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Variable-retention harvesting was proposed to reduce loss of biodiversity and 

ecosystem processes associated with late-seral Douglas-fir (Pseudotsuga menziesii) 

forests in the Pacific Northwest.  The Demonstration of Ecosystem Management 

Options experiment was established to test this hypothesis.  Analysis presents various 

challenges to drawing statistical inferences about treatment effects.  This dissertation 

explored novel statistical methods for understanding the response of multiple forest 

taxa to variable-retention harvesting. 

Excessive zero counts are common among terrestrial small mammal species 

that are captured infrequently.  Zero-inflated and hurdle models are appealing tools for 

analyzing these data.  A simulation was performed to understand the properties and 

robustness of these models.  When true mean abundance was low, the estimated 



 

 

parameters from these models were highly unstable.  Goodness of fit criteria could not 

discern among the processes generating the data. 

The Poisson and negative binomial Generalized Linear Models (GLMs) were 

fitted to four small mammal species with different rates of capture.  Predictors 

included several variables representing vegetation structure.  These models and 

overdispersed Poisson were then specified as Generalized Linear Mixed Models 

(GLMMs) to account for nesting and blocking in the experimental design.  The fitted 

GLMs indicated that predictors were not consistent among models for the infrequently 

captured species. Differences in estimated coefficients between GLMs and GLMMs 

were noticeable.  The overdispersed Poisson GLMM was suggested to be most 

suitable. 

Structural Equation Modeling (SEM) is suitable for modeling interactions of 

many cause-and-effect relationships in forest ecosystems.  SEM was applied to 

understand overstory-understory relationships of late-seral herb species under mature 

forest conditions and immediately after variable-retention harvesting.  In undisturbed 

forests, light attenuation, belowground competition and stand age were the primary 

drivers of late-seral herb cover.  After variable-retention harvesting, microclimatic 

stresses were inferred to primarily affect late-seral species diversity and composition.  

Logging debris had little discernible effect on the change in the late-seral herb 

community.  

The explored statistical models complement conventional methods for 

studying the effects of variable-retention harvesting.  These models address 



 

 

distributional issues of response data and provide further insight into the complex 

processes driving managed forest ecosystems.  Future analyses should apply a suite of 

statistical models to gain different perspectives. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

©Copyright by Tzeng Yih Lam 
May 14, 2010  

All Rights Reserved 



 

 

 
Exploration of Statistical Methods for Synthesizing the Effects of Variable-Retention 

Harvesting on Multiple Taxa 
 
 

by 
Tzeng Yih Lam 

 
 
 
 
 
 

A DISSERTATION 
 
 

submitted to  
 
 

Oregon State University 
 
 
 
 
 
 

in partial fulfillment of  
the requirements for the  

degree of 
 
 

Doctor of Philosophy 
 
 
 
 
 
 

Presented May 14, 2010 
Commencement June 2010 



 

 

Doctor of Philosophy dissertation of Tzeng Yih Lam presented on May 14, 2010. 
 
 
APPROVED: 
 
 
 
 
_____________________________________________________________________ 
Major Professor, representing Forest Science 
 
 
 
 
_____________________________________________________________________ 
Head of the Department of Forest Ecosystems and Society 
 
 
 
 
_____________________________________________________________________ 
Dean of the Graduate School 
 
 
 
I understand that my dissertation will become part of the permanent collection of 
Oregon State University libraries.  My signature below authorizes release of my 
dissertation to any reader upon request. 
 
 
 
 
_____________________________________________________________________ 

Tzeng Yih Lam, Author 
 



 

 

 ACKNOWLEDGEMENTS 
 

The undertaking of a doctoral dissertation could not have been accomplished 

without the help and tolerance from many people who are central to my life during 

these past four years.  Some offered guidance and encouragement throughout the 

research and when the progress was stagnant, and some merely being tolerant and 

stayed out of my way when things were tough.   

I offer the most sincere gratitude to my major professor, Doug Maguire.  One 

might be asked, “What is the greatest privilege a major professor can give to his or her 

student?” I would say, “Freedom.” Doug has given me much liberty for developing 

my own research, working independently, and involving in activities unrelated to my 

dissertation.  It is the freedom to explore both within and without the bounds of my 

dissertation and not to worry about funding that I am most grateful for.  The four years 

have been remarkable working for Doug.   

My research would not have gone far without my committee members and the 

funding organization.  I offer my sincere gratitude to Paul Anderson, Matthew Betts, 

Alix Gitelman and SueAnn Bottoms particularly for their time in meeting a 

demanding schedule and program as well as providing feedback, comments and 

advices.  Furthermore, the gratitude is also extended to the Hayes family for 

graciously providing the Edmund Hayes Endowment for Silviculture Alternatives, 

which is the major source of support for me to complete the research. 

The journey would have been dreadful without constant love and support from 

my family and friends at home.  Without fully understanding what a doctoral degree 



 

 

entails, they put up my odd-behavior-of-throwing-a-fit-without-reason.  I knew they 

sometimes feared for my sanity but they never voiced it.  I sincerely thank them for 

their understanding and tolerance, especially my parents, sister and my wife Yumei. 

There are many to whom I owe my gratitude: John Kershaw from University 

of New Brunswick, Canada for introducing me to Doug and his neverending 

challenges and encouragement; Manuela Huso for many hours of discussion; Doug 

Mainwaring for his enlightening jokes or jests; Andrew Bluhm, Bianca Eskelson, Sean 

Garber, Yohan Lee, Aaron Wieskittel and for being fine colleagues and friends; and 

Angel Hu and YuTsai Wang for taking care of me and continue to do so.  The list goes 

on as there are many who have affected every bits of my life, and what you did will 

always remain in my heart.  Thank you the reader for reading to the end of my 

acknowledgement list and knows the people to whom I forever indebted. 

Finally, I thank the many contributors to the Demonstration of Ecosystem 

Management Options (DEMO) study for allowing me to use the data in my research.  

The DEMO study is a joint effort of the USDA Forest Service Region 6 and Pacific 

Northwest Research Station. Research partners include the University of Washington, 

Oregon State University, University of Oregon, Gifford Pinchot and Umpqua National 

Forests, and the Washington State Department of Natural Resources. Funds were 

provided by the USDA Forest Service, PNW Research Station (PNW-93–0455, PNW-

97-9021-1-CA, and PNW-01-CA-11261993-091). 



 

 

CONTRIBUTION OF AUTHORS 
 

Manuela Huso provided extensive comments and professional expertise with 

the design and writing of Chapter 2. 



 

 

TABLE OF CONTENTS 
 
 

 Page 

1  CHAPTER 1: INTRODUCTION .............................................................................. 1 

2  CHAPTER 2: MODELING ABUNDANCE OF INFREQUENT SPECIES: A 
SIMULATION STUDY FOR CLARIFYING THEORETICAL AND 
ECOLOGICAL INTERPRETATION OF ZERO-MODIFIED MODELS ....... 6 

2.1 INTRODUCTION............................................................................................ 7 

2.2 MODEL SPECIFICATION AND COMPARISON ...................................... 12 

2.3 METHODS .................................................................................................... 20 

2.4 RESULTS ...................................................................................................... 24 

2.5 DISCUSSION ................................................................................................ 32 

2.6 CONCLUSIONS............................................................................................ 42 

3  CHAPTER 3: DETECTING SMALL MAMMAL RESPONSES TO VARIABLE-
RETENTION HARVESTING WITH STATISTICAL MODELS THAT 
ACCOMMODATE EXCESSIVE ZEROS AND HIERARCHICAL 
SAMPLING ..................................................................................................... 56 

3.1 INTRODUCTION.......................................................................................... 57 

3.2 MATERIALS................................................................................................. 63 

3.3 METHODS .................................................................................................... 67 

3.4 RESULTS ...................................................................................................... 88 

3.5 DISCUSSION ................................................................................................ 97 

3.6 CONCLUSIONS.......................................................................................... 110 

 

 

 



 

 

TABLE OF CONTENTS (Continued) 
 
 

 Page 

4  CHAPTER 4: STRUCTURAL EQUATION MODELING AND ITS 
APPLICATIONS TO OVERSTORY-UNDERSTORY RELATIONSHIP IN 
MATURE DOUGLAS-FIR (Pseudotsuga menziesii (Mirb.) Franco) 
FORESTS AND TO LATE-SERAL HERBACEOUS SPECIES IMMEDIATE 
RESPONSES TO VARIABLE-RETENTION HARVESTING IN THE 
PACIFIC NORTHWEST............................................................................... 130 

4.1 INTRODUCTION........................................................................................ 131 

4.2 STRUCTURAL EQUATION MODELING (SEM).................................... 135 

4.3 OVERSTORY-UNDERSTORY RELATIONSHIPS.................................. 148 

4.4 VARIABLE-RETENTION HARVESTING ............................................... 169 

4.5 CONCLUSIONS.......................................................................................... 197 

5  CHAPTER 5: CONCLUSIONS ............................................................................ 238 

5.1 FUTURE RESEARCH ................................................................................ 240 

BIBLIOGRAPHY...................................................................................................... 244 

 



 

 

LIST OF FIGURES 
 
 

Figure Page 

2.1  Relative frequency distributions implied by the 27 dgps.  Parameters of the....... 49 

2.2  Percent estimation error (%ERROR) in λ̂  for the six models fitted to data ........ 50 

2.3  Estimated amount of zero-inflation p̂  from data generated by 36 dgps. ............. 51 

2.4  Results from 1000 simulations by two data generating processes, one ................ 52 

2.5  Percent estimation error (%ERROR) in π̂  from the six models fitted to............. 53 

2.6  Difference in AICc (ΔAICc) between fitted models and the reference ................ 54 

2.7  The mean and 2.5 and 97.5 percentiles of p-values from χ2 goodness of fit ........ 55 

3.1  Locations of the six DEMO blocks in western Oregon and Washington; .......... 122 

3.2  Relative frequency histogram for captures of: (A) Peromyscus maniculatus..... 123 

3.3  Relative frequency distribution for observed and predicted counts from the ..... 124 

3.4  Posterior coefficient estimates and 95% credible intervals of CWDVOL.......... 125 

3.5  Posterior coefficient estimates and 95% credible intervals of (A) HERB.......... 126 

3.6  Posterior standard deviation of random error hσ  for each of the 7 estimated .... 127 

3.7  Posterior standard deviation of random block effect hτ  for each of the 7.......... 128 

3.8  Posterior random block effect estimates hid  for all 7 estimated coefficients ..... 129 

4.1  A hypothetical path model for abundance of a small mammal species in .......... 217 

4.2  A hypothetical measurement model for species diversity. The circle depicts .... 218 

4.3  A SR model for the overstory-understory relationship in mature Douglas- ....... 219 

4.4  An equivalent SR model for the overstory-understory relationship in ............... 220 

4.5  Bivariate relationships and Pearson correlations between late-seral herb .......... 221 



 

 

LIST OF FIGURES (Continued) 
 
 

Figure Page 

4.6  Bivariate relationships and Pearson correlations between understory cover ...... 222 

4.7  Bivariate relationships and Pearson correlations between fine litter cover ........ 223 

4.8  The final fitted SR model with unstandardized parameter estimates.  The ........ 224 

4.9  The fitted equivalent SR model with unstandardized parameter estimates. ....... 225 

4.10  Fitted equivalent SR model with the lower limit (0.025 quantile) of ............... 226 

4.11  Fitted equivalent SR model with the upper limit (0.975 quantile) of ............... 227 

4.12  A SR model for immediate post-harvest responses of late-seral herbs to ........ 228 

4.13  Bivariate relationships and Pearson correlations (r) between difference in pre- 
and post-harvest species diversity.............................................................................. 229 

4.14  Bivariate relationships and Pearson correlations (r) between difference in pre- 
and post-harvest species diversity.............................................................................. 230 

4.15  The final 15% retention SR model with unstandardized parameter ................. 231 

4.16  The final 40% retention SR model with unstandardized parameter ................. 232 

4.17  The alternative 40% retention SR model after removal of the HARVEST ...... 233 

4.18  Bivariate relationships and Pearson correlations (r) between: (A) pre-............ 234 

4.19  The reduced final 15% retention SR model after removal of the composite .... 235 

4.20  The reduced final 40% retention SR model after removal of the composite .... 236 

4.21  The reduced alternative 40% retention SR model after removal of.................. 237 

 
 
 
 
 
 



 

 

LIST OF TABLES 
 
 

Table Page 

2.1  The 27 dgps (data generating processes) as defined by amount of zero-.............. 45 

2.2  The range between the 2.5 and 97.5 percentiles (95W) of %ERROR in the........ 46 

2.3  The mean and 95W (range between 2.5 and 97.5 percentiles) of estimated......... 47 

2.4  The range between the 2.5 and 97.5 percentiles (95W) of the difference in ........ 48 

3.1  Estimated coefficients associated with each predictor (and corresponding standard 
errors) from the ZIP, ZINB, ....................................................................................... 113 

3.2  Estimated coefficients associated with each predictor (and corresponding standard 
errors) from the ZIP, ZINB, ....................................................................................... 114 

3.3  Estimated coefficients associated with each predictor (and corresponding standard 
errors) from the ZIP, ZINB, ....................................................................................... 115 

3.4  Estimated coefficients associated with each predictor (and corresponding standard 
errors) from the ZIP, ZINB, ....................................................................................... 116 

3.5  Comparison of GLMs and GLMMs for Peromyscus maniculatus (PEMA) in the 
DEMO study in 1999.  Coefficient ............................................................................ 117 

3.6  Comparison of GLMs and GLMMs for Clethrionomys gapperi (CLGA) in the 
DEMO study in 1999.  Coefficient ............................................................................ 118 

3.7  Comparison of GLMs and GLMMs for Neurotrichus gibsii (NEGI) in the DEMO 
study in 1999.  Coefficient ......................................................................................... 119 

3.8  Comparison of GLMs and GLMMs for Peromyscus keeni (PEKE) in the DEMO 
study in 1999.  Coefficient ......................................................................................... 120 

3.9  Relationship between habitat structures and Peromyscus maniculatus .............. 121 

4.1  Variance of observed variables and measurement error as average percent....... 200 

4.2  Estimated direct effects on endogenous latent variables in the overstory- ......... 201 

4.3  Estimated combined indirect effects on endogenous latent variables in the....... 202 



 

 

LIST OF TABLES (Continued) 
 
 

Table Page 

4.4  Estimated total effects on endogenous latent variables in the overstory- ........... 203 

4.5  Estimated direct effects on the endogenous latent variables in the final ............ 204 

4.6  Estimated combined indirect effects on the endogenous latent variables in....... 205 

4.7  Estimated total effects on the endogenous latent variables in the final .............. 206 

4.8  Harvest method and other activities in each experimental block (adapted from 
Halpern and McKenzie 2001). ................................................................................... 207 

4.9  The 11 observed variables used in modeling and their corresponding units, 
definitions, minimum, mean and................................................................................ 208 

4.10  Estimated direct effects on the endogenous latent variables, difference in ...... 209 

4.11  Estimated combined indirect effects on the endogenous latent variables......... 211 

4.12  Estimated total effects on the endogenous latent variables difference in ......... 212 

4.13  Estimated direct effects on the endogenous latent variables, difference in ...... 213 

4.14  Estimated combined indirect effects on the endogenous latent variables......... 215 

4.15  Estimated total effects on the endogenous latent variables difference in ......... 216 

 
 
 



 

 

EXPLORATION OF STATISTICAL METHODS FOR SYNTHESIZING THE 
EFFECTS OF VARIABLE-RETENTION HARVESTING ON MULTIPLE TAXA 

 
 
 
 

1  CHAPTER 1: INTRODUCTION 
 

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in the Pacific 

Northwest, USA, have traditionally been managed under even-age silvicultural 

systems, most commonly the clearcutting system; however, public concern over 

dramatic reductions in old-growth forests and potential declines in forest biodiversity 

have fueled renewed interest in the feasibility of other silvicultural systems.  

Shelterwood with reserves (Matthews 1989) and innovations such as variable-

retention harvesting (Franklin et al. 1997) have been proposed as a means to meet 

diverse forest management objectives, particularly on public lands.  These methods 

share a common working hypothesis that the retained structures and associated 

heterogeneity in stand structure could in the short-term maintain more taxa and 

ecological processes characteristic of mature forests, and in the long-term accelerate 

their recovery (Lindenmayer and Franklin 2002, Maguire et al. 2007).  In particular, 

the proposed variable-retention system garners appeal among the public and 

professionals for its flexibility in accommodating any level of stand retention and a 

wide array of structural conditions, covering but not limited to the full range of 

traditional silvicultural systems like clearcutting and single-tree selection 

(Lindenmayer and Franklin 2002).  Variable-retention harvesting is currently 

mandated on federal forestland in the Pacific Northwest; i.e., at least 15% of live trees 
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in a harvest unit must be retained, with ≥ 70% of this retention in aggregates of 0.2–

1.0 ha, and ≤ 30% in either dispersed individual trees or smaller groups (< 0.2 ha) 

(USDA and USDI 1994, Tuchman et al. 1996). 

The Demonstration of Ecosystem Management Options (DEMO) study (Aubry 

et al. 1999), a large-scale operational research experiment implemented in western 

Oregon and Washington, USA, was initiated in 1994 to feed the need for scientific 

evidence to support the mandated guidelines (Maguire et al. 2007).  This study looked 

at the effects of variable-retention harvesting on various aspects of biodiversity, 

microclimate, and human perceptions.  The experiment was implemented under a 

randomized complete block design (RCBD) with subsampling.  Two blocks were 

established in Oregon on the Umpqua National Forest and four in Washington, with 

three on Gifford Pinchot National Forest and one on the state-owned Capitol Forest.  

In each block, six harvest treatments were established and defined by level (percentage 

of basal area) and/or spatial pattern (dispersed vs. aggregated) of retained trees.  To 

date, numerous results from the DEMO experiment have been documented, e.g., 

changes in forest structure (Maguire et al. 2007), intensity of harvesting disturbances 

(Halpern and McKenzie 2001), and responses of forest understories (Halpern et al. 

2005), terrestrial small mammals (Gitzen et al. 2007) and ectomycorrhizal fungus 

(Luoma et al. 2004).  A main goal is also to synthesize the information across taxa and 

across ecological processes to assess the comprehensive viability of variable-retention 

harvesting as a silvicultural system, with a primary objective of ameliorating effects of 

timber production on forest biodiversity. 
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Synthesis of the diverse information generated by all the individual DEMO 

studies presents some challenging statistical issues which could be loosely classified 

into three groups: study design, response data, and analytical methods.  Like other 

large-scale field experiments, the DEMO study has only a few independent 

experimental units with systematically arranged sampling units.  The observations 

within an experimental unit are not independent because the sampling units are nested 

within the larger unit, and the experimental units may be spatially autocorrelated with 

neighboring units within a block.  Hence, the nesting and blocking structures should 

be properly accounted for valid inferences on the sampling unit-level.  The response 

data for some taxa may have distributional characteristics that require special 

consideration.  For example, the count data of terrestrial small mammals – especially 

those from infrequently captured species – are dominated by zero counts.  

Conventional statistical methods such as multiple regression based on normal 

distribution theory may not be sufficiently flexible and robust to violations of their 

assumptions.  Alternative modeling approaches would be preferable over exclusion of 

infrequent species from analysis.  

The statistical method commonly applied to data from designed experiments is 

Analysis of Variance (ANOVA) which is regarded as an appropriate method for 

causal inferences from controlled experiments (Grace et al. 2009).  Other methods 

such as multiple regression, ordination, and classification are exploratory in nature and 

are most suitable for observational studies.  Irrespective of their strength in causal 

inference, variance and covariance are often the basic statistics behind these statistical 
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methods.  For example, the least square estimates of multiple regression coefficients, 

( ) 1ˆ −′ ′=β X X X Y , are based on the covariance of X and Y and the variance of X 

(Weisberg 2005), where X is a matrix of observed values of predictors centered at 

their means and Y is a vector of observed values of a response variable centered at its 

mean.  Ecosystem processes involve complex interactions of many cause-and-effect 

relationships.  Many hypotheses have been offered on relationships among taxa and 

processes, but the inherent multivariate nature of complex ecosystems frustrates 

traditional statistical testing.  Perhaps statistical methods blending confirmatory and 

exploratory analyses and allowing tests of explicit hypotheses and models would be 

more apt for research on silvicultural control of biodiversity. 

Many statistical methods commonly applied in other disciplines such as 

psychometrics and econometrics are relatively unfamiliar to the natural sciences.  

These methods include zero-inflated statistical models, hurdle models, and Structural 

Equation Modeling (SEM).  In retrospect, studies across disciplines share some 

commonalities, e.g., some elements in a study cannot be fully manipulated and can 

only be observed.  This condition suggests that methods must be transferable and 

capable of addressing the analytical challenges mentioned above.  The overall goal of 

this dissertation was to explore the potential of specialized statistical methods for 

meeting the challenges associated with synthesizing responses of multiple forest taxa 

to variable-retention harvesting. 
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Chapter 2 attempts to gain insight into the potential utility and limitation of 

zero-inflated and hurdle models in modeling a wide variety of distributions that 

represent counts of infrequently captured species.  This objective was pursued by 

conducting a carefully crafted simulation study and by subsequent ecological 

interpretation of model assumptions and performance.  The simulation study 

quantified the bias and precision of parameter estimates from data simulated with 

known processes, and evaluated the efficacy of statistical fit criteria to infer the data 

generating process.  Chapter 3 builds on the simulation study by modeling the 

association between habitat features and number of captures of two abundant and two 

infrequent forest floor small mammal species in the DEMO study.  The nesting and 

blocking structures of the DEMO experiment were accounted for in the context of 

Bayesian Hierarchical Models.  A number of empirical comparisons were made 

among alternative statistical models, including zero-inflated and hurdle models, 

Generalized Linear Models (GLM; McCullagh and Nelder 1989), and Generalized 

Linear Mixed Models (GLMM).  Chapter 4 presents the concepts and framework of 

SEM, with the objective of introducing the methodology in sufficient detail to benefit 

researchers working in the natural sciences and having limited knowledge of SEM.  

SEM is then illustrated by an application to overstory-understory relationships in 

Douglas-fir forests, both in an undisturbed condition and after variable-retention 

harvesting. 

 

 



6 
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2.1 INTRODUCTION 

Modeling the relationship between habitat features and species presence or 

abundance provides the fundamental ecological understanding required for 

maintaining the biodiversity of managed forests.  In most studies, modeling efforts 

rely on linear models that assume a Gaussian distribution or, in some cases, on 

Generalized Linear Models that assume conformity to another distribution in the 

exponential family (GLM; McCullagh and Nelder 1989), for example, the Poisson or 

negative binomial distribution.  These models are adequate for relatively abundant 

species but less satisfactory for infrequent ones.  As a consequence, statistical models 

for the latter species are typically not attempted.  Among 15 studies of forest floor 

small mammals that we reviewed, the number of species captured ranged from 5 to 20, 

but on average 42% of the species were dropped from analysis (e.g., Cole et al. 1998, 

Sullivan et al. 2005, Waldien et al. 2006).  The two main justifications for dropping 

species were preponderance of zero observations and model lack of fit.  However, 

habitat associations of rare species are critical to effective management of forest 

biodiversity because these species are most prone to extinction (Meffe and Carroll 

1997). 

Zero-inflated (Lambert 1992) and hurdle (Mullahy 1986) models, loosely 

grouped as zero-modified models (ZMMs), provide a set of potential solutions to the 

analytical problem encountered in statistical analysis of infrequently captured species.  

These models explicitly recognize overdispersion caused by a greater number of zero 
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counts than expected under the assumption of a Poisson distribution, and also can 

account for overdispersion attributable to unexplained heterogeneity in data (Zorn 

1998).  In short, ZMMs are ideal for modeling infrequent species in habitats where 

they yield data dominated by zeros and occasional large counts.  Although zero-

inflated and hurdle models are similar in application, they imply different data 

generating processes.  The zero-inflated model assumes a dual-state latent structure: 

an observation belongs to either a perfect or an imperfect state (Lambert 1992).  An 

observation in the perfect state can only have a zero count of an event whereas in the 

imperfect state its count can be any value – including zero.  The hurdle model assumes 

a hurdle latent structure: an observation either crosses a hurdle or not, where the 

hurdle is generally set at zero (Mullahy 1986).  Hence an observation that does not 

cross the hurdle has zero count.  Once crossed, its count is constrained to be greater 

than zero (positive counts). 

A number of ecological studies have evaluated the performances of ZMMs.  

Early work by Welsh et al. (1996) to model Leadbeater’s possum abundance 

suggested that the hurdle model was preferable for its simple interpretation and ease of 

model fitting.  Cunningham and Lindenmayer (2005) broadened the discussion to 

types of rarity and effects of low frequency of occurrence on ZMM parameters.  Potts 

and Elith (2006) concluded that the hurdle model provided the best fit to data collected 

on a rare Australian plant species, Leionema ralstonii.  For benthic macroinvertebrates 

community, Gray (2005) found that the negative binomial model was sufficient based 

on Akaike’s Information Criterion (AIC; Burnham and Anderson 2002) and model 
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predictability.  Looking at the impact of livestock grazing on woodland birds in 

subtropical Australia, Martin et al. (2005) obtained mixed results for four bird species; 

i.e., the zero-inflated model had the best fit for three of the species (brown thornbill, 

superb fairy-wren and rufous whistler), while the negative binomial model proved best 

for the fourth (noisy miner).  In an extensive study of 20 datasets containing 1672 

different taxa, Warton (2005) compared models by AIC and concluded that the 

negative binomial model fit best for most count data and that the hurdle model either 

could not be fitted or performed poorly.  Sileshi (2008) studied six soil animals in 

agroforestry and woodland environments in eastern Zambia and found that the 

negative binomial model performed best for 10 out of 12 cases and a zero-inflated 

model for the other two.  Most of these studies concluded that the Poisson model was 

inadequate with respect to both goodness of fit and predictions on independent 

datasets. 

A shared complication among the above comparative studies was that the 

underlying data generating process (dgp) of the field data was unknown and probably 

more complicated than implied by any of the theoretical statistical models.  Specific 

models may therefore be identified as best by some goodness of fit criteria for one or a 

combination of two very different reasons; i.e., they simulate the underlying dgp or 

they are very flexible for fitting any distribution of data.  Another problem is that it is 

impossible to know the extent of accuracy and precision of parameter estimates 

without knowing the dgp.  A final complication is the impact of covariates on the 

relation between possible conditional distributions and the marginal distribution of 
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target species.  The relation between conditional and marginal distributions is difficult 

to visualize, particularly in data from field studies where observations are not equally 

frequent at different levels of the covariates.  Count data appearing to have excessive 

zeros in the marginal count frequency distribution could in fact be negative binomial- 

or Poisson-distributed after conditioning on covariates.  This situation may 

characterize the systems described by Sileshi (2008).  Furthermore the immense 

number of potential covariates in most ecological studies complicates evaluation of the 

dgp because a large number of alternative models are possible and each will have a 

different impact on apparent lack of fit and statistical properties of both conditional 

and marginal distributions.  Simulation studies with known dgp and no complicating 

influence of covariates can therefore provide important guidelines for interpreting 

results from fitting alternative statistical models to data generated by more 

complicated and largely unknown ecological processes. 

Some simulation studies have explored the properties of zero-inflated and 

hurdle models individually.  Lambert (1992) included a small simulation study with 

one covariate and varying sample sizes in her theoretical development of the zero-

inflated model.  Hall and Zhang (2004) evaluated a zero-inflated model fitted to 

simulated data that included a random effect for clustering.  Min and Agresti (2005) 

studied the effect of zero inflation and deflation on zero-inflated and hurdle models 

using the same simulation structure as Lambert (1992).  For comparing ZMMs to 

other GLM specifications, many studies outside field of ecology work with empirical 

data (e.g., Gao and Khoshgoftaar 2007, Hall 2000, Rose et al. 2006).  To our 
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knowledge no one has rigorously compared the performance of zero-inflated, hurdle 

and other GLM models on data simulated by a variety of known dgps.  

Lord et al. (2005, 2007) contended that choosing between zero-inflated models 

and other GLM specifications should be based on theoretical principles of the process 

that generated the event at specific temporal and spatial scales.  They further 

downplayed the role of statistical fit in choosing the most appropriate model.  If the 

dgp is different between models, choosing one over another based on statistical fit 

assumes that the fit criteria reflect conformity to the underlying dgp.  Gray (2005) 

briefly related the dual-state process of zero-inflated models to ecological niche, but 

very little other work in the literature attempts to address any ecological interpretation 

of the assumptions and latent structures characterizing zero-inflated and hurdle 

models.  

Cunningham and Lindenmayer (2005) noted that zero-inflated and hurdle 

models expanded the number of species that can be subjected to rigorous statistical 

analyses compared to those available for abundant taxa.  The goal of our study was to 

gain insight into the potential utility and limitation of ZMMs through a carefully 

crafted simulation study, accompanied by ecological interpretation of model 

assumptions and performance.  Specific objectives included: (1) to quantify the 

accuracy and precision of parameter estimates from data simulated with known dgps, 

(2) to evaluate the efficacy of statistical fit criteria commonly used in model selection, 

and (3) to provide ecological interpretation of the assumptions and latent structures 

underlying zero-inflated and hurdle models. 
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2.2 MODEL SPECIFICATION AND COMPARISON 

The six models considered in this study include the following: Poisson GLM 

(POIS), negative binomial GLM (NB), zero-inflated Poisson (ZIP), zero-inflated 

negative binomial (ZINB), hurdle Poisson (HPOIS) and hurdle negative binomial 

(HNB).  Increasing interest in these models has resulted in several excellent references 

for statistical properties, model specifications, and extensions (see Cameron and 

Trivedi 1998, Greene 1994, King 1989, Winkelmann 2008); therefore, only the most 

relevant model properties are presented below.  In all models, Y is the count of an 

event, λ is the mean of a Poisson distribution, and θ is the overdispersion parameter of 

a negative binomial distribution.  

2.2.1 Poisson GLM (POIS) 

The Poisson GLM (POIS) is a benchmark model widely used for modeling 

count data.  The Poisson distribution is, 

( )Pr
!

yeY y
y

λλ−

= =  (2.1) 

where y = 0, 1, 2,… and λ > 0.  The expectation and variance are, 

( ) ( )E Y Var Y λ= =  (2.2) 

indicating equidispersion (Winkelmann 2008); i.e., the expectation equals the 

variance. 
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2.2.2 Negative Binomial GLM (NB) 

The restrictive equidispersion assumption of POIS may be violated when 

heterogeneity in counts is more than expected, resulting in overdispersion (larger 

variance) relative to the Poisson distribution.  Following Venables and Ripley (2002), 

a random variable Z, assuming a gamma distribution with parameter θ, is added to λ, 

( )
( )

| ~

    ~

Y Z Poisson Z

Z gamma

λ

θ θ
 

This results in a gamma-Poisson mixture distribution, commonly known as 

negative binomial distribution, 

( ) ( )
( ) ( )

Pr
!

y

y

y
Y y

y

θ

θ

θ λ θ
θ λ θ +

Γ +
= =

Γ +
 (2.3) 

where y = 0, 1, 2,… , λ > 0 and θ > 0.  The expectation and variance are, 

( )E Y λ=  (2.4) 

( ) 21Var Y λ λ
θ
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (2.5) 

Equation (2.5) shows that the model allows overdispersion relative to the 

Poisson model, with the variance exceeding the expectation by the amount λ2/θ.  

2.2.3 Zero-Inflated Models (ZI) 

The concept of a zero-inflated model (ZI) originated from Rider (1961) and 

Cohen (1963) and was later applied by Johnson and Kotz (1969) to data with 

excessive zeros.  Lambert (1992) expanded their work and formulated the concept 
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under the GLM framework.  The model is also known as the ‘zero-altered probability 

model’ or ‘count model with added zeros’; however, we have adopted the terminology 

presented by Lambert (1992).  In the context of finite mixture model (McLachlan and 

Peel 2000), the ZI model is a mixture of a point mass at zero and a count distribution 

(either Poisson or negative binomial), and has one latent structure (Baughman 2007).  

As mentioned earlier, the latent structure is a dual-state process: a perfect state 

observing only zero count and an imperfect state with any realization including zero.  

Let p be the probability of remaining in the perfect state or the amount of zero-

inflation.  The zero-inflated Poisson distribution (ZIP) is, 

( )
( )

( )

1 ,                0
Pr

1 ,                 0
!

y

p p e y
Y y ep y

y

λ

λλ

−

−

⎧ + − =
⎪= = ⎨

− >⎪
⎩

 (2.6) 

where ( )0,1p∈  and λ > 0.  The expectation and variance are, 

( ) ( )1E Y p λ= −  (2.7) 

( ) ( ) ( ) 21 1Var Y p p pλ λ= − + −  (2.8) 

The ZIP formulation clearly shows that Pr(Y = 0) is a mixture of two sources 

of zero – from the perfect state p and the imperfect state (1–p)e–λ.  As p approaches 

zero, ZIP theoretically reduces to POIS (eqn. 2.6).  The expected value of Y is always 

smaller than that for POIS by magnitude of 1–p due to zero-inflation (eqn. 2.7).  The 

distribution is inherently zero-driven overdispersion – overdispersion caused by a 
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greater number of zero counts than expected under the Poisson distribution (Zorn 

1998).  The amount of zero-driven overdispersion is (1–p)pλ2. 

The zero-inflated negative binomial distribution (ZINB) is, 

( )
( )

( )

( ) ( )
( ) ( )

1 ,                   0
+

Pr
1 ,       0

!

y

y

p p y

Y y
y

p y
y

θ

θ

θ

θ

θ
λ θ

θ λ θ
θ λ θ +

⎧
+ − =⎪

⎪= = ⎨
Γ +⎪ − >⎪ Γ +⎩

 (2.9) 

where ( )0,1p∈ , λ > 0 and θ > 0.  The expectation and variance are, 

( ) ( )1E Y p λ= −  (2.10) 

( ) ( ) ( ) 211 1Var Y p p pλ λ
θ

⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

 (2.11) 

A notable feature of these ZI models is that the expectation of ZIP and ZINB 

are identical, but the variance is not.  ZINB has both sources of overdispersion (eqn. 

2.11); i.e., zero-driven overdispersion as well as overdispersion captured by θ that 

could result from added variability from omitted covariates (Minami et al. 2007), 

clustered Poisson process and inter-subject variability (McCullagh and Nelder 1989), 

or temporal dependency between observations (Rose et al. 2006) (hereafter referred to 

as overdispersion).  Zorn (1998) stressed the importance of distinguishing between 

overdispersion driven by zero-inflation and that driven by these other sources.  As is 

the case for ZIP, ZINB theoretically reduces to NB as p approaches zero.  
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2.2.4 Hurdle Model (H) 

Mullahy (1986) expanded the hurdle model (H) originally proposed by Cragg 

(1971).  As mentioned earlier, the H model has a latent structure represented by the 

“hurdle” at zero; i.e., the count is zero before the hurdle is crossed and positive 

afterwards.  As a finite mixture model, the H model is a mixture of a point mass at 

zero and a truncated-at-zero count distribution (either Poisson or negative binomial).  

Baughman (2007) argued that from a dual-state process perspective, the H model 

would have two latent structures; one is the hurdle and another is the imperfect state.  

The latter is implicit because every observation must be in the imperfect state given 

that they all have the inherent “potential” of crossing the hurdle.  In fact, it is the 

probability of crossing the hurdle, π, that is the major feature of interest in this 

statistical model, implying that all observed zeros belong to the imperfect state.  

However, this apparent difference from ZI model is not fully recognized in the 

ecological literature. 

The hurdle Poisson distribution (HPOIS) is, 

( )
1 ,                                       0

Pr
,                          0

1 !

y

y
Y y e y

e y

λ

λ

π

π λ−

−

− =⎧
⎪= = ⎨ >⎪ −⎩

 (2.12) 

where ( )0,1π ∈  and λ > 0.  The expectation and variance, 

( )
1

E Y
e λ

π λ−=
−

 (2.13) 
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( ) 21
1 1 1

Var Y
e e eλ λ λ

π π πλ λ− − −
⎛ ⎞= + −⎜ ⎟− − −⎝ ⎠

 (2.14) 

The expectation and variance of HPOIS resemble those of ZIP in that the 

expectation is smaller than that of the POIS model and the overdispersion is zero-

driven.  If Pr(Y = 0) is equal in the HPOIS and ZIP models (i.e., 1–π = p+(1–p)e–λ), 

then HPOIS will reduce to ZIP.  This implies that if π and p are not conditioned on 

covariates under the GLM framework, then both models are equivalent; otherwise, 

they will be distinct specifications (Rose et al. 2006). 

The hurdle negative binomial distribution (HNB) is, 

( )

( )

( )
( ) ( )

1 ,                                                      0

,            0Pr
!1

+

y

y

y
y

yY y
y

θ

θ θ

θ

π
θπ λ θ

θ θ λ θ
λ θ

+

− =⎧
⎪ Γ +⎪ >= = ⎨ Γ +⎪ −
⎪⎩

 (2.15) 

where ( )0,1p∈ , λ > 0 and θ > 0.  The expectation and variance are, 

( )

( )
1

E Y

+

θ

θ

π λ
θ
λ θ

=
−

 (2.16) 

( )

( ) ( ) ( )

211
1 1 1

Var Y

+ + +

θ θ θ

θ θ θ

π π πλ λ
θ θ θ θ
λ θ λ θ λ θ

⎛ ⎞
⎜ ⎟
⎜ ⎟= + − +⎜ ⎟

− − −⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.17) 

Similar to ZINB, HNB accounts for both zero-driven overdispersion and 

overdispersion in the data representing counts greater than zero. 
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2.2.5 GLM Framework 

Under the GLM framework, B, G and K are three sets of covariates; β, γ and ξ 

are the sets of parameters corresponding to B, G and K, respectively; λ, p and π are 

the parameters defined as above where λ = (λ1,…, λn)T, p = (p1,…, pn)T, and π = (π1,…, 

πn)T for n samples of Y.  Conditioning the parameters λ on covariates B yields the 

following Poisson regression model with a log link function (McCullagh and Nelder 

1989): 

( )log =λ Bβ  (2.18) 

Assume the G and K are two sets of covariates that determine the conditional 

distributions of the zero-inflation and hurdle components in the ZI and H models, 

respectively, yielding the following binomial regression component with logit link 

function: 

( )logit log
1
⎛ ⎞

= =⎜ ⎟−⎝ ⎠

pp Gγ
p

 (2.19) 

( )logit log
1
⎛ ⎞= =⎜ ⎟−⎝ ⎠

ππ Kξ
π

 (2.20) 

The sets of covariates between B, G and K could be entirely identical, partially 

overlapping or mutually exclusive. 

2.2.6 Model Comparison 

In many empirical studies of ZMMs (e.g., Sileshi 2008, Warton 2005), 

information criteria such as AIC and Bayesian Information Criterion (BIC; Burnham 
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and Anderson 2002) are common goodness of fit criteria for model selection and 

comparison.  Multiple models have been observed to give nearly identical values when 

fitted to a set of data (e.g., Gray 2005).  Burnham and Anderson (2002) examined 

results from Lindsey and Jones (1998) to validate use of AIC and BIC in comparing 

models with differing distributional assumptions, provided that the complete 

probability distribution (including the normalizing constant) was used to compute log-

likelihood of each model.  However, the study from Lindsey and Jones (1998) was 

empirical rather than theoretical.  Comparison between POIS, NB and ZMMs may be 

feasible because all models are commonly based on discrete distributions.  However, 

log-likelihoods of different models can be fundamentally different in magnitude, in 

turn affecting model comparison with different likelihood functions.  Regardless, a 

version of AIC corrected for small sample sizes, AICc, was selected as a criterion for 

comparing models and was computed as, 

( )2 1
2log

1
h h

AICc L
n h

+
= − +

− −
 (2.21) 

where L is the likelihood, n is sample size and h is number of model parameters. 

Another major criterion for comparing models is the degree of correspondence 

between the observed frequency distribution of counts and the expected distribution of 

counts under the fitted statistical model.  The χ2 goodness of fit statistic is one 

common measure of this degree of correspondence.  To evaluate the performance of 

alternative statistical models in this simulation study, a pseudo-χ2 statistic, X2, was 

calculated as 
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where I(yi = c) = 1 if y in the ith observation has count c and 0 otherwise, Pr(yi = c) is 

the probability of the event {yi = c} under the fitted model, n is the sample size and C 

is the maximum count (Affleck 2006, Fortin and DeBlois 2007).  Similar measure was 

used by Lambert (1992) to visually assess model fit in developing the ZI models. 

However, Affleck (2006) noted that X2 as calculated was not χ2 distributed because the 

observed count data were first fitted to obtain parameter estimates.  Nonetheless, the 

p-value assuming a χ2 distribution with C–1 degree of freedom was applied as a 

relative measure of the degree of correspondence between observed and predicted 

count frequency.   

Despite the described weaknesses of both AICc and the χ2 goodness of fit 

statistic for comparing models, these statistics presented an opportunity to understand 

their behavior under known conditions of simulation, allowing stronger assessment of 

their applicability.  

