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Chapter 1 – Introduction

Variation is an extremely common element in modern software. Variation in software
can be thought of as broadly belonging to several interrelated categories: variation that is
resolved statically, variation that is preserved during analysis, and variation that is present
during execution. Variation that is resolved staticially is commonly found in preprocessor
directives, command line options, or aspect- or feature-oriented programming [1, 13, 23].
These all share the common behavior of taking some set of features as input and producing
a program or executable uniquely determined by those features as output. Variational
analysis seeks to preserve this variation during program analysis. For example, the
Typechef tool preserves the variation present in C preprocessor annotations in order to
typecheck massively variational codebases such as the Linux kernel [12]. Variation that is
preserved at runtime, or variational execution, occurs whenever a single program is run
multiple times on related inputs, but may also be viewed as running a program with static
variation without eliminating that variation first. Serial execution of the same program
over different inputs can be viewed in the abstract as equivalent to a single execution
across a value representing all inputs and producing a similar value representing all
outputs.

There is considerable overlap between these kinds of variation. Tooling or static
analysis that deals with statically resolved variation often encounters the same problems
and employs the same techniques to solve them that are found in variational execution.
Chief among these issues is that brute-force techniques for dealing with variation quickly
become infeasible as the number of features grows. For a variational software system with
n features, the number of unique variants produced is 2n. Similarly, the naive approach of
running a program multiple times over varying inputs requires 2n executions for inputs
with n features. This exponential growth poses what appears to be an insurmountable
obstacle to efficiently handling variation in the face of a large number of distinct features.

Of course, the situation is not quite as hopeless as it might first appear. In all these
types of variation there are significant elements that are shared in common between
variants. In statically resolved variation this might take the form of pieces of code such
as functions or classes that are shared between multiple variants. When analyzing such
programs, significant portions of the analysis will be shared across many variants. In the
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case of variational execution often the same computations are performed across several
variants. By exploiting these commonalities what previously seemed impossible often
becomes quite efficient. Software systems analysis that takes advantage of variation in
this way—commonly termed variationally-aware analysis—has been developed across a
number of areas, including typechecking, type inference, and testing [12, 6, 25]. In turn,
and often in support of such variationally-aware analysis tools, systems of variational
execution have been developed for a number of languages, including PHP, Java, and
Javascript [20, 17, 4].

The work in this thesis was primarily motivated by our work in defining a DSL for
describing resource requirements in complex modern software systems. The Resource
DSL allows users to write programs that assert certain conditions of a successful resource
configuration for a project. Resource requirement specifications are an ideal setting for
the use of variational execution. For many modern software systems there are a whole
host of configuration options available. Using a plain, non-variational model of execution
a user must individually check each configuration that they wish to test. As discussed
above, if a user wishes to check all configurations it quickly becomes infeasible due to the
exponential explosion of the number of times they must rerun the checker. By contrast, the
Resource DSL due to its fully variational model of execution is capable of exploiting the
common computations shared among many different possible configurations, leading to
efficiency gains. In addition to the potential efficiency gains, directly modeling variation
in our language allows for easier reasoning about large configuration spaces. For instance,
users can easily preconfigure a variational program to only run for certain features that
they are interested in. Users can also more easily query results across options, making it
potentially easier to identify patterns for particular sets of features.

Of course, the design and implementation of the Resource DSL was not without its
particular challenges. One particularly interesting and difficult aspect of developing the
variational interpreter for the Resource DSL was accounting for side effects in a variational
setting. The Resource DSL itself is primarily interested in side effects: programs are
made up primarily of either operations that somehow modify a resource environment or
assertions against the current state of that environment. For this reason, the Resource DSL
is implemented as an imperative language, with side-effectful statements forming the
basis of programs in the language. The interaction of side effects like mutable state and
throwing exceptions with variation proved to be difficult to get right. Previous work on
making imperative languages variational has developed a number of techniques to handle
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the interactions between side effects and variation. This thesis seeks to formalize these
techniques using a big-step operational semantics for a simple imperative programming
language. With the formal underpinnings thus established, we then turn to a discussion
of how they are utilized in more full-featured language like our Resource DSL.

