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Visualization of Cluster Structure and Separation in Multivariate Mixed Data:
A Case Study of Diversity Faultlines in Work Teams

Tuan Pham1,∗, Ronald Metoyer1, Katerina Bezrukova2, Chester Spell3

Abstract

In organizational management, researchers and managers study separations or faultlines that occur in diverse teams when members
form subgroups based on the alignment of multiple demographic characteristics. The team faultline concept is operationalized
using multivariate cluster analysis—analysts use faultline measures to identify subgroups/clusters in a team and to quantify how
subgroups/clusters are separated. Unfortunately, these measures have limited capacity to enable users to observe and explore fault-
lines and subgroup structure across the examined attributes efficiently. We address this problem and make three contributions. First,
we propose a visual representation for communicating faultline information that is based on multiple linked, stacked histograms in
an axis-parallel layout. Second, we evaluate the effectiveness of the proposed technique in a controlled user study, comparing it
to the two other common multivariate representations of clusters: parallel coordinates and scatter plot matrices. While we chose
faultline-related tasks based on the requirements by domain experts in organizational management, the study findings can be gen-
eralized to representations and tasks involving distributions of clusters of multivariate objects in mixed-type data. Finally, inspired
by geological faultlines, we propose several visual enhancements to stacked histograms to further facilitate the task of identifying
“cracks” within work teams.
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1. Introduction

Effective management of work teams is widely regarded as
critical to the success of organizations. Therefore, leveraging
the benefits of teamwork while reducing negative outcomes as-
sociated with groups has been a central focus of organizational
research [1, 2, 3, 4]. For example, researchers study how the
demographic diversity of team members such as age, gender,
ethnicity, and functional background affects outcomes such as
performance and productivity as well as group processes such
as collaboration and conflict. They investigate diversity not
only as a distribution along one employee attribute, for instance,
group ethnic diversity, but also as a complex composition of
multiple attributes that results in diversity faultlines [1]. For
instance, faultlines may split a diverse project team into two
subgroups: one of two senior male software engineers and the
other of two junior female QA testers.

A common approach to understanding faultlines within a
team relies on faultline metrics [5, 2, 3], which measure the
extent to which the given team is divided into relatively ho-
mogeneous subgroups across the attributes of interest, and tab-
ular data of subgroup structure (see Table 1 for an example).
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From an analysis point of view, the goal is not necessarily to
identify the objects that cluster together, but to identify how
attribute space is divided up into the clustered subgroups. Un-
fortunately, as the number of attributes and team members to
be examined both increase, table-based assessment of faultlines
and subgroup structure becomes difficult, time-consuming, and
tedious. To our knowledge, very little work has been done to
develop visual representations that reveal faultlines across mul-
tiple attributes. In fact, this lack of tools is considered a chal-
lenge in management research that hinders the development of
the faultline theory to a more applicable and useful level [3, 4].

We envision that the analysis of faultlines would be comple-
mented by a visual analytics approach that leverages faultline
metrics with appropriate representation and interaction tech-
niques. Specifically, such a visual interface would allow re-
searchers to explore faultlines and structure of subgroups within
teams quickly and iteratively. Managers or human resources
departments could use data visualization to inspect team dy-
namics based on faultlines and potentially reassign members
in hopes of improving performance. Such visualizations could
also prove useful in understanding the dynamics of online vol-
unteer teams, for instance, open source software development
teams [6, 7].

In addition to team faultlines, the problem of visualizing
cluster structure and separation in multivariate mixed data rep-
resents itself in other application domains. For instance, ecol-
ogists and microbiologists recognize functional diversity as the
variety of roles played by different species or their equivalents
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based on their composition of multiple functional traits such as
rooting depth and maximum growth rate of plants [8, 9, 10].
Technically, composition of these traits can be used to cluster
different species (or their equivalents) present in a unit of study
into different functional groups and to derive, for example, the
functional diversity (FD) metric [8, 9, 10]. In summary, clus-
ters may represent functional groups in an ecological unit of
study (e.g., ecological communities) or subgroups in an orga-
nizational unit of study (e.g., work teams); clusters may also
represent different units of study under comparison.

In this paper, we formalize and generalize the faultlines vi-
sualization problem as visual analysis of cluster structure and
separation in multivariate mixed data. In doing so, we pro-
vide three contributions. First, we propose a representation
that aims to reveal faultlines and subgroup structure of diverse
teams across multiple attributes. The proposed representation,
HIST, is based on multiple linked, stacked histograms in an
axis-parallel layout [11, 12], as depicted in Figure 1. To our
knowledge, while these techniques separately are well-known,
as a whole, their application to representing clusters of multi-
variate objects in general and team diversity faultlines in par-
ticular is novel and it is a first attempt to explore the design
space for the problem. Moreover, the novelty of HIST is in
the emphasis on attribute visibility [13], such as the distribu-
tion of clusters in attribute space, as opposed to object visibility
[14, 15] when representing clusters.

Second, we contribute results of a controlled user study to
compare HIST to the parallel coordinate plot (PCP) [11, 12]
and the scatter plot matrix (SPLOM) [16], the two other com-
monly used techniques for representing clusters of multivariate
objects, as identified in previous work by Holten and van Wijk
[14]. With respect to user performance, our results show that
(1) users can judge faultlines using HIST as or more accurately
than when using the other two methods and (2) HIST perfor-
mance holds consistent across task questions and data set sizes.
Furthermore, the findings can be generalized to representations
and tasks involving distributions of clusters of multivariate ob-
jects in mixed-type data, extending the previous work [14]. The
generalization is reflected in our choice of task questions that
are relevant to both faultlines and general cluster representa-
tions and in the application of HIST to other application do-
mains such as functional diversity in ecology.

Finally, we incorporate computational analysis into HIST
to assist users in detecting faultlines or subgroup separation.
Specifically, inspired by the physical form of geological faults,
we propose novel visual enhancements as connecting dashed
lines across attribute axes to represent “cracks” within a team,
as depicted in Figure 2. In our algorithm, we cluster attribute
values by subgroups using Bertin Classification Criterion [17]
and we introduce a metric, Total Separation Criterion, to auto-
matically detect attributes with separable subgroups.

2. Diversity Faultines Background and Design Requirements

2.1. Diversity Faultlines Concept
Faultlines are described as hypothetical dividing lines that

may split a team into relatively homogeneous subgroups based

Team AGE ETHNICITY EDU Subgroup Fau
1 21 T E 1

1.00
1 23 T E 1
1 20 T E 1
1 50 Y A 2
1 52 Y A 2
2 21 W E 1

0.56

2 23 W A 1
2 22 U B 2
2 26 X B 2
2 21 Z D 3
2 23 Z C 3
2 22 Z B 3

Table 1: Synthetic data of the two work teams. Faultline measure [5] clus-
ters each of the two teams into subgroups (Subgroup) and identifies the team
faultline strength (Fau).

on one or more attributes [1]. Measuring faultlines of a team is
adopted from multivariate clustering—that is, the measure as-
signs team members into subgroups (or clusters) according to
their similarity across the attributes of interest, for instance, de-
mographic characteristics. Clusters (or subgroups) have maxi-
mum internal homogeneity or between-cluster heterogeneity.

