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The correlation time of fluctuating hyperfine fields in liquid

Se
x
Te

1-x
has been measured, for the temperature range of about 260°C

to 980°C and throughout the composition range, using the perturba-

tion of angular correlations (PAC) of dissolved dilute 111Cd

impurities. The angular correlation of 111Cd was exponentially

damped and consistent with the effect of either a randomly fluctuat-

ing electric field gradient (EFG) or a paramagnetic relaxation mech-

anism (PRM). The measured attenuation factor is not consistent with

any simple EFG fluctuation, since that model would imply bond life-

times too short for large rotating molecules or an atomic jump fre-

quency faster than phonon frequencies for small molecules. The PRM

model is consistent with experiment provided the Cd is bonded to a

small paramagnetic molecule or ion. Good scaling between the meas-

ured attenuation factor and the correlation time of fluctuating



spins measured in liquid Se by Warren and Dupree supports this

contention and gives a value for the hyperfine coupling parameter,

>

E.A.
= 9.05 x 1017 s-2. The existence of small paramagnetic

Cd - chalcogen molecules with a hyperfine coupling of this size is

consistent with a modification of Cutler's bond equilibrium

theory. By assuming that the coupling parameter is concentration-

independent, the PAC data yield spin correlation times which

decrease as the Te composition and temperature are increased,

consistent with the midrange alloy NMR data of Kirby. The shortest

time calculated, 10-13s, was measured at the highest temperature in

Te, about 450°C, and the longest time, about 10-11s, for the lowest

measured temperature in Se05Te05, about 350°C. The spin correla-

tion time TS scaled reasonably well with the spin density. Some

concentration-dependent effects were seen but these are tentatively

attributed to changes in the effective coupling constant. T is

approximately proportional to the spin density at high densities and

to the square root of the spin density at low densities. The data

imply a Te-Te bond strength of 1.1(1)eV and an upper limit to the

rotation time of Cd-containing molecules of 10-10 to 10-11s. The

data supply an estimate of the defect spin density in liquid tellur-

ium, supercooled below 350°C. Additionally, the data imply that In

is insoluble in Se below about 450°C but soluble to at least a ppm

in Te at 260°C.



Perturbed Angular Correlation Measurements of Hyperfine Fields
in Liquid and Amorphous Selenium-Tellurium Alloys

by

D. Kurt Gaskill

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed July 10, 1984

Commencement June 1985



APPROVED:

Redacted for Privacy
'or of PWics in charge of

Redacted for Privacy
Chairman of the department of Physics

Redacted for Privacy

Dean of Grad a

(I)

6 school 6r

Date thesis is presented July 10, 1984

Typed by Katherine Haag for D. Kurt Gaskill



ACKNOWLEDGEMENT

The helpful efforts of the faculty, staff, and students of

Oregon State University, and in particular the Department of

Physics, are sincerely appreciated. Special thanks to Dr. Kenneth

Krane for helping me with the electronics of the spectrometer, Lou

Klahn for answering questions about electronics in general, and Dr.

Melvin Cutler for useful and stimulating discussions.

Also, special thanks to Dr. Robert Rasera (UMBC) for his

guiding insight in using the spectrometer and the theory of PAC,

Dr. Horst Radscheit (Heidelburg) for his useful criticisms and Dr.

William Warren, Jr. (Bell Lab) for extremely useful discussions

about his measurements, my measurements, and the connection between

the two.

I acknowledge the support of the Office of Naval Research and

the OSU Department of Physics for my enjoyable stay in Corvallis.

Sincere thanks to the great effort by Kathy Haag in typing this

thesis.

Heartfelt thanks to my advisor, Dr. John Gardner, for his

support, help and guidance in producing this work and physics in

general.

And one million grateful thank-you's to my wife, Cheryl, for

putting up with all this throughout the country and the years.

This is our thesis, Cher.



TABLE OF CONTENTS

Chapter Page

I INTRODUCTION 1

1.1 Physical Properties of SexTel_x 1

1.2 Electronic and Magnetic Properties of SexTe/..x. 4

1.3 Perturbed Angular Correlations in SexTel_x . . 7

II THEORY OF ANGULAR CORRELATIONS 9

2.1 Angular Correlation 9

2.2 Perturbations - Static 14

2.3 Time Dependent Perturbations 22

III EXPERIMENTAL EQUIPMENT AND SAMPLES 29

3.1 Electronics 29

3.2 Equipment 36

3.3 Samples 38

IV EXPERIMENTAL DATA 45

4.1 Data Reduction 45

4.2 Liquid SexTel_x Data 50

4.3 Amorphous SexTel.x Data 52

V DATA ANALYSIS 57

5.1 Models for the Fitted Values of A 57

5.2 Case 1: Correlation Times of an EFG 59

5.3 Case 2: Correlation Times of an EFG Plus a PRM 66

5.4 Case 3: Correlation Times of a PRM 67

5.5 Implications of Ts 71

VI CONCLUSION 77

6.1 Summary of Experimental Results 77

6.2 Implications of Ts 80

REFERENCES 86

APPENDIX: MATHEMATICAL DEVELOPMENT OF ANGULAR CORRELATIONS 89

A. Mathematical Conventions 89
B. The Density Matrix 92
C. Evaluating the Angular Correlation Function . . 94

D. The Effect of Extranuclear Perturbations . . . . 102
E. The Static Electric Field Gradient 113
F. Time Dependent Perturbations of Randomly

Fluctuating Fields 118

G. The Attenuation Factor for Randomly
Fluctuating EFGs 124

H. The Attenuation Factor for a Paramagnetic
Relaxation Mechanism 129



LIST OF FIGURES

2-1

3-1

3-2

3-3

Decay Scheme of 111Cd

Block Diagram of PAC Experimental Geometry and Electronics

Accumulated Coincidence Spectrum for a Typical

Spectrometer System

Block Diagram of the Splat Apparatus

10

30

35

43

4-1 Values of x2 and Ts vs. 1000/T(K) 51

4-2 The Function A2G2(T) for the Amorphous Splats 53

4-3 Quadrupole Frequency and Asymmetry Parameter as a Function

of Composition for the Amorphous Splats 56

5-1 TQ as a Function of 1000/T(K) 62

5-2 Plot of x2 Scaled to NMR Ts Data vs. 1000/T(K) 68

5-3 A Plot of the Calculated TS Values as a Function of the

Inverse Spin Density 72

5-4 Plot of the Magnetic Susceptibility as a Function of

Temperature 76

A-1 A Plot of the Roots of x from Equation A-70 as a Function

of the Asymmetry Parameter n 115

LIST OF TABLES

2-1 Characteristics of 111Cd 11

4-1 Results of Computer Fits to the Amorphous Splat Data . . 55



PERTURBED ANGULAR CORRELATION MEASUREMENTS OF HYPERFINE FIELDS IN

LIQUID AND AMORPHOUS SELENIUM-TELLURIUM ALLOYS

I. INTRODUCTION

Either by themselves, or alloyed with other elements, the

liquid chalcogen elements, 0, S, Se, Te, and Po, exhibit a wide

range of physical and electronic properties continuously variable

with composition. For example, S is a polymeric, nearly insulating

liquid with a ring phase at temperatures just above its melting

point, Se is a liquid semiconductor containing 2-fold bonded chains,

liquid Te is a poor metal and is roughly 3-fold coordinated, and Po

is a 6-fold coordinated liquid metal. The electronic properties are

a consequence of the physical structure of these materials and

depend on the existence of various types of thermally generated bond

defects. Good introductory sources on liquid semiconductors and

chalcogens are Cutlers and Glazov et al.2 Current research

endeavors can be found in the proceedings of the International

Conference of Liquid and Amorphous Semiconductors and the

International Conference of Liquid and Amorphous Metals, both of

which are held every two years.

1.1 Physical Properties of SexTel_x

Liquid selenium-tellurium alloys, the subject of this work, are

particularly interesting systems to study. By continuously changing

the composition from selenium to tellurium, the structure
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continuously changes from long chains2, of about 108 atoms3, that

are mainly 2-fold coordinated"5, to a mainly 3-fold

coordinated6'7 structure2. (Selenium and tellurium are

completely miscible with melting points of 217°C and 450°C

respectively8.) For pure Se the existence of a ring-like phase is

doubtful9 and for pure Te the coordination number increases

continuously to 5 at a temperature of approximately 1600 °C6. The

increase in the density of the alloy system18'11, the decrease

in viscosity12, and a reduction in the thermal expansion

coefficient11'13 with increasing tellurium composition and

temperature are consistent with the change to 3-fold bonding and

shorter mean chain length.

The observed change in near neighbor coordination is also

associated with the thermal generation of additional or "defect"

bonding states14, which can be understood in the following way. The

predominant covalent 2-fold bonding of selenium and selenium-

tellurium alloys is due to the atomic configuration s2p14. The two

s-state electrons do not participate in the bonding. Two of the

p-state electrons are used to form part of the covalent bonds with

two adjacent neighbor chalcogens. The other two p-state electrons

enter into a nonbonding "lone pair" state. The empty p-states, at

higher energies, are antibonding states. The resulting chain

structure is actually helical, because of the orientation of the

p-orbitals, in the solid trigonal crystal and is probably
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preserved in the liquid`'. The symbol 02 is often used to describe

the 2-fold bonding at the chalcogen sites.

At elevated temperatures one of the bonds may not be

satisfied. The unpaired electron is in the so-called "dangling"

bond state and the symbol DI is often used to designate this

configuration. The addition of an electron effectively reduces the

energy of the dangling bond, through electron pairing, forming a DT

center15.

The 2-fold coordinated chain can be modified by additional

bonding, forming a 3-fold center by using one of the lone pair

electrons as one-half of a bonding pair, leaving an unpaired

electron in the lone pair state. These states are designated DI.

Removing the electron remaining in the lone pair state lowers the

energy of the 3-fold center by eliminating the lone pair-covalent

bond interaction. This combination is called a D3
3

It has been suggested that the DT and DI centers are the most

stable bonding states and the DI and DI centers are the thermally

generated states15'15. The D3 may be one of the dominant
3

bonding states in tellurium. The energies and concentrations of

these defects are matters of significant research interest and some

controversy at present. However, it is generally accepted that the

D*, DT, and DI defects should exist in significant concentrations.
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1.2 Electronic and Magnetic Properties SexTel_x

Detailed measurements of the conductivity of SexTel_x alloys

have been carried out by Perron17'18 and Rasolondramanitra19. The

conductivity of selenium at the melting point is about 10-5Q-1cm-1.

The conductivity increases (to approximately 103i1-1cm-1 for high-

temperature tellurium) as the tellurium content and temperature is

increased. The alloys exhibit semiconducting properties in the

lower temperature regions, with the onset of metallic conductivity

occurring at high temperatures and decreasing with tellurium con-

tent. Ionic conduction is not a dominant conductivity mechanism in

these materials but can play a small role, especially at low temper-

atures and selenium-rich compositions19. To observe semiconducting

properties of tellurium, it must be supercooled at least 100°C,

because it is essentially metallic at the melting point. Very lit-

tle experimental data exist for such extreme supercooled material,

and it has not been definitively shown that tellurium is semiconduc-

ting at all.

The thermopower measurements of Perron and of Rasolondramanitra

decrease with increasing tellurium content and temperature, where

the cutoff from simple activated behavior occurs at roughly the same

temperature as the semiconducting region ends. These electrical

properties are generally consistent with an increase in the concen-

tration of D- centers, determined from a model based on bond equil-

ibrium theory (BET) 19, extensively developed by Cutlerl'28, and

Cutler and Bez21.
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Conductivity and thermopower measurements of monovalent doping

in Se
x
Te

1-x
alloys have been made by Radscheit et al.22 and Fischer

et al.23 Using an extension of BET, the data are consistent with a

model in which the metal atoms are bonded to chalcogen atoms, and

about one half are associated with diatomic metal-chalcogen negative

ions, denoted DM centers.

It is worthwhile to mention that oxygen impurities greatly

influence the conductivities of the alloys. This subject is

extensively reviewed and treated by Rasolondramanitra19.

The density of states is qualitatively similar to that of the

solid except that band tailing occurs and singularities are smoothed

by the effects of long range disorder and potential fluctuations2.

The deep band-tail states are localized and cannot readily conduct

electrical current. They are believed to merge relatively abruptly,

at an energy called the mobility edge, with extended states which

participate in electrical conduction.

The distance between the mobility edges at the conductivity and

valence bands is called the mobility gap and is analogous to a band

gap in a crystalline semiconductor. The s-states and bonding

p-states of the chalcogen form deep valence bands, the non-bonding

p-electrons form the valence band, and the anti-bonding p-states and

higher-lying s-states form the conduction band.

The acceptor states in the mobility gap are predicted by BET to

be caused by formation of D- centers, and the donor states by D+
3
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centers. Since the density of defects can change with temperature

and composition, the Fermi level can move throughout a large portion

of the mobility gap. Rasolondramanitra19 indicates that the

electrical transport properties are mainly governed by an increase

in the number of acceptor states with increasing tellurium content

and temperature. Fischer et al.23 find that monovalent doping

results in a growth of the acceptor band through an increase in the

concentration of D- centers.

Magnetic susceptibility measurements have been carried out by

Gardner and Cutler in Se
x
Te

1-x
alloys24. The data exhibit an acti-

vated temperature dependence in the semiconducting region at low

temperatures. Unpaired electrons in the DI (and possibly DI)

centers contribute a Curie law susceptibility per spin, and the data

yield the concentration of defect centers. Calculated values of

spin concentration are about 10-4 for low temperature selenium to

approximately 10-1 at the semiconductor-metal transition. The

activation energy is one-half the energy required to break a 2-fold

bond to form the D* centers.

As the tellurium content and temperature is increased, the

activated behavior ceases and the susceptibility begins to saturate,

indicating spin-spin interactions are becoming important.

Nuclear magnetic resonance (NMR) on selenium was first

performed by Brown et al.25, and more extensively by Warren and

Dupree26 at various pressures. The NMR results were used by
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Warren and Dupree26 to calculate the correlation time of spin

fluctuations. The correlation time decreases with increasing tem-

perature and pressure, but apparently depends only on the density of

spins and not explicitly on pressure or temperature. Kirby27 made

NMR measurements on Se
0.5

Te
0.5

and Se
0.4

Te
0 6

and found correlation

times the same order of magnitude as Warren and Dupree and decreas-

ing as the tellurium composition and temperature increases.

1.3 Perturbed Angular Correlations in SexTel_x

It is not exactly clear what roles the various defect centers

play in the physical and electrical properties of SexTel_x. The

time scales, reaction mechanisms, electronic, and magnetic inter-

actions of these bonding defects have been subject of informed spec-

ulation but relatively little hard data.

The microscopic technique of perturbed angular correlations

(PAC) gives the experimenter the ability to sample the fluctuating

hyperfine fields at the site of the PAC probe. The dominant hyper-

fine fields were expected to be electric field gradients whose ran-

dom fluctuations are due to thermal generation of defect centers.

Hyperfine fields due to magnetic interactions with a nearby spin are

also present, but these were expected to be small, since the density

of electronic spins is small. If the spins are randomly distributed

with respect to the PAC probe, this mechanism would contribute neg-

ligibly to the PAC relaxation.
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As the reader will find, the above expectation was apparently

incorrect for this experiment. The probe apparently is chemically

bound with high probability to a magnetic molecule and thus the

magnetic interaction is much larger than anticipated. Also the

electric quadrupolar interaction is much weaker than expected with

the result that the magnetic interaction dominates. The data

provide significant new information about the dynamics of the

electron-spin and suggest that the dynamics depend only on electron

spin interactions. These results have important implications on

other magnetism research both in the selenium-tellurium alloys and

on some general problems in many-body physics.
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CHAPTER II

THEORY OF ANGULAR CORRELATIONS

2.1 Angular Correlation

There are many examples of the decay of excited nuclear states

to ground states or meta-stable states by the emission of successive

particles and/or radiations.28 The observed characteristics of

these decays are the spin, parity, energy of the participating

levels, and the multipolarities of the emitted radiation.

Knowing the characteristics of the levels involved ina decay

by successive emission from an excited state, calculations can be

done to determine the probability that the ith particle or

radiation is observed at the angular coordinates ei, with

respect to the first particle or radiation emitted. The probability

is called the angular correlation function of the successive decay.

This work will focus on the angular correlation of two successive

gamma radiations from 111Cd, shown schematically in figure 2-1.

Details and properties of the decay are listed in table 2-1.

For the 111Cd case, the probability that a nucleus decaying

through the cascade by emitting yi, into the solid angle dc21, and

then y2 into the solid angle (102, is the angular correlation

function, W(It1,2)dp1ds12, where and rt2 are the directions of the

two successive gamma decays.

Discrepancies between theory and experiment are accounted for

by the presence of external perturbing fields acting on the
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Figure 2-1 Decay scheme of 111Cd.
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Table 2-1 Characteristics of 111Cd

Parent 1111n + ilicd, = 2.83d.

8

Initial Intermediate Final
State State State

spin 7/2+ 5/2+ 1/2+

energy 416.70(10)keV 245.42(1)keV 0.0

branching ratio 99.17% 100% - - --

half life (Ti ) 120(30)ps 85.0(7)ns stable

Quadrupole moment (Q) ? +0.77(12)b none

Magnetic moment (u) ? -0.7656(25) -0.5948856(9)

Gamma energy 171.3 KeV 245.4 KeV

multipolarity Ml, E2 E2

mixing ratio (6) -0.144(3) --

Values taken from Nuc. Data 27 (1979)29___
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nucleus. Knowledge of the magnitude and geometry of the perturbing

fields at the nuclear site is gained by comparing experiment with

the calculated effects for the particular field.

