarization dependent SH signals for surfaces of various symmetry classes.
The first rank is that of the output photon. The surface is in the x-y plane
and x-z is the scattering plane.

Symmetry classes SH components Nonvanishing tensor elements

C, or C pp: a, h, c a=zzz, h=zxx=zyy, c=xxz=xzx=yzy=.1yz

mirror planes ps: none

in x-z and y-z sp: b

ss: none

C4 or C, pp: a, b, c a==, b=zxx=zyy, c =xxz= xzx= yzy=yy

no mirror ps: d d=xyz=rzy=--yxz=-yzx

sp: h

ss: none

C, pp: a, h, c a=zzz, h=z,xx=zyy, c=xxz=xzx=yzy=yyz

mirror plane ps: d d=yyy=-yxx=-xxy=-,xyx

in y-z sp: b

ss: d

C, pp: a, h, c, e a=zzz, b=zxx=zyy, c=xxz=xzx=yzy=yyz

no mirror ps: d, f d=yyy=-yxx=-xxy=-xyx, e=xxx=--x)y=-yyx=-y.,ty

sp: h, e f=xyz=x:y= -yxz=-yzx

ss: d

C, pp: a, h, d a=zzz, b=zxx, c=zyy, d=xxz=xzx, e=yzy=yyz

mirror planes ps: none

in x-z and y-z sp: c

ss: none

C, pp: a, 1), d a=zzz, b=zxx, c=zyy, d=xxz=xzx, yzy=yyz

no mirror ps: e zxv =zvx, e=yxz=yzx, xyz=xzy

sp: c

ss: none

C, pp: a, h, d a=zzz, b=zxx, c=zyy, d=xxz=xzx, yzy=yyz

mirror plane ps: f, g zzy=zyz, xx-y=xyx, e=yyy, f=yxx, g=yzz

in y-z sp: c

ss: e

pp: a, b, d, e, g, h a=zzz, b=zxx, c=zyy, d=xxz=xzx, yzy=yyz

mirror plane ps: none e=xxx, f=xyy, g=xzz, h=zzx=zxz, yyx=yxy

in x-z sp: c, f

ss: none
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Fig. 4.6 Polarization components of the SH signal of rutile in vacuum. KG-4
color glass filter was to block UV and establish the base line of the signal level.
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Fig. 4.7 Polarization components of the SH signal of rutile in an oxygen
environment.
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for a very long period of time. The signal dropped promptly upon the introduction of

oxygen. Following the evacuation of oxygen, the p-total signal increased slowly. The

signal to noise ratio was higher in the second part of the data set only because 8,000

shots were averaged per data point while 4,000 shots were used for the first part. The

reflectivity of the sample remained constant through the experimental period regardless

of the conditions. This would rule out the possibility that heating of bulk rutile

contributed to the changes in SSHG.

We also have concluded that the changes of SH signal in the vacuum

environment were photo-initiated while the changes observed in the oxygen environment

were not caused by light. The results shown in Fig. 4.9 support these notions. After

introducing oxygen into the vacuum chamber, the green laser probed the sample surface

for only several seconds or a few minutes. The upper curve showed the decreasing p-

total and the lower curve the rising s-total. When the oxygen was pumped out of the

chamber, the s-total decreased only during the period when the laser beam was applied.

To confirm that oxygen was the only cause of the changes on the rutile surface,

nitrogen gas was introduced into the chamber. When flowing nitrogen into the chamber

from a commercial cylinder, in addition to the stainless steel coil in a liquid nitrogen cold

trap (to remove water), a reduced copper gas purifier was inserted before the trap to

remove oxygen. The gas purifier consisted of a 4-meters long 1/4-inch copper tubing.

When heated up to 250°C, it could remove the oxygen contamination from the nitrogen

flow as copper(H) oxide (CuO). To prepare the coil for another experiment hydrogen

gas reduced CuO formed in the inner surface of the tubing back to copper at 250°C.

Any hydrogen in the nitrogen stream was also removed by reaction with CuO to form

H2O and subsequent trapping of water in the liquid nitrogen trap. It appeared that

nitrogen has no effect on the SSHG signal.
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Fig. 4.8 SH signal (p-total) of rutile responded to the presence of oxygen while
the reflectance remained unchanged.
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Fig. 4.9 The changes in the SH signal of rutile as the environment changed. The
changes in the oxygen environment were light-independent. It happened as soon as
oxygen was admitted into the chamber. The changes in the vacuum, on the other hand,
were photo-initiated. When the light was blocked, the signal level remained the same.
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These results could be interpreted as adsorption of 0, onto Ti3+ surface defect

sites to create Ti4+:02- species and the photo-desorption of 0, from these sites. Gopel et

a1.39 reported that oxygen vacancies were produced on the TiO, (110) surface after the

sample was heated up to 600°C in vacuum and that 0, molecules interacted with the

vacancies to produce chemisorbed 0,- species. Yanagisawa and Ota4() studied the

photodesorption of chemisorbed 02- from powder TiO, surfaces and found that by UV

illumination with an energy above 3.0 eV photo-stimulated-desorption of 0, occurs at

room temperature. In a continuation of our study, Jang used UV 266 nm (4.7 eV) as the

excitation energy source and observed the same magnitude of changes in the SH signals

with a fluence of UV 104 times less than that of the green.41 It is still not clear whether

the desorption of 02- is caused by one photon absorption of 02- itself at 266 nm, or by

the electron-hole pair generation of rutile in the subsurface region upon above band gap

irradiation as the photo-generated holes migrate to the surface and recombine with the

chemisorbed 02- to form physisorbed 0, which desorbs thermally at room temperature.

The second model was proposed by Yanagisawa and Ota.4°

4.2.3 Photo-desorption of Oxygen by Green Excitation

The surface adsorption of 02 and the consequent oxidation of Ti'+ is a reasonable

explanation for the light-independent variation of SH signals in the oxygen environment.

Jang also found that the oxidation rate (by monitoring the SH signal) was proportional to

the collision rate of 02 on the photoreduced rutile surface to the power of approximately

0.2. However, the desorption of 0,- with green 532 nm excitation is quite puzzling.

The photon energy of green light is below the rutile band gap, and the 02- molecule does

not absorb it either. Two possible mechanisms were rejected based upon the following

estimations.



84

(1) Two photon absorption by either 0,- or rutile:

Take a typical two photon absorption cross section 6 = 10 -51 cm4 sec and 50 mW

of green focused down to a spot of 100 p.m in diameter, which provides

1 dN1.3x1021photons/(cm2 isec). The rate constant of this process s
N dt

=csIo,2 = 1.7x10-9 sec-I, and this means that it will take more than 15 years to

ionize a monolayer of 02-.

(2) One photon excitation with UV from SSHG of rutile:

We have estimated the typical SH conversion efficiency in our experiment to be

10-" (section 4.1.2), which fell well too short of the observed 10-4 ratio, when

directly using UV as excitation, as reported by Jang (section 4.2.2).

Assume that the rutile sample has a surface density N4 (= 1015 cm-2) for Ti4+ and

N3 (= 1 013 cm-2) for the Ti3+ defects. If the photoreduction process is dependent upon

to the n-th power, then the reduced defect density is Nre = N3 (1-e-'1r) and the oxidized

defect density is Nox= N3 elt, with the rate constant 11 oc iwn. The normalized SH signal

should be

(4.1)

where f34, f3 and Pox are the microscopic second order susceptibilities. In Fig. 4.10 to

Fig. 4.14, Eq.(4.1) was fitted into five data sets with average green power between 56

and 24 mW. Given the noise level in the data, the resulting rate constants, about

(4±1)x10-4 sec-I, were not sensitive to the input green power. For all five data sets with

s-total signals, the chamber was flushed with oxygen, up to a few ton, to fully oxidize

the sample and then pumped down to 10-6 ton total pressure before the green was

allowed to hit the sample. Beside the long time decay constant 11 = (4±1)x10-4 sec-I,

there was a quick drop in the first few minutes after the laser struck. The rate constants

were an order of magnitude greater than the long time ones, but it was also difficult to

tell whether there was a power dependence in these short decay constants or not.
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Fig. 4.10 Photoreduction rate of the rutile surface in vacuum at 56 mW of laser
power. The curves were simulations of Eq.(4.1).
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Fig. 4.11 Photoreduction rate of the rutile surface in vacuum at 48 mW of laser
power. ri = 0.0004 sec-1 was the best fit.
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Fig. 4.12 Photoreduction rate of the rutile surface in vacuum at 40 mW of laser

.08

power.

1) = 0.0004 1/sec

dot: experiment
line: simulation

i= 0.001 1/sec

11= 0.003 1/sec

4.389 8.779
Time (seconds) (10+3)

Fig. 4.13 Photoreduction rate of the rutile surface in vacuum at 35 mW of laser
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Fig. 4.14 Photoreduction rate of the rutile surface in vacuum at 24 mW of laser
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Fig. 4.15 SSHG observation of the adsorption and desorption of water
molecules on the rutile surface. The water vapor was less than 1 ton in the chamber.
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In Fig. 4.14 with input power of 24 mW, the quick drop in the early minutes was less

obvious and might be just buried in the noise because of the smaller signal-to-noise ratio.

As we have varied the input power by more than a factor of two, the rate

constant, with the big uncertainty, only reflects a power dependence 11 oc with n < 1

or n 0. This indicates a possible saturated mechanism in the 532 nm photoreduction

process. That is, either the defects responsible of photon absorption are easily saturated

or there is a recombination or relaxation mechanism which depends upon the excitation

density. While the SSHG does provide the surface sensitive observations, the definitive

interpretation of the photoreduction observations will require further investigation

combined with other experimental techniques.

On a photoreduced rutile surface, the adsorption and desorption of water

molecules were also observed by monitoring the p-total signal (Fig. 4.15) as less than I

ton of water vapor was admitted into the chamber and pumped out later. The rising

signal of the beginning of this data set was due to the continuation of the photoreduction

process in vacuum. The photodesorption of adsorbed water is apparent. When a half

reduced surface was exposed to hydrogen gas, a slight increase in the photoreduction

rate was observed. No significant change in the SH signal and the polarization ratios

was found when a fully reduced surface was exposed to 1 torr of H,. So we conclude

that hydrogen can not further reduce or reoxidize the surface at room temperature,

although it is capable of reducing the rutile at high temperature.

4.2.4 Conclusion

We have demonstrated that SSHG is capable of providing surface information

about rutile, although the bulk medium also contributes to the signal, e.g. the nonzero ps

and ss components. Surface adsorption and desorption of water and oxygen molecules

have been observed by SSHG. This study also led to the observation of photo-induced
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reduction of the rutile surface in vacuum with laser pulses at 532 nm. Interpretation of

this phenomenon consists of a model in which oxygen molecule, initially bound strongly

as 0,-, desorbs, leaving behind Ti3+ surface defects. These defects readily bind 0,

quickly at a pressure above 10-s torn. The propensity of the surface to undergo

photoreduction correlates with a decreasing photo-ablation threshold. The damage

thresholds are 490 and 650 MW/cm2 in vacuum and 1 ton of 0 respectively. The

surface photoreduction rate is insensitive to the applied laser power in the range which

provides measurable SH signals.

4.3 Amorphous Carbon Films

Recently, amorphous hydrogenated carbon (a-C:H) films have been used in the

applications of optical coatings, protective coatings, semiconducting devices etc. as well

as having been studied as candidates for electroluminescence materials.42 Their versatile

properties include extreme hardness, optical transparency in the visible and near infrared

regions, chemical inertness and low coefficient of friction. The most common methods

of deposition are rf-biased (dc bias voltage > 100 V) plasma deposition from a

hydrocarbon gas (a-C:H), direct low-energy (30-100 eV) ion beam deposition (i-C for

ion beam deposited carbon or DLC for diamond-like carbon), dc glow-discharge

decomposition of hydrocarbon gas deposition, and by variations of sputtering processes.