Team data represent team members characterized by multi-
ple demographic attributes of varying types, including numeric,
ordinal, and nominal. As an example, consider two teams as
shown in Table 1: Teams 1 and 2 consist of five and seven mem-
bers, respectively. We computed team faultlines along the three
characteristics of AGE, ETHNICITY, and EDUCATION (de-
gree) using a widely accepted measure proposed by Thatcher
et al. [5]. For each team, the measure identifies the subgroups
(Subgroup column) corresponding to the strongest group parti-
tioning following the formula:

Faug =


∑p

j=1
∑ng

k=1 ng
k(x̄.jk − x̄.j.)2∑p

j=1
∑ng

k=1
∑ng

k
i=1(xijk − x̄.j.)2

 g = 1, 2, ..S , (1)

where p is the number of attributes of interest, ng is the number
of subgroups in the partition g, ng

k is the number of members in
subgroup k of partition g, x̄.jk is the mean value of attribute j in
subgroup k, x̄.j. is the overall mean value of attribute j, and xijk is
the value of attribute j of member i in subgroup k. Simply put,
the measure iterates through all possible partitions (splits) of the
team into subgroups and finds the largest ratio of the between
subgroup sum of squares to the total sum of squares. Since
Faug takes numeric values, each categorical attribute must be
recoded into a series of dummy variables and rescaled across
the attributes [5]. For example, a five year difference in AGE
is equivalent to a difference in ETHNICITY and a difference in
EDUCATION based on a given data sample.

The variable faultline strength Fau, which always takes a
value between zero and one, is the maximum over all {Faug}

S
g=1.

The larger the faultline strength value, the stronger the separa-
tion between subgroups or equivalently, the more attributes in
which the subgroups are separable. The concept is inspired by
geological faults whose strength increases with the number of
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layers it cuts through [1]. Since Fau is based on a brute-force
search, it is suited only for small teams. Thatcher et al. [3]
and Meyer and Glenz [18] present thorough surveys of existing
faultline measures.

2.2. Design Requirements

While Table 1 describes each of the team members of the
two teams in detail, the table does not clearly show where the
separation (or “cracks”) occur in a team. That is, within an
attribute, it is unobvious how the attribute space is potentially
occupied by different subgroups, which is precisely the problem
that we address with our visual representation. Here we discuss
design requirements as validated by our two collaborators, who
are experts in management research and also co-authors on this
paper. These requirements aim to capture the experts’ infor-
mation needs when they study team faultlines data (e.g., [19]).
Moreover, these requirements are empirically associated with
team outcomes in the faultlines literature, as we cite in the list
of requirements below. Specifically, a faultline representation
of a given team should allow users to explore efficiently:

• R1. Faultline value (e.g., faultline strength Fau). Such
numeric quantification of a faultline can be used to com-
pare different teams quickly or to predict the effects of
faultlines on outcome processes [2, 3].

• R2. Faultlines themselves, or where do the “cracks” oc-
cur in the team? A “crack” or total separation occurs
within an attribute when members of different subgroups
fall into different subsets of values in the attribute space.

• R3. The inner structure of subgroups in the team includ-
ing the number of subgroups, evenness of subgroups, and
multivariate distribution of members across the examined
attributes [20]. These important constructs are associated
with distribution of power, resources, and abilities in the
team [1, 4].

In addition, the representation should scale well to the num-
ber of members in a team and number of attributes of interest.
Management researchers have typically studied small teams of
up to 16 members that may potentially split into up to seven
subgroups, depending on team size and the number of attributes
[21, 4], yet they are also interested in teams of larger sizes, for
instance, online volunteer groups [6, 7].

2.3. Conventional Cluster Analysis vs. Faultlines Analysis

Finally, while conventional multivariate cluster analysis usu-
ally concerns object visibility and separation in attribute space
of quantitative attributes [15], we note that faultlines analysis
emphasizes distribution or alignment of objects across multi-
ple attributes of varying types or, in other words, the role of
attributes in structure and separation of clusters. Furthermore,
a faultlines visualization requires a faultline measure or a clus-
tering algorithm as an external data pre-processing step to pre-
assign team members to subgroups, as opposed to letting ana-
lysts identify potential subgroups or implicit clusters from rep-
resentations of raw data [14].

3. Related Work

Design and evaluation of our proposed technique was in-
formed by related work on visual representations and user stud-
ies of cluster representations, which we discuss here.

3.1. Representing Clusters

Here we review a subset of existing representation tech-
niques that are potentially applicable to multivariate cluster anal-
ysis and team faultlines. More general surveys of visual repre-
sentations can be found in [22, 23].

Scatter plots are probably the most common technique to
represent clusters of objects [14]. However, without additional
encoding, possible data overlap/occlusion may lead to ambigu-
ous interpretation of the abundance of objects, especially among
categorical attributes. The histogram, on the other hand, takes
advantage of data overlap to show the distribution of objects
over a single attribute. Our proposed technique, which is based
on histograms, aims to convey object distribution instead of ob-
ject visibility. As noted, these techniques display only one or
two attributes of interest.

The dimensionality problem may be solved by using mul-
tiples. For example, the scatter plot matrix (SPLOM) [16] ex-
tends scatter plots to represent clusters of multivariate objects,
although multiple pairwise projections of the data attributes re-
quire more screen space and potentially cognitive load placed
on the user. On the other hand, multiple histograms could be
useful for representing distribution of multiple attributes in an
axis-parallel layout [24]. Furthermore, histograms have been
proven effective in communicating diversity information in sep-
arate attributes in previous work [25, 26]. Our proposed repre-
sentation of diversity faultlines is in fact multiple histograms
augmented with histogram stacking and color encoding.

The parallel coordinates plot (PCP) [11, 12] is another com-
mon approach to representing clusters of high-dimensional ob-
jects [14]. Similar to SPLOM, PCP may suffer from occlusions
caused by data overlap as the number of objects increases and
many categorical attributes exist, as in the case of demographic
data. Several variants of PCP such as Parallel Sets [27] and
Diversity Map [26] overcome this limitation by providing in-
formation on the distribution of values for each attribute. How-
ever, it is not clear how multiple clusters are embedded into
these techniques.

Star coordinates [28] may be suited to representing the over-
all structure of a set of objects over multiple attributes. Addi-
tional encoding such as colors may be used to reveal explicit
clusters in the data. Unfortunately, the mapping between a data
point and its location in star coordinates is not one-to-one. Con-
sequently, several different data points may end up in the same
location if they have equal vector sums.

Among stacked displays [22, 29], the mosaic plot [30] could
be used for showing subgroup structure since subgroups are
stacked within a team. While in theory, the stacking process
may be repeated multiple times, in practice, space constraints
limit the number of attributes as well as the number of possi-
ble values in an attribute. Therefore, mosaic plots can be use-
ful only when the number of attributes is relatively small. In
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(a) (b)

Figure 1: Synthetic data (Table 1) of (a) Team 1 and (b) Team 2 visualized using HIST. Distinct colors are used to differentiate the subgroups: subgroup 1, subgroup
2, and subgroup 3. While the two subgroups of Team 1 are totally separated in all three attributes of AGE, ETHNICITY, and EDUCATION, the three subgroups of
Team 2 are totally separated in ETHNICITY only (column 2).

our proposed histogram-based technique, we apply the stack-
ing process to histogram bars only once.