1.1 Contributions and Outline

This thesis provides two primary contributions: (1) a formal semantics for variational
imperative languages and (2) a description of our design of the Resource DSL. These are
of course intrinsically linked, where the work on formalizing the semantics of variational
imperative languages serves as the foundation for our work on the Resource DSL.

Chapter 2 (Background) provides an overview of the choice calculus, which provides
a formal model for reasoning about variation. It describes one way of implementing
variational values in the choice calculus via formula trees. Finally, several desirable
properties that are enabled by or key to the choice calculus are discussed.

Chapter 3 (Motivation) establishes the motivation for our work on formalizing the
semantics of variational imperative languages. We first establish a baseline by describing
the typical process of incorporating variation into a language without side effects. Then
we show why this approach is inadequate for dealing with imperative languages with
side effects. We examine how both mutable state and exceptions can pose problems in a
variational setting.

Chapter 4 (IMP) describes the imperative language IMP [29, 21, 22]. We use IMP
because its simplicity allows for the definition of the key interaction between variation
and side effects without unnecessary linguistic clutter. We set out the syntax of IMP,
which we have extended to include catchable exceptions, as well as a big-step operational
semantics for IMP. This allows us to have a useful point of comparison for our later work
on variationalizing IMP.

Chapter 5 (Variational IMP) describes the process of adding explicit support for
variation to the IMP language. We extend the syntax with choices and then develop the
necessary elements in order to define a big-step operational semantics. These elements
include maintaining a variational context, a variational variable store, an error context,
and special interactions with control structures. With these established we define the
formal semantics of Variational IMP.
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Chapter 6 (The Resource DSL) describes our work on developing a variational language
for checking resource configurations. We describe the syntax and general function of
programs in the Resource DSL. Then, we describe the implementation of the variational
interpreter for the Resource DSL based on the common pattern of a monad transformer
stack. This provides a real-world example of an interpreter that implements the techniques
formalized in Chapter 5.

Chapter 7 (Related Work) provides an overview of existing approaches to variational
imperative programming and compares our contributions with the prior state of the art.

Finally, Chapter 8 (Conclusion and Future Work) discusses possible applications of
our research on variational imperative programming and the Resource DSL. We discuss
possible future areas of research that build on the contributions presented here.
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Chapter 2 – Background

2.1 The choice calculus

In order to formally represent choices in our programs we employ the choice calculus
[26, 7]. The fundamental unit of the choice calculus is the choice, which is a set of values
called alternatives. There are many data structures that can be used to model variational
values, but for our purposes we utilize a data structure we refer to as a formula tree
[27, 28]. Formula trees represent the set of alternatives as a tree of choices, with concrete
values at the leaves of the tree. Each node of the tree is tagged with a formula from
a boolean algebra consisting of boolean literals, variables, negation, conjunction, and
disjunction. We call individual boolean variables the dimensions of the choices, while
the boolean expressions used as tags we call conditions. Notationally we represent these
choice trees via angle brackets. For example, a choice in dimension A between the values
1 and 2 is written A〈1,2〉.

Each dimension can be viewed as coding for the presence or absence of a particular
feature that we wish to vary. To continue the above example, A〈1,2〉 represents a
variational value that is 1 when feature A is present and 2 otherwise. Conditions are
therefore analogous to conditional expressions built out of these features. For example,
the choice (A ∧ ¬B)〈1,2〉 is a value that represents 1 when feature A is present and B is
absent, and 2 otherwise.

The selection operation on a choice can be used to eliminate conditions. We define a
function sel that takes a selector and a variational value and eliminates conditions based
off of the selector. For formula trees selectors are also booleans formulas, and can be seen
as specifying a condition that is assumed to hold true. Therefore, for a selector and a
choice with a given condition, we eliminate the choice and replace it with the recursively
selected left alternative if the selector logically implies the truth of the condition. Similarly,
if the selector logically implies the falsehood of the condition, we eliminate the choice and
replace it with the recursively selected right alternative. If neither implication is valid,
the choice remains untouched with both alternatives left intact.

It is helpful to see this selection operation in action. The operation sel(A, A〈1,2〉), can
be seen as encoding the presence of feature A, which will therefore produce the value 1
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as a result. Similarly, sel(¬A, A〈1,2〉) can be seen as encoding the absence of feature A
and will produce the value 2. sel(B, A〈1,2〉) will result in an unchanged variational value
A〈1,2〉 because the selector B does not logically imply either the truth or falsehood of
dimension A.