2.3 METHODS 

The six models were evaluated by simulating data from a known dgp and 

without any covariates (i.e., B, G and K for this special case were a column vector of 

ones, so only the intercept term was included in eqns. 2.18–2.20).  Excluding 

covariates in the simulation study simplified the design and allowed more 
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straightforward interpretation of results.  The simulation study was set under a 

factorial design with varying levels of four factors: (1) p – amount of zero-inflation as 

defined in ZI models at five levels (0.0, 0.25, 0.5, 0.75), (2) λ – mean of a Poisson 

distribution at three levels (0.3, 1.5, 5.0), (3) RATIONB – amount of overdispersion 

indexed by the ratio of the variance to the expectation of a negative binomial 

distribution, Var(Y)/E(Y) = (λ+(1/θ)λ2)/λ, at three levels (1, 1.5, 3), and (4) SAMPLE – 

sample size or number of observations at five levels (25, 50, 75, 100, 250).  This 

design resulted in a total of 180 combinations.   

The selected levels of λ were based on estimated mean abundances of small 

mammal species captured in the DEMO study.  The infrequent species generally had 

estimated mean abundance between 0.004 and 0.05, and common species were 

represented by λ = 1.5.  The λ level of 5.0 was not observed in the DEMO study, but 

was chosen as reasonable upper limit for the purpose of studying model behavior.  The 

selected levels of p covered the range between the two limits to this parameter, 0 and 

1.  The selected levels of RATIONB represented 0, 50, and 100% overdispersion. 

Deciding the levels for p and λ was straightforward; however, appropriate 

levels for θ in the NB, ZINB and HNB models were less obvious.  As ZINB and HNB 

were derivatives of NB, one approach was choosing θ levels based on a negative 

binomial distribution and extending them to the ZINB and NB models.  Thus, 

RATIONB, a function of both θ and λ as defined above, was selected as a measure of 

the variance relative to the expectation of a negative binomial distribution, thereby 

standardizing the degree of overdispersion relative to λ.  For any λ, the overdispersion 
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parameter was θ = λ/(RATIONB–1).  One possible flaw in this approach is that 

interpretation of the selected θ values would be different between NB, ZINB and 

HNB.  For a negative binomial distribution, θ did not distinguish between zero-driven 

overdispersion and other sources of overdispersion, so the selected θ values 

encompassed both types.  For ZINB and HNB, the selected θ values only described 

the non-zero overdispersion.  Regardless, the measure RATIONB was simply a means 

of specifying dgps that would result in different distributions, with the objective of 

quantifying accuracy and precision of parameter estimates.   

A unique dgp was defined by each combination of p, λ and RATIONB (relative 

θ); therefore, the simulation study consisted of 36 dgps with five sample sizes each.  

For brevity, Table 2.1 lists 27 dgps excluding those with p = 0.5.  Associated with 

each dgp were known values of θ and π, data generating distributions and total 

overdispersion (Table 2.1).  Without overdispersion, i.e., RATIONB = 1, θ was 

undefined (∞, Table 2.1).  However, when RATIONB > 1, the implied θ was listed.  By 

definition (eqns. 2.12 and 2.15), π = 1–Pr(Y = 0) whereby Pr(Y = 0) could be easily 

calculated for each dgp by knowing the corresponding probability distribution that 

generated the Y observations.  Hereafter, pois, nb, zip, zinb, hpois and hnb denote data 

generating distributions or dgps.  As mentioned, the ZI model without covariates was 

equivalent to the H model, so either zip or hpois could serve as the data generating 

distributions under zero-inflation (p > 0) as could either zinb or hnb.  Total 

overdispersion was defined as Var(Y)/E(Y) for any data generating distribution, e.g., 

the total overdispersion of a zinb was the ratio of eqn. 2.10 to eqn. 2.11, [(1–p)λ+(1–
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p)(p+1/θ)λ2]/(1–p)λ, so included both zero-overdispersion and overdispersion from 

other sources.  Total overdispersion for each of the 27 dgps was computed to help 

characterize the resulting distributions.  

For each of the 180 combinations of dgp and sample size, 1000 sets of 

observations were simulated based on the data generating distribution in Table 2.1.  

Each set of observations, OBS, was fitted to all six statistical models: POIS, NB, ZIP, 

ZINB, HPOIS, and HNB.  For each model, therefore, a given dgp resulted in 1000 

corresponding sets of estimated parameter(s), AICcs, and p-values from the χ2 

Goodness of Fit Test.  For each value of the estimated parameter(s), absolute 

estimation error (|Estimated–True|) or percent estimation error (%ERROR = 

100×[Estimated–True]/True) were then calculated.  Finally, absolute estimation error, 

%ERROR, AICc and the χ2 p-value were summarized by computing a mean and the 

range between the 2.5% and 97.5% sample quantiles (95W). 

Assessing the performance of a model fitted to data generated by a process 

other than its matching dgp was analogous to fitting alternative models to field data 

resulting from complex and unknown ecological processes.  Estimation error under 

these conditions provides a measure of model accuracy, and addresses the question of 

how robust the alternative models are to assumptions about the underlying dgp.  

Absolute %ERROR less than 10% was arbitrarily set as the level below which error 

could be considered negligible.  To effectively understand goodness-of-fit between 

models, the difference in AICc (ΔAICc) between models is the most meaningful 

criterion.  This difference was calculated with respect to the model fitted to data 
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generated by its matching dgp, hereafter referred to as the reference model, under the 

assumption that this reference model should have the best fit.  For example, if zip was 

the dgp, then the ZIP model was the reference model and ΔAICc was the difference 

between a given AICc and the AICc of the ZIP model.  Any ΔAICc smaller than ± 5 

units was arbitrarily assumed not to differ from the reference model.  

The simulation study was performed with R open source statistical software (R 

Development Core Team 2009) with the package pscl contributed from Zeileis et al. 

(2008).  Sample size was at first thought to affect the simulation outcome.  However, 

preliminary analyses showed that increasing sample size decreased 95W and had only 

minor effects on estimation error for most parameters.  For the sake of brevity, we 

therefore only present results from sample size of 100.  This sample size should be 

sufficiently large to observe any statistical properties of a model, particularly in the 

absence of any covariates, and approximates the sample size of typical field studies.  

For some comparisons, results from p = 0.5 were also excluded because they 

predictably fell between those of p = 0.25 and p = 0.75. 

2.4 RESULTS 

Relative frequency distributions implied by probability mass functions of the 

27 dgps varied substantially (Figure 2.1).  Most dgps implied distributions with a right 

skew when λ ≤ 1.5, and as expected, the relative frequency at Y = 0 increased with 

increasing p.  A notable observation was that the distribution of dgps with zero-

inflation (i.e., p > 0) became bimodal when λ = 5. 
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2.4.1 Mean Parameter λ 

The average %ERROR in estimating mean of a Poisson distribution λ from the 

fitted POIS and NB models was identical across all the dgps because both models 

produced the same λ̂  (Figure 2.2).  The estimation error was negligible for these two 

models fitted to data from any dgp that had no zero-inflation (Figure 2.2A,D,G); 

however, this error became increasingly negative as p increased (e.g., Figure 2.2A–C).  

In contrast, estimation error from fitted POIS and NB models did not change 

dramatically with increasing overdispersion (e.g. Figure 2.2B,E,H) or increasing λ (see 

horizontal lines for POIS and NB in any panel of Figure 2.2).  Although percent 

estimation error, which was a relative measure, was similar across all levels of λ, the 

absolute impact would by definition be greater for higher levels of λ.  At p = 0.75 and 

λ = 5, the average λ̂  was 1.25; however, the unimodal frequency distribution implied 

by a POIS model with fitted λ̂  = 1.25 would be quite different from the bimodal 

frequency distribution of a dgp with p = 0.75 and λ = 5 (Figure 2.1).  

The average %ERROR of fitted ZI and H models converged on zero with 

increasing λ for any given dgp.  Most λ̂  have large error at λ = 0.3, but all estimation 

errors were trivial (< 0.5%) at λ = 5 (Figure 2.2).  The fitted ZIP model overestimated 

λ for datasets generated by any dgp other than a zip process, and the error increased 

three-fold when overdispersion (RATIONB) doubled from 1.5 to 3 (e.g., Figure 2.2E 

and H).  For the most part, results from fitting the HPOIS model were identical to 

those from fitting a ZIP model.  Both ZINB and HNB models adequately estimated the 
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λ of a nb dgp only when λ ≥ 1.5 (Figure 2.2D and G), but underestimated that of a zip 

dgp (Figure 2.2B and C).  For the pois dgp, the ZINB model overestimated the λ but 

HNB underestimated it (Figure 2.2A).  When fitted to counts generated by the zinb 

dgp, the average %ERROR at λ = 0.3 of the HNB model was smaller than that of the 

ZINB model and the estimation error from both models increased with increasing p 

and overdispersion index RATIONB (Figure 2.2E,F,H,I). 

The range between the 2.5 and 97.5 percentiles (95W) of %ERROR 

consistently decreased with increasing levels of λ; λ̂  was most unstable at λ = 0.3 with 

range up to 1000% for some dgps (Table 2.2).  Likewise, the 95W consistently 

increased with increasing overdispersion for all the six fitted models.  For fitted ZI and 

H models, the 95W generally decreased with increasing λ irrespective of p and 

RATIONB, but this range in H models was as large as or larger than that in the ZI 

model (Table 2.2). 

2.4.2 Amount of Zero-Inflation p 

Simulation results for the amount of zero-inflation p was best presented by 

comparing estimated and known values ( p̂  vs. p) because %ERROR was undefined 

when p = 0 (Figure 2.3).  For fitted ZIP and ZINB models with λ = 5 and at a given 

level of overdispersion (RATIONB), average absolute estimation error was small to 

negligible and the p̂  was least variable (narrowest 95W, Figure 2.3C,F,I); however, 

both error and variability generally increased with decreasing λ, reaching a maximum 

at λ = 0.3 (Figure 2.3A,D,G).  This trend suggested that ZI models could fit a bimodal 
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count distribution (data from a dgp with large λ and p >> 0, Figure 2.1) without 

difficulty, but parameter estimates became unstable when the distribution was 

unimodal and extremely right-skewed.  

When count distribution was not overdispersed (RATIONB = 1), p̂  from the 

fitted ZIP model has on average positive estimation error when λ = 0.3 and p = 0, but 

the error was increasingly negative as p increased (Figure 2.3A).  With increasing 

overdispersion (RATIONB), the estimation error was increasingly positive at a given 

level of λ (Figure 2.3D–I).  The estimate λ̂  from the fitted ZIP model displayed a 

strong positive error in the presence of overdispersion (RATIONB > 1; Figure 2.2D–I), 

implying that this model accounted for overdispersion at low λ by increasing the 

estimate λ̂  and assuming that more of the zero observations originated from the 

perfect state, as confirmed by the positive error in p̂  (Figure 2.3D,G). 

For the fitted ZINB model, the average estimation error was small to negligible 

and negative for most dgp with λ ≥ 1.5 and p > 0 (Figure 2.3B,C,E,F,H,I).  The 

observed error at λ = 0.3 followed the trend of the fitted ZIP model; however, the 

average absolute estimation error for the fitted ZINB model was generally higher than 

for the fitted ZIP model when RATIONB = 1 and lower when RATIONB > 1 (Figure 

2.3A,D,G).  The 95W from the fitted ZINB model was generally as wide as or wider 

than that of the fitted ZIP model for any dgp with λ ≤ 1.5, indicating uncertainty in 

separating the contribution of the perfect and imperfect states to the number of zero 

observations. 
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At a low Poisson mean (λ = 0.3), in the presence of zero inflation (p = 0.25 or 

p = 0.75), and in absence of overdispersion (RATIONB = 1), the fitted ZIP models 

displayed strong curvilinear relationships between λ̂  and p̂  (Figure 2.4A).  Although 

the λ̂  and p̂  of ZI models had large error at λ = 0.3, the error in estimated marginal 

probability of observing zero Pr(Y = 0) was negligible (Figure 2.4B).  The lack of 

error in this marginal probability was attributable to the compensating effect between 

these two parameter estimates λ̂  and p̂  (Figure 2.4A).  The probability mass function 

of the ZIP distribution (eqn. 2.6) indicated that when λ was estimated to be small, e–λ 

would be large and the corresponding estimate of p had to be small for the model to fit 

the simulated number of zeros well. 

2.4.3 Probability of Crossing Hurdle π 

The average %ERROR in the estimated probability of crossing the zero hurdle 

( π̂ ) was identical between the fitted HPOIS and HNB models, and was negligible for 

all dgps (Figure 2.5).  The range between the 2.5 and 97.5 percentile (95W) of 

%ERROR in π̂  decreased with increasing λ, matching the wider variability in 

%ERROR of λ̂  for dgps with λ = 0.3 (Table 2.2).  The 95W increased with increasing 

amount of zero inflation (p) and increasing overdispersion (RATIONB) (Figure 2.5).  

2.4.4 Overdispersion Parameter θ 

The striking result from estimated overdispersion parameter (θ̂ ) was that the 

three models (NB, ZINB and HNB) produced reasonable mean estimates and an 
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acceptably narrow 95W for very few dgps (Table 2.3).  Surprisingly, the ZMMs 

performed worse than NB model (Table 2.3).  Results in this case did vary by sample 

size, suggesting that ZMMs required a sample size ≥ 250 to find a reasonable estimate 

of θ.  In the absence of overdispersion (RATIONB = 1), θ̂  needed to be exceptionally 

large for the Var(Y) of a negative binomial distribution to approach the E(Y) of that 

distribution; however, the fitted NB model yielded θ̂  = 1.8 for the dgp with p = 0.25 

and λ = 5, and θ̂  = 0.3 for the dgp with p = 0.75 and λ = 1.5 (Table 2.3). 

The fitted NB model produced negligible error with comparatively narrow 

95W for three dgps under the highest level of overdispersion (RATIONB = 3), 

specifically with λ ≥ 1.5 and p = 0 or 0.25 (Table 2.3). This result suggested that the 

NB model could estimate θ more readily from data generated under the specification 

of large overdispersion and large λ. 

The ZINB and HNB models severely overestimated θ, except for data 

generated under large overdispersion (RATIONB = 3), large Poisson mean (λ = 5) and 

moderate amount of zero-inflation (p = 0.25; Table 2.3).  Another type of instability in 

estimation was indicated by a large mean θ̂  combined with narrow 95W, as illustrated 

by fitting the ZINB and HNB models to data generated under large overdispersion 

(RATIONB = 3), large Poisson mean (λ = 5), and high degree of zero-inflation (p = 

0.75; Table 2.3).  In this case, only a few θ̂  out of 1000 estimates were exceptionally 

large and the rest were generally more reasonable.  Under a larger sample size 
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(SAMPLE = 250), negligible estimation error was obtained when estimating θ from a 

dgp with RATIO = 3 and λ ≥ 1.5 (results not shown in Table 2.3). 

2.4.5 Akaike Information Criteria AICc 

Two general results were obtained from comparing fitted models by AICc: (1) 

multiple models provided almost identical fits to a single dgp, and (2) the POIS model 

provided the worst fit to datasets generated by most of the dgps (large positive 

differences with respect to reference models, ΔAICc, in Figure 2.6).  All six models fit 

equally well to data generated from pois dgp, with all average ΔAICc < 5 (Figure 

2.6A).  For data generated by the nb dgp, the NB, ZINB and HNB models consistently 

provided the best fit (Figure 2.6D and G); however, the other models performed 

adequately at medium overdispersion (RATIONB = 1.5; Figure 2.6D) and poorly at 

large overdispersion (RATIONB = 3; Figure 2.6G).  The ZINB and HNB models 

provided the best fit to data generated under the assumption of zero-inflation (p > 0), 

regardless of the level of overdispersion in the dgp (Figure 2.6B,C,E,F,H,I).  The 

performance of fitted ZIP and HPOIS models was very similar to that of the fitted 

ZINB and HNB models, with the exception of slightly poorer performance under 

moderate zero inflation (p = 0.25) and high overdispersion (RATIONB = 3; Figure 

2.6H).   

The range between the 2.5 and 97.5 percentiles (95W) indicated that variability 

in ΔAICc increased with increasing λ, RATIONB, and p (Table 2.4).   In the absence of 

zero inflation (p = 0), fitted ZINB and HNB models consistently had equal or 
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narrower 95W than the other three models (Table 2.4); further supporting the fact that 

the two models were flexible in fitting any dgp. 

2.4.6 P-Value of χ2 Goodness of Fit Test 

The fitted ZINB and HNB models could accurately reproduce count 

distributions summarizing the data from any dgp, as suggested by the average p-value 

> 0.78 and 2.5 percentile > 0.29 (Figure 2.7).  As expected, the average p-value of 

POIS model was commonly below 0.05 when fitted to data from any dgp with large 

zero-inflation (p) and/or overdispersion (RATIONB).  Likewise, the range between the 

2.5 and 97.5 percentiles (95W) of the p-value distributions was the widest for any dgp 

with λ = 0.3 and p > 0 (Figure 2.7B,C,E,F,H,I).  The fitted NB model performed 

poorly for data generated by the zip and zinb dgps with λ = 5.  When fitted to the data 

from the zip dgp, this model yielded average p-values near 0.05 level (Figure 2.7B and 

C), and when fitted to the data from the zinb dgp, the 2.5 percentile for the p-values 

was likewise near or below 0.05 (Figure 2.7E,F,H,I).  The average p-values for the 

fitted ZIP and HPOIS models were above the 0.05 level for all dgps, but it generally 

decreased with increasing RATIONB (Figure 2.7).  For these same fitted models, the 

2.5 percentiles were generally below 0.05 under high overdispersion (RATIONB = 3), 

large Poisson mean (λ ≥ 1.5) and low or absent zero inflation (p ≤ 0.25; Figure 2.7G 

and H). 
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2.5 DISCUSSION 

2.5.1 Model Evaluation 

In application, it would be close to impossible to discern the exact dgp that 

generated an empirical dataset.  However, simulation allows assessment of how a 

model performs when fitted to data from its matching dgp and from alternative dgps.  

In the simulations, all six models generally recovered the known parameter values 

when fitted to data from their matching dgps, albeit with some exceptions.  The most 

notable exception was the large sample size required for accurate and precise estimate 

of θ by the NB, ZINB and HNB models.  In addition, the ZINB and HNB models on 

average produced positively estimation error in λ̂  when the known Poisson parameter 

λ was small; i.e., 0.3.  Lastly, the ZI models did not perform well in recovering the 

amount of zero-inflation p when λ was 0.3. 

When the six models were fitted to data from alternative dgps in the 

simulation, the known parameter values were not recovered in most cases.  The POIS 

model recovered λ if the underlying dgp was nb, but generally produced negative 

estimation error for other dgps.  Similarly for the NB model, λ was recovered when the 

dgp was pois but not for others.  Furthermore, the NB model recovered θ for some of 

the zinb dgps, but the estimates generally had error or were unreasonable.  The ZIP 

model produced positive error in λ̂  and p̂  for many dgps unless λ = 5 or for a pois 

dgp with λ ≥ 1.5.  The ZINB model reasonably recovered λ and p, provided that an 

alternative dgp had λ ≥ 1.5.  Both HPOIS and HNB models behaved similarly to their 
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ZI counterparts in terms of λ, but consistently recovered π regardless of dgps.  Finally, 

as mentioned in numerous instances, the ZINB and HNB models had difficulty 

estimating θ accurately for the nb dgp. 

Except for Warton (2005), no empirical studies appear available as a 

comparison to this simulation analysis, primarily because most of the published 

studies address conditional distributions of the six models rather than marginal 

distributions.  However, most studies generally agree that the POIS model is 

inadequate for modeling the abundance of most species.  Warton (2005) reported that 

not all taxa exhibited overdispersion, and that the AIC of his POIS model was higher 

than that for the NB model in only about 47% of the studied taxa.  The current 

simulation showed that AIC could help infer if a set of counts originated from a pois 

dgp.  When the POIS model fitted poorly to the data from alternative models, the data 

were probably not generated by a pois dgp; in this case, one could expect λ to be 

underestimated.  Conversely, a comparable fit from a POIS model could either imply a 

pois dgp or zip dgp with small λ. 

Most studies have compared the performances of the NB model to alternative 

ZMMs.  This approach has been motivated by the fact that if a NB model can 

adequately represent data with apparently excessive zeros (marginally), or at least as 

well as ZMMs, the NB model may be more desirable from the perspective of 

parsimony.  Empirical studies that include covariates often show mixed results in 

model evaluation but provide relatively little explanation (e.g., Gray 2005, Martin et 

al. 2005).  The influence of covariates on evaluating alternative models likely 
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complicates identification of the effects from two alternative sources, assumptions 

about the statistical model versus effects of covariates on marginal distributions.  In 

one exception, Warton (2005) found that the NB model was sufficient to account for 

the high frequency of zeros in marginal count data, and further claimed that most 

multivariate abundance data probably conformed to negative binomial distributions 

with small means.  The current simulation showed that Warton’s (2005) claims were 

plausible because the fit of the NB model was generally comparable to alternative 

ZMMs for any level of overdispersion and/or zero-inflation, as long as the Poisson 

mean λ was small to moderate in size.  However, results from the current simulation 

also suggested that the claimed adequacy of nb dgp was difficult to substantiate 

because information criteria were unable to establish the underlying dgp of an 

empirical dataset with any certainty.  Furthermore, if the unknown dgp is not truly nb, 

one could risk underestimating λ by fitting NB model to the data, even if this model 

provides the best fit.  

Results from the current simulation study strongly suggested that information 

criteria should not be used to infer the underlying dgp of empirical data.  For example, 

one noteworthy result of ZINB and HNB models was their ability to provide the best 

fit, as measured by AICc and χ2 good of fit tests, for almost any dgp.  This result 

highlights the flexibility of the ZINB model for representing data with overdispersion 

and/or zero-inflation (Rose et al. 2006).  If the models are sufficiently flexible for 

modeling marginal count data, they can probably be expected to fit well to empirical 

data that include covariates and a range of conditional distributions.  It is also 
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important to recognize that some of the difference in AIC may be attributable to 

differences in the relative magnitude of log-likelihoods of the various statistical 

models.  Nonetheless, despite the close fit, estimated parameters had error and were 

highly unstable.  One possible cause might be limitation to fitting the ZINB or HNB 

model to data with predominantly non-zero observations (Minami et al. 2007, Warton 

2005).  It also appeared that estimation of θ required a larger sample size than may be 

practically feasible.  

The main application of the simulation results is to model habitat associations 

of infrequently captured species without knowing how well any given dgp represents 

the underlying ecological processes.  Empirical marginal counts of infrequent species 

are by definition dominated by zeros, indicating low marginal mean abundance.  

Occasional large counts might be observed under conditions that promote aggregation 

of individuals in the population, producing a count distribution that is generally 

unimodal and positively skewed with the possibility of long positive tail.  Field data 

would typically be conditioned on a set of habitat variables, so the conditional 

distribution is often of more interest than marginal distribution.  Minami et al. (2007) 

asserted that the ZIP model might be more appropriate for species that were rare and 

occurred in small group while ZINB model might be appropriate for species that 

occurred in large aggregations.  The current simulation study found that caution had to 

be exercised when the true mean abundance was very small, because both models 

could produce highly unstable parameter estimates with large error describing the 

marginal distribution under their corresponding dgp, as well as under alternative but 
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precisely specified dgps.  These results probably extend to conditional distributions 

that estimate low mean abundance at a given level of one or more covariates, but the 

effect of alternative covariates on estimating parameters of the statistical distribution, 

effects of covariates, and the interaction between the two is not clear.  Perhaps only a 

carefully crafted simulation study that includes covariates can help address this issue.  

2.5.2 Finite Mixture Models 

As mentioned in an earlier section, ZI and H models are finite mixture models 

with different specifications of latent structures.  However, there has been little 

comprehensive discussion about the subtle differences between the two models and 

their assumptions in the context of ecological modeling, particularly the H model.  

When modeling a species frequency distribution, we implicitly assume that the data 

conform to the latent structure of the chosen model.  Any data editing influenced by 

this assumption will introduce some circularity into assessment of model suitability.  

For example, ‘naughty naughts’ (Austin and Meyers 1996) are observations obtained 

from outside the environmental range of a species.  Martin et al. (2005) emphasized 

the need for thoughtful sampling design to avoid including these type of data or 

filtering datasets to exclude them (Elith and Burgman 2002).  Ultimately, the final 

datasets that exclude observations outside the environmental range of the target 

species imply the imperfect state for all observed zeros; i.e., the species can occur at 

the sampling point but is absent for various unspecified reasons.  As a result the data 

have an implicit latent structure consistent with a H model, and analyzing them with a 
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ZI model would be inappropriate.  In short, it is important to understand the data 

origin for careful matching of a statistical model to the latent structure.  

Many distinguish the perfect and the imperfect states by the type of zero each 

represents.  This distinction is intuitively reasonable but poses some potential 

problems in the form of conflicting or ambiguous definitions and terminologies.  Most 

of literature on this subject consistently agrees that structural zeros arise from the 

perfect state.  The types of zero associated with the imperfect state include accidental, 

stochastic and sampling zeros.  Cunningham and Lindenmayer (2005) defined random 

or accidental zeros to arise where conditions are potentially suitable for the species but 

it was absent due to non-detection or unidentifiable factors.  Sileshi (2008) defined 

sampling zeros as a result of observational errors.  Added to this confusing list are true 

and false zeros as defined by Martin et al. (2005); i.e., true zeros originate from 

demographic processes, unsuitable habitat or failure to saturate suitable habitat by 

chance, whereas false zeros originate from observational errors or aspects of sampling 

design such as length and area and involve detection failure (Martin et al. 2005).  It is 

unclear how these definitions relate to the dual-state of a ZI model. 

When formulating the ZI model, Lambert (1992) focused on describing the 

dual-state rather than on the sources of zeros.  From this perspective, the above 

confusion can be avoided by focusing on the ecological interpretation of the two 

states, rather than attempting to define the origin of zeros.  The perfect state is defined 

as a set of conditions under which individuals of a species cannot exist.  In short, the 

perfect state describes inhospitable habitats that are incapable of supporting the 
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population, whereas the imperfect state is at least hospitable.  The modeling objective 

is then to determine the habitat attributes associated with both states.  An example of 

conditions associated with the perfect state is the matrix of hostile habitats defined in 

island biogeography theory (MacArthur and Wilson 1967).  Conversely, Hutchinson’s 

(1985) definition of fundamental niche could be viewed as the imperfect state.  One 

could further argue that the imperfect state by definition could include ecological trap 

and sink habitats because they could support some individuals at least temporarily, 

regardless of how maladapted the individuals might be (Dias 1996, Schlaepfer et al. 

2002).  In summary, this approach seems better suited for understanding the latent 

structures of ZI and H models.  

From a finite mixture model perspective, there is no restriction on the level of 

mixing.  For example, Gao and Khoshgoftaar (2007) chose to model software fault 

with H models at hurdle levels of one and two faults.  Therefore, the above approach 

has another advantage, specifically that definition of the two states could change 

according to the practical issue being addressed or the assumed properties of the 

statistical model.  For example, the mixing of a ZI model could involve one state with 

either zero or one counts and the other state with counts exceeding one.  The former 

could be coined as the “near-perfect” state and the latter could remain as the usual 

imperfect state.  Lambert (1992) subtly recognized the restrictive nature of a perfect 

state in which defects were extremely rare but not impossible.  The near-perfect state 

could represent habitat conditions that support only a minute population of a species; 

e.g., at the boundaries of environmental range or a severe sink habitat.  One could 
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even declare several states in a model such as the N-mixture model (Royle 2004, 

Royle et al. 2005) according to ecological theories of a species abundance and 

distribution. 

2.5.3 Rarity, Spatial Scale and Time 

Cunningham and Lindenmayer (2005), modifying concepts from Cody (1986), 

Rabinowitz et al. (1986) and New (2000), provided an excellent general classification 

of species rarity based upon three factors: abundance of a species within a community 

(common or rare), habitat specificity (general or specialized) and geographic range 

(widespread or restricted).  In ecological data, spatial scale influences analysis and 

interpretation and consequentially the choice of an appropriate model.  Thus, the most 

appropriate model for habitat association of the categorized rare species will depend 

on the spatial scale of the sampling design in a study.  The two primary elements of 

spatial scale are grain and extent (Bowman et al. 2001, Wiens 1989).  Grain is defined 

as minimum space between sampling points and, hence, the smallest possible 

resolution for detecting spatial patterns.  Extent is total area covered by a sampling 

grid.  

The abundance of a species within its community will likely influence the 

choice between a Poisson or a negative binomial distribution, depending on its 

detectability.  There is a higher chance of observing large counts for a species that is 

common and easily detectable within its community.  As suggested by Minami et al. 

(2007), a negative binomial distribution would be more appropriate when the species 
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is common and aggregated within its community, whereas a Poisson distribution 

would be more appropriate when the species is less common and random in spatial 

distribution.   

When the extent of a study is smaller than the known geographical range of a 

species, one could assume that all observations originate from the imperfect state.  In 

this case, a H model would conform to the collected data.  On the contrary, if the study 

approximately covers the geographical range of the species, or it is two to five times 

larger than the suitable habitat patches in the landscape (Mayer and Cameron 2003), 

the possibility of including observations where the species cannot occur becomes 

substantial.  Therefore, a ZI model seems appropriate in this situation.  Ultimately, 

neither a widespread or restricted geographical range of a species predetermines 

whether a H or ZI model is appropriate; rather, it largely depends on the extent of the 

study relative to the spatial distribution of suitable habitat. 

Mayer and Cameron (2003) suggested that the sampling scale should be two to 

five times smaller than the inherent grain of habitat characteristics for the targeted 

species, even though this target could be difficult to achieve.  However, the 

relationship between habitat specificity, grain and model choice is not straightforward.  

For a generalist species, we suggest that grain size inherent to the area of study plays a 

minor role as the species could occupy a range of habitats; hence the data are more 

likely to originate from the imperfect state, theoretically favoring a H model.  For a 

specialist species, the relationship between the three would depends on the spatial 

distribution of suitable habitats.  Without further knowledge, a conservative 
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assumption is that the data are a mix of perfect and imperfect states regardless of grain 

size, theoretically favoring a ZI model.  A small grain size and high frequency of 

suitable habitat would likely result in majority of the samples in the imperfect state, 

but a few of them could also fall into unsuitable habitat.  

The above discussion implies a static view of the relationship between model 

choice and spatial scale of both sampling and habitat distribution.  It is also possible 

that time interacts with model choice and spatial scale, particularly if population size 

fluctuates or animal activity varies by season.  For a simple example, the current state 

of a forested area in an early successional stage (e.g., regenerated forest stand) might 

not support a certain group of species that is closely related to old-growth forest 

conditions, so the area would be in the perfect state.  Over time as the vegetation 

structure develops, the area would probably include unsuitable and suitable habitat for 

the target species, so the model choice at this stage could be a ZI model.  As the 

forests continue to mature, more habitats become suitable for the species group, so a H 

model could then describe the later stage of succession.  Thus, the timing of sampling 

for the target species during forest succession would be one factor when considering 

model choice.   

The current simulation study advised against using goodness of fit statistics to 

infer underlying processes that generated an observed set of data.  A consequence of 

misidentifying the unknown dgp is misinterpreting the role that a habitat predictor has 

on a species community.  For example, the ZINB and HNB models are the most 

flexible based on the simulation results, but the underlying dgp may truly be pois.  



42 

 

Consequently, a predictor may be misjudged to significantly cause the habitat 

conditions to be either inhospitable or hospitable (zero-inflation component), when it 

should only have affected the abundance of a species under this true pois dgp.  

Therefore, it is recommended instead that the choice of the most appropriate statistical 

model be made to the fullest extent possible in the context of known ecological 

processes and the spatial and temporal scale of the study.  Results from the simulation 

study also suggest the need for exercising caution when modeling the response of 

infrequent species to habitat variables using ZMMs; i.e., the ZMMs produced unstable 

parameter estimates when true abundance was small.  Because parameters of 

distributions describing detections are typically conditioned on habitat predictors in 

most research and applications, it is likely that the estimated effects of the habitat 

variables would be adversely affected and incorrect inferences drawn. 

2.6 CONCLUSIONS 

This simulation study focused on modeling marginal distributions free from 

the influence of covariates.  However, in most ecological applications, identifying the 

conditional distribution of species abundance on habitat conditions is the main goal 

(Warton 2005).  The extent to which these simulation results extend to selecting 

models for identifying covariates is unclear.  For example, it is uncertain how 

estimation error in λ̂  from ZINB model progresses from conditional distributions with 

low mean abundance to those with high abundance across levels of a covariate.  

Further simulation studies may be necessary to explore this issue, but the current 



43 

 

simulation study has provided insights into behavior of alternative models under 

several factors defining a data generating process. 

The ability of goodness of fit criteria to discern an underlying dgp was 

evaluated, and in most cases the dgp could not be inferred accurately.  However, the 

use of goodness of fit criteria would depend on a study’s objective.  If the objective is 

purely prediction, then a model that maximizes statistical fit may be desirable.  In the 

simulation study, the ZINB or HNB models are most robust under this objective.  

Often, however, the objective involves a mix of prediction and identification of 

underlying process that generate the data (Lord et al. 2005).  If parts of the dgp and 

associated ecological processes are known, the “best” fit model may not be the best 

simply because it is sufficiently flexible for handling a wide range in frequency 

distributions because it may not necessarily reflect the underlying dgp (Minami et al. 

2007).  In this context, maximizing statistical fit is largely trivial (Lord et al. 2007).  

When modeling empirical data of unknown dgp, Lord et al. (2007) advised that choice 

of the model be based on parsimony and agreement with theoretical expectation. 

When applying a model, one should understand its latent structure and 

assumptions.  Although excess zeros were the motivation behind ZI and H models, 

Lambert (1992) and Mullahy (1986) were concerned with defining a dual-state process 

or a hurdle when developing these respective models and did not attempt to define the 

sources of zeros.  Beyond issues already discussed above, Lord et al. (2007) voiced 

several questions about the underlying logic of a dual-state process.  One concerns the 

boundary conditions delimiting the two states when modeling with ZI model.  The 
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same covariate is usually used to model two states simultaneously; so a question arises 

about the level of the covariate that demarcates the boundary.  Recognizing 

complications in interpreting the results of a ZI model, Welsh et al. (1996) advocated 

the H model for its simplicity in understanding the association between covariates and 

abundance.  However, this argument may not be the best justification for avoiding the 

ZI model. 

If one is uncomfortable with the latent structure and assumptions of either ZI 

or H model, other statistical tools suggested by Lord et al. (2005) could model the 

preponderance of zeros found in the count data for many species.  One such tool is 

small area statistics (SAS) or small area estimator (SAE) that is often used in survey 

science, where small sample sizes must be dealt with frequently (Lord et al. 2005, Rao 

2003).  Another is the extreme value model (Lord et al. 2007, Cole 2001).  These 

models require further theoretical development and assessment in applications, but 

could provide alternatives to modeling rare species distribution and gaining insights 

into their effective management.  
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Table 2.1  The 27 dgps (data generating processes) as defined by amount of zero-
inflation p, mean of a Poisson distribution λ and amount of overdispersion in negative 
binomial distribution RATIONB.  Associated with each dgp were known 
overdispersion parameter θ, probability of crossing the hurdle π, the data generating 
distribution, and implied total overdispersion.  Each dgp generated a sample size of 
25, 50, 75, 100, and 250 observations.  For RATIONB = 1, θ was undefined (θ = ∞).  
Total overdispersion was defined as Var(Y)/E(Y) of the corresponding data generating 
distribution. 
 

RATIONB p λ θ π Data Generating 
Distribution 

Total 
Overdispersion 

1.0 0 0.3 ∞ 0.26 pois 1.00 
1.0 0 1.5 ∞ 0.77 pois 1.00 
1.0 0 5 ∞ 0.99 pois 1.00 
1.0 0.25 0.3 ∞ 0.19 zip/hpois 1.08 
1.0 0.25 1.5 ∞ 0.58 zip/hpois 1.38 
1.0 0.25 5 ∞ 0.74 zip/hpois 2.25 
1.0 0.75 0.3 ∞ 0.06 zip/hpois 1.23 
1.0 0.75 1.5 ∞ 0.19 zip/hpois 2.13 
1.0 0.75 5 ∞ 0.25 zip/hpois 4.75 
1.5 0 0.3 0.6 0.22 nb 1.50 
1.5 0 1.5 3 0.70 nb 1.50 
1.5 0 5 10 0.98 nb 1.50 
1.5 0.25 0.3 0.6 0.16 zinb/hnb 1.58 
1.5 0.25 1.5 3 0.53 zinb/hnb 1.88 
1.5 0.25 5 10 0.74 zinb/hnb 2.75 
1.5 0.75 0.3 0.6 0.05 zinb/hnb 1.73 
1.5 0.75 1.5 3 0.18 zinb/hnb 2.63 
1.5 0.75 5 10 0.25 zinb/hnb 5.25 
3.0 0 0.3 0.15 0.15 nb 3.00 
3.0 0 1.5 0.75 0.56 nb 3.00 
3.0 0 5 2.5 0.94 nb 3.00 
3.0 0.25 0.3 0.15 0.11 zinb/hnb 3.08 
3.0 0.25 1.5 0.75 0.42 zinb/hnb 3.38 
3.0 0.25 5 2.5 0.70 zinb/hnb 4.25 
3.0 0.75 0.3 0.15 0.04 zinb/hnb 3.23 
3.0 0.75 1.5 0.75 0.14 zinb/hnb 4.13 
3.0 0.75 5 2.5 0.23 zinb/hnb 6.75 
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Table 2.2  The range between the 2.5 and 97.5 percentiles (95W) of %ERROR in the 
estimated parameter λ̂  for the six fitted models and all 27 combinations of Poisson 
mean parameter (λ), amount of zero-inflation (p), and amount of overdispersion 
(RATIONB). 
 
RATIONB p λ POIS NB ZIP ZINB HPOIS HNB 

1.0 0 0.3 70 70 130 119 180 189 
1.0 0 1.5 31 31 37 36 45 48 
1.0 0 5 17 17 17 16 17 17 
1.0 0.25 0.3 67 67 165 163 215 213 
1.0 0.25 1.5 33 33 48 54 48 58 
1.0 0.25 5 23 23 21 21 21 21 
1.0 0.75 0.3 37 37 287 285 294 291 
1.0 0.75 1.5 23 23 88 114 88 116 
1.0 0.75 5 19 19 37 38 37 38 
1.5 0 0.3 83 83 349 285 361 355 
1.5 0 1.5 39 39 52 47 52 73 
1.5 0 5 22 22 22 23 22 22 
1.5 0.25 0.3 80 80 383 338 389 388 
1.5 0.25 1.5 38 38 63 75 63 87 
1.5 0.25 5 24 24 24 25 24 25 
1.5 0.75 0.3 43 43 613 525 620 531 
1.5 0.75 1.5 25 25 115 145 115 165 
1.5 0.75 5 21 21 44 45 44 45 
3.0 0 0.3 120 120 750 608 750 665 
3.0 0 1.5 54 54 96 82 96 158 
3.0 0 5 31 31 32 32 32 34 
3.0 0.25 0.3 107 107 859 727 859 770 
3.0 0.25 1.5 49 49 102 117 102 174 
3.0 0.25 5 31 31 35 37 35 37 
3.0 0.75 0.3 57 58 1334 1091 1337 1094 
3.0 0.75 1.5 32 32 193 213 193 231 
3.0 0.75 5 23 23 61 67 61 67 
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Table 2.3  The mean and 95W (range between 2.5 and 97.5 percentiles) of estimated 
overdispersion parameter (θ̂ ) for each of the six fitted models and each dgp (one of 27 
combinations of Poisson mean parameter (λ), amount of zero-inflation (p), and amount 
of overdispersion (RATIONB)).  The estimates in bold were not significantly different 
from the known θ values. 
 

