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Investigation of Automatic Construction of

Reactive Controllers

Chapter 1

Introduction

In real-time control problems such as robot navigation, operating a power plant, or

operating a chemical refinery, the value of a control decision depends not only on

the correctness of the decision but also on the time when that decision is available

[Sch91, PB91]. Work in intelligent real-time systems has begun addressing the time

critical nature of such real-time systems through the use of reactive controllers, that

is, controllers with little or no internal state and low time complexity pathways

between sensors and effectors. These reactive controllers are created by compiling

into rules the information about the state of a controlled system and a computed

decision based on the state of that controlled system. The reactive controllers use

these rules in choosing control actions for the controlled system [Sch87, LNR87,

Kau9l].

The work presented here uses machine learning techniques to explore ap-

proaches to constructing reactive knowledge-based controllers from deliberative so-
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lutions for the On-Line Maintenance Agent (OLMA) [DF91]. In his paper [Gin89],

Ginsberg claims that to compile such a reactive solution is infeasible and that

"an effective approach to acting in uncertain domains...must always be

to look, to think, and only then to leap."

Ginsberg claims that when attempting to analyze all possible situations in advance

and storing appropriate responses in a table, this table must grow exponentially

with the complexity of the domain.

In this work we applied a machine learning program, C4.5, to generate de-

cison trees that store the relevant situations and appropriate responses for reactive

controllers. Since these decision trees can represent all possible situations, they

can implement the table that Ginsberg describes. However, if C4.5 determines

that a feature is not useful in making a decision, that feature is not tested, re-

sulting in a smaller decision tree. We measured the size and performance of all

the reactive controllers we created and determined that for our problem domain,

the size of a reactive controller need not be exponential in the size of the problem

representation.

Because the OLMA maintains a partially observable real-time control sys-

tem, this experimental study explores a problem that is more complex than the

problems discussed in [Gin89] for the following two reasons:

1. The controlled system is comprised of several components which can fail in

multiple ways. Each of these failures represents a class of problems. If any
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one of these problem classes is not addressed by the controller, then the

system is likely to get into an unresolved, broken state where one or more

failed components are never repaired.

2. The controlled system is a hidden Markov decision process. That is, the

entire state of the controlled system is never available to the controller for

problem solving.

The task of the OLMA is to provide control actions for a continuously run-

ning system. In continuously running controlled systems, failure of the controller

to rectify at least one instance of each class of potential problems may result in the

controlled system entering an irrecoverably broken state. For example, a problem

class might consist of a type of failure for a component. If the controller has no rule

or procedure for addressing that problem class, when the component fails, the com-

ponent may remain broken throughout the life of the system. When constructing

reactive controllers for continuously running systems the question becomes: Can

we build reactive controllers that will find a solution for every problem class?

This problem of the controlled system entering an unresolvable broken state

is compounded by the limited visibility the controller has of the state of the con-

trolled system. Without complete state information, the controller must use infor-

mation from earlier states to estimate the current state [DW91]. When this history

information is incorporated, the space needed to represent all possible situations

becomes infeasibly large. Our research addresses this space problem by drawing
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from work on indexical representations [AC87, WB90] in that "a system need not

name and describe every object in the domain, but should register information

only about objects that are relevant to the task at hand." [WB90] In the research

discussed here, the relevant question becomes: What history information is nec-

essary to achieve an adequate representation of the current state of the controlled

system?

1.1 Related Work

1.1.1 Kaul's Work

The work presented here is a continuation of the research of Lothar Kaul's Mas-

ter's thesis [Kau91]. In his thesis, Kaul explored the feasibility of automatically

constructing reactive systems from a deliberative solution for the OLMA.

He used inductive learning techniques, namely Cascade Correlation [FL90],

and C4.5 [Qui86] to generate reactive solutions. The training examples were gener-

ated by a deliberative controller and consisted of the previous act, the observations

from the controlled system, and the prior probability distribution of the state of the

controlled system. The output classes consisted of a control action and a posterior

probability distribution describing the state of the controlled system [Kau91].

Kaul used a batch or off -line approach when compiling reactive solutions.

He collected the training examples from the decision theoretic controller as it

maintained a continuously running system, then used these training examples as
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input to various inductive learning programs. Using these learning algorithms the

first stage of Kaul's approach predicted the control action the deliberative agent

would have taken given the observations and the prior probability distribution.

The second stage generated a single value of the joint probability distribution

given the sense input and the prior probability distribution. In this approach

the controller uses an internal representation of the probability distribution to

maintain the controller's beliefs of the current state of the controlled system. After

generating reactive solutions with this approach, the resulting solutions were then

evaluated with respect to their size and error rate.

Although Kaul found that compiling reactive solutions was feasible, the

primary drawback with this off-line learning approach stemmed from the distribu-

tion of training examples. These training examples consist of inputs and control

actions. The possible types of control actions are Probe, Replace, and Nothing.

Because failures occur infrequently, the Probe and Replace actions performed by

the deliberative controller, as reflected in the training examples, are also infrequent

as compared to the number of Nothing control actions. Due to the generalizing

nature of inductive learning methods, the overriding learned response was to issue

Nothing control actions. To address the problem of infrequent actions, the training

data was filtered to delete a fraction of the nothing actions thereby increasing the

frequency of the Probe and Replace actions. This approach proved more successful.

Occasionally, however, a learned controller would make a mistake. This mistake

would take the system into states that had not arisen during training. Conse-
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quently, the learned rules could not handle these states properly, resulting in poor

performance [Die91].