Selection is synchronized for a given condition, meaning that two choices in the same
value or expression with logically equivalent conditions must always select the same
alternative. For example, in the expression A〈1,2〉+ A〈3,4〉, the only possible selections
are 1 + 3 and 2 + 4, while 1 + 4 and 2 + 3 can never occur due to synchronization.

We say that a variational value is configured when all choices have been eliminated,
yielding a plain value without choices. We call these resulting plain values variants. We
define a function conf which takes a configuration and a variational value and produces a
variant. Under the view of dimensions as representing distinct features, a configuration
for a formula tree gives a boolean assignment for each dimension of the variational value
being configured. A simple way to do this is to define a configuration as a set of the
features that are present, with all other features assumed to be absent. In other words,
configurations are a set of variables that should evaluate to true, with all other variables
evaluating to false. Configuring a formula tree is then simply evaluating each condition
given the variable assignment. If the condition evaluates to true, then the left variant is
chosen, otherwise the right variant is chosen.

Using boolean formulas as our tags provides several advantages. For example, we
can simplify trees like B〈1, A〈1,2〉〉 to the more compact form (B ∨ A)〈1,2〉. This is just
one of a number of optimizations that are made possible by representing tags as boolean
formulas [28, 9]. Formula choices are also more convenient for maintaining a variational
context during execution of a program, a fact that will become more relevant when we
present our work on variational imperative programming later in Chapter 5. Despite
these advantages, formulas incur some cost by introducing boolean satisfiability problems
into many common operations, which is an NP-complete problem. However, thanks to
improvements in the efficiency of modern SAT solvers, often the worst-case NP-complete
performance of these satisfiability problems can be avoided. Several studies have shown
that the types of boolean formulas typically encountered in variational software are
efficiently solved by modern SAT solvers [16, 18].
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2.2 Implementation of Formula Trees

When integrating formula trees into an existing non-variational language we can choose to
either embed choices directly into the abstract syntax of the host language or utilize a type-
generic implementation. In this work we employ both strategies, opting to embed choices
directly when dealing with programs, while using the type-generic implementation for the
values produced by these programs. Here we present the type-generic implementation,
although the basic principles explored here apply equally to embedded representations.

Generic formula trees can be represented by the following Haskell datatypes:

type Dim = String

data Cond =

Lit Bool

| Ref Dim

| Not Cond

| Cond :&&: Cond

| Cond :||: Cond

data V a = One a | Chc Cond (V a) (V a)

The datatype Cond represents expressions in our boolean algebra, with dimension
names as strings. The constructor One creates the leaves of a formula tree, while Chc

creates the nodes.
This type-generic representation allows us to easily define some useful algebraic

properties of formula trees via typeclasses. Specifically, formula trees readily support
implementation of the Functor, Applicative, and Monad typeclasses:
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instance Functor V where

fmap f (One a) = One (f a)

fmap f (Chc d l r) = Chc d (fmap f l) (fmap f r)

(<$> ) :: Functor f ⇒ (a → b) → f a → f b

(<$> ) = fmap

instance Applicative V where

pure = One

(One f) <∗> v = fmap f v

(Chc d l r) <∗> v = Chc d (l <∗> v) (r <∗> v)

liftA :: Applicative f ⇒ (a → b) → f a → f b

liftA f a = pure f <∗> a

liftA2 :: Applicative f ⇒ (a → b → c) → f a → f b → f c

liftA2 f x = (<∗> ) (fmap f x)

instance Monad V where

return = One

(One v) >>= f = f v

(Chc d l r) >>= f = Chc d (l >>= f) (r >>= f)

Astute readers will note that because formula trees are merely a special class of binary
tree with labeled nodes they share identical instances. The usefulness of defining these
instances will be made apparent further on in this work during the discussion of pure,
side-effect free variational languages.

2.3 Properties of choices

The choice calculus enables several desirable properties for variational programs. The
first property that is enabled through the choice calculus is sharing. A naive approach to
executing a variational program is simply to configure the variational program in order
to produce each variant and run them all sequentially. For a program with n dimensions
this results in 2n variants that must be executed in the worst case. Crucially, the naive
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approach must recompute any common elements shared between variants. Embedding
choices in our program, combined with a variability-aware model of execution allows
us to exploit this inherent sharing by only computing shared components once, greatly
improving the efficiency of executing a variational program.