NB ZINB HNB RATIONB p λ θ Mean 95W Mean 95W Mean 95W 
1 0 0.3 – 3×103 8×104 2×104 1×105 7×103 3×104 
1 0 1.5 – 1×104 3×104 7×104 3×105 3×104 1×105 
1 0 5 – 4×104 1×105 5×108 1×109 7×104 3×105 
1 0.25 0.3 – 2×103 6×103 1×104 5×104 6×103 3×104 
1 0.25 1.5 – 2×102 23.7 3×104 1×105 3×104 1×105 
1 0.25 5 – 1.8 2.5 8×104 5×105 1×109 4×106 
1 0.75 0.3 – 5×102 2×103 7×103 2×104 6×103 3×104 
1 0.75 1.5 – 0.3 0.4 2×104 7×104 4×104 1×105 
1 0.75 5 – 3×104 1×105 7×104 3×105 9×104 4×105 

1.5 0 0.3 0.6 1×102 3×103 5×103 3×104 7×103 4×104 
1.5 0 1.5 3 71.3 14.4 3×103 4×104 3×103 4×104 
1.5 0 5 10 4×102 45.2 6×107 7×107 1×103 47.9 
1.5 0.25 0.3 0.6 76.2 1×103 4×103 3×104 7×103 4×104 
1.5 0.25 1.5 3 1.3 1.9 3×103 4×104 5×103 5×104 
1.5 0.25 5 10 1.4 1.5 2×103 6×102 2×106 1×105 
1.5 0.75 0.3 0.6 2×102 2×103 6×103 2×104 1×104 5×104 
1.5 0.75 1.5 3 0.2 0.3 9×103 6×104 2×104 1×105 
1.5 0.75 5 10 1×103 8×104 1×104 2×105 2×105 2×105 
3 0 0.3 0.15 3.3 0.4 2×103 2×104 4×103 4×104 
3 0 1.5 0.75 0.8 0.9 90.5 3.6 1×107 4.2 
3 0 5 2.5 2.7 2.6 7×109 3.1 2.8 3.4 
3 0.25 0.3 0.15 8.5 0.5 3×103 2×104 6×103 5×104 
3 0.25 1.5 0.75 0.5 0.5 52.3 6.6 1×102 6.9 
3 0.25 5 2.5 0.8 0.7 2.9 4.7 2.9 4.7 
3 0.75 0.3 0.15 2×102 1×103 7×103 4×104 2×104 1×105 
3 0.75 1.5 0.75 16.9 0.2 2×103 3×104 5×103 6×104 
3 0.75 5 2.5 4×104 4×104 4×102 21.3 3×105 24.1 
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Table 2.4  The range between the 2.5 and 97.5 percentiles (95W) of the difference in 
AICc (ΔAICc) between any given model and the reference model for all 27 
combinations of Poisson mean parameter (λ), amount of zero-inflation (p), and amount 
of overdispersion (RATIONB).  The 95W of ΔAICc for a reference model was zero by 
definition. 
 
RATIONB p λ POIS NB ZIP ZINB HPOIS HNB 

1.0 0 0.3 0 3 3 4 5 6 
1.0 0 1.5 0 4 4 4 5 7 
1.0 0 5 0 3 5 5 5 6 
1.0 0.25 0.3 6 2 0 1 0 4 
1.0 0.25 1.5 21 12 0 3 0 3 
1.0 0.25 5 94 42 0 4 0 4 
1.0 0.75 0.3 10 2 0 1 0 1 
1.0 0.75 1.5 49 13 0 2 0 2 
1.0 0.75 5 128 286 0 3 0 3 
1.5 0 0.3 25 0 8 3 8 3 
1.5 0 1.5 27 0 18 4 18 5 
1.5 0 5 26 0 25 25 25 4 
1.5 0.25 0.3 28 3 5 0 5 0 
1.5 0.25 1.5 44 8 13 0 13 0 
1.5 0.25 5 99 36 21 0 21 0 
1.5 0.75 0.3 26 2 3 0 3 0 
1.5 0.75 1.5 71 9 8 0 8 0 
1.5 0.75 5 153 303 12 0 12 0 
3.0 0 0.3 93 0 26 4 26 4 
3.0 0 1.5 105 0 58 4 58 5 
3.0 0 5 106 0 90 4 90 5 
3.0 0.25 0.3 95 4 19 0 19 0 
3.0 0.25 1.5 111 7 44 0 44 0 
3.0 0.25 5 156 25 79 0 79 0 
3.0 0.75 0.3 74 4 8 0 8 0 
3.0 0.75 1.5 135 8 25 0 25 0 
3.0 0.75 5 217 329 45 0 45 0 
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Figure 2.1  Relative frequency distributions implied by the 27 dgps.  Parameters of the 
dgps were specified as a 33 factorial of:  Poisson mean λ (0.3, 1.5, 5); amount of zero-
inflation p (0, 0.25, 0.75); and amount of overdispersion RATIONB (1, 1.5, 3).  Each 
dgp corresponded to one of the following data generating distributions (Table 2.1): 
pois, nb, zip, zinb, hpois or hnb.  
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Figure 2.2  Percent estimation error (%ERROR) in λ̂  for the six models fitted to data 
generated by 27 dgps.  Parameters of the dgps were specified as a 33 factorial of: 
Poisson mean λ (0.3, 1.5, 5); amount of zero-inflation p (0, 0.25, 0.75); and amount of 
overdispersion RATIONB (1, 1.5, 3).  The corresponding data generating distribution 
for each panel is shown in brackets, and the six fitted models included POIS (○), NB 
(Δ), ZIP (+), ZINB (×), HPOIS (□), HNB ( ).   The solid and dashed gray horizontal 
lines depict 0% and ± 10% ERROR. 
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Figure 2.3  Estimated amount of zero-inflation p̂  from data generated by 36 dgps.  
Parameters of the dgps were specified as a 33 factorial of: Poisson mean λ (0.3, 1.5, 5), 
amount of zero-inflation p (0, 0.25, 0.5, 0.75), and amount of overdispersion 
RATIONB (1, 1.5, 3).  The two fitted models were ZIP (+) and ZINB (×). The dashed 
and solid bars around the mean value indicate the 2.5 and 97.5 percentiles from 
separate fits of ZIP and ZINB, respectively, to 1000 sets of simulated data.  Degree of 
deviation from the 1:1 line in gray indicates ERROR. 
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Figure 2.4  Results from 1000 simulations by two data generating processes, one 
assuming zip with λ = 0.3, p = 0.25 and RATIONB = 1 (○) and the other assuming zip 
with λ = 0.3, p = 0.75 and RATIONB = 1 (×): (a) trend in estimated amount of zero-
inflation parameter p̂  over estimated Poisson parameter λ̂ fitted to the ZIP models; and 
(b) estimated mean and 2.5 and 97.5 percentiles of marginal probability of a zero 
observation (Pr(Y  = 0)) under each ZIP model (estimated and actual values of Pr(Y = 
0) are virtually identical).   
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Figure 2.5  Percent estimation error (%ERROR) in π̂  from the six models fitted to 
data generated by 27 dgps.  Parameters of the dgps were specified as a 33 factorial of: 
Poisson mean λ (0.3, 1.5, 5), amount of zero-inflation p (0, 0.25, 0.75), and amount of 
overdispersion RATIONB (1, 1.5, 3).  The corresponding data generating distribution 
for each panel is shown in brackets.  The six fitted models included POIS (○), NB (Δ), 
ZIP (+), ZINB (×), HPOIS (□), HNB ( ).  The solid and dashed gray horizontal lines 
depict 0% and ± 10% error. 
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Figure 2.6  Difference in AICc (ΔAICc) between fitted models and the reference 
model fitted to data generated by 27 dgps.  Parameters of the dgps were specified as a 
33 factorial of: Poisson mean λ (0.3, 1.5, 5); amount of zero-inflation p (0, 0.25, 0.75), 
and amount of overdispersion RATIONB (1, 1.5, 3).  The corresponding data 
generating distribution for each panel is shown in brackets.  The six fitted models 
included POIS (○), NB (Δ), ZIP (+), ZINB (×), HPOIS (□), HNB ( ).  The solid and 
dashed gray horizontal lines depict 0 and ±5 unit difference in ΔAICc. 
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Figure 2.7  The mean and 2.5 and 97.5 percentiles of p-values from χ2 goodness of fit 
tests for each of six models fitted to data from27 dgps.   Parameters of the dgps were 
specified as a 33 factorial of: Poisson mean λ (0.3, 1.5, 5); amount of zero-inflation p 
(0, 0.25, 0.75); and amount of overdispersion RATIONB (1, 1.5, 3). The corresponding 
data generating distribution for each panel is shown in brackets.  The six fitted models 
included POIS (○, black), NB (Δ, gray), ZIP (+, red), ZINB (×, orange), HPOIS (□, 
blue), HNB ( , green).  The corresponding colored solid lines depict 2.5 and 97.2 
percentiles of the p-value for each of the six models. The dashed gray horizontal line 
depicts p-value = 0.05.  
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3.1 INTRODUCTION 

Silvicultural systems such as shelterwood with reserves and group selection 

(Matthews 1989) have been considered viable options for managing Douglas-fir 

(Pseudotsuga menziesii (Mirb.) Franco) forests on public lands in the Pacific 

Northwest, USA, particularly where management objectives call for a combination of 

timber production and other ecosystem services.  The resulting complex stand 

structures are viewed as more amenable to achieving other management objectives 

such as conservation of biodiversity and maintenance of aesthetic quality.  Variable-

retention systems, currently mandated on federal forestland, have a specific goal of 

providing refugia to late-seral or closed-canopy organisms (“lifeboating”) and 

promoting more rapid recolonization of regenerated stands by these late-seral species 

(Franklin et al. 1997).  To achieve this goal, two basic elements of residual forest 

structure – level and pattern of retention – must be manipulated in an appropriate 

manner (Aubry et al. 2009).  However to establish successful refugia, knowledge 

about the habitat elements that targeted taxa perceive and the spatial scale at which 

they respond are essential. 

One commonly targeted taxonomic group in the Pacific Northwest forests is 

the community of forest floor small mammals.  These small rodents play an important 

role as predators, consumers, and prey (Martin and McComb 2002, Sullivan and 

Sullivan 2001), so contribute to both species and functional diversity of the forests in 

this region (Carey and Johnson 1995).  Individual species are variably associated with 
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coarse woody debris, litter layers, herbaceous vegetation, shrubs and fungal fruiting 

bodies (Carey and Johnson 1995, Ure and Maser 1982).  These habitat variables 

indicate quantity and quality of cover and food provided by vegetation comprising a 

forest stand.  Waldien et al. (2006) demonstrated that Townsend’s chipmunk (Tamias 

townsendii) selectively chose microhabitats with downed wood as it moved through a 

stand.  This type of knowledge allows silviculturists to design silvicultural treatments 

that produce or protect specific habitat structures during regeneration harvests.  

Rigorous modeling of habitat associations becomes a key tool of forest management to 

successfully balance timber harvesting with maintenance of forest biodiversity.  

Studies on the effects of silvicultural treatments on forest floor small mammal 

communities share three common characteristics: (1) only a few species dominate the 

total number of captures; (2) a majority of the species are captured infrequently, and 

(3) sampling of experimental units is typically systematic and often involves a 

hierarchical structure.  The first two characteristics are quite natural (Cunningham and 

Lindenmayer 2005) and are caused by differences in both population abundance and 

detection probability.  The population sizes of species contributing to the small 

mammal community inherently cover a wide range.  The issue of detection probability 

is ubiquitous but often under-appreciated (Tyre et al. 2003).  When detection 

probability is variable and unknown, species abundance or species presence/absence 

estimated by number of captures may be inaccurate and biased (Wenger and Freeman 

2008).  This would in turn affect inference on treatment effects because a detected 

change in capture may indicate a shift in detection probability, a shift in abundance, or 
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a combination of these and other factors.  However, live trapping and capture-

recapture techniques are required to estimate detection probability with a minimal 

level of confidence (MacKenzie et al. 2002); therefore, estimation of detection 

probabilities become problematic for studies like DEMO that use pitfall traps.  Hence, 

it must often be assumed that changes in detection probability are negligible.  

Anderson (2001) summarized three factors affecting detection probability for a given 

species; i.e., observer bias, environmental conditions and species features that include 

abundance and behavior.  The third characteristic is unavoidable especially in field 

experiments that strive for operational and ecological relevance (Maguire et al. 2007).  

These experiments generally have large experimental units with systematically 

arranged sampling units.  The observations within an experimental unit are not 

independent because the sampling units are nested within the treatment unit, and 

experimental units may be spatially autocorrelated with neighboring units. 

Unfortunately, a common approach to infrequently captured species is to 

exclude them from statistical analysis.  Among 23 studies on small mammal responses 

to silvicultural treatments in the Pacific Northwest, a range of 2-20 species were 

captured but on average only 62% were analyzed (e.g. Klenner and Sullivan 2003, 

Suzuki and Hayes 2003).  Some species were ignored because they were non-target 

species, or because they were transient species not normally associated with the 

sampled habitat, particularly when their home ranges were large compared to the size 

of experimental or sampling units (Carey and Johnson 1995).  Another biological 

rationale to exclude some infrequent species is that the trapping technique may not be 
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suitable for an unbiased estimate of abundance, although captures may still be a 

valuable index of relative abundance or relative activity in the context of a controlled 

experiment.  From a statistical perspective, small counts are often precluded because 

they do not meet the normality assumption of conventional Analysis of Variance 

(ANOVA) or regression models.  In one approach to address this issue, MacCracken 

(2005) grouped infrequently captured species based on similarity in life history to 

improve numerical stability in a Multivariate Analysis of Covariance (MANCOVA).  

Nonetheless, these rare species are particularly deserving of conservation efforts 

because they are most prone to extinction (Meffe and Carroll 1997), and capture 

frequency may still serve as a useful index of treatment response despite its 

unsuitability for estimating population size for some species.  Potential statistical 

solutions to modeling treatment effects and habitat associations for these infrequent 

species include zero-inflated and hurdle models.  

Lambert (1992) and Mullahy (1986) developed zero-inflated and hurdle 

models, respectively, for data characterized by excessive zero counts, relative to 

conventional Poisson and negative binomial models.  Both models specifically 

account for overdispersion that is caused by greater-than-Poisson zero counts, and can 

account for overdispersion attributable to unexplained heterogeneity in data (Zorn 

1998).  Although similar in application, the assumption about the underlying data 

generating process (dgp) is different.  Zero-inflated models assume a dual-state dgp: 

an observation is either in the perfect state, in which case its value must be zero, or in 

the imperfect state, in which case it can take any value including zero (Lambert 1992).  
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Hurdle models assume a hurdle latent structure; i.e., the hurdle is set at zero, and an 

observation can only take greater-than-zero value conditional on the hurdle being 

crossed.  Gray (2005) and Warton (2005) compared and evaluated these models in an 

ecological context.  

To avoid autocorrelation between sampling units within experimental units, 

count data from individual sampling units are commonly summarized as a mean or 

total for the entire treatment unit (e.g. Steventon et al. 1998).  Transformation of the 

summary statistics is sometimes necessary to meet assumptions of the statistical model 

such as normality of residuals (e.g. Suzuki and Hayes 2003).  These steps are 

necessary for ANOVA or ANCOVA models that dominate most analyses of small 

mammal data.  These models are appropriate when the primary objective is to test 

treatment effects on stand-level mean or total abundance.  However, these tests at the 

level of experimental units address one spatial scale and might not be the most 

efficient use of information contained in individual sampling units.  For example, 

microclimatic conditions likely influence the local distribution of southern red-backed 

vole (Clethrionomys gapperi) (Miller and Getz 1973).  With data aggregated to 

treatment level, resolution is lost for detecting microhabitat attributes that drive 

responses to treatments.  This type of data aggregation might contribute to 

contradictory results between studies with similar treatment categories (see Klenner 

and Sullivan 2003).  Also, transformation of count data for application of analyses 

based on a normal distribution complicates interpretation of results and is ineffective 

for infrequent or rare species with many zero observations.  Generalized Linear 
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Models (GLM; McCullagh and Nelder 1989) can accommodate count data and avert 

the interpretive problems associated with transformation.  They can also be extended 

to multilevel models (Gelman and Hill 2007) when part of the objective includes 

detection of finer scale responses, because they avoid aggregation of data from 

individual sampling units.   

Generalized Linear Mixed Models (GLMM) are GLMs in which random 

effects are included in addition to fixed effects of other covariates (Venables and 

Ripley 2002).  In multilevel models, the random effects can help model the nested 

structure of subsamples, obviating the need for data aggregation.  These random 

effects are also often effective for modeling the spatial autocorrelation between 

subsamples (Schabenberger and Gotway 2005).  In the 23 small mammals studies 

mentioned above, the spacing for sampling grids commonly ranged from 10 to 30 m 

(e.g. Von Trebra et al. 1998).  Subsamples among grid points at this spacing most 

likely are spatially autocorrelated, at least for many of the species with home ranges 

greater than 100-900 m2.   

The goal of this study was to model the association between habitat features 

and the detection of forest floor small mammal species in the context of a large-scale 

silvicultural experiment.  The experiment (Demonstration of Ecosystem Management 

Options or DEMO) was established to assess long term effects of variable-retention 

harvesting on plants, animals, ecological processes and public perceptions (Aubry et 

al. 1999, Halpern and Raphael 1999).  One major set of response variables included 

the abundance and species composition of the forest floor small mammal community.  
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The two specific objectives of this analysis were to make the following empirical 

comparisons in the process of modeling microhabitat associations of small mammal 

species: (1) relative performance of zero-inflated versus hurdle statistical models, and 

(2) relative performance of GLM versus GLMM.  The analysis was carried out in two 

parts to meet the objectives.  The first part of the analysis focused on fitting and 

interpreting various specifications of zero-inflated and hurdle models, collectively 

referred to as zero-modified models (ZMM).  The second part of the analysis 

addressed specification and fitting of GLMMs. 

3.2 MATERIALS 

3.2.1 Experimental and Treatment Designs 

The DEMO study was designed as a large-scale operational experiment to test 

responses to variable-retention regeneration harvests in Douglas-fir forests of western 

Oregon and Washington, USA (Figure 3.1).  The experiment was implemented under 

a randomized complete block design (RCBD) with subsampling.  Two blocks were 

established in Oregon on the Umpqua National Forest (WF, DP) and four in 

Washington with three on Gifford Pinchot National Forest (PH, BU, LW) and one on 

the state-owned Capitol Forest (CF).  McKenzie et al. (2000) and Halpern et al. (2005) 

described the physical environment, disturbance history, age, and understory dynamics 

of the study sites.  In each block, six 13-ha experimental units (hereafter referred to as 

units) were established and treatments were randomly assigned to these units.  The 

units were either square (360 m × 360 m) or slightly rectangular (320 m × 400 m).  
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The six harvest treatments were defined by level (percentage of basal area) and/or 

spatial pattern (dispersed vs. aggregated) of retained trees as followed (Figure 3.1): (1) 

100%: 100% retention (control); (2) 75%: 75% aggregated retention (three circular, 1-

ha patch cuts); (3) 40%D: 40% dispersed retention; (4) 40%A: 40% aggregated 

retention (five circular 1-ha residual aggregates); (5) 15%D: 15% dispersed retention; 

(6) 15%A: 15% aggregated retention (two circular 1-ha residual aggregates). 

Harvesting systems varied by block depending on access and slope: skyline 

cable system for CF; ground-based system for WF and PH; and helicopter system for 

DP, BU and LW (Halpern and McKenzie 2001).  Harvesting of all units within each 

block was completed within 3 to 7 months, and all blocks were logged between 1997 

and 1998.  Aubry et al. (1999) and Maguire et al. (2007) provided additional details on 

implementation of silvicultural treatments and harvesting prescriptions. 

3.2.2 Small Mammal and Vegetation Sampling 

A permanent 8 × 8 or 7 × 9 sampling grid with 40 m spacing was installed in 

each 13-ha unit for vegetation and forest floor small mammal sampling, covering 

approximately 8 ha and yielding 63 or 64 sample points.  The grid was buffered by 40 

m between the outer grid points and the edge of the unit.  Small mammals were 

trapped using a pitfall trap installed at each sample point and placed close to logs or 

other structures when possible (Corn and Bury 1990, Gitzen et al. 2007).  Each trap 

was made of two No. 10 cans taped together to form a cylinder with diameter of 16 cm 

and depth of 35 cm, and was operated as death trap partially filled with water (Gitzen 
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et al. 2007).  The traps were opened continuously for about 28 days between late 

September and early November, and captured animals were collected and identified 

weekly (Gitzen et al. 2007).  The response variable was the number of individuals of a 

species captured at each sample point.  

Overstory and understory vegetation were studied concurrently with small 

mammal trapping, but were carried out only on a subset of sample points; 32–37 

sample points depending on the treatment.  Detailed sampling protocols are available 

from Halpern and McKenzie (2001) and Halpern et al. (2005).  For understory 

vegetation, a cluster of 24 microplots (0.2 × 0.5 m) was used to observe percent cover 

of herbaceous and small shrub species (typically <1 m tall at maturity) at each sample 

point.  In addition, percent cover of tall shrub species (typically >1 m tall at maturity) 

and understory coniferous trees (<5.0 cm dbh) was estimated on four 6-m line 

intercepts radiating out from the sampled grid point.  Diameter of any down wood 

(stems ≥10 cm) was measured at the point of intersection with this same transect.  

Overstory trees were sampled with a set of nested circular plots: a 0.01-ha plot for 

trees with dbh ≥5 and <15 cm and a 0.04-ha plot for trees with dbh ≥15 cm (Maguire 

et al. 2007).   

Mean plot attributes were computed for either the average of the 24 microplots 

(HERB) or the average of the four transects (CONIF, SHRUB, CWDVOL).  Coarse 

woody debris volume per hectare for a transect was estimated by conventional 

techniques for line intersect sampling (de Vries 1986).  A variable was also computed 

to describe the vertical complexity of overstory tree structure.  At each sample point, 
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crown cross-sectional areas at 0.5-m height intervals were estimated for each tree 

(Dubrasich et al. 1997, Maguire et al. 2007).  A crown-area profile was then generated 

by summing crown cross-sectional areas at each height interval.  The Shannon 

diversity index (SHANNON, Staudhammer and LeMay 2001) was computed to 

represent the relative variability in total crown area among the 0.5-m height intervals.  

Higher SHANNON indices indicated greater vertical diversity or complexity, 

representing a more even distribution of total crown area among the 0.5-m height 

intervals.  Lastly, stand density in terms of overstory trees per hectare (TPH, dbh ≥5 

cm) at each sample point was estimated.  The TPH was further divided by 100 (TPH*) 

to facilitate model convergence.  In summary, the six vegetation attributes for each 

sample point were: (1) mean percent herbaceous cover (HERB, %), (2) mean percent 

understory conifer cover (CONIF, %), (3) mean percent tall shrub cover (SHRUB, %), 

(4) mean coarse woody debris volume per hectare (CWDVOL, m3/ha), (5) overstory 

crown structural heterogeneity (SHANNON), and (6) stand density (TPH*, trees/100-

ha).  

Multiple pre- and post-treatment samplings were carried out, but this analysis 

was only based on data from the post-treatment sampling year 1999.  For the purpose 

of habitat association modeling, sample points without vegetation information were 

discarded; hence only 32–37 sample points in each unit were used for analysis.  Of the 

total 32 small mammal species captured in the DEMO study (Gitzen et al. 2007), four 

species were chosen for analysis, including two abundant and two infrequent species.  

The abundant species were the southern red-backed vole (Clethrionomys gapperi; 
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CLGA) and deer mouse (Peromyscus maniculatus; PEMA) with total captures of 378 

and 322 respectively, and the infrequent species were the shrew-mole (Neurotrichus 

gibsii; NEGI) and Keen’s deer mouse (Peromyscus keeni; PEKE) with total captures 

of 91 and 90 respectively.  All species had at least five counts at some sample points, 

but the infrequent species had a higher proportion of traps on which 1-5 individuals 

were captured (Figure 3.2).  The geographical range of CLGA and PEKE was 

restricted to Washington; therefore, their analyses were only based on the four blocks 

(BU, LW, PH and CF) located in that state.  In short, 1181 sample points from six 

blocks were available for PEMA and NEGI, whereas 787 sample points from four 

blocks were available for CLGA and PEKE. 

3.3 METHODS 

3.3.1 Zero-modified Models (ZMMs) 

The six models considered in the first part of this study were: Poisson GLM 

(POIS), negative binomial GLM (NB), zero-inflated Poisson GLM (ZIP), zero-inflated 

negative binomial GLM (ZINB), hurdle Poisson GLM (HPOIS) and hurdle negative 

binomial GLM (HNB).  The ZIP and HPOIS models were loosely grouped as the 

Poisson variation of zero modified models (ZMMs) and the ZINB and HNB models as 

the negative binomial variation of ZMMs.  A brief description of model specifications 

are presented below, but Cameron and Trivedi (1998), Greene (1994) and 

Winkelmann (2008) provided excellent reviews of statistical properties, specifications 

and extensions.  Throughout the current analysis, Y was defined as the total species 
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count of individuals captured at a sample point (hereafter referred to as trap), λ was the 

mean of the Poisson distribution, and θ was the dispersion parameter of the negative 

binomial distribution.  

The POIS model was the benchmark model because it was widely used for 

modeling count data.  It was specified by the following Poisson probability mass 

function (pmf): 

( )Pr
!

yeY y
y

λλ−

= =  (3.1) 

Under the POIS model, the variance and mean of the distribution were equal.  

The NB model was an extension of the POIS model accounting for overdispersion in 

count data, i.e., the case in which the variance exceeded the mean.  It was specified as 

a mixture of the gamma probability density function (pdf) and Poisson pmf with 

parameter θ capturing the overdispersion (Venables and Ripley 2002).  The pmf for 

the gamma-Poisson distribution, more commonly known as the negative binomial 

distribution, was as followed: 
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The negative binomial distribution had E(Y) = λ and Var(Y) = λ + (λ2/θ).  A 

smaller value of θ would increase Var(Y); hence greater overdispersion. 

To avoid confusion with other literature, the zero-inflated (ZI) and hurdle (H) 

models followed the specifications and terminologies of Lambert (1992) and Mullahy 

(1986), respectively, in the current analysis.  Baughman (2007) viewed both models as 
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finite mixture models (McLachlan and Peel 2000) with different latent structures.  For 

generality, define fPoisson(y) as the Poisson pmf (eqn. 3.1) and fNegBin(y) as the negative 

binomial pdf (eqn. 3.2), where y was the observed value of Y.  

The ZI model was a mixture of a point mass at zero and a count distribution 

and had one latent structure (Baughman 2007).  The latent structure was a dual-state 

process in which y = 0 was the perfect state and y ≥ 0 was the imperfect state.  The 

dual-state process was governed by p, the probability of an observation in the perfect 

state or sometimes referred as the amount of zero-inflation.  Hence the model 

consisted of a zero-inflation component and a count component.  

The zero-inflated Poisson pmf was, 

( )
( ) ( )

( ) ( )
1 0 ,      if 0

Pr
1 ,            if 0

Poisson

Poisson

p p f y
Y y

p f y y

+ − =⎧⎪= = ⎨
− >⎪⎩

 (3.3) 

The zero-inflated negative binomial pmf was, 

( )
( ) ( )

( ) ( )
1 0 ,          if 0

Pr
1 ,                if 0

NegBin

NegBin

p p f y
Y y

p f y y

+ − =⎧⎪= = ⎨
− >⎪⎩

 (3.4) 

The H model was a mixture of a point mass at zero and a truncated-at-zero 

count distribution, and had two latent structures as described by Baughman (2007).  

The two latent structures were the hurdle and the imperfect state.  An observation had 

strictly positive count (y > 0) when the hurdle was crossed; otherwise y = 0.  The 

ability to cross the hurdle was measured by π, defined as the probability of crossing 

the hurdle by Mullahy (1986).  Hence the model consisted of a hurdle component and 

a truncated-count component.  The second latent structure was a natural extension 
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because every observation must be in the imperfect state to have the implicit 

“potential” of crossing the hurdle.  

The hurdle Poisson pmf was, 

( )
( ) ( )

1 ,                                        if 0
Pr ,           if 0

1 0 Poisson
Poisson

y
Y y f y y

f

π
π

− =⎧
⎪= = ⎨ >⎪ −⎩

 (3.5) 

The hurdle negative binomial pmf was, 

( )
( ) ( )

1 ,                                        if 0
Pr ,           if 0

1 0 NegBin
NegBin

y
Y y f y y

f

π
π

− =⎧
⎪= = ⎨ >⎪ −⎩

 (3.6) 

The six pmfs were specified in the GLM context (McCullagh and Nelder 1989) 

by conditioning the parameter(s) of a pmf on a set of predictors.  Let B be a n × p 

matrix of predictors for the count component (ZI model) and the truncated-count 

component (H model), and A be a n × q matrix of predictors for the zero-inflation 

component (ZI model) and the hurdle component (H model), where n was the number 

of observations, and p and q were the number of covariates for the count and zero-

inflation components, respectively.  Furthermore, let β and α be vectors of coefficients 

associated with B and A, respectively.  Then the relationships between parameters and 

predictors through link functions were, 

( )log =λ Bβ  (3.7) 

for both the count component and the truncated-count component.  For the zero-

inflation component and the hurdle component, 
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( )logit log
1
⎛ ⎞

= =⎜ ⎟−⎝ ⎠

pp Aα
p

 (3.8) 

( )logit log
1
⎛ ⎞= =⎜ ⎟−⎝ ⎠

ππ Aα
π

 (3.9) 

In this study, we assumed B = A, and the set of vegetation predictors for all 

components were HERB, CONIF, SHRUB, CWDVOL, SHANNON and TPH*.  

Furthermore, there was slight variation in the number of trap nights (tn) for each trap, 

i.e., the number of nights that a trap was opened.  It might be reasonable to assume 

that the number of individual captured was proportional to the number of trap nights.  

To correct for this effect, log(tn) was entered into B as an offset with its coefficient 

equal to 1 (McCullagh and Nelder 1989).  Hence expanding eqns. (3.7), (3.8) and 

(3.9), 

( )
( )

1 2 3 4 5

*
6 7

log

log
i i i i i i i i i i

i i i i i

HERB CONIF SHRUB CWDVOL

  SHANNON TPH tn

λ β β β β β

β β

= + + + + +

+ +
 (3.10) 

( )
( )

1 2 3 4 5

*
6 7

logit

log
i i i i i i i i i i

i i i i i

p HERB CONIF SHRUB CWDVOL

  SHANNON TPH tn

α α α α α

α α

= + + + + +

+ +
 (3.11) 

( )
( )

1 2 3 4 5

*
6 7

logit

log
i i i i i i i i i i

i i i i i

HERB CONIF SHRUB CWDVOL

  SHANNON TPH tn

π α α α α α

α α

= + + + + +

+ +
 (3.12) 

where i = 1,…,n. 

We also assumed the observations were independent, so ignored any possible 

spatial correlations between traps.  The tenability of this assumption ultimately 

depended on the specific covariates included in the model; therefore, we disregarded it 
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to simplify model comparisons and interpretations, and in recognition of the fact that 

significance of predictors was not the primary interest in this part of the analysis.  The 

corrected Akaike Information Criteria (AICc, Burnham and Anderson 2004) was used 

as a measure for model comparison.  The data from the four species were analyzed 

with the pscl package (Zeileis et al. 2008) available from the open source statistical 

software R (R Development Core Team 2009). 

3.3.2 Generalized Linear Mixed Models (GLMMs) 

Most statistical models assumed independence of observations.  Nested 

subjects tended to be more similar due to proximity and similarities in the physical 

environment, biological community, and other factors on a spatial scale corresponding 

to the locations of nested subjects; hence their observations were not likely 

independent unless covariates inducing the spatial variability in influential conditions 

were included in the model.  A multilevel model assumes observations to be 

independent after conditioning on random effects of each level in the nested structure 

(Congdon 2005).  The primary motivation for eliminating autocorrelation was to have 

valid estimates for the standard errors of parameter estimates; otherwise, inferences 

might be incorrect if these different sources of variability were not taken into account 

and residual errors were autocorrelated (Congdon 2005).   

In this study, the GLMMs were formulated in the context of Bayesian 

Hierarchical Models (BHMs) despite possible issues of non-conjugacy and complex 

Monte Carlo Markov Chain (MCMC) techniques (Congdon 2006).  The method of 
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BHMs was a sequential specification of probability distributions for a series of 

parameters.  Given observed data x, the likelihood function of the observations with 

parameters ξ was L(x|ξ).  In Bayesian analysis, the parameters themselves were 

random variables and thus follow a probability distribution f(ξ) or commonly known 

as prior distribution (Congdon 2003).  A prior distribution amounted to modeling 

assumptions and hypotheses about the nature of the parameters without considering 

the data (Congdon 2006).  The parameters ξ might in turn depend on other parameters 

ψ (hyperparameters); therefore, the conditional prior distribution of ξ was f(ξ|ψ), and 

the hyperparameters themselves had prior distribution f(ψ).  In summary, the posterior 

distribution of parameters and hyperparameters f(ξ,ψ|x), i.e., updated knowledge on 

the prior beliefs of f(ξ|ψ) and f(ψ) with observed data, was (Congdon 2003), 

( ) ( ) ( ) ( ), | | |f x L x f fξ ψ ξ ξ ψ ψ∝  (3.13) 

When the posterior distribution had the same distributional form as the prior 

distribution, the prior distribution was said to be conjugate with the likelihood 

function and the advantage was analytical tractability (Congdon 2006).  However in 

general application, particularly GLMMs, one often encountered non-conjugacy 

whereby the posterior distribution had no closed-formed expression; e.g., using 

normally distributed errors in the log link for count data (Congdon 2006).  With the 

advent of sampling-based estimation methods such as MCMC techniques, one could 

relax the conjugacy restriction by choosing non-conjugate prior distribution.  The 

sampling method would provide estimates of distributional characteristics relating to 
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the parameters (Smith and Gelfand 1992).  When specifying complex random effects 

for multilevel discrete data, more complicated estimation methods might be 

considered, e.g., hybrid Gibbs-Metropolis sampling (Browne and Drapper 2000).  

Other possible approaches to the data analysis included penalized quasi-likelihood and 

iterative generalized least squares, but BHM had several advantages over the 

alternatives.  The primary advantages of the BHM were its ability to accommodate 

both the small sample size within clusters and the small number of higher level units, 

and its incorporation of all sources of uncertainty in estimating random effects 

(Congdon 2006). 

The three models considered in the second part of this study were the Poisson 

GLMM (POIS-GLMM), overdispersed Poisson GLMM (overPOIS-GLMM) and 

negative binomial GLMM (NB-GLMM).  Two random effects were considered: (1) a 

random effect for the nesting structure of sample points within experimental units, and 

(2) a random block effect consistent with the RCBD of the experiment.  The layout of 

the GLMM followed the construct of the RCBD in Littell et al. (2006) and BHM in 

Congdon (2005).  

The response variable and predictor variables for the models were defined as 

followed: 

yijk =  Observed count of individuals for a species at k-th trap in j-th 

treatment of i-th block 

HERBijk = Mean percent herb cover at k-th trap in j-th treatment of i-th block 
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CONIFijk =  Mean percent understory conifer cover at k-th trap in j-th treatment 

of i-th block 

SHRUBijk =  Mean percent tall shrub cover at k-th trap in j-th treatment of i-th 

block 

CWDVOLijk =  Mean coarse woody debris volume per ha at k-th trap in j-th 

treatment of i-th block (m3/ha) 

SHANNONijk = Shannon index of heterogeneity in vertical structure at k-th trap in j-

th treatment of i-th block 

*
ijkTPH   = Tree density at k-th trap in j-th treatment of i-th block (trees/100-ha) 

As in the previous section, the expectation of the trap-level count at k-th trap in 

j-th treatment of i-th block (λijk ) was conditioned on a set of predictors in the GLM 

context and corrected for the variation in trap nights.  The model formulation of the 

POIS-GLMM on the trap level was therefore as followed: 

( )~ijk ijky Poisson λ  (3.14) 

( )
( )

1 2 3 4 5

*
6 7

log

  log

ijk ij ij ijk ij ijk ij ijk ij ijk

ij ijk ij ijk ijk

b b HERB b CONIF b SHRUB b CWDVOL

b SHANNON b TPH tn

λ = + + + + +

+ +
 (3.15) 

where  

λijk =  Mean count of a species  

bhij =  h-th random coefficient for j-th treatment of i-th block 

tnijk =  Number of trap nights at k-th trap in j-th treatment of i-th block  
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Designation of bhij highlighted the fact that coefficients were random in a two-

level model.  On the unit-level, each coefficient was partitioned into an overall mean, 

a random block effect and a random error as followed: 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

ij i ij

ij i ij

ij i ij

ij i ij

ij i ij

ij i ij

ij i ij

b d e

b d e

b d e

b d e

b d e

b d e

b d e

μ

μ

μ

μ

μ

μ

μ

= + +

= + +

= + +

= + +

= + +

= + +

= + +

 (3.16) 

where 

μh =  Overall mean for the h-th random coefficient for the corresponding 

covariate 

dhi =  Random block effect for the h-th random coefficient of i-th block 

ehij =  Random error for the h-th random coefficient for j-th treatment of i-th block 

and h = 1,…,7 coefficients (an intercept plus six predictors); i = 1,…,m blocks (m = 6 

for PEMA and NEGI and m = 4 for CLGA and PEKE); j = 1,…,6 treatments; k = 

1,…,nij traps (where nij was 32–37 depending on the j-th treatment of i-th block).  This 

model specification implied that an ij combination represented a specific experimental 

unit. 

The random block effect dhi on the h-th coefficient bhij represented the average 

deviation of units in the i-th block from the overall mean for all blocks (Kuehl 2000).  
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The random error ehij on the h-th coefficient represented the residual for j-th treatment 

in i-th block after accounting for the average block effect.  

In matrix notation, let 

1 11 1

2 22 2

3 33 3

4 44 4

5 55 5

6 66 6

7 7 7 7

,      ,        ,       

ij iji

ij iji

ij iji

ij ijiij i ij

ij iji

ij iji

ij i ij

b ed
b ed
b ed
b ed
b ed
b ed
b d e

μ
μ
μ
μ
μ
μ
μ

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣

B U D E

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥

⎦

 (3.17) 

Equation (3.16) could be written as Bij = U + Di + Eij.  Furthermore, the full 

model for all ij on the unit-level was, 

11 11

16 16

21 1

2

26

1

6

1 1 0 0

1 1 0 0
1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

m

m

m

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥′= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

B E

B E
B D E

D
U

B
D

B

B

21

26

1

6

m

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

E

E

E

 (3.18) 

The full vector Bij ij∀ in eqn. (3.18) was assumed to follow a prior distribution 

characterized as a multivariate normal (MVN), 
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11

16

21

26

1

6

~ ,

m

m

MVN

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟′ +⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠

B U

B U
B U

ZGZ R
B U

B U

B U

 (3.19) 

where Z, G, and R are defined below.  To construct the variance-covariance matrix 

(ZGZ′ + R) in eqn. (3.19), the variance-covariance matrices of the random error and 

the random block effect were required.  Let 2
hσ  be defined as the variance of the 

random error associated with the h-th coefficient, and hhρ ′ as the correlation of random 

errors between h-th and h’-th coefficients, where h ≠ h’.  The prior distribution for 

random error vector Eij (eqn. 3.17) was assumed to follow a multivariate normal 

distribution (MVN),  

( )7 1~ ,ij RMVN ×E 0 Σ  (3.20) 

where 07×1 was a 7 × 1 vector of zeros and ΣR was a 7 × 7 variance-covariance matrix 

of the random error vector Eij, 

2
1 12 1 2 17 1 7

2
12 1 2 2 27 2 7

2
17 1 7 27 2 7 7

R

σ ρ σ σ ρ σ σ
ρ σ σ σ ρ σ σ

ρ σ σ ρ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  (3.21) 
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Furthermore, let 2
hτ  be defined as the variance of random block effect 

associated with the h-th coefficient, and hhφ ′ as the correlation of random block effect 

between h-th and h’-th coefficients, where h ≠ h’.  The prior distribution for random 

block effect vector Di (eqn. 3.17) was also assumed multivariate normal, 

( )7 1~ ,i DMVN ×D 0 Σ  (3.22) 

where ΣD was a 7 × 7 variance-covariance matrix of the random block effect vector 

Di, 

2
1 12 1 2 17 1 7

2
12 1 2 2 27 2 7

2
17 1 7 27 2 7 7

D

τ φ τ τ φ τ τ
φ τ τ τ φ τ τ

φ τ τ φ τ τ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  (3.23) 

For both ΣR and ΣD, we assumed nonzero correlation between any pairs of 

coefficients, hhρ ′  and hhφ ′ .  This assumption was reasonable given that estimated 

coefficients generally were correlated to a certain extent in regression models. 

The variance-covariance matrix ZGZ′+R in eqn. (3.19) can be constructed 

with the variance-covariance matrices ΣR and ΣD as components.  Based on eqn. 

(3.20), the full random error vector Eij ij∀ in eqn. (3.18) had a multivariate normal 

distribution as follows: 
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⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

E 0

E 0
E 0

R
E 0

E 0

E 0

 (3.24) 

where ( ) ( )6 6 Rm m• × •= ⊗R I Σ was the variance-covariance matrix of the full random error 

vector Eij ij∀  in eqn. (3.18) with dimension of (m·42) × (m·42), and ( ) ( )6 6m m• × •I is a 

identity matrix with dimension of (m·6) × (m·6). 

Based on eqn. (3.22), the full vector of random block effects Di i∀ in eqn. 

(3.18) followed a multivariate normal distribution as, 

1 7 1

2 7 1

7 1

~ ,

m

MVN

×

×

×

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

D 0
D 0

G

D 0

 (3.25) 

where m m D×= ⊗G I Σ was the variance-covariance matrix of the full random block 

effects Di i∀ in eqn. (3.18) with a dimension of (m·7) × (m·7), and m m×I was a m × m 

identity matrix.  Furthermore, let Z defined as the design matrix associated with the 

full random block effects Di i∀ in eqn. (3.18), 
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Consequently, 
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⎥
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 (3.27) 

where ZGZ′ has dimension of (m·42) × (m·42), identical to the dimension of R.  