Finally, there are hybrid approaches that integrate multi-
ple representations in a single view or in multiple coordinated
views. In the former group, the most relevant technique is DI-
CON [31], a treemap- and icon-based technique designed to
visualize structure of clusters. Unfortunately, the technique
supports only quantitative attributes, which is not sufficient for
team faultlines data that are usually multivariate with varying
attribute types (e.g., numeric, nominal, and ordinal) as described
in Section 2. In the latter group of multiple views, VisBricks
[32] clusters an inhomogeneous data set into different subsets
and visualizes them using different representation techniques
augmented with coordination interaction features. Our pro-
posed representation technique could be potentially incorpo-
rated into VisBricks as a building block.

3.2. Evaluating Cluster Representations

The closest exemplar to our user study is that of Holten
and van Wijk [14]. They evaluated cluster identification per-
formance of nine PCP variants, two of which are the standard
PCP and a variant with embedded scatterplots (SP). Neverthe-
less, unlike our scenario involving explicit clusters in demo-
graphic data, their study used simulated quantitative data with
no pre-computation of clusters. The most interesting finding
from their study is that despite the apparently valid improve-
ments of the PCP variants, scatterplots are more effective than
PCPs with respect to PCP-based cluster identification tasks.
Furthermore, participants favored SP as the least difficult varia-
tion. Following this result, the authors called for further evalu-
ation of techniques that explicitly highlight pre-computed clus-
ters, for example, with unique colors. We respond to that call in
our user study by augmenting standard PCP and SPLOM—the
two controlled methods—with color encoding of explicit clus-
ters. We also extend the study to include other tasks appropriate
for faultlines/cluster analysis.

4. Visualization Design

4.1. Design Considerations and Prototype

A histogram is well suited to showing the diversity or distri-
bution of objects within an attribute (requirement R3). Accord-
ing to Mackinlay [33], position and length are ranked highly
for encoding nominal and numeric values such as variety of
attribute values and abundance of objects, respectively. In ad-
dition, previous work suggests that the axis-parallel layout [11,
12] of multiple distributions is capable of conveying a holistic
object distribution over multiple attributes [24, 26]. However,
the previous work does not consider how distributions of mul-
tiple subgroups align over multiple attributes. Since subgroups
are nested within a team, to maintain bar length encoding, a nat-
ural solution to encoding subgroups is to stack bars within each
bin (Figures 1 and 2). We then use distinct color hues on a white
background to differentiate stacked subgroups. Our choice of
qualitative colors provided by ColorBrewer [34] meets the re-
quirement of encoding up to seven subgroups. On another note,
the length of each bar is scaled according to l(x) = |x|/|xMAX |,
where |x| denotes the number of objects in bin x, and xMAX is the
bin with the most objects for the attribute in question. We also
discretized numeric attributes into bins based on their rescaled
factors (Equation 1).

Following this design, a total separation or “crack” occurs at
a nominal attribute when distinct subgroups (or distinct colors)
occupy distinct positions along the vertical axis (requirement
R2). Total separation at a numeric or ordinal attribute further
requires that these distinct positions—including ones without
objects (zero-length bars)—are contiguous, for instance, AGE
and MLB TENURE histograms in Figure 2.

The HIST representation communicates the overall degree
of separation of subgroups in a given team (i.e., faultline strength)
as the combined separation of all demographic attributes under
investigation (requirement R1). In the limit of perfectly strong
faultlines, where different subgroups occupy different subsets
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Figure 2: A group of starting pitchers of the MLB team Brewers in 2008 visual-
ized using HIST. The two subgroups are totally divided in all four attributes of
COUNTRY, RACE, AGE, and MLB TENURE. The connecting dashed lines,
which are described in detail in Section 7, are overlaid to represent the holistic
“cracks” between the two subgroups.

of attribute values across all the attributes, all the bars of the his-
tograms will have solid colors, as depicted in Figures 1(a) and
2. On the contrary, a team with very weak faultlines will pro-
duce a visualization with most of the bars stacked with at least
two colors like the AGE histogram in Figure 1(b). Moreover,
while the chosen Fau measure (Equation 1) [5] does not con-
sider how far apart the subgroups are, especially on quantita-
tive attributes (i.e., faultline distance [2]), we note that stacked
histograms of quantitative axes are able to reveal the potential
gaps or distances between subgroups. For instance, the AGE
histogram in Figure 1(a) shows a big “generation gap” between
the two subgroups.

4.2. Informal Evaluation and Motivation for a Formal Study

A close collaboration between management and visualiza-
tion researchers was critical for the design of HIST. The domain
experts helped validate the design requirements and evaluate

the design iterations and prototypes. We adopted an iterative
user participatory design approach [35] in which the manage-
ment researchers participated in every step of the design pro-
cess. First, we used the real-world data collected by the man-
agement researchers [19] to identify their information needs.
The example data were valuable for helping the visualization
researchers understand the problem and facilitate the second
step involving iterative discussions of the data and visualiza-
tion design requirements. After ensuring all the requirements
were captured, the visualization team sketched several mockup
prototypes using hypothetical team data and gathered feedback
from the management researchers. As the design gains matu-
rity, the subsequent steps involved design implementation, test-
ing and exploration with real-world data sets, and analysis of
tasks and questions for the user study.

Thus far, we have applied the prototypes to two real-world
data sets: Major League Baseball (MLB) teams (Figure 2) and
an empirical faultlines study [19] (Figure 3). The domain ex-
perts found the representation helpful in inspecting subgroup
structure of different teams and in developing a sense of where
the separations are likely to occur following their configuration
of the faultline measures.

While the qualitative results from our informal evaluation
are encouraging, they have limitations. First, the evaluation
is observational [36] and lacks controlled visualization tech-
niques (control groups) as well as various data sets with control-
lable characteristics serving as ground truth answers. Second,
our two management researcher collaborators represent only a
small set of potential users of the visualization. The proposed
faultlines visualization, HIST, could potentially support a wide
range of target users: (1) management researchers who study
faultlines and subgroups theories [4], (2) human resources de-
partments who manage current employees and recruit new em-
ployees [37], and (3) managers and officials from many areas
concerning work teams such as education, sports, and enter-
tainment to name a few. Third, thus far, the management re-
searchers limited the use of the faultline visualizations to data
exploration only, accompanied by further statistical analysis.
The design of HIST targets both data exploration such as data

Figure 3: HIST representation of the subgroup structure of a team with strong faultlines (left view, Team 33) and a team with weak faultlines (right view, Team 80)
from the faultlines study data set [19]. Columns from left to right are Team ID, gender, age, company tenure, and education.
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analysis and communication such as charts in a publication or
training. Finally, while HIST is designed based on the require-
ments of faultlines and subgroup structures in work teams, it
can be potentially utilized to communicate distributions of clus-
ters of multivariate objects in mixed-type data, for example, to
compare structures of functional groups in ecological and mi-
crobiological data [8, 9, 10, 38], as we mentioned in the Intro-
duction section.