The physical reason for the angular correlation is as follows.

The first radiation, yi, is emitted with no directional preference

because the nuclei are randomly oriented in the sample. By

observing yi in the direction K1 those nuclei that are oriented

preferentially for the emission of yi in that direction are

observed. The nuclei are now in the intermediate state with some

relative (in general, unequal) population of m states. (The

direction Ki can serve as a convenient quantization axis.) Upon

decaying to the ground state, the relative m state population plus

the selection rules of the decay (determined by the multipolarity

and mixing ratios of the emitted 12) determine the probability that

12 will be emitted into the direction K2.

Without the effect of external perturbing fields, the

unperturbed angular correlation function has the following form:

(The mathematics for unperturbed angular correlation is covered in

the Appendix, sections A through C)

k
MAX

Wit1S2) = L Al," (y1)Ak(y2)Pk(cose)

k=0
(even k)

2-1

where:

1) a is the angle between K1 and K2.

2) The parameter Ak(y1)=Ak(LIL1'IO) is a number which

depends only on the multipolarity of the emitted radiation, L1 and
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L11, and the spins of nuclear states involved in the transition.

(Note: A0=1 for overall normalization.) Tabulations can be found

in references such as 30.

3) The parameter Ak(y2)=Ak(L2L2V) is a number similar to that

above involving the multipolarities and spins of the second

radiation.

4) The sum is finite with kMAX =MIN(2I, L1 +1.11, L2+L2').

5) The sum is over only even k values.

6) Circular polarization of the radiations are not observed

(directional correlation only).

The physical reasons behind this result are:

1) The initial m state populations are equal because local

quantization axes of the fields sensed by the excited nuclei are

randomly distributed throughout the sample.

2) The decay depends only on nuclear transition parameters,

e.g., spins, multipolarities. The connection between successive

decays is through the Legendre polynomial term, Pk(cose), which

comes about from the unequal m state populations in the intermediate

state.

3) The index k represents the coupling of angular momentum and must

satisfy the triangle condition with the vector sets (r, I, Z),

(Li, L1', k) and (L 2, L2', k). Thus k has the maximum value given

above.

4) Not observing the circular polarization of the emitted radiation

imposes the constraint that only even values of k need be

considered.
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5) External perturbations are not present.

For the 111Cd isotope, kMAX =4. Thus, A2(Y1)A2(Y2) and

A4(i1)A4(y2) need be considered. The best values for these terms as

of this writing are: A2(y1)A2(y2)=-0.180(2) and

A4(y0A4(y2)=+0.002(3).31

2.2 Perturbations - Static

When considering the effect of externally applied

perturbations with Hamiltonian K(t) (whether intrinsic crystal or

dipolar fields or laboratory-generated magnetic fields), the pertur-

bation is assumed to act on the intermediate state from the instant

it is formed until the moment of the emission of the second

radiation. It is unnecessary to consider perturbations acting on

the initial state since the observation of the first gamma chooses

those nuclei that are preferentially oriented whether or not a

perturbing field is present.

The formalism used in the case of perturbing fields is that of
t

the time evolution operator, A(0=exp[..11 f K(t') dt']. This
A o

operator acts on the m states of the intermediate state causing

transitions amongst themselves. The perturbed angular correlation

function in this case becomes

WA,t) .

*
- N N

I A, (y0A, (y2)(kik2) GN 'k2(t) ,k1 (81,00' 2('2,02) 2-2

k1,N1 rk 1 N2 kl 2 1 2

k 2,N2



where the attenuation factor G
N

1
N
2(t) has the form

1(11(2

2I+m +m I I k2

GN1N2(t) = (-1) (1(11(2)
1(11(2

ma,mb
mla -ma

N1 mb -mb N2)

<ImbIA(t)IIma > <I mblA(01Ima>
*

15

2-3

and (e. (1).) are the emission directions of the respective

photons. The notation k=2k+1 is used.

(Mathematical details on the effect of perturbing fields can be

found in the Appendix, sections D through H.) The two cases of most

interest are where the excited nuclear state is present in a single

crystal or powdered sample. For the single crystal case the

attenuation factor becomes

G,N 1,N2(t) . 1

r`12
ma'mb
n,n'

<nlm
b
>
*
<nlm

a
I><n'm

b
><n1 Im

a
>

*
exp[-i(E

n
-E

n
,)tifi] 2-4

and the terms <nlma> are the matrix elements

<nima> = <InIUIIma> , 2-5

2I+ma+mb ,.. I I k1 /I I

(-1)

m
a

-m
a

N
1

m
b

-m
b

N
2

where U is the unitary operator which diagonalizes the interaction

Hamiltonian.

For the limiting case of an axially symmetric perturbing field,

U=1 and the symmetry axis is taken as the quantizing z axis. The

perturbation factor becomes
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N1N
Gk

1
k

2

2 (t) / (2)
m,m' m' -m N1 m' -m N1

I I k1 I I k2

exp [-i(Em-Em,)tifl]
tql,N2

If the crystal is aligned with its symmetry axis parallel to the

2-6

axis of one of the detectors,

GN1N2(t)
=

1(0(2 k1,k2 N1,N2
6
N1,0 '

which produces

2-7

W(1Z1,2,t) = Ak(y1)Ak(y2)Pk(cose) 2-1

Physically, the perturbing field causes transitions among the m

states. If the symmetry axis of the crystal is aligned with the

axis of one of the detectors, then the perturbing field cannot cause

transitions among the m states and no perturbation is observed.

In considering the case of the powdered sample, the sample is

assumed to be made up of a large number of microcrystals which are

randomly oriented. The probe nuclei are embedded in each of the

microcrystals. The total attenuation factor, GN1N2(t), is found by

averaging over all the equally possible orientations of the

microcrystals in the sample. The appropriate unitary matrix to

diagonalize the interaction Hamiltonian must be used as before.

Also a rotation operator is applied to rotate each microcrystal's

coordinate system to the angular correlation (lab) coordinate
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system. The Euler angles describing this rotation, a, a, y, take on

all possible values because the microcrystals are randomly oriented

throughout the sample. (Complete mathematical details can be found

in the Appendix, section D.) The result is

where

GN1N2(t) . 6 6 S
k

1
k
1-cos[(E -E Wfi]

1(11(2 k1,k2 N1,N2 m m m

Gk
1
k

1
(t) '

21+n
1
+n 2k k

S 1,2 = (-1) <mlni> <mln2><m'In'><m'In'>
mm 2n ,n ,n'

1 2 1

I k1 I

n' -n P n' -n P
2 2 1 1

2-8

2-9

and <mini> are the elements of the unitary matrix which diagonalizes

the interaction Hamiltonian in the principal axis system (similar to

equation 2-5). Furthermore, equation 2-8 yields the simple result,

Ak(il)Ak(12)Gkk(t) Pk(cose) . 2-10

That is, the effect of the perturbation in the powdered sample is a

multiplicative factor which modulates or reduces the unperturbed

angular correlation.

Physically, the non-diagonal (k1 *k2) terms do not contribute

since all possible Euler angle combinations enter into the averaging

process and cancel individual contributions "pairwise" - the
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orthogonality of the rotation matrices only allow diagonal terms to

contribute. (An analogy would be the calculation of an electric

field from a volume of space charge with high symmetry.) The

resulting Kronecker deltas greatly simplify the expression that

produces equation 2-10.

The perturbing Hamiltonian due to a static electric field grad-

ient (EFG) interacting with the quadrupole moment of the intermed-

iate state of the excited nucleus has the form

KQ = 4r T(2)V(2) =

5 q

1 (-1)q r (2) v (2) 2-11

where T (2) is the q
th

component of the nuclear quadrupole operator

and V (2) is the q
th

component of the tensor operator of the EFG due

to the lattice point charges surrounding the excited nucleus. (The

Appendix, section E, contains the mathematical details in evaluating

this interaction.)

Evaluation of the energy eigenvalues in the principal axis sys-

tem is needed to apply the formulas presented in equation 2-6 for a

single crystal or equations 2-8 and 2-9 for a powdered sample. .In

this system the EFG tensor has the form

V(2)
1 r

0 4 zz

11() 1

4 6n

)//f
" wzz '

2-12
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where V
zz

is the second derivative with respect to z of the

potential due to lattice point charges at the site of the excited

nucleus in the principal axis system, and n is the asymmetry

parameter which describes the symmetry of the EFG at the nuclear

site and is defined by

(V -V
xx YY

)

n = IVxxl IVYYI IVzzl
V
zz

2-13

The asymmetry parameter takes on all values between 0 (axially

symmetric EFG) and 1 (extreme asymmetry of EFG).

The eigenvalues of the resulting interaction Hamiltonian matrix

depend on the spin, I, of the intermediate state and the value of

n. This matrix is difficult to diagonalize in general and the

problem is simplified to the 1=5/2 case represented in this work.

The interaction matrix then takes the form

eQV
zz

K =

r-

lo

0

n VIti

0

-2

0

0

-8

0

n3 /2

0

0 0

0 0

n3 /2- 0 2-14
Q 41(21-1)

0 n3 2- 0 -8 0 n /To

0 0 n3 /2- 0 -2 0

0 0 0 n JO 0 10

The quadrupole moment of the intermediate state is defined through

eQ = <III er, (3zp21)III> = 4(1) <IIIT
o
(2)III> . 2-15

P 5

Also note that the interaction Hamiltonian is diagonal for axially

symmetric (n=0) EFG's.
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solutions of

(L)3 - 7(1)(3+n2) - 20(1-n2) = 0 .

2 2

20

2-16

Note that the interaction Hamiltonian is degenerate with respect to

± m states. The solutions are best calculated numerically for a

given value of n. Figure A-1 graphically displays the three

solutions as a function of n.

Equation 2-8 can be written in the form

Gklkl(t) = SkIkl(w
n

) cos(wnt) ,

n

2-17

where the sum is over all possible energy differences between the m

states. Again the degeneracy of the eigenvalues allows for only

three values in energy differences. Using the form AE=hw, defining

wo=0, and letting wi be the smallest of the three energy differences

followed by w2 and w3, then the coefficient can be written

k k
s
k

1
k2(w

n
) S 1mm ,2

,

m,m
2-18

where the sum is restricted to those values of m, m' which produce

the desired energy difference wn. Note that wl + w2 = w3.

A more transparent solution is afforded by the axially

symmetric EFG case. This produces the attenuation factor

I I 2

Gkk(t) =
m,m' m' -m P

cos[(m2-m12)3w
Q
t]

'

(

which is true for any value of I. This can be rewritten as

2-19
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Gkk(t)
cos (nwft) ,

I I k1\ I

s
k

1
k2

n P
m,m' m' -m P m' -m P

21

2-20

2-21

The index n are the positive integer values of +m2 -m121 for integer

I and 1/21m2-m'21 for half integer I. Also wf=3wQ for integer I and

sui
Q

for half integer I.

In particular, the 1=5/2 case yields the form

G
kk c(t) = .1+ .

13 10
cos w t + cos2w

f
t + cos3w

f
t

5 35 35 35

2-22

If the excited nuclei occupy sites of different EFG symmetry

and strength then the net attenuation factor is

Gkk(t) fi Glick (t) '
2-23

where the sum is taken over all the inequivalent sites, each with

some fractional occupation, fi, and attenuation factor, G-11((t).

Because the EFG may vary in magnitude and symmetry from site to

site in a given sample, the energy differences take on a distributed

set of values. By assuming that the energy differences are normally

distributed about a mean frequency, the net effect is to change the

attenuation factor to

_62w 2t2/2
skk

Gkk(t)
(wn) cos(wnt) e n

n

9 2-24



22

where d=aiuy and a is the standard deviation of the distribution

about the mean value wf. (Recall that w1 =wf.)

2.3 Time Dependent Perturbations

When the perturbing field fluctuates randomly in time, some

average local field configuration exists at any time t. This field

then randomly reorients its direction as time passes. If many

reorientations occur during the lifetime of the intermediate state

then there exists no macroscopic preferred direction for the

sample. Thus, a convenient quantization axis is chosen to simplify

equations 2-2 and 2-3. This axis is chosen to coincide with the

propagation direction of one (the first) of the radiations. The

perturbed angular correlation function takes the form

and

0
= I A, (y0A

k2
(y

2 k
2
(OP

k 2
(close)

kl,k2 "1

I 1(1)
0 2I+m+m'

G° = (-1) (k 11(2)
1(11(2

m, m' m -m 0

I

VIM' A(t)IIM>1 2 ,

111. -m' 0

2-25

2-26

where the term involving the time evolution operator, A(t), is

the probability of a transition from the state 1Im> at t=0 to the

state IIm'> at time t. Let this be Wmm,(t). (Details on

evaluating this probability can be found in Appendix A, section F.)

Using first-order time-dependent perturbation theory, the

transition rate for the sample is
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<W
mm' A 2

2

c
k ,(0) 1 2>E.A. 2-27Qmm,(t) mme <l

t
h I MM I

where the brackets and "E.A." indicate a statistical or ensemble

average over the sample. The term Tc is the correlation time of

the fluctuating interacting field,

-IT I/T
<Kmm,(t) Kmm,(t-T )>E.A.

<11(m-'(°)1
e

c

m 12>E.A.
. 2-28

The assumptions in the above two expressions are as follows:

1) The fluctuating perturbing fields are stationary random fields,

independent of the origin of time, t.

2) The value of the correlation function, <Kmm,(t)Kmmi (t-T )>E.A.'

is independent of the direction in which time is measured (an even

function of T). Hence the correlation function is real, positive

and decreasing with T.

3) The exponential damping term, given by equation 2-28, is the form

of the correlation function. (This assumption is used in Abragam's

Brownian motion mode132 and Slichter's fluctuating spin mode1.33)

4) The experimental observation time (the lifetime of the

intermediate state) is long compared to the correlation time of the

field.

5) The motional narrowing approximation is used where the rate of

fluctuations is fast compared to the transition frequency,

W
mm

,<<1/Tc.
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First order perturbation theory cannot be used when the

transition probability is not small compared to unity. Then the

master equation must be solved to find the occuption probability of

a state Im >, Pm, as a function of time,

dPm +I

= Qmm, (Pm, -Pm)

dt m'=-I

2-29

Solutions to this equation are valid when the transition rate is

small compared to the field fluctuation rate, Qmm,<<l/Tc.

The form of <IKmm,(0) needs to be
mm E.A.12>E.A. <IK 1(t)12>

known before an explicit solution to the master equation can be

found. Two possible models are: a random fluctuating EFG and a

paramagnetic relaxation model due to random flipping of a spin

coupled to the intermediate state.

For the randomly fluctuating EFG in the laboratory system, the

interaction Hamiltonian is,

= !!.
(_1)q

T v(2) w k(2) tz,t)

5 q

2-30

The EFG tensor is best described in the time independent coordinates

of the principal axis system, z'. The connection between the two

coordinate systems is through the Euler angles, a(t), 13(t), y(t),

which describe the random reorientation of a local field with time.

Using the rotation operator the interaction Hamiltonian becomes

K
Q
(t) (-1)q T(2) D(2) (a(t) 8(0 (0) V(2)(e) 2-31tY orli

5 q,q'

The prescription is to form the quantity IKmm,(012, then to take
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the ensemble average by averaging over all the possible angles, a,

a, y, remembering that the average value of the EFG is to be used.

This gives the result

TImIK(1(t)1Imi>1 2>E.A.

2 I 2 I -2 I 2 I
2

r (0)2 vezia+nzio
. 2-32

80 -I 0 I q -m q m'

(Complete mathematical details can be found in the Appendix, section

G for this and the following.) Note that the term Vz,z,(1 + n2/6)

is the average of the square of the local EFG.

Inserting the above expression into equation 2-27 and solving

the master equation, equation 2-29, gives the important result

G
00

(t) e
Ak t

1(1(2 1
sk1,k2

'

with the attenuation constant

2-33

=
3 (0)2 V;,z,(1+n2/6)k(k+1)

[41(I+1)-k(k+1)-1] , 2-35

80 c t 12(21-1)

which implies that the perturbed angular correlation function has

the form

Ak(TI)Ak(y2)4?((t)Pk(cose) 2-34

As the time t between the two radiations increases, the more

opportunity the perturbation has to randomize the populations of the

intermediate m states and thus destroy the angular correlation.

Also notice that for T
c

0 the attenuation factor remains close
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to unity for a fixed time t. This is because the EFG is changing so

quickly that the quadrupolar interaction cannot induce significant

transitions during the correlation timescale. As Tc increases

in value, the fluctuating EFG becomes more effective in inducing

transitions and reducing the angular correlation.

Qualitative behavior of how the angular correlation pattern is

influenced by still further increasing Tc is as follows. For

some value of T
c

the attenuation factor is essentially zero for

all time t. As T
c

is further increased until it is on the order

of the intermediate state lifetime, tN, the random fluctuating

EFG becomes less effective or "liquid-like" and takes on the

characteristics of a static EFG, albeit one with a large

distribution of wf. As Tc becomes greater than tN, the

sample appears solid to the intermediate state and the static EFG

results previously mentioned become overwhelmingly dominant. It is

not clear whether the correlation function model of Abragam or

Slichter is applicable for Tc < tN.