Finally, the variance-covariance matrix for Bij ij∀ as specified in eqn. (3.19) was,  
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 (3.28) 

From eqn. (3.28), some important characteristics of the variance-covariance 

matrix of the coefficients are evident.  The variance-covariance of h-th coefficients for 

a unit was, 

( )

2 2
1 1 12 1 2 12 1 2 17 1 7 17 1 7

2 2
12 1 2 12 1 2 2 2 27 2 7 27 2 7

2 2
17 1 7 17 1 7 27 2 7 27 2 7 7 7

var ij D R

τ σ φ τ τ ρ σ σ φ τ τ ρ σ σ
φ τ τ ρ σ σ τ σ φ τ τ ρ σ σ

φ τ τ ρ σ σ φ τ τ ρ σ σ τ σ

⎡ ⎤+ + +
⎢ ⎥+ + +⎢ ⎥= + =
⎢ ⎥
⎢ ⎥

+ + +⎢ ⎥⎣ ⎦

B Σ Σ  (3.29) 

which explicitly showed the contribution of two variance components; a component 

from variation on the block level (ΣD) and a component from variation among the 

units within a block (ΣR).  The former measured the variation between block-level 

means of the h-th coefficient.  The latter measured the extent of variability in the h-th 

coefficient among the units within a block.  The correlations among coefficients for a 

given unit were interpreted similarly. 

On the other hand, coefficients from two different units within the same block 

were correlated as, 
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2
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2
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⎡ ⎤
⎢ ⎥
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⎢ ⎥
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⎢ ⎥⎣ ⎦

B B Σ  (3.30) 

The purpose of blocking was for units within a block to be as homogeneous as 

possible (Kuehl 2000).  As a result, units were more similar within a block than across 

blocks.  Therefore, it was necessary to account for the correlation of coefficients from 

different units within a block, and this was properly captured by eqn. (3.30). 

Lastly, it was assumed that covariances of coefficients among blocks were 

zero, 

( ) 7 7cov ,             where  for , 'ij i j i i j j′ ′ × ′= ≠ ∀ ∀B B 0  (3.31) 

The hyperparameters of the variance-covariance matrices and the general mean 

were given non-informative prior distributions.  A non-informative prior distribution 

reflects prior ignorance about the nature of the parameters, possibly due to lack of 

existing knowledge (Congdon 2006).  Therefore, it is preferable when data will 

dominate the determination of the posterior estimates of the parameters (Banerjee et 

al. 2004).  It is also commonly known as a flat prior distribution because it implies that 

a parameter is uniformly distributed between two limits such as –∞ and +∞ for a 

mean, or, between 0 and +∞ for a variance.  For the general mean, 
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where I7×7 is a 7 × 7 identity matrix. 

For the variance-covariance matrices of the random error (eqn. 3.21) and 

random block effect (eqn. 3.23), an inverse-Wishart distribution was assumed, 

~ ( , )R inv Wishart v−Σ Ω  (3.33) 

~ ( , )D inv Wishart v−Σ Ω  (3.34) 

where Ω was a 7 × 7 identity matrix and v = 7.  The inverse-Wishart distribution is the 

multivariate generalization of the inverse gamma distribution, and has commonly been 

used as a conjugate prior distribution for variance-covariance matrix (Congdon 2006).  

The latter use has been appealing because the distribution was defined on a real-valued 

positive definite matrix, which is an important characteristic of the variance-

covariance matrix.  The pdf of the inverse-Wishart distribution for ΣR (or ΣD) was 

(Congdon 2006, Johnson and Wichern 2007), 
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where Ω was the scale parameter, v was the degrees of freedom, t was the t × t 

dimension of ΣR, tr() was the trace of the matrix product and Γ(·) was the gamma 
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function.  As it was for ΣR and ΣD, the matrix Ω is often an identity matrix with the 

same dimension of a variance-covariance matrix and v to equal the order of the matrix 

(Chib and Winkelmann 2001).  

The overPOIS-GLMM extended the POIS-GLMM by including a trap-level 

random error term with the predictors in eqn. (3.15).  A POIS model in general might 

be subjected to overdispersion because it did not have a variance parameter to capture 

the variation in the data (Gelman and Hill 2007).  Therefore, the trap-level random 

error εijk was added to directly model the overdispersion, which was meant to capture 

possibly additional level of variation beyond what was already accounted for by the 

multilevel modeling (Congdon 2005).  Extending eqn. (3.15),  

( )
( )

1 2 3 4 5

*
6 7

log

  log

ijk ij ij ijk ij ijk ij ijk ij ijk

ij ijk ij ijk ijk ijk

b b HERB b CONIF b SHRUB b CWDVOL

b SHANNON b TPH tn

λ

ε

= + + + + +

+ + +
 (3.36) 

The εijk was assumed normally distributed with mean 0 and variance 2
εσ .  Thus, 

a higher 2
εσ value would indicate greater overdispersion. A non-informative uniform 

prior distribution was given for the variance 2
εσ , 

( )2 ~ 0,1000000Uεσ  (3.37) 

Congdon (2005) cautioned that adding a random error term generally improved 

the model fit but may risk overparameterizing the model.  However, the model 

converged satisfactorily for the data from all four species.   
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As mentioned previously, the NB model was an extension of the POIS model 

to account for overdispersion in the data.  Following Ntzoufras (2009) and Zuur et al. 

(2009), the NB-GLMM was specified as, 

( )~ ,ijk ijky NegBin p θ  (3.38) 

where ( )ijk ijkp θ θ λ= + and NegBin() denotes a negative binomial distribution.  

Subsequently, 

( )
( )

1 2 3 4 5

*
6 7

log

  log

ijk ij ij ijk ij ijk ij ijk ij ijk

ij ijk ij ijk ijk

b b HERB b CONIF b SHRUB b CWDVOL

b SHANNON b TPH tn

λ = + + + + +

+ +
 (3.39) 

and a non-informative gamma prior distribution was assumed for the parameter θ,  

( )~ 0.001,0.001gammaθ  (3.40) 

As in the GLM, the parameter θ captured overdispersion in the data not 

accounted for by the multilevel model.  It would be ideal to have θ parameterized for 

each unit, i.e., θij.  However, initial fitting of such a model failed to converge, probably 

due to overparameterization. 

To facilitate comparison between the GLM and GLMM, posterior estimates of 

a given h-th coefficient were averaged over all units,  

6

1 1
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m

hij
i j

h

b
b

m
= ==

×

∑∑
 (3.41) 

and the associated 95% credible interval (analogous to confidence interval; Congdon 

2006 ) was reported.  The three GLMMs were specified and fitted using WinBUGS 
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(Lunn et al. 2000).  Three disparate sets of initial values (chains) were used.  The 

MCMC algorithm was run with 250,000 iterations and the initial 20,000 iterations 

were dropped.  The convergence of the algorithm was judged from trace and history 

plots of the MCMC samples, the Brooks-Gelman-Rubin (BGR) statistic (Brooks and 

Gelman 1998), and the Monte Carlo (MC) errors of estimated parameters.  The BGR 

statistic assessed convergence by comparing between-chain and within-chain 

variability (Ntzoufras 2009).  A model was considered to have attained convergence 

when the BGR statistic was < 1.05.  The MC errors measured the variation due to 

simulation for estimated parameters (Ntzoufras 2009).  The parameters were estimated 

with high precision if the MC errors were relatively low compared to the 

corresponding estimated posterior standard deviations (Ntzoufras 2009).   

The trace and history plots of the MCMC samples and the BGR statistics 

showed convergence for all three models and for all four species.  The MC errors on 

average were less than 2% of the corresponding posterior standard deviations of the 

estimated parameters.  Thinning of the MCMC samples was necessary for some 

parameters to reduce the autocorrelation between samples.  Model comparison for 

each species was based on Deviance Information Criterion (DIC) of Spiegelhalter et 

al. (2002).  The DIC was intended as a generalization of Akaike Information Criterion 

(AIC) that measured model complexity in hierarchical random effect models 

(Congdon 2006, Lunn et al. 2000); thus smaller values indicated better fitting models. 



88 

 

3.4 RESULTS 

3.4.1 Zero-modified Models (ZMMs) 

Comparison among ZMMs showed two consistent results across species.  First, 

estimates from the hurdle component were identical between HPOIS and HNB, but 

not for the zero-inflation component between ZIP and ZINB (Table 3.1–3.4).  The 

explanation was straightforward.  The H model conveniently maximized the log-

likelihood functions of the hurdle and the truncated-count components separately 

(Mullahy 1986).  Conversely, the ZI models did not have this flexibility due to the 

mixture specified in the pmf (Lambert 1992).  When a predictor had significant 

coefficients in both the zero-inflation and the hurdle components, the signs of the two 

estimates were reversed (Table 3.1–3.4).  This result was expected due to the 

contrasting definitions of p and π; the zero-inflation component predicted the 

probability of an observation in the perfect state whereas the hurdle component 

predicted the probability of observing a positive count (Zeileis et al. 2008). 

Predictors CONIF, CWDVOL and TPH* were significantly correlated with the 

number of PEMA captures (Table 3.1 and 3.5).  The POIS and NB models suggested 

that number of captures declined with an increase in each of these three variables.  In 

the H models, however, these same predictors only discriminated between plots with 

and without any captures of this species; i.e., the predicted value of π, the probability 

of observing at least one capture, declined with increasing levels of CONIF, 

CWDVOL and TPH*.  Habitat variables were not significantly effective in estimating 
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the number of captures conditional on presence of PEMA (≥1 capture).  No 

relationship could be detected under the ZIP model between the habitat descriptors 

and number of captures.  Conversely, the three predictors plus SHRUB significantly 

correlated with the count under the ZINB model, but the large estimated coefficients 

and standard errors in the zero-inflation component made the parameter estimates 

unreasonable and the model results in general unreliable. 

In contrast to Peromyscus maniculatus, habitat variables were significantly 

correlated with both number of zero observations and conditional counts for 

Clethrionomys gapperi (CLGA; Table 3.2 and 3.6).  Number of captures declined with 

increasing herb and small shrub cover (HERB) in the POIS and NB models.  

Similarly, the probability of crossing the zero hurdle (π) declined with increasing 

HERB in the H models, and the probability of observing zero captures (p) increased 

with increasing HERB in the ZI models.  All models predicted a lower number of 

captures with increasing SHRUB, and the H models also predicted a declining 

probability of crossing the zero hurdle with increasing SHRUB.  The ‘effect’ of 

CONIF on Clethrionomys gapperi was generally positive under POIS, NB and ZINB 

models, increasing probability of crossing the zero hurdle, and decreasing probability 

of observing zero in ZIP model.  CWDVOL was positively correlated with number of 

captures only for the POIS and ZIP models.  Vertical complexity (SHANNON) was 

positively correlated with number of captures only in the POIS and NB models, but an 

increase in this habitat variable increased the probability of crossing the zero hurdle 

and reduced the probability of observing a zero in the ZIP model.  Increasing stand 
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density (TPH*) appeared to increase the count in the POIS, NB and HPOIS models as 

well as increased the probability of crossing the zero hurdle. 

The predictors HERB and TPH* had a consistently positive effect on 

Neurotrichus gibsii (NEGI) captures (Table 3.3 and 3.7).  Increasing level of either 

predictors increased the number of captures in POIS and NB models, increased the 

probability of crossing the zero hurdle in the H models and decreasing the probability 

of observing a zero in the ZI models.  Oddly, a conflicting result was the negative 

correlation of TPH* with captures in the ZIP model.  The ZIP model predicted 

increasing NEGI captures with increasing CONIF, and the HPOIS model predicted a 

decreased in the captures with increasing SHANNON.  Otherwise, both predictors 

were unrelated to number of captures and other parameters.   

 Surprisingly, the ZINB model for Peromyscus keeni (PEKE) failed to 

converge (Table 3.4).  Number of captures increased with increasing HERB in all 

models (Table 3.4 and 3.8), and likewise the probability of crossing the zero hurdle 

increased with increasing HERB.  CONIF was positively correlated with number of 

captures, but only in the POIS and NB models.  Increasing CWDVOL increased the 

probability of crossing the zero hurdle in the H models and the number of captures in 

the POIS and ZIP models.  Oddly, the results from the ZIP model for SHANNON 

appeared contradictory; declining in both number of captures and probability of 

observing zeros with increasing SHANNON. 

NEGI captures fitted to the NB model resulted in the greatest overdispersion 

relative to other species and models (0.08, Table 3.7).  For a species, the 
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overdispersion was smaller when captures were fitted to either the ZINB or HNB 

models compared to the NB model (e.g. CLGA, Table 3.6); i.e., the predicted θ̂  was 

larger for the former two models.  However, The HNB model returned unreasonably 

small θ̂  for NEGI and PEKE, which might indicate a poor fit of the model for 

infrequently captured species (Table 3.3 and 3.4). 

The ranking of model goodness-of-fit based on AICc was slightly different 

between species (Table 3.1–3.8).  The two best models for PEMA were the NB and 

ZINB models, the two best for both CLGA and NEGI were the ZINB and HNB 

models, and the two best for PEKE were the ZIP and NB models.  The POIS model 

provided relatively poor fit for all species by having the highest AICc values (Table 

3.5–3.8).  Besides that, the POIS model also consistently under-predicted frequency of 

zeros and over-predicted frequency of ones (Figure 3.3).  Although some slight 

variation was evident, all other models appeared to predict the marginal count 

frequency of all species fairly well (Figure 3.3).  A surprising result was that the NB 

models predicted frequency of zero count as well as the ZMMs (Figure 3.3). 

3.4.2 Generalized Linear Mixed Models (GLMMs) 

Results between the GLMs and GLMMs were notably different (Table 3.5–

3.8).  The 95% credible intervals for estimates of coefficients from the GLMMs were 

consistently wider than the corresponding 95% confidence intervals from the GLMs, 

regardless of species.  As a result, some coefficients that were significant under GLM 

became non-significant under the corresponding GLMM, e.g., coefficients associated 
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with TPH* for PEMA, CLGA and NEGI (Table 3.5–3.7).  Effects of predictor 

variables in the GLMMs were always greater than the effects of the same variable in 

the corresponding GLM, e.g., CONIF and CWDVOL for PEMA (Table 3.5).  For the 

less frequent species, NEGI and PEKE, number of captures increased with increasing 

HERB in the GLM but decreased instead in the GLMM (Table 3.7 and 3.8).   

In the more frequently captured species, overdispersion under the NB-GLMM 

was less than under the NB GLM, i.e., θ  from the NB-GLMM was larger (Table 3.5 

and 3.6).  The relative overdispersion among species changed between the GLMs and 

the GLMMs.  Overdispersion of the NB GLM fitted to the PEMA data was 

intermediate and comparable to PEKE, but overdispersion of the NB-GLMM fitted for 

this same species was the least and similar to CLGA.  Conversely, overdispersion 

estimates were comparable between the GLMs and GLMMs for the two less frequent 

species (Table 3.7 and 3.8).  The relative overdispersion among species as indicated 

by εσ  from overPOIS-GLMM was in agreement with the NB-GLMM (Table 3.5–

3.8). 

The estimated effects of CWDVOL illustrated the variability in posterior 

estimates among units.  The effect of CWDVOL on the number of PEMA captures 

was more strongly negative for the GLMM than for the GLM, and the effect on CLGA 

changed from a positive effect in the POIS GLM to a negative effect in the POIS-

GLMM (Table 3.5 and 3.6).  For NEGI and PEKE, CWDVOL had no significant 

effect on number of captures predicted by the GLMs, but was negatively correlated 
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with number of captures in the GLMMs (Table 3.7 and 3.8).  The cause of this 

behavior was revealed by examining posterior estimates for individual experimental 

units (Figure 3.4).  CWDVOL exhibited a range from a negative to neutral effect on 

number of captures.  For NEGI, almost half of the units exhibited strongly negative 

posterior estimates, although the 95% credible intervals were relatively wide (Figure 

3.4C).  Estimates for the CWDVOL coefficient varied widely among experimental 

units, so caution should be exercised when inferring general effects of CWDVOL ( 5b ) 

among different geographic locations.  

Posterior estimates among units for other predictors were usually not as 

dichotomous as CWDVOL, as exemplified by the predictors HERB and SHANNON 

for CLGA (Figure 3.5).  The effect of HERB on number of CLGA captures among 

units distributed regularly from marginally significant positive effect to strong 

negative effect with a majority closed to neutral effect (Figure 3.5A).  Interestingly, 

the posterior estimates for 40%A treatment (Treatment 4) could be neutral, 

significantly positive or significantly negative depending on units ( 2 4ib , Figure 3.5A).  

On the other hand, the effects of SHANNON among units consistently concentrated 

on the positive side but with different levels of significance (Figure 3.5B).  Despite a 

variety of effects or significance levels among units, the general effects of HERB ( 2b ) 

and SHANNON ( 6b ) on CLGA captures were significantly negative and positive, 

respectively (Table 3.6).  
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Differences in posterior estimates of coefficients were small among the 

alternative (POIS, NB and overPOIS) GLMMs for both PEMA and CLGA.  However, 

this was not the case for the less frequent species, NEGI and PEKE.   The number of 

NEGI captures declined significantly with increasing HERB only in the POIS-GLMM, 

and the posterior intercept from the overPOIS-GLMM for this same species was 

significantly more negative and imprecise than in the other models (Table 3.7).  For 

PEKE, the posterior intercept was marginally different between the overPOIS-GLMM 

and the two other GLMMs (Table 3.8).  The overPOIS-GLMM had the lowest DIC 

relative to the POIS and NB GLMMs for all species, and the overPOIS-GLMM 

improved the fit of the less frequent species particularly well.  Surprisingly, the NB-

GLMM had a poorer fit (higher DIC) than the POIS-GLMM for all species, in contrast 

to the superior performance (lower AICc) of the NB GLM relative to the POIS GLM.  

The posterior standard deviation of random error hσ  (eqn. 3.21) had consistent 

patterns across species and models (Figure 3.6).  Among the coefficients, the intercept 

had the largest posterior standard deviation 1σ  implying that the estimates were highly 

variable among units, with highest variability in NEGI (Figure 3.6C).  Furthermore, its 

wide 95% credible interval indicated imprecision but the precision seemed to improve 

going from the POIS-GLMM to other models; at least for species other than PEMA 

(Figure 3.6B–D).  The posterior standard deviations of the coefficients for SHANNON 

( 6σ ) and TPH* ( 7σ ) were the second largest and were even comparable to that of 

intercept from the NB-GLMM and overPOIS-GLMM fitted to NEGI and PEKE 
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captures (Figure 3.6C and D).  Although the results are not shown, all posterior 

correlations between random errors of any pair of coefficients 'hhρ  (eqn. 3.21) were 

non-significant.  However, some correlation was evident between intercept and the 

coefficient for SHANNON when the POIS-GLMM was fitted to NEGI captures with 

posterior estimate of -0.54 for 16ρ  and 95% credible interval of (-0.95, 0.29).  

Similar to the results for hσ , the largest posterior standard deviation for the 

random block effect hτ  (eqn. 3.23) was associated with the intercept, implying that 

mean intercept was more variable among blocks than the coefficients associated with 

habitat descriptors (Figure 3.7).  The wide 95% credible intervals indicated imprecise 

estimates, but in this case model choice did not improve the precision except for 

PEKE (Figure 3.7D).  The posterior standard deviations for coefficients associated 

with habitat variables were all comparable to one another (Figure 3.7).  Despite some 

variation among blocks, the posterior block effects hid  on all coefficients were not 

significantly different from zero across all blocks and species, as indicated by 95% 

credible intervals overlapping with zero (Figure 3.8).  Although results are not shown, 

posterior correlations between random block effects of any pair of coefficients 'hhφ  

(eqn. 3.23) were non-significant.   

3.4.3 Small Mammal Responses to Habitat Structures 

The overPOIS-GLMM with backward and forward eliminations in variable 

selection was used to finalize the four small mammal species responses to habitat 
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structures.  Considering the results from previous sections, overPOIS-GLMM would 

be the best choice because the model properly accounted for the sources of variation in 

the data, i.e., nesting of traps, random block effects and overdispersion, and 

consistently had the lowest DIC among the alternatives.  Although the results among 

GLMMs were similar for the more abundant species, they were not so for the less 

frequently captured species (Table 3.5–3.8).  Therefore, overPOIS-GLMM would be a 

general model applicable to species with different capture frequencies.  

The final results (Table 3.9) were in general agreement with those reported in 

Table 3.5–3.8, with minor exceptions for PEMA and NEGI.  The predictor TPH* was 

significant under variable selection in addition to CONIF and CWDVOL, and all three 

were negatively correlated with abundance of PEMA (Table 3.9).  For NEGI, SHRUB 

was significant in addition to CWDVOL after eliminating other variables, and it had a 

negative effect on captures (Table 3.9).  The correlation between CLGA captures and 

habitat variables HERB and CWDVOL was negative, but between CLGA captures 

and SHANNON was positive.  Both HERB and CWDVOL were negatively associated 

with PEKE captures.  Lastly, the DIC values for the final models of all four small 

mammal species (Table 3.9) were higher than those for overPOIS-GLMM without 

variable selection (Table 3.5–3.8), but they were still lower than the alternative POIS-

GLMM and NB-GLMM (Table 3.5–3.8).  
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3.5 DISCUSSION 

Knowledge about the relationship between habitat structure and the presence 

and abundance of target species or species groups are required to actively conserve 

biodiversity in managed forests.  This knowledge is built from sampling the target 

population and its habitat structure, and then applying appropriate statistical methods 

to infer relationships.  Differences in detection probabilities among different species 

are caused by differences in population size and specific aspects of the sampling 

design that include spatial and temporal distribution and sampling intensity.  

Therefore, the choice of statistical models should consider the expected detection 

frequency and the characteristics of the sampling design.  Analysis of the DEMO 

small mammal data assessed the relative performance of alternative statistical models 

for four species that differed in capture frequency but were sampled under the same 

sampling design.  The zero-modified models appealed to the common problem of 

observing a high frequency of zeros and provided a theoretical basis for modeling 

them.  Multilevel models addressed the hierarchical structure of the dataset so that 

sources of variances were properly quantified and inferences were correct.  Other 

sources of variation such as random block effects were easily modeled under a 

Bayesian framework.  In the end, the goal was to test the consistency of inferences 

across models and species and to identify the most robust statistical models for species 

with a wide range in detection frequency. 
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3.5.1 Zero-modified Models (ZMMs) 

Any given statistical model for analyzing the relationship between number of 

captures and habitat attributes, particularly those influenced by silvicultural 

treatments, assumes the observed count of a species follows some statistical 

distribution.  The ZI models assume that observations are made under two possible 

conditions, the first being inhospitable habitat with conditions that do not support the 

presence of the target species (the perfect state), and the second a tolerable habitat (the 

imperfect state) in which the number of captures may vary.  The parameter p measures 

the probability of an observation being in the inhospitable habitat.  A significant 

predictor of p indicates that the latter is conditional on that specific habitat feature.  As 

mentioned earlier, the H models assume the imperfect state for all observations; i.e., 

all observations are made in tolerable habitat.  The parameter π in the H models 

measures the probability that the target species is present; i.e., that it crosses the zero 

hurdle.  A significant predictor of π implies that this probability is conditional on the 

habitat feature represented by that specific predictor.  The same or a different set of 

predictors may be significantly correlated with the number of captures, conditional on 

the habitat being generally suitable for the species.  In short, the ZI and H models 

imply different interpretation of the ecological process that generates the observed 

data; zeros under the ZI models are assumed to be observed in a mix of suitable and 

unsuitable habitats, while all zeros in the H models are implied to be observed in 

suitable habitats only. 
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Some insights may be gained by assessing the consistency of relationships 

between number of captures and habitat variables among the alternative statistical 

models, and whether this consistency varies between relatively frequent and relatively 

infrequent species.  The models are linked by considering the POIS model as the 

parent model for the others.  The NB model extends the POIS model by accounting for 

overdispersion that could result from added variability attributable to omitted 

covariates (Minami et al. 2007), a clustered Poisson process (McCullagh and Nelder 

1989), inter-subject variability (McCullagh and Nelder 1989), or temporal dependency 

between observations (Rose et al. 2006).  Nonetheless both models assume a 

parsimonious ecological process in that the expected number of captures is correlated 

with some predictors of habitat structure.  The ZMMs attempt to elaborate on the 

simpler POIS and NB processes by accounting for a secondary process that yields a 

higher number of zero observations than expected.  The same predictors or different 

predictors then describe both the POIS and NB expectations and the added theoretical 

structure for generating excess zeros.  In essence, the ZMMs are extensions of the 

POIS and NB models, because the latter are subsumed in the former.  This relationship 

is illustrated by the empirical results from four small mammal species in the DEMO 

study.  

PEMA is a relatively abundant generalist species that inhabits a wide range of 

habitat types (Moses and Boutin 2001, Muzika et al. 2004).  Sullivan et al. (2008) 

found the species to be unaffected by clearcut, single seed-tree, group seed-tree and 

patch cut treatments.  The presumed generalist behavior of this species is in general 
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agreement with the results, particularly with respect to the lack of significant habitat 

variables for predicting number of captures in the ZMMs.  CONIF, CWDVOL and 

TPH* were significant predictors of mean number of captures under the POIS and NB 

models; however, the H models indicated that the predictors could also help 

distinguish the habitat conditions in which the species was less likely to be present.  In 

fact, the generalist nature of the species would theoretically cause it to conform to a H 

model rather than a ZI model, because the H model assumes the habitat, in which 

sampling is carried out, is hospitable to PEMA. 

For CLGA, both ZI and H models are plausible and supported by the results.  

The choice of a model for best representing the underlying ecological process would 

depend on the assumptions about within-unit habitat variability.  CLGA has been 

described as a good indicator of old-growth forest conditions (Sullivan et al. 2005), 

and does not respond negatively to light regeneration harvests such as single-tree 

selection treatments in boreal forests (Von Trebra et al. 1998).  However, a drastic 

reduction in population size is observed in clearcuts (Klenner and Sullivan 2003) or 

when residual overstory basal area of a harvested stand falls below approximately 5.1 

m2/ha (Medin 1986).  Runciman and Sullivan (1996) suggested that the reduction was 

due to removal of vegetation structure and shifts in species composition that 

constituted preferred habitat preferences of the species.  A ZI model is appropriate for 

the DEMO data because the treatments created some areas with inhospitable habitat 

conditions within a unit.  This effect was particularly strong for the aggregated 

treatments (15%A or 40%A) because the cut area between undisturbed aggregates 
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created two very distinct habitats.  On the other hand, a H model is more appropriate if 

the change in vegetation structure was not so severe as to eliminate the population, 

e.g., the 75% retention treatment.  Regardless of which assumption holds, the response 

of CLGA captures to a given habitat variable is consistent across models: negative 

association with HERB and SHRUB but positive association with CONIF, CWDVOL, 

SHANNON and TPH*.  This consistency strengthens the evidence for the general 

relationship.  

For the less frequent species NEGI and PEKE, the link across models is harder 

to interpret.  Consistently for both species, the number of captures increased with 

increasing HERB in the POIS and NB models, but the ZMMs distinguished between 

HERB effects on presence and HERB effects on number of captures.  Other habitat 

variables such as SHANNON lacked significant correlation with number of PEKE 

captures in the POIS and NB models, but this variable was a significant predictor for p 

in the ZIP model and λ in the HPOIS model.  The predicted coefficients associated 

with SHANNON in the ZIP model for PEKE are difficult to explain.  The simulations 

described by Lam et al. (2010; Chapter 2) showed that ZMMs estimated highly 

imprecise and positively error in parameter estimates for distributions generated by 

combinations of λ and p that would be typical of rare species.  This tendency might 

extend to the situation here in which parameters λ and p are conditioned on predictors 

in the GLM context.  A carefully crafted simulation study with predictors will 

probably be required to fully understand the effect of covariates that result in a suite of 

conditional distributions that include those with an inflated number of zeros at one end 
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of covariate range, grading into those with few zeros and an expectation much larger 

than zero at the other end of the covariate range.  Raphael (1984) and Carey and 

Johnson (1995) suggested that NEGI and PEKE were more closely associated with 

older forests, but these species have rarely been studied.  Nonetheless, ZMMs seem 

capable of identifying statistically significant relationships between infrequent species 

and habitat variables.  This class of statistical models therefore may prove useful in 

other biodiversity studies that aim to link habitat features to relative abundance of 

infrequent species, although some caution should be exercised until these models are 

more fully understood.  

The above discussion focuses on comparing various specifications of ZMMs.  

However, the POIS and NB models can still often be valid models.  For example, the 

abundance of a given species might not depend on latent structures such as those 

implied by ZMMs, but rather reflect unexplained heterogeneity such as that introduced 

by omitting key covariates (Minami et al. 2007), including interaction with other small 

mammal species.  When the precise mechanism that produces overdispersion is 

unknown, the NB model would be an appropriate model (McCullagh and Nelder 

1989).  In reality, the data generating process is never known.  Goodness-of-fit criteria 

might narrow the number of feasible models, but selection of the model should also 

based on as much theoretical understanding of the underlying ecological process as 

possible (Lord et al. 2005). 
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3.5.2 Generalized Linear Mixed Models (GLMMs) 

The structure of the GLMMs resulted in individual regression models fitted to 

the data for each unit.  This process properly accounted for the nesting structure of the 

traps.  Because units were blocked by design, the unit-level coefficients accounted for 

the blocking in a fashion similar to an ANOVA model for RBCD that assumed blocks 

were random (Kuehl 2000).  However, treatment effects were excluded from this 

analysis under the assumption that the habitat structural variables more directly 

reflected the effects of treatments on residual stand structure.   

The structure of the GLMMs explained some of the differences in results from 

the GLMs.  First, the GLMM properly accounted for the degrees of freedom during 

estimation.  Coefficients were estimated from the 32–37 traps within treatment units 

instead of the 787–1181 traps that were pooled in the GLMs.  This recognition of 

hierarchical sampling explained the fact that 95% credible intervals were wider than 

95% confidence intervals; i.e., the smaller sample size resulted in less precise 

estimates.  If vegetation structure had been measured at all grid points, sample size 

would have doubled to 63–64 and precision would have been improved.  This 

expanded description of vegetation structure would have allowed inclusion of small 

mammal data at all grid points, and thus provided more information to detect trends 

within experimental units.  Although these additional measurements may not have 

been necessary for detecting treatment effects on the level of experimental units, they 
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would have the added benefit of providing stronger insight into mechanisms driving 

responses at within-unit level.    

By fitting individual regressions for each unit, the GLMM structure 

appropriately captured variation in the coefficients among units.  Data pooling in the 

GLMs could have masked the within-unit relationships between predictors and 

number of captures.  As one example, the number of captures was positively 

correlated with a predictor when ignoring the units (data pooling), but the relationship 

became negative within units after block and unit effects were accounted for.  In other 

words, the trend was positive across units but negative within units.  These differences 

among levels in the hierarchy probably explain the difference between the average of 

coefficient estimates from the GLMMs and the estimates from the GLMs.  A related 

benefit was the confidence gained by observing consistency in the association of a 

predictor with number of captures among units.  Parameter estimates were expected to 

be generally consistent in direction but different in value among units because the 

levels of a predictor only reflect treatment effects and not the effect of other covariates 

distinguishing the individual experimental units.  This was the case for most predictors 

as exemplified by SHANNON for CLGA (Figure 3.5B).  Consistency in a covariate 

effect across units provides strong evidence for the general effect on number of 

captures.  Conversely, inconsistency in a covariate effect, e.g., HERB for CLGA 

(Figure 3.5A), implies interaction between that covariate and unobserved 

characteristics of the units receiving the same treatment.   
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The use of BHM in the DEMO study has several advantages.  One of them is 

improved precision in the coefficient estimates for each unit and facilitation of 

inference on the collection of units (Congdon 2006).  This comes from the structure of 

BHM whereby parameters are drawn from the same probability density conditioned on 

hyperparameters.  For example, the intercept b1ij (eqn. 3.19) from each unit was drawn 

from a multivariate normal distribution with mean μ1 and a complex variance-

covariance matrix that described the relationship of b1ij to other coefficients.  

Conceptually, information from all units collectively determines the probability 

density for the intercept parameter.  The estimate for unit ij is then a form of weighted 

average between information from that unit and the pooled information.  This structure 

is particularly efficient when units with fewer observations are included (Gelman and 

Hill 2007), although the within-unit sample size of 32–37 in DEMO did not differ 

excessively.  

A related advantage of BHM is that it provides an estimate for species and 

units in which no captures were observed.  The number of units with no PEMA 

captures was 6, for no CLGA captures was 2, for no NEGI captures was 17, and for no 

PEKE captures was 6.  In classic regression, two approaches are typically taken.  In 

the first, one common line is fitted to all sampling units across all experimental units, 

but the resulting estimates have biased standard errors due to the autocorrelation 

within experimental units.  In the second, the line is fitted to averages for the 

experimental units and the resulting relationship is only applicable for estimating 

mean responses of individual units.  In the BHM context, unique regression estimates 
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are obtained for all units, even those with only zero observations in all sampling units; 

however, the resulting precision may be low.  Units with no captures do contain 

relevant information, and they are shared to predict the hyperparameters of the 

probability densities.  An excellent example was the CWDVOL, where some of the 

estimated negative effects of this variable came from units with no captures for the 

target species.  In essence, no information is “lost” and inference is appropriate for the 

whole study. 

The parameters σh and τh measure variability in a coefficient among units and 

blocks, so increasing sample size does not affect this inherent variability (Gelman and 

Hill 2007).  A high value of σh suggests that the marginal effect of a given habitat 

variable on number of captures is smaller in some units than in others.  This behavior 

may result from units having a different range in the habitat variable, from an 

interaction between this variable and others, or from the effects of unobserved 

characteristics of units such as fine woody debris (Manning and Edge 2004), unit 

history or geographical location (Carey and Johnson 1995).  Blocking of experimental 

units is motivated by expected heterogeneity among blocks, so τh, as a source of 

variation in unit-level coefficients is expected.  From a technical perspective, σh and τh 

describe the variation of the population for which bhij and dhi are estimated (Gelman 

and Hill 2007).  If the blocks and units are random draws from a given population, σh 

and τh should represent the population variability and be applicable to new units not 

currently represented in the study (Gelman and Hill 2007).  Hence the posterior σh and 

τh are generally higher than what are suggested by the observed data.  
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As also noted by Congdon (2005), the overPOIS-GLMM had the best 

goodness-of-fit, especially for species having large overdispersion.  The trap-level 

random error εijk could be referred to as the unstructured random effect because it was 

intended to capture undefined variability in the data.  This variability may come from 

omitted covariates, spatial and temporal autocorrelation, or even perhaps different data 

generating processes such as zero-inflation suggested by ZI models.  Thus, the εijk 

could potentially be structured to account for spatial autocorrelation between traps in a 

unit with methods described by Schabenberger and Gotway (2005).  However, Mantel 

and Moran’s I tests for spatial autocorrelation in each unit indicated lack of spatial 

autocorrelation, with only one or two units showing weak evidence of autocorrelation.  

Hence, to avoid further complexity and overparameterization of the overPOIS-

GLMM, direct modeling of spatial autocorrelation was not pursued.  The highest 

overdispersion indicated by 2
εσ occurred for NEGI captures, probably because this 

species was not observed on approximately 50% of the units.  Parameter εijk may have 

accounted for the large group of traps that failed to capture any individual, or the 

effects of unobserved covariates.  Including the trap-level random error in the model 

for the infrequent species also caused the posterior intercept to differ significantly 

from that of the other GLMMs, but had little effect on coefficients associated with 

habitat variables.  This result coupled with a better DIC suggested that the overPOIS-

GLMM may be a more suitable model for the infrequent species.  
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Lastly, models documented in the literature differ between small mammal 

species mainly due to differences in frequency of captures and the statistical methods 

applied.  The abundant species, PEMA and CLGA, are well studied in their natural 

habitats and their responses to silvicultural treatments are relatively well understood.  

A review of the literature indicated that the habitat associations of NEGI and PEKE 

have seldom been studied; NEGI was captured in eight studies but was only analyzed 

in four, and PEKE was captured in four studies but analyzed in only two.  In addition 

to accounting for the different sources of variation imposed by the sampling and 

experimental design, the GLMMs accommodated the relative rarity of these species 

and identified some tentatively important habitat variables.  Thus, these methods are 

promising alternatives for modeling habitat relationships in species that are observed 

over a wide range of capture frequency. 

3.5.3 Small Mammal Responses to Habitat Structures 

Habitat variables CONIF, CWDVOL and TPH* were negatively correlated 

with PEMA captures for the final overPOIS-GLMM.  In a companion study, Gitzen et 

al. (2007) found that the capture rates of PEMA increased as retention level decreased; 

a result consistent with our analysis.  The relationship between CWDVOL and number 

of PEMA captures, however, has been inconsistent among different studies; e.g., Craig 

et al. (2006) concluded that down wood was not a critical habitat factor, but Manning 

and Edge (2004) suggested otherwise.  Nonetheless, our study suggested that 

CWDVOL might be an important predictor for PEMA abundance. 
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The final model suggested that HERB and CWDVOL were negatively 

correlated with CLGA captures but that SHANNON was positively correlated.  Gitzen 

et al. (2007) concluded that the number of CLGA captures was independent of the 

variable-retention treatments; partially supporting our analysis in that TPH* was not a 

significant predictor for CLGA abundance.  However, their analysis focused on unit-

level responses to unit-level attributes, in contrast to our analysis that addressed 

within-unit responses and to within-unit covariates.  The contrasting results therefore 

suggest that CLGA responses differ between these two spatial scales.  As noted, 

CLGA is considered more closely associated with old-growth forest conditions, which 

may be expressed in higher overstory vertical complexity.  Sullivan et al. (2005) 

suggested that stumps, rotting logs and exposed roots could help provide a moist 

micro-climate that was preferable to CLGA, but DEMO results suggested that a 

similar effect may not necessarily be imposed by increasing CWDVOL.  

Gitzen et al. (2007) found that the closed-canopy species NEGI showed 

inconsistent or no response to the variable-retention treatments.  Suzuki and Hayes 

(2003) also found that thinning treatments did not affect the abundance of this species.  

Our analysis supported these findings in that stand density was not a significant 

predictor for NEGI captures.  The final model described a negative correlation 

between SHRUB and CWDVOL and number of NEGI captures, with large 

overdispersion.  Contrary to our study, Carey and Johnson (1995) predicted a positive 

stand-level relationship between CWDVOL and the population estimates for NEGI.  

Their small mammal trapping design was a 10 × 10 grid with 40-m spacing, which 
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was comparable to the DEMO study.  However, the regression was carried out with 

stand-level mean habitat variables.  Thus, the discrepancy between studies could be 

due to the different spatial scales in the analysis, whereby the relationship might be 

negative within-stand but positive across stands.  Wilson and Carey (2000) suggested 

that this species was more directly related to the soil-litter interface than to understory 

vegetation, suggesting that the observed large overdispersion may have been due to 

variability from omitted covariates such as litter layer depth or soil conditions. 

The final model for PEKE suggested that the number of captures was 

negatively correlated with HERB and CWDVOL.  On the contrary, West (1991) found 

that PEKE captures on the stand-level were positively correlated with the number of 

large coniferous trees and the percent cover of well-decayed logs.  The trap design 

used in his study was a 6 × 6 grid with 15-m spacing in each of 45 sites on the western 

slopes of the southern Washington Cascade Range (West 1991).  Because comparative 

studies were few for this species, Wilson and Carey (2000) acknowledged that the 

habitat determinants of PEKE abundance remained largely unknown.  However, the 

more flexible modeling options explored in this study have the potential to advance 

our understanding of this relatively uncommon species in the future studies. 

3.6 CONCLUSIONS 

Inferences are commonly made on models identified as the best of many 

alternatives, based on some type of goodness-of-fit.  This approach is appropriate for a 

series of nested models, but is insufficient for choosing among models based on 
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different assumptions about the underlying data generating process (dgp) and 

distributional properties.  Lam et al. (2010; Chapter 2) showed that goodness-of-fit 

criteria such as information criteria measured model flexibility for fitting data but did 

not allow definitive identification of the underlying dgp.  Information criteria are also 

helpful for variable selection.  A potentially useful approach is to first understand the 

ecological implications of zero inflation and interpreting the results from information 

provided by multiple models rather than selecting one model as the best.  This process 

is actually common when working with nonlinear or mechanistic models.  Nonlinear 

models have a relatively strong foundation in biological theory and principle, and each 

parameter or combinations of parameters have direct interpretation with regard to 

attributes such as the asymptote or inflection point of a logistic growth model 

(Schabenberger and Pierce 2001).  This type of model requires identification of links 

between model assumptions, model behavior, and the processes underlying the 

phenomenon of interest.  Lord et al. (2005, 2007) pointed out that without insights into 

underlying dgp, the resulting improper choice of a model could lead to 

counterintuitive results and inappropriate inferences.  