This sharing can be accomplished by pushing down choices as deeply as possible in
variational values. For example, consider the variational expression A〈3 ∗ 2 + 4,3 ∗ 2 + 8〉.
If we push the choice down as far as possible, we get 3 ∗ 2 + A〈4,8〉. This identifies
the subexpression 3 ∗ 2 as a shared element between variants A and ¬A. A variational
interpreter of this language could then safely only compute that subexpression once.

This sharing is enabled but not required by the choice calculus. It is up to the
implementor to ensure that the maximum degree of sharing is achieved. Nevertheless,
there are a number of strategies for systematically simplifying variational values [26]. The
use of formula trees permits additional simplification operations [9, 28].

Another property of choices and variation that we are interested in is variation-
preservation. In order to take advantage of the benefits of sharing, we must develop a
variability-aware model of execution that produces variational values as its result. In
order to determine whether our variational results are correct we need a way to relate
them back to the individual variants they represent. Variation-preservation assures us
that each variant is faithfully modeled by the overall variational computation.

Given a function f : T→U and its variational counterpart g : V→W, we say that the
function g is variation-preserving if for some configuration c the following equality holds:
conf c ◦ g = f ◦ conf c [9]. Put simply, configuring the result of passing a variational value
to a variational function should be the same as pre-configuring the input and the function
itself. This can be visualized as the following commuting diagram:

V W

T U

conf c

g

f

conf c
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Chapter 3 – Motivation

In order to take advantage of the benefits of sharing provided by choices, we must
develop a variational model of execution for a given language. We begin by showing
that defining variational execution in a pure, side-effect free evaluation context is a fairly
straightforward exercise before turning to the much more difficult problem of variational
execution with side effects.

3.1 Pure variational execution

If our target language has no side effects, then our task is comparatively easy. We begin
by considering a simple arithmetic expression language defined by the following Haskell
datatype:

data Arith =

N Int

| Add Arith Arith

| Mul Arith Arith

In the non-variational setting we can easily define an interpreter for this language
which produces values of type Int:

eval :: Arith → Int

eval (N i) = i

eval (Add l r) = eval l + eval r

eval (Mul l r) = eval l * eval r

The process of “variationalizing” this small example is quite straightforward. First,
we extend the syntax by adding a constructor to support choices in our language:

data Arith =

N Int

| Add Arith Arith

| Mul Arith Arith

| AChc Cond Arith Arith
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Next we modify our interpreter. Instead of returning plain values of type Int, we now
return variational values of type V Int. We then take the cases from the non-variational
interpreter and make them variational by situating them within the applicative functor
instance for V we defined in Section 2.2. Finally, we add a case that handles our new AChc

constructor and we have completed the conversion of our interpreter:

eval :: Arith → V Int

eval (N i) = pure i

eval (Add l r) = (+) <$> eval l <∗> eval r

eval (Mul l r) = (*) <$> eval l <∗> eval r

eval (AChc d l r) = Chc d (eval l) (eval r)

This basic pattern of variationalizing a language by re-situating the plain interpreter
within the applicative functor for choices works well for any language that is pure and
side-effect free. The only area of concern is associated with the use of data structures in
the interpretation of the language, which often benefit from being replaced with custom
variational data structures that provide greater sharing and efficiency. Recent work has
explored the benefits of custom variational data structures for maps [27], linked lists
[24], and stacks [19]. As such, exercising proper care in the selection and integration of
variational data structures into a variational interpreter resolves this issue.

Nevertheless, even with the support of more efficient variational data structures, our
basic pattern of converting a plain interpreter to a variational one encounters significant
difficulties in the presence of a language with side effects. Specifically, we demonstrate
that the presence of side-effectful statements, control flow structures, mutable state, and
exceptions commonly encountered in imperative programming languages requires more
than the approach based on applicative functors as we have outlined here.