The last case of interest is the model Hamiltonian for a

paramagnetic interaction between the intermediate state of the

nucleus and a nearby unpaired spin, which may be on a neighboring

atom. It is assumed that the spins of the sample are randomly

oriented in all directions and randomly fluctuating in time. This

fluctuation may be due to the motion of the atom the spin resides on

next to the 111Cd nucleus or a spin flipping relaxation mechanism

between it and other atoms with unpaired spins. This model will be

referred to as the paramagnetic relaxation model (PRM).



27

The model Hamiltonian in the laboratory system is,

K5(t) = a
s

t (z) (z,t) , 2-36

where a
s

is the coupling constant of the interaction which is

strongly distance dependent. Justification for the model is given

by Abragam32.

Just as in the randomly fluctuating EFG case, the Hamiltonian

is rewritten so the spin can be evaluated in its own time

independent coordinate system, designated by z',

Ks(t) = as
(_un ,(111)(z)

u n(a(t)03(t),y(t))6(1)(z1) . 2-37
-n'

' n,n'

The Euler angles a(t), e.(t), y(t), represent the rotation from the

nuclear coordinates z to the spin coordinates z'. They depend on

time because of the continual reorientation of the spin with respect

to the nucleus.

Again, as in the EFG case, the energy matrix elements are

taken. The ensemble average is performed over all possible spin

configurations and the following is obtained

<I<ImIKs(t)lIm'>1
2>E.A.

2
2)

=

1 1

S(S+1)I(I+1)(2I+1) 2-38
3 n -m' n m

where the term <la
s
12>

E.A.
is the average coupling strength for the

interaction in the sample. (Refer to Appendix A, section H for

complete mathematical details for this and the following.)



With this result the master equation can be solved and the

attenuation factor is

with

G
00

( )

Ak t
kik2st. e 1 -k 1, k 2 '

= - T
c

W
2

k s
S(S+1) k(k+1)

3

28

2-39

2-40

using the notation <I asl>2>E.A.
'fi2<wE.A.

The correlation time of the spin fluctuation, Tc, is the

timescale of the paramagnetic spin reorienting itself. All the

assumptions and interpretations given for the randomly fluctuating

EFG case apply to this result.
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CHAPTER III

EXPERIMENTAL EQUIPMENT AND SAMPLES

3.1 Electronics

The equipment in a perturbed angular correlation experiment

must be able to identify the type and energy of radiation emitted,

the time interval between the detection of the first and next

radiation (or whatever is being observed), and the angle between the

radiations. This work is concerned with the two gamma cascade from

ilicd. (See table 2-1 for the particulars of the decay.) Thus the

detection equipment must be able to differentiate the 171 kev gamma

from the 245 kev gamma as well as from the Compton background, have

a time resolution much less than the half life of 85 ns and have a

well defined geometry. After identifying the angle and time

interval between two successive gammas this information must be

quickly stored so that sufficient statistics can be accumulated in a

short period of time.

The experimental geometry consists of four detectors arranged

in 90° intervals about the sample (see figure 3-1). This geometry

is chosen to maximize the anisotropy of the angular correlation

function. The reader is encouraged to consult the block diagram in

figure 3-1 to facilitate following the explanation presented below.
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Each detector consists of a 1 1/2" x 1 1/2" NaI crystal which

fluoresces at approximately 400 nm with an intensity proportional to

the energy of absorbed gamma, optically coupled with Dow Corning

20-057 optical coupling compound to an RCA 8575 photomultiplier

tube. The assembly was covered with black masking tape to block any

stray light. The fluorescent light ejects from the photocathode of

the photomultiplier tube electrons which then are multiplied by the

dynode chain. The photomultiplier tubes use -2500 V from a

regulated high-voltage d.c. power supply manufactured by Northeast

Scientific Corporation of Acton, ME. Part of the pulse at the next

to the last dynode is taken off and used for energy resolution in

the "slow" circuit. The pulse at the anode is used to start and

stop the "clock" in the "fast" circuit. Standard RG58, 502 cable is

used to carry all pulses.

The slow circuit operates in the following manner. The dynode

pulse is amplified by either a Canberra 2012, Ortec 575, or Tennelec

213 amplifier unit. The height of the pulse is proportional to the

energy of the absorbed photon. The pulse is fed into two

laboratory-built single channel analyzers (SCA) which produce a TTL

pulse of variable duration if the initial voltage lies between two

energy cutoffs forming a window. One SCA has its window set on the

low energy gamma from the 111Cd and the other on the higher energy.

The size of the window is sufficiently narrow so no overlap occurs

between the two energies. The variable output pulse length,
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typically 1 us, is used to produce the desired total experimental

time scale length of about 1.5 us. The electronic delay associated

with the amplifier-SCA chain is on the order of 1 us. Power is

supplied to this and the equipment following by Ortec M250/N and

401A NIMBINs.

The fast circuit operates in the following manner. The anode

pulse is amplified by a Hewlett-Packard Model 460AR wide band fast

amplifier. The output is fed into an Ortec 436 100MHz discriminator

which was set to trigger just above the noise level because the

initial portion of the leading edge of the fast pulse contains the

timing information. The output is fed into an Ortec 437A time to

pulse height converter (TPHC). The fast pulses from two of the

detectors are fed into the start of the TPHC. The other two outputs

are put into an Ortec 416 Gate and Delay Generator to introduce

approximately 1 is of delay to match the delay introduced by the

slow circuit. The output is then fed into the stop input of the

TPHC.

When the TPHC is triggered, its output pulse is sent to a

Northern NS-629 analog to digital converter (ADC). The ADC puts out

a BUSY signal which disables the TPHC from any further pulse pairs.

The BUSY signal is also sent to the Radio Shack Color Computer

(CoCo) through a computer port, which is a 6522 VIA chip, triggering

an interrupt. The digitized ADC output is then set up on a buffer

card.
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Simultaneous with the TPHC output is a TRUE START pulse which

locks in the contents of the coincidence status from the slow

circuit pulses in the laboratory built coincidence module. The

coincidence module is designed to accept only one valid

coincidence. It produces a VALID signal and an addressing prefix

associated with the valid coincidence, which identifies the detector

pairs involved in the coincidence.

The program running in the CoCo contains an interrupt service

routine which sends out a CLOCK-IN signal to the buffer and the

coincidence module, which clocks the digitized time interval and

geometry information into the computer port. As the information on

the port is accessed, a handshake line comes on which produces a

RESET pulse for the ADC. This clears the ADC BUSY line, sets it for

the next event, and enables the TPHC. The act of clocking in the

geometrical data from the coincidence module unlocks this device and

enables it for the next coincidence.

The VALID signal is examined by the interrupt routine of the

CoCo. For valid interrupts the routine treats the geometry prefix

as an origin address to select a memory bank and the ADC data as an

offset to determine the memory location which will be incremented by

one count. The routine then returns to the previous programming

activities. For an invalid interrupt, the routine also returns to

Basic.



34

The recovery time of the photomultiplier-NaI crystal determines

the maximum singles rate at which the experiment can collect data

without encountering difficulties such as pulse pile up, pulse

rejection, timing, mismatching, etc. For this equipment, a singles

rate of 5-10x103 s-1 is the limit. Typically experimental runs are

made with a singles rate of 0.5 to 2x103 s-1.

The connections of the fast circuit to the TPHC produces the

following result. For those coincidences whose start pulse

originates from a detector which observes a low energy gamma, a

normal spectrum is produced. If the start detector observes a high

energy gamma, then the timing information is reversed, and a time

reversed spectrum is observed, as shown in figure 3-2a, b. The

timing location corresponding to zero time interval between the low

and high energy gamma, to, is placed in the middle of the memory

bank, as indicated in figure 3-2c, d, for the spectra in this work.

The accidental coincidence counts, or background counts, for

each spectrum are found on the side opposite (reflect about to)

to the data containing the true coincidence counts, where the data

are approximately constant. The background counts showed a slight

slope decreasing away from t
0.

The size of this variation is

typically 5% of the average value of the background counts. It is

not clear what the electronic source for this problem is, but it may

be due to errors in gating or pulse length asymmetries. These

second order effects would increase the average background counts
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Figure 3-2 Accumulated coincidence spectrum for a typical
spectrometer system. Figure 3a is the forward
spectrum and 3b, the time reversed. Figure 3c
shows forward spectra and 3d a time reversed
spectra with to in the middle, representative
of this work.



36

near t
o'

where the frequency of coincidences is highest. Thus

the background average was taken as far away as possible from to

where the background is the flattest. See Chapter IV for further

details on this aspect.

The frequency of coincidence events, signalled by interrupts,

was a few hundred events per second. This allowed the CoCo to have

a Basic program running quasi-continuously, because the interrupt

service routine can put Basic on "hold" while handling the

interrupt. The Basic program was written to allow the user to

determine the form of the accumulated spectrum as a function of

detector pairs and to make a rough calculation of the form of the

perturbation factor, G22(t), as the experiment progresses. This

real-time analysis gives the experimenter additional information to

make decisions concerning the quality of a particular experimental

run and determine future courses of action.

After the data is accumulated, it is transferred to a DEC PDP

11/23 computer for storage and analysis using a data transfer

program.

3.2 Equipment

The detectors, consisting of a NaI crystal, photomultiplier

tube and associated electronics for the dynode chain, are

mechanically fastened to an aluminum plate with grooves so that the

detectors are free to slide at varying distances from the sample at
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a fixed angle. Rulers are attached to the plate next to each

detector so the experimenter can position each detector at a known

distance from the center of the plate, where the sample is placed.

This allows the user to adjust the count rate that the detectors see

to improve data accumulation time. The distance from the front of

the NaI crystal to the center of the plate was the same for all

detectors, lying typically in the range 5-8 cm with a 1 mm error,

during the course of data accumulation.

At the center of the plate is the furnace, surrounded by its

water cooled jacket, containing the sample. The furnace consists of

an alumina tube of approximately 3/8" 0.D. with 22 gauge nichrome

wire, wound from the bottom for approximately 75% of its length, as

the resistive heating element. The nichrome is covered with

Saureisen Electrotemp Cement No. 8 which supports the wires and

prevents accidental shorting due to thermal expansion of the heating

element. The furnace is then placed in a water cooled jacket with

power leads introduced through vacuum feed-throughs. The jacket

also has 0-rings to seal against atmospheric pressure, and the

interior is pumped on using a Cenco Hyvac 7 forepump. This

decreases the thermal conductivity to the jacket and increases the

lifetime of the nichrome windings by reducing the concentration of

gaseous oxidizing agents. The structure is then placed so a sample

will be centered with respect to the detectors. The reproducibility

of this positioning is approximately 2 mm.
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The furnace tube exhibited a temperature gradient along its

length. The gradient was found to be closest to zero approximately

1.5 cm from the bottom of the tube. At this location the

temperature variation was approximately 2°C for a length of 1 cm. A

small alumina pellet, of about 0.5 cm radius, placed at the bottom

of the tube centered the sample in this region.

The power for the furnace is a laboratory-built off-on a.c.

power supply. The thermocouple element on the sample (see the

sample subsection below) provides a voltage that a Model 49

Proportioning Control, Omega Engineering, temperature controller

uses to control the temperature of the furnace.

3.3 Samples

The samples used in this work were selenium-tellurium alloys of

varying composition. The selenium raw material was 99.999%

pellets. The tellurium raw material was 99.999% chunks. Both

elements were produced by ASARCO and United Mineral and Chemical

Corporation.

The alloys were made in the following way. A quartz tube,

supplied by Fused Silica, Fremont, CA, of size 10x12 mm and length

approximately 50 cm, was cleaned by an HC1 solution, rinsed with

distilled, deionized water and allowed to dry. It was then sealed

at one end by a oxygen-hydrogen torch. Quartz was selected because

of its high melting temperature, approximately 1350°C, and relative

immunity to attack by most materials such as moderately corrosive
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high temperature selenium-tellurium liquids. The appropriate

amounts of selenium and tellurium were weighed out on a Mettler

balance, with a worst case precision of 0.005 g, and added to the

bottom of the quartz tube. The sample portion of the tube was

immersed in a water bath while the portion of the tube just above

the sample is "necked off" with the torch. The tube was then

evacuated by a forepump, with a protective glass wool filter

inserted in the pump line. After a few minutes of pumping, the

sample was sealed at the neck with the torch.

The sample was heated to a temperature of at least 100°C above

the melting point of the alloy composition by using a resistance

furnace monitored by thermocouple or, after experience was gained,

by gently heating the sample directly with the torch. The sample

was then shaken and allowed to quench to room temperature by quickly

immersing it in a bucket of water. This insures that no large-scale

segregation of the alloy takes place during the cooling process.

The sample capsule was opened when needed and the alloyed

material broken into convenient chunks. Most alloys were used

quickly during the course of the experiment. Those used over a

longer term were stored in an evacuated desiccator.

The radioactive tracer was supplied by New England Nuclear,

Boston, MA in 3 mCi quantities dissolved in a 0.05 M HC1 solution of

volume 0.3 ml. The manufacturer claimed the product to be 99.99%
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carrier-free 1111n. Because of the short (2.8 d) half life, the

tracer was purchased in 3-4 week intervals.

The alloy, approximately 50-100 mg, was deposited at the bottom

of a 2 x 4 mm quartz tube, sealed at one end by the torch. The

tracer was then introduced in the following way. A stainless steel

tube (manufactured by the Hamilton Co., Reno, NV) with dimensions

0.25 x 0.47 mm and approximately 15 cm long was epoxied to a No. 20

syringe needle. Using an ordinary syringe, approximately 2 pCi of

the tracer solution was drawn into the shaft of the steel tubing.

The liquid was then injected into bottom of the quartz sample tube.

The quartz tube was then attached to a forepump with a filter

in the line. The forepump vacuum was used to evaporate the HC1

carrier solution. The forepump was vented through the laboratory

hood, with an additional particle filter in the line, for overall

safety. (The particle filter showed no signs of radioactive

contamination.)

The sample was then sealed under moderate vacuum with an

oxygen-acetylene torch with a small #4 nozzle (manufactured by

Tescom Corporation, Minneapolis, MN). The sample capsule,

approximately 1 cm long, had a 30 cm length of 2 mm quartz rod

attached to serve as a handle. The sample was then transported, via

a steel pipe container with a lead bottom, to the spectrometer

laboratory.
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It was observed that some samples did not show a spectrum char-

acteristic of a liquid. (The spectra appeared like an overdamped

solid.) It was found that using quartz supplied by Fused Silica

alleviated this problem, implying that poor quality quartz was at

the root of the problem.

The estimated misalignment for the liquid samples in the fur-

nace is less than 2 mm. Mechanical misalignment, previously indi-

cated, is about 2 mm. The count rates recorded at each detector

were typically within 10% of each other, for the same energy, indi-

cating that the sample was well centered.

A Pt-Pt + 10% Rh thermocouple was attached to the sample with a

small amount of masking tape, making physical contact with the cap-

sule near the middle. The thermocouple wires were encased in ceram-

ic to prevent any accidental shorting. It was found that the mask-

ing tape had disintegrated upon heating, but the thermocouple was

still making physical contact or was in close proximity to the

sample capsule. Thus the thermocouple reading is a good measure of

the sample temperature. The thermocouple was attached to thermo-

couple compensating wires and the voltage read by a Hewlett-Packard

3465B Digital Multimeter.

The samples were heated to over 900°C before collecting any

data to allow the tracer to become homogeneously mixed with the

sample. It was found that approximately four hours was enough time

to do this.
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The glass splats used in the EFG studies were made with the

following device. (The device was originally designed and used by

M. Cutler and W. Osmun. Modifications were made with the assistance

of S.-S. Kao and F. Bell.) A catapult with a carbon crucible on the

end was set by a catch inside a nichrome wound furnace. The

catapult was released when the material in the crucible was in the

desired state, striking a copper target cooled by liquid nitrogen.

The apparatus was kept in a glass bell jar that had been

previously evacuated to approximately 15 mtorr and then back-filled

with nitrogen gas, commercially supplied by Industrial Welding and

Supply, Albany, OR, to a pressure of 300-400 torr. Pressures were

read by a Magnevac vacuum gauge type GMA-140C by CVC, Rochester,

NY. The system was pumped through a glass wool filter and a cold

trap and the pump was vented into a laboratory hood. Figure 3-3

shows a block diagram of the apparatus.

The samples were made by using previously prepared alloy and

approximately five times the needed activity of 111In and then

sealing as if it were a liquid alloy sample. The sample was heated

to well over the boiling point and quenched in water. The capsule

was broken and about twice the necessary amount of radioactive alloy

(4 jCi) was removed and deposited in a new crucible attached to the

catapult. After pumpdown of the splat apparatus, the sample was

heated until vapor was observed, indicating that the boiling point

had been reached at the ambient pressure in the bell jar, and the
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catapult catch was released. Splattering losses reduced the initial

activity to about the appropriate level.

After pumping the poisonous radioactive vapor out of the bell

jar, the sample was extracted, placed in a plastic vial and immersed

in a dewar filled with liquid nitrogen. Great care was used to

insure that the sample did not come into contact with any warm

surfaces. The splat samples produced had a very shiny metallic look

to them and were exceedingly brittle, often crumbling upon the

slightest contact.

The catapult had been tested to have a velocity of . 5 m/s.

The splats produced had thicknesses of 50-100 microns. Both of

these parameters are consistent with a quenching rate of

approximately 0.5-1.0x106 K/s.