The use of GLM advanced our understanding of treatment effects by 

conditioning the number of small mammal captures within a treatment unit on habitat 

variables, assuming that variation in these habitat variables were at least partly 

attributable to variable-retention treatments.  The GLMMs refined this understanding 

by recognizing the relationship between captures and habitat variables at several 

levels, including individual treatment units and blocks.  A main consequence of not 
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accounting for the nested subsampling and random block effects in the GLMs was bias 

in variance of estimates and improper inference on statistical correlations.  This 

consequence could very well extend to the ZMMs; thus, the GLMM inferences were 

considered more reliable, particularly where they deviated from those of the ZMMs.  

The development of zero-modified random effects models has started to appear due to 

their many potential applications (Hall and Zhang 2004).  For example, Hall (2000) 

and Yau and Lee (2001) extended zero-inflated models to clustered data, and Min and 

Agresti (2005) developed a hurdle random effects model for repeated-measure count 

data.  However, currently available specifications of zero-modified mixed effects 

models are not yet sufficiently intricate to properly account for nesting and blocking 

structures in the DEMO study.  For example, Yau and Lee (2001) only allowed 

random effects on the intercept term.  Specification of a zero-modified mixed effects 

model in a Bayesian framework is considerably more complex, but may become a 

future option as the theory and software for these models are more fully developed. 
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Table 3.1  Estimated coefficients associated with each predictor (and corresponding standard errors) from the ZIP, ZINB, 
HPOIS and HNB models for Peromyscus maniculatus (PEMA), one of the two most frequently captured small mammal 
species in the DEMO study in 1999.  The estimates from count and truncated-count components (eqn. 3.7) are listed in the 
section labeled COUNT and the estimates from zero-inflation (eqn. 3.8) and hurdle (eqn. 3.9) components are listed in the 
section labeled ZI/H.  Estimated overdispersion θ̂ and AICc are listed last, and statistically significant estimates are shown in 
bold (α = 0.05). 
 

COUNT ZI/H Predictors ZIP ZINB HPOIS HNB ZIP ZINB HPOIS HNB
Intercept -2.975 

(0.179) 
-3.805 

(0.165)
-2.976 

(0.171)
-3.391 

(0.365)
0.198 

(0.273) 
-457.21 

(669.58)
-0.635 

(0.174)
-0.635 

(0.174)
HERB -0.012 

(0.008) 
-0.006 

(0.005)
-0.011 

(0.007)
-0.011 

(0.009)
-0.011 

(0.012) 
1.463 

(2.218)
-0.001 

(0.006)
-0.001 

(0.006)
CONIF -0.047 

(0.038) 
-0.061 

(0.022)
-0.068 

(0.050)
-0.074 

(0.056)
0.017 

(0.047) 
-17.89 

(27.03)
-0.053 

(0.022)
-0.053 

(0.022)
SHRUB 0.008 

(0.004) 
0.009 

(0.004)
0.007 

(0.004)
0.009 

(0.006)
0.010 

(0.006) 
6.721 

(9.860)
-0.002 

(0.004)
-0.002 

(0.004)
CWDVOL -0.0006 

(0.0006) 
-0.0012 

(0.0005)
-0.0006 

(0.0006)
-0.0008 

(0.0008)
0.0010 

(0.0008) 
0.0866 

(0.1274)
-0.0013 

(0.0005)
-0.0013 

(0.0005)
SHANNON -0.026 

(0.059) 
-0.087 

(0.055)
-0.020 

(0.059)
-0.024 

(0.077)
0.083 

(0.086) 
-61.53 

(90.31)
-0.083 

(0.057)
-0.083 

(0.057)
TPH* -0.060 

(0.063) 
-0.142 

(0.042)
-0.052 

(0.065)
-0.053 

(0.076)
0.132 

(0.074) 
46.74 

(68.38)
-0.165 

(0.045)
-0.165 

(0.045)
θ̂  – 0.427 – 1.327     
AICc 1452.0 1431.8 1451.8 1446.2     
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Table 3.2  Estimated coefficients associated with each predictor (and corresponding standard errors) from the ZIP, ZINB, 
HPOIS and HNB models for Clethrionomys gapperi (CLGA), one of the two most frequently captured small mammal species 
in the DEMO study in 1999.  The estimates from count and truncated-count components (eqn. 3.7) are listed in the section 
labeled COUNT and the estimates from zero-inflation (eqn. 3.8) and hurdle (eqn. 3.9) components are listed in the section 
labeled ZI/H.  Estimated overdispersion θ̂ and AICc are listed last, and statistically significant estimates are shown in bold (α = 
0.05). 
 

COUNT ZI/H Predictors ZIP ZINB HPOIS HNB ZIP ZINB HPOIS HNB
Intercept -3.696 

(0.408) 
-4.132 

(0.492)
-3.625 

(0.420)
-3.938 

(0.539)
1.510 

(0.515) 
0.719 

(0.718)
-2.329 

(0.328)
-2.329 

(0.328)
HERB 0.001 

(0.005) 
0.001 

(0.007)
-0.002 

(0.006)
-0.004 

(0.008)
0.037 

(0.010) 
0.059 

(0.017)
-0.025 

(0.007)
-0.025 

(0.007)
CONIF 0.005 

(0.009) 
0.023 

(0.011)
0.002 

(0.008)
0.005 

(0.013)
-0.144 

(0.042) 
-0.164 

(0.084)
0.083 

(0.019)
0.083 

(0.019)
SHRUB -0.014 

(0.005) 
-0.011 

(0.005)
-0.016 

(0.005)
-0.017 

(0.006)
-0.003 

(0.008) 
-0.002 

(0.011)
-0.009 

(0.004)
-0.009 

(0.004)
CWDVOL 0.0004 

(0.0002) 
0.0005 

(0.0003)
0.0003 

(0.0002)
0.0003 

(0.0004)
0.0001 

(0.0005) 
0.0006 

(0.0010)
0.0004 

(0.0004)
0.0004 

(0.0004)
SHANNON 0.157 

(0.111) 
0.165 

(0.132)
0.156 

(0.114)
0.159 

(0.139)
-0.355 

(0.146) 
-0.347 

(0.196)
0.435 

(0.095)
0.435 

(0.095)
TPH* 0.019 

(0.014) 
0.010 

(0.016)
0.032 

(0.014)
0.034 

(0.020)
-0.080 

(0.045) 
-0.326 

(0.156)
0.057 

(0.023)
0.057 

(0.023)
θ̂  – 1.570 – 1.661     
AICc 1283.5 1265.2 1287.3 1276.6     
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Table 3.3  Estimated coefficients associated with each predictor (and corresponding standard errors) from the ZIP, ZINB, 
HPOIS and HNB models for Neurotrichus gibsii (NEGI), one of the two most infrequently captured small mammal species in 
the DEMO study in 1999.  The estimates from count and truncated-count components (eqn. 3.7) are listed in the section 
labeled COUNT and the estimates from zero-inflation (eqn. 3.8) and hurdle (eqn. 3.9) components are listed in the section 
labeled ZI/H.  Estimated overdispersion θ̂ and AICc are listed last, and statistically significant estimates are shown in bold (α = 
0.05). 
 

COUNT ZI/H Predictors ZIP ZINB HPOIS HNB ZIP ZINB HPOIS HNB
Intercept -2.343 

(0.341) 
-3.078 

(0.748)
-2.180 

(0.347)
-5.398 

(22.818)
4.409 

(0.521) 
3.735 

(0.744)
-4.356 

(0.475)
-4.356 

(0.475)
HERB 0.003 

(0.008) 
0.008 

(0.011)
-0.003 

(0.009)
-0.002 

(0.015)
-0.037 

(0.010) 
-0.036 

(0.013)
0.035 

(0.008)
0.035 

(0.008)
CONIF 0.035 

(0.014) 
0.052 

(0.027)
0.018 

(0.016)
0.027 

(0.040)
0.039 

(0.023) 
0.060 

(0.033)
-0.001 

(0.014)
-0.001 

(0.014)
SHRUB -0.011 

(0.010) 
-0.011 

(0.012)
-0.008 

(0.011)
-0.011 

(0.017)
-0.002 

(0.011) 
-0.002 

(0.013)
-0.007 

(0.006)
-0.007 

(0.006)
CWDVOL -0.0004 

(0.0007) 
-0.0003 

(0.0009)
-0.0010 

(0.0009)
-0.001 

(0.002)
-0.0010 

(0.0009) 
-0.0009 

(0.0011)
0.0006 

(0.0006)
0.0006 

(0.0006)
SHANNON -0.223 

(0.124) 
-0.269 

(0.221)
-0.243 

(0.122)
-0.304 

(0.296)
-0.033 

(0.165) 
-0.032 

(0.218)
0.015 

(0.135)
0.015 

(0.135)
TPH* -0.085 

(0.038) 
-0.096 

(0.049)
-0.026 

(0.044)
-0.042 

(0.098)
-0.236 

(0.079) 
-0.329 

(0.113)
0.093 

(0.029)
0.093 

(0.029)
θ̂  – 0.646 – 0.022     
AICc 568.8 558.4 571.4 562.0     
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Table 3.4  Estimated coefficients associated with each predictor (and corresponding standard errors) from the ZIP, ZINB, 
HPOIS and HNB models for Peromyscus keeni (PEKE), one of the two most infrequently captured small mammal species in 
the DEMO study in 1999.  The estimates from count and truncated-count components (eqn. 3.7) are listed in the section 
labeled COUNT and the estimates from zero-inflation (eqn. 3.8) and hurdle (eqn. 3.9) components are listed in the section 
labeled ZI/H.  Estimated overdispersion θ̂ and AICc are listed last, and statistically significant estimates are shown in bold (α = 
0.05). 
 

COUNT ZI/H Predictors ZIP ZINB HPOIS HNB ZIP ZINB HPOIS HNB
Intercept -3.967 

(0.574) 
NA -3.482 

(0.524)
-11.86 

(97.55)
1.415 

(0.934) 
NA -3.190 

(0.373)
-3.190 

(0.373)
HERB 0.050 

(0.007) 
NA 0.033 

(0.013)
0.052 

(0.023)
0.056 

(0.033) 
NA 0.022 

(0.007)
0.022 

(0.007)
CONIF -0.016 

(0.031) 
NA 0.061 

(0.043)
0.139 

(0.100)
-0.186 

(0.098) 
NA 0.041 

(0.025)
0.041 

(0.025)
SHRUB 0.015 

(0.006) 
NA 0.006 

(0.008)
0.021 

(0.014)
0.031 

(0.018) 
NA 0.002 

(0.005)
0.002 

(0.005)
CWDVOL 0.0012 

(0.0006) 
NA -0.0017 

(0.0014)
-0.0031 

(0.0023)
0.0012 

(0.0017) 
NA 0.0013 

(0.0005)
0.0013 

(0.0005)
SHANNON -0.983 

(0.159) 
NA -0.528 

(0.295)
-0.843 

(0.507)
-1.775 

(0.744) 
NA 0.015 

(0.110)
0.015 

(0.110)
TPH* 0.115 

(0.067) 
NA -0.041 

(0.097) 
-0.127 

(0.196)
0.436 

(0.215) 
NA -0.058 

(0.042)
-0.058 

(0.042)
θ̂  – NA – 0.0002     
AICc 557.7 NA 564.5 562.0     
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Table 3.5  Comparison of GLMs and GLMMs for Peromyscus maniculatus (PEMA) in the DEMO study in 1999.  Coefficient 
estimates and their 95% confidence intervals were reported for the GLMs.  Average posterior coefficient estimates hb (eqn. 
3.41) and their 95% credible intervals were reported for the GLMMs.  Estimated and posterior overdispersion parameters θ 
were reported for the NB GLM and -GLMM, respectively, in addition to the variance of the random error 2

εσ  (eqn. 3.37) for 
the overPOIS-GLMM, and AICc or DIC for all five models.  Statistically significant estimates are shown in bold. 
 

POIS NB overPOIS 
Covariates 

GLM GLMM GLM GLMM GLMM
Intercept -3.751  

(-3.976, -3.527) 
-3.457  

(-3.923, -3.007)
-3.782  

(-4.114, -3.450)
-3.408  

(-3.935, -2.906)
-3.741  

(-4.302, -3.200)
HERB -0.004  

(-0.012, 0.004) 
-0.042  

(-0.104, 0.013)
-0.005  

(-0.015, 0.006)
-0.044  

(-0.113, 0.014)
-0.043  

(-0.108, 0.015)
CONIF -0.067  

(-0.107, -0.028) 
-0.309  

(-0.526, -0.131)
-0.058  

(-0.100, -0.016)
-0.299  

(-0.534, -0.113)
-0.301  

(-0.529, -0.117)
SHRUB 0.001  

(-0.004, 0.006) 
-0.008  

(-0.095, 0.073)
0.002  

(-0.005, 0.009)
-0.006  

(-0.095, 0.081)
-0.010  

(-0.100, 0.076)
CWDVOL -0.0014  

(-0.002, -0.0007) 
-0.046  

(-0.075, -0.025)
-0.0014  

(-0.002, -0.0004)
-0.047  

(-0.075, -0.025)
-0.046  

(-0.075, -0.025)
SHANNON -0.063  

(-0.140, 0.013) 
-0.208  

(-0.427, 0.003)
-0.066  

(-0.174, 0.042)
-0.194  

(-0.433, 0.034)
-0.195  

(-0.437, 0.046)
TPH* -0.164  

(-0.235, -0.093) 
-0.148  

(-0.370, 0.057)
-0.156  

(-0.240, -0.077)
-0.153  

(-0.392, 0.076)
-0.158  

(-0.396, 0.064)
θ – – 0.393  1.422 –

2
εσ  – – – – 0.866

AICc 1573.3 – 1441.3 – –
DIC – 1276.1 – 1310.8 1210.8
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Table 3.6  Comparison of GLMs and GLMMs for Clethrionomys gapperi (CLGA) in the DEMO study in 1999.  Coefficient 
estimates and their 95% confidence intervals were reported for the GLMs.  Average posterior coefficient estimates hb (eqn. 
3.41) and their 95% credible intervals were reported for the GLMMs.  Estimated and posterior overdispersion parameters θ 
were reported for the NB GLM and -GLMM, respectively, in addition to the variance of the random error 2

εσ  (eqn. 3.37) for 
the overPOIS-GLMM, and AICc or DIC for all five models.  Statistically significant estimates are shown in bold. 
 

POIS NB overPOIS 
Covariates 

GLM GLMM GLM GLMM GLMM
Intercept -5.394  

(-5.874, -4.914) 
-5.891  

(-6.809, -5.502)
-5.320  

(-5.866, -4.775)
-5.769  

(-6.815, -4.824)
-6.233  

(-7.273, -5.295)
HERB -0.014  

(-0.022, -0.006) 
-0.071  

(-0.122, -0.026)
-0.022  

(-0.033, -0.011)
-0.079  

(-0.134, -0.032)
-0.075  

(-0.130, -0.028)
CONIF 0.022  

(0.009, 0.034) 
-0.036  

(-0.210, 0.116)
0.044  

(0.021, 0.067)
-0.021  

(-0.202, 0.140)
-0.024  

(-0.203, 0.141)
SHRUB -0.014  

(-0.020, -0.008) 
-0.019  

(-0.073, 0.027)
-0.013  

(-0.020, -0.005)
-0.015  

(-0.070, 0.034)
-0.018  

(-0.073, 0.030)
CWDVOL 0.0005  

(0.0001, 0.0008) 
-0.031  

(-0.061, -0.011)
0.0004  

(-0.0002, 0.001)
-0.032  

(-0.061, -0.012)
-0.032  

(-0.060, -0.012)
SHANNON 0.440  

(0.308, 0.572) 
0.445  

(0.132, 0.762)
0.419  

(0.263, 0.574)
0.434  

(0.105, 0.795)
0.452  

(0.124, 0.806)
TPH* 0.036  

(0.016, 0.056) 
0.160  

(-0.049, 0.376)
0.046  

(0.014, 0.079)
0.189  

(-0.043, 0.429)
0.180  

(-0.051, 0.410)
θ – – 0.687  1.328 –

2
εσ  – – – – 0.895

AICc 1406.9 – 1288.2 – –
DIC – 1194.8 – 1215.6 1105.3
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Table 3.7  Comparison of GLMs and GLMMs for Neurotrichus gibsii (NEGI) in the DEMO study in 1999.  Coefficient 
estimates and their 95% confidence intervals were reported for the GLMs.  Average posterior coefficient estimates hb (eqn. 
3.41) and their 95% credible intervals were reported for the GLMMs.  Estimated and posterior overdispersion parameters θ 
were reported for the NB GLM and -GLMM, respectively, in addition to the variance of the random error 2

εσ  (eqn. 3.37) for 
the overPOIS-GLMM, and AICc or DIC for all five models.  Statistically significant estimates are shown in bold. 
 

POIS NB overPOIS 
Covariates 

GLM GLMM GLM GLMM GLMM
Intercept -6.514  

(-7.097, -5.931) 
-6.142  

(-7.940, -4.805)
-6.452  

(-7.239, -5.665)
-6.221  

(-8.411, -3.959)
-13.49  

(-19.52, -8.991)
HERB 0.028  

(0.017, 0.039) 
-0.242  

(-0.477, -0.078)
0.029  

(0.010, 0.048)
-0.177  

(-0.471, 0.049)
-0.184  

(-0.461, 0.038)
CONIF 0.005  

(-0.015, 0.024) 
-0.136  

(-0.568, 0.220)
0.012  

(-0.024, 0.048)
-0.050  

(-0.555, 0.416)
-0.116  

(-0.662, 0.356)
SHRUB -0.009  

(-0.019, 0.002) 
-0.201  

(-0.530, 0.063)
-0.010  

(-0.025, 0.005)
-0.247  

(-0.624, 0.069)
-0.240  

(-0.637, 0.087)
CWDVOL 0.0001  

(-0.001, 0.001) 
-0.204  

(-0.334, -0.114)
0.00003  

(-0.002, 0.002)
-0.212  

(-0.351, -0.115)
-0.212  

(-0.347, -0.119)
SHANNON -0.110  

(-0.283, 0.063) 
-0.005  

(-0.568, 0.627)
-0.176  

(-0.417, 0.065)
-0.216  

(-1.129, 0.672)
0.174  

(-0.918, 1.319)
TPH* 0.076  

(0.034, 0.118) 
-0.105  

(-0.604, 0.389)
0.107  

(0.032, 0.182)
0.113  

(-0.639, 0.894)
-0.011  

(-0.780, 0.740)
θ – – 0.080 0.082 –

2
εσ  – – – – 4.945

AICc 694.9 – 570.3 – –
DIC – 523.7 – 569.2 309.7
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Table 3.8  Comparison of GLMs and GLMMs for Peromyscus keeni (PEKE) in the DEMO study in 1999.  Coefficient 
estimates and their 95% confidence intervals were reported for the GLMs.  Average posterior coefficient estimates hb (eqn. 
3.41) and their 95% credible intervals were reported for the GLMMs.  Estimated and posterior overdispersion parameters θ 
were reported for the NB GLM and -GLMM, respectively, in addition to the variance of the random error 2

εσ  (eqn. 3.37) for 
the overPOIS-GLMM, and AICc or DIC for all five models.  Statistically significant estimates are shown in bold. 
 

POIS NB overPOIS 
Covariates 

GLM GLMM GLM GLMM GLMM
Intercept -6.310  

(-6.911, -5.705) 
-5.158  

(-6.374, -4.165)
-6.151  

(-6.832, -5.470)
-4.725  

(-6.120, -3.295)
-7.038  

(-9.326, -5.291)
HERB 0.029  

(0.018, 0.040) 
-0.144  

(-0.282, -0.28)
0.025  

(0.010, 0.039)
-0.162  

(-0.319, -0.022)
-0.166  

(-0.332, -0.028)
CONIF 0.053  

(0.015, 0.090) 
-0.140  

(-0.449, 0.130)
0.050  

(0.001, 0.098)
-0.058  

(-0.415, 0.269)
-0.092  

(-0.456, 0.219)
SHRUB 0.001  

(-0.007, 0.009) 
-0.130  

(-0.297, 0.006)
0.003  

(-0.007, 0.013)
-0.141  

(-0.342, 0.026)
-0.142  

(-0.337, 0.022)
CWDVOL 0.0009  

(0.0001, 0.002) 
-0.081  

(-0.144, -0.048)
0.0008  

(-0.0002, 0.002)
-0.084  

(-0.147, -0.039)
-0.084  

(-0.148, -0.039)
SHANNON -0.053  

(-0.231, 0.126) 
-0.077  

(-0.475, 0.315)
-0.077  

(-0.282, 0.128)
-0.035  

(-0.588, 0.511)
0.029  

(-0.562, 0.621)
TPH* -0.061  

(-0.134, 0.012) 
0.006  

(-0.301, 0.305)
-0.057  

(-0.141, 0.027)
0.048  

(-0.391, 0.491)
0.029  

(-0.398, 0.457)
θ – – 0.320 0.199 –

2
εσ  – – – – 2.484

AICc 586.7 – 559.8 – –
DIC – 529.7 – 597.2 421.2
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Table 3.9  Relationship between habitat structures and Peromyscus maniculatus 
(PEMA), Clethrionomys gapperi (CLGA), Neurotrichus gibsii (NEGI) and 
Peromyscus keeni (PEKE) abundance in the DEMO study in 1999.  Average posterior 
coefficient estimates hb (eqn. 3.41) and their 95% credible intervals were reported for 
the overPOIS-GLMM and the selected significant habitat variables, in addition to the 
variance of the random error 2

εσ  (eqn. 3.37) and DIC. 
 
Covariates PEMA CLGA NEGI PEKE
Intercept -4.393  

(-4.804, -3.985)
-6.435  

(-7.600, -5.440)
-7.545  

(-9.231, -6.241) 
-5.821  

(-6.909, -4.844)
HERB – -0.045  

(-0.083, -0.011) – -0.146  
(-0.261, -0.053)

CONIF -0.298  
(-0.542, -0.115) – – –

SHRUB – – -0.313  
(-0.633, -0.086) –

CWDVOL -0.045  
(-0.074, -0.024)

-0.028  
(-0.054, -0.010)

-0.204  
(-0.329, -0.117) 

-0.079  
(-0.140, -0.037)

SHANNON – 0.645  
(0.375, 0.991) – –

TPH* -0.302  
(-0.495, -0.145) – – –

2
εσ  0.818 0.821 2.448 1.429

DIC 1223.1 1114.6 379.3 470.8
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Figure 3.1  Locations of the six DEMO blocks in western Oregon and Washington; 
DP: Dog Prairie, WF: Watson Falls, LW: Little White Salmon, PH: Paradise Hills, 
BU: Butte, and CF: Capitol Forest. The six harvest treatment designs are shown above 
the map. Solid gray represents uncut forest (100% and 75% treatments) and uncut 1-ha 
forest aggregates (15%A and 40%A treatments); black dots represented dispersed 
residual trees (15%D and 40%D treatments). 
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Figure 3.2  Relative frequency histogram for captures of: (A) Peromyscus maniculatus 
(PEMA); (b) Clethrionomys gapperi (CLGA); (C) Neurotrichus gibsii (NEGI); and 
Peromyscus keeni (PEKE). 
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Figure 3.3  Relative frequency distribution for observed and predicted counts from the 
POIS, NB, ZIP, ZINB, HPOIS and HNB models for:  (A) Peromyscus maniculatus 
(PEMA); (b) Clethrionomys gapperi (CLGA); (C) Neurotrichus gibsii (NEGI); and 
Peromyscus keeni (PEKE). 
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Figure 3.4  Posterior coefficient estimates and 95% credible intervals of CWDVOL 
( 5ijb , eqn. 3.11) from POIS-GLMM for all the units and the small mammal species in 
the study.  The species were (A) Peromyscus maniculatus (PEMA); (b) Clethrionomys 
gapperi (CLGA); (C) Neurotrichus gibsii (NEGI); and Peromyscus keeni (PEKE).  
Sample size was 36 units for PEMA and NEGI and 24 units for CLGA and PEKE. 
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Figure 3.5  Posterior coefficient estimates and 95% credible intervals of (A) HERB 
( 2ijb ) and (B) SHANNON ( 6ijb ) from POIS-GLMM for all the units for the species 
Clethrionomys gapperi (CLGA). 
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Figure 3.6  Posterior standard deviation of random error hσ  for each of the 7 estimated 
coefficients (eqn. 3.21) and 95% posterior intervals for the POIS-GLMM (circle and 
solid line), NB-GLMM (square and dotted line) and overPOIS-GLMM (triangle and 
dashed line) for each species: (A) Peromyscus maniculatus (PEMA); (b) 
Clethrionomys gapperi (CLGA); (C) Neurotrichus gibsii (NEGI); and Peromyscus 
keeni (PEKE). 
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Figure 3.7  Posterior standard deviation of random block effect hτ  for each of the 7 
estimated coefficients (eqn. 3.23) and 95% posterior intervals for the POIS-GLMM 
(circle and solid line), NB-GLMM (square and dotted line) and overPOIS-GLMM 
(triangle and dashed line) for each species:  (A) Peromyscus maniculatus (PEMA); (b) 
Clethrionomys gapperi (CLGA); (C) Neurotrichus gibsii (NEGI); and Peromyscus 
keeni (PEKE). 
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Figure 3.8  Posterior random block effect estimates hid  for all 7 estimated coefficients 
(eqn. 3.16) and 95% posterior intervals across blocks from POIS-GLMM for each 
small mammal species: (A) Peromyscus maniculatus (PEMA); (b) Clethrionomys 
gapperi (CLGA); (C) Neurotrichus gibsii (NEGI); and Peromyscus keeni (PEKE).  
Analyses were based on six blocks for PEMA and NEGI and four blocks for CLGA 
and PEKE. 
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4.1 INTRODUCTION 

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests in the Pacific 

Northwest have traditionally been regeneration harvested under even-age silvicultural 

systems, most commonly the clearcutting system; however, public concern over 

dramatic reductions in old-growth forests and potential declines in forest biodiversity 

have fueled renewed interest in the feasibility of other silvicultural systems.  

Shelterwood with reserves (Matthews 1989) and innovations such as variable-

retention harvesting (Franklin et al. 1997) have been proposed as means to meet 

diverse forest management objectives particularly on public lands.  These methods 

share a common working hypothesis that the retained structures and associated 

heterogeneity in stand structure could in the short-term maintain taxa and ecological 

processes characteristic of mature forests and in the long-term accelerate their 

recovery (Lindenmayer and Franklin 2002, Maguire et al. 2007).  In their review of 

silvicultural methods that retain old-growth attributes, Bauhus et al. (2009) and 

Rosenvald and Lõhmus (2008) suggested that both stand and landscape dynamics 

under these systems are in dire need of further research.  It is also evident that routine 

statistical methods may not be sufficient for understanding the mechanisms linking 

stand structure to biodiversity and for testing working hypotheses about the 

interactions of various taxa and ecological processes.  

Ecosystem processes involve complex interactions of many cause-and-effect 

relationships.  Research on silvicultural control of biodiversity should employ 
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statistical methods that test working hypotheses about these complex interactions.  The 

strength of causal inference depends largely on a study design, particularly the 

principle of random assignment of treatments to experimental units as advocated by 

Fisher (1926).  This randomization of treatments in a designed experiment is the 

foundation for inferring causality (Shipley 2000).  Because Analysis of Variance 

(ANOVA) models are closely connected to experimental design, the general 

implication is that ANOVA is an appropriate method for causal inference (Grace et al. 

2009).  Multivariate Analysis of Variance (MANOVA) is an extension of univariate 

ANOVA to multivariate responses.  These models may be appropriate for assessing 

net effects of experimental treatments; however, they could fail to uncover any 

information about underlying processes or response mechanisms (Grace et al. 2009). 

Data reduction by categorization (classification) and synthetic continuous 

variables (ordination) are very efficient for analyzing multivariate ecological data 

(McCune et al. 2002).  Examples of these methods include cluster analysis and 

nonmetric multidimensional scaling, respectively.  Classification and ordination are 

conventionally exploratory and descriptive because their capability for understanding 

functional links is limited (Grace 2006).  Some general idea of causal mechanisms 

usually drives data collection, but these statistical methods cannot explicitly 

incorporate a priori and complex inter-relationships between variables (Grace 2006).  

In spite of this limitation, the methods are useful for discovering underlying trends in 

data and for supplementing the process of model building and hypothesis formulation.  
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Structural equation modeling (SEM) is an alternative method for testing 

ecological processes.  SEM is a collection of procedures that test hypothesized 

relationships among observed variables (Grace 2008, Schumacker and Lomax 2004).  

Complex interactions are first translated into a network of directional paths linking 

variables, and are then evaluated against multivariate data (Bollen 1989).  These paths 

postulate direct effects, indirect effects and spurious associations due to common 

causes; hence, SEM is often related to causal modeling (Kenny 1979).  It is 

philosophically a confirmatory data analysis, but its application extends to testing 

alternative a priori models or model-building (Jöreskog 1993), and SEM can therefore 

be regarded as blending confirmatory and exploratory analyses (Kline 2005).  The key 

to successful SEM rests on the competence of a researcher to posit initial cause-and-

effect models drawing from accumulated knowledge, prior experiences and published 

results. 

SEM is an attractive modeling tool for testing our understanding of complex 

ecological processes.  Comprehensive assessments by Shipley (2000), Pugesek et al. 

(2003) and Grace (2006) have brought SEM into the context of natural systems.  

Laughlin and Abella (2007) and Laughlin et al. (2007) applied SEM to an 

observational study of abiotic and biotic factors influencing plant community 

composition and species richness in a ponderosa pine (Pinus ponderosa P. & C. 

Lawson) forest ecosystem.  Youngblood et al. (2009) studied the effects of 

experimental thinning and prescribed burning treatments on mortality of ponderosa 

pine with ANOVA and SEM.  The cascading effects of fire intensity, surface fire 
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severity and bole charring on mortality attributed to bark beetles and wood borers 

were well represented by SEM, but not by the ANOVA model.  These studies 

demonstrate the flexibility of SEM for accommodating various study designs.  With 

increasing recognition of the benefits from embedding existing knowledge in data 

analysis and the limitation of common statistical methods for large-scale ecological 

experiments (Miao et al. 2009), SEM may offer a promising alternative. 

Overstory-understory relationships have been studied for decades with early 

efforts focused on forage production (e.g., Mitchell and Bartling 1991, Uresk and 

Severson 1989).  More recent interest addresses conservation of functional groups 

such as late-seral herbaceous species under alternative silvicultural systems such as 

variable-retention harvesting (e.g., Halpern et al. 2005).  Overstory tree cover 

(McKenzie et al. 2000), tree density (Bailey and Tappeiner 1998), shrub cover (Berger 

and Puettmann 2000) and soil litter (Dzwonko and Gawroński 2002) are among the 

variables found strongly associated with the richness and abundance of the understory 

herb community.  These variables serve as surrogates for ecological factors such as 

light attenuation, throughfall precipitation, and soil water availability.  The 

predominant approach for analysis has been classical univariate models and 

exploratory analyses, but many researchers have underscored the complex and 

multivariate nature of these inter-relationships (Nemati and Goetz 1995).  A SEM 

approach to the overstory-understory relationship could apply existing knowledge in 

proposing functional links and could thereby test and expand our understanding of 

relationships and mechanisms of response to silvicultural treatments. 
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Many natural science studies that apply SEM provide only a brief account of 

the methodology (e.g., Johnstone et al. 2009).  In one exception, Grace (2008) 

summarized the general aspects of applying SEM in observational ecology studies, 

and illustrated the technique with two examples.  In another, Grace and Bollen (2006) 

provided details on a SEM framework with emphasis on a specific issue related to 

composite variables.  In a third exception, Shipley (2009) described generalized 

multilevel SEM.  We found that the existing publications on the methodology were 

either too brief or too detailed to benefit those with limited knowledge of SEM but 

having interest in its application.  Hence, the goal of this paper was to bridge general 

and specific treatments of the methodology in the natural sciences.  Two specific 

objectives were to: (1) systematically present the concepts and framework for SEM, 

and (2) illustrate the application of SEM to overstory-understory relationships in an 

experimental test of responses to variable-retention harvesting of Douglas-fir 

(Pseudotsuga menziesii) forests in the Pacific Northwest region of the United States. 

4.2 STRUCTURAL EQUATION MODELING (SEM) 

The two central components of SEM are the path model and the measurement 

model.  The path model or path analysis was developed by the geneticist Sewall 

Wright (1921, 1934) to quantify specific cause-and-effect relationships between 

observed variables through computation of path coefficients.  Exploratory factor 

analysis, as introduced by Charles Spearman (1904), is usually considered the origin 

of the measurement model.  The measurement model quantifies linkages between 
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hypothetical constructs and observed variables through computation of factor 

loadings.  Because SEM can specify any combination of these two components, a 

unifying and flexible mathematical framework, LISREL (LInear Structural 

RELations), was developed by Karl Jöreskog (1973) and adopted for modern 

application of SEM (Grace 2008).  Hayduk (1987) and Kelloway (1998) described the 

LISREL system in detail.  The following summary of SEM is primarily drawn from 

Grace (2006), Kline (2005) and Schumacker and Lomax (2004).   

4.2.1 Path Model 

Specification of a path model involves hypothesized cause-and-effect 

relationships between observed variables.  These relationships are usually based on 

theoretical considerations or evidence from prior studies.  However, certain conditions 

must be met for a variable to be designated as a cause versus an effect.  Kenny (1979) 

proposed three: time precedence, functional relationship and nonspuriousness.  First, 

for variable A to cause variable B, A has to precede B in time, so time precedence 

implies an asymmetric relationship between the two.  Second, A and B should be 

functionally related because there is no causal relationship if they are independent.  

Third, if the relationship between A and B is spurious due to a common cause, it will 

disappear once the common cause is identified and represented in the model. 

Consider a hypothetical model for representing the response of forest floor 

small mammal abundance to stand structural characteristics (Figure 4.1).  In this 

scenario, overstory tree density and coarse wood debris are exogenous observed 
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variables whereas understory tree cover, herbaceous cover and abundance of small 

mammal species are endogenous variables.  An exogenous variable is always 

considered only a cause; its causes are generally unknown or not of interest, or it is 

measured directly in the application at hand; therefore, it is not represented in a model.  

An endogenous variable is an effect, but it may also be a cause to other endogenous 

variables.  A single arrowhead is a path that represents a direct effect of the causal 

variable on a response variable, whereas a double arrowhead represents an unanalyzed 

association.  Unanalyzed associations are customarily specified between exogenous 

variables because no hypothesis is included to explain why they covary.  In general 

not all causal processes acting on a system are specified, and the model merely 

represents a simplification (Laughlin et al. 2007). 

Once the model is fitted to data, the path coefficient (direct effect) of each path 

is estimated and interpreted similarly to a regression coefficient.  An indirect effect of 

any causal variable is estimated as the product of direct effects, and a total effect is the 

sum of all direct and indirect effects.  In the example, tree density has only indirect 

effects on abundance, mediated by understory cover, herb cover, or both.  Thus, one of 

the indirect effects is the product of two path coefficients, one representing the effect 

of tree density on herb cover and the other the effect of herb cover on small mammal 

abundance.  Coarse wood debris has both a direct and an indirect effect on abundance, 

the latter through herb cover as the mediating causal variable.  Hence, its total effect 

on abundance is the sum of the indirect and direct effects. 
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A cautionary note is warranted for interpretation of direct and indirect effects.  

As with multiple regression, an effect is interpreted as the change induced by fixing 

other variables in a model and changing only the subject variable.  A direct effect 

would occur if all other variables in a model remained constant (Shipley 2000).  In 

estimating an indirect effect, all other variables in a model are controlled except for 

the mediating variables in the path representing the indirect effect in question (Shipley 

2000).  These technicalities are important to be kept in mind for valid interpretation of 

the effects.  However, one may question the justification for holding constant any one 

of a set of variables that are non-orthogonal but rather multicollinear in the modeling 

dataset, which is the typical conditions in observational variables measured in 

complex forest ecosystems.  

Path coefficients can be expressed as standardized or unstandardized 

coefficients.  Unstandardized coefficients are more intuitive because they represent 

direct effects of the causal variables on the response variable on a scale consistent with 

original units of measurements.  Furthermore, it is important to present unstandardized 

results in a path model because significance tests on the coefficients are based on 

standard errors of the unstandardized solutions (Grace 2006).  Standardized 

coefficients are computed by first standardizing all variables by subtracting their mean 

and dividing by their standard deviation, and then computing the coefficients.  These 

coefficients are therefore expressed in units of standard deviations for the 

corresponding variables, and are interpreted as the expected change in the endogenous 

variable per unit change in an exogenous variable, with change in both variables 
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measured in units of their corresponding standard deviations.  Standardized 

coefficients allow direct comparison of the magnitude of effects of two causal 

variables measured on different scales (Grace 2006). 

As in linear regression, a basic assumption underlying the path model is 

linearity between variables.  Nonlinear relationship can be accommodated by 

transformations or adding higher-order terms.  However the latter usually complicate 

path model specification (Hayduk 1987).  A second important assumption is that the 

exogenous variables are measured without error.  Any measurement errors, including 

those attributable to data entry, field recording, or other causes (Hayduk 1987), lead to 

bias in estimated path coefficients (Bollen 1989).   

4.2.2 Measurement Model 

A common method for evaluating a measurement model is confirmatory factor 

analysis (CFA).  CFA is a process of specifying the number and types of observed 

variables associated with one or more hypothetical constructs, and analyzing how well 

the observed variables measure the constructs.  A hypothetical construct is a 

conceptual variable which cannot be directly measured.  Conversely, an observed 

variable can be measured and is used to infer the construct.  Two types of constructs 

are latent and composite variables.  A latent variable is a cause of its corresponding 

observed variables, whereas a composite variable is a collective effect of the variables.  

For brevity, only latent variables are further discussed.  Grace and Bollen (2008) 

provided more details about the theory and application of composite variables.  
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Choice of the observed variables for a measurement model must consider the 

validity and reliability of the observed variables.  Validity refers to the accuracy of an 

observed variable for representing the effect of a latent variable.  Because a latent 

variable is multifaceted, the observed variables selected should measure these different 

facets, and ideally have no effects other than those through the latent variable 

(Thompson 2003).  Reliability refers to the consistency in measurement of an 

observed variable or the amount of random measurement error.  The idea is similar to 

estimating the precision of a measuring device by repeatedly measuring the same 

observation under similar conditions. 

Consider a hypothetical measurement model for species diversity (Figure 4.2).  

Conventionally, a circle represents a latent variable and a rectangle represents an 

observed variable.  Following Krebs (1999), the model postulates that species 

diversity is a multifaceted concept with three observed variables measuring its 

different facets.  The total number of species (observed and unobserved), which could 

be estimated from a Jackknife estimator (Burnham and Overton 1979, Krebs 1999), 

measures the total species richness.  Shannon diversity index measures the diversity 

and the evenness of a community.  The Simpson evenness index measures only the 

evenness of a community, which is hypothesized to be measuring a different facet of 

diversity than the Shannon diversity index.  The single arrowheads pointing from the 

latent variable to the observed variables are factor loadings.  They represent the direct 

effects and are interpreted similarly to regression coefficients.  The thicker arrowheads 

to left of the observed variables depict the random measurement errors. 
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A general recommendation is to have three or more observed variables per 

latent variable to ensure model convergence, proper solutions and adequate accounting 

for measurement error.  Observed variables should be both valid and reliable with 

respect to measurement of the hypothetical constructs.  Hayduk (1987) commented 

that observed variables with greater than 40% measurement error were likely prone to 

estimation problems.  Bollen (1989) provided further details on the use of latent 

variables. 

4.2.3 Structural Regression (SR) Model 

A structural regression (SR) model is a path model with hypothetical 

constructs.  The goal is to take measurement errors of observed variables into account 

when evaluating a path model.  A fully latent SR model has only constructs in the path 

model whereas a partially latent SR model is a mix of observed variables and 

constructs.  The SR model combines principles of path and measurement models.  In 

both path and measurement models, and hence in SR models, an important phase of 

analysis is model identification.  Model identification is a property that determines 

whether the model allows for unique parameter estimates.  The two basic conditions 

for identification are: (1) model degrees of freedom equal to or greater than zero (dfM 

≥ 0), and (2) a known scale for every latent variable.  The total degrees of freedom for 

the model is v(v+1)/2, where v is the number of observed variables.  This total 

corresponds to the number of variances and unique covariances in a variance-

covariance matrix for v variables.  Thus, dfM is the total degrees of freedom minus the 
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number of estimated parameters.  A just-identified model (dfM = 0) will have unique 

parameter estimates, but an overidentified model (dfM > 0) is desirable for modeling 

testing.  An underidentified model (dfM < 0) will not have unique solutions for all 

parameters.  Scale is a property of each latent variable.  Because a latent variable is 

not measurable, it must take on the scale or units of measure from one of its observed 

variables.  A way to assign scale is by imposing a unit loading identification (ULI) 

constraint by fixing a factor loading of one observed variable at a value of 1.0.  

A model that meets these conditions on degrees of freedom and scale does not 

guarantee identification.  Bollen (1989) suggested a two-step rule for checking 

identification of a SR model.  The first step is specifying a SR model as a CFA model 

– replacing all directional paths with double arrowheads (unanalyzed association).  