3.2 Mutable State

To demonstrate why imperative programming with side effects requires us to rethink
how we variationalize a language and its execution, we turn to a small example in a
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simple imperative language that supports basic control structures and mutable variable
references:

x := 0
y := getSecret()
if y is true then

x := 1
end if

In a non-variational setting, we can reasonably expect the final state of the variables
in this example to be either {x⇒ 0, y⇒ false} or {x⇒ 1, y⇒ true} depending on the
value that getSecret() returns. Now we consider the execution of the above example in
a variational setting. Suppose that the call to getSecret produces the variational value
A〈true,false〉. We can view this as simply combining the two possible non-variational
execution paths described above into a single execution varying in dimension A. As
such, we would expect the final variable state in this example to be {x⇒ A〈1,0〉, y⇒
A〈true,false〉} by combining the final states above into choices over dimension A. We
can verify this to be the proper variational result using the variation-preserving property
specified in Section 2.3.

Of course, to arrive at the above result, we simply worked backwards from the non-
variational results. This naive approach cannot scale to domains with a high number of
dimensions because of the exponential explosion of variants. In order to take advantage
of the benefits provided by sharing, we must instead develop a model of variational
execution that supports mutable state. As we will see, the applicative functor instance for
formula trees is no longer sufficient by itself, necessitating a different approach to how
we variationalize programs that use mutable state.

The central problem becomes obvious when we compare the required semantic
domains for evaluating statements in the plain and variational versions of the example.
The semantic domain of plain statements is a function from state to state, where state
is a mapping from variable names to values. As such, we might then assume that the
corresponding semantic domain for variational statements is also from state to state, only
in this case we use a variational map. But when we attempt to evaluate our example under
this semantic domain we soon reach an issue that causes us to rethink our definition.

The problem comes in line 4, where we assign the variable x in a conditional block.
In the previous line, we check if the value of y is true. When y is a variational value,
allowing it to be both true or false in different variants, we only assign x in those variants
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in which y is true. But if the state in our semantic domain is only a map, we have no
way of passing the necessary information to the assignment that it must only occur in
particular variants and not in others. Our only choice is to assign the value of x for all
variants, which would clearly be incorrect, as the assignment should only be carried out
in the variant where y is true. We must therefore conclude that we need to carry this
variational context information around in our state during execution in order to handle
cases where assignment occurs in a branch that is conditionally executed. Similar logic
can be used to see that this context is also necessary to handle variational lookup of
variable values.

It is now clear why our previous approach of relying solely on the applicative functor
instance for choices is inadequate. The method provides no way of maintaining and
manipulating variational context during execution. This nicely demonstrates the problems
we encounter when trying to introduce choices to languages with side effects.

3.3 Exceptions

Exceptions are another common type of effect that proves challenging in a variational
setting. Consider the following program:

y := getSecret()
if y is true then

throw e
end if
x := expensiveInA()

In a non-variational context, the behavior of this program should be clear. If the
variable y evaluates to true, then an error is thrown with value e. At this point evaluation
should stop, meaning that the variable x is never assigned in the final statement, avoiding
the costly computation of expensiveInA. This effect of halting execution and returning an
error value is the essence of exceptions in non-variational settings.

Now we consider the behavior of the same program in a variational context. Suppose
that the variable y evaluates to the variational value A〈true,false〉. This means that in
the left alternative of A we would evaluate the body of the if statement, while ignoring it
otherwise. Therefore, in the left alternative of A we throw an exception, but otherwise
we continue on to the final statement.
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Clearly, maintaining the same behavior from the non-variational setting in the varia-
tional setting violates variation-preservation. If we halt execution whenever an exception
is thrown in any variant, then we also stop the evaluation of variants that never encoun-
tered an error, as in our example for the case ¬A. Variation-preservation dictates that
variants that never encountered an exception should complete their execution uninhibited.

We also don’t want to simply continue evaluation in every variant regardless of
whether or not we have encountered an error. Suppose that calling expensiveInA normally
would evaluate to the variational value A〈1,2〉, but at considerable computational cost in
the left alternative (hence the name). Because we know that the left alternative of A will
ultimately evaluate to the thrown exception e, we would like to avoid the cost involved
in computing the value 1 that we will just throw away later, mirroring how throwing an
exception short-circuits evaluation in the non-variational setting.