1.1.2 Other Related Work

In defining the functionality of the reactive controller, our work draws from research

in real-time systems in which the agent is embedded in the environment. Some

of the earlier work in this area is work done by Brooks, and Agre and Chapman.

Brooks proposed a layered, subsumption architecture for controlling robots [Bro68].

Agre and Chapman investigated the use of indexical representations and combina-

torial circuitry to implement a game playing penguin in Pengi [AC87].

Then, Watkins introduced Q-learning in which an agent explores its en-

vironment and learns an optimal policy for behavior from rewards in the envi-

ronment [Wat89]. With the advent of Q-learning, several researchers have used

reinforcement learning methods such as Q-learning to develop situated, learning

agents. Kaelbling addressed the problem of designing algorithms for reinforce-

ment learning in embedded systems [Kae90]. Mahadevan and Connell combined a

subsumption architecture with reinforcement learning for the automatic program-

ming of robots [MC91]. Whitehead applied concepts from indexical representations

combined with reinforcement learning to the adaptive control of sensory-motor sys-

tems [Whi91].
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1.2 Objectives

The overall objective of OLMA research is to develop a embedded, real-time agent

which uses cooperative deliberative and reactive controllers for situated action.

The goals of the OLMA research are commensurate with the goals of reactive plan-

ning and situated action where "the general idea is to build embodied agents that

behave intelligently in physical surroundings" [Sch89]. As part of the OLMA, the

current deliberative controller is able to provide appropriate control actions [DF91],

but this deliberative controller uses a decision theoretic approach which is NP-

hard [Coo87]. As a result, this deliberative controller is unable to make decisions

as quickly as real-time systems require.

As part of the OLMA research, the objectives of our work, similar to

Kaul's, are to explore automated construction of reactive controllers using the

input/output behavior of the deliberative controller, and to study the resulting

space/performance tradeoffs. The desired behavior of the reactive controllers is

to approximate the function of the deliberative controller and yet produce an an-

swer in much less time. Unlike Kaul's work, our work 1) explores both an off-line

and on-line approach to learning, 2) maps the current state directly to the next

action, and 3) investigates the use of previous actions and observations as history

information in the problem representation.

By providing training examples that are tailored specifically to the learning

task, we believe that learning is likely to be more successful. Such tailoring is
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enabled through embedding the learning component into the environment and

performing on-line learning. This study explores the effect on performance that

this embedded, on-line learning has compared to off-line learning when generating

a reactive controller.

In addition to tailoring the distribution of training examples through on-

line learning, this approach differs from Kaul's in the functional definition of the

reactive controller. Kaul used an internal model to represent the state of the

controlled system [Kau91]. The goal of our approach is to find the minimal amount

of space needed when compiling a reactive controller. We approach this by mapping

the observations directly to the actions circumventing the internal representation

of the problem domain.

In lieu of an explicit internal representation of the problem domain, our

approach explores the use of various amounts and aspects of history information.

We hope to determine if, by capturing and using the right history information, one

can successfully build a reactive controller in which the size does not necessarily

grow exponentially in the size of the decision theoretic method and can keep a

controlled system from entering an unrecoverable broken state.

The objectives of this work can be summarized as follows:

To study the use of history information in problem representation, and to

study on-line versus off-line approaches when automatically constructing re-

active systems.
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To examine the space and performance tradeoffs in an intelligent reactive

controller.

1.3 Research Approach

This research uses learning controllers to facilitate development and testing of

potential reactive controllers. The research began with the development of a series

of problem representations which use an increasing amount of history information.

Then, for each problem representation, learning controllers were generated using

both off-line and on-line learning. The research has been conducted by varying the

following parameters:

I. Problem Representation: The amount of history used in each problem rep-

resentation varies from none to several previous observations and control

actions. Each problem representation also uses the current observation.

2. Methods of Collecting Training Examples: Training examples are collected

using either on-line or off-line learning methods. In off-line learning the

training examples are collected in the first step, and the learning controller

is trained in the second step. In on-line learning, a training example is gen-

erated by capturing observations from the controlled system and the control

action recommended by the deliberative controller. This training example is

included with previous training examples and a learning controller is trained

with this set of training examples. Then, this learning controller chooses a
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control action based on the same observations as in the training example.

The controlled system executes the learning controller's control action and

generates a new set of observations, repeating the cycle.

Once each learning controller was generated, a quantitative measure was

used to predict the number of significant problem classes each controller could solve.

In this study the significant problem classes consisted of single component failures.

This quantitative measure presented examples from the significant problem classes

and recorded the number of problem classes in which the learning controller gave

at least one correct control action. With this predicted performance measure we

compared the performance of each problem representation and of off -line versus

on-line learning. Then, for each problem representation we found both space and

time requirements.

1.4 Summary of Results

The results show the following:

1. In general, a greater amount of history information does improve the perfor-

mance.

2. On-line learning approaches can provide some performance improvement over

off -line learning.

3. The inductive learning program, C4.5, is able to perform sufficient general-

izations such that the actual space requirements for each problem, as mea-
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sured experimentally by the size of the tree, is significantly smaller than the

theoretical worst case space requirement.

1.5 Outline of Paper

The remainder of this paper is structured as follows: Chapter 2 describes the

testbed for the OLMA. Chapter 3 presents the problem representations, the off -line

and on-line approaches to training data collection, and the experimental approach.