The properties of carbon films are independent of their hydrocarbon sources, and

methane (CH4) and benzene (C6H6) are among those mostly used. On the other hand,

the film properties can vary substantially according to the deposition parameters such as

bias voltage, rf power density, substrate temperature, pressure (< 0.1 ton) and

composition ratio of hydrocarbon gas and carrier gas (usually argon, nitrogen or

hydrogen), and the post heat treatment.
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Characterization of a-C:H films has been pursued with all kinds of experimental

techniques. Collins43 has used in situ ellipsometry to perform real time measurements of

index of refraction and extinction coefficient during the thin-film growth. Grundy et

al.44 have measured the composition of the film, especially the hydrogen content, by

glancing angle neutron scattering. It is known that a-C:H consists of a mixture of sp.=

and spa hybridized carbon atoms, some of which are bonded to hydrogen. It has also

been shown45 that, for plasma-deposited films, as the hydrogen content decreases, the

mass density, hardness and sp2 /spa ratio increase. The hydrogen content and the sp2 /spa

ratio were the subjects of solid state proton and carbon-13 NMR studies by Bustillo et

al." The infrared spectrum of the C-H stretching mode is also a good measure of

hydrogen content.47,48 When plasma-deposited a-C:H is thermally annealed at 600°C,

hydrogen can effuse out of the films47 which contain now only sp.' bonded carbon,49 and

crystallization into the graphite phase takes place. The typical microcrystallite size is 30

to 50 A (Angstroms) along the graphite planes, as measured by Raman spectroscopy,

and less than 10 A in the direction perpendicular to the basal planes according to x-ray

diffraction measurements.47 Reyes-Mena et a1.50 have observed light-induced changes in

the photoluminescence spectrum of a-C:H at low temperature, with a recovery

temperature around 200 K which is in contrast to 150°C for amorphous silicon (a-Si:H).

There are two Raman-active modes of all a-C:H samples.47-51 The G band (G as

graphitic) is found between 1530 and 1580 cm-1, and the D band (D as disordered)

around 1350 cm-i. The Raman spectrum of a single crystal of graphite reveals only the

G band, while the D band appears only where the graphite crystallites are reduced to

domains of finite size (tens Angstroms). Since the D band is ascribed to the presence of

disordered sp2 carbons, some researchers consider the relative Raman intensity of the D

and G bands as a measure of the degree of order in an a-C:H sample while others

disagree.52 With increasing exciting photon energy, a high-frequency shift of the G band
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has been observed by resonant Raman scattering.5354 This shift is interpreted in terms of

scattering from 7c-bonded (sp2) carbon clusters which is resonantly enhanced for incident

photon energies approaching the 7C-70 resonance. This interpretation provides support

to theoretical models55 saying that hard a-C:H films consist of sp2 carbon clusters

interconnected by spa sites.

Diamond thin films have been grown in high frequency (microwave) plasma

CVD (chemical vapor deposition) or hot filament (over 2000°C) CVD chambers on

substrates at 1000°C with gas mixtures (0.5-50 torr) containing less than 0.5% CH, in

H2.56 The crystalline diamond has been identified by x-ray/electron diffraction and

Raman spectrum which has a characteristic peak at 1332±1 cm -' for diamond.

Nitrogen-doped a-C:H films deposited with carrier gas consisting of a variable ratio of

N2-Ar mixture have also been studied, and the nitrogen incorporated can be as much as

20%.51

With the film's extreme hardness and chemical inertness in mind, second

harmonic generation was considered to study the surface properties and any possible

surface modification of a-C:H under various conditions. The a-C:H films were

deposited on one inch in diameter quartz substrates which has negligible contribution to

SH signal. The deposition detail has been described in reference 51. The thin film was

estimated to be about 250 Angstroms thick based upon an ellipsometric measurement.

4.3.1 Low Laser Power Study

We started with an average of 6 mW of green (532 nm) in a 3 mm diameter

beam on the sample under a vacuum at 2x10-8 ton. The power density within the laser

pulse was about 57 KW/cm2. While there was no observable SH signal from the sample

at this low power density level, reversible light-induced intensity decay in

photoluminescence (PL) was observed (Fig. 4.16). PL was collected through a focal
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Fig. 4.16 The intensity decay of photoluminescence of a-C:H excited by less
than 60 KW/cm' green pulses. There was a 12 hour time span between (a) and (b)
without laser irradiation, during which the PL recovered at room temperature.
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lens set up 45° away from the reflected green and sent through several sharp cut orange

glass (Schott, 0G-550 and 0G-570) filters to eliminate scattered green before detection

by a PMT (Fig. 4.1). The recovery time of PL was between a few hours to 12 hours at

room temperature in vacuum (2x10-8 ton). Reyes-Mena et a1.50 first reported this light-

induced fatigue of PL in both the spectra and the integrated intensity in the a-C:H films,

and more significant changes were observed at temperatures between 13 K and 200 K.

Although light-induced metastable changes in the properties of amorphous materials

have been observed for some time, especially of amorphous hydrogenated silicon

(a-Si:H), there is still a lack of basic understanding of the nature of the microscopic

mechanism responsible for those observations. Some proposed models ascribe these

fatigue effects to the enhancement of the nonradiative recombination by the creation of

dangling bonds due to intense illumination.

4.3.2 Medium Laser Power Study

As the laser power was increased to 80 mW and loosely focused down to 0.5

mm in diameter, the average pulse power density was about 27 MW/cm2 or 2.7 mJ/cm2

in a 100 ps pulse. At this medium power level, the intensity of PL dropped faster

(Fig. 4.17) than at the low power level and only recovered partially after a long break.

When methanol vapor was introduced into the vacuum chamber, PL signal level rose

substantially. The signal dropped back slowly as the vapor was pumped out of the

chamber. Water vapor was found to have a similar effect on the a-C:H sample. The PL

signal was lower when air was brought into the chamber, probably due to oxygen, and

slowly recovered in vacuum. In Fig. 4.18 we plot the PL signal against laser power

density in three different enviroments. After the initial annealing as shown in Fig. 4.17,

the properties of the thin film became stabilized when it responded to laser pulses of this
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Fig. 4.17 The intensity decay of photoluminescence of a-C:H excited by 27
MW/cm2 green pulses. The two lower signal levels were checked with lowerpower
densities, 45% and 12% respectively.
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Fig. 4.18 Photoluminescence of a-C:H film in various environments. (a) In
vacuum (2x10-8 ton), (b) in several millitorr of air, and (c) in several millitorr of
methanol vapor.
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medium power density level, and the PL changes upon exposure to methanol, water and

air were all reversible.

There was no observable SH signal of a-C:H film under atmospheric conditions

at this laser power density. In Fig. 4.19, SH (p-total) and green reflectance of the thin

film were monitored simultaneously in vacuum. Each data point represented the

response to a single laser Q-switch pulse train which ran at a 500 Hz repetition rate.

The whole data set thus only took a little more than 2 seconds. Both graph (a) and

graph (b) show the results from new spots on the sample. A shutter blocking the

incident laser beam released after the first few data points and caused the low signal level

at those points. Graph (b) was taken with an additional KG-4 glass filter, which

transmits green and blocks UV, in the path of SH signal before it reached PMT. The

low signal counts of graph (b) in SH channel demonstrated that the corresponding signal

of graph (a) was UV at 266 nm. Both SH signal level and reflectance dropped slightly

upon irradiation, which indicated that the a-C:H film was quickly modified by either

intense illumination or thermal heating. After that quick drop, both signal levels

remained stable. Although the initial higher signal levels did not recover even after the

incident laser beam was blocked for 20 minutes.

The SH signal, unlike the PL signal, decreased as methanol vapor was introduced

into the vacuum chamber and rose back when the vapor was pumped out. The effect of

methanol was plotted in Fig. 4.20, where each data point was averaged over 1000 laser

shots (Q-switch pulse trains).

4.3.3 High Laser Power Study

When the laser beam was focused down to 0.1 mm in diameter, with average

laser power of 160 to 200 mW, we were able to apply more than 1.5 GW/cm2 to the thin

film sample. The result is shown in Fig. 4.21. The SH signal started with a big spike
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Fig. 4.19 SH signal and green reflectance of a-C:H film at new sample spots in
vacuum. Average laser pulse power density was 27 MW/cm2. Each data point
corresponded to a single laser Q-swith pulse train. Graph (b) was taken with an
additional KG-4 filter in the SH signal path to demonstrate that the signal in graph (a)
was UV.
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Fig. 4.20 SH signal of a-C:H film was lower in the presence of several millitorr
of methanol vapor. Each data point averaged over 1000 laser shots. The average laser
pulse power density was 27 MW/cm2.
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and then settled down quickly while both PL and reflectance of the film dropped more

slowly and smoothly. Under the microscope, the transparent a-C:H film was turned into

a transparent, dark spot of 100 p.m wide and 200 Angstrom deep. The depth of the hole

was measured by an Alpha-step 100 profilometer. The composition of the dark ultra-

thin film remaining in the bottom and the edge of the hole is unknown. It can be easily

scratched off by a stainless-steel tweezer, so it is not as hard as the original a-C:H film.

Under atmospheric conditions the a-C:H film was totally ablated by laser pulses at 300

MW/cm2, clear substrate being left behind.

Since the residual thin film is soft and dark, it might be related to graphite. But it

is doubtful that graphite film, which has zero optical bandgap, could endure such intense

laser pulse better than the a-C:H film did. This ultra-thin dark film is still photo-active in

various gaseous enviroments. It was indefinitely stable in the vacuum environment and

the p-total and s-total SH signals were about equal. Both ps (p-in, s-out) and ss (s-in, s-

out) components were below the noise level. As soon as oxygen was introduced into

the chamber, the SH signal dropped substantially and the film was ablated completely.

With 80 millitorr of methanol vapor, the SH signal rose slowly by 10 to 20% over a few

hours before levelling off. With 0.3 ton of nitrogen (standard grade, 1 ppm of moisture

and 5 ppm of oxygen), the SH signal rose, also slowly, as much as 50% in five and a half

hours. A similar effect was observed when we turned the ion pump off and let the

vacuum chamber out-gas long enough. The major out-gasing species were detected by a

RGA (residual gas analyzer, Ametek, MA100). Five hours after the pump was turned

off, total pressure in the chamber rose from 2x10-8 torr to 3x10-5 ton. The species of

highest partial pressure were hydrogen (1x10-5 ton) and nitrogen (2x10-6 ton). Species

of atomic mass unit 14 (N or CH2), 15 (NH or CHO, 16 (NH2, CH4 or 0) also had

higher partial pressure at 3x10-7, lx10-6 and 1x10-6 ton and those were indicative of

fragments of several hydrocarbons. Water was less than lx10-8 ton. Both oxygen and
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Fig. 4.21 SH, PL and green reflectance of a-C:H film under more than 1.5
GW/cm2 laser pulses. Each data point averaged over 1500 laser shots, which took
approximately 3 seconds. The SH signal started with a big spike and settled down
quickly while the film was ablated and left with an ultra-thin film of unknown
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Fig. 4.22 All signals from the residual dark film rose after the vacuum chamber
out-gassed for 3 days. Laser pulse power density was about 1.5 GW/cm2. The total
pressure in the chamber was less one millitorr. All the signals rose from the same level
as 3 days before. Each data point averaged over 1500 laser shots.
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methanol were below lx10-" torr. The observed increases in SH were all photo-induced

processes. An example is given in Fig. 4.22, where the SH signal went up after the

pump was off for 3 days, and the initial signal level was the same as that obtained

previously. The changes in SH, also accompanied by changes in PL and sample

reflectance, were irreversible. When the chamber was pumped down again, the SH

dropped but never went back to the level it was before. This showed that the properties

of the residual dark thin film were continually altered by the intense laser pulses in the

gaseous environments.

4.3.4 Laser Heating

Since the heat treatment of a-C:H film can change its hydrogen content and

sp2Isp3 bonding ratio and, hence, the film's properties, laser heating could have played a

major role in the reversible, and irreversible phenomena and the photo-ablation process

we encountered. Electrons in the material are first excited upon absorption of laser

light. This electronic excitation couples to the vibrational modes in 10-12 sec.57 and

diffuses away. The temperature rise at any time is proportional to the total energy

deposited in the material and can be calculated from the heat conduction equation and

the thermal properties of the thin film and the substrate. The optical density of our a-

C:H sample was 0.13 (i.e. about 74% transmission) at 532 nm measured by a

UV/Visible spectrophotometer (Perkin-Elmer Lambda 3B). The optical density of the

quartz substrate was on the order of 10-4.