To overcome these limitations and make the evaluation re-
sults generalizable, in the next section, we extend our evalu-
ation with a controlled user study designed to understand the
effectiveness of a visual representation in a broader context of
communicating separations and distributions of clusters/subgroups
of multivariate objects in mixed-type data.

5. User Study Design and Implementation

In this section, we describe the design and implementation
of a formal user study intended to evaluate the effectiveness
of HIST at communicating cluster separation and structure in
the specific context of team faultlines. In particular, we com-
pare HIST to PCP [11, 12] and SPLOM [16], the two common
techniques for representing clusters of multivariate objects. In
fact, a previous study has shown that the standard PCP and a
PCP variant with embedded scatterplots are the most effective
among variants of PCP for cluster identification tasks [14]. Fig-
ure 4 depicts examples of the three techniques.

5.1. Task Design and Implementation

The task design includes three important components: (1)
a set of task-oriented questions, (2) a procedure for generating
synthetic team data, and (3) design of the three visualization
techniques under comparison.
User Study Task Questions. The study contains six types of
questions intended to assess the capability of a particular vi-
sual representation in conveying different aspects of team fault-
lines (requirements R1 - R3). Note that in accordance with the
previous cluster identification study [14], we design the tasks
to be relevant to both faultlines and general cluster representa-
tions of mixed-type data and not tied to users with specialized
knowledge of demographics. Therefore, for each of the ques-
tion types, we also provide the equivalent generic evaluation
question in parentheses.
Q1: How many subgroups are there in the given team? (generic
form: How many clusters are there in the data set?) (possible
answers: 1 to 7). This question type is designed to determine
if a representation technique supports users in identifying the
number of subgroups/clusters in a team/data set (requirement
R3). This type is equivalent to the only cluster identification
task in the previous study [14].
Q2a/b: Among the existing subgroups in the given team,

which one is the biggest/smallest? (generic form: Among the ex-
isting clusters in the data set, which one is the biggest/smallest?)
(possible answers: Subgroup 1 to 7). These two types are in-
tended to measure the user’s ability to determine evenness of

subgroups or equivalently, isolate subgroups/clusters that con-
tain most and least members/objects using a representation (re-
quirement R3).
Q3: In which attributes are the subgroups totally separated?

(generic form: In which attributes are the clusters totally sep-
arated?) (possible answers: the attributes under investigation).
The goal of this question type is to test if a representation tech-
nique supports users in isolating the attributes that totally sep-
arate subgroups/clusters and result in faultlines (or “cracks”)
within a team (requirement R2).
Q4: To what extent are the subgroups separated across all

attributes? (generic form: To what extent are the clusters sep-
arated across all attributes?) (possible answers: Very Weak,
Somewhat Weak, Medium, Somewhat Strong, Very Strong).
This question type is intended to gauge how well a user can
interpret and assign a faultline level to a team using a visual
representation (requirement R1). Within the scope of this study,
the faultline level of a team is determined by the number of at-
tributes in which the subgroups are totally separated. While
this assessment does not consider attributes with partial sepa-
ration of subgroups as the way the Fau measure (Equation 1)
quantifies separation of subgroups, it makes answering this task
question more straightforward to participants.
Q5: Between two different teams, which team has stronger

separation of subgroups? (generic form: Between two different
data sets, which one has stronger separation of clusters?) (pos-
sible answers: Team A or Team B). This last question type is
intended to determine if a representation technique is discrimi-
native enough to allow a user to compare the faultline levels of
two teams depicted in two visualizations of the same technique
(requirement R1).

In our user study, each of the question types was asked mul-
tiple times on different teams/data sets. We identified the best
answers to the questions based on the distribution of members
across subgroups and the attributes in which subgroups are sep-
arable. These constructs are achieved using our synthetic data
generation procedure, which is described next.
Synthetic Team Data Generation. For the study, it is diffi-
cult to find real data sets that can serve as ground truth stim-
uli for the six types of questions. Therefore, we create work
teams formed from automatically generated data sets. Techni-
cally, our method generates pre-clustered teams over a manu-
ally defined set of mixed-type demographic attributes, where
team size, number of subgroups, evenness of subgroups, and
separation of subgroups are controlled. The aim was to simulate
teams with realistic distributions of members while controlling
the faultlines and subgroup structure.

In our setting, we have one variable X for each attribute,
and we hand-specify the categorical values or range of values
for X. To generate a team, we specify its input parameters in-
cluding the number of subgroups k, subgroup sizes {ni}

k
i=1, and

the set of attributes in which the subgroups are totally sepa-
rated {Xs}. Note that n =

∑k
i ni denotes the size of the entire

team. For each Xs, we randomly partition its attribute space
into k distinct subsets of values following a multinomial distri-
bution and we draw randomly ni samples from each subset for
each subgroup i. This guarantees that the subgroups are totally
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(a) (b)

(c)

Figure 4: Example team of size 18 visualized using (a) HIST, (b) PCP, and (c) SPLOM. Distinct colors are used to differentiate the three subgroups: subgroup
1, subgroup 2, and subgroup 3. While subgroup 3 is the biggest, subgroup 1 is the smallest. The three subgroups are totally separated along ETHNICITY,
EDUCATION, and EXPERIENCE because different subgroups occupy different subsets of values along these attributes. The three subgroups overlap in GENDER
and AGE because there exist values of these attributes shared by different subgroups. The faultline level is MEDIUM considering that the subgroups are totally
separated in three out of five attributes.

separated in these attributes {Xs}. For the rest of the attributes
{Xns}, we model the distribution over its possible values either
as uniform or skewed distribution and we draw randomly n sam-
ples from each of these distributions. We choose these specific
distributions based on the realistic distributions of the team de-
mographics widely accepted in management literature: uniform
distribution corresponds to diversity as variety and skewed (or
relatively homogeneous) distribution corresponds to diversity
as disparity [20]. For example, while both genders may be uni-

formly represented in some teams (e.g., student body), either
male or female gender may be dominant in other teams (e.g.,
organizational groups). Once the samples are created for each
of the attributes, we use the jth sample for each attribute as the
corresponding attribute value of the jth member in the gener-
ated team. Finally, since the team is already clustered into sub-
groups, we simply use the Fau formula (quation 1) to calculate
the faultline strength value for the team.

In our generated teams, team members or objects are char-
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acterized by the following five independent demographic at-
tributes. We chose these attributes because they are the most
commonly used in faultline literature [3].

• GENDER: F or M
• AGE: 20-60, discretized for HIST by steps of 5 corre-

sponding to a pre-defined rescale factor (Equation 1)
• ETHNICITY: T, U, V, W, X, Y, or Z
• EDUCATION (degree): A, B, C, D, or E
• EXPERIENCE (level): 0-9

While we believed the study participants would be famil-
iar with these attributes, we used single-letter labels as values
of categorical attributes, e.g., T, U, V, . . . for ETHNICITY, to
prevent participants from associating their own knowledge of
demographics, e.g., ethnic differences, into their answers.