Another problem concerns how to keep track of which variants are in error states
and what the error values are. If we want to avoid the cost of pointless evaluation in
variants that are in an error state, we must have some efficient way of determining when
evaluation is about to enter such a variant. In the non-variational context we have no
need to store and remember error values during evaluation because we simply return the
error value immediately when it is thrown. In the variational context, we must now store
these values while we continue to evaluate variants that are not in an error state.

3.4 Towards a formal semantics

At this point, it should be apparent that introducing choices into a side-effectful imperative
language is anything but straightforward. These issues are not new, and have been
encountered in previous work on variationalizing imperative languages [11, 20, 17].
Along the way a number of techniques have been developed to address these issues.
Our work synthesizes these techniques into a single big-step operational semantics for
a simple imperative language. Along the way we also develop novel techniques of our
own, particularly when it comes to catchable exceptions, which to our knowledge have
not been adequately explored in a variational setting.

It is our hope that a formal semantics for common side effects encountered in vari-
ational imperative programming will serve as the base for future work in this area.
By collecting and formalizing the techniques shared among variational imperative pro-
gramming languages, future researchers should be able to (1) more easily define and



15

create variational languages by extending our semantics to more complex languages
and (2) more easily formalize desriable properties in these languages. In Chapter 6 we
demonstrate one successful application of these techniques in the form of the Resource
DSL.
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Chapter 4 – IMP

The IMP language is a simple but Turing-complete imperative programming language
[29, 21, 22]. In our case, IMP’s relative simplicity allows for straightforward extension
to support exceptions as well as variational execution. IMP also lacks elements such
as variable scoping, procedure calls or declarations, or the need for a type system.
This permits us to focus more completely on the work of formalizing the semantics of
variational imperative programming without unnecessary complication. Additionally,
a less complex semantics should allow our work to serve as a base that can be readily
extended to more full-featured languages.

We begin by establishing the syntax and semantics of plain IMP before turning to
variational IMP. The syntax of plain IMP is defined in Figure 4.1. At its base IMP
defines simple arithmetic expressions made up of integer literals, variable references,
and addition. IMP also supports boolean expressions made up of literals, negation,
conjunction, and less-than comparison of arithmetic expressions. Statements include
variable assignment, sequencing, and control structures. Only arithmetic expressions
are allowed in variable assignments, and only boolean expressions are allowed in the
conditions of control structures, thus obviating the need for a type system. Finally,
we have extended the definition of the language to include basic support for catchable
exceptions as one of the effects that we wish to formally define for variational execution.
throw statements take an arithmetic expression and produce an error with the value the
expression evaluates to. try . . . catch statements allow for the handling of any thrown
error values in their main block via a handler block.

We define a formal big-step semantics for this non-variational version of IMP, which
we can then use as a point of reference for our variational semantics. Figure 4.2 defines
the big-step semantics of arithmetic and boolean expressions. Expressions are evaluated
in the context of the current variable store and are otherwise straightforward in their
definition. Figure 4.3 defines the big-step semantics of IMP statements. Statements have
two possible side effects: updating the variable store or modifying the current error
context. In practice the variable store can be simply implemented as a map data structure,
while the error context is an optional integer value indicating the current error code.
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(Arithmetic expressions)
a ::= n Integer literal
| x Variable reference
| a + a Addition

(Boolean literals)
b ::= true
| false

(Boolean expressions)
e ::= b Boolean literal
| not e Negation
| e and e Conjunction
| a < a Less

(Statements)
s ::= skip Noop
| x := a Assignment
| s ; s Sequencing
| if e then s else s Conditional
| while e do s Looping
| throw a Throw error
| try s catch x with s Catch error

Figure 4.1: Syntax of IMP with exceptions
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(Store)
S ::= empty Empty store
| ins((x,n),S) Insert value n as variable x in S

Type of judgments ⇓A and ⇓B
(S, a) ⇓A n
(S, e) ⇓B b

Lookup-Here

lookup(ins((x,n),S), x,n)

Lookup-There

lookup(S, x,n)
lookup(ins((x′,n′),S), x,n)