The heat conduction or Laplace diffusion equation is

a 2 T a2T a2T 1 aT

axe aye az2 K at
(4.2)

where K =
K

is the thermal diffusivity (cm2/s). K, p and c are the thermal conductivity
pc
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(Watt/cm K), density (g /cm3) and specific heat (J/g K). Cars law and Jaeger58 have

presented general solutions to heat conduction problems for a variety of geometries.

For an instantaneous point heat source at (x', y', z') which liberates a total energy of Q,

the solution to Eq.(4.2) of any point (x, y, z) in the medium at time t after is

AT = (Q I pc)(47nct)-3/2 exp{[(x x' +(y y' )2 + (z z' )2 I I (4Kt)) . (4.3)

If the heat source is on the surface of a semi-infinite medium, that is z' = 0 and vacuum in

z < 0, then AT is twice that expressed in Eq.(4.3) because heat only diffuses into the

space of z > 0.

To describe the effect of a pulse of Gaussian transverse profile, we need to begin

with the problem of a heat source in the shape of a ring. Considering the instantaneous

heat source to be a uniform ring on the surface with the total energy Q, AT in cylindrical

coordinates becomes

AT =
2 fit Q

exp[
z2 r2 +1.12 2rr' cos(0 0' )]t-'

d0'
(47rxt)312 0 pc27crl 4xt

where r2 = x2 + y2 and 0 can be arbitrarily set to zero for the isotropic medium.

r'2 = x'2 + y'2 is the radius of the source ring. After we rearrange the expression into

Q exp( z2 r 2 ± rt 2
1 27(

exp(
ic2rr'

cos 0'AT = )
npc(47mt)3/2 4xt 0 4t )d0

the integral can be expressed by the modified Bessel function

and we have

ATrrug

/0(co)= (1/ 7c)Lexp(±cocos0' )d0' ,

.z2

PC(41CK

Q
03/2

exp(
rr-

go rri
2 Kt

Eq.(4.4) can be integrated over r' to obtain the result for a surface heat source with

transverse Gaussian profile. If the Gaussian radius is rc, the total energy becomes

Q Jo
Q0 exp (r' 2 /r62)27cr' dr' = itrc2Q0,

(4.4)
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and the temperature rise in an isotropic semi-infinite solid is

Z- + r 2 ., 2

pc(47oct
ATGau,, =

2Q
exp(

('

exp (3/2 41a 4Ict

rr'
)1 (-) 2 TV' dr'

rc; Kt

2mQ0 z- +r- 1 1 r
pc(47Ext

j.T.exp( )
0

expf x(
4 Kt

+
rci

)1/0(
2 Kt

)dx.f"
1

The last integral can be evaluated through the Laplace transform of the modified Bessel

function. Upon applying the integral identity

exp(bx)/0(2a-j)dx =
exp(a2 / b)

b

we reach the result

2TtQo 2 2

ATGauss = exp(
z2 + r2

)
4ictr G2

, expr
r 4KtrG

pc(470a) 3/2 4ict 4Ict+rci (402 4xt+ro-

nrG2Q0 exp(z2 / 41(0 r 2 r 2
rG

2

=
pcit 3/2 (Kt)112 4Kt + rc

exp[ +
4Kt 4Kt(41(t+rG2

1

-,

Q exp(z -,

/ 4Kt) r= , ).pc7C/2(xt)1/2 4ict + r 2
exp(

4Kt + r Ci-
(4.5)

The heat converted from the laser pulse diffuses a distance on the order of (Kt)u2

into the medium. The temperature rise at any time is proportional to the total energy

deposited in the medium over this thermal diffusion length. The specific heat (c) and

thermal conductivity (K) are temperature dependent, and so is the thermal diffusivity (x).

For material like graphite, the thermal diffusion length is no more than 0.5 µm during the

100 ps laser pulse. It is less than 20 nm for the quartz substrate. We thus consider each

100 ps laser pulse as an instantaneous heat source, with a transverse Gaussian profile of

0.1 to 3 mm in diameter, in the thin film and the substrate within the thermal diffusion

length. The energy is converted only from the absorption of the thin film (about 25 nm).

The calculation of the temperature rise takes into account the energy contribution from

every laser pulse in a Q-switch pulse train as the initial temperature at each pulse keeps

changing. To estimate the temperature of the thin film instead of the substrate, the result
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of Eq.(4.5) has to be modified for the anisotropic case, that is kt. = xti = x # x.. lc, is the

thermal diffusivity of the quartz substrate and K is that of a-C:H thin film. The heat

conduction equation in Eq.(4.2) is rewritten as

a27, a2T a2T
aT

K K K = .

aX 2 aY- aZ- at

The solution for a surface ring heat source of Eq.(4.4) becomes

2Q z2 2 + r 2r ' 1T
ATring = exp( )exp( go ().

pc(47rxt)(47m,t)1/2 4K ,t 4ict 2 Kt

Finally the result of a surface heat source with a transverse Gaussian profile is

QAT =
exp ( z 2 / 4K: t)

exp (Gauss

R312 R PC )substrate (K z t )112 + (PC ) film di 4Kt+ ro` 4Kt+rci

(4.6)

In the last equation, the heat capacity of the thin film is taken into account as well as that

of the quartz substrate. d is the thickness of the film.

The density, specific heat and thermal conductivity of a-C:H as a function of

temperature are not available, so the data for graphite are used for the estimation. The

average thermal conductivities in the directions parallel and perpendicular to the layer

planes of graphite are adopted for the amorphous thin film. The temperature dependent

thermophysical data59 for the film and the substrate are fitted to polynomials between

200 and 4000 K for the calculation. Notice that the sublimation point of graphite is

3925 K and the melting point of fused quartz is 1883 K. The computer program written

in Quick Basic to estimate the sample temperature according to Eq.(4.6) under various

laser pulse power densities is listed in Appendix C. We plot the typical results of the

calculation in Fig. 4.23. After each Q-switched pulse train (400 nanoseconds), the

sample temperature declines to the initial level before the next pulse train strikes, which

is 2 milliseconds later. While within a pulse train, energies are accumulated from every

mode-locked pulse (0.1 ns in duration) prior to the temperture evaluation. There are 10

ns between the ML pulses, and the temperature (evaluated every 0.5 ns) drops
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Fig. 4.23 Estimated temperature rise of 250 A a-C:H film heated by a laser pulse
train with an average pulse intensity of 1.5 GW/cm2. The calculated position is around
the beam. The Q-switched pulse train is 400 ns in duration and there are 10 ns between
mode-locked pulses. The temperature is calculated every 0.5 ns inside the pulse train.
(a) Temperature drops back to the initial level before the next pulse train (2 ms later)
arrives. (b) First 1 las of the temperature response is plotted. Each ML pulse intensity is
according to a simulation of the envelope of a pulse train.
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substantially between pulses. The envelope of the transient temperature spikes following

each ML pulse is due to the simulation of the pulse intensity of a Q-switched pulse train.

These spikes, as the matter of the choice of the time period At, provide the upper

boundaries of the estimated temperatures. The more realistic maximum temperature is

that below those spikes.

Under high intensity (about 1.5 GW/cm2) which could blow off most of the a-

C:H film, the maximum transient temperature following the short laser pulse is estimated

1747 K around the laser beam (Fig. 4.23) and above 4000 K at the center of the beam.

According to Angus et al." a-C:H film turns to graphite when it is annealed between

900 and 1300 K. But whether our short heat pulses produce the same effect on the

a-C:H film as the long time annealing process does is not clear. At medium intensity

(about 27 MW/cm2) which is below the damage threshold, the maximum transient

temperature at the center of laser beam is no more than 550 K. With low intensity

(about 57 KW/cm2), for which only recoverable PL fatigue was observed, the

temperature spikes are less than 0.5 degree above initial temperatue which indicates no

laser heating.

4.3.5 Conclusion

The transparent, hard, low-friction a-C:H films are photo-active under a wide

range of laser pulse intensities. Using second harmonic generation to study the surface

of the films was unsuccessful because we could not have measurable SH signals without

modifying the films. Even for a weak laser intensity, at which there was no laser heating

estimated, the film responded with changes in the photoluminescence intensity and took

several hours to recover at room temperature. With the power density below the

damage threshold, the temperature of the film could be raised by several hundred

degrees, and the film was irreversibly modified as observed by the PL and the SH. In the
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presence of methanol vapor, we also observed that the PL signal went up while the SH

down. The presence of oxygen lowered the damage threshold to an approximately 300

MVV/cm2, and the film was ablated without residue.

In vacuum, photo-ablation of the film occured when the power density exceeded

1 GW/cm2. A dark, soft material was left behind. This residual material was still photo-

active when exposed to various gases, such as hydrogen, nitrogen, oxygen or methanol

vapor. At this intensity level, the temperature of the film was estimated to be as high as

one thousand degrees during the laser pulse train. It quickly cooled down between pulse

trains because of the good thermal conductivity of the film.
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61. This integral identity was originally derived by P. P. Ewald (reference 2). The proof
we show here is that of Dr. Fuxiang Han (private communication).
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A-1:

Appendix A. Integral Identities for Planewise Lattice Sum
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A-2:
. e
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2 4 k2 1 eicr ikexp -r2t- + dt = e erfc rE +) + c. c. I. where r and E arei E 4t2 2r 2E

positive real numbers and k is either real or imaginary.

According to the definition of the complimentary error function, we start with

2
eikrerfc[rE

k

E 2 t
e -x 2

ik e dx. With x = rt +ik , this equation becomes
2 2E

2 zkr
ik ex+
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Also from the integral definition, e-tkr erfc rE
ik =-r,e r f ik dx . Taking
2E Ntn rt.

2E

2 2 ikik
x = rt , we then have e-ikr

b2
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By summing (A-3.1) and (A-3.2), we reach the original equation.
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k2 d t

. The lastk J E 4t2
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ikr
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= 1 [eikrerfc
ik
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The two-dimensional integral is the product of two one-dimensional integrals

since the integration variables are separable.

lhs = f exp(-ikxx x2t2)dxf exp(-ik'y y2t 2 )dy. Consider a complex contour

integration ( z = a + ib, both a and I) are real, but a is a variable while b is a constant):
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A-6: Numerical evaluation of the complementary error function with a complex

argument.

By definition, erfc(a + ib) = 2 r exp(t' )dt, where both a and b are real
Ja+Lb

numers. From a triangular closed contour on the complex plane, the integral can be

expressed as erfc(a + ib) =
a+th

exp(t2)dt + f exp(t2)dti. The last integral
a

is just erfc(a), and the other one becomes

fa 0 0 0

exp( t 2 )dt =
ib

exp[(x + a )2 ]dx = i expHiy + a) 2 ]cly = i f exA y2 2 )dy

= exp( a2 )1: exp( y2 )[icos(2 ay) + sin (2 ay)idy . Finally,

erfc(a + ib) = erfc(a) exp(a2)firexp(y2)1cos(2ay)1dy
VTE 0

+co exp(y2 )(sin (2ay))4}

The last two integrals are evaluated by the Romberg integration method while erfc(a) is

obtained from a numerical fitting based on the Chebyshev approximation.2°



Appendix B. Programs for Surface Local Field, the Linearly Reflected Field
and Surface Second Harmonic Field Calculations

B-1. COMMON.H -- Universal include file:

#include <stdio.h>
#include <math.h>
#include <complex.h>
#include <stdlib.h>
#include <alloc.h>

#define pi 3.141592653589793
#define im complex(0.0, 1.0)
#define eps 1.0e-10
#define Nmax 10
#define artif 1.0e-15
#define Nnm 2

// square root of -1.
// fraction of tolerance.
// maximum order in summation routine.
// to zero the artificial numbers.
// only two dipole wave modes to be solved.

void nrerror(char[]);
double dot_pr(double *, double *, int, Mt);
double *vector_dbl(int, int);
complex far *vector_cmplx(int, Mt);
Mt *vector_int(int, Mt);
complex far **matrix_cmplx(int, int, Mt, int);
double far **matrix_dbl(int, int, int, int);
void cmplx_ffree(complex far **, int, int, int);
void dbl_ffree(double far **, int, int, int);
void mat_cmplx_save(complex far **, Mt, Mt, int, int);
void mat_cmplx_read(complex far **, int, int, int, int);
void vector_3_save(complex far *, double *, int, int);
void vector_3_read(complex far *, double *, int, Mt);
void sp_real_save(complex far **, double *, int, int);
void p_real_save(complex far **, double *, int, Mt);

void ludcmp(complex far **, int, int *, double *);20
void lubksb(complex far **, int, int *, complex far *);20
void matrix_inv_cmplx(complex far **, int);20
void lineq(complex far **, complex far *, int, int);20

B-2. BASIM.CPP--Routines to read the input data file.