We generated teams whose sizes range from four to 50 mem-
bers and number of subgroups range from two to seven. The
teams with at most 16 members were considered small teams.
The teams with more than 16 and less than 50 members are con-
sidered large teams to simulate other workgroup settings such
as online volunteer groups [6, 7].
Visual Representations. Figure 4 presents examples of stim-
ulus materials of the three techniques under comparison. The
design of HIST (without visual enhancements) was described
in Section 4. In our design of PCP and SPLOM, we also use
distinct color hues to differentiate subgroups. To prevent total
occlusion due to data overlap, both PCP polylines and SPLOM
dots are drawn at a constant opacity of 40% and 60%, respec-
tively. The opacity encoding matches our PCP implementation
with that of Holten and Van Wijk [14]. Furthermore, we em-
ployed a jittering technique [16] to alleviate data overlap issues
in SPLOM.

The resolution of each image produced by the three tech-
niques was 630 × 430 pixels. Each visualization image was
accompanied by a subgroup color legend of 80 × 270 pixels.
We chose these resolutions to ensure that visualization images
would fit into a standard 1024 × 768 pixel screen without re-
quiring any scrolling—the usable screen space for a web page
is approximately 960 × 600 pixels.

5.2. Experiment Design and Implementation

Participants. Participants were recruited from Amazon’s Me-
chanical Turk (mTurk), a popular crowdsourcing Internet mar-
ketplace which has been shown to be a viable platform for graph-
ical representation experiments [39]. The marketplace allows
requesters to post jobs, also called Human Intelligence Tasks
or HITs, for a large pool of users (or turkers) to consider and
complete. Since mTurk is a world-wide marketplace, we tar-
geted our participants specifically to those registered in the US
with normal vision, at least 95% “approval” rating, and at least
100 tasks approved. After passing the color blindness qualifica-
tion test hosted on the mTurk website, each participant visited
our external study website, read an explanation of the research
study (in lieu of a signed consent form), and was randomly
assigned to a visualization technique. The qualification test,

which is based on the Ishihara Color Test [40], was to detect
and exclude interested individuals with color blindness.

In total, 57 participants completed the study or 19 for each
visualization technique. They represented a diverse range of
majors/occupations, gender, and ages (Figure 5). Most of them
were unfamiliar with the field of InfoVis. In addition to the 57
participants, we excluded 10 participants who stopped at the
beginning or in the middle of the study. These withdrawn par-
ticipants are evenly distributed across the three techniques: 4
for HIST, 3 for PCP, and 3 for SPLOM.
Experiment Design and Procedure. We followed a random-
ized between subjects study design where the primary factor
consisted of three levels (HIST, PCP, SPLOM). Each of the
techniques was randomly assigned to each of the participants.
We used a common collection of synthetic team data sets for
each of the three visualization techniques.

A participant first completed a short tutorial that explained
the technique. The tutorial included several baseline visualiza-
tion examples of very strong, weak, and medium faultline lev-
els. The participant then answered six task questions of each
of the types described earlier: three for smaller teams and three
for larger teams. During a question, the participant could ac-
cess a visualization example with annotations highlighting var-
ious aspects of faultlines. Note that the questions of one type
are the same, but each one is asked about visualizations of dif-
ferent data sets. The ordering of question types was random-
ized across participants, but all questions of the same type were
asked as a block. The ordering of questions in each type was
also randomized to avoid ordering effects, such as primacy and
recency effects, among participants. In total, the number of task
questions was 36.

Following the data collection approach in previous work

Figure 5: Participants of the user study visualized using multiple stacked his-
tograms. The visualized attributes, from left to right, are gender, age range,
race, major/occupation, familiarity with InfoVis (yes or no), and familiarity
with computer graphics (yes or no). Participants of the three techniques are dif-
ferentiated by distinct colors: HIST, PCP, and SPLOM. While the three groups
of participants were mixed in most of the attributes, they collectively repre-
sented a diverse range of majors/occupations, genders, and ages.
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[14, 26], we assigned an error distance to each participant’s re-
sponse to measure how far each response was from the correct
answer. We identified the correct answers from the distribution
of members across subgroups and the attributes in which sub-
groups are separated. These constructs are achieved using our
data generation procedure described earlier. We also collected
the total time participants spent on each response.

In addition to the questions of type Q1-Q5 at the end of
the study, the participants answered a short questionnaire about
their experience with each technique. This questionnaire con-
tained both Likert-style questions as well as open-ended ques-
tions (see Appendix A). We discuss the study results in the next
section.

6. User Study Results

Initially, we hypothesized that for each type of question,
HIST would outperform PCP and SPLOM, both in terms of
accuracy and response time. Specifically, we expected users
would have difficulty accurately identifying evenness of sub-
groups (Q2) and separation attributes (Q3) using PCP or SPLOM
due to occlusion and visual clutter that may occur with increas-
ing number of objects (i.e., large teams). A secondary factor of
the study was to determine whether data set/team size affected
participants’ ability to judge information on diversity faultlines
using a visualization technique.

For each question type, we computed the mean of error dis-
tances and the mean of response times across the questions of
that type for each participant and compared these aggregated
values using hypothesis testing. Since the response data were
not normally distributed, we first applied a rank transformation
[41] to the data before using ANOVA for statistical tests. Fig-
ures 6(a) and (b) summarize the error distance and response
time results. We pay more attention to error distance when ana-
lyzing the results because it is the most important performance
measure for a given representation. With respect to user per-
formance, our results show that (1) across the tasks, users can
judge faultlines using HIST as or more accurately than when
using the other two methods and (2) HIST performance holds
consistent across task questions and data set sizes.
Results for Q1. How many subgroups are there in the given
team? As Figure 6 indicates, participants answered Q1 ques-
tions more accurately with HIST and SPLOM than with PCP.
In fact, there was convincing evidence for an effect of visualiza-
tion technique on error distance, F(2, 54) = 10.01, p = 0. Post-
hoc analysis using Tukey’s HSD (honestly significant differ-
ence) revealed convincing evidence for an error distance differ-
ence between HIST and PCP (pHIST−PCP = 0) but no evidence
for such a difference between HIST and SPLOM (pHIST−SPLOM =

0.255). Interestingly, when analyzing data separately over small
and large teams, we could not find evidence for such a differ-
ence between HIST and PCP for small teams (pHIST:small−PCP:small =

0.277). In addition, there was no evidence of the effect of visu-
alization on response time.