The samples were placed into the approximate center of a dewar

(actually a thermos liner manufactured by Aladdin Industries,

Nashville, TN) replacing the furnace at the spectrometer site.

Because the count rate between detectors varied up to 50%, it is

clear that sample misalignment occurred in some instances. The

geometry of the dewar was such that the sample could not be

misaligned by more than the size of the plastic vial, 0.5 cm. The

resulting error in counting cancels through second order as will be

discussed in the Data Reduction section of Chapter IV.

The dewar used at the spectrometer site needed refilling at

three day intervals. This time scale was convenient so the sample

was never moved during data-taking runs.
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CHAPTER IV

EXPERIMENTAL DATA

4.1 Data Reduction

The data collected and stored in the CoCo was digitized at a

rate that the TPHC-ADC combination determined, through the output

voltage height of the TPHC and the countdown clock rate of the ADC.

To determine the time difference between adjacent ADC addresses, or

channels, an Ortec 462 Time Calibrator Unit was employed. The

resulting time calibration for the system, typically 3 ns, was

checked every few months or after a new TPHC or ADC was added. No

significant long term changes of the time calibration were observed

except when the TPHC or ADC was changed.

The linearity of the response of the TPHC-ADC combination was

checked using a Honeywell MTP-2030 Pulse Generator with the start

pulse from the Time Calibrator, which fires randomly in time. The

observed spectrum accumulated was flat with time except for the

first 10 channels or so. This nonlinearity is due to the initial

nonlinearity of the TPHC-typical for these types of units.

The above calibration procedures were done for all detector

combination pairs at least once to check for overall system

response. No deviations were observed between detector pairs.

The photomultiplier tubes were set at a high bias, the fast

pulse was acted on by the Hewlett-Packard Wide Band Amplifier, and
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the discriminator was set at a low level to get the sharpest

possible resolution, or full width at half maximum, from the NaI

crystals. The measured resolution for each detector was between 2.4

and 2.6 ns, nearly equal to the best published performance for NaI

crystals.34 Because of the sharpness of the time resolution, it was

unnecessary to convolute the data with a time resolution function.

The data was analyzed according to the following formula,

and

R(t) = [W1(180°)W2(180°)]

3 W1(90°)W2(90°)

A2G22(t) =
R(t)

1 -
1

R(t)
2

4-1

where two sets of 180° spectra and two sets of 90° spectra are used,

all belonging to either the forward or to the time reversed type of

spectra (see figure 3-2c, d). The average background associated

with each spectrum was subtracted before applying equation 4-1.

This data reduction scheme has certain advantages as pointed

out by A. R. Arends et al.35 The sample half life, detector

efficiencies, and differences in the coincidence resolving times and

accumulation livetimes between detector pairs cancel exactly.

Furthermore, solid angle deviations cancel through first order in

the solid angle differences or second order in the sample detector

distances. As pointed out in Chapter III, the worst case
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misalignment was 0.5 cm compared to sample detector distances of 5-8

cm. Misalignment of to for the four forward or four reverse spectra

cancels through second order. For the equipment used in this work,

misalignment of to was less than 0.4 ns which should be contrasted

to the time calibration of about 3.0 ns.

Potential error sources that will have major effects on this

experiment are source self absorbtion and average background

errors. P. C. Lopiparo and R. L. Rasera point OUt36'37 that

source self absorbtion is negligible for the small samples used in

this work. The effect of the background nonlinearities mentioned in

Chapter III was found by observing the A2G2(t) function for samples

that should have G2(t)=1, such as liquids with fast Tc or static

EFG's with cubic symmetry. Background errors would cause deviations

from straight line behavior for these samples. Deviations were

observed for very active samples where the average background count

rate was larger than 300 counts per channel per day. Samples with a

smaller average background count rate had deviations from straight

line behavior of the A2G2(t) function within the statistical error

of the data. Typical average background count rates were 10-150

counts per channel per day. For this reason, data were taken only

when the prepared sample activity had this strength. This strength

corresponds to 21Ci. See the last paragraph of this section for

additional details.
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Since radioactive decays are random events, the error

associated with N counts is N, which represents one standard

deviation. All errors were calculated according to this rule.

The complexity of the perturbation factor for static EFG's and

the possibility of fitting the data to a local minimum necessitated

the use of a Fourier transform program. This program gave the

experimenter information on the number of sites and estimates of the

frequencies associated with each site.

The values of A2G2(t) were then fit to either an exponential

damping formula, A2e-A2t , or to a generalized static EFG model,

3 -(d w
i
02/2

/ Azf.[So
witScos .t e ]

=

4-2

by a generalized FIT program. This program allowed for the A2, A2,

fj, Soo, wi and di values to be fit parameters or constants at the

user's discretion. Also built in was the option to fit three sites

of different EFG symmetry or strengths and to model solid-liquid

mixtures. The principle of operation of the fit program is to

minimize the square of the residual between the model and the data.

The program slightly changes the values of the adjustable

parameters, by using a modified polygon search routine. The program

is constrained to find those values which satisfy the sum rules

3

S +1 Si . 1 and W1 + w2 w3. When the program found a minimum,

i=1
it reported the values of the adjustable parameters with a one

standard deviation error. If the program reported unphysical



49

values such as negative Si or wi values, the results of the

fit were not used. This often meant that the model to fit the data

was incorrect.

The fit values for the forward and reversed spectra were then

averaged together with the error calculated in the usual statistical

manner. If both values were not within this error about the

average, the error is reported as half the distance between the

values.

A data collection run consisted of 25 K to 100 K counts in the

channel with the maximum counts and took 15 to 72 hours. The low

end was used to determine rough values of the sample characteristics

and the upper end was used to collect highly accurate values for

those samples where the characteristics were difficult to measure,

e.g., small A2 values. Typically a run took 24 hours with 32 K in

the channel with the maximum counts.

It was observed that fitted values for A2 and wi were

slightly larger for reversed spectra as compared to the forward

spectra. This difference was typically well within the one standard

deviation error for runs with many counts (32 K or better in the

maximum count channel). As pointed out in the last chapter, this

discrepancy is felt to be a second order electronics effect probably

affecting the average background of the spectra.
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4.2 Liquid SexTel_x Data

Figure 4-1 presents the A2 vs. 1000/T(K) data collected for the

liquid alloy SexTel_x where x = 1.000, 0.750(2), 0.626(1),

0.500(5), 0.275(2), and 0.000.

Values of x2 less than about 5 x 105 s-1 (high temperature

region) cannot be measured because of the shallowness of the

exponential slope for the time calibration used. (Improvement can

be gained if the time calibration is doubled, but the run time also

must be doubled. This would imply run times on the order of one

week or more, which was not done.) Note that measurable values of

x2 for the tellurium sample could only be observed for the

supercooled liquid.

The other extreme is limited by the solubility of the tracers

in the liquid. For pure selenium, the indium tracer precipitates

completely below about 450° C. This indicates that the solubility

of indium in liquid selenium is less than one part per million, the

concentration of the tracer, below 450° C. The data indicate that

the solubility improves as the tellurium content is increased.

To observe possible hysteretic temperature effects, data runs

were made going up and down with temperature in a random manner.

This was done for all compositions. The data do not exhibit any

hysteretic effects and no effort is made to identify data runs with

the direction that the temperature was changed.
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1000/T (K )

Figure 4-1 Values of A2 and Ts vs. 1000/T(K).

The solid lines are a guide to the eye.
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The data demonstrate that A2 decreases with increasing tempera-

ture and increasing tellurium composition. Each set of data appears

to have two linear regions, suggesting that the process producing A2

may be an activated one. The activation energies are approximately

0.68 eV in the high temperature region and about one-half that value

in the low temperature regions.

The data agree well with the A2 values of selenium by Rasera

and Gardner," which were prepared with a larger indium concentra-

tion, about 1-2 atomic percent.

4.3 Amorphous SexTel_x Data

The amorphous SexTel_x splats were made from a melt at

the boiling temperature of the alloys at a pressure of 300-400

torr. This corresponds approximately to the following boiling

temperatures at atmospheric pressure: x=1.000, T=680°C; x=0.750(2),

T=760°C; x=0.500(5), T=840°C; x=0.000, T=990°C. The A2G2(t)

functions for these data are displayed in figure 4-2.

The tellurium and alloy data are fit to a single EFG site that

is strongly damped, di 0.18. As the selenium content is

increased, the fits for the alloy get worse, because the data show

additional structure or wiggles. For the selenium sample, the data

are better fit to two sites, but the fit is not very good. Though

the fits are not very good, the frequency of the first wiggle can be

determined with an accuracy of better than 10% for the alloys and

better than 20% for the selenium sample. This frequency is related
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Figure 4-2 The

function A
2
G
2
(t) for

the amorphous splats.

The top is Se, next

is Se Te
0.75 0.25'

then Se Te and
0.5 0.5

Te. The solid line

is a computer least

squares fit.
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to the quadrupole frequency, and the accuracy of this number

represents the overall confidence of these fitted values.

The numerical results for the quadrupole frequency are

summarized in table 4.1. Figure 4-3 demonstrates that the

quadrupole frequency increases with increasing tellurium

concentration.



Alloy

Table 4-1 Results of Computer Fits
to the Amorphous Splat Data

wl w2

(106 Rad/s) (106 Rad/s)

6

55

wQ

(106 Rad/s)

Te 151(3) 230(7) 0.22(2) 0.48(5) 25.1(5)

Se
0.5

Te
0 5

118(12) 188(19) 0.15(3) 0.43(12) 19.7(20)

Se
0.75

1e
0.25

108(11) 178(18) 0.18(3) 0.38(11) 17.9(18)

Se 1 w2

fraction=0.7 (106 Rad/s) (106 Rad/s)

wl

(106 Rad/s)

67.2(134) 134(27) 0.15(3) 0.0 11.2(22)

fraction=0.3 w2 w2
62 n2

w2
1 2 Q

102(24) 189(38) 0.15(3) .25(13) 17.0(34)

Numerical results of. fits to Se
x
Te

1-x
amorphous splats. Te

and the alloys are fit to a heavily damped one site model. Se is

fit to a heavily damped two site model.
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Figure 4-3 Quadrupole frequency and asymmetry parameter
as a function of composition for amorphous
splats. The top is the quadrupole frequency.
The bottom is the asymmetry parameter. The
lines are a guide to the eye.
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CHAPTER V

DATA ANALYSIS

5.1 Models for the Fitted Values of x2

Presented in Chapter II is the theory of perturbed angular

correlations with a randomly fluctuating EFG or a PRM. These model

Hamiltonians produce an exponentially damped perturbation factor.

The data presented in Chapter IV are the results of fitting the

accumulated A2G2(t) spectra to an exponentially damped function for

liquid SexTel_x alloys. The randomly fluctuating EFG and a

PRM will be the models used for analyzing the liquid results. The

implication of these models will be used to decide which is the

most likely explanation since it cannot be concluded a priori

whether the measured values of x2 are due to a fluctuating EFG, a

PRM, or a combination of the two.

There are three cases to consider. The first case is when a

quadrupolar interaction dominates the decorrelation. The second

case is when both quadrupolar and spin interaction yield

approximately equal contributions to A2. The third case is when

only spin interactions are important.

If the quadrupolar coupling is the dominant mechanism for

destroying the angular correlation, then equation 2-35 is used with

1=5/2 and k=2.
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5-1

The coupling parameter wQ was defined in equation 2-16.

If the measured correlation function is due to random spin

fluctuations, then equation 2-40 is used with 1=5/2, k=2, and S=1/2.

A 1.5 <+E.A. TS
5-2

The coupling parameter ws was defined in equation 2-40 and 2-36.

If the two effects are to be considered together, then the

analysis of Chapter II should be repeated with the Hamiltonian

H=H
Q
+H

S'
This gives the result

AQ+S
= 25.2<w?.

L1>E.A. TQ
1'5<(-4>E.A.

TS
5-3

The cross terms in 1<m1Hire>12 do not contribute because they

involve ensemble averages of S and Vzz, which are zero. The sub

and superscripts, Q and S, have been added to delineate the

mechanisms. Note that in all three cases, the average of the square

of the coupling parameter must be known to give a value for the

correlation time of the respective fluctuating fields.

It is important to point out that the angular correlation can

be influenced by electron capture aftereffects. This is because the

parent of the probe, 111/n, decays to 111Cd by capturing an

electron. This leaves a hole in the K shell which rapidly moves to

the outermost shell, through the emission of soft X-rays, and Auger

transitions, in times of the order of 10-14s. If the probe nucleus
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is embedded in a poor conductor, the hole may persist in the outer

shell for times long enough to influence the experiment. (Recall

that the half life of the initial state of 111Cd is 120 ps.)

Gardner and Krusch39 did not observe any aftereffects due to

electron capture in In2Se3, which is a worse conductor than liquid

Se. Thus, it is unlikely that aftereffects play any role in this

work.

The measured angular correlation could not be influenced by the

changing chemistry of the probe from trivalent indium to divalent

cadmium, since the time scale of this change in bonding is dominated

by a few phonon vibration periods, typically of order picoseconds.

Since the probe atom is cadmium, it may be found in the

following forms in the selenium-tellurium alloys. It may be

imbedded in a chain, with bonding similar to that of the

chalcogenides in the chain. It may also form dangling bonds, like

selenium or tellurium, on chain ends. Cadmium may bond to a single

chalcogenide, forming a double bond and a small molecular unit.

Cadmium may also bond to an indium atom or itself, with no direct

bonding to a chalcogenide, though this bond strength is weak and

therefore unlikely.

5.2 Case 1: Correlation Times of an EFG

The perturbed angular correlation is destroyed when the symmetry and

the strength of the EFG coupled to the quadrupole moment of the
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probe nucleus fluctuates in a random manner. The value of the

coupling parameter allows calculation of the correlation

time TW
Three possible mechanisms that could effect the

symmetry and magnitude of the EFG are diffusion, rotation, and bond

breaking.

If the probe is randomly diffusing through the liquid, then it

can sample EFGs of a wide range of magnitude and symmetry.

Similarly, if the probe nucleus is imbedded in a structure that is

rotating, but with a random axis of rotation, then the overall

symmetry of the EFG at the probe site would be randomly changing

with time.

If the bonds of the probe atom are breaking and reforming with

a variety of partners, the surrounding electric charges would vary

greatly in magnitude and position, hence changing the EFG at the

probe site. Likewise, if a near neighbor's bonds were breaking and

reforming then the EFG at the probe site would also change.

Contributions to the EFG at the probe site from the next near

neighbor will be smaller because of the increased distance. These

additional contributions from far neighbors can be ignored when

compared to the effects of random fluctuations from near neighbors

or overall symmetry change due to rotation.

The spectra of the amorphous splats of the SexTel_x alloys can

be used to estimate the value of the coupling parameter <(WQ)
2>E.A.

This is because selenium-tellurium alloys can easily be made in the

glassy stater`` and a measure of wsp
lat

will be a measure of the size

of the coupling parameter if the local order in the splat is



61

similar to the liquid. Since the splats contain the probe parent,

111In, the short order symmetry may be dominated by the chemical

nature of indium, not cadmium. In this instance w
splat

not be a

good measure of the liquid-state coupling parameter. Yet typical

values of w
Q

for 111Cd impurities in a wide selection of materi-

als yield values within a factor of two of the given values for

splat4oio
found in Chapter IV. It should be remembered that for this

worst instance, the values of wQ will be incorrect by a

systematic scaling error and any temperature dependence will be

unaffected.

The correlation time of the fluctuating EFG has been calculated

under the assumption that the splat frequency can be used to evalu-

ateate the coupling parameter through ThexwQ
Q E.A.'

s
values of

splat
used are presented in table 4-1. For those compo-

sitionssitions not directly measured, the value of was interpolated

from figure 4-3. The results of this calculation are displayed in

figure 5-1. The values of TQ display the same temperature

dependence as x2.

Consider the possibility that the EFG fluctuation is due to

random rotations of large molecules to which the tracer is bonded,

such as those found in selenium-rich selenium-tellurium alloys. The

probe nuclei may exist in any of the chemical forms mentioned at the

end of the last section. As figure 5-1 indicates, these correlation

times fall in the range of 0.1 to 2ns. But typical rotation times

for large extended polymers can at best be as small as 1041, much

too slow to be consistent with T
Q'
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.
Suppose the EFG fluctuation is caused by smaller structures,

such as those found in the midrange of selenium-tellurium alloys,

again rotating in some random manner. The cadmium may be in any of

the chemical forms previously mentioned. In this region TQ

takes on values ranging from 15 to 3000 ps. These are consistent

with typical rotation times for small polymers41. Fixman42 has

given a theory predicting 1-10 ps autocorrelation times for 10 atom

chains with 90° bond angles in mixtures with a viscosity of 1 cp,

roughly consistent with mid-range selenium-tellurium compositions.

But the T
Q
data varies in a regular manner from these

mid-range compositions to pure selenium, which consists only of long

chains. As already argued, long chains cannot have rotation times

of such short time scales, and thus the EFG fluctuations caused by

medium scale structures randomly rotating have physically

unreasonable consequences.

Suppose the fluctuating EFG is caused by the random rotation of

a very small structure, such as a cadmium-chalcogenide unit. This

unit could be randomly diffusing through the selenium-tellurium

"soup" of chains, where the correlation time is a measure of the

random walk or tumbling of the unit. The range of values of T
Q

is perfectly consistent with autocorrelation times of other small

molecular units41.