#include "common.h"
#include <conio.h>
double lc_a;
double alpha, beta;
double wave_vect;
double k_wave[3];
double diff_r[3];
double E_cut;

116

// lattice constant along s_1=x-axis.
// planar lattice structure, S=lc_a*(n+m*alpha,m*beta,0), Eq.(2.18).
// wave number normalized by lc_a.
// [0]--x, [1]--y, [21--z.
// position vector at n=m=0.
// Ewald summation coefficient(by 1/Ic_a).
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double zswitch; // Ewald one-fold or three-fold transformation, normalized by lattice constant Ic_a.
double theta, phi, rfr_nl, rfr_n2, euler[3J:
int mpq, mr, // 2+8*(0+1+...+Inpq) is the number of normal modes in the hulk.
complex m_beta[3][3][3];

void basis(void)

int i, j, h;
double b, s_angle, lamda, elec_volt, mbr, mbi;
char fin[20], fout[20], none[801;
FILE *in, *out;
printf( "input file name: ");
scanf("%s", fm);
if ((in = fopen(fin, "rt")) == NULL)

nrerror( "Cannot open input file.");
fscanf(in,"%s %If',none,&lc_a); // in Angstroms.
fscanf(in,"%s %lf',none,&b); // lattice constant along s_2 axis.
fscanf(in,"%s %lf',none,&s_angle); // angle between s_l and

II s_2 in degrees.
alpha=b*cos(s_angle*pia 80.0)/1c_a;
beta=b*sin(s_angle*pi/180.0)/1c_a;

fscanf(in,"%s %lr,rione,&elec_volt);
lamda=1.240e4/elec_volt;
wave_vect=(2.0*pi/lamda)*lc_a;

fscanf(in,"%s %lf',none,&phi); II an
fscanf(in,"%s %11',none,&theta);
fscarif(in,"%s %If',none,&E_cut);
fscanf(in,"%s %11',none,&zswitch);
fscanf(in,"%s %d",none,&mpq);
fscanf(in,"%s %d",none,&L);
fscanf(in,"%s %If',none,&rfr_n1);
fscanf(in,"%s %lf',none,&rfr_n2);
fscanf(in,"%s", none);
for (h=0; h<=2; h++)

for (i=0; i<=2; i++)
for (j=0; j<=2; j-H-)

fscartf(in,"%lf %lf', &mbr, &mbi);
m_beta[h][i][j] = complex(mbr, mbi);

// incident photon energy.
II wave-length in Angstroms.
// normalized by Ic_a.

gle between plane of incidence and s_1=x-axis.
// angle of incidence in degrees.

//number of layers in free surface region.

fscanf(in,"%s", none);
for (j=0; j<=2; j++) fscanf(in,"%lf', &euler[j]);
fclose(in);
printf("Ic_a\tb\talpha\tbeta\telec_volt,phi\ttheta\tL E_cut zswitch");
printf("Nn%7.4f,%7.4f,%7.4f,%7.4f,%7.4f,%7.4f,%7.4f,%3d,%7.4f,%7.4t\n",

lc_a,b,alpha,beta,elec_ volt ,phi,theta,L.E_cut,zswitch);
printf("mpq=%d\trfr_n1=%g\trfr_n2=%g" ,mpq,rfr_n l ,rfr_n2);
printf("\tEuler angles=(%g %g %g)", euler[0], euler[1], euler[2]);
phi *= pi/180.0; // convert into radiance.
theta *= pi/180.0;
k_wave[0] = wave_vect*sin(theta)*cos(phi);
k_wave[1] = wave_vect *sin(theta) *sin(phi);



k_wave[2] = -wave_vect*cos(theta);
mr = 2*mpq*(mpq+1);

return;

// field coming in from z>0.
// number of reciprocal lattice points
// included in the summation besides (0,0).
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void rotate(complex mb[3][3][3])
// transformation matrix from a molecular coordinate system to a laboratory coordinate system.

double et[3][3], cp, ct, cf, sp, st, sf, na;
int h, i, j, hh, ii, jj;
complex ob[3][3][3]:

na = pow(lc_a*1.0e-8, -2.0); // number density in cm^2.
for (h=0; h<=2; h++) for (i=0; i<=2; i++)

for (j=0; j<=2; j++) ob[h][i][j] = mb[h][i][j]*na;
for (j=0; j<=2; j++) euler[j] *= pi/180.0;
cp = cos(euler[0]); // phi.
sp = sin(euler[0]);
ct = cos(euler[1]); // theta.
st = sin(euler[1]);
cf = cos(euler[2]); // psi.
sf = sin(euler[2]);
et[0][0] = cp*cf-sp*ct*sf;
et[0][1] = -cp*sf-sp*ct*cf;
et[0][2] = sp*st;
et[l][0] = sp*cf+cp*ct*sf;
et[l][1] = -sp*sf+cp*ct*cf;
et[l][2] = -cp*st;
et[2][0] = st*sf;
et[2][1] = st*cf;
et[2][2] = ct;
for (h=0; h<=2; h++) for (i =0; i<=2; i++)

for (j=0; j<=2; j++)
mb[h][i][j] = 0.0;
for (hh=0; hh<=2; hh++)

for (ii=0; ii<=2; ii++)
for (jj=0; jj<=2; jj++)

mb[h][i][j] += et[h][hh]* et[i][ii] *et[j][jj] *ob[hh][ii][jj];
1

return;
1

B-3. PUTF.IN--A input file.

lc_a,_in_Angstroms: 2.5
lattice_constant_along_s_2_axis_in_Angstroms,_b: 2.5
angle_between_s_1_and_s_2_in_degree,_s_angle: 90.0
incident_photon_energy_in_electron-volts,_elec_volt: 2.0
angle_between_plane_of_incidence_and_s_1=x-axis,_phi: 0.0
angle_of_incidence_in_degree,_theta: 45.0
E_cut,_Ewald_stunmation_coefficient: 2.0
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zswitch: 1.0
mpq=maximum(Ip1+1q1)_in_bulk_calculation: 4
L=number_of_layers_infre,e_surface_region: 10
rfr_nl=bulk_refractive_index_at_fundamentalfrequence: 2.5
rfr_n2= bulk_refracti ve_index_at_harmonic_frequence: 3.0

m_beta[][][],in_esu: 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 50.0e -300.0

Euler_angles(phi,theta,psi),in_degree: 0.0 0.0 0.0

B-4. RFLC-B.CPP--A microscopic calculation of the linear reflection.

#include "common.h"
#include <conio.h>
#include <dos.h>
complex qm[Nnm], um[Nnm][3];
complex far ***dpq, ***bpq, *kapa;

void main()

int i, j, u, v, dc;
double sr, pr;
void basis(void);

I/ bulk dipole wave solutions.

basis();
dc=mr;
kapa = vector_cmplx(0,dc);
dpq =(complex far***)farcalloc((unsigned long)(dc+1),sizeof(complex far**));
bpq =(complex far***)farcalloc((unsigned long)(dc+1),sizeof(complex far**));
for(i=0; i<=dc; i++)

dpq[i] = matrix_cmplx(0,2,0,2);
bpq[i] = matrix_cmplx(0,2,0,2);

char fout[20], none[80];
FILE *out;
struct date d;
getdate(&d);

str: printf("\n file name to save: ");
scanf("%s", fout);
if ((out = fopen(fout, "wt")) == NULL) {

printf("\n...Cannot open output file, try again.");
goto str;
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printf("title of the file, no whitespace and no comma, please:");
scanf(' %s ", none);
fprintf(out,"GRAPH ArtASCIl\n%s\n%d-%d-%thn 5\11", none, d.da_mon. d.da_day,

d.da_year):
fprintfiout,"angle of incidence,p-mic,s-mic,p-mac.s-mac");
fprintf(out,"\n 91, 91, 91, 91, 91");
for (1=0; i<=90; i++) [

if ((i %5) = =0) printf(" %d", i);
fprintf(out,"\n%d", i);
theta = double(i)*pi/180.0;
mr=dc:
k_wave[0] = wave_vect *sin(theta) *cos(phi);
k_wave[1] = wave_vect*sin(theta) *sin(phi);
k_wave[2] = -wave_vect*cos(theta);
lnrfle(&pr, &sr);
fprintf(out,",%22.151g,%22.151g", pr, sr);
frsnl( &pr, &sr);
fprintf(out,",%22.151g,%22.151g", fabs(pr), fabs(sr));

fprintfiout,"\n 0");
fclose(out);
farfree(kapa);
for(i=dc; i > =0; i -) {

emplx_ffree(dpq[i],0,2,0);
cmplx_ffree(bpq[i],0,2,0);

farfree(dpq);
farfree(bpq);
return;

1

void hirtic(double *prfl, double *srfl)

// free the dynamic memory.

double **rj, er; // **rj are the position vectors of characteristic dipoles.
int i, j, u, v, ii, dc, re, flg=0;
complex far **dpf;
complex fld[3], dum[Nnm][3], kw, kl, dd[Nntn];
void dipole(double**, complex far**, int);

dpf = matrix_cmplx(0,1,1,3*(L+1)+Nnm);
rj= matrix_dbl(0,L,0,2); //position vector of lattice points at n=m=0.
for (i=0; i<=L; i++) { // Eq.(2.17) and Fig. 2.2.

rj[i][0]=0.0; // s_l or x-axis.
rj[i][1]=0.0; // y-axis.
rj[i][2] = -1.0*i; // z-axis.