The results for Q1 suggest that users can identify the num-
ber of subgroups existing in a team equally well using both

HIST and SPLOM, and PCP for only small teams. We sus-
pect that encoding subgroups with unique colors make identify-
ing the number of subgroups or clusters straightforward. How-
ever, PCP performance decreases when data size increases. We
suspect crowded and overlapping poly lines may hinder par-
ticipants from determining the correct number of subgroups in
a team. Our results agree with the previous study [14] that
SPLOM performs better than PCP on cluster number identi-
fication tasks, both for implicit and explicit clusters.
Results for Q2a/b. Among the existing subgroups in the given
team, which one is the biggest/smallest? The results for Q2 very
much favored HIST (Figure 6). For Q2a—which involves the
biggest subgroup—there was convincing evidence for an effect
of visualization on both error distance, F(2, 54) = 9.809, p = 0
and response time F(2, 54) = 10.87, p = 0. Tukey’s HSD
multiple comparison tests showed statistically significant dif-
ferences between HIST and PCP as well as between HIST and
SPLOM in terms of error distance (pHIST−PCP = 0; pHIST−SPLOM =

0.001) and response time (pHIST−PCP = 0.002; pHIST−SPLOM =

0). The results for error distance held consistent when small
and large teams were analyzed separately. The results for Q2b
were similar to Q2a’s, with participants tending to identify the
smallest subgroup more accurately with HIST. With respect to
error distance, Tukey’s HSD tests revealed convincing evidence
for the difference in the two pairs of techniques (pHIST−PCP = 0;
pHIST−SPLOM = 0). Interestingly, when we analyzed error dis-
tance data separately over small and large teams, the results
held true for large teams only. With small teams, while we
found a statistically significant difference between HIST and
PCP (pHIST:small−PCP:small = 0.014), there was no such evidence
when comparing HIST and SPLOM (pHIST:small−SPLOM:small =

0.890).
The results confirm our hypothesis that users would make

better judgments about subgroup evenness with HIST than with
SPLOM or PCP. Again, PCP is the least favorable choice for
this task perhaps due to both occlusion caused by data over-
lap and visual clutter caused by large data sets. As the results
suggest, data overlap also hurts SPLOM’s performance, espe-
cially when the task involved identifying the biggest subgroup
in large teams. In contrast, participants using HIST produced
consistent answers for both smallest and biggest subgroups and
independent of the data set size.
Results for Q3. In which attributes are the subgroups totally
separated? The results also favored HIST (Figure 6). We found
statistically significant effects of visualization on both error dis-
tance, F(2, 54) = 17.58, p = 0 and response time F(2, 54) =

12.15, p = 0. Tukey’s HSD tests yielded significant differences
between HIST and PCP as well as HIST and SPLOM on both
error distance (pHIST−PCP = 0; pHIST−SPLOM = 0.001) and re-
sponse time (pHIST−PCP = 0.013; pHIST−SPLOM = 0). The results
held true when we analyzed error distances for small and large
teams separately.

These results confirm our initial hypothesis that HIST is
the most effective in supporting users in determining attributes
in which subgroups/clusters are totally separated, followed by
SPLOM and PCP. This finding is important considering that to
the best of our knowledge, no previous work has explored the
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Figure 6: Boxplots of mean of error distances (a) and of response times (b) for each question type as a function of visualization technique (HIST, PCP, and SPLOM).

use of stacked histograms to show the separation of clusters in
individual attributes.
Results for Q4. To what extent are the subgroups separated
across all attributes? The results somewhat favored HIST, which
showed a statistically significant effect of visualization tech-
nique on error distance, F(2, 54) = 4.047, p = 0.023. Tukey’s
HSD multiple comparison tests reveal convincing evidence of
the error distance differences between HIST and PCP as well
as suggestive but inconclusive evidence of the error distance
differences between HIST and SPLOM (pHIST−PCP = 0.019;
pHIST−SPLOM = 0.161). When error distance data are analyzed
separately over small and large teams, the results hold true for
small teams only. These results suggest that users would be able
to assign a faultline level to a given team at least as accurately
using HIST as using PCP or SPLOM.
Results for Q5. Between two different teams, which team has
stronger separation of subgroups? While there was convincing
evidence for an effect of visualization technique on response
time, F(2, 54) = 3.554, p = 0.036, evidence for an effect
of visualization on error distance was suggestive but incon-
clusive, F(2, 54) = 2.566, p = 0.086. Post-hoc analysis re-
veals that users answered this question the most quickly us-
ing HIST (pHIST−PCP = 0.053; pHIST−SPLOM = 0.076). In ad-
dition, it is suggestive that response accuracy favored HIST
over PCP (pHIST−PCP = 0.092) but not SPLOM (pHIST−SPLOM =

0.909). While these results do not support our initial hypothesis
that users would perform more accurately with HIST than with
SPLOM, they do substantiate our hypothesis that users would
be able to compare the faultline level of two teams the most
quickly when using HIST.
Result Summary. The results across Q1–Q5 consistently sup-
ported our hypothesis that among the three techniques under in-
vestigation, HIST—followed by SPLOM and PCP—is the most
effective representation in supporting users investigating fault-
lines (requirement R2) and inner structure of subgroups (re-
quirement R3) in a given team. For the task involving assigning
a faultline level to the team (requirement R1), HIST is at least
as effective as SPLOM and PCP. Moreover, users can identify
the number of subgroups existing in a team equally well using
both HIST and SPLOM. Conversely, PCP performs the worst
consistently across the tasks.

These results are complementary to the findings from the

previous diversity visualization studies by Pham et al. [25, 26],
which showed that multiple histograms are well-suited to com-
municating the diversity or distribution of objects over multi-
ple attributes separately. Within our study, we could conclude
that the multiple linked stacked histograms technique, which
takes the approach of attribute visibility (or object distribution)
as opposed to object visibility, is well-suited to communicating
diversity faultlines and composition distribution in teams.

6.1. Subjective Evaluation
After answering the task questions, participants also com-

pleted a short questionnaire requesting their thoughts on the vi-
sualization technique and their study experience. The question-
naire consisted of 10 Likert-style statements and three open-
ended questions, which we adopted from [42, 25], as well as
four NASA TLX questions [43] (see Appendix A).

We first discuss the results for the Likert-style statements
and NASA TLX questions. Figure 7 presents the responses to
each of the Likert-style statements from the samples of HIST,

Figure 7: Boxplot of responses to each of 10 Likert-style statements as a func-
tion of visualization method (HIST, PCP, and SPLOM). The participants were
asked to indicate their level of agreement on a scale of 1 (strongly disagree) to
5 (strongly agree).

Figure 8: Boxplot of responses to each of four NASA TLX questions as a
function of visualization method (HIST, PCP, and SPLOM). The participants
were asked to indicate the level on a scale of 1 (very low) to 10 (very high).
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Figure 9: The HIST representation of the example team (Figure 4(a)) enhanced
with connecting dashed lines to indicate the boundaries of separation among
subgroups across the attributes. Within each of the nominal attributes, cate-
gories are clustered using Bertin Classification Criterion. Attribute axes are
sorted using the Total Separation Criterion. The lines show that the three sub-
groups are totally separated along EDUCATION, ETHNICITY, and EXPERI-
ENCE.