Chapter 4 presents the results from experiments described in Chapter 3. Finally,

Chapter 5 discusses the results and suggests some directions for future work.
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Chapter 2

Testbed

The testbed was developed as a modular and flexible means for exploring a variety

of agents and problem domains. The testbed consists of a simulator, an agent, and

the communication links between the simulator and the agent. The simulator pro-

vides many of the operational characteristics and behaviors of a real system which,

in this case, is a digital circuit. The agent is an instantiation of the OLMA which

consists of a reactive controller, a deliberative controller, and for purposes of this

study, a learning controller. The goal of this OLMA is to minimize over time the

cost of maintaining the simulated circuit. The development and implementation

of the testbed was a coordinated effort among Bruce D'Ambrosio, Tony Fountain,

and myself.

For purposes of this study, processing within the testbed alternates between

the simulator and the agent. The simulator first processes control actions from the

agent, then executes a complete cycle of the simulated system. At the end of

this cycle the observable values, including any requested probe values, are made



13

available to the agent as observations. The agent retrieves these observations from

the simulator, and generates a control action for use by the simulator.

2.1 Simulator

We designed and developed the simulator as a discrete event simulation tool to

model a variety of continuously running controlled systems. As a part of the

testbed, the simulator provides many of the operational characteristics and behav-

iors of an actual system without incurring the cost of using the real system.

Processing in the simulator is conducted through the creation and execution

of events. For each cycle of the simulation, the simulator begins by retrieving and

processing any control actions it may have received from the agent. After pro-

cessing these control actions, the simulator begins a process of first removing and

executing the event at the top the event queue, then checking whether executing

that event triggers other components within the model to generate new events, and

finally incorporating these new events, if any, into the event queue. The simulator

repeats this process until a condition, specific to the simulated system, signals the

end of the cycle.

2.1.1 The Simulated Circuit

In this study the simulator modeled a simple digital half adder (see Fig-

ure 1). This four gate circuit consists of two NOR gates, a NAND gate, and an

INVERTER. Each of these gates has a probability of failure of .001 per cycle. The
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Figure 1. The half adder circuit

circuit has two inputs, Il and 12; two outputs, 0 and C; and two probe points, P1

and P2. For this circuit, the simulator accepts seven control actions which include:

four Replace acts, one for each gate in the circuit. A gate is replaced with a

properly functioning gate. That new gate can fail immediately.

two Probe acts, each causes the simulator to return the value on the corre-

sponding internal connection line at the end of each cycle. (In Figure 1 these

lines are labeled P1 and P2.); and

one Nothing act, where the simulator effects no changes.

At the start of each cycle, a pair of randomly generated Os and is are

provided as input to the simulated circuit. This triggers gates NOR1 and NAND
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to generate and execute events', propagating the results to gates NOR2 and NOT.

Upon receipt of this input gates NOR2 and NOT trigger and execute, generating

new events. Since the output of NOT is connected to the input of NOR2, the

events from the NOT gate trigger gate NOR2 a second time and it generates a

second set of events. At the end of each cycle the randomly generated input and

resulting output values along with any requested probe value are retrieved and

made available to the OLMA as observations.

2.2 The On-Line Maintenance Agent (OLMA)

With our OLMA we are investigating a real-time architecture where reactive and

deliberative controllers cooperate to monitor and keep operational a continuously

running electrical or mechanical system at minimal cost. Costs are incurred by the

agent when the circuit runs in a broken state, the agent asks for more information

about the state of the circuit (a Probe act), or the agent replaces a gate in the

circuit (a Replace act). For purposes of this study, a cost of 1 is incurred for each

cycle the circuit runs in a broken state and is independent of the number of failed

components. That is the same cost is incurred if one component is broken or all

four components are broken. Also, a cost of 1 is incurred for each probe act, and a

cost of 10 is incurred for each replace act. As the controlled system operates, the

agent monitors the state of the circuit through the observations from the simulator.

'These are the same events as described in section 2.1
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When faulty input is observed, the agent uses the probe and replace control actions

to isolate the fault and repair the broken circuit.

In addition to the reactive and deliberative controllers, this study incor-

porates an added component into the OLMA called the "learning controller" to

facilitate the development and analysis of reactive controllers.

2.2.1 Reactive and Deliberative Controllers

The reactive and deliberative controllers each consist of a set of decision pro-

cesses [DF91]. Because we are in the process of understanding reactive decision

processes, only the simplest has been implemented. When invoked, if a delibera-

tive decision process is not running, the current reactive decision process initiates

a deliberative decision process, otherwise it does nothing [DF91].

For the deliberative controller we have implemented a decision process which

explicitly computes the control action having maximum subjective expected utility

from a decision model and the given observations, the prior probabilities, and the

expected time it has to act [DF91]. This decision process is quite slow; for the

half adder domain it takes around one real-time minute to compute a decision.

To collect training examples, we adjusted the timing of the testbed, allowing this

decision process to compute a decision for every observation.
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Step 2

Train

Figure 2. Off -line collection of training examples

2.2.2 Learning Controller

Learned
Policy

For purposes of this study we incorporated a learning controller into the testbed

to facilitate the implementation and study of reactive controllers. The learning

controller supports off -line learning, on-line learning, alternate problem represen-

tations, and testing of reactive controllers. As a part of the OLMA, the learning

controller is invoked after the deliberative controller has decided on a control action

and before it has passed this action on to the simulator.

Off-Line Learning

In off -line learning (Figure 2) the learning controller writes both the control

action from the deliberative controller along with the corresponding observations

to a file as a training example (Figure 2, step 1). After a sufficient number of

examples have been collected, the learning controller generates a policy from these
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training examples using an inductive learning algorithm (Figure 2, step 2). The

learning controller uses this policy for controlling the controlled system.

On-Line Learning

In on-line learning (Figure 3), the control action from the deliberative con-

troller along with the corresponding observations are written to a file as a training

example, and the learning controller generates a policy from the set of training

examples collected so far. After training, the learning controller uses the obser-

vations for selecting a control action. It is this control action from the learning

controller rather than the one chosen by the deliberative controller that is given

to the simulator.