1

dipole(rj, dpf, flg); // calculate the characteristic dipole vector at rj.
for (i=0; i<=nm; i++)

dd[i] = complex(1.0)-exp(-im*(qm[i]-kapa[0]));
for (v=0; v<=2; v++) I

dum[i][v] = complex(0.0);
for (j=0; j<=2; j++) dum[i][v] += dpq[0][v][j] *um[i][j];
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if (L>=0) kl = -complex(k_wave[0]*rj[L][0]+k_wave[1]*rj[L][ 1] )
kapa[0] *complex(rj [L] [2] 1 .0):

else kl = complex(0.0,0.0);
for (ii=0; ii<=1; ii++) I // p-polarization (ii=0) and s-polarization (ii=1 ) incidence.

for (u=0; u<=2; u++) {
fld[u] = complex(0.0);
for (j=0; j<=L; j++)

kw = -complex(k_wave[0]*rj [j] [0]+k_wave[ 1 ]*ij [j] [ 1 ])
-kapa[0]*complex(rj[j][2]);

for (v =0: v<=2; v++) // the reflected field is
fld[u] += dpq[0][u][v]*dpf[ii][3*j+v+1]*exp(im*kw);

// the dipole field from surface layers,
for (i=0; i<=nin; i++) fld[u] += dpf[ii][3*(L+1)+1+i] *dum[i][u] *exp(im*k1)/dd[i];

// plus the dipole field from the bulk.

for (u=0, er=0.0; u<=2; u++) er += norm(fld[u]);
if (ii==0) *prfl = sqr(er);
if (ii==1) *srfl = sqr(er);

1

cmplx_ffree(dpf,0,1,1);
dbl_ffree(rj,0,L,0);
return;

}

void frsnl(double *erp, double *ers)
// Fresnel's results of reflection and transmission.

double ni=1.0, nt=rfr_nl, theta_i, theta_t, ets, etp;
double eis=1.0, eip=1.0, ci, ct, loc_f;
theta_i = theta;
theta_t = asin(sin(theta_i) *ni/nt);
ci = cos(theta_i);
ct = cos(theta_t);
etp = eip *2.0 *ni *ci /(nt *ci +ni *ct):
ets = eis*2.0*ni*ci/(ni*ci+nt*ct);
*erp = eip*(nt*ci-ni*ct)/(nt*ci+ni*ct);
*ers = eis*(ni*ei-nt*ct)/(ni*ci+nt*ct);
return;

B-5. SHGRF-B.CPP--A microscopic calculation of reflected SSHG.

void main()

int i, j, u, v, dc;
void basis(void), rotate(complex [3][3][3]);
double rp[2], rs[2], ci, si, rps[2];
complex nlp[2][3], dd;
basis();
rotate(m_beta);
dc=mr;

// surface susceptibility per cm^2.



kapa = vector_cmplx(0,dc);

dpq =(complex far***)farcalloc((unsigned long)(dc+1),sizeof(complex far * *)):
bpq =(complex far***)farcalloc((unsigned long)(dc+1),sizeof(complex far * *)):
for(i=0; i<=dc; i++)

dpq[i] = matrix_cmplx(0,2,0,2);
bpq[i] = matrix_cmplx(0,2,0,2);

char fout[20], none[80];
FILE *outl, *out2;
struct date d;
getdate(&d);

strl: printf("\n file name to save: ");
scarif("%s", fout);
if ((outl = fopen(fout, "wt")) == NULL)

printf( "\n...Cannot open output file, try again. "):
goto strl;

printf("title of the file, no whitespace and no comma, please:");
scanf("%s", none);
fprintf(outl,"GRAPH 4\nASCII\n%s\n%d-%d-%thn 7\n",

none, d.da_mon, d.da_day, d.da_year);
fprintf(outl,"angle of incidence,pp-mic,ps-mic,pp-semi,ps-semi,pp-mac,ps-mac");
fprintf(outl,"\n 91, 91, 91, 91, 91, 91, 91");
ci = cos(phi);
si = sin(phi);
for (i=0; k=90; i++) {
if ((i%5)==0) printf(" %d", i);
fprintf(outl,"\n%d", i);

theta = double(i)*pi/180.0; // angle of incidence
mr=dc;
k_wave[0] = wave_vect*sin(theta)*ci; /1 wave vector
k_wave[1] = wave_vect*sin(theta)*si;
k_wave[2] = -wave_vect*cos(theta);
shgrflc(nlp, rp, rs);
fprintf(outl,",%g,%g", rp[0], rs[0]);
boundary(rps, nlp[0]);
fprintf(outl, ". %g, %g ", rps[0], rps[1]);
blmbgn(n1p); // macroscopic nonlinear polarization.
boundary(rps, nlp[0]);
fprintf(outl,",%g,%g", rps[0], rps[1]);
wave_vect 1= 2.0; // reset the frequency.

fprintf(outl,"\n 0");
fclose(outl);
farfree(kapa);
for(i=dc; i>=0; i--)

cmplx_ffree(dpq[i],0,2,0);
cmplx_ffree(bpq[i],0,2,0);

farfree(dpq);
farfree(bpq);
return;

// free the dynamic memory.
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void shgrflc(complex nlp[2][3], double rp[2], double rs[2])

double **rj, rfl[3], ci, si: // **rj are the position vectors of characteristic dipoles.
int i, j, u, v, ii, dc, rc, flg=0;
complex far **dpf;
complex fld[3], dd, dum, kw, kl;
void dipole(double**, complex far**, int), basis(void);
void shg_dpl(double * *, complex[2]131. complex far **);

dpf = matrix_cmplx(0,1,1,3*(L+1)+Nrun);
rj= matrix_dbl(0,L,0,2); //position vector of lattice points at n=m=0.
for (i=0; i<=L; i++) I // Eq.(2.17) and Fig. 2.2.

rj[i][01=0.0; // s_l or x-axis.
rj[i][1]=0.0; // y-axis.
rj[i][2] = -1.0*i; // z-axis.

dipole(rj, dpf, flg);
shg_dpl(rj, nlp, dpf); If calculate the characteristic dipole vector of 2w at rj.
if (L>=0) kl = -complex(k_wave[0]*rj[L][0]+k_wave[1]*rj[L][1])

- kapa[0] *complex(rj [L] [2] -1.0);
else kl = complex(0.0,0.0);
ci = cos(phi);
si = sin(phi);

for (ii=0; ii<=1; ii++) // p-polarization (ii=0) and s-polarization (ii=1) incidence.
for (u=0; u<=2; u++) {

fld[u] = complex(0.0); // Eq.(3.26) : the reflected SSHG.
for (v=0; v<=2; v++) fld[u] += dpq[0][u][v]*nlp[ii][v];

// the dipole field of nonlinear (the topmost layer) response.
for (}=0; j<=L; j++)

kw = -complex(k_wave[0]*rj[j][0]+k_wave[1]*rj[j][1])

-kapa[0]*complex(rj[j][2]);
for (v=0; v<=2; v++)

fld[u] += dpq[0] [u] [v]*dpf[ ii] [3*j+v+1]*exp(im *kw);
// and the linear response from surface layers,

for (i =0; i< =nm; i++)
dd = complex(1.0)-exp(-im*(qm[i]-kapa[0]));
dum = complex(0.0);
for (v=0; v<=2; v++) dum += dpq[0][u][v]*um[i][v];
fld[u] += dpf[ii][3*(L+1)+1+i] *dum*exp(im*k1)/dd;

// plus the dipole field from the bulk.

rp[ii] = abs(-(fld[0]*ci+fld[1]*si)*cos(theta)+fld[2]*sin(theta));
rs[ii] = abs(fld[1]*ci-fld[0]*si);

cmplx_ffree(dpf,0,1,1);
dbl_ffree(rj,0,L,0);
return;

void boundary(double rps[2], complex nlp[3])
// Eqs.(3.10 and 3.11).
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double ti=theta, tm, k=wave_vect*4.0*pi, ni=1.0, nt=rfr_n2, ci, cm:
double cp=cos(phi), sp=sin(phi);
tm = asin(sin(ti)*ni/nt);
ci = cos(ti);
cm = cos(tm);
rps[1] = k*abs(nlp[1]*cp-nlp[0]*sp)/(nt*cm+ni*ci); // y or s-reflection factor.
rps[0] = k*abs(-(n1p[0]*cp+nlp[1]*sp)*cm+nlp[2]*sin(tm))/(ni*cm+nt*ci);

// p-reflection factor.
return;

void blmbgn(complex nlp[2][3])
// Nonlinear polarization generated by the bulk local field in the continuous medium model.

double etp, ets, et[3], tm, cm, sin, ni=1.0, nt=rfr_nl, nt2=rfr_n2;
int h, i, j;
tm = asin(sin(theta) *ni /nt);
frsn1(&etp, &ets);
et[0] = etp *cos(tm) *cos(phi);
et[1] = etp*cos(tm)*sin(phi);
et[2] = etp*sin(tm); // p-polarization input.
for (h=0; h<=2; h++)

for (i=0,n1p[0][h]=complex(0.0); i<=2; i++)
for (j=0; j<=2; j++)

nlp[0][h] += m_beta[h][i]pretfiret[j];
for (h=0; h<=2; h++) // Lorentz local field factor.

nlp[0][h] *= (nt2*nt2+2.0)*(nt*nt+2.0)*(nt*nt+2.0)/27.0;
et[0] = -ets*sin(phi);
et[1] = ets*cos(phi);
et[2] = 0.0; // s-polarization input.
for (h=0; h<=2; h++)

for (i=0,n1p[1][11]=complex(0.0); i<=2; i++)
for (j=0; j<=2; j++) nlp[1][h] += m_beta[h][i][j]*et[i]*et[j];

for (h=0; h<=2; h++) // Lorentz local field factor.
nlp[1] [h] *= (nt2*nt2+2.0)*(nt*nt+2.0)*(nt*nt+2.0)/27.0;

return;
1

B-6. SHG-DIPO.CCP--To calculate the electric dipole moments at au.

void shg_dpl(double **r, complex nlp[2][3], complex far **dpf)
// nlp is the nonlinear polarization.
// **r is position vectors of lattice points at n=m=0.

double p1_alpha, *rz, G;
int i, j, u, v, ii, h;
int rc, dc;
complex recipr(int, int, int*), direct(int, int, int*);
complex far **f, **m_alpha, **af;
complex e Joc[3], c[3][3];
void make_af(double *,complex far**,complex far**,complex far**);
void make_f(complex far **, double **);
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void bulk(complex far **, complex [3][3], double);
m_alpha = Matrix_cmplx(1,3,1,3); // molecular polarizability tensor.
rz = vector_dbl(0,L);
for (i=0; i<=L; i++) rz[i] = r[1][2]; // along the z-axis.
pl_alpha = (rfr_nl*rfr_n1-1.0)*3.0/((rfr_nl*rfr_n1+2.0)*4.0*pi):

// Lorentz-Lorenz formula. 1/Ic_a^3 is number density.
for (u=1; u<=3; u++) // an diagonal matrix.

for (v=1; v<=3; v++) {
if (u==v) m_alpha[u][v] = complex(pl_alpha);
else m_alphartil[v] = complex(0.0):

matrix_inv_cmplx(m_alpha, 3): // invert the tensor.
for (ii=0; ii<=1; ii++)

for (u=1; u<=3; u++) // local field at the first layer.
e_loc[u-1]=complex(0.0);
for (v=1; v<=3; v++) e_loc[u-1] += in_alpha[u][v]*dpf[ii]fv];

for (h=0; h<=2; h++) // nonlinear dipole of the topmost layer.
nIp[ii][h] = complex(0.0);
for (i=0; i<=2; i++)

for (j=0; j<=2; j++)
nlp[ii][h] += m_beta[h][i][j]*e_loc[]*e_loc[j];

wave_vect *= 2.0;
for (h=0; h<=2; h++) k_wave[h] *= 2.0;
for (ii=0; ii<=2; ii++) diff_riii1=0.0;
for (u=0; u<=2; u++) for (v=0; v<=2; v++) c[u][v] = direct(u,v,&dc)+recipr(u,v,&rc);
pl_alpha = (rfr_n2*rfr_n2-1.0)*3.0/((rfr_n2*rfr_n2+2.0)*4.0*pi);

// Lorentz-Lorenz formula, 1/Ic_a^3 is number density.
for (u=1; u<=3; u-t-+) // a diagonal matrix.

for (v=1; v<=3; v++)
if (u==v) in_alpha[u][v] = complex(pl_alpha);
else m_alpha[u] [v] = complex(0.0);

matrix_inv_cmplx(m_alpha, 3); // invert the tensor.2°
mr = 2*mpq*(mpq+1);
bulk(m_alpha, c, rfr_n2);

f = matrix_cmplx(1,3*(L+1),1,3*(L+1)); // transformation tensor between surfacelayers at 2co

if (L >= 0) make_f(f, r);
of = matrix_cmplx(1,3*(L+1)-Hun+1,1,3*(L+1)-Hun+1);
make_af(rz, af, f, m_alpha): // left-hand side of Eqs.(3.25).
dc = 3*(L+1)+1;
for (ii=0; ii<=1; ii++)

for (i=0; i<=L; i++) // applied field by nonlinear dipole layer;
for (u=1; u<=3; u++) // right-hand side of Eqs.(3.25).

dpf[ii][3*i+u] = complex(0.0);
for (v=1; v<=3; v++) dpf[ii][3*i+u] += f[3*i+u][vrn1p[ii][v-1];