The resulting CFA model is identified if it meets the following sufficient requirements 

and assumptions: (1) at least two observed variables per latent variable, (2) 

independence between measurement errors and latent variables, and (3) independence 

between measurement errors.  The second step for checking identification is to check 

recursiveness of the path model part of the SR model, ignoring any observed variables 

used to measure latent variables.  A path model is identified if it meets the following 

requirements for recursiveness: (1) errors are uncorrelated, and (2) all causal effects 

are unidirectional.  If models in both steps are identified, the whole SR model is 

identified, and model fitting can proceed. 

Some SR models can fail the two-step rule and still be identified.  One 

example is correlated measurement errors in a CFA model.  Another common example 
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is a nonrecursive path model, e.g., a model with feedback loops or correlated errors, 

which requires special rules for identification.  A special case is a SR model that has 

one observed variable per latent variable and therefore requires a priori assignment of 

measurement errors.  Last but not least, Kenny (1979) described the condition of 

empirical underidentification in which the effective degrees of freedom were reduced 

due to two highly correlated observed variables. 

4.2.4 Model Estimation 

The LISREL framework can be summarized into three matrix equations, two 

for the measurement model component and one for the path model component (Grace 

2006).  For the measurement model component, 

x= +x Λ ξ δ  (4.1) 

y= +y Λ η ε  (4.2) 

where, x is a p×1 vector of observed exogenous variables and it is a linear function of 

a j×1 vector of exogenous latent variables ξ and a p×1 vector of measurement error δ. 

Λx is a p×j matrix of factor loadings relating x to ξ.  Similarly, y is a q×1 vector of 

observed endogenous variables, η is a k×1 vector of endogenous latent variables, ε is a 

q×1 vector of measurement error for the endogenous variables, and Λy is a q×k matrix 

of factor loadings relating y to η.  Associated with eqns. (4.1) and (4.2) respectively 

are two variance-covariance matrices, Θδ and Θε.  The matrix Θδ is a p×p matrix of 

variances and covariances among measurement errors δ and Θε is a q×q matrix of 

variances and covariances among measurement errors ε.  
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For flexibility, LISREL describes the path model component as relationships 

among latent variables, 

= + +η Βη Γξ ζ  (4.3) 

where Β is a k×k matrix of path coefficients describing the relationships among 

endogenous latent variables, Γ is a k×j matrix of path coefficients describing the linear 

effects of exogenous variables on endogenous variables, and ζ is a k×1 vector of errors 

of endogenous variables.  Associated with eqn. (4.3) are two variance-covariance 

matrices: Φ is a j×j variance-covariance matrix of latent exogenous variables, and Ψ is 

a k×k matrix of covariances among errors of endogenous variables.  

With only these three equations, LISREL is a flexible mathematical framework 

that can accommodate any specification of a SEM model.  SEM is also referred to as 

covariance structure modeling because the variance-covariance matrix is the basic 

statistic for modeling.  Model fitting is based on a fitting function that minimizes the 

difference between the model-implied variance-covariance matrix Σ and the observed 

variance-covariance matrix S,  

( )min ,f Σ S  (4.4) 

where S is estimated from observed data, Σ is predicted from the causal and non-

causal associations specified in the model, and f(Σ,S) is a generic function of the 

difference between Σ and S based on an estimation method that follows.  As Shipley 

(2000) concisely stated, causation implies correlation; i.e., if there is a causal 

relationship between two variables, there must exist a systematic relationship between 
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them.  Hence, by specifying a set of theoretical causal paths, one can reconstruct the 

model-implied variance-covariance matrix Σ from total effects and unanalyzed 

associations.  For the recursive path model with only observed variables, Wright 

(1960) proposed tracing rules that help to reconstruct Σ; however, these rules were 

susceptible to errors, especially for complex models.  Hayduk (1987) outlined a step-

by-step formulation under the LISREL mathematical framework, specifying the 

following mathematical equation for Σ: 

( )y y y x

x y x x

ε

δ

′ ′ ′ ′+ +⎡ ⎤
= ⎢ ⎥′ ′ ′ ′ +⎣ ⎦

Λ A ΓΦΓ Ψ A Λ Θ Λ AΓΦΛ
Σ

Λ ΦΓ A Λ Λ ΦΛ Θ
 (4.5) 

where A = (I–B)–1.  Note that in eqn. (4.5) the derivation of Σ does not involve the 

observed and latent exogenous and endogenous variables (i.e., x, y, ξ and η).  

A common method in SEM for estimating parameters in Σ is maximum 

likelihood (ML).  In ML estimation, the algorithm iteratively searches for a set of 

parameter values that maximizes the likelihood that the differences between S and Σ 

are due only to sampling error or, in other words, that minimizes the deviations 

between elements of S and Σ (Grace 2006).  This minimization is accomplished by 

deriving a fitting function f(Σ,S) (eqn. 4.4) based on the logarithm of a likelihood 

ratio, where the ratio is the likelihood of a given fitted model to the likelihood of a 

perfectly fitting model.  The maximum likelihood procedure requires the endogenous 

variables to follow a multivariate normal (MVN) distribution, and S to follow a 

Wishart distribution.  Hayduk (1987) described the steps in the derivation and 

expressed the fitting function FML as, 
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( ) ( )1 1log tr log trMLF − −= + − −Σ SΣ S SS  (4.6) 

where tr() refers to the trace of a matrix and Σ and S are defined as above.  Proper 

application of eqn. (4.6) also requires that observations are independently and 

identically distributed, and that matrices Σ and S are positive definite (Hayduk 1987).  

After minimizing eqn. (4.6) through an iterative process of parameter estimation, the 

final results are the estimated variance-covariance matrix and path coefficients for the 

specified model. 

4.2.5 Model Assessment 

A multitude of indices and criteria are available to assess model fit.  Kline 

(2005) and Schumacker and Lomax (2004) provided a comprehensive listing, but 

three basic fit statistics are summarized here.  The first is the overall model chi-square 

test based on a test statistic that is a function of the fitting function as follows: 

( )2 1M MLn Fχ = −  (4.7) 

where FML is computed from eqn. (4.6), n is sample size, and 2
Mχ  follows a chi-square 

distribution with degree of freedom dfM as defined above.  Subsequently, a p-value is 

estimated and evaluated against a significance-level.   

The overall model chi-square test is only applicable for an overidentified 

model; i.e., when dfM > 0.  The null hypothesis associated with the test is that there is 

no difference between model estimates and the data, and the alternative hypothesis is 

otherwise.  Therefore, failure to reject the null hypothesis is the ultimate objective of 

the modeling process.  Although it may seem to contradict common hypothesis 
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testing, this approach is consistent with the accept-support context where the null 

hypothesis represents a researcher’s belief (Steiger and Fouladi 1997).  Nonetheless, 

as with common hypothesis testing, failure to reject the fitted model does not prove 

the specified causal relationships in the model.  One should be particularly aware of 

existing equivalent models; i.e., models that have different hypothesized causal 

relationships but fit the data equally well.  

The second fit statistic to consider is the Root Mean Square Error of 

Approximation (RMSEA), which is parsimony-adjusted index that accounts for model 

complexity.  The index approximates a noncentral chi-square distribution with the 

estimated noncentrality parameter as, 

( )2ˆ max ,0M M Mdfδ χ= −  (4.8) 

where 2
Mχ  is computed from eqn. (4.7) and dfM is defined above.  The magnitude of 

ˆ
Mδ  reflects the degree of misspecification of the fitted model.  The RMSEA is then 

defined as:  

( )
ˆ

RMSEA=
1

M

Mdf n
δ

−
 (4.9) 

Thus, RMSEA measures the degree of misspecification per model degree of 

freedom, adjusted for sample size.  RMSEA also reflects the view that the fitted model 

is an approximation of reality, so that RMSEA measures the error of approximation 

(Raykov and Marcoulides 2000).   Browne and Cudeck (1993) suggested that RMSEA 
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≤ 0.05 indicates a close approximation or fit, a value between 0.05 and 0.08 indicates a 

reasonable approximation, and a value ≥ 0.1 suggests a poor fit. 

The third index is the standardized root mean square residual (SRMR), which 

is relatively easy to compute.  Both S and Σ are transformed into correlation matrices, 

and the residual matrix is the difference between the two.  Hence the mean square of 

each residual is the SRMR.  In general, SRMR less than 0.10 is considered a good fit 

of S as an approximation to Σ. 

In general, statistical tests for the overall model fit and p-values of parameter 

estimates are less important in SEM than in univariate regression models.  One reason 

for this difference is that SEM is mostly a full information method; i.e., all parameters 

are simultaneously estimated, so the significance of a parameter estimate should be 

viewed in the context of the whole model.  Second, the confirmatory aspect of the 

model is weakened if model modification is based on the significance of estimates 

rather than the theory behind the model structure.  Finally, SEM is still a large-sample 

technique, and hypothesis testing is generally affected by sample size. 

4.3 OVERSTORY-UNDERSTORY RELATIONSHIPS 

The understory layer directly or indirectly supports much of the flora and fauna 

diversity in the Pacific Northwest (Halpern and Spies 1995).  Hence, the ecological 

processes influencing the understory plant community are fundamental to conserving 

biodiversity.  Research into overstory-understory relationships in this region has 

primarily focused on silvicultural effects, and the periods of early stand succession and 
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stand closure (McKenzie et al. 2000).  Few studies have attempted to model the 

relationship in mature forests or for late-seral herbaceous species that have high 

conservation value (for exceptions see McKenzie and Halpern 1999, McKenzie et al. 

2000).  Across all studies, a fundamental assumption is that understory vegetation is 

controlled to a large degree by overstory structure, or that there exists a time 

precedence of overstory as a causal factor over the understory as an effect.  However, 

this simple assumption downplays a suite of direct and indirect effects on the 

understory layer.  SEM is a statistical method capable of addressing the hierarchical 

structure of forest vegetation and the complex interactions among vegetation layers 

and plant species.  This study applies SEM to quantify ecological mechanisms 

influencing the abundance of late-seral herb species in mature Douglas-fir 

(Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. 

4.3.1 Hypotheses and Processes 

Application of SEM requires a set of well defined hypotheses generated from 

theoretical considerations or informal observation.  In this study, the processes of 

interest are light attenuation through the canopy, competition for belowground 

resources, and effects of forest floor litter.  The effects of these processes on the forest 

herb community have been widely examined in both experimental and observational 

studies.  Barbier et al. (2008) presented a comprehensive review of these processes 

and suggested additional influential factors such as the production of phytotoxic 
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compounds and net effects such as spatial distribution of water.  The following four 

hypotheses were formulated to address the processes of interest. 

Hypothesis 1.  Overstory tree cover directly affects late-seral herb cover, with a 

secondary and indirect effect through its influence on mid-story shrub and tree cover. 

Overstory effects on understory vegetation are most commonly assumed to be 

mediated by light interception and attenuation.  Light is a major limiting factor and 

influences forest stand development and understory plant establishment (Jennings et 

al. 1999, Oliver and Larson 1990); however, it is also closely correlated with 

throughfall precipitation and soil moisture in many situations (Anderson et al. 1969, 

Barbier et al. 2008).  Although it is not possible to control the amount of light that 

impinges on the forest canopy, light levels under the canopy can be controlled by 

manipulating the amount, spatial arrangement, morphology and species of vegetation 

that absorbs incident light in various forest layers (Lieffers et al. 1999).  Cannell and 

Grace (1993) observed that, in general, understory leaf area was inversely proportional 

to overstory leaf area.  Overstory tree cover in this analysis is applied as a reasonable 

surrogate for leaf area and the amount of light intercepted by the overstory canopy.  

Understory plant species have been shown to behave as ecological filters, particularly 

in regard to their influence on resource availability for tree seedlings (Maguire and 

Forman 1983, George and Bazzaz 1999).  Light attenuation is probably one of the 

major mechanisms driving this process; for example, Bartemucci et al. (2006) found 

that the understory plant community acted as a filter by reducing  light penetration to 
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the forest floor.  In this analysis, understory shrub and tree cover served as a proxy for 

light attenuation by this middle layer of forest vegetation. 

Hypothesis 2.  Belowground competition from overstory trees directly affects late-

seral herb cover, with a secondary and indirect effect through its influence on mid-

story shrub and tree cover. 

Tree density is further hypothesized to represent the degree of belowground 

resource competition.  Numerous studies document the effect of root competition 

between trees and understory vegetation (Barbier et al. 2008).  Root trenching 

experiments have demonstrated the importance of belowground competition in driving 

overstory-understory relationships (Lindh et al. 2003,  Riegel et al. 1992).  The 

diversity, abundance and biomass of the shrub and herb community respond positively 

to trenching, most likely due to increased availability of soil water and nutrients.  

Direct measurement of coarse and fine root mass of species and individuals, and the 

implications for belowground resource competition, is considerably more difficult.  

Silvicultural studies such as those that reduce tree density by thinning (e.g., Bailey et 

al. 1998) provide only limited information on mechanisms because thinning 

simultaneously increases light levels reaching the forest floor and belowground 

resource availability.  For this study, tree density is tested as a surrogate for 

belowground resource competition under the assumption that overstory and mid-story 

cover (Hypothesis 1) account for light attenuation and light availability at the forest 

floor. 
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Hypothesis 3.  Cover of coarse and fine woody litter directly affects late-seral herb 

cover, with a secondary and indirect effect through its influence on mid-story shrubs 

and tree cover. 

This hypothesis represents the contribution of forest floor litter to nutrient and 

soil moisture availability (Spies and Franklin 1991) or mechanical interference with 

understory plant establishment (Ellsworth et al. 2004).  Prescott (2002) considered that 

the mass and nutrient content of litter produced by a stand were the best indicators of 

soil mineral availability, and that these litter attributes depended on overstory species 

composition.  In coniferous forests, the soil tends to have lower pH, lower nutrient 

availability, and higher carbon/nitrogen ratio, all of which may be unfavorable to 

understory vascular species (Barbier et al. 2008, Saetre et al. 1997).  Forest floor litter 

can also directly impede the growth and germination of shrubs and herbs by reducing 

light and temperature and preventing root contact with mineral soil (Ellsworth et al. 

2004, Lindgren and Sullivan 2001). 

Two different processes were also considered; i.e., both coarse and fine woody 

litter accumulation.  Coarse woody litter is produced by tree mortality in response to a 

number of interrelated factors such as stand density, site quality, age class and disease 

intensity (Greenwood and Weisberg 2008).  Overstory tree density and stand age were 

hypothesized as the main driving factors for tree mortality.  As a stand develops and 

self-thinning proceeds, death of overstory trees contributes to the coarse woody litter 

pool (Tappeiner et al. 2007).  Fine litter accumulation is proportional to rate of crown 

recession, and because higher stand density generally hastens crown recession (Garber 
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et al. 2008), tree density and tree size were proposed as the main factors influencing 

fine woody litter accumulation.  The contributions of tree density and overstory tree 

cover to fine woody litter accumulation were considered separately, with the latter 

perhaps representing distinct mechanisms such as crown abrasion during a storm.  

Lastly, we assumed that there were a myriad of unknown factors contributing to both 

coarse and fine woody litter production. 

Hypothesis 4.  Topographic aspect directly affects late-seral herb cover, with a 

secondary and indirect effect through mid-story shrubs and tree cover. 

Environmental factors such as aspect, slope and elevation are useful surrogates 

for the spatial and temporal distribution of factors such as radiation and temperature 

(Stage and Salas 2007).  Aspect affects the amount of incident solar radiation; thus, it 

could strongly influence the microclimatic conditions such as air and soil temperature 

(Fekedulegn et al. 2003).  In the northern atmosphere, it is well known that southwest 

aspects are often the most severe sites for vegetation establishment and growth (e.g., 

Beers et al. 1966). 

4.3.2 Data Collection 

The data for modeling overstory-understory relationships came from the 

Demonstration of Ecosystem Management Options (DEMO) study (Aubry et al. 

1999), a large-scale operational research experiment implemented in western Oregon 

and Washington, USA.  This study looked at the effects of variable-retention 

harvesting on various aspects of biodiversity, microclimate, and human perceptions.  
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For details on the experimental and treatment designs, refer to Chapter 3.  The analysis 

presented here was based on pre-harvest data collected in 1994/1995 from mature 

Douglas-fir stands ranging in age from 65 to 170 years. 

A permanent 8 × 8 or 7 × 9 grid of 40-m spacing was installed in each 13-ha 

experimental unit.  The grid was buffered by 40 m along the edge of each unit.  

Overstory and understory vegetation were studied only on a subset of sample points; 

32–37 sample points depending on the unit.  Detailed sampling protocols are available 

from Halpern and McKenzie (2001) and Halpern et al. (2005).  Percent cover of 

herbaceous species (typically <1 m tall at maturity) was recorded for each of 24 

microplots (0.2 × 0.5 m) clustered at each sample point.  Percent cover of coarse and 

fine woody litter cover was also recorded for the same microplots.  Percent cover of 

tall shrub species (typically >1 m tall at maturity) and of understory coniferous and 

hardwood trees (<5.0 cm dbh) was measured by the line intercept method on four 6-m 

long transects radiating from each sample point.  At the 0-m and 6-m marks of each 

transect, a Moosehorn densiometer was used to estimate percent overstory tree cover.  

Overstory trees were sampled with a set of nested circular plots: 0.01 ha plot for trees 

with dbh ≥5 and <15 cm and 0.04 ha plot for trees with dbh ≥15 cm (Maguire et al. 

2007).  At each sample point, aspect was recorded as azimuth in the downhill 

direction.  

In the DEMO study, 48 herb species were classified as late-seral herb species; 

i.e., a species that reached maximum abundance in old-growth forest conditions and 

were sensitive to canopy removal or disturbance (Halpern et al. 2005).  The nine 
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observed variables for modeling late-seral herb cover with SEM were: (1) mean 

percent late-seral herb cover (LSHERB, %), (2) mean percent tall shrub and 

understory coniferous and hardwood trees cover (UNDER, %), (3) mean percent 

coarse woody litter cover (CLITTER, %), (4) mean percent fine woody litter cover 

(FLITTER, %), (5) mean percent overstory tree cover (TREE, %), (6) tree density 

expressed as trees per hectare (TPH, number/ha), (7) quadratic mean diameter at 

breast height (dbh) of overstory trees (QMD, cm), (8) cosine-transformed aspect 

(ASPECT), and (9) stand age (AGE, year). 

LSHERB, CLITTER and FLITTER were the average of 24 microplots, and 

UNDER and TREE were the average of four transects at each sample point.  As 

recommended by Beers et al. (1966), aspect was cosine transformed with a 

predetermined phase shift of 45º resulting in a variable that would range from one at a 

northeast aspect and negative one at a southwest aspect (Stage and Salas 2007).   

4.3.3 Structural Equation Modeling 

The four hypotheses described above were translated into the SR model 

depicted in Figure 4.3.  The SR model failed the two-step rules for model 

identification by Bollen (1989) because there was only one observed variable per 

latent variable, and the errors of the fine and coarse litter were correlated.  The former 

problem was addressed by assuming that the observed variables were measured with 

errors and that the latent variables represented the true values.  Hayduk (1987) 

suggested that the solution for this identification issue was to assign a priori 
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measurement errors and the ULI constraint.  Measurement error expressed as the 

percent of variance of each observed variable was estimated as the average of three 

expert opinions (Table 4.1; Paul Anderson, Douglas Maguire and Douglas 

Mainwaring, Personal Communication).  The amount of variance attributed to 

measurement error was computed as the product of this percentage and the observed 

variance, and was then entered into the SR model (Figure 4.3).  Subsequently, the ULI 

constraint assigned a value of 1.0 for each factor loading (Figure 4.3).  The lower 

(0.025 quantile) and upper (0.975 quantile) limits of percent of measurement error 

were also provided for a sensitivity analysis on the effects of measurement errors on 

parameter estimates (Table 4.1).  The path model part of the SR model had a bow-free 

pattern; i.e., errors of fine and coarse woody litter were correlated but there was no 

direct effect between the two latent variables (Kline 2005).  In practice, a path model 

with a bow-free pattern is considered a recursive model, and thus is identified (Kline 

2005).  Consequently, the whole SR model was identified.  

The bivariate relationship between LSHERB and TPH was nonlinear; thus to 

satisfy the linearity assumption, TPH was transformed by the natural logarithm.  

Furthermore, the observed variance-covariance matrix was ill-scaled; i.e., the 

difference between the largest and smallest variances was extremely large (Kline 

2005).  This would cause a problem in the iterative model estimation process.  Thus, 

ASPECT and log(TPH) were each multiplied by 10 to improve the properties of the 

observed variance-covariance matrix (Figure 4.3).  Because the maximum likelihood 

method is generally scale-free and scale-invariant, the parameters estimated for the 
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transformed ASPECT and log(TPH) could be algebraically converted back to the 

original metric (Kline 2005). 

Initial testing revealed that most observed variables were not univariate 

normally distributed due to moderate or extreme skewness and/or kurtosis.  In one 

exception, QMD exhibited no significant kurtosis.  SEM is sensitive to violation of the 

multivariate normality assumption, particularly kurtosis; therefore, proper adjustment 

was needed to obtain valid standard error estimates.  Following the recommendations 

of Jöreskog et al. (2000), both observed and asymptotic variance-covariance matrices 

were fitted by Robust Maximum Likelihood (RML) to obtain standard error estimates 

that reflected the non-normality in the data.  

As documented in Chapter 3, the DEMO experiment was a Randomized 

Complete Block Design (RCBD) with six blocks and six treatments, for a total of 36 

experimental units.  Because sample points were nested within each unit, observations 

within the unit were not independent.  If the nesting structure of the data was ignored, 

the parameter estimates were unbiased but the associated standard errors might be 

underestimated (Grace et al. 2009).  For brevity, this study ignored blocks but 

accounted for the nested study design.  Following methods discussed by Asparouhov 

and Muthén (2006) and described in LISREL documentation (2005), standard errors 

were adjusted and the model chi-square statistic (eqn. 4.7) was scaled to reflect the 

nesting structure of the data. 

An equivalent model was designed with the only change being a hypothesized 

effect of Understory Cover on Fine Litter (Figure 4.4).  The rationale was that limited 
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light availability caused by an increase in both overstory cover and understory density 

would hasten understory crown recession, thus contributing to the fine litter pool.  

Both models were fitted with LISREL 8.8 (Jöreskog and Sörbom 2006), but the fit 

was poor for both models.  The initial SR model (Figure 4.3) had a scaled- 2
Mχ  of 

33.75, dfM = 9 and p-value < 0.001, and the RMSEA was 0.049 with 95% confidence 

interval between 0.032 and 0.067.  Similarly, the equivalent model (Figure 4.4) had a 

scaled- 2
Mχ  of 29.40, dfM = 9 and p-value < 0.001, and the RMSEA was 0.049 with 

95% confidence interval between 0.027 and 0.062. 

Sets of modification indices for both models were provided by LISREL with 

suggested paths and unanalyzed associations to improve model fit.  However, most of 

the suggestions could not be supported by theory.  Also to be consistent among the 

two models, the two paths Stand Age  Late-Seral Herb Cover and Aspect  Fine 

Litter were plausible additions.  The first suggested path was intuitively appealing 

because stand structure and microclimatic conditions would gradually become more 

favorable to the development of late-seral herb community through the course of stand 

development.  With regard to the second suggested path, Sariyildiz et al. (2005) found 

that, in the northern hemisphere, fine litter deposited in stands on northern aspects had 

a higher decomposition rate than litter deposited on southern aspects, likely due to 

drier and hotter microclimatic conditions at the latter.  The modified initial SR model 

(hereafter referred to as the base model) and the modified equivalent model therefore 

included both of these suggested paths.  Only unstandardized solutions are presented 
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as path coefficients in Figures 4.3 and 4.4 and in subsequent path diagrams.  However, 

to facilitate comparison between relative magnitudes of effects, the width of arrows in 

the diagrams corresponds to the values of standardized solutions; i.e., wider arrows 

indicated larger standardized coefficients and thus stronger relative effects. 

4.3.4 Results 

4.3.4.1 Bivariate Relationships 

The bivariate relationships between LSHERB and its six predictors were 

depicted in Figure 4.5.  LSHERB was positively correlated with FLITTER, UNDER 

and ASPECT (p-values < 0.001) but negatively correlated with TREE and log(TPH) 

(p-values < 0.001).  In contrast, the correlation between LSHERB and CLITTER was 

not significant (p-value = 0.221).  UNDER was predicted by five observed variables 

and all correlations were significant (p-values < 0.001) (Figure 4.6).  FLITTER and 

ASPECT were positively correlated with UNDER whereas CLITTER, TREE and 

log(TPH) were negatively correlated. 

The predictors for FLITTER were TREE, log(TPH) and QMD (Figure 4.7), 

and all were significantly correlated with FLITTER (p-values < 0.001).  TREE and 

QMD were positively correlated with FLITTER, and log(TPH) was negatively 

correlated.  The two predictors for CLITTER were log(TPH) and AGE (Figure 4.7).  

Both predictors were significantly and positively correlated with CLITTER (p-values 

< 0.001 and = 0.027 respectively). 
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In some cases, visual inspection of the bivariate relationships suggested the 

possibility of nonlinearity, e.g., between LSHERB and FLITTER or CLITTER (Figure 

4.5).  These data were also fitted with quadratic equations and a logarithmic 

transformation of the predictors, but they did not improve the fit based on model R2 

and residual plots.  Ultimately, bivariate relationships provided only a crude check on 

the multivariate linearity assumption because apparent nonlinearities may result in part 

from non-orthogonal distribution of observations across all predictors. 

4.3.4.2 Base SR Model 

The final base model converged to admissible solutions with the indices 

indicating relatively good overall model fit.  For this  model, the scaled- 2
Mχ  was 7.94 

with dfM = 7 and a p-value = 0.34.  The RMSEA was 0.011 with 95% confidence 

interval between 0.0 and 0.038, indicating a close approximate fit.  The SRMR was 

0.81, which was higher than the recommended level.  Inspection of the standardized 

residual variance-covariance matrix (standardized S – standardized Σ) revealed that 

the model did not estimate covariances between TREE and CLITTER very well, and 

the same was observed for covariances TREE and FLITTER.  The predicted path 

coefficients are presented in Figure 4.8. 

Overstory tree cover directly and indirectly affected late-seral herb cover 

(Figure 4.8); however, the direct effect was stronger than indirect effects through Fine 

Litter and Understory Cover.  A 1% increase in overstory tree cover directly decreased 

the late-seral herb cover by 0.19% (p-value = 0.01, Table 4.2).  The indirect effects 
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were mediated by fine litter cover and/or understory cover, but the combined indirect 

effects were insignificant (p-value = 0.35, Table 4.3).  However, the path Overstory 

Cover  Understory Cover  Late-Seral Herb Cover had a strong negative effect on 

late-seral herb cover (-0.12 = -0.64×0.18, Figure 4.8).  Nevertheless, the total effect of 

overstory tree cover was significantly negative (-0.24, p-value < 0.001, Table 4.4). 

Tree density effects on late-seral herb cover were primarily indirect and 

mediated by forest floor litter and/or understory cover (Figure 4.8).  This conclusion 

was supported by an insignificant direct effect (p-value = 0.61, Table 4.2).  The 

combined indirect effect suggested that a two-fold increase in tree density reduced 

late-seral herb cover by 1.97% (p-value =0.003, Table 4.3).  Of all the indirect effects, 

the path with the largest estimated absolute effect was Tree Density  Understory 

Cover  Late-Seral Herb Cover (-0.15 = -0.82×0.18, Figure 4.8).  

The effects of coarse and fine woody litter on late-seral herb cover were 

predominantly mediated by understory cover (Figure 4.8).  As indicated in Table 4.2, 

the direct effects of coarse and fine litter were insignificant (p-values = 0.33 and 0.12 

respectively).  However, a 1% increase in coarse litter cover indirectly increased the 

late-seral herb cover by 0.17% (p-value = 0.046, Table 4.3), and a similar increase in 

fine litter cover indirectly increased late-seral herb cover by 0.24% (p-value = 0.005, 

Table 4.3).  Of all the predictors of fine litter cover, average tree size (QMD) turned 

out to be insignificant and tree density (log(TPH)) had the strongest effect (Figure 

4.8).  Tree density had a negative effect on fine litter cover (-0.39, p-value = 0.004, 

Table 4.2) whereas overstory cover (0.12, p-value < 0.001, Table 4.2) and aspect 
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(0.12, p-value = 0.031, Table 4.2) had positive effects.  Both tree density and stand 

age were significant predictors for coarse litter cover with respective positive effects 

of 0.16 (p-value = 0.002, Table 4.2) and 0.03 (p-value = 0.014, Table 4.2).  

Nonetheless, the fitted model could not explain much of the observed variation in the 

coarse and fine woody litter; the squared multiple correlations R2 were 0.03 and 0.05 

respectively (Figure 4.8).  Finally, fine and coarse litter covers were negatively 

correlated with large error covariance (-43.18; Figure 4.8) and a standardized error 

covariance of -0.725. 

Aspect had direct and indirect effects on late-seral herb cover, with the latter 

mediated by fine litter and/or understory cover.  Both effects were significantly 

positive (p-values < 0.02, Tables 4.2 and 4.3), with a total effect amounting to 0.73 (p-

value < 0.001, Table 4.4).  Of the indirect effects, the pathway Aspect  Understory 

Cover  Late-Seral Herb Cover amounted to a positive effect of 0.25 (1.38×0.18).  

As aspect shifted from southwest towards northeast, the late-seral herb cover 

increased.  As expected, stand age had a strong direct effect on late-seral herb cover, 

with a 1 year increase in stand age directly increasing cover by 0.16% (p-value < 

0.001, Table 4.2).  The model also predicted an indirect effect of stand age, which was 

mediated by coarse litter and understory cover; however this effect was marginally 

significant (p-value = 0.057, Table 4.3).  With all the predicted direct and indirect 

effects, the fitted model explained approximately half of the observed variance in late-

seral herb cover (R2 = 0.49; Figure 4.8). 
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4.3.4.3 Equivalent SR Model 

The equivalent model converged to admissible solutions, and the indices 

indicated a slightly superior fit to the base model: the scaled- 2
Mχ  was 6.42 with dfM = 

7 and a p-value = 0.49, the RMSEA < 0.001 with 95% confidence interval between 

0.0 and 0.034.  However, similar to the final base model, the SRMR was 0.82 and the 

standardized residuals for the covariances between TREE and CLITTER, and TREE 

and FLITTER were large.  The predicted path coefficients are presented in Figure 4.9. 

Most direct effects in the final equivalent model were comparable to the final 

base model with a few noticeable exceptions.  Foremost was the hypothesized direct 

effect of understory cover on fine woody litter, which was significantly positive with 

1% increase in understory cover directly increasing litter cover by 0.07% (p-value < 

0.001, Table 4.5).  Second, two paths became insignificant; i.e., Aspect  Fine Litter 

and Coarse Litter  Understory Cover.  The former has p-value of 0.999 whereas the 

latter coefficient was -0.28 with p-value of 0.313 (Table 4.5).  Contrary to the base 

model, average tree size had a significant effect on fine woody litter (-0.10, p-value = 

0.007, Table 4.5).  A final notable difference was that the model explained larger 

amount of the observed variance in fine woody litter cover (R2 = 0.12; Figure 4.9). 

Another outcome of the equivalent model was the different set of indirect and 

total effects.  An indirect effect of understory cover on late-seral herb cover mediated 

by fine woody litter was predicted to be insignificant (0.020, p-value = 0.165, Table 

4.6).  Despite that, the total effect of understory cover was significant suggesting the 
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direct effect had the largest contribution (0.196, p-value < 0.001, Table 4.7).  The 

overstory tree cover, tree density and aspect indirectly affected fine woody debris (p-

values = 0.022, 0.007 and 0.003 respectively, Table 4.6), and all effects were mediated 

by understory cover (Figure 4.9).  However, the cascading effects of these three 

variables on late-seral herb cover through both understory cover and fine woody litter 

were small, e.g., the largest predicted effect among the three was Aspect  

Understory Cover  Fine Litter  Late-Seral Herb Cover (0.029 = 1.54×0.07×0.27, 

Figure 4.9).  This indirect cascading effect contributed little to the total effect of aspect 

on late-seral herb cover (0.725, Table 4.7). 

4.3.4.4 Sensitivity Analysis on Measurement Errors 

General results from the sensitivity analysis on measurement errors for the 

base and equivalent models were similar; hence, only those from the equivalent model 

were depicted in Figures 4.10 and 4.11.  Parameter estimates from the model with the 

lower limit (0.025 quantile) of percent measurement error (Figure 4.10) were almost 

identical to that assuming average measurement error final model (Figure 4.9).  

Conversely, there were major differences in the results from the model with the upper 

limit (0.975 quantile) of percent measurement errors (Figure 4.11 vs. Figure 4.9).  For 

example, estimated path coefficients for Tree Density  Fine Litter and Tree Size  

Fine Litter indicated larger effects for the model with the upper limit (unstandardized 

coefficients presented in Figure 4.11 vs. Figure 4.9), although the direction of effects 

remained the same.  In addition, these effects were stronger in standardized 
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coefficients as indicated by the wider arrows in Figure 4.11 versus Figure 4.9.  

Secondly, the R2 of all endogenous latent variables increased implying that the model 

with upper limit explained more of the observed variance in those variables. 

4.3.5 Discussion 

Both fitted SR models supported the hypothesis that light attenuation 

associated with increasing overstory tree cover negatively affects late-seral herb cover.  

McKenzie et al. (2000) found similar results in their analysis of late-seral herb cover 

in mature forests of the Pacific Northwest.  At first glance, typically shade-tolerant 

late-seral species might be expected to increase rather than decrease with increasing 

overstory cover.  However, the range of overstory cover was relatively narrow.  The 

25% quantile of TREE was 65.3%, indicating that the majority of sample points had 

dense overstory cover (Figure 4.5).  Late-seral herbs probably cannot thrive under an 

extremely dense overstory canopy because light availability would be limiting 

(DeGranpré et al. 1993).  Thus as overstory cover increased from 65% to 100%, late-

seral herb cover would decline in response to the decrease in light availability.  The 

model accounted for two negative effects that act concurrently on late-seral herb 

cover; i.e., a cascading effect of overstory-understory-herb and the direct effect of 

overstory tree cover.  Mid-story shrubs and trees apparently act as filters and play a 

role beyond the direct effect of overstory cover on late-seral herb cover.  In short, 

superimposed effects of forest vegetation layers determine the integrated effect of 

vertical stand structure on late-seral herbs. 
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The hypothesis of belowground resource competition was supported by both 

fitted models; i.e., decreasing tree density had a positive net effect on late-seral herb 

cover.  In unthinned stands, McKenzie et al. (2000) also found that maximum percent 

cover of late-seral herb cover increased with decreasing stand density index (SDI).  

However, the effect of root competition from overstory trees on late-seral herbs has 

received scant attention; instead, most work has focused on the composite response of 

all understory species (e.g., Powell and Bork 2006).  Lindh and Muir (2004) found 

that thinning dense 20-year-old Douglas-fir stands had a positive impact on the 

frequency of late-seral herbs 20 years later.  However, their results may not 

immediately discriminate between release from belowground resource competition 

and the combination of other factors such as time and light availability.  The fitted 

models suggested that the indirect effect through understory shrub and tree cover was 

stronger than the direct effect of tree density.  This result might be expected if the 

general depth of root systems differ between layers of the aboveground vegetation.  

Lindh et al. (2003) suggested that shade-tolerant plants would invest resources into 

above-ground development at the expense of a limited root system.  Hence, understory 

trees and shrubs may have denser and deeper root systems than late-seral herbs, and 

may be more likely to interact extensively with tree root systems.  In areas with lower 

overstory density, understory shrubs and trees may establish by more readily 

exploiting available belowground resources than late-seral herbs.  With a local 

increase in understory shrub and tree cover made possible by reduced below- and 
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above-ground competition from the overstory trees, late-seral herbs may gain from the 

more favorable microclimatic conditions created by the denser mid-story vegetation. 

Although there was no strong evidence to reject either the base or equivalent 

model, the statistical tests favored the equivalent model over the base model and, 

hence, the alternative hypothesis that fine woody litter was the effect of understory 

shrub and tree cover rather than the cause.  This is also substantiated by the larger 

explanatory power the fitted equivalent model had on the observed variance of fine 

litter cover.  In mature Douglas-fir forests of the Pacific Northwest, forest floor litter 

may have a negative effect on late-seral herbs by physically obstructing growth and 

establishment (Lindgren and Sullivan 2001), although positive effects may also be 

possible.  The equivalent model supported the postulate that coarse woody debris 

negatively affects late-seral herbs indirectly through understory shrubs and trees, 

possibly as physical obstruction to the latter, but the effect was not significant.  

Conversely, the base model indicated a significant positive effect of coarse wood on 

both understory cover and later seral herb cover.  Both models did support the 

hypothesized role of tree mortality and crown recession in coarse and fine litter 

production, respectively.  Furthermore, the equivalent model predicted a stronger 

contribution of average tree size to the fine litter production.  In both models, coarse 

and fine woody litter did not have a significant direct effect on late-seral herbs, 

contrary to what was hypothesized.  In addition, effects of other unknown processes 

controlling accumulation of coarse and fine wood are suggested by the low R2 and 

large correlation between the two.  Further research into the interaction between forest 
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floor litter accumulation and understory vegetation is required to improve our 

understanding about mechanisms proposed in Hypothesis 3. 

Both fitted models confirmed the influence of aspect on vegetation 

establishment and growth.  Conditions in Douglas-fir stands on northeast aspects are 

more favorable to both understory shrubs and trees and late-seral herbs than on 

southwest aspects.  Gazol and Ibáñez (2009) found that a southern aspect was 

associated with higher shrub diversity in mixed acidophilus beech (Fagus sylvatica L.) 

and oak (Quercus robur L.) forests in northern Spain.  Other studies such as Mitchell 

and Bartling (1991) and Gracia et al. (2007) found that herb production and shrub 

diversity were not related to changes in aspect for ponderosa pine forests in Colorado 

and Wyoming, USA or for mixed species stands of Scots pine (Pinus sylvestris L.) and 

mountain pine (Pinus uncinata Ramond ex DC. In Lam. & DC.) in northeastern Spain, 

respectively.  Neither of these studies addressed late seral species, but their mid-story 

shrubs response differed from the DEMO results for the mix of shrubs and small trees.  

Some of the differences among these studies are probably attributable to the different 

forest types and climates, and the fact that many environmental factors change 

simultaneously with aspect.   

Given enough time, natural stand dynamics gradually lead to stand conditions 

that are favorable to the late-seral herb community.  Many aspects of the biotic and 

abiotic environment change with stand development, including changes in the 

chemical and structural properties of soil (Barbier et al. 2008, Dupouey et al. 2002).  

In some forest types (e.g., Whitney and Foster 1988), age may be a strong predictor of 
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understory community structure.  In the DEMO SR models, average age of overstory 

trees emerged as a strong predictor of late-seral herb cover for the mature Douglas-fir 

forests of the Pacific Northwest.  

Including latent variables in SEM acknowledges that a certain degree of 

measurement error exists in the observed variables (Grace 2006).  Sensitivity analysis 

made clear that the parameter estimates from the fitted models were affected by 

measurement errors to some degree.  In general, path coefficients and the proportion 

of explained variance (R2) are biased downward if measurement errors are ignored 

(Grace 2006).  In addition, sensitivity analysis raises a question about robustness of 

conclusions to the usual assumption in most statistical models (e.g., multiple 

regressions) that predictors are measured without error.  If measurement errors are 

small, the effects on parameter estimates would not be strong.  On the other hand, if 

measurement errors are large, it is necessary to account for these errors to avoid biased 

estimates.  SEM is a flexible method that can account for measurement errors when 

necessary. 

4.4 VARIABLE-RETENTION HARVESTING 

Increasing public concern about possible adverse effects of clearcutting on the 

biodiversity and ecological processes associated with mature Douglas-fir forests in the 

Pacific Northwest has prompted research into the efficacy of variable-retention 

harvesting.  The number and spatial distribution of retained trees in the variable-

retention harvesting system have been hypothesized to influence the ameliorating 
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effects on taxa that are sensitive to abrupt changes in stand conditions.  Creating 

aggregates might bring greater benefits to late-seral herbaceous species than having 

the retained trees dispersed over the harvesting unit (Halpern et al. 2005), but leaving 

a larger number of dispersed residual trees may ameliorate effects of regeneration 

harvesting better than leaving fewer dispersed trees.  Residual stand conditions exert 

immediate effects on the survival of taxa and the persistence of processes, but also 

have long term implications for the recolonization and recovery.  Conditions 

immediately after harvesting are largely driven by retention level, distribution of 

residual trees, and direct disturbance from logging activities.  However, separating the 

effects of these factors would be difficult due to inter-correlations and complex 

interactions inherent in operational settings (Halpern et al. 2005).  Part of the 

challenge is to find statistical methods that explicitly address as many of these 

interactions as possible.  To our knowledge, few studies have analytically examined 

the interactions of these factors and their effects on biodiversity, although many 

hypotheses have been proposed.  This study applied SEM in an attempt to understand 

responses of late-seral herb species diversity and composition to variable-retention 

harvesting in the Pacific Northwest, with emphasis on early responses to overstory 

removal and logging disturbances. 