2.2.3 Testing

Figure 4 depicts the testing of the learning controller. This is done after

either off-line or on-line training has been completed. In this stage, the learning

controller uses the observation from the simulator to choose the next action to

take; there is no interaction with the deliberative controller.
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Chapter 3

Approach

This chapter presents, first, the problem representations and methods of data

collection employed to construct reactive controllers, and second, the experiments

conducted to evaluate these controllers.

3.1 Problem Representation

In contrast to the earlier work on this project, which used an internal represention

of the problem state [Kau91], the emphasis in this work is to minimize the use of

space. In order to minimize space, we circumvent an explicit internal representation

of the state of the problem domain by exploiting the structure of the problem

domain. This relies on the fact that each observation from the controlled system

represents a state of a partially observable Markov process. A Markov process has

the property that the knowledge of the current state of a system fully captures the

current state of that system and no additional knowledge is necessary. A paritally

observable Markov process is a process in which all the knowledge of the actual
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state is not available [Abu88]. Through capturing the right history of previous

observations and actions, we should be able to recover the actual state. Because

it is infeasible to maintain and use all history for most real world problems, our

fundamental problem is that we need an effective way to recover and represent the

relevant history. When constructing problem representations we explored methods

that use information about the patterns and structures evident in the history and

problem domain.

To capture state information through the relevant history of observations

and actions we explored several methods to encode history. We began by estab-

lishing a lower and upper bound on the sizes of problem representations to explore.

Our lower bound simply consists of the current observations and no history.

Since the half adder circuit consists of two binary inputs (I1 and 12) which result

in a total of four possible combinations of observations, we set the upper bound at

a maximum of four observations. We term a collection of all four of these possible

combinations of observations a fingerprint.

The problem representations are discussed below and presented in Figure 5.

The range of problem representations we explored begins with a problem repre-

sentation (Basic) which uses no history information and ends with two problem

representations (FFPA and SFP) which use the fingerprint encodings. The prob-

lem representations between Basic and SFP use increasing amounts of history. In

each of these encodings except one (FFPA) the observations consist of the observed

inputs, outputs, and probe values; in FFPA the observations consist of the output
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Figure 5. Problem representation methods. Except in FFPA, the observations (Obs) consist

of the inputs, outputs and probe values (Il, 12, 0, C, P1, and P2) from the controlled system;

FFPA uses only the outputs and probe values. The actions (Act) are previously executed control

actions. The superscripts indicate the time an observation or an action occurred, where t is the

current time. The subscripts indicate the values of inputs Il and 12 where, for example Obs'0 ,o)

indicates the current observation with Il = 1 and 12 = 0.
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and probe values.

Basic: This problem representation establishes a base case for the smallest

size of encoding; it uses only the current observation.

Basic plus Action (Basica): Here we enhanced the Basic encoding with

one additional piece of history: the previous action.

One Step (1Step): This representation includes both the previous obser-

vation and the previous action with the current observation.

Three Step (3Step): This representation uses four steps of history which

consist of the previous three observations, the current observation, and the

previous three control actions.

Fixed Fingerprints (FFPA): The fixed fingerprints encoding uses finger-

print information by keeping the most recent output, carry, and probe values

for each relevant combination of the four possible inputs. It is fixed because

the representation saves fingerprint information in four fixed positions, each

of which corresponds to a unique combination of the Il and 12 values.

Sliding Fingerprints (SFP): This encoding also uses the fingerprint in-

formation, but the observations are not in a fixed position. In this approach

we maintained a list of four previous observations indexed by the values of

Il and 12. When a new observation arrives, the old observations with the

same values for Il and 12 are removed from the list, and the new observation
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is pushed onto the front of the list.

For each problem representation, we investigated the resulting performance

from both off -line and on-line approaches to collecting training data.

3.2 Data Collection

Typical approaches in supervised learning use inductive learning algorithms such

as C4.5 for batch or, "off -line," learning where training examples are collected in

an initial step and a classifier is generated from the training examples in the second

step. As discussed in Section 1.1, an off -line approach using stratified sampling

produced an inadequate distribution of training examples, even after the training

data had been filtered to emphasize more failures in the controlled system. On-line

learning attempts to remedy this inadequate distribution of training examples by

allowing the learning controller to choose the training examples.

In on-line learning, the learning controller is embedded in and acts as the

controller of the controlled system. When functioning as part of a continuously

running system, the embedded learning controller often issues incorrect control

actions. Because these control actions are different than the control actions the

deliberative controller issues, the controlled system enters states not normally en-

countered by the deliberative controller. For each state visited, the deliberative

controller supplies the correct action as a training example. This on-line collection

of training examples allows the learning controller to detect when it has made an
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error and to learn how to avoid the error in the future.

Initially we intended to use two inductive learning algorithms, Q-learning

and C4.5, to explore the differences in performance between traditional off-line

learning and on-line learning methods. Both algorithms map inputs to classifica-

tions. The first algorithm, Q-learning, is naturally incremental and easily runs in

an on-line manner, but the second algorithm, C4.5, is not inherently incremental

and it was necessary to simulate incrementality to achieve on-line learning. Un-

fortunately, as explained below, using Q-learning was infeasible. As a result, the

efforts of this study focused on the use of C4.5.