1

for (i=0; i<=nm; i++)
dpf[ii][dc+i] = complex(0.0);
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if (i<=1) for (u=0; u<=2; u-H-) for (v=0; v<=2; v++)
dpf[ii][dc+i] um[i][u] *bpq[0][u][v] *nIp[ii][v];

lineq(af, dpf[ii]. dc+nm, 1); // iterative improvement2() once!
// dpf has dipole moments of the surface layers at 2w.

free(rz);
cmplx_ffree(m_alpha,1,3,1);
cmplx_ffree(L1,3*(L+1),1);
cmplx_ffree(af,l,dc+nm,1);
return:

B-7. DMPLE2.CPP--To calculate the linear dipole moments in the surface region.

void dipole(double **r, complex far **dpf, int flg)
// **r is position vectors of lattice points at n-=m=0 in surface region.

double p1_alpha, e_xt[3]. *rz, G;
int i, j, u, v, ii;
complex far **f, **af, **m_alpha;
int rc, dc;
complex recipr(int, int, int*), direct(int, int, int*);
void make_af(double *,complex far**,complex far**,complex far**);
void make_f(complex far **, double **);
void bulk(complex far **, complex [3][3], double):
complex 431[3];
rz = vector_db1(0,L);
for (i=0; i<=L; i++) rz[i] = r[i][2]; // along z-axis.
m_alpha = matrix_cmplx(1,3,1,3); // molecular polarizability tensor.
for (ii=0; ii<=2; ii++) diff_r[ii]=0.0;
for (u=0; u<=2; u++) for (v=0; v<=2; v++) c[u][v] = direct(u,v,&dc)+recipr(u,v,&rc);
pl_alpha = (rfr_nl*rfr_n1-1)*3.0/((rfr_n1 *rfr_n1+2)*4.0*pi);

// Lorentz-Lorenz formula, 1/1c_a^3 is number density.
for (u=1; u<=3; u++) a diagonal matrix.

for (v=1; v<=3; v++)
if (u==v) m_alpha[u][v] = complex(pl_alpha):
else m_alpha[u][v] = complex(0.0);

1

1

matrix_inv_cmplx(m_alpha, 3); // invert the tensor.2°
if (flg==0) bulk(m_alpha, c, rfr_n1);

// nm+1 is the number of normal mode solutions in the bulk.
f = matrix_cmplx(1,3*(L+1),1,3*(L+1));

// transformation tensor between surface layers.
if (L>=0) make_f(f, r);
af = matrix_cmplx(1,3*(L+1)+nm+1,1,3*(L+1)+nm+1);
make_af(rz, af, f, m_alpha); // left-hand side of Eqs.(2.67).
dc=3*(L+1)+1;

// ii=0; // p_polarization only.
for (ii=0; ii<=1; ii++)

if (ii==0) {
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e_xt[0] = cos(theta)*cos(phi);
e_xt[1] = cos(theta)*sin(phi);
e_xt[2] = sin(theta);

// external field with p_polarization.
if (ii==1)

e_xt[0] = -sin(phi);
e_xt[1] = cos(phi);
e_xt[2] = 0.0;

1 // external field with s_polarization.
for (i=0; i<=L; i++) // get the external field. right-hand side of Eqs.(2.67).

for (u=0; u<=2; u++) dpf[ii][3 *i +u +l] =

complex(e_xt[u])*exp(im*complex(dot_pr(k_waves[i].0,2)));
for (i=0; i<=nm; i++)

dpf[ii][dc+i] = complex(0.0);
if (i<=1) for (u=0; u<=2; u++) dpf[ii][dc+i] += um[i][u]*complex(e_xtiul);

lineq(af, dpf[ii], 3*(L+1)+tun+1, 1); // iterative improvement2° once!
// of is intact.

1

free(rz);
cmplx_ffree(m_alpha,1,3,1);
cmplx_ffree(af,1,3*(L+1)+nm+1,1);
cmplx_ffree(f,1,3*(L+1),1);
return;

1

void make_f(complex far **f, double **r)
// Eqs.(2.34), (2.35-37), and (2.38-2.39).

1

int i, j, ii, u, v;
int rc, dc;
complex recipr(int, int, int*), direct(int, int, int*);
for (ii=0; ii<=2; ii++) diff_r[ii]=0.0;
for (u=0; u<=2; u++) for (v=0; v<=2; v++) f[u+1][v+1] = direct(u,v,&dc)+recipr(u,v,&rc);
for (j=0; j<=L; j++) for (u=1; u<=3; u++) for (v=1; v<=3; v++) f[3*j+u][3*j+v] = f[u][v];
for (u=0; u<=2; u++)

for (j=1; j<=L; j++)
for (ii=0; ii<=2; ii++) diff_r[il]=r[0][ii]-r[j][ii];
for (v=0; v<=2; v++) f[u+1][3*j+v+1] = direct(u,v,&dc)+recipr(u,v,&rc);

1

for (i=1; i<=L; i++)
for (ii=0; ii<=2; ii++) diff_r[ii]=r[i][ii]-r[0][ii];
for (u=0; u<=2; u++) for (v=0; v<=2; v++)

f[3*i+u+1][v+1] = direct(u,v,&dc)+recipr(u,v,&rc);
1

for (i=1; i<=L; i++)
for (u=0; u<=2; u++)

for (j=i+1; j<=L; j++)
for (v=0; v<=2; v++) f[3*i+u+1][3*j+v+1] = f[u+1][3*(0)+v+1];

for (i=2; i<=L; i++)
for (u=0; u<=2; u++)

for (j=1; j<=i-1; j++)
for (v=0; v<=2; v++) f[3*i+u+1][3*j+v+1] = f[3*(i-j)+u+1][v+ 1];



return;
1

void make_af(double *rz, complex far**af, complex far**f, complex far**m_alpha)
// left-hand side of Eqs.(2.67) or Eqs.(3.25).

complex dum, umb, ubu, dd, bb;
double rm;
int rc, dc, i, j, ii, u, v, ndx[20];
for (i=0; i<=L; i++)

for (u=1; u<=3; u++)
for (j=0; j<=L; j++)

for (v=1; v<=3; v++)
if (i=--j) af[3*i+u][3*j+v] = m_alpha[u][v]-f[u][v];
else af[3*i+u][3*j+v] = -f[3*i+u][3*j+v];

// surface layer-surface layer interaction.
dc=3*(L+1)+1;
nn=rz[L]-1.0; // -(L+1)
for (i=0; i<=L; i++)

for (u=0; u<=2; u++)
for (ii=0; ii<=nm; ii++)

af[3*i+u+1] [dc+ii] = complex(0.0);
for (j=0; j<=mr; j++)

dd = complex(1.0)-exp(-im*(qm[ii]-kapa[j]));
dum = complex(0.0);
for (v=0; v<=2; v++) churl += dpq[j][u][v]*um[ii][v];
af[3*i+u+1][dc+ii] -=

dum*exp(im*kapa[j]*complex(rz[i]-nn))/dd;
1 only p=q=0 is included!

1 // bulk region to surface interaction.
ndx[0]=ndx[1]=0; // only the propagating waves included.
for (i=0; i<=nm; i++)

ii =ndx [i];

for (j=0; j<=L; j++)
for (v=0; v<=2; v++)

umb = complex(0.0):
for (u=0; u<=2; u++) umb += um[i][u]*bpq[ii][u][v];
af[dc+i][3*j+v+1] = -umb*exp(im*kapa[ii] *complex(rz[j]));

1 // surface layers to bulk interaction.
for (i=0; i<=nm; i++)

ii=ndx[i];
for (j=0; j<=run; j++)

bb = complex(1.0)-exp(-im*(qm[j]+kapa[ii]));
ubu = complex(0.0);
for (u=0; u<=2; u++)

for (v=0; v<=2; v++) ubu += um[i][u] *bpq[ii][u][v]*um[j][v];
af[dc+i][dc+j] = -ubu*exp(im*kapa[ii]*complex(rm))/bb;

1

return;
1

1

// bulk-bulk interaction.
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B-8. ROOT.CPP--To calculate the bulk dipole moments from the decomposed dipole waves solutions.

#define sgn(x) (x >=0.0) ? 1.0 : -1.0
complex ***td, ***tb, *tk, ialpha_c[3][3];

void bulk(complex far**m_alpha, complex c[3][3], double rfr_n)
// with inverted polarizability tensor.

double xq, xold, qf, sg, ipi;
int i, j, u, v, ii, *kndx, p, q, dc=mr;
complex f[2], df[2];
kndx = new int[dc +1];
tk = new complex[dc+1];
td = (complex ***) new complex ** [dc +1];
tb = (complex ***) new complex ** [dc+1];
for (i = 0; i <= dc ; i++)

td[i] = (complex **) new complex *131;
tb[i] = (complex **) new complex *[3];
for (ii = 0; ii < 3; ii++)

td[i][ii] = new complex[3];
tb[i][ii] = new complex [3];

for (u=0; u<=2; u++) for (v=0; v<=2; v++) ialpha_ c[ u ][v] = m_alpha[u +1][v +1]- c[u][v];
j=0;
for (i=0; i<=mpq; i++)

for (p=i; p--) {
q=i-abs(p);
bkfdb(p,q,j);
for (ii=0; ii<j; ii++)

if tikUl==tk[ii]) 1
for (u=0; u<=2; u++)

for (v=0; v<=2; v++)
td[ii][u][v] += td[j][u][v];
td[ii][u][v] += tb[j][u][v];

1

j++;

for (p=i-1; p>=(1-i); p--)
q=abs(p)-i;
bkfdb(p,q,j);
for (ii=0; ii<j; ii++)

if (114.11==ik[ii])
for (u=0; u<=2; u++)

for (v=0; v<=2; v++)
td[ii][u][v] += td[j][u][v];
td[ii][u][v] += tb[j][u][v];

1



130

j++;

inr=j-1;
for (i =0; i<=mr; i++)

kndx [i]=0;
sg=abs(tk[i]);
for (j=0; j<=mr; j++) if (abs(tk[j])<sg) kndx[i]++;

for (i =0; i<=mr; i++)
ii= kndx[i];

kapa[ii] = tk[i];
for (u=0; u<=2; u++)

for (v=0; v<=2; v++) {
dpq[ii][u][v] = td[i][u][v];
bpq[ii][u][v] = tb[i][u][v];

of = rfr_n*wave_vect*sqrt(1.0-pow(sin(theta)/rfr_n, 2.0));
// z_component of bulk macroscopic wave-vector.

dtrmn(complex( -qf), &f[0], &df[0]); // find roots with negative
xold=xq=-qf; // real parts and negative imaginary parts.
f[1]=f[0];
df[1]=df[0];

funl: xq = xold-real(f[1]/df[1]); // find bracket for root #1.
dtrmn(complex(xq), sc..f[1], &df[1]);
if ((real(f[1])*real(f[0]) > 0.0) && (abs(f[11/df[1]) > artif)) (

xold = xq;
f[0] = f[1];
df[0] = df[1];
goto funl;

qm[0]=rtsafe(dtrmn, complex(xold), complex(xq), qf*eps);
if (theta==0.0)

um[0][0] = complex(-sin(phi),0.0);
um[0][1] = complex(cos(phi),0.0);
um[0][2] = complex(0.0,0.0);

II root polishing.20
// for degenerate qms'.

else pl_vect(qm[0], um[0]);
sg = sgn(real(df[0]));
xq=real(qm[0]);

fun2: xq -= sg*fabs(real(qm[0])+4); // until sign changed in slop.
dtrmn(complex(xq), &f[1], &df[1]);
if ((real(df[1])*real(df[0])) >= 0.0) goto fun2;
f[0]=f[1];
xold=xq;

fun3: xq = xold-real(f[1]/df[1]); // find bracket for root #2.
dtrmn(complex(xq), &f[1], &df[1]);
if greal(f[1])*real(f[0]) > 0.0) && (abs(f[1] /df[1]) > artif)) {

xold = xq;
f[o] = f[1];
df[0] = df[1];



goto fun3;

qm[1]=rtsafe(dtrinn, complex(xold), complex(xq), qf*eps); // root polishing.2°
if (theta==0.0) // for degenerate qms'.