PC, and SPLOM participants. Overall, the level of agreement
from participants was slightly higher for HIST than for PCP
and SPLOM regarding making judgments of diversity faultlines
components (L01–L05). This evaluation is consistent with par-
ticipant performance during the task questions. Notably, we
found statistically significant difference in level of agreement
among the three groups of participants when it comes to identi-
fication of attributes with total subgroup separation (L3)–the
primary task to judge faultlines in a team–F(2, 54) = 5.14,
p = 0. Tukey’s HSD tests show significant differences be-
tween HIST and PCP as well as between HIST and SPLOM
(pHIST−PCP = 0.02; pHIST−SPLOM = 0.02). The participants
also slightly favored HIST over PCP and SPLOM in terms of
applicability, ease of understanding, and affinity (L06–L10).
These results are supported by the NASA TLX questions (Fig-
ure 8), which showed significant differences on mental demand
(TLX1) and frustration (TLX4) among the three methods, p =

0.016 and p = 0.02 respectively.
In addition to quantitative analysis, we also performed qual-

itative analysis of the three open-ended questions. Overall, nine
participants (out of 19) praised HIST for its effectiveness and
ease of use, especially the use of qualitative colors for encod-
ing subgroups (seven participants). However, four participants
found it difficult to compare the small differences among bar
lengths. As an improvement, they suggested that we selec-
tively attach numbers in the bars. This suggestion is interest-
ing considering that despite the stacking of multiple subgroups,
HIST still has screen space to accommodate more informa-
tion. Regarding PCP, three participants (out of 19) liked its
layout, which was novel to them and was able to represent mul-
tiple attributes in a single view. Nevertheless, eight participants
expressed concern about transparency of polylines, which are
difficult to discern especially when they are of similar colors,

e.g., red and orange. Seven participants also mentioned that
the charts become extremely overwhelming for large data sets.
Commenting on SPLOM, three participants (out of 19) liked the
technique for its familiarity and ease of understanding. How-
ever, similar to PCP, five participants disliked the similar col-
ors among dots. Additionally, ten participants requested bigger
charts or the zoom-in ability. This confirmed our initial assess-
ment that without interaction techniques [44], the matrix form
space requirement of SPLOM is a limitation.

7. Faultlines Visualization Enhancement

To further facilitate the faultlines identification tasks, we
incorporate computational analysis into HIST. The visual en-
hancement is inspired by the analogy between team faultlines
and the physical layered form of geological faultlines, as first
introduced by Lau and Murnighan [1], in a sense that team
members’ multiple demographic attributes resemble multiple
layers of the earth’s crust. We augment the representation with
connecting dashed lines to indicate the holistic boundaries of
existing separation among the subgroups across the attributes
of interest or “layers” (Figures 2 and 9). To our knowlegde, this
visual enhancement is novel considering that while measures
exist to detect separable clusters of quantitative data in 2D scat-
terplots [45, 15], measures and enhancements for mixed type
data in stacked histograms are non-existent.

Technically, the augmentation requires three main compu-
tation procedures: (1) reordering values in attribute space, (2)
identifying attributes with total subgroup separation, and (3)
drawing the lines.

7.1. Reordering of Attribute Values

The first step is to reorder values within nominal attributes
to reveal meaningful boundaries among subgroups along the
corresponding axes. For each attribute X, we first construct the
corresponding contingency table (or matrix), A, by subgroups.
Second, we reorder attribute values or matrix rows by optimiz-
ing the Bertin Classification Criterion (BCC), as illustrated in
Figure 10. The criterion, which is proposed by Pilhöfer et al.
[17] and related to Kendall’s τ [46], is an implementation of
Bertin’s idea that reordering of data would improve the under-
standability of graphical displays [47]. The goal is to minimize

BCC(X) =
∑

i>i′, j< j′
AijAi′j′ (2)

where Aij denotes the entry value at row i and column j and
similarly, Ai′j′ the entry value at row i′ and column j′. Note that
optimization of BCC does not indicate whether total separation
of subgroups/clusters occurs within an attribute. Also note that
since we want to preserve the stacking order of subgroups, that
is, subgroup 1–red followed by subgroup 2–blue and subgroup
3–green as in Figure 9, this first step optimizes BCC by re-
arranging attribute values only, instead of both subgroups and
attribute values.
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Figure 10: Reordering of categories in attribute EDUCATION of synthetic
Team 2 (Table 1 and Figure 1) by optimizing BCC. The goal is to arrange
the matrix rows to get close to a pseudo-diagonal form [17] and to reveal the
boundary among subgroups.

7.2. Total Separation Criterion
The second step is to determine if total separation of sub-

groups/clusters occurs within an attribute X. Technically, if X
is a nominal attribute, total separation occurs when each row
(attribute value) of the matrix is fully contained in exactly one
column (subgroup). In other words, different subgroups share
no common attribute values, or

R(X) =
∑

i=i′, j, j′
AijAi′j′ = 0 (3)

If X is a numeric or ordinal attribute, total separation of
subgroups further requires that rows fully contained in one spe-
cific column must be contiguous, or BCC(X) = 0, assuming
the ordering of subgroups (or matrix columns) are optimized to
achieve the pseudo-diagonal form of the matrix [17]. Combin-
ing the two requirements, total separation of subgroups occurs
within an attribute X when

TS C(X) = R(X) + min(BCC(X)) = 0 (4)

We refer to TS C as Total Separation Criterion. Its values
are also used to reorder attribute axes in ascending order from
left to right (Figure 9) before executing the faultlines drawing
algorithm. Note that for the purpose of computing TS C, this
step simply calculates BCC with different permutations of sub-
groups (or matrix columns), as opposed to actual re-arrangement
of attribute values as in the first step.

7.3. Faultlines Drawing Algorithm
For each of the attributes with total separation of subgroups,

since its values are already in optimal ordering after the first two
steps, our algorithm simply traverses the values and marks the
boundary between two adjacent subgroups. The traversal also
wraps around the values to include the boundary between the
two subgroups occupying the top and bottom values along the
attribute axis. Finally, we draw a dashed polyline along the
boundaries of the two specific subgroups across the attributes
with total separation of subgroups. Note that values of nominal
attributes without objects (zero-length bars) can be selectively
excluded to adjoin boundaries among subgroups. We also apply
a jittering technique to alleviate the possible overlap of vertical
line segments (Figure 9). Our informal test indicates that real-
time computation of the lines is reasonably fast on a typical
desktop PC.

8. Discussion and Future Work

In this paper, we propose, design, and evaluate visualiza-
tion solutions to a new and worthwhile domain-specific prob-
lem concerning separation and structure of multivariate clus-
ters instantiated in the context of diversity faultlines in work
teams. Like most studies, ours has limitations that we discuss
here along with suggested directions for future work as well
as implications of our work for other application domains that
concern cluster structure and separation.

8.1. Study Design Issues
First, our study evaluated static visualizations only to first

understand the merits and shortcomings of HIST, SPLOM, and
PCP as standalone representations. Since the faultline concept
is still new to end-users, e.g., managers, and no visualization
solution exists, we must begin by understanding representation
approaches that are linked to generic clustering. This decision
was also made to keep the study implementation feasible in the
online setting of mTurk. Future work will address the interac-
tive capabilities of HIST. For example, interaction features can
potentially allow users to configure their faultline requirements,
such as faultline measures, attributes of interest, and rescale fac-
tors for each of the examined attributes.