4.4.1 Hypotheses 

Two sets of hypotheses were formulated.  The first set related to microclimatic 

stresses induced by overstory removal, e.g., increased solar radiation, increased 
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temperature, and decreased relative humidity at the forest floor.  The second set 

addressed direct disturbance from logging activities, e.g., uprooting, displacement and 

burial.  The target population was late-seral herbs, a group of plants that shows an 

affinity for deeply shaded microsites buffered by multi-layered canopies (Halpern and 

Spies 1995).  These microsites are characterized by relatively cool and moist 

conditions during the dry and warm summer (Halpern and Spies 1995), as well as 

minimal fluctuation in temperature and humidity (Chen 1991).  The late-seral herb 

population is likely to be sensitive to changes in microsite and direct physical 

disturbance (Halpern et al. 2005).  Microclimatic stresses and logging activities may 

therefore risk local extirpation and affect the speed or success of future recovery.  The 

specific hypotheses are: 

Hypothesis 1.  The reduction in overstory crown cover from variable-retention 

harvesting directly and adversely affects late-seral herb species diversity and 

composition, and imposes an indirect effect by its influence on mid-story shrub and 

tree cover. 

Crown cover captures processes related to light transmittance and moderation 

of relative humidity and air and soil temperature under the forest canopy (Barbier et al. 

2008, Sharpe et al. 1996).  Late-seral herb species are adapted to conditions under 

dense canopy, but seem to vary in their tolerance of sudden exposure (Halpern et al. 

2005).  Sudden and heavy reductions in canopy cover from harvesting can cause 

abrupt changes in microsite conditions, to the extent that some species may not be able 

to physiologically endure the change and could at least temporarily eliminated from 
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the site.  Mid-story shrubs and trees may act as a buffer by ameliorating the effects of 

overstory reduction.  However, understory trees may also experience initial stress 

analogous to thinning shock (Harrington and Reukema 1983), including foliar 

chlorosis, top dieback, growth reduction (Maguire et al. 2006) or mortality due to 

sudden exposure to solar radiation, high air temperatures, and high vapor pressure 

deficits.  These effects on the understory tree layer may limit its ability to ameliorate 

overstory reduction and its effect on late-seral herb species.  Hence, we proposed 

direct and indirect effects of  the reduction in overstory canopy cover on late-seral 

herb species. 

Hypothesis 2.  Reduction in tree density from variable-retention harvesting indirectly 

affects late-seral herb species diversity and composition through its influence on mid-

story shrub and tree cover. 

A reduction in tree density from the regeneration harvests may induce a net 

positive effect on residual plants by releasing belowground resources that would 

otherwise be pre-empted by overstory trees (Lindh et al. 2003, Riegel et al. 1992).   

However, understory shrubs and trees are speculated to respond more rapidly and 

opportunistically to the reduced belowground competition than late-seral herbs.  

Understory woody plants have denser and more extensive root systems so are in a 

better position to rapidly access the newly available resources.  Root growth of 

Douglas-fir advance regeneration accelerated in response to recent partial harvests and 

released belowground resources (Kneeshaw et al. 2002).  A major effect from 

reduction in tree density on late-seral herbs may therefore be indirect. 
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Hypothesis 3.  Aspect directly affects late-seral herb species diversity and 

composition, with a secondary and indirect effect through mid-story shrubs and trees 

cover. 

Aspect affects the amount of incident solar radiation; thus, it could strongly 

influence the microclimatic conditions such as air and soil temperature (Fekedulegn et 

al. 2003).  In the northern atmosphere, it is well known that southwest aspects are 

often the most severe sites for vegetation establishment and growth (e.g., Beers et al. 

1966).  With opening of the canopy after harvesting, aspect probably plays a greater 

role in determining the community of late-seral herbs and understory shrubs and trees. 

Hypothesis 4.  Slash, coarse woody debris and disturbed mineral soil resulting from 

harvesting directly affects late-seral herb species diversity and composition. 

Deposition of slash, movement of coarse woody debris and exposure of 

mineral soil during variable-retention harvesting will directly influence survival, 

persistence and recovery of late-seral herbs through physical damage to the plants and 

change in forest floor and soil conditions.  Harvesting activity can result in burial of 

herbs, resulting in mortality or impeded growth (Lindgren and Sullivan 2001).  Effects 

of burial would be more severe in non-clonal versus clonal herbs because clonal herbs 

may move perennating structures into more favorable environments (Halpern et al. 

2005).  Exposed mineral soil, e.g., from displacement of organic matter or skid trails, 

is also an effect of local harvesting activities.  Other disturbances associated with 

harvesting include uprooting and soil compaction. 
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Hypothesis 5.  Production of slash, movement of coarse woody debris and exposure 

of mineral soil increase with greater amounts of overstory removal and are influenced 

by the types of harvesting system.   

Tree harvesting generates logging slash in the form of fine needles, twigs, 

branches, and tops, depending on whether whole trees or only merchantable stems are 

yarded.  Even under whole-tree yarding, much of this material can be generated by 

damaging trees and other vegetation during harvesting.  In general, the level of 

reduction in overstory crown cover and understory shrub and tree cover should 

indicate the level of potential slash production.  Coarse woody debris can be generated 

by cull logs, stem breakage, or snag felling, so again greater overstory reduction has 

the potential for generating a greater amount of new coarse woody debris on forest 

floor.  Finally, the quantity of disturbed mineral soil is also a direct effect of the level 

of overstory reduction.  

The yarding methods and other harvesting activities on the DEMO units were 

described by Halpern and McKenzie (2001) and are summarized in Table 4.8.  Two 

general harvesting systems were applied to yard material from the treatment units, a 

ground-based system using a shovel loader to yard individual logs (in WF and PH 

blocks, Chapter 3) and helicopter system in which whole trees were removed (in DP, 

BU and LW blocks, Chapter 3).  Helicopter logging was expected to generate less 

slash, coarse woody debris and disturbed mineral soil because non-merchantable trees 

were not felled, branches and tops were yarded to the landing, and temporary roads 

were not constructed.  In contrast, shovel logging was expected to leave branches and 
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tops where they fell in the units, creating more slash and greater variability in slash 

production.  The slash was piled and burned in only the WF block (Table 4.8).   

In addition to the five hypotheses, we also hypothesized that error variances of 

late-seral herb species diversity and composition were correlated because other 

common factors not represented in the model were expected to affect both of these 

variables. 

4.4.2 Data Collection 

The vegetation sampling protocol for the DEMO study was described in 

Section 4.3.2.  Sampling was carried out in 1994–1996 before harvest, and 

immediately after harvest in 1998–2000.  Exploratory data analysis showed that the 

Capitol Forest (CF) block had low number of late-seral herb species before harvesting, 

reaching a maximum of four, probably because the stands were relatively young (~ 65 

years old).  The data from the CF block were therefore excluded from modeling.  

Furthermore, we limited the analysis to treatment combinations represented by two 

retention levels (15% and 40%) and two patterns of retention (Dispersed and 

Aggregated; refer to Chapter 3). 

The main responses of interest to the study were species diversity and species 

composition of the late-seral herb community.  The Shannon diversity index is a 

common index for measuring species diversity (Krebs 1999), and takes into account 

the number and evenness of species.  The index was calculated for pre- and post-

harvest data as follows: 
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where pi was the pre- or post-harvest relative frequency of late-seral herb species i at a 

sample point.   

The proposed index for measuring species composition was the Renkonen 

similarity index (Krebs 1999).  It measured the percent similarity in the relative 

abundance of species between pre- and post-harvest community at a given sample 

point as follows: 
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where ppre,i and ppost,i were the relative frequency of late-seral herb species i at a 

sample point before and after harvest, respectively.  The frequency of a late-seral herb 

species i at a given sample point was the number of the 24 microplots in which the 

species was detected (ni).  The abundance of all late-seral herb species at a sample 

point was measured as the total of all frequencies 
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=∑ , and the relative 

frequency of species i at a given sample point was therefore measured as pi = ni/N. 

Except for crown volume, the variables depicting vegetation structure were 

described in Section 4.3.2.  Crown volume was estimated by first computing crown 

cross-sectional areas at 0.5-m height intervals for each sampled tree (Dubrasich et al. 

1997, Maguire et al. 2007).  All crown cross-sectional areas were then summed over 

all height intervals for all the trees on a given plot, and this total crown cross-sectional 

area served as a surrogate for total crown volume.  
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The information on ground conditions immediately after harvesting was 

collected along the four 6-m transects as described in Section 4.3.2.  Percent cover of 

slash and disturbed mineral soil and volume of coarse woody debris were estimated, 

and slash depth was estimated at 12 points along each transect yielding a total of 48 

measures of slash depth per sample point (Halpern and McKenzie 2001).  Slash 

consisted of needles, leaves, twigs and branches <10 cm in diameter, disturbed 

mineral soil included skid trails and places where mineral soil had been exposed or 

deposited, and coarse woody debris was down wood with diameter ≥10 cm (Halpern 

and McKenzie 2001).     

In summary, the 11 observed variables for modeling changes in species 

diversity and composition of late-seral herb communities with SEM were: (1) 

difference in pre- and post-harvest Shannon diversity index (dSHANNON), (2) 

Renkonen similarity index (RENKONEN, %) (3) difference in pre- and post-harvest 

understory shrubs and trees cover (dUNDER, %), (4) difference in pre- and post-

harvest crown volume (dCROWNVOL, m2/ha), (5) difference in pre- and post-harvest 

tree density (dTPH, trees/ha), (6) cosine-transformed aspect (ASPECT), (7) post-

harvest slash cover (SLASHCOV, %), (8) post-harvest slash depth (SLASHDEP, cm), 

(9) post-harvest coarse woody debris volume (CWDVOL, m3/ha), (10) post-harvest 

disturbed mineral soil cover (DISTSOIL, %), and (11) harvesting system (HARVEST, 

Table 4.8).  These variables are summarized in Table 4.9 by their minima, means and 

maxima for 15% retention (i.e., 15%A and 15%D treatments combined) and 40% 
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retention (i.e., 40%A and 40%D treatments combined).  All differences were defined 

as the post-harvest value minus the pre-harvest value. 

4.4.3 Structural Equation Modeling 

The six hypotheses were translated into a SR model depicted in Figure 4.12.  

Similar to the model in Section 4.3.3, each latent variable had only one observed 

variable.  Therefore, a priori measurement errors and ULI constraints were imposed 

on the observed variables.  For flexibility, measurement error was expressed as a 

percentage of the observed variance for a given observed variable (Figure 4.12).  The 

SR model was considered a partially latent model because the dichotomous variable 

HARVEST was measured without error.  Some of the observed variables were 

transformed to avoid ill-scaled variance-covariance matrices (Figure 4.12). 

Modeling the response to variable-retention harvesting entailed use of a 

composite variable, Logging Residuals (depicted as a hexagon in Figure 4.12).  A 

composite represents a collection of causes (Grace and Bollen 2006), including in this 

case the effects from latent variables slash cover, slash depth and coarse wood.  This 

construct allowed for a comprehensive test of the combined effects of logging 

residuals on late-seral herb species diversity and composition.  As a composite 

variable, Logging Residuals was by definition endogenous and therefore contained 

error variance.  A common practice is to assume zero for the error variance because a 

composite variable is completely determined by the latent variables that influence it 

(Grace and Bollen 2006).  To avoid model underidentification, a ULI constraint was 
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imposed on the path Slash Depth  Logging Residuals (Figure 4.12) to establish the 

scale of measurement (Grace and Bollen 2006), a practice that is similar to a 

measurement model.  

Exploratory data analysis revealed that all endogenous observed variables had 

significant skewness and kurtosis.  Additionally, sample points were nested within 

experimental units.  To account for non-normality and non-independence of 

observations, a maximum likelihood estimation procedure that produced robust 

standard errors was applied and effects were tested by a chi-square statistic (Muthén 

and Muthén 2007).  Standard errors were estimated using a ‘sandwich estimator’ 

(Muthén and Muthén 2007), and the chi-square statistic was asymptotically equivalent 

to the Yuan-Bentler test statistic (Yuan and Bentler 2000).  The modeling and analysis 

were carried out with Mplus 5.21 (Muthén and Muthén 2007). 

An elaboration on standard SEM modeling is multigroup SEM analysis (Grace 

2006).  The general procedure is to assign data to unique groups, and to fit a model to 

each group using data from all groups simultaneously (Grace 2006).  The advantage of 

this approach is its ability to test hypotheses about whether parameter estimates differ 

among groups and to determine whether a common model adequately describes all 

groups (Grace 2006).  In this study, the four treatments were the groups, and a 

multigroup SEM analysis was carried out with the proposed SR model (Figure 4.12).  

As in the previous section, only unstandardized solutions are presented.  However, to 

facilitate comparison of magnitude of effects, the width of arrows in the path diagrams 
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corresponds to the standardized solutions; i.e., wider arrows indicated larger 

standardized coefficients and thus stronger relative effects. 

4.4.4 Results 

4.4.4.1 Bivariate Relationships 

The bivariate relationships between direct predictors and dSHANNON and 

RENKONEN were depicted for 15% retention (Figure 4.13) and 40% retention 

(Figure 4.14).  Both dSHANNON and RENKONEN for 15% retention showed strong 

correlations with most direct predictors.  Both response variables were positively 

correlated with dCROWNVOL and ASPECT but negatively and more weakly 

correlated with dUNDER and DISTSOIL (Figure 4.13).  The trends in the 

relationships between four predictors and both dSHANNON and RENKONEN for 

40% retention were similar to those of 15% retention albeit the correlations were 

weaker (Figure 4.14).  In general, a bivariate linear relationship between a response 

and predictor appeared plausible for both retention levels, but the scatterplots 

indicated a large amount of variation around these linear trends.  However, as 

mentioned earlier, bivariate relationships provide very limited insight into the multi-

dimensional relationships inherent to a SEM. 

4.4.4.2 SR Models Exploration 

The multigroup SEM analysis on the proposed SR model (Figure 4.12) did not 

converge to any admissible solution.  The reported problem was that there were not 

enough experimental units within each group to generate reliable parameter estimates; 
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i.e., each treatment had only five experimental units.  To circumvent this problem, the 

data were regrouped by retention level by pooling both the dispersed and aggregated 

retention treatments; i.e., data from 15%D and 15%A treatments were grouped into a 

single 15% treatment and data from 40%D and 40%A treatments were similarly 

grouped.  The current mandate for federal forestland in the Pacific Northwest is to 

retain at least 15% of live trees in a harvest unit, to ensure that ≥ 70% of this retention 

is in aggregates of 0.2–1.0 ha, and to allow ≤ 30% in either dispersed smaller groups 

(< 0.2 ha) or as individual trees (USDA and USDI 1994, Tuchman et al. 1996).  In 

practice, therefore, a gradient in aggregate size from 1-ha to individual trees may be 

applied, with the aggregated and dispersed DEMO treatments representing the 

extremes.  Also, Halpern et al. (2005) found the vegetation to have stronger response 

to retention level than dispersion types.  

A second attempt was then made at multigroup analysis of the regrouped data 

to compare response mechanisms in 15% versus 40% retention.  However, the 

analysis still failed to generate any admissible solution, even though number of 

experimental units per group (10) seemed adequate.  One likely explanation was that 

the SR model could not simultaneously fit the variance-covariance matrices of both 

groups.  In other words, there might not be a common model for the two retention 

levels.  The next step was to fit the proposed SR model individually to each group.  

The drawback was that the hypotheses for multigroup analysis could not be tested.  

Nonetheless, it helped to discover possible contrasting features between the groups.   
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The proposed SR model failed to converge when fitted to 15% retention level 

data.  Subsequent exploration suggested adding error covariances between endogenous 

latent variables.  When error covariances between Slash Cover and Slash Depth, and 

between Slash Cover and Coarse Wood were added, the model converged to an 

admissible solution with the test statistics indicating good fit: the 2
Mχ  = 25.83 with dfM 

= 21 and a p-value = 0.21, the RMSEA = 0.027 with 95% confidence interval between 

0.0 and 0.057, and the SRMR = 0.033.  The final SR model for 15% retention with 

predicted path coefficients and the two added error covariances is depicted in Figure 

4.15. 

The initially proposed SR model without added covariances converged to an 

admissible solution when fitted to 40% retention level data; however, the test statistics 

indicated poor fit: the 2
Mχ  = 179.40 with dfM = 23 and a p-value < 0.0001, and the 

RMSEA = 0.141 with 95% confidence interval between 0.122 and 0.160.  The two 

added error covariances (Slash Cover and Slash Depth, Slash Cover and Coarse 

Wood) from the final 15% retention SR model were among the suggested 

modifications.  To facilitate comparison of the 15% and 40% models, the two error 

covariances were added.  The resulted model fit was improved, but the tests still 

indicated lack of fit: the 2
Mχ  reduced to 68.84 with dfM = 21 and a p-value < 0.0001, 

and the RMSEA was 0.081 with 95% confidence interval between 0.060 and 0.103.  

From the list of suggested modifications, three appeared theoretically plausible: two 

error covariances (Disturbed Soil and Slash Depth, Disturbed Soil and Coarse Wood) 
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and a direct path Tree Density  Slash Cover.  With these three additions, tests 

indicated adequate model fit: the 2
Mχ  = 25.27 with dfM = 18 and a p-value = 0.118, the 

RMSEA was 0.034 with 95% confidence interval between 0.0 and 0.063, and the 

SRMR was 0.038.  The final SR model for 40% retention with predicted path 

coefficients, including the four additional error covariances and one additional direct 

path, is depicted in Figure 4.16. 

Throughout the model building process for 40% retention, the effects of 

HARVEST on slash, coarse woody debris and disturbed mineral soil was consistently 

insignificant.  As an alternative model, the HARVEST variable was removed, with 

other structures kept the same.  The resulting model converged to an admissible 

solution with tests showing adequate fit: the 2
Mχ  = 15.80 with dfM = 15 and a p-value 

= 0.395, the RMSEA was 0.012 with 95% confidence interval between 0.0 and 0.053, 

and the SRMR was 0.038.  Because this alternative model and the 40% retention SR 

model with HARVEST were not nested, it would be improper to compare the fit 

between the two models.  The alternative model with predicted path coefficients is 

depicted in Figure 4.17. 

4.4.4.3 The Final 15% Retention SR Model 

The final 15% retention SR model predicted that retaining higher crown 

volume after harvest increased late-seral herb species diversity and similarity in 

species composition before and after harvest (Figure 4.15).  For each reduction of 

10,000 m2/ha in crown volume by harvesting, the Shannon diversity index declined by 
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1.21 units (p-value = 0.012, Table 4.10).  Likewise, for this same reduction in 

overstory crown volume the similarity between pre- and post harvest late-seral species 

composition (RENKONEN) declined by 0.74%  (p-value < 0.001, Table 4.10).  A 

move from southwest to northeast aspects resulted in a smaller reduction in species 

diversity and greater community similarity before and after harvest (Figure 4.15).  In 

contrast to direct effects of reduction in crown volume, indirect effects of reduction in 

tree density were insignificant for species diversity (0.063, p-value = 0.216, Table 

4.11) and community similarity (0.002, p-value = 0.945, Table 4.11).   

The negative effect of aspect on understory cover was contrary to expectation 

(Figure 4.15).  More northeastern aspects implied a greater reduction in understory 

shrub and tree cover relative to more southwestern aspects (-1.391, p-value < 0.001, 

Table 4.10).  The lower average initial understory cover on southwest aspects prior to 

harvest (Figure 4.18A) may have limited the maximum potential reduction in 

understory cover caused by the harvesting disturbances (Figure 4.18B).   Conversely, 

northeast aspects had a greater range in the reduction of understory cover (Figure 

4.18B) because the average initial understory cover before harvest was greater (Figure 

4.18A).    

Of all the harvesting disturbances to the forest floor, only disturbed mineral 

soil was found to have negative effect on any aspect of the late-seral herb community, 

and that effect was limited to only species diversity (Figure 4.15).  The model 

predicted that 1% increase in the disturbed mineral soil was associated with a 0.27 unit 

reduction in diversity index of late-seral herbs (p-value = 0.004, Table 4.10).  The 
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combined effect of logging residuals or forest floor disturbances were not significant 

for either species diversity (-0.130, p-value = 0.439, Table 4.10) or community 

similarity (-0.088, p-value = 0.515, Table 4.10).  Moreover, the slash cover and coarse 

woody debris volume did not contribute significantly to the composite variable 

Logging Residuals (Figure 4.15). 

All factors hypothesized to contribute to the production of slash, coarse woody 

debris and disturbed mineral soil were significant, with the exception of HARVEST 

(Figure 4.15, Table 4.10).  As expected, higher retention of tree density, crown volume 

and understory cover were associated with less slash, coarse woody debris and 

disturbed mineral soil after harvest (Table 4.10).  These factors explained a 

considerable amount of the observed variance of Slash Cover (R2 = 0.57) and Slash 

Depth (R2 = 0.36) but not Coarse Wood (R2 = 0.12) or Disturbed Soil (R2 = 0.10) 

(Figure 4.15).  Helicopter vs. shovel yarding did not appear to affect slash cover and 

coarse wood significantly (Figure 4.15), but helicopter logging reduced disturbed 

mineral soil by 2.86% (-2.86 = -14.32/5; p-value = 0.037, Table 4.10), but increased 

the slash depth by 5.04 cm (5.04 = 25.22/5; p-value < 0.001, Table 4.10). 

Consistent with model building process and the original hypotheses, the 

estimated error correlations between the following three sets of endogenous latent 

variables were large: 0.561 for Diversity and Composition, 0.769 for Slash Cover and 

Slash Depth and -0.233 for Slash Cover and Coarse Wood.  The large error correlation 

between Diversity and Composition suggested that: 1) other factors not represented in 

the model may have affected both variables; and/or 2) this was a direct result of both 



186 

 

variables being  a function of number of species and relative abundance pi (eqns. 4.10 

and 4.11).  This effect of other factors was further supported by the low explanatory 

power model for Diversity and Composition (R2 = 0.29 and 0.32 respectively, Figure 

4.15). 

The total indirect effects of factors on Diversity and Composition were 

insignificant (Table 4.11).  However, the model predicted a specific indirect path, Tree 

Density  Disturbed Mineral Soil  Diversity, to be significant (0.052, p-value = 

0.019, result not shown in Table 4.14), probably because the two direct paths were 

significant.  Therefore, we would conclude that the significant total effects (Table 

4.12) were mostly driven by significant direct effects.  

4.4.4.4 The Final 40% Retention SR Model 

Many of the results from the final 40% retention SR model were similar to 

those for 15% retention, but a striking difference was fewer significant direct effects 

(Figure 4.16 vs. Figure 4.15).  Lower reductions in crown volume resulted in lower 

reductions in late-seral species diversity and community similarity (Figure 4.16).  For 

a reduction of 10,000 m2/ha  in the crown volume after harvesting, diversity 

(dSHANNON) decreased by 0.78 unit (p-value = 0.029, Table 4.13).  Likewise, for 

the same crown volume reduction, community similarity (RENKONEN) declined by 

0.51% (p-value = 0.002, Table 4.13).  Contrary to results for 15% retention, aspect had 

no significant effects on species diversity or community similarity (p-value = 0.152 

and 0.225 respectively, Table 4.13).  On the other hand, changes in understory shrub 
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and tree cover did influence community similarity (Figure 4.16), in spite of a weak 

bivariate correlation (r = -0.05, Figure 4.14).  A reduction of 1% in understory cover 

was associated with a 0.12% decrease in community similarity of late-seral herbs (p-

value < 0.001, Table 4.13).   

As was found for 15% retention, northeastern aspects were associated with 

greater loss of understory shrub and tree cover (Figure 4.16).  This result is best 

explained again by the greater initial shrub and tree cover on northern aspects  (Figure 

4.18C–D).  Neither the composite variable Logging Residuals nor disturbed mineral 

soil significantly affected species diversity or composition (Figure 4.16, Table 4.13).  

In contrast to 15% retention, however, the model predicted a significant contribution 

of Slash Cover to Logging Residuals (-1.079, p-value = 0.022, Table 4.13).  

The hypothesized factors represented in the final 40% retention model were 

significant contributors only to Slash Cover and Slash Depth (Figure 4.16).  With any 

reduction in Tree Density, Crown Volume or Understory Cover by harvesting, both 

Slash Cover and Slash Depth increased (Table 4.13, Figure 4.16).  For removal of 

every 10 trees/ha by harvesting, slash cover increased by 0.27% (p-value = 0.001, 

Table 4.13).  In contrast to results for 15% retention, the yarding system did not have 

any significant effects on slash, coarse wood or disturbed mineral soil in 40% 

retention (Figure 4.16). 

As depicted in the model, there were a number of significant error correlations 

between endogenous latent variables.  The predicted error correlation between 

Diversity and Composition was 0.381, and the proportion of observed variance that 
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was explained by the model was low for both Diversity and Composition (R2 = 0.21 

and 0.13 respectively, Figure 4.16).  Other factors not represented in the model were 

therefore concluded to affect the two responses.  The predicted error correlations 

between Slash Cover and Slash Depth, Slash Cover and Coarse Wood, Disturbed Soil 

and Slash Depth, Disturbed Soil and Coarse Wood were 0.811, -0154, -0.154 and -

0.170 respectively.  As was obtained in the model for 15% retention, the 40% 

retention model had strong explanatory power for Slash Cover (R2 = 0.67) and Slash 

Depth (R2= 0.57), but did poorly for estimating Coarse Wood (R2= 0.02) and 

Disturbed Soil (R2= 0.07) (Figure 4.16).  

Although none of the total indirect effects on Diversity and Composition were 

significant (Table 4.14), the model predicted one significant indirect path, Aspect  

Understory Cover  Composition (0.069, p-value = 0.025, result not shown in Table 

4.14).  The significant total effects in Table 4.15 were driven mostly by significant 

direct effects. 

The alternative 40% retention model that eliminated the HARVEST variable 

(Figure 4.17) produced results almost identical to the previous 40% retention model 

(Figure 4.16).  Two major differences were that the path Tree Density  Disturbed 

Soil became significant (-0.21, p-value = 0.013), and the path Slash Cover  Logging 

Residuals became insignificant (-1.18, p-value = 0.090).  Another minor difference 

was that some paths were stronger in the alternative model than in the previous model, 

e.g., Crown Volume  Slash Depth and Understory Cover  Slash Depth (Figure 

4.17 vs. Figure 4.16).  



189 

 

4.4.4.5 Reduced 15% and 40% Retention SR Models 

According to Grace and Bollen (2006), one issue with composite variables is 

the significance of the path with a ULI constraint; i.e., Slash Depth  Logging 

Residuals.  The path coefficient was set to 1.0 to establish the scale of measurement 

for Logging Residuals, ignoring whether the coefficient was significantly different 

from zero (Grace and Bollen 2006).  One approach to evaluate the validity of this 

constraint was to reduce the model by omitting the composite variable Logging 

Residuals and specifying direct effects of Slash Cover, Slash Depth and Coarse Wood 

on Diversity and Composition.  These reduced models for 15% and 40% retention are 

depicted in Figure 4.19 and Figure 4.20, respectively. 

The reduced 15% retention model converged to an admissible solution and the 

tests indicated an adequate fit: the 2
Mχ  = 22.46 with dfM = 19 and a p-value = 0.262, 

the RMSEA was 0.024 with 95% confidence interval between 0.0 and 0.057, and the 

SRMR was 0.033.  The significant path coefficients and explained variances were 

almost identical to the final 15% retention model (Figure 4.19 vs. Figure 4.15), 

primarily because the direct effects of slash, coarse woody debris and disturbed 

mineral soil were not significant, as was the case for the full model.  Hence, logging 

residuals were concluded to have little detectable effect on late-seral herb species 

diversity and community similarity.   

In contrast to 15% retention, the reduced 40% retention model did not 

adequately fit the observed variance-covariance matrix, although it did converge to 
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admissible solution: the 2
Mχ  = 27.18 with dfM = 16 and a p-value = 0.039, the RMSEA 

was 0.045 with 95% confidence interval between 0.010 and 0.073, and the SRMR was 

0.038.  In addition to the model lack of fit, path coefficients Understory Cover  

Composition (p-value = 0.080) and Crown Volume  Diversity (p-value = 0.070) 

became insignificant.  However, the path Tree Density  Slash Cover became 

stronger in the reduced model.  Although Slash Cover contributed significantly to the 

Logging Residuals in the final model, neither Logging Residuals in the full model nor 

the slash, coarse woody debris or disturbed mineral soil in the reduced model had a 

significant direct effect on species diversity or community similarity.  

The alternative 40% retention SR model with both the HARVEST variable and 

composite variable Logging Residuals removed (Figure 4.21) yielded an adequate fit: 

the 2
Mχ  = 16.01 with dfM = 13 and a p-value = 0.249, the RMSEA was 0.026 with 

95% confidence interval between 0.0 and 0.062, and the SRMR was 0.038.  All 

significant parameter estimates and proportions of explained variance were almost 

identical to the alternative 40% retention model with only HARVEST removed 

(Figure 4.17).  The one exception was that the path Understory Cover  Composition 

became insignificant in the reduced model (p-value = 0.074).  Regardless, none of the 

40% retention models detected a significant effect of slash, coarse wood or disturbed 

mineral soil on late-seral herb species diversity or community similarity. 
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4.4.5 Discussion 

The process of building a model to explain the response of late-seral herbs to 

variable-retention harvests was not strictly confirmatory because it relied on a 

combination of suggested modification indices, theoretical support, and various ad hoc 

hypotheses.  Instead, it was a mixture of exploratory and confirmatory analysis.  Initial 

models were designed on the basis of well established hypotheses.  The final models 

adequately fit the observed variance-covariance matrices, so the results could not 

support rejection of the hypothesized relationships.  However, equivalent models may 

exist, and the final models need to be validated with independent datasets to establish 

consistency in responses across populations. 

A major challenge in applying SEM to large-scale ecological experiments is 

accommodating the experimental design (Grace et al. 2009).  A large-scale experiment 

generally includes blocking of experimental units and nesting of sampling units, as 

well as other features such as split-plot structures.  If the structure imposed by these 

designs is not properly taken into account then estimates of standard errors will be 

biased (Grace et al. 2009).  The DEMO analysis ignored the blocking nature of the 

experiment because it necessitated multilevel SEM, which is still under theoretical 

development.  Another possibility is a Bayesian approach to SEM (Lee 2007).  

Regardless, the estimated standard errors and the significance tests of estimated 

coefficients in this analysis were likely conservative with respect to not rejecting the 

null hypothesis.  Also, these large operational experiments inevitably have a relatively 
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small number of independent experimental units because locating a larger set of 

sufficiently uniform units is logistically challenging and monitoring responses on them 

may be not be financially feasible.  This problem is not unique to SEM, however, 

because statistical models such as ANOVA face similar issues.  Perhaps the effects of 

small sample size are more noticeable with SEM because it is a multivariate statistical 

method.  We resorted to grouping the DEMO data by retention level and ignoring 

spatial distribution to have a larger number of experimental units per group.  This 

approach seemed reasonable because one of the primary mechanisms represented in 

the SEMs was the plot-level effect of overstory reduction on late-seral herbs.  

Overstory reduction effects are best regarded as a gradient from total overstory 

removal to no removal, a gradient that is well represented by the combined dispersed 

and aggregated treatments. 

The results of all model specifications suggested that Hypothesis 1 could not 

be rejected, leading to a tentative conclusion that reductions in overstory crown 

volume from variable-retention harvesting had direct negative effects on late-seral 

herb species diversity and community similarity at both 15% and 40% retention levels, 

but no indirect effects through mid-story shrub and tree cover.  Even in 40% retention, 

microclimatic conditions on forest floor were likely influenced by the harvest 

reductions in crown cover to the extent that late-seral herbs were affected.  Late-seral 

herbs are expected to be relatively sensitive to a rapid decline in relative humidity, 

increase in temperature and other microclimatic conditions, and experience shock 

immediately after harvest.  However, 15% retention had a greater effect of overstory 
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reduction on late-seral herbs than 40% retention.  Given comparable overstory 

reduction as measured by crown volume, species diversity and community similarity 

decreased much more under 15% retention than under 40%.  This difference may be 

partly attributable to the range in overstory density reduction, which was -561,000 to 

167,200 m2/ha for 15% retention and -443,000 to 131,000 m2/ha for 40% retention 

(Figures 4.13 and 4.14).  The larger reduction signals a potentially more drastic 

change in microclimate (Heithecker and Halpern 2006) and hence a potentially more 

deleterious effect on late-seral herb diversity and lower degree of similarity between 

pre- and post-harvest communities.  Similarly, a nonlinear response to overstory 

reduction would cause an apparent increase in effect even though the linear effect 

within the range covered by 40% retention might be indistinguishable.  

In contrast to Hypothesis 1, Hypothesis 2 was rejected by all models regardless 

of retention level or variable specification.  The hypothesized direct effect of reduction 

in tree density on understory shrub and tree cover was not significant, and its indirect 

effect on late-seral herb species diversity and community similarity likewise was not 

significant.  If undamaged by overstory reduction, understories may respond positively 

and immediately by investing in root growth, perhaps because an increase in 

belowground resources is more stimulating than the possible mix of positive and 

negative effects of sudden exposure to light (Kneeshaw et al. 2002).  Lindh et al. 

(2003) found that root trenched plots had greater shrub and herb cover 10 years after 

trenching treatments were implemented in Douglas-fir forests.  A lag in understory 

response might explain the apparent lack of immediate effects from reductions in tree 
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density.  On the contrary, however, Riegel et al. (1992) implemented a root trenching 

experiment that included thinning in Pinus ponderosa forests in northeastern Oregon, 

and found that understory aboveground biomass increased by 53% immediately after 

harvest and by 94% a year later.  They concluded that belowground resources 

competition was the primary controlling factor for understory production, rather than 

light availability.   

Few have studied the effects of silvicultural treatments or silvicultural regimes 

on late-seral herb species diversity and composition.  Lindh and Muir (2004) studied 

responses in 40-year-old Douglas-fir stands that had been thinned 20 years ago to an 

average residual density of 600 trees/ha.  The thinned stands had a higher frequency of 

late-seral herbs and understory composition that was more similar to old-growth 

forests than to unthinned stands.  Similarly, in 60–110-year-old Douglas-fir stands of 

western Oregon, Bailey et al. (1998) found that, 7–23 years after thinning, species 

richness of shade-tolerant forest herbs was similar to that of old-growth forests.  In 

Sierran mixed conifer forests of northern California, Battles et al. (2001) found that 

the composition of late-seral plant species differed between silvicultural treatments.  

Group selection (openings of 0.6 ha) and single-tree selection had a greater proportion 

of late-seral versus early-seral plant species than clearcutting and shelterwood regimes 

(Battles et al. 2001).  In red and eastern white pine forests of central Ontario, Quinby 

(2000) found that, immediately after shelterwood regeneration cuts (~ 50% basal area 

removal), microclimate changed to a drier and more light-intensive environment at 

forest floor, species richness and number of uncommon plant taxa declined, and plant 
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community composition shifted.  In another analysis of the DEMO data, Halpern et al. 

(2005) found greater compositional change and loss of late-seral species when 

retention level was reduced to 15%.  These studies all focused on responses to 

overstory reduction over both the short and long term.  Results from the SEM analysis 

complement these other studies by identifying causal pathways, suggesting that 

microclimatic stresses probably outweigh increased availability of belowground 

resources in influencing late-seral species diversity and composition. 

The hypothesis related to aspect was rejected for the 40% retention treatment 

but not for 15% retention.  At 15% retention, overstory cover was reduced to a greater 

degree, so the topographic effect of aspect on the forest floor would be greater.  

Likewise, even an aggregate within 15% retention units would receive less protection 

from adjacent aggregates compared to the 40% retention units.  Aspect would 

therefore have an increasing ameliorating (northeast) or intensifying (southwest) effect 

as retention level declined to 15% regardless of spatial distribution of trees.   

Halpern et al. (2005) proposed that the significant decline of late-seral herbs 

species at lower retention levels may be attributable to increased physical disturbance 

and burial beneath logging slash.  However, SEMs fitted at the plot level led to 

rejection of the hypothesis that slash and coarse wood affect late-seral herb species 

diversity and composition.  On the other hand, disturbed mineral soil did have a 

significantly negative effect, but only in the 15% retention treatments.  Evidence for 

rejecting Hypothesis 4 was therefore mixed, in spite of the mechanisms suggested by 

Halpern et al. (2005).  When simultaneously testing multiple hypotheses in SEMs, 
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other processes such as microclimatic stresses and topographic effects might be 

stronger and more critical in affecting late-seral herbs, washing out any burial effect.  

Disturbed mineral soil probably represents less the burial effect than direct disturbance 

of forest floor that otherwise may have hosted late-seral plants.  In 15% retention, 

logging disturbances such as displacement, uprooting and soil compaction would 

undoubtedly be more intensive, so the models likely captured this effect. 

Support for Hypothesis 5 depended on retention level and type of logging 

residuals.  The predictors for production of slash were consistent for both retention 

levels, but the predictors for production of coarse wood and disturbed mineral soil 

were significant only for 15% retention, perhaps because logging intensity was greater 

at this level.  Nevertheless, the SEM models indicated weak causal links between 

degree of overstory tree removal and the amount of coarse wood and disturbed mineral 

soil in both retention levels.  The added error covariances during model building may 

be attributable to one or two possible causes: (1) external factors not represented in the 

model, and (2) direct effects between two types of logging residuals.  The first 

explanation is more likely than the second.  The direct path Tree Density  Slash 

Cover suggested that for 40% retention level, the local reduction in tree density was a 

significant predictor of slash cover. 

In another analysis of the DEMO data, Halpern and McKenzie (2001) 

concluded that yarding method and harvesting operations explained more of the 

variation in ground disturbance than level or pattern of retention.  The SEM analysis 

supported this conclusion and Hypothesis 5, but only for slash depth and disturbed 
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mineral soil in the 15% retention treatment.  Harvesting method apparently plays a 

lesser role in 40% retention, so yarding system may not contribute to variation in the 

production of slash and hence to late-seral herbs diversity and community similarity.  

Within the 15% retention units, the lack of effects on slash cover and coarse wood, 

and the positive effect of helicopter logging on slash depth, were unexpected.  Shovel 

yarding in the WF and PH blocks (Table 4.8) was expected to result in greater slash 

and coarse woody debris because tops and branches were left where the trees were 

felled and because non-merchantable trees were felled and left.  However, the amount 

of slash cover and coarse wood volume were equally high among blocks.  Slash depth 

at the helicopter-logged LW block was notably higher than at other blocks, which 

raised the possibility that the variable for helicopter logging (HARVEST) may be 

indicating other factors associated with the LW site.   

4.5 CONCLUSIONS 

The aim of this paper was to provide a conceptual framework for SEM applied 

to forestry.  The goal was to establish a basic understanding of principles, limitations 

and assumptions of SEM so that potential applications can be recognized.  Many other 

excellent and more comprehensive sources are available for deeper insights into the 

methodology.  Data from natural systems typically present analysis issues, such as 

non-normality in endogenous variables, nonlinear relationships, ill-scaled variance-

covariance matrices and nested study designs.  SEM continues to evolve and address 

special issues such as modeling binary, ordinal and categorical data (Muthén 1983, 
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1984), and accommodating interactions and curvilinear relationships between 

hypothetical constructs (Kenny and Judd 1984, Ping 1996).  Recent years have seen 

the development of different model estimation procedures (see Schumacker and 

Lomax 2004), including a Bayesian approach to SEM (Lee 2007).  The latter has been 

an attractive alternative for modeling hierarchical SEMs. 

The overstory-understory relationship involves cascading effects of higher 

layers of forest vegetation on successively lower layers.  The inter-relationships can be 

complex and difficult to test experimentally, but considerable theory is available to 

embed a set of working hypotheses within the conceptual framework.  The overstory-

understory model is therefore a fitting illustration of the application of SEM to 

understand vertical forest structure, and it builds on previous univariate models and 

exploratory analyses of forest composition.  The modeling approach involved a mix of 

confirmatory and exploratory approaches, with the former specifying hypotheses and 

associated processes, and the latter imposing tentative structures to improve the model.  

Because Maximum Likelihood is a full-information method, all processes are 

considered simultaneously during model estimation.  As a result, we gain insights into 

the processes behind the observed patterns; particularly the importance of light 

attenuation, belowground resource competition, microclimatic effects associated with 

aspect, and stand development over time.  Most of these processes have direct effects 

on late-seral herb cover, and more have indirect effects mediated through understory 

vegetation.  Although the final model fitted the data reasonably well, the results do not 

prove the causal relationships hypothesized in the model, and it is possible that 
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equivalent models exist that fit the data just was well.  Finally, it is important to note 

that the effects were explained in terms of processes that we did not directly measure, 

e.g., light attenuation was represented by amount of overstory crown cover rather than 

a measure of amount of light.  Hence, there should be a degree of reservation in 

inferring processes from effects. 