um[1][0] = complex(cos(phi),0.0);
um[1][1] = complex(sin(phi),0.0);
um[1][2] = complex(0.0,0.0);

else pl_vect(qm[1], wn[1]);
nm=1;

stp: delete [1 kndx;
delete [1 tk;
for (i = 0; i <= dc; i++)

for (ii = 0; ii < 3; ii++)
delete [] td[i] [ii];
delete [] tb[i][ii];

delete [] td[i];
delete [] tb[i];

delete [] td;
delete [] tb;
return;

// FREE MEMORY

complex doit(complex far **a) // determinant of a 3x3 matrix.

complex dm;
dui = a[1][1]*a[2][2]*a[3][31+a[1][2]*a[2][3]*a[3][1]

+a[1][3]*a[3][2]*a[2][1]-a[1][1]*a[3][2]*a[2][3]
-a[1][2]*a[2][1]*a[3][3]-a[1][3] *a[2][2]*a[3][1];

return dm;
1

void dtrmn(complex qwz, complex *dtr, complex *df)
// Matrix and its determinant of Eq.(2.58).

complex far **a;
complex ds[3], dd, bb;
int i, j, u, v, h, ii;
a = matrix_cmplx( 1,3,1,3);
for (i=1; i<=3; i++)

u = 1;

for (j=1; j<=3; j++)
v = j-1;
a[i][j]=ialpha_c[u][v];
for (ii=0; ii<=mr; ii++)

dd = exp(im*(qwz-tk[ii]))-1.0;
bb = exp(-im*(qwz+tk[ii]))-1.0;
a[i][j]-=(td[ii][u][v]/dd+tb[ii][u][v]/bb);

1

1
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*dtr = doit(a);

for (h=0; h<=2; h++)
for (i=1; i<=3; i++)

u = i-i;
for (j=1; j<=3; j++) {

v = j-1;
if (u != h) a[i][j]=ialpha_c[u][v];
else a[i][j]=complex(0.0,0.0);
for (ii=0; ii<=mr; ii++)

dd = exp(im*(qwz-tk[ii]))-1.0;
bb = exp(-im*(qwz+tk[ii]))-1.0;
if (u != h) a[i][j]-=(td[ii][u][v]Ald+tb[ii][u][v]/bb);
else a[i] [j]+=td[ii] [u][v]*im*(dd+1.0)/(dd*dd)

-tb[ii][u][v]*im*(bb+1.0)/(bb*bb);

ds[h] = doit(a);

*df=ds[0]+ds[1]+ds[2];
cmplx_ffree(a,1,3,1);
return;

1

II the first derivative.

void pl_vect(complex qwz, complex udw[3])
// Obtain the polarization vectors of the decomposed dipole waves according to Eq.(2.55).

complex far **a;
complex dd, bb, sum;
double d, dum, big;
int i, j, u, v, *indx, ii;
a = matrix_cmplx(1,3,1,3);
indx = vector_int(1,3);
for (i=1; i<=3; i++)

u =i-1;
for (j=1; j<=3; j++) 1

v = j-1;
a[i][j]=ialpha_c[u][v];
for (ii=0; ii<=mr; ii++)

dd = exp(im*(qwz-tk[ii]))-1.0;
bb = exp(-im*(qwz+tk[ii]))-1.0;
a[i][j]-=0d[ii][n][v]/dd+tb[ii][u][v]/bb);

1

for (i=0; i<=2; i++) udw[i] = complex(0.0,0.0);
u=0;
for (i=1; i<=3; i++) II Find the biggest element in column.

big=0.0;
for (j=1; j<=3; j++) if ((dum=abs(a[j][i])) > big) big=dum;
if (big == 0.0) {

u++;
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for (ii=0; ii<=2; ii++) if (ii==(i-1)) udw[ii] = complex(1.0,0.0);

1

if (u>0) goto hmm;
ludcmp(a. 3, indx, &d);2° // This returns d as 0 for singular matrix.
dum = norm(a[1][1]);
for (j=2; j<=3; j++) if ((d=norm(a[j][j])) < dum) dum = d;

for (i=3; i>=1; i--) // Back-substitution.20
sum=complex(0.0, 0.0);
for (j=i+1; j<=3; j++) sum -= a[i][j]*udw[j-1];
if (fabs(nonn(a[i][i])-dum) < dum*artif) udw[i-1] = complex(1.0,0.0);
else udw[i-1] = sum/a[i][i];

hmm: dum = 0.0;
for (i=0; i<=2; i++) dum += norm(udw[i]);
d = sqrt(dum);
for (i=0; i<=2; i++) udw[i] 1= complex(d);
for (i=0; i<=2; i++)

if (fabs(real(udw[i]))<eps) udw[i]=complex(0.0,imag(udw[i]));
if (fabs(imag(udw[i]))<eps) udw[i]=complex(real(udw[i]),0.0);

free(indx+1);
cmplx_ffree(a,1,3,1);
return;

void bkfdb(int p, int q, int j)
// D and B tensors of Eq.(2.45).

complex kpq[3], dr;
double kkd;
int ii, u, v;
kpq[0]=complex(k_wave[0]-4-2.0*pi*p);
Icpq[1]=complex(k_wave[1]+2.0*pi*(q-alpha*p) /beta);
for (ii=0, dr=complex(0.0,0.0); ii<=1; 11++) dr += kpq[ii]*kpq[ii];
kkd=wave_ve,ct*wave_vect-real(dr);
if (kkd >= 0.0) tk[j] = complex(sqrt(kkd));
else tk[j] = im*sqrt(fabs(kkd));
kpq[2]=tk[j]; // for the upper triangular matrix.
for (u=0; u<=2; u++)

for (v=0; v<=2; v++)
td[j][u][v] = -kpq[u]*kpq[v];
if (u =v) td[j] [u] [v] += complex(wave_vect *wave_vect);
td[j][u][v] *= im*complex(2.0*pi/beta)/tk[j];

kpq[2]=-tk[j]; // for the lower triangular matrix.
for (u=0; u<=2; u++)

for (v=0; v<=2; v++)
tb[j][u][v] = -kpq[u] *kpq[v];
if (u==v) tb[j] [u] [v] += complex(wave_vect *wave_vect);
tb[j][u][v] *= im*complex(2.0*pi/beta)/tk[j];
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return;
}

B-9. Subroutines for the lattice sums in direct and reciprocal space.

complex direct(int u, int v, int *h)
// Sum over the direct lattice space with Eq.(2.34).

The 2-D lattice vector is (n+alpha*m, beta*m, 0)*lc_a.

1

double k=wave_vect, E=E_cut;
complex f(0.0, 0.0), df, ff(0.0, 0.0);
complex nmsum(int, int, int, int), erfc_com(complex);
int n, m, N=0;
*h = 0;
if (fabs(diff_r[2]) > zswitch) return f;
if ((diff 421=0.0 && diff r[1]..0.0) && diff_r[0]=0.0)

N=1;
if (u==v) ff = complex(4.0*E*(E*E-k*k)/(3.0*sqrt(pi))*exp(k*k/(4.0*E*E)))

-complex(2.0/3.0)*im*k*k*k*(erfc_com(-im*complex(k/(2.0*E)))-1.0);
// Eq.(2.39).
// The substraction of (2/3)ikA3 is to include the radiation damping
// in the electric dipole radiation treatment.

else N=0;
do {

df=complex(0.0, 0.0);
for (m=N, n=N; n>=(-N); n--) df += nmsum(u, v, n, m);
for (m=(N-1), n=(-N); m>=(-N); m--) df += nmsum(u, v, n, m);
for (m=(-N), n=(-N+1); n<=N; n++) df += iunsum(u, v, n, m);
for (m=(-N+1), n=N; m<=(N-1); m++) df += nmsum(u, v, n, m);
f += df;
N++;
if (N > Nmax)
nrerror (" DIRECT converges slowly. Reset zswitch or E_cut.");

1 while (N<=2 II ((fabs(real(d0) > fabs(real(f) *eps)) II (fabs(imag(df)) > fabs(imag(f)*eps))));
*h = N-1;
if (fabs(real(f)) < artif) f = complex(0.0. imag(f));
if (fabs(imag(f)) < artif) f = cotnplex(real(t), 0.0);
return f+ff; // This matrix element is normalized by lc_a^3.

complex nmsum(int u, int v, int n, int m)
// Eq.(2.34).

{

complex erfc_com(complex);
double *S, *M, T, T2, T3;
complex fl, f2, f;
double k=wave_vect, E=E_cut, k2, E2;
int i;
S = new double[3];
M = new double[3];
S [0] =n +alpha *m;

S[1]=beta*m;



135

S [2] =0.0;
for (i=0; i<=2; i++) M[i]=diff_r[i] -S[i];
T=sqrt(dot_pr(M, M, 0, 2));
k2=k*k;
E2=E*E;
T2=T*T;
T3=T2*T;

f1=M[u]*M[v]*(complex(3.0/T2-k2)-im*complex(3.0*k/T));
if (u==v) fl += (k2*T2-1.0+irn*k*T);

f2 =M[u]*M[v]*(complex(3.0/T2+2.0*E2)-im*complex(k/T));
if (u==v) f2 -= 1.0;

fl *= exp(im*k*T) *erfc_com(T*E+im*complex(k/(2.0*E)))*complex(1/1.3);
f2 *= complex(exp(-T2*E2+k2/(4.0*E2))*2.0*E/(sqrt(pi) *T2));
f = exp(im*dot_pr(k_wave, S, 0, 2))*real(fl+f2);
deleter] S;
delete[] M;
return f;

complex recipr(int u. int v, int *h)
// Perform two dimensional summation over reciprocal lattice space.
// The reciprocal lattice vector is (beta *p, q-alpha*p, 0)*2*pi/(1c_a*beta), .

complex f(0.0, 0.0), df;
complex pqsum(int, int, int, int);
int p, q, N=0;

do
df=complex(0.0, 0.0);
for (q=N, p=N; p>=(-N); p--) df += pqsum(u, v, p, q);
for (q=(N-1), p=(-N); q>=(-N); q--) df += pqsum(u, v, p, q);
for (q=(-N), p=(-N+1); p<=N; p++) df += pqsum(u, v, p, q);
for (q=(-N+1), p=N; q<=(N-1); q++) df += pqsum(u, v, p, q);
f += df;
N++;
if (N > Nmax)
nrerror (" RECIPR converges slowly. Reset zswitch or E_cut.");

} while (N<=1 II ((fabs(real(df)) > fabs(real(f)*eps)) II (fabs(imag(df)) > fabs(imag(f)*eps))));
*h = N-1;
if (fabs(real(f)) < artif) f = complex(0.0, imag(f));
if (fabs(imag(f)) < artif) f = complex(real(f), 0.0);
return f*im*complex(pi/beta); This matrix element is normalized by lc_a^3.