Second, while we collected response time, we did not set a
time limit for each question considering that the online setting
of the study may be associated with more interruptions than in a
lab setting. The online setting could be a factor that caused sev-
eral unexpected outliers as shown in Figure 6(b). Nevertheless,
these outliers were counter-balanced among the three visualiza-
tion techniques and we applied a rank transformation [41] to the
data before performing statistical tests.

Third, faultlines visualization enhancement, such as reorder-
ing of attribute values and drawing of connecting dashed lines,
also requires formal evaluation. Early feedback from our man-
agement researcher collaborators were highly positive—they
praised the enhancement for its simplicity and usefulness. How-
ever, an interesting point was suggested regarding reordering
of attribute values not only in nominal attributes—as currently
implemented—but also in ordinal and discretized quantitative
attributes. The aim would be to make the separation of sub-
groups along the dashed lines more clear-cut (i.e., no crossing
lines) but at the expense of losing the information on the possi-
ble distance/gaps among subgroups in ordinal and quantitative
attributes. A follow-up user study of such trade-off in design
choices with target users such as managers would be a potential
direction for future work.

8.2. Limitations of HIST
Multiple histograms also have limitations. First, the tech-

nique requires a discretization of quantitative attributes. Sec-
ond, since the technique treats each attribute independently, it
provides limited insight into the correlation between attributes,
at least with the static representation. On the other hand, PCP is
well-suited to showing the correlation between two neighboring
attributes. To enable correlational analysis in HIST, we envision
that PCP polylines can be selectively overlaid to allow the user

12



Figure 11: Two groups (or clusters) of common moths and rare moths visualized using HIST. Since the common moths are much more abundant than the rare moths,
the length of each bar is scaled according the logarithm with base 10. Within each of the nominal attributes, categories are clustered using Bertin Classification
Criterion. Attribute axes are sorted using the Total Separation Criterion. The view suggests the two groups are far apart with respect to species, genus, and family
as well as food plant—attribute axes 1-4 from left to right. However, the two groups overlap in the other attributes. The structure of the moth data set is described
in [25].

to inspect the relationship among attributes as well as individ-
ual objects. Alternatively, it would be informative to consider
approaches that decouple the primary faultlines/subgroups view
from a relationship view where correlations are shown, for ex-
ample, in a scatter plot matrix.

With regard to scalability, HIST is scalable to the number
of visualized objects. Nevertheless, like many other multivari-
ate representation techniques, screen space is a limiting factor
when the number of dimensions increases. As a remedy, the
HIST design places histograms vertically side-by-side—as op-
posed to horizontally—to allow more attributes to fit in a wide-
screen display as well as to facilitate the placement and reading
of labels from left to right. Across the three examined tech-
niques, scaling with the number of clusters or subgroups would
also be limited by the number of distinct qualitative color hues
perceivable to the human eye. Harrower and Brewer provides
detailed guidelines for qualitative color schemes in their Col-
orBrewer paper and tool [34]. Besides color hues, future work
would investigate other encodings (e.g., textures or patterns) or
combination of encodings to improve scalability in terms of the
number of clusters.

On a related note, implementing an interactive faultlines
visualization would require efficient faultline measures as an
external data clustering step. Nevertheless, to our knowledge,

there are currently no well-established measures that would be
scalable to large teams with multiple subgroups [3]. We suspect
that modern cluster algorithms from the field of data mining
such as Affinity Propagation [48] deserve further investigation
for the faultline measurement challenge. These algorithms may
prompt revision of HIST and other cluster representations.

8.3. Implications of Faultlines and HIST in Other Domains

To further show that the faultlines concept in management
corresponds well to functional diversity in ecology, as men-
tioned in the Introduction section, we also apply the multiple
linked stacked histograms representation (HIST) to visualizing
the two groups/clusters of common moths and rare moths from
the moth data set [49] (Figure 11). To some extent, the two
groups are equivalent to functional groups in functional diver-
sity. The results are encouraging. The visualization provides in-
sights into the separation between the two groups with respect
to species, genus, and family as well as food plant: common
moths are mostly conifer-feeders and rare moths are mostly
hardwood, herb, and grass-feeders (Figure 11). Readers in-
terested in the ecological viewpoint are encouraged to refer to
Petchey and Gaston [9, 10] and Ramette [50] for in-depth re-
views of cluster analysis techniques for ecological and micro-
bial diversity data, respectively.
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Finally, we are also intrigued by the possibility of investi-
gating faultlines in online collaborations and other social con-
texts such as political science. There have been studies of the
effects of group diversity on productivity as well as member
withdrawal behaviors among Wikipedia projects [7], however,
the effects of attributes are studied one at a time. In future work,
it will be informative to re-visit the problem and investigate
the effects of multiple attributes simultaneously with diversity
faultlines as the primary measure. In addition, political science,
which studies demographic diversity and how diversity relates
to voting patterns and election results, opens another area that
may benefit from faultline-based visualization.

9. Conclusion

We present the first study exploring the design space for
graphical representation of team faultlines, a fundamental con-
struct in management that shares many characteristics with clus-
tering in computation. In doing so, we contribute (1) the novel
application and refinement of existing stacked histograms tech-
nique to the faultlines visualization in particular and visual anal-
ysis of cluster structure and separation in multivariate mixed
data in general, (2) a rigorous evaluation of the effectiveness of
the proposed technique, (3) additional visual enhancements and
metrics to further facilitate the faultlines identification tasks. To
visualization researchers, the findings from our study suggest
the need for revisiting cluster representations in general and in-
vestigating techniques for the important problem of faultlines
in particular. To management researchers, our proposed visu-
alization provides a useful means to conceptualize visually the
output of faultlines measures, a requirement which is extremely
difficult to achieve with a table-based assessment. We also hope
the visualization will help bring the benefits of studying fault-
lines to more end-users such as managers or human resources
departments.
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Appendix A. Subjective Evaluation Questionnaire

After answering the task questions, participants also com-
pleted a short questionnaire requesting their thoughts on the vi-
sualization technique and their study experience. The question-
naire consisted of 10 Likert-style statements, four NASA TLX
questions, and three open-ended questions:

• L1. I was able to identify the number of subgroups in a
team using the chart.

• L2. I was able to identify the biggest/smallest subgroup
in a team using the chart.

• L3. I was able to identify attributes in which the sub-
groups were totally separated using the chart.

• L4. I was able to judge the overall degree of separation
(faultline strength) in the team using the chart.

• L5. I was able to identify between two different teams,
which team had stronger separation of subgroups.

• L6. After the initial tutorial session, I knew how to use
the chart well.

• L7. After answering all of the questions, I knew how to
use the chart well.

• L8. There are definitely times that I would like to use the
chart.

• L9. I found the chart to be confusing.
• L10. I liked using the chart.
• O1. What aspect(s) of the chart did you like most?
• O2. What aspect(s) of the chart did you dislike most?
• O3. If possible, how would you change the chart to im-

prove it?
• TLX1. Mental Demand: How mentally demanding were

the task questions?
• TLX2. Physical Demand: How physically demanding

were the task questions?
• TLX3. Temporal Demand: How hurried or rushed was

the pace of the task questions?
• TLX4. Frustration: How insecure, discouraged, irritated,

stressed, and annoyed were you?
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