As discussed in Chapter I, the viscosity of the sample

decreases as the tellurium concentration or temperature is
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increased12. According to Ferry", the autocorrelation time

decreases with a decrease in the viscosity, consistent with the

T
Q
data presented.

The drawbacks of this model are twofold. As indicated in

Chapter IV and shown by the data in figure 5-1, the observed values

of T
Q
have a strong activated temperature dependence of

approximately 0.68 eV. Random diffusions and rotations of small

molecules should have small activation energies, ranging up to a few

tenths of an eV in extreme cases'''. Furthermore, the physical

picture of activated motion involves a vibration frequency,

approximately a phonon frequency, times a Boltzmann factor. The

activation energy represents a barrier to movement. The T
Q
data

have extrapolated vibration frequencies ranging from 10-13 to

splat
10-15 s. Even if (w )2 is incorrect by a factor of 10, T

Q
is

still too fast to be considered reasonable.

The last possibility to consider is that the attenuation of the

angular correlation function is due to bonds breaking and reforming

in the vicinity of the probe nuclei in a random manner. The

dominant contributions to this mechanism would be the bond between

the probe and its nearest neighbor or between the bonds of near

neighbors. As discussed in Chapter I, chalcogenide liquids are made

up of chains which contain dangling bonds and other defect states.

These thermally generated defect states, created in pairs when bonds

break, are in chemical equilibrium with the normal two-fold bonded

species.



65

Thus all species have some characteristic lifetime. The continual

creation and destruction of the defect states is a mechanism that

can cause the EFG to fluctuate at the probe site. Note that defect

states involving the cadmium-chalcogen bond may also play a role.

Detailed balance indicates that the lifetime of any defect bond

divided by the lifetime of the original bond is related to the ratio

of the defect concentration to the bond concentration. The ratios

are directly proportional if the defect pairs are in close proximity

to each other. The lifetimes become proportional to the square of

the concentration ratio if the defect pairs have diffused apart and

are randomly distributed throughout the sample. (The true situation

is likely to lie between these limits.)

For the first possibility, the proportionality constant

contains geometrical factors and is of order unity. This gives the

relation T where N
defect Tbond(Ndefect iNbond)' defect

and Nbond are

the concentrations of the defect and bond centers respectively. If

the mechanism of defect bond formation is responsible for the

decorrelation, the correlation time will be approximately the

lifetime of the original bond. The concentration of defects range

from 10-4, for-`low temperature selenium, to 10-2, for high

temperature tellurium where the density of bonds has been taken to

be one. This yields defect lifetimes of 10-12 to 10-13 s, the size

of a phonon period. Thus, at best the measured values of T

imply defect lifetimes that are essentially phonon periods. In

addition, the temperature dependence of TQ suggests that the

intrinsic vibration frequency (the prefactor for T-1) is much too
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fast compared with phonon frequencies.

For the second possibility, where the defect pairs have a high

probability of diffusing apart, the predicted lifetimes are

ludicrously short.

For the case where the cadmium-chalcogen bond creates a defect

pair, the predicted bond lifetimes are not unreasonable if all the

cadmium atoms were in a defect state (N
defect

. 1). The

correlation time is then a measure of the cadmium-chalcogen bond

lifetime, but the intrinsic frequency prefactor is still faster than

phonon frequencies.

It is clear that T
Q
cannot be a measure of the bond

lifetimes of the chalcogen-chalcogen or cadmium-chalcogen bonds.

Thus it seems that the experimentally measured values of x2 cannot

be readily explained by random fluctuations of an EFG due to any

simple mechanism.

5.3 Case 2: Correlation Times of an EFG Plus a PRM

It would be too much of a coincidence for both fluctuating EFGs

and a PRM to be simultaneously of such size to be responsible for

the measured value of x2 over the temperature and composition range

of this work.

Although figure 4-1 suggests two activated regions for x2, it

is unlikely that two independent relaxation processes, EFG and PRM,

are responsible. Examination of equation 5-3 indicates that the

largest contribution to A2 will dominate. In this case the
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temperature dependence of x2 would be opposite at the cross-over

from that which is measured. The implication is that the

experimental results for A2 cannot be explained by competition

between two independent relaxation processes.

5.4 Case 3: Correlation Times of a PRM

The angular correlation may be destroyed by a nearby spin, coupled

to the probe nucleus, undergoing random reorientation or spin

flipping. The correlation time, TS, would be a measure of the

correlation time of spin fluctuations. As equation 5-2 indicates,

the values of Ts may be extracted from the measured values of A2

if the coupling parameter, ? is known.
<4'5>E.A.'

Nuclear magnetic resonance (NMR) measurements of Ts have

been performed in pure selenium by Warren and Dupree26 as a function

of temperature and pressure. These data can be scaled to the

measured values of x2 for pure selenium. If the data scale well,

then the coupling parameter can be found for pure selenium.

Figure 5-2 shows the results of scaling the x2 data to the NMR

Ts data. The data scale very well together. The apparent

discrepancies exhibited by the NMR data are due to pressure

differences between the NMR data, taken at 400 bar, 100 bar, and 1

atmosphere, and the x2 data, taken at essentially 1 atmosphere. It

is clear that T from the NMR data exhibits a slight pressure

dependence, characterized by the isobars that can be envisaged on

figure 5-2.
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The value of the coupling parameter, derived from

figure 5-2 is 9.05 x 10175-2. To understand the implications of the

size of the coupling parameter, the physical meaning of "ensemble

average" must be examined. The ensemble average represents a

weighted sum of the various average coupling parameters that the

probe nucleus experiences from neighboring spins. The weights are

the probabilities that the spin resides at that location. This

coupling parameter can be written as the sum of the contributions

from each of the near neighbors,

<'4>E.A
1./

Pi

=0

5-4

where Po is the probability that the spin resides at the probe atom,

and Pi, i>0, is the probability that the spin is on the
th

neigh-

bor. Since the strength of spin-spin coupling falls off very rapid-

ly with distance32 only the first two terms need be considered,

<u12> P + P
S E.A. o S s

1

5-5

The measured value of <032S >
E.A,

is large and is consistent with

the spin residing on or very near the cadmium probe nucleus43. This

implies that Po and P1 are not random probabilities proportional to

spin density but that one or both are near unity.
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One possible model consistent with the experimental results is

a singly ionized CdSe molecular unit. If this were the major

cadmium unit in pure selenium, the coupling constant obtained is of

reasonable magnitude.

Furthermore, this small molecule could rotate rapidly and have

(9;plat )2 2>
a small T

cr
If an upper limit for T

Q
is

4'0 E.A.'

10-10s for pure selenium and 10-11s for pure tellurium, because A4

would be negligible compared to A2, consistent with the experimental

results. These limits are consistent with autocorrelation times for

small molecules.

It is reasonable to assume that the above value of the coupling

parameter does not change greatly as the tellurium content is

increased, because tellurium is chemically similar to selenium.

Typically, a spin coupling parameter changes by approximately 10-20%

upon substitution of a chemically similar species provided the short

range order is the same in the two cases.43

Figure 4-1 displays the calculated values of Ts vs 1000/1(K)

assuming that the coupling parameter in the alloys is the same as

for pure selenium. The data indicate that the correlation time of

the fluctuating spin decreases with increasing temperature and

tellurium concentration.

Attempts to measure Ts in liquid selenium-tellurium alloys

have been made by Kirby27 using NMR. That work measured the

relaxation time and Knight shift as a function of temperature for

two compositions, Sem-rem and Se0.4Te0.6. These values were used
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to calculate T according to the standard model in Abragam32. The

results of the NMR experiment showed Ts decreasing as the

temperature and tellurium content increased, consistent with the

results of this work. The magnitude of TS varied by factors of

3-5 compared with the values in this work. These differences may

well be due to errors in determining the relevant coupling constants

in the NMR experiment. For this reason, Kirby's results can be

considered consistent with the values of TS presented here.

5.5 Implications of Ts

Warren and Dupree presented evidence that Ts in pure

selenium depends only on the average distance between spins with no

explicit pressure or temperature dependence26. The data presented

here raise the question of how Ts in the selenium-tellurium

alloys depends on spin density. Values of spin density were

calculated from magnetic susceptibility data of Cutler and

Gardner24, and figure 5-3 is a plot of TS vs. the average volume

per spin, y, for all compositions of SexTel_x measured in this

work except pure tellurium. (This is because no good measurement

of N exists for tellurium44.) The coupling parameter from pure

selenium is assumed to hold for the alloys. The data of Warren and

Dupree are included in figure 5-3 for completeness.

The curves in figure 5-3 appear linear in nature and clearly

show two branches for large spin densities. The left branch
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102 103 10
5

Figure 5-3 A plot of the calculated Ts values as a function of
the inverse spin density. A constant coupling
parameter was assumed for all the alloys. The key

is as follows: open circles, x = 1.00; open
triangles, x = 0.75; open squares, x = 0.50; open
diamonds, x = 0.28; clnsed triangles, x = 1.00
NMR results at 100 bar; closed circles, x = 1.00
NMR results at 400 bar.
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contains data only from selenium measurements. The right branch

contains all data from alloy measurements. As the spin density

decreases, the curves apparently coalesce.

At large spin densities, the linear relation between Ts and

suggests that TS is directly proportional to NSI and at small

spin densities TS is more nearly proportional to Ni1. These

results are expressed numerically as,

large densities: Se branch T .3.9x10
-16

NS -1 (in A3)

alloy branch Ts=1.7x10-16 Ns-1 (in A3) 5-6

small densities: Ts=2.2x10-14/Ns-1 (in A3) .

The discrepancy between the two TS branches at large spin

densities in figure 5-3, about a factor of two, could be a real

effect or may be due to a violation in the major assumption that the

coupling parameter is constant for all the alloys. But, as pointed

out in the last section, the square of the coupling parameter for

any particular ionic configuration should not vary by as much as a

factor of two when tellurium is substituted for selenium. It is

possible that the addition of tellurium to form the alloys induces a

competing chemical reaction, changing the equilibrium constant which

governs the concentration of charged species. The concentration of

charged species may change in such a way that the probability that a

spin is near the probe, or on the probe itself (refer to equation

5-5), is reduced by about a factor of two as displayed by the
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curve. The effect on the model of ionized CdSe molecules would be

an increase in the concentration of neutral molecules in the large

spin density (or high temperature) region of the alloys.

The magnetic susceptibility measurements of Gardner and

Cutlery in liquid selenium-tellurium alloys exhibited Arrhenius

type behavior in the semiconducting region. This behavior is

thought to be caused by the thermal generation of magnetic defects,

particularly the creation of D* centers. The data were used to

calculate the spin density in this region, and the activation energy

of the susceptibility is a measure of one-half the energy to break a

chalcogen bond to form a center. The spin density for tellurium

could not be calculated at temperatures low enough to reach the

semiconducting region.

The correlation times in figure 5-3 are approximately propor-

tional to the spin density at high spin densities. Thus, the acti-

vation energies in this work (which are independent of the coupling

parameter) are the same as the activation energies of the suscepti-

bility measurements in the semiconducting region. If the correla-

tion times of tellurium are also proportional to the spin density,

which is expected to be large, then twice the activation energy,

about 1.1(1) eV, is a measure of the tellurium-tellurium bond

strength. This value is slightly less than the bond strengths meas-

ured in the selenium-rich alloys, about 1.37 eV.
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Figure 5-3 can be employed to estimate what the paramagnetic

susceptibility is for pure tellurium using either the selenium or

alloy branch. The results of this estimate for both branches are

displayed in figure 5-4. Plotted are the measured values of suscep-

tibility for pure tellurium and Se.10Te.90 corrected by subtracting

away the diamagnetic portion. Values estimated from the Ts vs y

curve for each branch are also plotted. The estimate of suscepti-

bility using the curve of figure 5-3 assumes a Curie model. Those

values estimated from the selenium branch appear to be high compared

to the susceptibility data at high temperatures. The estimated

values from the alloy branch appear low over the whole temperature

range and are just above the Se.
10

Te
.90

data. At temperatures above

350°C, the density of spins in tellurium is very high and the

measured susceptibility should be smaller than the Curie

susceptibility of non-interacting spins because of spin-spin

coupling. Thus, the values used from the selenium branch of figure

5-3 are more consistent with the measured susceptibility than those

taken from the alloy branch.

Therefore, figure 5-4 implies that the coupling parameter is

about the same for pure selenium or tellurium but is reduced in the

alloys. If the reduction is due to a chemical reaction which

reduces the probability that the cadmium impurity is near a spin,

then the CdSe or CdTe molecules are more completely ionized in pure

selenium and tellurium than in the alloys.
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Figure 5-4 Plot of the" magnetic susceptibility as a function of
temperature. The diamagnetic portion has been subtracted

off. The open circles, triangles and square are for Te,
open diamonds for Se0.1Te0.9. The solid squares is the

Curie estimate from the Se branch and the solid circles
from the alloy branch of the Ts vs Ns-2 curve,

figure 5-3.
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CHAPTER VI

CONCLUSION

6.1 Summary of Experimental Results

Perturbation of angular correlations (PAC) has been used to

examine the correlation time of randomly fluctuating fields present

at the sites of dilute 111Cd impurities in liquid SexTel,x

alloys. The measured perturbation factor, G22(t), was found to be

exponentially attenuated with fitted values of the attenuation

factor, A2, presented in figure 4-1. The attenuation factor

decreases with increasing temperature and tellurium composition.

The set of A2 curves exhibit two regions of activated behavior with

high-temperature activation energy of about 0.68 eV and low-

temperature energies of about half this value.

Perturbation factors were also measured for amorphous splats of

Se
x
Te

1-x
alloys, made by quenching the melt at approximately

106K/s. The quadrupolar splitting energy, characterized by w
Q'

and the asymmetry parameter n were found to increase by about 30% as

the composition varied from pure selenium to pure tellurium. The

results are displayed in figure 4-3 and compiled in table 4-1.

The correlation time of the randomly fluctuating fields at the

probe site can be determined by employing relations 5-1 and 5-2,

x4 = 25.2 TQ >
Q

< 2
w E.A.

5-1
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X2 = "' TS S'1 E.A. ,
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5-2

where T
Q

and TS are the correlation times due to a randomly

fluctuating electric field gradient (EFG) or a paramagnetic

relaxation mechanism (PRM). These relations require knowledge of

the coupling parameters <0.16 >E.A. for fluctuating EFG and <q>E.A.

for a PRM. The derivation and physical meaning of these attenuation

factors can be found in Chapter II and the Appendix.

The aftereffects of the decay of the parent 111In to 111Cd via

e- capture and the dynamics of the changing chemistry of In to Cd

during this decay occur on a time scale small compared to the half

life of the first excited state of 111Cd, 120 ps. Thus, these

effects cannot contribute to the measured perturbation factor.

It was assumed that (w
splat

)

2
is a good measure of <w2>

E.A.

for the liquids. Experimental measurements of quadrupolar

splittings at 111Cd sites in a wide variety of hosts differ from

wsplat
byD less than a factor of two, and are weakly dependent on

temperature. Thus (wQ
plat

)-
9

is probably a good estimate of the

coupling parameter. If A2 is due entirely to EFG fluctuations, the

correlation time, T
Q'

of a fluctuating EFG at the probe site can

be calculated, and the results are displayed in figure 5-1. The

correlation time is foUnd to decrease with increasing temperature

and tellurium concentration.
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The coupling parameter between the spin of the probe nuclei and

a randomly fluctuating nearby spin was not measured in this work.

If magnetic fluctuations dominate, it can be found by scaling the

NMR measurements of the fluctuating spin correlation time in

selenium to the values of x2 in this work. Figure 5-2 graphically

depicts this scaling which results in a value of

<m2>
E.A.

= 9.05 x 1017s-2. The coupling parameter was assumed to be

constant as the tellurium concentration was increased and was used

to calculate the correlation time of the spin fluctuation as a

function of temperature and composition. The resulting correlation

time decreased as the temperature and tellurium concentration was

increased. The results of this calculation are displayed in

figure 4-1.

Since it was not known a priori which mechanism would dominate,

the implications of the analyses were used to make that determina-

tion. The location of the probe nucleus is important and must be

deduced from the data. Since the cadmium probe is divalent, it

could be bonded within the chalcogen chains or in small molecular

units outside the chains.

The calculated values of T
Q
cannot be due to random rota-

tions of large structures such as found in liquid selenium since the

autocorrelation or rotation times of these structures are large

compared to T
Q'

1 us vs. 1 ns. Since the values of T
Q

change in a regular and continuous manner, it seems unlikely that

rotations in the less viscous alloys are responsible for the EFG

relaxation.
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The calculated values of TQ are small, and their magnitude

is consistent with small molecular units diffusing through the alloy

liquid. But the temperature dependence of T
Q

is too strong -

the fundamental vibration frequencies of the activated behavior are

faster than phonon frequencies.

The behavior of x2 cannot be explained by approximately equal

contributions of a fluctuating EFG and PRM. Not only would it be

too coincidental for the contributions to be approximately equal

over such a large temperature and composition range, but the values

of T
Q

would still be unphysically fast.

The behavior of x2 cannot be explained by the dominance of

an EFG fluctuation mechanism at one temperature range and a PRM

mechanism in another range. This would require the slope of log

Ts vs. log (1000/T) (figure 4-1 or 5-1) to increase at the

crossover whereas it is found to decrease.