3.2.1 Q-Learning

Discovered by Watkins [Wat89], 1-step Q-learning is an reinforcement learning

algorithm which does not make use of a teacher such as the deliberative controller,

instead it learns through rewards. It is guaranteed to converge to an optimal

policy under certain conditions. One of these conditions is that the underlying

decision process must be Markovian. However, since the half adder circuit is

only partially observable, initial experiments using both 1-step Q-learning and

Whitehead's Lion Algorithm [WB91], showed it was difficult to find an adequate

Markov representation of the problem, one in which the problem representation

did not grow exponentially in size of the representation. As a result, we chose to

focus on C4.5.
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1. On-Line-Learning:
2. T {}; /* set of training examples */
3. Obs {}; /* set of current observations */
4. Act := nothing; /* control action */
5. repeat
6. Obs := Controlled-System(Act);
7. t := Generate-Training-Example(Obs);
8. T := T U {t};
9. Learning-Controller := C4.5(T);

10. /* Build a decision tree from the training examples */
11. Act := Learning-Controller(Obs);
12. until Done;

13. Generate-Training-Example (Obs):
14. Act := Deliberative-Controller (Obs);
15. t {Obs,Act};
16. return t;

Figure 6. Simulating On-line learning algorithm using C4.5

3.2.2 C4.5

This is a descendant of Quinlan's ID3 system [Qui86] for constructing decision

trees. It learns classification rules from training examples. No special adjustments

were necessary for off-line learning, but because C4.5 is not an incremental learning

method, incremental on-line learning was simulated.

The algorithm in Figure 6 describes the simulated incremental learning

using C4.5. The controlled system first generates a set of observations and the

deliberative controller chooses a control action based on these observations. The

observations plus the control action from the deliberative controller are combined

to form a training example. This training example is added to the existing set of

training examples, and C4.5 is run on this new set of training examples, building

a decision tree. The learning controller uses this newly created decision tree with
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the observations to choose a control action. This control action is then passed to

the controlled system, and the cycle starts again as the controlled system executes

the control action and generates a new set of observations.

3.3 Experimental Approach

Recall that the objectives of this research are to survey the differences in perfor-

mance with the use of history information with on-line and off -line collection of

training examples when developing reactive controllers, and to provide insight on

the space and time complexity requirements of such controllers. Described below

are the experiments we conducted to investigate these objectives.

Initially we had intended to evaluate each approach only on the average

cost per cycle, but because each learning controller does not fix every failure, it

became difficult to derive objective evaluations for the controllers when a gate

remained broken throughout the entire run. This prompted us to design a test

which predicted the performance of each controller by estimating the number of

failures it could fix. Appendix A describes the predicted performance measure in

further detail and presents an empirical justification of this measure.

After establishing an effective measure, the next step was to determine

an adequate training set size. Since we could generate any number of training

examples given enough time, we wanted to ensure that the size of our training set

did not limit our success. Yet, since time is an issue, we needed to bound the size
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of the training sets. Although the trend seems to imply further improvement could

be obtained with more training examples, we stopped at 6000 training examples

when some of the off -line controllers achieved a predicted performance of 8 where

8 is the best possible score.

To characterize the off-line performance of each problem representation,

we generated six samples of size 6000 training examples collected off -line. For

every problem representation we generated a controller from each set of training

examples, then evaluated the resulting controllers.

We also wanted to characterize on-line performance for all problem repre-

sentations with six samples trained on 6000 training examples, but due to time

and resource considerations it was necessary to revise this approach. Instead we

generated a full six samples for one problem representation, SFP, to see if on-line

learning could improve performance over off-line learning. For all other problem

representations, we chose to generate two samples to determine if the other repre-

sentations also showed improved performance with on-line learning. Since 1Step

showed good on-line learning performance (see Section 5.1) on the first two sam-

ples and has a representation size less than the upper bound of 4 steps of history,

we generated two additional sets of training examples and evaluated the results.

We examined each problem representation to determine the worst case time

and space requirements. Then, using both the off-line and on-line controllers, we

also found the experimental average space requirements for each problem repre-

sention.
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Chapter 4

Results

In this chapter we present the results of the experiments discussed in the previous

chapter.

The first step in this investigation was to understand how performance was

affected by the number of training examples. Figure 7 illustrates the effect training

set size has on performance for each problem representation. Each line in the graph

reflects the average predicted performance for six sets of training examples when

trained off -line with various sizes of training sets. Note that this is a longitudinal

comparison, that is, each larger training set subsumes previous, smaller training

sets. Recall that the predicted performance reflects the number of problem classes

a particular method can solve and that the best possible predicted performance is

8 classes.

Notice that at around 2000 training examples, improvement in performance

begins to level off; that is, after 2000 training examples, performance improves

much more slowly. Although at 6000 training examples the trend seems to indi-
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Off -line Performance Summary

1000 2000 3000 4000
Training Set Size

5000 6000

Figure 7. Average predicted performance for each problem representation when trained off -line

with various sizes of training sets. Each point plotted represents an average of six data points.

The maximum standard error for any of these points is 1.13 for SFP with 1000 training examples.
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cate that further performance improvement could be obtained with more training

examples, we chose to stop at 6000 training examples. The reason for this decision

was that the learning controllers were beginning to reach an optimal predicted

performance of 8 classes solved but more importantly, it was expensive in terms of

time to generate these examples; it took over 1 1/2 minutes on a Sun(R) SPARC-

station for the deliberative controller to generate and record a single decision and

the simulator to update the circuit; collecting 6000 examples took close to one

week.

4.1 Problem Representation Performance

Table 1. Average and standard error for each problem representation when trained off -line on

6000 training examples. Note that a predicted performance of 8 is the best possible score.