The second SEM analysis explored potential causes of immediate responses of 

late-seral herb species diversity and composition to variable-retention harvesting.  

Previous analyses of the same data by Halpern and McKenzie (2001) and Halpern et 

al. (2005) focused on net effects of nominal treatments by applying ANOVA and 

speculating about causal mechanisms, e.g., burial by logging slash and microclimatic 

stresses from overstory reduction.  SEM is a logical next step to formulate 

hypothesized mechanisms and simultaneously testing them with approaches such as 

multigroup analysis.  Results from the SEMs suggested that microclimatic stresses 

likely played a more important role in affecting late-seral herbs than logging 

disturbances.  By validating the developed models with data sources from other 

geographical regions or populations, we could evaluate the generality of the models or 

identify other processes that might be operating.  This study has shown the value of 

not limiting analysis to any one approach to statistical modeling, and how different 

methods can complement one another to provide more comprehensive insights and 

understanding of the complex processes driving managed forest ecosystems. 
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Table 4.1  Variance of observed variables and measurement error as average percent 
variance of the variable, with corresponding lower (0.025 quantile) and upper (0.975 
quantile) limits.  The average percent measurement errors were obtained from three 
expert opinion surveys.   
 

Observed 
Variable 

Variance Measurement Error 
(%) 

Lower Limit 
(%) 

Upper Limit 
(%) 

LSHERB 307.68 8.3 5.7 19.3 
UNDER 1034.79 8.3 5.7 17.7 

FLITTER 82.15 8.3 5.7 12.7 
CLITTER 52.74 8.3 5.7 12.7 

TREE 265.50 10.7 8.3 23.3 
log(TPH)×10 64.67 4.0 2.7 7.3 
ASPECT×10 49.34 4.0 3.0 7.7 

QMD 376.21 4.0 2.7 7.3 
AGE 1680.37 10.0 5.0 15.0 
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Table 4.2  Estimated direct effects on endogenous latent variables in the overstory-
understory SR model, along with corresponding standard errors and p-values (see 
Figure 4.8).  Statistical tests were based on a t-distribution with 1181 degrees of 
freedom to adjust for the effects of the nesting structure on standard errors. 
 

Path Model Direct Effect Standard Error P-value 
Late-Seral Herb Cover (LSHERB) =    

Overstory Cover (TREE) -0.192 0.075 0.010 
Stand Density (log(TPH)×10) -0.085 0.167 0.610 

Stand Age (AGE) 0.155 0.044 0.000 
Aspect (ASPECT×10) 0.424 0.163 0.010 
Fine Litter (FLITTER) 0.276 0.177 0.118 

Coarse Litter (CLITTER) 0.209 0.213 0.326 
Understory Cover (UNDER) 0.175 0.047 0.000 

    
Fine Litter (FLITTER) =    

Overstory Cover (TREE) 0.119 0.033 0.000 
Mean DBH (QMD) -0.071 0.046 0.127 

Stand Density (log(TPH)×10) -0.391 0.134 0.004 
Aspect (ASPECT×10) 0.115 0.053 0.031 

    
Coarse Litter (CLITTER) =    

Stand Density (log(TPH)×10) 0.164 0.053 0.002 
Stand Age (AGE) 0.027 0.011 0.014 

    
Understory Cover (UNDER) =    

Overstory Cover (TREE) -0.638 0.165 0.000 
Stand Density (log(TPH)×10) -0.821 0.349 0.019 

Aspect (ASPECT×10) 1.378 0.368 0.000 
Fine Litter (FLITTER) 1.380 0.288 0.000 

Coarse Litter (CLITTER) 0.960 0.335 0.004 
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Table 4.3  Estimated combined indirect effects on endogenous latent variables in the 
overstory-understory SR model, along with corresponding standard errors and p-
values.  Statistical tests were based on a t-distribution with 1181 degree of freedom as 
the effects of the nesting structure on standard errors have been adjusted. 
 

Path Model Indirect Effect Standard Error P-value 
Late-Seral Herb Cover (LSHERB) =    

Overstory Cover (TREE) -0.050 0.053 0.347 
Mean DBH (QMD) -0.037 0.031 0.240 

Stand Density (log(TPH)×10) -0.284 0.094 0.003 
Stand Age (AGE) 0.010 0.005 0.057 

Aspect (ASPECT×10) 0.301 0.129 0.020 
Fine Litter (FLITTER) 0.241 0.085 0.005 

Coarse Litter (CLITTER) 0.168 0.084 0.046 
    

Understory Cover (UNDER) =    
Overstory Cover (TREE) 0.164 0.038 0.000 

Mean DBH (QMD) -0.098 0.064 0.128 
Stand Density (log(TPH)×10) -0.383 0.164 0.020 

Stand Age (AGE) 0.026 0.011 0.013 
Aspect (ASPECT×10) 0.159 0.091 0.079 
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Table 4.4  Estimated total effects on endogenous latent variables in the overstory-
understory SR model, along with corresponding standard errors and p-values.  
Statistical tests were based on a t-distribution with 1181 degree of freedom as the 
effects of the nesting structure on standard errors have been adjusted. 
 

Path Model Total Effect Standard Error P-value 
Late-Seral Herb Cover (LSHERB) =    

Overstory Cover (TREE) -0.242 0.066 0.000 
Mean DBH (QMD) -0.037 0.031 0.240 

Stand Density (log(TPH)×10) -0.370 0.216 0.087 
Stand Age (AGE) 0.165 0.043 0.000 

Aspect (ASPECT×10) 0.725 0.187 0.000 
Fine Litter (FLITTER) 0.518 0.202 0.011 

Coarse Litter (CLITTER) 0.377 0.214 0.078 
Understory Cover (UNDER) 0.175 0.047 0.000 

    
Fine Litter (FLITTER) =    

Overstory Cover (TREE) 0.119 0.033 0.000 
Mean DBH (QMD) -0.071 0.046 0.127 

Stand Density (log(TPH)×10) -0.391 0.134 0.004 
Aspect (ASPECT×10) 0.115 0.053 0.031 

    
Coarse Litter (CLITTER) =    

Stand Density (log(TPH)×10) 0.164 0.053 0.002 
Stand Age (AGE) 0.027 0.011 0.014 

    
Understory Cover (UNDER) =    

Overstory Cover (TREE) -0.474 0.169 0.005 
Mean DBH (QMD) -0.098 0.064 0.128 

Stand Density (log(TPH)×10) -1.204 0.339 0.000 
Stand Age (AGE) 0.026 0.011 0.013 

Aspect (ASPECT×10) 1.537 0.420 0.000 
Fine Litter (FLITTER) 1.380 0.287 0.000 

Coarse Litter (CLITTER) 0.960 0.335 0.004 
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Table 4.5  Estimated direct effects on the endogenous latent variables in the final 
overstory-understory equivalent SR model, along with corresponding standard errors 
and p-values (see Figure 4.9).  Statistical tests were based on a t-distribution with 1181 
degrees of freedom as the effects of the nesting structure on standard errors have been 
adjusted. 
 

Path Model Direct Effect Standard Error P-value 
Late-Seral Herb Cover (LSHERB) =    

Overstory Cover (TREE) -0.191 0.075 0.011 
Tree Density (log(TPH)×10) -0.083 0.168 0.620 

Stand Age (AGE) 0.156 0.044 0.000 
Aspect (ASPECT×10) 0.423 0.162 0.009 
Fine Litter (FLITTER) 0.273 0.181 0.132 

Coarse Litter (CLITTER) 0.205 0.219 0.351 
Understory Cover (UNDER) 0.176 0.047 0.000 

    
Fine Litter (FLITTER) =    

Overstory Cover (TREE) 0.171 0.032 0.000 
Tree Size (QMD) -0.102 0.038 0.007 

Tree Density (log(TPH)×10) -0.400 0.128 0.002 
Aspect (ASPECT×10) 0.000 0.040 0.999 

Understory Cover (UNDER) 0.072 0.012 0.000 
    

Coarse Litter (CLITTER) =    
Tree Density (log(TPH)×10) 0.169 0.055 0.002 

Stand Age (AGE) 0.030 0.011 0.007 
    

Understory Cover (UNDER) =    
Overstory Cover (TREE) -0.508 0.181 0.005 

Tree Density (log(TPH)×10) -0.989 0.391 0.012 
Aspect (ASPECT×10) 1.543 0.418 0.000 

Coarse Litter (CLITTER) -0.284 0.281 0.313 
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Table 4.6  Estimated combined indirect effects on the endogenous latent variables in 
the final overstory-understory equivalent SR model, along with corresponding 
standard errors and p-values.  Statistical tests were based on a t-distribution with 1181 
degree of freedom as the effects of the nesting structure on standard errors have been 
adjusted. 
 

Path Model Indirect Effect Standard Error P-value 
Late-Seral Herb Cover (LSHERB) =    

Overstory Cover (TREE) -0.053 0.057 0.353 
Tree Size (QMD) -0.028 0.023 0.235 

Tree Density (log(TPH)×10) -0.277 0.092 0.003 
Stand Age (AGE) 0.005 0.006 0.478 

Aspect (ASPECT×10) 0.302 0.128 0.018 
Coarse Litter (CLITTER) -0.056 0.053 0.295 

Understory Cover (UNDER) 0.020 0.014 0.165 
    

Fine Litter (FLITTER) =    
Overstory Cover (TREE) -0.036 0.016 0.022 

Tree Density (log(TPH)×10) -0.074 0.028 0.007 
Stand Age (AGE) -0.001 0.001 0.327 

Aspect (ASPECT×10) 0.111 0.037 0.003 
Coarse Litter (CLITTER) -0.020 0.020 0.296 

    
Understory Cover (UNDER) =    

Tree Density (log(TPH)×10) -0.048 0.047 0.308 
Stand Age (AGE) -0.009 0.009 0.338 
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Table 4.7  Estimated total effects on the endogenous latent variables in the final 
overstory-understory equivalent SR model, along with corresponding standard errors 
and p-values.  Statistical tests were based on a t-distribution with 1181 degree of 
freedom as the effects of the nesting structure on standard errors have been adjusted. 
 

Path Model Total Effect Standard Error P-value 
Late-Seral Herb Cover (LSHERB) =    

Overstory Cover (TREE) -0.244 0.069 0.000 
Tree Size (QMD) -0.028 0.023 0.235 

Tree Density (log(TPH)×10) -0.361 0.216 0.095 
Stand Age (AGE) 0.160 0.043 0.000 

Aspect (ASPECT×10) 0.725 0.187 0.000 
Fine Litter (FLITTER) 0.273 0.181 0.132 

Coarse Litter (CLITTER) 0.149 0.216 0.490 
Understory Cover (UNDER) 0.196 0.046 0.000 

    
Fine Litter (FLITTER) =    

Overstory Cover (TREE) 0.135 0.031 0.000 
Tree Size (QMD) -0.102 0.038 0.007 

Tree Density (log(TPH)×10) -0.474 0.120 0.000 
Stand Age (AGE) -0.001 0.001 0.327 

Aspect (ASPECT×10) 0.111 0.053 0.038 
Coarse Litter (CLITTER) -0.020 0.020 0.296 

Understory Cover (UNDER) 0.072 0.012 0.000 
    

Coarse Litter (CLITTER) =    
Tree Density (log(TPH)×10) 0.170 0.055 0.002 

Stand Age (AGE) 0.030 0.011 0.007 
    

Understory Cover (UNDER) =    
Overstory Cover (TREE) -0.508 0.181 0.005 

Tree Density (log(TPH)×10) -1.037 0.400 0.010 
Stand Age (AGE) -0.009 0.009 0.337 

Aspect (ASPECT×10) 1.543 0.418 0.000 
Coarse Litter (CLITTER) -0.284 0.281 0.313 
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Table 4.8  Harvest method and other activities in each experimental block (adapted from Halpern and McKenzie 2001). 
 
Block HARVEST Yarding 

Method 
Non-merchantable 
trees felled 

Temporary 
Road 

Tops Attached Slash Piled and 
Burnt 

WF 0 Shovel loader Yes Yes No Yes 
DP 1 Helicopter No No Yes No 
BU 1 Helicopter No No Yes No 
LWS 1 Helicopter No No Yes No 
PH 0 Shovel loader Yes Yes Yes No 
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Table 4.9  The 11 observed variables used in modeling and their corresponding units, definitions, minimum, mean and 
maximum values.  The variables were summarized by 15% retention (i.e., 15%A and 15%D treatments combined) and 40% 
retention (i.e., 40%A and 40%D treatments combined). 
 

15% Retention 40% Retention Observed 
Variable 

Unit Definition 
Min Mean Max Min Mean Max 

dSHANNON – Difference in pre- and post-
harvest Shannon diversity 
index 

-1.83 -0.33 0.87 -1.75 -0.12 0.96 

RENKONEN % Renkonen similarity index of 
the  community between pre- 
and post-harvest 

0 66.06 100 0 80.53 98.82 

dUNDER % Difference in pre- and post-
harvest understory shrubs and 
trees cover 

-89.45 -16.82 12.24 -76.16 -9.70 24.82 

dCROWNVOL m2/ha Difference in pre- and post-
harvest crown volume 

-560,900 -209,960 167,200 -443,100 -84,959 131,000 

dTPH trees/ha Difference in pre- and post-
harvest tree density 

-1475 -382 1925 -1450 -232 475 

ASPECT – Cosine-transformed aspect -1 0.02 1 -1 0.02 1 
SLASHCOV % Post-harvest slash cover 0 65.62 100 0 45.15 100 
SLASHDEP cm Post-harvest slash depth 0 9.19 45.62 0 5.50 37.4 
CWDVOL m3/ha Post-harvest coarse woody 

debris volume 
0 213 1651 0 153 1446 

DISTSOIL % Post-harvest disturbed 
mineral soil cover 

0 4.46 49 0 4.59 37.92 
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Table 4.10  Estimated direct effects on the endogenous latent variables, difference in 
diversity (dSHANNON) and composition (RENKONEN), and on the composite 
variable, Logging Residuals, in the final SR model for 15% retention, along with 
corresponding standard errors and p-values (see Figure 4.15).  
 

Path Model Direct Effect Standard Error P-value
Diversity (dSHANNON) =    

Crown Volume (dCROWNVOL/10000) 1.206 0.478 0.012 
Aspect (ASPECT×10) 1.628 0.430 0.000 

Understory Cover (dUNDER) 0.049 0.321 0.878 
Disturbed Soil (DISTSOIL×5) -0.272 0.095 0.004 

Logging Residuals -0.130 0.168 0.439 
    

Composition (RENKONEN) =    
Crown Volume (dCROWNVOL/10000) 0.744 0.145 0.000 

Aspect (ASPECT×10) 1.093 0.266 0.000 
Understory Cover (dUNDER) -0.168 0.130 0.196 
Disturbed Soil (DISTSOIL×5) -0.068 0.051 0.177 

Logging Residuals -0.088 0.135 0.515 
    

Understory Cover (dUNDER) =    
Crown Volume (dCROWNVOL/10000) -0.115 0.257 0.654 

Aspect (ASPECT×10) -1.391 0.230 0.000 
Tree Density (dTPH/10) 0.091 0.086 0.290 

    
Slash Cover (SLASHCOV) =     

Understory Cover (dUNDER) -0.566 0.150 0.000 
Crown Volume (dCROWNVOL/10000) -1.454 0.198 0.000 

HARVEST 10.79 6.531 0.098 
    

Slash Depth (SLASHDEP) =     
Understory Cover (dUNDER) -0.611 0.112 0.000 

Crown Volume (dCROWNVOL/10000) -0.758 0.209 0.000 
HARVEST 25.22 3.601 0.000 

    
Coarse Wood (CWDVOL/10) =    

Tree Density (dTPH/10) -0.224 0.081 0.006 
HARVEST 10.38 7.891 0.188 
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Table 4.10  (Continued).  
 

Path Model Direct Effect Standard Error P-value
Disturbed Soil (DISTSOIL×5) =    

Tree Density (dTPH/10) -0.190 0.039 0.000 
HARVEST -14.32 6.864 0.037 

   
Logging Residuals =     

Slash Cover (SLASHCOV) -1.169 1.066 0.273 
Slash Depth (SLASHDEP) 1.000 – – 

Coarse Wood (CWDVOL/10) 0.249 1.117 0.824 
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Table 4.11  Estimated combined indirect effects on the endogenous latent variables 
difference in diversity (dSHANNON) and composition (RENKONEN) in the final SR 
model for 15% retention, along with corresponding standard errors and p-values.  
 

Path Model Indirect Effect Standard Error P-value
Diversity (dSHANNON) =    
Crown Volume (dCROWNVOL/10000) -0.127 0.325 0.695 

Aspect (ASPECT×10) -0.060 0.371 0.873 
Understory Cover (dUNDER) -0.006 0.083 0.938 

Tree Density (dTPH/10) 0.063 0.051 0.216 
Slash Cover (SLASHCOV) 0.152 0.305 0.619 
Slash Depth (SLASHDEP) -0.130 0.168 0.439 

Coarse Wood (CWDVOL/10) -0.032 0.152 0.832 
HARVEST 1.930 3.190 0.545 

    
Composition (RENKONEN) =    
Crown Volume (dCROWNVOL/10000) -0.063 0.152 0.679 

Aspect (ASPECT×10) 0.239 0.150 0.110 
Understory Cover (dUNDER) -0.004 0.049 0.929 

Tree Density (dTPH/10) 0.002 0.032 0.945 
Slash Cover (SLASHCOV) 0.103 0.134 0.444 
Slash Depth (SLASHDEP) -0.088 0.135 0.515 

Coarse Wood (CWDVOL/10) -0.022 0.072 0.761 
HARVEST -0.356 1.836 0.846 
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Table 4.12  Estimated total effects on the endogenous latent variables difference in 
diversity (dSHANNON) and composition (RENKONEN) in the final SR model for 
15% retention, along with corresponding standard errors and p-values.  
 

Path Model Total Effect Standard Error P-value
Diversity (dSHANNON) =    

Crown Volume (dCROWNVOL/10000) 1.079 0.201 0.000 
Aspect (ASPECT×10) 1.569 0.409 0.000 

Understory Cover (dUNDER) 0.043 0.269 0.873 
Tree Density (dTPH/10) 0.063 0.051 0.216 

Disturbed Soil (DISTSOIL×5) -0.272 0.095 0.004 
Slash Cover (SLASHCOV) 0.152 0.305 0.619 
Slash Depth (SLASHDEP) -0.130 0.168 0.439 

Coarse Wood (CWDVOL/10) -0.032 0.152 0.832 
HARVEST 1.930 3.190 0.545 

    
Composition (RENKONEN) =    

Crown Volume (dCROWNVOL/10000) 0.681 0.147 0.000 
Aspect (ASPECT×10) 1.332 0.261 0.000 

Understory Cover (dUNDER) -0.172 0.095 0.070 
Tree Density (dTPH/10) 0.002 0.032 0.945 

Disturbed Soil (DISTSOIL×5) -0.068 0.051 0.177 
Slash Cover (SLASHCOV) 0.103 0.134 0.444 
Slash Depth (SLASHDEP) -0.088 0.135 0.515 

Coarse Wood (CWDVOL/10) -0.022 0.072 0.761 
HARVEST -0.356 1.836 0.846 
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Table 4.13  Estimated direct effects on the endogenous latent variables, difference in 
diversity (dSHANNON) and composition (RENKONEN), and on the composite 
variable, Logging Residuals, in the final SR model for 40% retention, along with 
corresponding standard errors and p-values (see Figure 4.16).  
 

Path Model Direct Effect Standard Error P-value
Diversity (dSHANNON) =    
Crown Volume (dCROWNVOL/10000) 0.777 0.355 0.029 

Aspect (ASPECT×10) 0.422 0.294 0.152 
Understory Cover (dUNDER) -0.118 0.175 0.499 
Disturbed Soil (DISTSOIL×5) -0.078 0.046 0.092 

Logging Residuals 0.214 0.186 0.252 
    

Composition (RENKONEN) =    
Crown Volume (dCROWNVOL/10000) 0.505 0.164 0.002 

Aspect (ASPECT×10) 0.225 0.156 0.149 
Understory Cover (dUNDER) -0.119 0.032 0.000 
Disturbed Soil (DISTSOIL×5) -0.048 0.027 0.073 

Logging Residuals -0.061 0.091 0.506 
    

Understory Cover (dUNDER) =    
Crown Volume (dCROWNVOL/10000) 0.879 0.525 0.094 

Aspect (ASPECT×10) -0.583 0.192 0.002 
Tree Density (dTPH/10) -0.125 0.124 0.316 

    
Slash Cover (SLASHCOV) =     

Understory Cover (dUNDER) -0.687 0.125 0.000 
Crown Volume (dCROWNVOL/10000) -1.874 0.342 0.000 

Tree Density (dTPH/10) -0.268 0.078 0.001 
HARVEST -3.112 9.439 0.742 

    
Slash Depth (SLASHDEP) =     

Understory Cover (dUNDER) -0.783 0.258 0.002 
Crown Volume (dCROWNVOL/10000) -1.401 0.305 0.000 

HARVEST 7.982 4.780 0.095 
    

Coarse Wood (CWDVOL/10) =    
Tree Density (dTPH/10) 0.069 0.046 0.134 

HARVEST 1.903 5.295 0.719 
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Table 4.13  (Continued). 
 

Path Model Direct Effect Standard Error P-value
Disturbed Soil (DISTSOIL×5) =    

Tree Density (dTPH/10) -0.173 0.101 0.086 
HARVEST -13.05 11.54 0.258 

   
Logging Residuals =     

Slash Cover (SLASHCOV) -1.079 0.471 0.022 
Slash Depth (SLASHDEP) 1.000 – – 

Coarse Wood (CWDVOL/10) -0.078 0.269 0.773 
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Table 4.14  Estimated combined indirect effects on the endogenous latent variables 
difference in diversity (dSHANNON) and composition (RENKONEN) in the final SR 
model for 40% retention, along with corresponding standard errors and p-values.  
 

Path Model Indirect Effect Standard Error P-value 
Diversity (dSHANNON) =    

Crown Volume 
(dCROWNVOL/10000)

0.021 0.175 0.905 

Aspect (ASPECT×10) 0.074 0.070 0.290 
Understory Cover (dUNDER) -0.009 0.098 0.927 

Tree Density (dTPH/10) 0.090 0.059 0.131 
Slash Cover (SLASHCOV) -0.230 0.184 0.210 
Slash Depth (SLASHDEP) 0.214 0.186 0.252 

Coarse Wood (CWDVOL/10) -0.017 0.060 0.781 
HARVEST 3.398 2.179 0.119 

    
Composition (RENKONEN) =    

Crown Volume 
(dCROWNVOL/10000)

-0.140 0.082 0.087 

Aspect (ASPECT×10) 0.068 0.043 0.114 
Understory Cover (dUNDER) 0.003 0.028 0.928 

Tree Density (dTPH/10) 0.006 0.035 0.871 
Slash Cover (SLASHCOV) 0.065 0.095 0.494 
Slash Depth (SLASHDEP) -0.061 0.091 0.506 

Coarse Wood (CWDVOL/10) 0.005 0.276 0.782 
HARVEST -0.059 1.057 0.956 
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Table 4.15  Estimated total effects on the endogenous latent variables difference in 
diversity (dSHANNON) and composition (RENKONEN) in the final SR model for 
40% retention, along with corresponding standard errors and p-values.  
 

Path Model Total Effect Standard Error P-value
Diversity (dSHANNON) =    

Crown Volume (dCROWNVOL/10000) 0.798 0.254 0.002 
Aspect (ASPECT×10) 0.496 0.311 0.112 

Understory Cover (dUNDER) -0.127 0.088 0.150 
Tree Density (dTPH/10) 0.090 0.059 0.131 

Disturbed Soil (DISTSOIL×5) -0.078 0.046 0.092 
Slash Cover (SLASHCOV) -0.230 0.184 0.210 
Slash Depth (SLASHDEP) 0.214 0.186 0.252 

Coarse Wood (CWDVOL/10) -0.017 0.060 0.781 
HARVEST 3.398 2.179 0.119 

    
Composition (RENKONEN) =    

Crown Volume (dCROWNVOL/10000) 0.365 0.157 0.020 
Aspect (ASPECT×10) 0.293 0.177 0.097 

Understory Cover (dUNDER) -0.117 0.048 0.016 
Tree Density (dTPH/10) 0.006 0.035 0.871 

Disturbed Soil (DISTSOIL×5) -0.048 0.027 0.073 
Slash Cover (SLASHCOV) 0.065 0.095 0.494 
Slash Depth (SLASHDEP) -0.061 0.091 0.506 

Coarse Wood (CWDVOL/10) 0.005 0.276 0.782 
HARVEST -0.059 1.057 0.956 
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Figure 4.1  A hypothetical path model for abundance of a small mammal species in 
mature forests.  Single arrowheads depict direct effects and double arrowheads depict 
unanalyzed associations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



218 

 

Total No. of
Species

Species
Diversity

Shannon
Index

Simpson
Evenness

Total No. of
Species

Species
Diversity

Shannon
Index

Simpson
Evenness

 
 
 
Figure 4.2  A hypothetical measurement model for species diversity. The circle depicts 
a latent variable and the rectangles depict observed variables.  Arrows from the latent 
variable to observed variables represent direct effects and thicker arrows on the left of 
observed variables represent measurement errors. 
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Figure 4.3  A SR model for the overstory-understory relationship in mature Douglas-
fir forests.  Measurement errors are fixed with a priori values as depicted by the 
numerical values pointing towards the observed variables.  All factor loadings are 
fixed at a value of 1.0. The exogenous latent variables (and associated observed 
variables) are: (1) Aspect (ASPECT×10), (2) Overstory Cover (TREE), (3) Tree Size 
(QMD), (4) Stand Age (AGE), and (5) Stand Density (log(TPH)×10).  The 
endogenous latent variables (and associated observed variables) are: (1) Fine Litter 
(FLITTER), (2) Coarse Litter (CLITTER), (3) Understory Cover (UNDER), and (4) 
Late-Seral Herb Cover (LSHERB). 
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Figure 4.4  An equivalent SR model for the overstory-understory relationship in 
mature Douglas-fir forests with a different path; i.e., Understory Cover  Fine Litter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



221 

 

 
 
 
Figure 4.5  Bivariate relationships and Pearson correlations between late-seral herb 
cover (LSHERB) and its six predictors: fine litter cover (FLITTER), coarse litter cover 
(CLITTER), understory cover (UNDER), overstory tree cover (TREE), stand density 
(log(TPH)), and aspect (ASPECT).   
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Figure 4.6  Bivariate relationships and Pearson correlations between understory cover 
(UNDER) and its five predictors: fine litter cover (FLITTER), coarse litter cover 
(CLITTER), overstory tree cover (TREE), stand density (log(TPH)), and aspect 
(ASPECT).   
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Figure 4.7  Bivariate relationships and Pearson correlations between fine litter cover 
(FLITTER) and coarse litter cover (CLITTER) and their corresponding predictors: 
overstory tree cover (TREE), stand density (log(TPH)), tree size (QMD), and stand 
age (AGE).  
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Figure 4.8  The final fitted SR model with unstandardized parameter estimates.  The 
observed variables are omitted to simplify the diagram.  Estimated unstandardized 
path coefficients (direct effects) are placed alongside each path.  The squared multiple 
correlations (R2) are included for each endogenous latent variable. The thickness of a 
single arrowhead corresponds to the strength of its estimates (based on its standardized 
estimate).  The dashed arrowheads depict non-significant paths.  The double 
arrowheads depict the unstandardized error variance between the two latent variables. 
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Figure 4.9  The fitted equivalent SR model with unstandardized parameter estimates.  
The observed variables are omitted to simplify the diagram (refer to caption of Figure 
4.8).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



226 

 

-0.08

Late-Seral
Herb Cover

Understory
Cover

Coarse
Litter

Fine Litter

Tree
Density

Overstory
Cover

AspectTree
Size

Stand
Age

0.17

-0.18

0.15

0.42

0.07

-0.28

-0.50

-0
.9

7

1.
53

0.16

0.16

-4
2.

33

0.01

-0.34

0.
03

R2 = 0.46

R2 = 0.11

R2 = 0.03

R2 = 0.33

0.26

0.19

-0.12

-0.08

Late-Seral
Herb Cover
Late-Seral

Herb Cover
Understory

Cover
Understory

Cover

Coarse
Litter

Coarse
Litter

Fine LitterFine Litter

Tree
Density

Tree
Density

Overstory
Cover

Overstory
Cover

AspectAspectTree
Size
Tree
Size

Stand
Age

Stand
Age

0.17

-0.18

0.15

0.42

0.07

-0.28

-0.50

-0
.9

7

1.
53

0.16

0.16

-4
2.

33

0.01

-0.34

0.
03

R2 = 0.46

R2 = 0.11

R2 = 0.03

R2 = 0.33

0.26

0.19

-0.12

 
 
 
Figure 4.10  Fitted equivalent SR model with the lower limit (0.025 quantile) of 
percent measurement errors (refer to Table 4.1 and caption of Figure 4.8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



227 

 

-0.24

Late-Seral
Herb Cover

Understory
Cover

Coarse
Litter

Fine Litter

Tree
Density

Overstory
Cover

AspectTree
Size

Stand
Age

0.20

-0.22

0.17

0.40

0.09

-0.27

-0.56

-1
.0

0

1.
60

0.30

0.18

-4
2.

08

0.
04

R2 = 0.58

R2 = 0.16

R2 = 0.05

R2 = 0.39

-0.04

-0.80

0.23

0.29

0.01

-0.24

Late-Seral
Herb Cover
Late-Seral

Herb Cover
Understory

Cover
Understory

Cover

Coarse
Litter

Coarse
Litter

Fine LitterFine Litter

Tree
Density

Tree
Density

Overstory
Cover

Overstory
Cover

AspectAspectTree
Size
Tree
Size

Stand
Age

Stand
Age

0.20

-0.22

0.17

0.40

0.09

-0.27

-0.56

-1
.0

0

1.
60

0.30

0.18

-4
2.

08

0.
04

R2 = 0.58

R2 = 0.16

R2 = 0.05

R2 = 0.39

-0.04

-0.80

0.23

0.29

0.01

 
 
 
Figure 4.11  Fitted equivalent SR model with the upper limit (0.975 quantile) of 
percent measurement errors (refer to Table 4.1 and caption of Figure 4.8).  
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Figure 4.12  A SR model for immediate post-harvest responses of late-seral herbs to 
variable-retention harvesting.  A priori measurement errors expressed as a percentage 
of the observed variance are depicted by the values pointing towards the observed 
variables.  All factor loadings are fixed at a value of 1.0.  The composite variable 
Logging Residuals is depicted with a hexagon, and Slash Depth determines its scale of 
measurement by having its path coefficient fixed at a value of 1.0. 
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Figure 4.13  Bivariate relationships and Pearson correlations (r) between difference in pre- and post-harvest species diversity 
(dSHANNON) and four direct predictors, and between community similarity (RENKONEN) and the same four predictors in 
the 15% retention treatments (i.e., 15%A and 15%D treatments combined). Predictors include difference in pre- and post-
harvest crown volume (dCROWNVOL), difference in pre- and post-harvest understory shrubs and trees cover (dUNDER), 
aspect (ASPECT), and disturbed mineral soil (DISTSOIL). 
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Figure 4.14  Bivariate relationships and Pearson correlations (r) between difference in pre- and post-harvest species diversity 
(dSHANNON) and four direct predictors, and between community similarity (RENKONEN) and the same four predictors in 
the 40% retention treatments (i.e., 40%A and 40%D treatments combined). Predictors include difference in pre- and post-
harvest crown volume (dCROWNVOL), difference in pre- and post-harvest understory shrubs and trees cover (dUNDER), 
aspect (ASPECT), and disturbed mineral soil (DISTSOIL). 
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Figure 4.15  The final 15% retention SR model with unstandardized parameter 
estimates.  The observed variables, insignificant parameter estimates, and error 
covariances are omitted to simplify the diagram.  Refer to Figure 4.8 for further 
description of the symbols. 
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Figure 4.16  The final 40% retention SR model with unstandardized parameter 
estimates.  The observed variables, insignificant parameter estimates, and error 
covariances are omitted to simplify the diagram.  Refer to Figure 4.8 for further 
description of the symbols. 
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Figure 4.17  The alternative 40% retention SR model after removal of the HARVEST 
variable and with unstandardized parameter estimates.  The observed variables, 
insignificant parameter estimates, and error covariances are omitted to simplify the 
diagram.  Refer to Figure 4.8 for further description of the symbols. 
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Figure 4.18  Bivariate relationships and Pearson correlations (r) between: (A) pre-
harvest understory shrub and tree cover versus aspect for 15% retention, (B) post-
harvest versus pre-harvest understory shrub and tree cover for 15% retention, (C) pre-
harvest understory shrub and tree cover versus aspect for 40% retention, and (D) post-
harvest versus pre-harvest understory shrub and tree cover for 40% retention.  Pre- and 
post-harvest understory shrub and tree cover values were identified by three classes of 
ASPECT: ASPECT < -0.5 (southwestern aspect, ■), ASPECT between -0.5 and 0.5 
(×), and ASPECT > 0.5 (northeastern aspect, ▲). 
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Figure 4.19  The reduced final 15% retention SR model after removal of the composite 
variable Logging Residuals and with unstandardized parameter estimates.  The 
observed variables, insignificant parameter estimates, and error covariances are 
omitted to simplify the diagram.  Refer to Figure 4.8 for further description of the 
symbols. 
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Figure 4.20  The reduced final 40% retention SR model after removal of the composite 
variable Logging Residuals and with unstandardized parameter estimates.  The 
observed variables, insignificant parameter estimates, and error covariances are 
omitted to simplify the diagram.  Refer to Figure 4.8 for further description of the 
symbols. 
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Figure 4.21  The reduced alternative 40% retention SR model after removal of 
composite variables Logging Residuals and HARVEST, and with unstandardized 
parameter estimates.  The observed variables, insignificant parameter estimates, and 
error covariances are omitted to simplify the diagram.  Refer to Figure 4.8 for further 
description of the symbols. 
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5  CHAPTER 5: CONCLUSIONS 
 

The overall goal of this dissertation was to synthesize information about 

responses of multiple forest taxa to variable-retention harvesting.  As is typical of 

large experiments on forest biodiversity, statistical methods were needed for making 

inferences about distributions with excessive zero observations and about systems 

with complex interactions.  Each chapter featured a distinctive methodology for 

addressing a specific challenge to rigorous statistical analysis.  Other approaches may 

deal effectively with the same issues, and provide slightly different insights into their 

resolution.  This dissertation formed the basis for systematically recognizing an 

analysis problem and assessing the suitability of alternative statistical models for 

accommodating it.  By no means were the approaches explored exhaustive or 

comprehensive.  Much ground remains to be explored in a future study.  

In Chapter 2, known data generating processes created a variety of simulated 

data distributions that were then modeled with zero modified models.  The relative 

performance of zero-inflated and hurdle models could then be evaluated by their 

ability to fit the simulated distributions and estimate parameters in the data generating 

process.  Results from this simulation analysis suggested the need to exercise caution 

when fitting these models to data representing response of species with low 

frequencies to habitat variables; under these conditions, parameter estimates were 

unstable.  Results from the simulation analysis were also discouraging with regard to 

the efficacy of goodness of fit statistics for inferring underlying processes that 

generated a set of data.  A risk of misidentifying the dgp is misinterpretation of the 
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role that habitat predictors and hence silvicultural treatments have on a species.  The 

choice of the most appropriate statistical model should be made to the fullest extent 

possible in the context of known ecological processes and the spatial and temporal 

scale of the study.   

In Chapter 3, habitat associations were modeled for four forest floor small 

mammal species with seven models specified as Generalized Linear Models (GLMs) 

and/or Generalized Linear Mixed Models (GLMMs) in a Bayesian framework.  The 

GLMs have advanced our understanding of treatment effects by conditioning mean 

captures within a treatment unit on habitat variables, under the conditions of both high 

and low capture rates.  The GLMMs further refined this understanding by recognizing 

the relationship between captures and habitat variables at several levels, including 

individual treatment units and blocks.  A main consequence of not accounting for 

nested subsampling and random block effects in the GLMs was bias in the variance of 

estimates and, hence, improper statistical inferences about influential treatments and 

habitat conditions.  Interpreting results from multiple models provided an opportunity 

to observe the level of consistency in estimated effects, drawing attention to those 

predictors requiring further clarification.  

In Chapter 4, a conceptual framework for applying Structural Equation 

Modeling (SEM) to forestry was presented.  The methodology was then used to model 

overstory-understory relationships of late-seral herb species both under mature, 

undisturbed forest conditions and immediately after disturbance created by variable-

retention harvesting.  A basic understanding of principles, limitations and assumptions 
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of SEM was established, so that potential applications can be recognized and results 

from SEM correctly interpreted.  Under mature forest conditions, overstory vegetation 

structure controls the late-seral herb community through light attenuation, 

belowground resource competition, and structural changes associated with increasing 

stand age, as well as through microclimatic effects associated with aspect.  After 

variable-retention harvesting, SEMs indicated that microclimatic stresses likely played 

a more important role in affecting late-seral herb community than did logging 

disturbances.   

A recurring theme throughout the dissertation is the advantage of multiple 

perspectives provided by a range of statistical models.  Different analyses can 

complement one another and provide more comprehensive insights into the complex 

processes driving managed forest ecosystems. 

5.1 FUTURE RESEARCH 

5.1.1 Simulation Study with Covariates 

Management of biodiversity in managed forest ecosystems requires identifying 

the abundance of species conditional on habitat structure.  The simulation analysis 

established the biased and highly unstable parameter estimates of zero-inflated and 

hurdle models when true mean abundance was low; however, the degree to which 

these results could be extended to conditional distributions that predict low mean 

abundance at a given level of one or more covariates was not addressed.  If the 

observed bias and instability do occur, it is not clear how they would propagate 
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through a series of conditional distributions with increasing mean abundance.  Other 

issues including the number and choice of covariates and required sample sizes may 

also affect the relative performances of these models with covariates.  Many empirical 

studies were based on conditional distributions, suggesting that a carefully crafted 

simulation study that includes covariates would be a valuable comparison.  Such a 

study would also yield a better understanding of the robustness of zero-modified 

models. 

5.1.2 Alternative Model Specifications for Infrequent Species 

From the perspective of finite mixture models, no restrictions are necessary on 

the level of mixing for the zero-inflated and hurdle models.  Therefore, one could 

declare the definitions of p and π according to the practical issue being addressed or 

the assumed properties of the statistical model.  Furthermore, there is also no 

restriction on the number and type of distributions for the mixing.  Undoubtedly, 

increased flexibility has the price of increased complexity in model specification and 

estimation.  Future research could first focus on establishing a body of theory behind 

mechanisms driving the observed count of infrequent species, and explore the utility 

of N-mixture model suggested by Royle (2004) and Royle et al. (2005).  If finite 

mixture models do not fit the proposed theories, other tools such as small area 

statistics (SAS) (Rao 2003), or extreme value models (Cole 2001) are also an option.  

However, application of these tools has been limited in natural sciences, so future 
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studies may have to focus on understanding the properties and applicability of these 

models. 

5.1.3 Zero-Modified Mixed Effects Models 

Mixed effects models establish inference validity by properly accounting for 

non-independence in the data.  Although specification of a zero-modified mixed 

effects model is considerably more complex, the advent of Bayesian modeling has 

facilitated the research into this area, particularly in other disciplines such as medical 

research.  These methods will likely be more fully developed, and future research 

could facilitate their transfer to the natural sciences. 

5.1.4 Structural Equation Modeling 

Structural Equation Modeling (SEM) in the dissertation was only cursory.  

Although SEM has as long a history as multiple regression and ANOVA, the 

methodology is still not that well known in the natural sciences.  The methodology 

will likely continue to grow in this field given its intuitive appeal for modeling 

complex forest ecosystems.  However, many statistical issues emerge from its 

application in natural sciences, particularly required sample size and its ability to 

accommodate the structure of designed experiments.  A conventional SEM that is 

geared towards psychometric and econometric data analysis may be easily adapted to 

studying natural systems and complex designs from field experiments.  However, a 

Bayesian approach to SEM (Lee 2007) may be more effective in accounting for 

complex study designs and improving inferences.  Future studies could focus on 
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further understanding of conventional SEM and its expansion under a Bayesian 

framework. 

The current applications focused on a single guild of forest taxa; i.e., late-seral 

herb species.  Future studies could consider building models for several interacting 

guilds, complex food webs, and effects of variable-retention harvesting on these 

interactions and webs.  However, building such a model for datasets like those 

generated by DEMO will require reconciliation of the differing designs by which 

different taxa were sampled.  Perhaps the most straightforward SEM model possible 

for the DEMO study would account for the effects of variable-retention harvesting on 

vegetation structures and, in turn, the effect of residual vegetation structure on forest 

floor small mammals.  This could be explored by extending the GLMs and GLMMs in 

Chapter 3 to an SEM context.  This modeling would help synthesize information on 

simultaneous responses of multiple taxa to variable-retention harvesting.  
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