Therefore, because the values of T
Q
do not lend themselves

to reasonable physical interpretation, it is suggested that the

angular correlation is attenuated through a paramagnetic relaxation

mechanism due to the random fluctuation of a nearby spin and that

EFG fluctuations are negligible.

-5.2 Implications of Ts

The size of the coupling parameter, <w is consistent

with a spin in close proximity to the cadmium probe. The spin
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fluctuates by coupling to the surrounding lattice. Since the

concentration of the probe atoms is small, it should have negligible

effect on the fluctuating mechanism.

The correlation time has been plotted as a function of volume

per spin in figure 5-3. It was found that the data fell into three

relatively well defined regions. For small volumes, all the pure

selenium data fell in an approximate straight line with Ts .

where N is the spin density. The alloy data fell in a straight

line paralleling the selenium data, but with Ts approximately twice

as fast for the same volume per spin. For small spin densities, all

the data fell in an approximate straight line with TS . F1-7
S

Spin density data for pure tellurium was unavailable.

Because values of T are inversely proportional to the spin

density, the activation energies for the alloys in the high

temperature TS data are the same energies as those measured in

the magnetic susceptibility experiments. These values are one-half

the chalcogenide bond strength. By assuming that the correlation

times for supercooled tellurium is proportional to NS1 and that the

values lie in the semiconducting region, then an estimate of half

the tellurium-tellurium bond strength can be made from the

activation energy of the data. This yields a value of 0.56 eV,

slightly smaller than published values for the alloys, about

0.68 eV.

The 2 branches of the T
S

vs N-I curve may be a real effect -

the addition of tellurium reducing the fluctuation time. A second



82

possibility is that the coupling parameter changes with the addition

of tellurium. Ordinarily, coupling parameters change by small

percentages if the element about the probe is changed to another

element from the same column. A third possibility is that the

addition of tellurium causes a chemical reaction which in some way

reduces the probability that a spin is near the probe. This work

cannot definitely establish which of these possibilities is the

correct explanation.

The data of the T vs N-1 curves can be used to predict the

susceptibility of highly supercooled tellurium. Figure 5-4 shows

the estimates of the Curie susceptibility by assuming that the

correlation times calculated for tellurium, using the above coupling

parameter, lies on one of the two branches. The predicted values

from the selenium branch lie near and above the best available

susceptibility for tellurium. Those values from the alloy branch

lie far below the tellurium values. Since the density of spins for

tellurium-rich Se
x
Te

1-x
alloys is large for temperatures

where the susceptibility has been measured, spin-spin interactions

cannot be neglected, and the Curie model will yield values larger

than the actual measured values. Therefore, the susceptibility

estimated from the selenium branch are more consistent with the

experimental susceptibility of pure tellurium.

This observation leads to the speculation that the coupling

parameter is approximately constant for all composition and that in

the alloys a chemical reaction reduces the spin density at the Cd

probe.
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A model consistent with the calculated values of TS is

proposed in which the cadmium probe bonds with high probability to a

single selenium or tellurium atom in a positive or negative diatomic

ion. This would imply large values for the spin-spin coupling

parameters, because of the proximity of the spin. The small size of

the molecule implies small values of TQ. Both are consistent

with the experimental data. Since no T
Q
effect is observed, the

upper limit to its value is roughly the lower limit of measurable x2

values. Using the amorphous splat coupling parameter previously

outlined, the upper limit for T
Q

is 10-10 to 10-11 s for compo-

sitions selenium to tellurium, with an expected weak temperature

dependence. It is speculated that in pure selenium and tellurium,

the cadmium-containing molecules are strongly ionized whereas in the

alloys, a higher proportion are neutral. Such a mechanism could

explain the of branches of the Ts vs. y curve.

The analysis of this work suggests the following experiments.

Perturbed angular correlation experiments on selenium with a

few percent of tellurium and tellurium with minor selenium additions

should be performed to determine if the data fall on one branch of

the T
S

vs.vs N-1 curve or another or the middle. These experiments
--- S

would probe the switchover from selenium-like to alloy-like

behavior. The selenium-rich experiments should not be difficult.

Accurate susceptibility values would be required for the

concentration studied. Values for selenium-rich alloys and

Se
0.1

Te
0.9

have been published (Se
0.1

Te
0.9

is displayed in
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figure 5-4). Additional attempts to measure the very low-

temperature susceptibility of tellurium and tellurium-rich alloys

should also be made.

The possibility of a concentration or temperature-dependent

coupling parameter could be resolved by doing a PAC experiment on

liquid SexTel_x in a magnetic field. The Larmor frequency

can be measured by perturbed angular correlation28 and its Knight

Shift with field can be plotted to yield the coupling parameter33 as

a function of temperature and composition. Not only could this

determine the origin of the two branches of the TS vs. Nil curve,

but good estimates of the Curie susceptibility of tellurium-rich

alloys could be made. Some questions on the NMR coupling strength

in other experiments26'27 may be resolved by combining these

results with the NMR results.

NMR experiments on SexTel_x lightly doped with cadmium could

also be performed to decide if TS or T
Q

is measured by this

work. This is because the NMR cadmium isotope (111Cd in its ground

state) is a spin 1/2 nucleus, not susceptible to quadrupolar fields.

The proposed model implies that divalent impurities form small

ionized molecular species in SexTel_x. It has been predicted by

bond equilibrium theory that monovalent impurities exhibit

measurable conductivity, susceptibility and thermopower effects

differing from the undoped SexTel_x liquids. Recently this

prediction has been verified by Fischer et al.23 with an interesting

additional development. One of the dopants, copper, may have been

in a divalent state. The copper data presented did not quite
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conform to the predictions of BET, leading Fischer et al. to propose

a successful modification to BET for divalent materials. Additional

experimental work needs to be done with divalent dopants before BET

can be extended reliably to the divalent doping case.

It is interesting to note that the original goal to learn. about

chemical dynamics and the role of defects in liquid chalcogenides

produced fundamental results relating to the correlation time of

spins and the appealingly simple concept that Ts may depend only

on the spin density in the SexTel_x system. This provides an

additional piece to the puzzle connecting the Pauli magnetic regime

with the Curie magnetic regime through the values of Ts for tel-

lurium-rich alloys. Coincidentally, this work provides information

on the tellurium bond strength and how a divalent impurity exists in

liquid SexTel_x, which will contribute to understanding the chemical

dynamics in these liquids.
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APPENDIX

MATHEMATICAL DEVELOPMENT OF ANGULAR CORRELATIONS

This appendix provides the mathematical details which lead to

the perturbed angular correlation formulas for two successive gamma

decays given in chapter 2. It closely follows the development in

Frauenfelder and Steffen's, "Angular Correlations" article in Alpha,

Beta and Gamma Spectroscopy28, and Abragam and Pound48.

This appendix begins with the necessary mathematical

conventions, then develops the angular correlation function. Static

perturbative fields are treated followed by the formalism for time

dependent fields. Time dependent random electric field gradients

and paramagnetic spin relaxation mechanisms are then applied in

evaluating perturbative factors.

A. Mathematical Conventions

The Condon-Shortley phase convention for Clebsch-Gordan

coefficients is used with the following definition of the 3j symbol:

(

ili2j3 (..1)il-j2-M3

<i1M1i2M2Ii3-M3>
M1M2M3

(33)'

(the symbol K = 2K+1 will be used throughout). Note the sum

convention m1+m2+m3 = 0.

A-1
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The 3j symbols are invariant under even permutations of

columns,

(313233)
=

(323331
=

) (j3j1j2)
A-2a

1 ,

mini2m3 m2m3m1 m3m1rri2 i

and equal within a phase for the interchange of columns or negating

the z projection row

(313233) i ; 323133
313213= (-1)J1

4.
J2 43 = (-1)41 02 43 . A-2b

mini2m3 m2mim3 1-mi-m2 -m3

The orthogonality relations are:

j1j2j3
j3

j3m3 M1M2M3

= 6 ' 6 ' .
,

mimi m2m2
mim2m3

313233 3132j3
j3 1) = 6J4 4 6m- -I

3,13 3m3
M1M2 M1M2M3, M1M2M3

The Wigner-Eckart Theorem is:

I-1)I A
I.

<IiT (x)
iI.><ImITc;

(A) IIimi> = (-1)
-m q mi

A-3a

A -3b

A-4

which serves to define the reduced matrix element, <IIT(A)II.>,

which is independent of m states (geometry).

The contraction of three 3j symbols is

(-1)34435"1"jeM4+M5+m6
313536 343236

M M5
m
6

M M -m -m m m
1 5 6 -4-2-

(313233 )

M1M2M3

313233

343536

(343533

M4 -M5 -M3

A-5
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where the 6j symbol, 002431, is related to the Racah coefficient
30536

through

W(j1j2j5j4; j3j6) = (-1)i1 +j2+1++4 j1j2j3

j4j5j6

The symmetry properties of the 6j symbols are:

A-6

{.j1j2j3) {j2j3j1} {j1j5j6}
= A-7

j4j5j6 j5j6j4 j4j2j3

Complete details concerning 3j, 6j, and Racah coefficients can be

found in Rose" and Edmonds47. A short synopsis of various

properties and relations can be found in Messiah."

The rotation matrix, DL + z), represents the quantum
um

mechanical rotation of a state with angular momentum L with some

quantization axis t rotated into the axis z. Some properties of the

D matrices are:

inversion
L * L *

D ( z) = D
al

(z K) ,

PM
K

p
A -8 a

*
L

projection D
L

m
4- z) = (-1)P-

m
D
-u-m

(R z) A-8b

contraction 1

'

DL m,, + z') DL,
m u

(Z' + z) = DL
m

(It 4- z). A-8c

The Clebsch-Gordan series is

DpL DpL,m, = < LpL'il'Ikr><LmLim'IkN>DTN A-9
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with the usual angular momentum sum rule 1L-L'I < k < L+L'.

Additional details can be found in most graduate quantum mechanics

textbooks such as Gottfried."

B. The Density Matrix

Let Im> be a complete orthonormal set of states, and let In> be

a state with well defined eigenvalues, a statistically pure state of

an ensemble. Then In> can be represented by a superposition of the

states Im >,

In> = anm Im> . A-10
"m

A mixed state, In'>, is an incoherent sum over the pure states

In> with weights gn. Thus the expectation value of some

operator, F, over the ensemble is

<F> = g a __,
n
a_m <WIFIm> ,

n nm
A-11

where F is diagonal in the m representation.

This suggests the creation of a matrix element in the form:

<F> = <mip1m1><WIFIm>
mm'

= Tr (pF) = Tr (Fp) A-12

where the matrix elements

*

<mldn" =Ialganm n anm
A-13
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contain information about the mixture of states in an ensemble and

<WIFIm> contains the quantum mechanical information for the

operator F. Since anm = <mln>, then

p = I In> gn <nl .
A-14

The quantum mechanical interpretation is that lanmr is the

probability of finding the pure state In> in the state Im>.

Similarly the probability, P(m), of finding any member of a mixed

ensemble, described by an incoherent superposition of the pure state

In'>, in the statelm> is

P(m) = g
n

a
nm

a
nm

= <mlplm>

n

A-15

Thus, the diagonal elements of the density matrix give the

probability of finding the ensemble in the state Imi>.

Consider a two level system consisting of states flmi>1 and

flmf>1. Let H(t) be the Hamiltonian which induces the transition

Imf> = HImi>. Let In> be the pure state of an ensemble made up of

the above systems. The density matrix for a mixed initial state is

then

pi = p (t=0) = I In> gn <nl A-16

At t = 0 the Hamiltonian is turned on, giving

pf = p(t) = H(t) In> gn <nIH(t)t A-17

n

Evaluating the matrix elements of p(t) in terms of the complete set

Ilmf>1 yields
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<mflp(t)Im;> = 1

<mc1H(t)In>g,H

<n1H(t)flm;>
n '

inserting unity = Im
i

I twice gives
m.

<mflp(t)lmf> = 1, <m
f l i
IH(t)Im.><mlpAl.XImm

f i
IH(t)Im>

*
. A-18

m.m.

If the above final state is really an intermediate state of some two

step process, then it can be shown in a similar manner that

<mflp(i+I+f)14> =

I I I

<mf21H 1m I
><mII i i i i

1H Im><mlplm> <m
I
IHIlm.>

*
<m

f
IH2Im

I
>

*
A-19

mime

m m'
I I

Now consider the initial density operator. Let the pure states all

have equal weight f

f <m.ln><nlm!> = f 6mm ' A-20

That is, the initial density matrix is diagonal in this case. It

should be remembered that the result given is perfectly general.

C. Evaluating the Angular Correlation Function

The angular correlation function, 011,t2)da1ds-22, is the

probability that a nucleus decaying through the cascade Ii+14-If

emits two radiations, R1 and R2 in the directions ti, t2, in the
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solid angle dal, dQ2. In equation A-18, with p = p(11,g.2), mf=mf

yields the probability that the nucleus is in the final state mf

after emitting radiations 1,2. The sum over all final states is

the angular correlation function W1,2). The matrix element

becomes

<m1Hilmi> = <Im11aIH1IIimi> A-21

where I, m is the spin and spin projection of angular momentum of

the intermediate state and a is the polarization of the radiation

emitted in the direction A similar understanding exists for the

other matrix elements involving the radiation Hamiltonian H2.

Further, the initial state is assumed to have no preferred

orientation. This means <m.lp.lmt> = 6
m.m.

,/I. Thus

W(1,2) = S1S2 <mf1H2110<m1Hilmi><WIHilmi> <mf1H21m1> , A-22

m
f
m.

mm'

where S1S2 represents the sums over any observed states, e.g.,

polarizations, and unimportant constants have been divided out.

It has been assumed that the intermediate states, 'Do, do not

change before the emission of the second radiation. (Note: to

avoid redundancy, the angular momentum, I, will be dropped from the

kets, III*, in the mathematics that follows. It should be clear to

the reader what the value of I is for a particular ket from the

context of the mathematics.) The angular correlation function can

be rewritten as



where

and

w(2) = <mla1)lmixmila2)1m> ,

mm'

<mlp(tOlm'> = S1 1 <mJHilmi > <m'IHlImi>*

m.

96

A-23a

A-23b

<101P(t2)1M> = 52 / <M4H21171><N1H21Mi>* A-23c
m
f

To evaluate the above expressions first consider the matrix elements

<ImitalHIIimi> which describe the radiation in terms of its direction

and polarization. Expand the matrix element in terms of the angular

momentum of the radiation and its parity

<ImtalHII
i
m

i
> = aalLM*><ImLM*IHII

i
m > A-24

0171.

where M is the z component of L along some arbitrary z axis and 7 is

the parity of the radiation. Rewriting the first matrix with the

aid of the D-matrices

L*
<taiLM7> = <oalLpir> D

Mp
(z+N* ) A-25

The term <oalLpir> represents the matrix element <GILp7r> where the

direction of it coincides with the axis of quantization, z. The

second matrix element in the sum, <ImLMnIHIIimi>, involves the

radiation Hamiltonian of multiple order L. Using the aligner-Eckart

Theorem the result becomes
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L I.
1 1 L*

<mit.> = 1 (-1) <oalLpw> 0 (z+t)<IiLw
1

iI.>. A-26
MP

LM7ru m M -m . '

1

Inserting the relations found for <m1HImi> to evaluate <mlplmi>.

This leads to

L+P-2(I+mi) *

<mip(iZ)Imi> = S 1 ( -1) <oolLor><WIL'Il'*1>
m.

1

LM L M'

nu/1 '1.1

L I. L'
* L* * L' *

' <IILITII.><IiL'ITIII.> D (z+N)D ,(z+N). A-27
MP M'p

m M -m. all M' -m.
1 1

Use equation A-8b to convert D and then apply the Clebsch-Gordan
mu

series, equation A-9. Evaluating all the phases (note that I+m is

always an integer) gives the result:

2I-I.4%.,.,..

<mip(t)imi> = s 1 y (-1)
1

k<oolLuITX0e1L'il'w1>*
LL' kNT

uu
1

L IiI L' L' L'

m M -m
1
. m' M' -m

1

. M -M ' N p -111 T

k - *
<IILITii.><IiL'w iiIi>

*
ONT(z+0 A-28

This can be simplified by using the contraction relation for 3j

symbols to a product of'a 3j and 6j symbol, equation A-5.
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<rillp(qml> = S (-1) k<oalLp10<oa'lL'p'11-1>
LL' kNT

*
L' I I k

*
<InbroI.><IoL'ir'04

NT
> Dkm (z+N) . A-29

T
11-11' T m' -m N L L' I.

Defining the Racah Radiation Parameter

... L L' k

C
kT

(LL') = S 1 (-1)
-L+p

k < IIIL7
1

111.>*<IWIT'111.>* A-30

PUI p -p -T

This produces the result, where the subscript 1 denotes the first

radiation,

<mpti)Iml> 1/1 ("1)
k1 Cu (LIL1)

om1T1 ^iT1
71

1 1

I kl I

* k ItDIT1(z+ 1) . A-31

m' -m NI LI L1 I

Performing similar mathematical manipulations for the density matrix

element involving the second radiation gives

k2-m-L1-I
f r* i<M1p(12)1M> = 1 / (-1) k2 v1(2,2hY-21-2)

L2L2 k2N2T2
11 11

2 2

(1 I I k

m' -m N2] L2 L2 I
HI- IT NIXI IL

' '

DI>
*

D
k2m (ty*Z) . A-32f 2 2 f 2 2
T2112
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The results for the two density matrix elements can be put

together to form the angular correlation function, equation A-23a.