Method Predicted

Performance

Basic 6.2±0.31

Basica 6.3±0.42

1Step 6.8±0.48

3Step 7.3±0.33

FFPA 4.0±0.00

SFP 7.2±0.31
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Table 1 shows the average off-line predicted performance for each problem

representation at 6000 training examples. Some controllers created using 1Step,

3Step, and SFP methods achieved a perfect score of eight. Performing a one-way

repeated measures statistical test [Inc89] on the data summarized in Table 1 using

each method on each set of training examples gave an F value of 16.37 (df.=10,25,

p=0.0001). This shows that each problem representation does not achieve equally

good performance. A Duncan multiple range test [Inc89] with a significance level

of .05 showed that methods 3Step, SFP, and 1Step are not significantly different

from each other; neither are methods 1Step, Basic, and Basica. Results do show

that the predicted performance for methods 3Step and SFP is significantly better

than for Basic and Basica. Performance of the FFPA method is significantly lower

than that of all other methods.

Table 2 shows, for each problem representation, the features used by actual

decision trees. In this table the "-" indicate that the feature was not used in the

representation. The "co" indicate that the feature was not tested by the decision

tree. The numbers indicate the first level at which the feature appears in the

decision tree where "0" indicates a root node. The decision trees chosen for this

analysis were ones which showed the best performance for the associated problem

representation.
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Table 2. Features used by the decision trees.

Feature Basic Basica 1 S tep 3S tep FFPA SFP

Off On Off On Off On Off On Off On Off On

I1 2 2 2 1 2 2 2 2 - - 2 3

12 1 1 2 2 3 2 1 1 - 1 1

O 2 2 1 1 2 1 3 2 00 4 2 3

C 0 0 1 0 1 1 1 1 00 2 1 2

P1 00 00 co 00 00 00 1 00 00 00 1 00

P 2 4 00 1 00 1 00 2 00 00 00 2 00

Il a - - - - 00 1 co 1 - - 00 7

I2a - - - - co 2 00 3 - - 00 8

Oa - - - - 2 2 2 2 0 3 1 1

Ca - - - - 1 1 1 00 1 1 2 4

P 1 a - - - - 00 00 00 00 00 00 00 00

P 2 a - - - - 00 00 00 00 00 00 co 00

Il b - - - - - - 4 00 - - 2 7

12b - - - - - - 2 00 - - 00 6

Ob - - - - - - 00 5 00 1 00 3

Cb - - - - 3 4 00 0 co 3

P lb - - - - - - 00 00 00 co 00 00

P2b - - - - - - 00 00 00 00 00 00

Ilc - - - - - - 00 6 - 00 6

I2c - - - - - 3 00 - - 3 7

Oc - - - - - 00 00 - - 00 2

Cc - - - - - 4 6 - - 00 5

Plc - - - - 00 00 - - 00 00

P 2 c - - - - - - 00 co - - 00 00

Aa - - 0 00 0 0 0 0 2 2 0 0

Ab - - - - - - 3 1 2 3 3 1

Ac - - - - - 4 00 4 4 00 00
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4.2 Influence of On-line Learning

Table 3. Probabilities that off-line and on-line means are equal from a statistical t-test. Where

the probability is small (less than or equal to 0.05) we reject the hypothesis that the means are

equal. These probabilities are shown in bold.

Number of

Examples

Basic Basica 1Step 3Step SFP FFPA

1000 0.010 1.000 0.657 0.247 0.085 0.152

2000 0.005 0.680 0.246 0.331 0.065 0.273

4000 0.114 0.053 0.052 0.267 0.081 0.017

6000 0.387 0.680 0.571 0.680 0.022 0.000

Figure 8 compares the performance of off-line and on-line training for each

problem representation as a function of the number of training examples. Note

that as in Figure 7, this is a longitudinal comparison, that is, each larger training

set includes the previous, smaller training sets.

Multiple regression analysis of the on-line versus off-line learning plus the

log of the sample size gives the prediction equation of:

Y = 9.294 + 1.397X1 + 1.814 log X2 (4.1)

Where the predicted performance, Y, is estimated by a binary value indicating

off-line or on-line, X1, and the sample size, X2. The )3 coefficents 1.397 and 1.814
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Figure 8. Average predicted performance of off-line versus on-line learning.
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are highly significant, both have p values of .000000 and standard errors of .2159

and .1023 respectively.

4.3 Time and Space Complexity

Table 4. Time and space complexities of each method when trained on 6000 training examples.

Method Time* Tree Size (total nodes) Performance

Off-Line Avg. On-Line Avg. Upper Bound ** Off-Line On-Line

Basic 6 29.2 22.0 64 6.2 5.5

Basica 12 36.7 29.5 448 6.3 6.0

1Step 18 45.8 43.0 28,672 6.8 7.2

3Step 42 58.8 52.0 5.75e+09 7.3 7.0

FFPA 34 54.0 126.5 2.25e+07 4.0 6.5

SFP 42 57.2 126.7 5.75e+09 7.2 8.0

* Determined by the maximum number of comparisons needed to traverse the theoretically
worst case decision tree.

** Size (number of nodes) of theoretically worst case decision tree.

Table 4 summarizes the time and space complexities, and predicted per-

formance for each method. The time complexity in Table 4 is worst case, but

even under the worst case assumption the time complexity is small. The space

complexities given in Table 4 include the worst case tree and the average trees.

Although the worst case tree is infeasibly large, the average trees are very small in

comparison.

Notice the substantial differences between theoretical upper bound and ex-
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perimental averages for tree sizes in each case. The difference clearly indicates that

C4.5 produces a compact decision tree.
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Chapter 5

Discussion

In this chapter we discuss the results of our experiments on the automatic con-

struction of reactive, knowledge-based controllers from deliberative solutions for

the On-line Maintenance Agent (OLMA). We also compare the performance of

some reactive controllers against the performance of the deliberative controller,

then discuss future directions for this work.