1

complex pqsum(int u, int v, int p, int q)
// Eqs.(2.29, 2.35, 2.36 and 2.37).

complex erfc_com(complex);
complex fl(0.0, 0.0), kapa, deltal, delta2;
complex kpq[3], dr;
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double kkd, k=wave_vect, E=E_cut, zz=fabs(diff_r[2]);
int g, ii;

if (zz > zswitch) g=2; // use Eq.(2.29).
else g=1; // use Eqs.(2.35, 2.36 and 2.37).

kpq[0]=complex(k_wave[0]+2.0*pi*p);
kpq[1]=complex(k_wave[1]+2.0*pi*(q-alpha*p)/beta);

for (ii=0, dr=complex(0.0,0.0); ii<=1; ii++) dr += kpq[ii] *kpq[
kkd=k*k-real(dr);
if (kkd >= 0.0) kapa=complex(sqrt(kkd));
else kapa=im*sqrt(fabs(klcd));

if (diff_r[2] < 0.0) kpq[2] = -kapa:
else kpq[2]=kapa;

fl -= kpq[u]*kpq[v];
if (u==v) fl += complex(k*k);
if (g==2) 1

fl *= complex(2.0)/kapa;
goto out;

1;

deltal = erfc_com(-im*kapa/complex(2.0*E)-zz*E) *exp(im*kapa*zz);
delta? = erfc_com(-im*kapa/complex(2.0*E)+zz*E)*exp(-im*kapa*zz);
if ((u = =2) ^ (v==2)) fl *= (deltal-delta?)/kapa; // exclusive or
else fl *= (deltal+delta2)/kapa;
if ((u==2) & (v==2)) fl += exp(-zz*zz*E*E+kapa*kapa/complex(4.0*E*E))

*im*complex(4.0*E/sqrt(pi));
out: for (ii=0, dr=complex(0.0,0.0); ii<=g; ii++) dr += kpq[ii] *diff_r[ii];

fl *= exp(im*dr);
return fl;

1

B-10. Evaluate the complementary error function with a complex argument.

static double az;
double snep(double t) return exp(t *t) *sin(2.0 *az *t);
double csep(double t) { return exp(t *t) *cos(2.0 *az *t); }

complex erfc_com(complex z)
// Appendix A-6.

double snep(double), csep(double);
double erfcc(double);
double womb (double (*)(double), double, double); // A Romberg integration routine.20
complex cx;
double bz=imag(z), aden;
az=real(z);
if (az == 0.0) {

aden =0.0;
cx=complex(1.0, 0.0);
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else {
cx = complex(erfcc(az));
aden=gromb(snep, 0.0, bz);

cx -= complex(aden, gromb(csep, 0.0, bz))*complex(exp(-az*az)*2.0/scirt(pi));
return cx;

double erfcc(double x)
fl Returns the complementary error function erfc(x), based on Chebyshev fitting,2(1
// with fractional error everywhere less than 1.2e-7.

double t, z, ans;
z=fabs(x);
t= 1.0/(1.0 +0.5 *z);

ans=t*exp(-z*z-1.26551223+t*(1.00002368+t*(0.37409196+t*(0.09678418+
t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+
t*(-0.82215223+t*0.17087277)))))))));

return x >= 0.0 ? ans : 2.0-ans;
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Appendix C. Programs to Calculate the Temperature of a-C:H Films
Heated by a Train of Short Laser Pulses

STATIC SUB heating 0

CALL ScanTranslate
CLS : LOCATE 8, 18, 1
PRINT "Enter <cr> to start or <esc> to exit: "

sqry: cq$ = INKEY$
SELECT CASE cq$

CASE CHR$(27): GOTO dacquit
CASE "": GOTO sqry
CASE ELSE

END SELECT
rdgss = rdgss * .0001# 'laser beam size; convert to cm.
rlocate = rlocate * .0001# 'radial location for the calc.; convert to cm.
zdepth = zdepth * .0001# 'depth into the substrate for the calc.; convert to cm.
tlavpr = tlavpr * .001 'average laser power; convert to watt.
thickfm = thickfm * .00000001# 'film thickness; convert to cm.
PRINT : PRINT "wanuannit --!": PRINT
ipnum = INT(plwidth) \ 10 'how many short pulses in a train.
pinorm = 0
FOR i = 0 TO ipnum

pinorm = pinorm + pwr(i * 10! / plwidth)
NEXT i
pinorm = tlavpr * (1 10 A (-absorb)) * .002 / pinonn 'energy absorbed in each train.
FOR i = 0 TO ipnum 'repetition rate of 500 Hz (0.002 sec).

qheat(i) = pinorm * pwr(i * 10! / plwidth) 'energy absorbed in each pulse.
NEXT i
b(1, 0) = tempint: b(0, 0) = 0: j = 0: pts(0) = 1000: pts(1) = pts(0) 'calculate 1001 points.
FOR i = 0 TO ipnum

pltime(i) = 0
NEXT i

hell: j = j + 1
SELECT CASE mttr$

CASE "diamond": CALL diamond(b(1, j 1))
CASE "graphite": CALL graphite(b(1, j - 1))
CASE "amcarbon": CALL amcarbon(b(1, j 1))
CASE ELSE: GOTO dacquit

END SELECT
CALL silica(b(1, j - 1))
IF b(0, j 1) < plwidth THEN 'inside the pulse train.

b(0, j) = b(0, j 1) + drtint
jnum = INT(b(0, j)) \ 10
IF b(0, j) (INT(b(0, j)) \ 10) * 10 < drtint THEN jnum = jnum - 1
FOR i = 0 TO jnum

pltime(i) = pltime(i) + drtint
NEXT i
b(1, j) = tempint + addtemp(jnum)
IF zdepth = 0 AND rlocate < rdgss AND b(0, j) - (INT(b(0, j)) \ 10) * 10 < drtint
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THEN
CALL pulseinst(b(1, j), qheat(jnum + 1))
b(1, j) = tempfnl

END IF
ELSE 'outside the pulse train.

b(0, j) = b(0, j 1) + drtout
FOR i = 0 TO ipnum

pltime(i) = pltime(i) + drtout
NEXT i
b(1, j) = tempint + addtemp(ipnum)

END IF
IF j MOD 20 = 0 THEN PRINT "point counts=", j
IF j < pts(0) THEN GOTO hell
CALL MaxMin

dacquit: CALL ScanTranslate: CALL WriteScreen
EXIT SUB

END SUB

STATIC FUNCTION addtemp (ima) ' Eq.(4.6)

DIM transi AS DOUBLE, dzt AS DOUBLE, dfkt AS DOUBLE, adtmp AS DOUBLE
dtemp = 0
FOR i = 0 TO ima

transi = pltime(i) * .000000001# 'time after the arriving of the pulse train;
'convert to second.

dzt = dffsili * transi
dfkt = 4 * dffsvty * transi + rdgss * rdgss
adtmp = qheat(i) * EXP(-(zdepth A 2) / (4 * dzt)) * EXP(-(rlocate A 2) / dfkt)
dzt = 2.2 * cpsili * SQR(dzt) + density * cpcty * thickfm '2.2 is density of quartz.
adtmp = adtmp / ((pi) A 1.5 * dzt * dfkt)
dtemp = dtemp + adtmp

NEXT i
addtemp = dtemp
EXIT FUNCTION

END FUNCTION

STATIC SUB amcarbon (tempk) ' a-C:H; 200 K to 4000 K.

acoe(1) = -11.7: acoe(2) = 8.3: acoe(3) = -1.52: acoe(4) = .08 same as the graphite
bcoe(1) = 444: bcoe(2) = -393: bcoe(3) = 117: bcoe(4) = -11.6

' average value of graphite for which // and 1 to the layer planes
logtemp = LOG(tempk) / In10
ijk = 4
CALL fpoly(logtemp, ijk)
cpcty = 0: cndcty = 0
FOR i = 1 TO ijk

cpcty = cpcty + acoe(i) * afunc(i) specific heat
cndcty = cndcty + bcoe(i) * afunc(i) ' thermal conductivity

NEXT i
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dffsvty = cndcty / (density * cpcty) thermal diffusivity
EXIT SUB

END SUB

STATIC SUB diamond (tempk) ' 200 K to 4000 K by extrapolation.

acoe(1) = -3.47: acoe(2) = -3.39: acoe(3) = -.72: acoe(4) = 3.59
acoe(5) = -1.38: acoe(6) = .15
bcoe(1) = 387: bcoe(2) = -339: bcoe(3) = 99.5: bcoe(4) = -9.75
bcoe(5) = 0: bcoe(6) = 0
logtemp = LOG(tempk) / In10
ijk = 6
CALL fpoly(logtemp, ijk)
cpcty = 0: cndcty = 0
FOR i = 1 TO ijk

cpcty = cpcty + acoe(i) * afunc(i) specific heat
cndcty = cndcty + bcoe(i) * afunc(i) ' thennal conductivity

NEXT i
dffsvty = cndcty / (density * cpcty) thermal diffusivity
EXIT SUB

END SUB

STATIC SUB fpoly (xi, ima)
routine to calculate a polynomial of degree ima-1, with ima coefficients.

afunc(1) = 1
FOR j = 2 TO ima

afunc(j) = afiinc(j - 1
NEXT j
EXIT SUB

END SUB

STATIC FUNCTION fsgn# (gkk#, ggk#)

IF ggk# >= 0 THEN fsgn# = ABS(gkk#) ELSE fsgn# = -ABS(gkk#)

END FUNCTION

STATIC SUB graphite (tempk) 200 K to 4000 K by extrapolation.

acoe(1) = -11.7: acoe(2) = 8.3: acoe(3) = -1.52: acoe(4) = .08
bcoe(1) = 888: bcoe(2) = -787: bcoe(3) = 234: bcoe(4) = -23.3' // to the layer planes.
logtemp = LOG(tempk) / In10
ijk = 4
CALL fpoly(logtemp, ijk)
cpcty = 0: cndcty = 0
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FOR i = 1 TO ijk
cpcty = cpcty + acoe(i) * afunc(i)
cndcty = cndcty + bcoe(i) * afunc(i)

NEXT i
dffsvty = cndcty / (density * cpcty)
EXIT SUB

END SUB

STATIC SUB pulseinst (tempk, qht)
'to estimate the temperature at the time right after a short laser pulse

DIM integrl AS SINGLE, mc AS DOUBLE, spota AS DOUBLE
spota = pi * rdgss * rdgss
integrl = 0: tempfnl = tempk

ntgrl: SELECT CASE mad
CASE "diamond": CALL diamond(tempfnl)
CASE "graphite": CALL graphite(tempfnl)
CASE "amcarbon ": CALL amcarbon(tempfnl)
CASE ELSE: EXIT SUB

END SELECT
CALL silica(tempfnl)
mc = cpcty * density * thickfm
mc = mc + cpsili * 2.2 * SQR(dffsili * .0000000001#) '2.2 is density of the quartz substrate
mc = mc * spota
integrl = integrl + mc
IF qht > integrl THEN

tempfnl = tempfnl + 1
GOTO ntgrl

END IF
EXIT SUB

END SUB

STATIC FUNCTION pwr (xi) ' laser pulse train envelope

acoe(1) = 0: acoe(2) = 10.46: acoe(3) = -35.17: acoe(4) = 36.11
acoe(5) = 5.16: acoe(6) = -29.91: acoe(7) = 13.35
ijk = 7
CALL fpoly(xi, ijk)
ppwr = 0
FOR i = 1 TO ijk

ppwr = ppwr + acoe(i) * afunc(i)
NEXT i
pwr = ppwr
EXIT FUNCTION

END FUNCTION
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STATIC SUB silica (tempk) the substrate; 200 K to 4000 K by extrapolation.

acoe(1) = -.54: acoe(2) = -.47: acoe(3) = -.029: acoe(4) = .54
acoe(5) = -.19: acoe(6) = .019
bcoe(1) = 99: bcoe(2) = 89: bcoe(3) = 5.4: bcoe(4) = -111
bcoe(5) = 52: bcoe(6) = -6.5
logtemp = LOG(tempk) / In10
ijk = 6
CALL fpoly(logtemp, ijk)
cpsili = 0: cndsili = 0
FOR i = 1 TO ijk

cpsili = cpsili + acoe(i) * afunc(i) specific heat
cndsili = cndsili + bcoe(i) * afunc(i) thermal conductivity

NEXT i
cndsili = cndsili * .001
dffsili = cndsili / (2.2 * cpsili) thermal diffusivity
EXIT SUB

END SUB

' A input data file:

*

Commands: _@
go <cr>@

Scan Parameters :_@
beam size (radius of the Gaussian profile in micron):_50@
the total averaged incidence power (in milliwatt):_160@
away from center of the spot on the film to talc. (in micron):_50@
depth into the substrate to talc. (in micron):_0@
initial temperature (in Kelvin):_293@
time interval for calculation (in nanosec.):_@

within the pulse-train:_.5@ outside the pulse-train:_3@
pulse train duration (in nanosec.):_400@
absorbance of the fihn:_0.13@
thickness of the film (in Angstrom):_250@
density of the film (D:3.5, G:2.3, a-carbon:1.2-2.5):_2.3@
material of the film (diamond, graphite or amcarbon):_amcarbon@

Remark: array 0 for time,_@
array 1 for temperature._@