The expression contains the term

I I kl I I k2

K
k2

61(0(2 6N1N2

MMI m' -m N1 m' -m N2

which contracts under the orthogonality of the 3j symbols, equation

A-3b. The resulting expression contains the product of two D

matrices. This simplifies because of the contraction property of

the D matrices, equation A-8c. The final expression becomes

2I-I4-I c
= (-1) li// / I(-1)k-L1-L2C (L'L

1

)

1k T1T2 LL: L kT1

ww ww
1 1 2 2

I I * I I *
CL (L9L2)<IHLIwily<IILlwilly <I0L2w2nIXI0L2w2III>

KT2 -

I k

I.

I k

.}

k

L L' 14 L L' I,
0
T2T1 (2 + It°

A-33

1 1 ' 2 2 '

It is important to point out that the result depends only on

the angles between t2 and I and not the choice of the arbitrary

quantization axis z.

I k
Furthermore, the 6j symbol IL 1 , T} contains the two vector

triangle inequalities involving (IIk) and (LL'k). This places a

fundamental limit on the value of the index k,
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0 < k < Min(2I,LI+LI,L2+L2) , A-34

otherwise the 6j symbols are zero. It has also been pointed out

that these selection rules follow directly from the invariance of

the correlation process under rotation and inversion.5°

Experimental observation of the directions of the radiations

and not the polarization is made in this work. Thus the observed

correlation function is independent of rotations about the

directions ti and 1 2. Also, CkT(LL') is an eigenfunction of the

angular momentum t with z component T, where the z axis is in the K

direction. Because of rotational invariance, only the T = 0

component is non-zero. Using the relation between reduced matrix

elements

If-I+L

<I
f
BLITIII> I = (-1) <IILITII

f
>* I

f '

defining the Ak coefficient,

A
k
(L

1
L

1 1
I.I) =

* I k

)<I Lp iwily<IBLiwily ,A-35
I I,

L

(-1)L1C:0(L LI
L L' Ii

1 1 1

11 1T

1 1

rr

and using the fact that-D
k

o
(Nroc&1) = Pk(cose), where e is the angle

o

between ti and ft2, the important formula results:

W(I1,2) = i Ak(L1CIIiI)Ak(L2C2IfI) Pk(cose)

or



101

W(1,2) = Ak(y1)Ak(y2)Pk(cose) A-36

To evaluate the Racah radiation parameters, and hence the

A
k

coefficients, only two multipoles need be considered. This

is because the transition probabilities for nuclear radiations have

the approximate form.51

T
M(L+1)

T
EL mc2

and

TE(1-14) maw

T
ML ii

where TML,
THE

is the transition probability for radiation

of magnetic L-pole (ML) or electric L-pole (EL) character, hw is the

energy of the transition, m is the proton mass and a=1.2x10-13A1/3cm

is the average nuclear radius. It can be seen that the transition

probability for a third multipole radiation mixed into a transition

is reduced by many orders of magnitude. As an example the ratio of

M1:E2:M3 for the 7/2 5/2 171 Kev transition in ilicd is

1:2x10-4:6x10-12.

Evaluation of the Racah coefficients under the condition that

polarization is not observed gives the important result that only

even k values contribute.

Evaluation of the A
k

coefficients is best done using the F

coefficient defined as
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F
k 1

(LL'I.I) = (-1)

using

F
k
(LLI

i
I)+26F

k
(LL'I

A (LL'I I) =

L

1

L' k

-1 0

-I)+62F

L L' k

I I I.
1

k
(L'L'I

i
I)

A-37

, 'A-38
k i

1 + 62

where the mixing ratio is defined as

1

6 =
<IBLTIAI.>

A-39

Values of the F coefficients are tabulated in references such

Krane.30 (This reference uses the same phase conventions as this

work.) See table 2-1 for the pertinent values for the 111Cd cascade

used in this work.

D. The Effect of Extranuclear Perturbations

Let the intermediate state of the nuclear cascade interact with

some external perturbing field, represented by an interaction

Hamiltonian K(t). This field acts on the intermediate state just

after the first radiation is emitted, at t=0, and persists until the

second radiation is emitted, at time t. The time evolution operator

formalism is the prescription for evaluating the interaction,

t

A(t)Ima> = Imb>, A(t) = exp[ f K(t')dt'],
fi o

A(t=0) = 6, A-40

mamb

where the integral has Feynman time ordering.
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Under these conditions we modify equation A-22 to

<mf1H2A(t)ImaXmallillmi><WalHilmi> <mf1H2A(t)Im'a> . A-41
m.m

f

m m'as

Inserting unity in the form of a sum over complete states Imb> and

lq> and using the definition of the density matrix elements as used

in equation A-23b,c gives the result

01,2,t) =

*
. A-42><m IA(t)Im ><m IA(t)Im/ <malP(1)1ma>mblP(2)1mbbaba >

m m'as
m m'
b b

Evaluation requires insertion of the values of the density matrix

elements as previously calculated in equation A-31 and A-32 along

with the experimental condition that polarizations are not observed

(T = 0) and using the equalities,

u
DL 4',0 i) =

4.ff

YL
*
(04)

L

A-43a

Dom (p,e,y) =
4-ff

YL
m

(04) .
A-43b

After performing algebra similar to that of the previous section,

and using the definitions of Ak(LL'II) (equation A-35), the

result is
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W1,2,t)

N N N
Ak (y1)Ak (Y2)(10(2) Gkikz(t) yki 01,4)1) y14,20242) A-44

kiNI 1 2 1 2 1 '2

k2 N2

where the attenuation factor is

I I I k2
GN1N2(t) (_1)

2I+m
a+mb

(k1k2)
1(11(2

mamb
N1 1M

a
-M

a
mb -mb N2

<m
b
1A(Olm

a
Xm

b
1A(Olm

a
>

*
A-45

and e (1)

i

are the emission direction coordinates of the

radiations referred to some arbitrary z axis.

The expression for G
N

1
N2(t) can be simplified by considering

klk2

the two limiting cases of interest, a single crystal sample and a

powdered sample of randomly oriented microcrystals. In both cases

the Hamiltonian K(t) is assumed static on the time scale of the

experiment, i.e., the decay lifetime of the intermediate state.

In general, the interaction is not diagonal and must be

diagonalized by some unitary matrix U,

U K U-1 = E, where E is diagonal. A-46

It follows that

A(t) = exp [-iKt/fi] = U-I exp[-iEt/h] U

with matrix elements
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-iE t/h

<mblA(t)im." > = 1 <m
b
111-11n><nle n 10<nlUlm

a
> .

n

For convenience, let <nlma> <nlUima>. The attenuation factor

becomes

N1N2
G
1(11(2

(t) =

mamb
N N'

2I+ma+mb
(-1) (1(11(2)2

I

ma -ma N1

I k2

mb -mb N2)

<nlmb> <nimaXn'Imb><n'Ima>
*

exp [-i(E
n
-E

n
,)t/h] . A-47

If the interacting field is axially symmetric, i.e., a pure magnetic

field or an axially symmetric electrostatic field, then the z-axis

of all previous expressions can be chosen to coincide with the

symmetry axis of the field. Thus K and A(t) are diagonal and U=1.

This yields

N1N2

G (t) = (142)1 exp[-i(Em-Em,)t/h]
1(11(2 mm'

I I k2

)

A-48d
N1N2 .*

m' -m NI m' -m N1

If one of the radiations propagates in a direction parallel to

the symmetry axis, then one of the spherical harmonic terms in
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is the spherical tensor operator of the classical external electric

gradient (EFG). The sum is over all lattice point charges and their

coordinates.

The components of the EFG tensor can be written in terms of

cartesian derivatives in some arbitrary coordinate system.

V(2)

(2)
V
±1

= +1
2

z'z'

'z'±iVy'z')

W

±2
)

=
(y

x1

x
j4 yI

y
,±2iV

x, y
,)

4 6ff

2av 2

L

e
ca ,

where V = =
x.x

1 j ax
i
ax

j
ax

i
ax

j
c rc

A-65

These relations simplify in the principle axis coordinate

system where mixed derivatives disappear,

where

(2) 1
V
0

= V
zz

(2
V
±1

)
= 0

(2)
_

1 p
V(2) _ _n V

e 4 6ff
zz

,

n = (V
xx

- V
yy

)/V
zz

, 0 < n < 1 ,

A-66
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is the asymmetry parameter. The allowed values of n come about

because of the particular choice of principal axis such that

1/Izz
r>dVyyl.dVxxl. When the EFG has axial symmetry n=0. To solve

for the eigenenergies for the n * 0 case, one must diagonalize the

matrix elements of KQ, <miK(11m1>. These elements are straightfor-

ward to evaluate. The result is

eQVzz

[3m2_/(I+1)] 6111'm<mIK
Q
Iml> .

41(21-1)

+ n/2 I-m+2)(I-m+1)(I+m)(I+m-1) (sm,,m-2

+ n/2 (I+m+2)(I+m+1)(I-m)(I-m-1)
6m',m +2

A-67

where the quadrupole moment is defined through the following matrix

element for the highest valued m-state:

eQ = <III 1 e
P P
(3z2-r2P

5

)III> = 4(1) <IIITIV)III> . A-68

P

Note that the elements <mIKQIW> are symmetrical with respect to

m + -m. Thus the quadrupole interaction is always degenerate for

± m states.

Because of the form of the K
Q
matrix, diagonalization is a

non-trivial task. The usual prescription is to diagonalize the

matrix for a particular value of I. The I = 5/2 case in this work

produces the following matrix:



W(1,1g.2,t) simplifies to

Y
N

(0
'
0) = d

NO
()

k
4n

which implies N =O. This in turn implies m'=m through the sum rule

of m-states for 3j symbols. Thus Em-Em,=0 and applying the

orthogonality relation A-3b gives the results

and

G
N

2(t) = d
1(1N1(2 kik2 N1N2 NI0

= Ak(i1)Ak(y2)Pk(cose) , A-49

108

indicating that the perturbing external field has no effect on the

angular correlation. This is because the external field does not

induce transitions among the m states of the intermediate state.

For a powdered sample made up of large numbers of randomly

oriented microcrystals the observed effect is found by averaging

over the random directions of the symmetry axes of the

microcrystals. The general case where the perturbing field is not

axially symmetric but rhombic in character is treated as follows.

Let D be the rotation matrix which rotates from a microcrystal's

general coordinates of orientation to the arbitrary z axis frame of

the perturbed angular correlation formalism. Let R be the rotation

matrix which rotates from a microcrystal's principle axis to its

general coordinates of orientation. Let U-1 be the particular

unitary matrix which transforms the diagonal Hamiltonian, E, to the
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principle axis Hamiltonian. (Then U is the matrix which

diagonalized the principle axis Hamiltonian, consistent with the

rotation of A-47). Thus, K=DRU-1EUR-1D-1. Likewise,

A(t) = DRU-1 exp[-iEtni] UR-10-1 A-50

For simplicity, let the rotation operator X=DR, a product of two

( (k
rotations. The matrix elements of X are then XI)

k
4

)
.11) I) R

(k
1) .

A PIA 01

The matrix elements required are,

<mblA(t)Im
a
> = <mdX1n1><niln> exp[-iE

n
t/11]<nln2><n2IX-11m

a
>

mn
1
n 2

'''

(I) (I)
*

= 1 XmeiX
man 2

<n I ni>
*
<nin2> exp[-iEnt/i)] . A-51

nn
1
n2

Similarly

<m
b
IA(t)Im

a
>

*
= X(PI:X(!),n'In'><WInl> exp[4-iE

n'
tit) . A-52

n'n'n'
mbni ma2 1 2

1 2

Insert the matrix elements into the expression for G
N

1
N
2(t),

1(11(2

equation A-45,
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N1N2 I I

G (t) = 1 (-1) (kik2)'

1(11(2 mamb nnin2 m' -m N, km' -m N
a a. b b2

n'n'n'
1 2

* *
X
(I)

X
(I)IX ()IX ()

<nln >
*
<n'In ><n'In'><nlin'>

b
1

a 2 b
1

a 2
mn mn mn' mn' 1 2 1 2

exp[-i(En-En,)tA] . A-53

To simplify this equation consider the ma sum

1 (-1)max(I)*x(I)
1 I kl 1 I kl

m
a

man2 1111,3q ma
=

a

(-1)n2 X(I) v(I)

-ma-n Amin'2 a2 ma -ma N
1

by A-8b

= (-1)n2
P N

1*

P

Similarly for the mb sum

nb (I)
1 (-1) Xmn ,

m
b

b 1

2 2 1

(I)*
Xm,n ,

b 1

(1

nib

I k2)

N

u 2

I I k2

(-1)n1
'2"2 (n, -n P )

1 1 2

Inserting the above results into A-53 gives

A-54

A-55
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G
N

1
N
2(t) 1 (-1)

21+n
1
+n
2((1(2) X0

I

*
X
P2

k2N

2

*

nnin2
n'nfq

I I k1 I I k2
I *<nin ) <nln

n' -n P n' -n P 1 2 1 2

2 2 1 1 1 2

exp [-i(En -Enjt/fl] A-56

The average over all the microcrystal orientations must now be

performed. These are the Euler angles, a,a,y, contained in the D

matrices. The average is

GN N 2(t) =
(.1)2I+ni+nuk

1

k

2,

RX(1) RXkN
) <nln > <nln 2>

02
nn

1
n2 XX'

l 2

n'n'n'
1 2

I I

<n'In'><nl Int> exp[-i(En-En,)tifi]
1 2 n' -n P n' -n P

1 2 1 1 1 2

1
D(k1)

*

, (a,a,y) D
(k

2
)

(a,B
'

y)da dcosa dy . A-57

8w2 rl"
P 2X

Because of the orthogonality properties of the D matrices, the

28w
integral yields d d d . This gives

kl klk2 PIP2 XXI
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GN1N2(t) = 6
10(2

1 (-1)
2I+n

1
+n

2<nln > <fin ><n'In'Xn'Inl>
1(11(2

nn
1
n2

1 2 1 2

n'n'n'
1 2

I I

n' -n P n' -n P

f, 1* (1,

exp[-i(E
n
-E

n'
)t/fl] RA1/ RA11 . A-58

N1 N2

2 2 1 1 1 1

The sum over A produces dNO2. The final result is

where

GNIN 2(t) = 6 6 exg-i(E
m
-E

m'
)t/h

c kik
]

i

kik2 kik2 NiN2 mm, 'mm'

E Gkk(t) (k1 = k2 = k) A-59a

Sk1k2 = (-1)
21+n

1
+n

2<m n >
*
<mln > <m'In' > <m'In' >*

mm'
nIn2n3 1 2 1 2

I I I I k2
A-59b

n2-n2 P n' -nl P
1

Applying the addition theorem of spherical harmonics to the

perturbed angular correlation function gives the simple result,

W(1,2,t) Ak(yi) Ak(y2) Gkk(t) Pk(COS8) A-60

The simple form of the perturbed angular correlation function is due

entirely to the averaging process. Note that Gkk(t) can be

rewritten in a more revealing form

Gkk(t)
nn '

k

"

k
cos[(En-En,)t/h]

"

A-61
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The n=n' term, 5
k

1
k

1, is independent of time. This is the so-called
nn

hardcore term. This term indicates that the angular correlation

pattern is never completely wiped out by static crystalline fields

of any type. The origin of this effect is as follows. The powder

sample has microcrystals oriented randomly in all directions. This

means a small but finite number of these microcrystals are nearly

aligned with respect to the propagation direction of one of the

radiations. As shown earlier (equation A-49) the angular

correlation pattern is unperturbed in this case.

E. The Static Electric Field Gradient

The interaction Hamiltonian for the static electric field

interacting with the quadrupole moment of a nucleus is52

Q -45

T(2)v(2) (-1)q T c(2) (2)

q

where the nuclear quadrupole spherical tensor operator is

T(2) = e
P P 2
r2 Yq ( 0

P
) .

A-62

A-63

The sum is over all (point) nuclear changes and their coordinates.

The term

e
c

3
V
(2)

= 2
q

(evOc)
C rc

A-64



K=
-Q 41(21-1)

eQVzz

10 0 ni17 0 0 0

0 -2 0 n3ii 0 0

niTO 0 -8 0 n3ii 0

0 n3/2- 0 -8 0 niTO

0 0 n3i 0 -2 0

0 0 0 n5 0 10
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. A-69

The energy eigenvalues are the solutions, x, to the equation

(1)
3 -7( )(3+n2) -20(1-n2) = 0 .

2 2

A-70

The secular equation is of order three instead of the expected six

because of the m-state degeneracy. Solution for the limiting cases

are: n = 0, axially symmetric, A = 10, -2, -8 (in units of

eQV
zz ); n = 1, extreme asymmetry, x = 4 7, 0, -4 /7. Explicit

41(21-1)
solutions for the energy eigenvalues can be found in Gerdau et 81.53

Fig. A-1 schematically shows the simple behavior of the roots x as a

function of n.

As indicated in the previous section (see equation A-59a or

A-61) Gkk(t) depends on the energy differences, Em-Em,,

which are experimentally measured quantities. Because of the

degeneracy in the m states, only three energy differences need be

considered for the I = 5/2 case. (For integer spin there are 1+1

differences, for half integer I there are 1+1/2 differences.) As

figure A-1 indicates, the largest energy difference is equal to the
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Figure A-1 A plot of the roots A from equation A-70
as a function of the asymmetry parameter n.
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sum of the smaller two. Note that these differences depend on the

value of n.