5.1 Problem Representation

When a controller has limited visibility of the system it is controlling, the

amount of history information it has about the controlled system affects its per-

formance. This work set out to find the amount of history information that was

needed to keep the half adder circuit operational. Table 5 shows the amount of

history information and the resulting predicted performance for each representa-

tion in the half adder circuit domain. The amount of history is quantified by the

number of previous observations and actions used by each representation. The
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Table 5. Amount of history information and resulting predicted performance for each represen-

tation in the half adder circuit domain

Method History Performance

Obs Acts Off -Line On-Line

Basic 1 0 6.2 5.5

Basica 1 1 6.3 6.0

1Step 2 1 6.8 7.2

3Step 4 3 7.3 7.0

FFPA 4* 3 4.0 6.5

SFP 4* 3 7.2 8.0

* The encoded representations span a minimum of the last four observations.

predicted performance is given for both off-line and on-line methods of data col-

lection for 6000 training examples. This table shows that history information is

beneficial. That is, in general, as the amount of history information increases, the

performance improves. The FFPA problem representation is an exception to this

trend.

Although the problem representations 1Step and Basica differ in the amount

of history by one previous observation, no controllers built with the Basica repre-

sentation achieved a predicted performance score of eight while 1Step achieved an

eight in 2 out of 6 off -line controllers, and in 2 out of 4 on-line controllers. 1Step

therefore was the smallest problem representation to achieve good results.
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Training Example Control Action

0,0,0,0,?,?NOTHING NOTHING
0,0,0,0,?,?NOTHING NOTHING
1,1,0,1,?,?NOTHING NOTHING
0,0,1,0,?,?NOR1 NOR1
0,0,0,0,?,?NOTHING NOTHING
1,1,0,1,?,?NOTHING NOTHING
0,0,0,0,?,?NOTHING NOTHING

Figure 9. Example of off-line training data for the Basic representation with a failure of gate
NOR1. Each training example combines an observation with the control action recommended
by the deliberative controller. The control action is the action actually issued to the controlled
system.

The largest and most encompassing problem representation, SFP, consis-

tently achieved a high rate of success. Controllers constructed via this method

achieved a perfect score in 6 out of 6 on-line experiments. It is important to note

that both FFPA and SFP use the fingerprint information, and that this fingerprint

information is exponential in the inputs to the circuit.

5.2 Off -line versus On-line

The multiple regression analysis discussed in Section 4.2 showed that the

method of collecting training (off -line or on-line) is a significant predictor of the

predicted performance measure, and that on-line learning can improve performance

over off -line learning.

Figures 9 and 10 show examples of actual training data using the Basic

problem representation and the associated control actions. They illustrate why

on-line can achieve better performance than off -line. In each figure, the left column
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Training Examples Control Action

1,0,1,0,?,?NOTHING NOTHING
0,1,1,0,?,?NOTHING NOTHING
1,0,1,0,?,?NOTHING NOTHING
0,0,1,0,?,?NOR1 NOTHING
0,1,1,0,?,?NOR1 NOTHING
0,0,1,0,?,?NOR1 NOTHING
1,0,1,0,?,?NOR1 NOTHING
1,0,1,0,?,?NOR1 NOTHING
1,1,0,1,?,?NOR1 NOTHING
1,0,1,0,?,?NOR1 NOTHING
1,1,0,1,?,?NOR1 NOTHING
0,1,1,0,?,?NOR1 NOTHING
1,0,1,0,?,?NOR1 NOTHING
0,0,1,0,?,?NOR1 NOTHING
0,1,1,0,?,?NOR1 NOTHING
1,0,1,0,?,?NOR1 NOTHING
0,1,1,0,?,?NOR1 NOR1
1,1,0,1,?,?NOTHING NOTHING
0,1,1,0,?,?NOTHING NOTHING
1,0,1,0,?,?NOTHING NOTHING

Figure 10. Example of on-line training data and the corresponding control actions for the Basic
representation with a failure of gate NOR1. Each training example combines an observation with
the action recommended by the deliberative controller. The control action is the action actually
issued to the controlled system.
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shows an example of the training data with a NOR1 failure; the right column shows

the actual control actions that were issued with each training example.

Notice that in Figure 9 the off -line data provides only one training example

with a NORI control action when the NOR1 gate failed, whereas the on-line data

provides 14 training examples with NORI control actions for this single failure.

In this on-line example, the deliberative controller effectively tailors the training

examples to the learning controller by providing training examples with NORI

control actions until the inductive learning algorithm has enough examples to learn

to issue a NOR1 control action. Recall that in on-line learning, it is the learning

controller rather than the deliberative controller which issues the control actions.

Because this on-line approach provides many more distinct training examples with

each failure, on-line learning can achieve better performance over off-line learning.

5.3 Space and Performance Tradeoffs

Figure 11 presents the average and standard error of the tree sizes with

their predicted performance over all the learning controllers. As one might expect,

as tree size increases, performance tends to improve. Recall that in Table 4 the

empirically measured tree size is far smaller than the theoretical upper bound.

5.4 How Do the Controllers Compare?

Figure 12 shows the performance of the deliberative controller and some
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Figure 11. Space versus performance. Each data point represents the average tree size over all

controllers with the same predicted performance.
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Actual Performance
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Figure 12. Comparison of the actual runs of the better controllers. Each reactive controllers

1000 1200

solved all 8 problem classes as determined by the predicted performance problem measure.

of the learning controllers after training. The learning controllers chosen for this

graph have shown they can solve all 8 problem classes defined by the predicted

performance measure. Figure 12 gives the accumulated cost for each controller

over a run of 1200 cycles. In each of these runs except for the deliberative run,

the simulator was started with the same random seed. The significance of the

graph in Figure 12 is that since the performance of the learning controllers do not

differ significantly from that of the deliberative controller, we have succeeded in

constructing learning controllers that can solve instances of each class of problem

and keep the controlled system from entering an irrecoverably broken state.

Another point is that although the controllers in Figure 12 show similar
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performance, the deliberative controller used about one wall clock minute per

decision while the reactive controllers took less than a second to evaluate the

decision tree for each decision.

It is important to note that the graph in Figure 12 shows a single run for

each controller. Because the variance between runs is large, the relative rank order

as shown in the graph is not a good indicator of the overall relative performance

of each controller.

5.5 Conclusions

We compared the performance of automatically constructed, low time complexity

reactive controllers with little or no internal state. The results of our experiments

show that for the problem domain of the half adder circuit, using history as part

of the problem representation can improve performance. Our results also show

that having a controller learn from another controller while interacting with the

controlled system can improve the resulting performance of this learning controller.

Analysis of the reactive controllers showed that for our problem domain, the actual

decision trees are much smaller than a complete look up table. The look up table

that Ginsberg describes in [Gin89], grows exponentially while the decision trees do

not.
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5.6 Future Directions

Suggestions for future research in this area include:

1. Explore approaches in speeding up the on-line learning process. One ap-

proach suggested by Dietterich [Die91] is instead of training with C4.5 on

every cycle, have it keep a history of the training examples, then at regular

intervals, retrain using C4.5.

2. Use recent advances in temporal difference methods such as Q-learning in

place of C4.5. Because this is a control problem, it is suited for such policy

learning algorithms. The difficultly we had in applying Q-learning stemmed

from trouble in finding a feasible representation of the current state, but

much of the recent work in Q-learning have been addressing this state rep-

resentation problem [Tes92, CK91].

3. Extend the ideas suggested in this research work to more interesting and

complex domains. This will provide further evidence as to whether these

techniques scale.
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Appendix A

Validating Predicted Performance

Initially, in evaluating the performance of reactive controllers we had intended to

evaluate each approach only on the average cost per cycle for a simulated run,

but because of the continuous and random operation of the circuit in the problem

domain, if a gate failed in the circuit, it remained broken throughout the rest of

an experiment unless the controller found the broken gate and replaced it. This

scenario skewed the results of the experiment and made it difficult to derive an

objective evaluation of each reactive controller. This prompted us to derive a

deterministic test which could help predict the performance of an agent.

This predicted performance measure consisted of a set of test examples

which simulated the failure of each gate in the system. A gate can fail three ways,

stuck at 1, stuck at 0, and unknown. When a gate is stuck at 1 it outputs a 1

regardless of the input. Similarly when a gate is stuck at 0 it outputs a 0 regardless

of the input. When the failure is unknown, the output of the gate is random Os

and ls. The predicted performance measure uses all permutations of the possible
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observations for stuck at 1 and stuck at 0 failures for each gate in the system.

Unknown failures were not explicitly included because they are covered by the

stuck at 1 and stuck at 0 failures. There are four gates in the circuit making a

total of eight problem classes to test. Using this test it was possible to identify

which gates the controller could potentially repair and use this to quantify the

predicted performance of each controller.

In this appendix the predicted performance measure is related to the per-

formance of the actual system. Figure 13 plots the normalized cumulative cost

and predicted performance for 59 runs of 1200 cycles. A close look at the plotted

points and the regression line reveals that the relationship between predicted per-

formance and cost is not linear. The plotted points indicate that although good

performance gives a low cost the cost for poor performance is not a bad as the

cost for medium performance. The high cost for medium performance is due to

the system repeatedly repairing the wrong fault. Thus cost does not reflect a good

measure of performance.

Instead, as a measure of the performance of the actual system, we used the

number of failures which occur during a run of the simulated system. Intuitively,

this is a good measure because the number of component failures in a run reflects

the number of failures a controller can fix, indicating the performance abilities

of the controller. To illustrate this point, consider a controller which knows one

control action, Nothing; it can never repair a failed gate in the circuit. In a

simulated run eventually all the gates in the circuit fail and are never fixed. Thus
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the total number of failures for the run is limited to the number of gates in the

circuit. On the other hand, if a controller can fix all the failures that can occur,

when a failure does occur it will be fixed and have the chance to fail again. Thus,

oddly enough, the more failures that occur the better the controller.

To show the relationship between predicted performance and number of

failures, we used correlation and linear regression analysis. Correlation analysis on

this sample gave a Pearson correlation coefficient [Inc89] of 0.872 and a mean square

error of 1.71. With a sample size of 59, this correlation coefficient is significantly

larger than zero. Figure 14 shows the regression line and scatter plot of the number

of failures versus the predicted performance when a reactive controller is run as

the controller of the controlled system. This regression line has an F value of

180.85 (p.0.0001) and shows a direct linear relationship between the predicted

performance and number of failures.
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Cumulative Cost as a function of Predicted Performance Measure

0 2 4

Predicted Performance

6 8

Figure 13. Regression line and scatter plot of cumulative cost versus predicted performance for

a simulated run of 1200 cycles. The cumulative cost values have been normalized to have zero

mean. The dotted error lines are 2 standard errors away from the predicted regression line.
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Validating Predicted Performance
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Number of Failures
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Figure 14. Regression line and scatter plot of predicted performance versus number of failures

for a simulated run of 1200 cycles.