Let hwl be the smallest energy difference and hw2 be the next

largest difference. Let R = w2/wi. Solving the I = 5/2 secular

equation in polar coordinates gives the connection between R and n,

and

e = 3 cot- 1[217(R+1)] 0 < e <
3 2

cose
10(1-n2)33/2

=

73/2(3 4.n2)3/2

A-71

In this way an experimental value of R can be related to the

asymmetry parameter, n. Note the limiting cases:

R = 2 yields n = 0

R = 1 yields n = 1 .

The factor, eQVzz/4I(2I-1), is the fundamental size of the

energy splitting for the nuclear levels. The quadrupole coupling

parameter and frequency of the quadrupolar interaction are defined

as

w = and v
eQV

zz 41(21-1)

41(2I-1)h Q 27r (4Q

A-72

Consider the axially symmetric EFG. Equation A-61 and A-59b

are in this case

I I k

Gkk(t)
/

cos[(m2-m12)3w
Q
t]

mm' (m. -m p
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Let the index n take on all positive integer values of 1m2 -m'21 for

integer I and 1/21m2-101 for half integer I. Let the fundamental

frequency wf = 3wQ for integer 1 and 6wQ for half integer I. Then

the attenuation factor can be written

where

Gkk(t) / s,
k k

cos(nwft)
n "

k k
I I I k2

S
1 2 = 9

n p
mm' m' -m p m' -m p

A-73

A-74

with the sum over those m values which satisfy the above equality

for the index n. For I = 5/2 the expansion takes the form,

10 cos 3wft . A-75
kk

4
5 35
1 + " cosG(t) 4t + cos 2 wct + 5

35 35

For the general case of axially asymmetric EFG, the explicity

form of G
kk

(t) is difficult to calculate. As figure A-1 indicates,

the energy difference changes continuously and monotonically as n

increases from zero. (For example, explicit expressions can be used

from Gerdau et al.53) In the same spirit as in the preceding

development, the attenuation factor can be expressed as

kk

Gkk(t) = 2 s(w
n
)cos(w

n
t)

n

where wo = 0, wi + w2 = w3, wi = wf and

A-76
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mm'
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A-77

with the sum over those values of m and m' that satisfy the

particular energy difference w
n

. The expression for S k 11k2 is given
mm

in equation A-59b.

In reality, the magnitude and symmetry of the EFG varies from

site to site. By assuming that the energy differences vary

according to a normal probability distribution law,

(75;

the average attenuation constant becomes

kik

Gkk(,t1 = -0)cl
-,

cos(w t) e-62wn2/2

n n

A-78

with 6 = a/wf, a being the standard deviation of the distribution of

w about the fundamental frequency wf. This relation assumes

that only V is distributed and not necessarily V or V
zz xx YY.

F. Time Dependent Perturbations of Randomly Fluctuating Fields

The perturbing field is assumed to be fluctuating randomly both

in magnitude and direction. At any instantaneous time t, a local

configuration or field exists about the nucleus that has some

average value acting in some direction z'. This local field

continually reorients as time passes. If many reorientations occur

in the lifetime T
N
of the intermediate state, then there exists
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Thus, a convenient quantization axis z can be chosen for the

perturbed angular correlation formalism which simplifies the

mathematics. Let the z direction be parallel to the propagation

direction of one of the radiations, i.e., the first. The spherical

harmonics in equation A-44 can be simplified,

Y
N
1 (e $ ) + 1

kl l' 1

Furthermore, since the azimuthal angle is unimportant In describing

the direction of the second radiation, let (P2 = O. The other

spherical harmonic becomes

k
Y,202,0) 4 ?.. Pk (cose)

2 Air 2

and e is the angle between the two radiations. The results indicate

that it is unnecessary to keep the nl and n2 dependence in the

formulas, so they have been conveniently set to the value zero.

With these modifications, equations A-44 and A-45 become

01,2,0 . 1 Ak
1

(y1) Ak2(y2) q?k2(t) Pk2 (cose) A-79

1(11(2

and

00 2I+m+m' - -
)i./I I I k2

G
kik2

(0 . 1 (-1) (1(11(2
1"111A(t)Im>12

mm' Im -m 0 m' -m' 0)

A-80
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The term l<WIA(t)Im112 is the probability, Wmmt(t), that

if a nucleus was in the state Im> at t = 0 then it will be in the

state 1mi> at a time t. The transition is brought about by the time

evolution operator, A(t), which contains the interaction Hamiltonian

K(t).

Using first order time dependent perturbation theory the

transition probability is found to be

ti 2
1 Wmffe

WW(t) = I Kmm,(t') e dt' 1

2 o

where wmm, = (Em-Em,)/h and Kmm,(t) = <mIK(t1)1m>.

Expand the absolute square to simplify Wmm,(t).

W
mm

1
,(t) = f

t

dt' f
t

dt" Kmm,(t') Kmm
*
(t ) e

-iwmm,(t'-t")

h2 o

A-81

Now change the integration variables - letting t'-t" = T and keep

t'. The resulting equation is

12
t

*
-iw ,T

mm
W, 1(t) = [f dT f dt' Krnm(ts) Kmm,(t'-T) e

h2 o T

t+T

+I

0

dT e
-iWmmIT f dt' Kmm,(t') Kmm,(t' -T)] . A-82

-t
o

An ensemble of nuclei is being subjected to the interaction

K(t) and thus the ensemble averaged transition probability is

required. Hence the expression, <Kmm,(t')K
mm'

(ts-T)>
E.A.'

must be

evaluated. This expression is proportional to the correlation

function of the random fluctuating field contained in the
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Hamiltonian K(t). Additional information on correlation functions

and their properties can be found in Abragam.32

By assuming that the fluctuating perturbing fields are

stationary random fields (that is, the fluctuations are independent

of the origin of time), then the correlation function depends only

on the time difference between observations,

Rmm,(T) = <Kmm,(t') emm
(V-T)>E.A.

A-83

Further, assuming that the direction in which time is measured

has no effect on the value of the correlation function, then

Rmm,(t) is real and must be an even function of T.32

Notice that for T = 0,

2

Rmm,(0) <1Kmm,(te)I >E.A. >
A-84

Also, for very long times the value of the field in the future is

independent of or uncorrelated with the field in the distant past.

Thus for T Rmmi(T) 0. Let Tc be a characteristic time, the

correlation time, where the value of the correlation function is

approximately midway between zero and the maximum value at T = 0.

Thus for ITI>>Tc, Rmm,(T) is essentially zero.

Abragam's mode132 for the correlation function due to Brownian

type motion or fluctuating fields is

R
mm

,(T) = R ,(0) e
-ITI/Te

Slichter33 gives a simple example of a correlation function due to a

fluctuating elementary spin,



R
mm

,(T) = R
mm

,(0) e
-ITI/Tc

122

A-85

with T
c
= 1/2W, where W is the spin flip transition rate.

Assuming the correlation function to be a stationary even

function of T, then the integrations over t' can be performed. This

leads to the result,

+t -iw ,T

W
1

t f
-t
dTe mm R

mm'
(T)

E.A.
r
`mm' (t)>

t

-2 f dT T cos WmmIT Rmmi(T)] . A-86

0

Using the assumption that the experimental observation time is

very long compared to the correlation time, then the above two

integrals can be easily compared and the first term dominates by

virtue of the coefficient t in front of the integral. For t>Tc,

Rmm,(t) is essentially zero and the limits of the integral can

be extended to infinity with little overall contribution. This

gives

-iW
mm'

T

<WMMI(t)>E.A. f e
Rmm,(T) . A-87

112

The integral is in fact the spectral density function, J(wmm,),

which can be measured under some circumstances with other

experimental techniques such as nuclear magnetic resonance.33

Using the Abragam or Slichter model for the correlation

function, the spectral density function can be evaluated. With the

relation that the transition probability per unit time is just the
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averaged transition probability divided by time, then the transition

rate for the ensemble becomes,

<W
mm

,(t)>
E.A.

2Tc <1Kmm,(0)I 2>E.A.

Q =
A-88a

h2 1 + (W IT
C
)2

MM

With the assumption that Wmm,Tc << 1 (there are many fluctua-

tions occurring during the transition frequency time scale Wmm,)

then the simple result for the transition rate is

2T
-cQ

mm'
(t) -- < 1Kmm,(t)1

12>E.A.
A-88b

h2

where <11<mm (t)12> has been substituted for <11(mm,(0)12> because of

the independence of the origin of time previously assumed.

The above result is correct to first order, and is not correct

when the transition probability is not small compared to unity. In

this case the occupation probability of a state Im> changes with

time and must be calculated from the master equation,

dPm +I

= Qinall(Pw-Pm)
dt

m'=-I

which is valid when the transition rate is small compared to the

field fluctuation rate, Qmill.Tc << 1. (Note that Qmm,t < 1 is

possible since t>>T
c

under the previous assumptions.)

The solution to the master equation must be found under the

initial condition that the state Im> is initially occupied,

Pm,(0) = 6mm,.
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At this point an explicit form for the term <IKmm,(t)12>
E.A.

must be calcuated. The following two sections makes this

calculation under the cases of fluctuating electric field gradients

and a paramagnetic relaxation mechanism respectively.

G. The Attenuation Factor for Randomly Fluctuating EFGs

The quadrupolar Hamiltonian for the laboratory axis z is

1)q (2) v-(2)y =z,t) (- ,(z t)

5 q

A-89

But the EFG is best described in its own time independent

coordinates z'. Using the rotation matrix with time dependent Euler

angles to rotate into the principal axis frame of the EFG produces,

K
Q
(z

'

t) ±r.. (-1)q T (2)D(2) (a(t) 21 ...1(t))V()(z') A-90

5 qq'

For an axially symmetric EFG, the sum over q' reduces to only one

contributing value at q' = 0. In the general case with rhombic

fields, additional terms are present and cannot be ignored.

Simplifying the product,

<mbIKQ(t)ImaXmblyt)Ima>
*

=
2

5

(-1)q+q1V(q
)(z1)V

_qi (z1)
-

qq'

clicli

e IT(2)I \e >*n(2) n(2) *

'mbrq IMar'mbrql u-411-q u-ql-qi



by applying the Wigner-Eckart Theorem and the definition of the

quadrupole moment (see equations A-4 and A-68) gives

I<MbilKa(t)Ima>1
2

5 qq'

= 1 (-1)011(0)2 vT(e) 0_2q1(zi)

'

q'
1 1

2 I 2 I 2
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DT-q' 10(!ql_cli , A-91

-mh q m -mh q1 m 0 I

- a a

where the z projection sum rule of the 3j symbols implies ql = q.

The ensemble average is taken over all the random orientations of

the Euler angles,

1

87r2

D(2q )

-q

(2)*
-q(a(t),0(t),y(t)) D , (a(t),a(t),y(t))da dcds0 dy ._q

The square of the matrix element now has the form

<1<mbN(t)Ima>12>E.A.

I 2 I 2 I2I _2
= (eQ)

q ma -I 0 q

[VT (z1)]2 . A-92

-m25 q
b '1 a

Referring to equation A-66 to evaluate the sum

[v(2) (z,)12 5 v2, 0 n2)

1ff
z z'

6

yields the completed result
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<1<mblyt) Ima>12E.A.

2

2
12

I 2 I )-2 22 I

(eQ) Vz,z,(1 + 1 4 . A-93

80 I 0 I
q (-mb q ma

The term V2z,(1 + 712/6) should be interpreted as the ensemble

average of the square of magnitude of the local field strength.

With the above result we can rewrite the master equation as

dP
m I 2 I 2
a

dt m
b

-m
b

q ma
(P
Mb

-P
ma

)

where

A-94

2

T

n

(eQ)2Vz,z,(1 + 1L_)(I+1)(2I+2 3)(2I+1)

c 6

40h2 1(21-1)

(The explicit expression for (_
I 0 I
I 2 I

)-2 has been calculated from

Messiah's expression" and inserted into the equation.)

Using the orthogonality property of the 3j symbol (equation

A-36) and trying the solution form

Pm
(t)

= P
m

(0)e-At

gives the result

2 I )2

C Pm (0) = Pm (0) ,

a m
b
(-mb q ma b

where

A-95

A-96
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1
C = -

A_
a

If Pm (0) were a suitable chosen 3j symbol then the contraction

relation for three 3j symbols (equation A-6) yields another 3j mul-

tiplied by a 6j symbol, this 6j could then be equal to the constant

C above. The solution form

P(r)(0) = constant(-1)
r-I-m

r

m 0 -m

where P
m
(0) = 1 a

r
P
m
(r) (0) is inserted. After performing the con-

traction over the three 3j's the result found is

A-97

or

C P
(r)

(0) = P
m
(r)(0)(4)2I+r

a a I 2 I

II

C = (-1)
2I+r

r

= W(Ir2I; II)
I 2 I

A-98

By demanding orthogonality of the components of the vector

P
(r) (0) the constant can be evaluated to be r. Furthermore, ortho-

gonality of the total probability vector P(0) = I a, P
(r)

(0)

r

ar

implies

r-I-m, r I

a
r

= (-I) " r
m
a
0 -m

a

A-99

where the initial condition, Pin(0) = (5171m has been used. In this

a

way the total probability vector for any time t is
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2r-21-ma-mb I r I I r I

P(t) = (-1) r . A-100

r,mb m
a
0 -m

a
m
b

0 -m
b

The solution required is P (t), the probability that the state mbPm

is occupied at time t. This is substituted for 1<mblA(t)Ima>21 in

the expression for G°1(°
(2

(equation A-80). After using the ortho-

gonality properties of the 3j symbols two more times the result

found is

G
00

(t) e
Xk t

1(11(2' 1 "k
1
k2 '

A-101

which means that the perturbed angular correlation function has the

form

Wit1A2,t) = Ak(yi) Ak(12) q(t) Pk(cose) . A-102

The attenuation constant

Xk

1

C)

can be evaluited using the tables by Biedenharn, Blatt and Roses`'

for evaluating Racah coefficients. After a lengthy calculation, the

attenuation constant takes the form

V2ez,(1+__6
2
)k(k+1)[4I(I+1)-k(k+1)-1]

3
T
c
(eQ)2

A
k

=

80 f2 12(21-1)2

. A-103
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H. The Attenuation Factor for a Paramagnetic Relaxation Mechanism

The model Hamiltonian for a paramagnetic interaction is

K
s
= a

s
1(z) (z,t) , A-104

where the paramagnetic center is represented by the term (z,t)

which fluctuates in time due to relaxation effects with other nearby

spins in the material (the material is usually a liquid) and z is

the laboratory axis. The spin of the paramagnetic center is

effectively 1/2 (one electron) which couples to the nuclear spin

of the intermediate state through the coupling constant as.

Additional details can be found in Abragam.32

Rewriting the Hamiltonian in tensor form

K = a (-un i(1)(z) s(1)(z,t)
n

Ks
s -n

A-105

and rotating the spin term to the local coordinate system of the

paramagnetic center through the Euler angles a(t), 0(0, and y(t),

whose fluctuations in time represent the random reorientation of the

local coordinate system exactly as in the previous EFG case. The

Hamiltonian is now

K = as (-1)n II(11)(z) DT-n(a,f3,y) (z') . A-106Ks
s

nn'

As before, the matrix elements <mlKslm'XmlKslm'>* must be formed.

Evaluation of this product is similar to the EFG case.
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I<MIKsInV>12 = IA 12 v (_1)n+2,_2 (1) fil

1-sf L
S`111(z ) S' 1 (z')

nn'
-X

( I1I ( 1 II ( III )-2
(1) (1)*

D a(a,a,y) . A-107

\-m n m k-m'l m \-I 0 I

Averaging over the Euler angles produces the factor 1/3 d 6 , 2,.nk n 1

Inserting this result gives

<1<miKsIms>12>E.A.

<aS12> /2E.A. (
I 1 I 2

1 [S(1),(21)32 /

I 1 I 2

. A-108

3 -I 0 I n' -n n -m' n m

The spin sum is simply the expectation value of S2 in the local

configuration. Substituting the value of the 3j symbol and letting

<la
sr
12>

E.A.
= fl2w

s
2 yields

I

2

TMIKS111112>E.A.

ficos2

3

S(S+1)I(I+1)(2I+1)I

I 1 2

. A-109

-m' n m

Using the time dependent perturbation theory developed in

section F where the correlation time become the characteristic

fluctuation or relaxation time of the paramagnetic center, the

master equation can be written



where

dP
m I 1 I
a

(P
mb

- P
ma

)

dt m
b b

q ma

a =
2
_ T

c
w
S

2
S(S+1)I(I+1)(2I+1)
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A-110

This relation should be contrasted with that of equation A-94 for

the EFG, the difference being only the constant a, and the unit

index in the 3j symbol instead of the "2" in the EFG case. The

similarity also includes all assumptions that were used in

developing the EFG result; the correlation function having the

Abragam form, the observation time being very large compared to the

correlation time, and the master equation validity relation. The

solution technique is exactly the same as before, except for some

minor phase differences.

The eigenvalue is

C = (-1)
2I+k+1

1

= W(IlkI;II) ,

I k I

with attenuation factor

-x
k

t
00

G
1(11(2

= e 1
klk2

where x
k

=
1

- C).

Again using Biedenharn et a1.54 to evaluate the Racah

coefficient gives the final result,

Ak
1

T
c
W S2 S(S+1) k(k+1)

3

A-111
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