A-Num

(S,n) ⇓A n

A-Ref

lookup(S, x,n)
(S, x) ⇓A n

A-Add

(S, a) ⇓A n (S, a′) ⇓A n′

(S, a + a′) ⇓A n + n′
B-Bool

(S,b) ⇓B b

B-Not

(S, e) ⇓B b
(S,not e) ⇓B ¬b

B-And

(S, e) ⇓B b (S, e′) ⇓B b′

(S, e and e′) ⇓B b ∧ b′

B-Less

(S, a) ⇓A n (S, a′) ⇓A n′

(S, a < a′) ⇓B n < n′

Figure 4.2: Big-step semantics of IMP expressions
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(Store)
S ::= empty Empty store
| ins((x,n),S) Insert value n as variable x in S

(Error context)
E ::= • No error
| n Error with value n

Type of judgment ⇓S
(E,S, s) ⇓S (E,S)

S-Err

(n,S, s) ⇓S (n,S)

S-Skip

(E,S,skip) ⇓S (E,S)

S-Assn

(S, a) ⇓A n
(•,S, x := a) ⇓S (•, ins((x,n),S))

S-Seq

(E,S, s) ⇓S (E′,S′) (E′,S′, s′) ⇓S (E′′,S′′)
(E,S, s ; s′) ⇓S (E′′,S′′)

S-IfT
(S, e) ⇓B true (•,S, s) ⇓S (E,S′)
(•,S, if e then s else s′) ⇓S (E,S′)

S-IfF
(S, e) ⇓B false (•,S, s′) ⇓S (E,S′)
(•,S, if e then s else s′) ⇓S (E,S′)

S-WhileT
(S, e) ⇓B true (•,S, s) ⇓S (E,S′) (E,S′,while e do s) ⇓S (E′,S′′)

(•,S,while e do s) ⇓S (E′,S′′)

S-WhileF
(S, e) ⇓B false

(E,S,while e do s) ⇓S (E,S)

S-Throw

(S, a) ⇓A n
(•,S, throw a) ⇓S (n,S)

S-Try

(•,S, s) ⇓S (•,S′)
(•,S, try s catch x with s′) ⇓S (•,S′)

S-Catch

(•,S, s) ⇓S (n,S′) (•, ins((x,n),S′), s′) ⇓S (E,S′′)
(•,S, try s catch x with s′) ⇓S (E,S′′)

Figure 4.3: Big-step semantics of IMP statements
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Chapter 5 – Variational IMP

Having established the syntax and semantics of plain IMP, we now turn to the definition
of Variational IMP (or VIMP for short). Figure 5.1 defines the syntax of VIMP. The
syntax remains largely the same, with the only difference being the addition of choices
into the expressions and statements of the language. We opted for embedding choices
directly into all of IMP’s language constructs rather than using a generic formula tree
implementation. While the end result should not depend on whether a generic or
embedded implementation of choices is used, we felt that directly embedding choices led
to cleaner semantic definitions.
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(Boolean literals)
b ::= true
| false

(Conditions)
C ::= b Boolean literal
| D Dimension name
| ¬C Negation
| C ∨ C Disjunction
| C ∧ C Conjunction

(Arithmetic expressions)
a ::= n Integer literal
| x Variable reference
| a + a Addition
| C〈a, a〉 Choice

(Boolean expressions)
e ::= b Boolean literal
| not e Negation
| e and e Conjunction
| a < a Less
| C〈e, e〉 Choice

(Statements)
s ::= skip Noop
| x := a Assignment
| s ; s Sequencing
| if e then s else s Conditional
| while e do s Looping
| throw a Throw error
| try s catch x with s Catch error
| C〈s, s〉 Choice

Figure 5.1: Syntax of Variational IMP



22

(Variational optional integers)
m ::= • Nothing

| n Integer literal
| C〈m,m〉 Choice

(Store)
S ::= empty Empty store
| ins((x,m),S) Insert value m as variable x in S

(Variational integers)
n̄ ::= n Integer literal
| C〈n̄, n̄〉 Choice

(Variational booleans)
b̄ ::= b Boolean literal
| C〈b̄, b̄〉 Choice

Type of judgment ⇓VA
(C,S, a) ⇓VA n̄

VA-Num

(C,S,n) ⇓VA n

VA-Ref

(C,S, x) ⇓VA vlookup(C, x,S)

VA-Add

(C,S, e) ⇓VA n̄ (C,S, e′) ⇓VA n̄′

(C,S, e + e′) ⇓VA liftA2(+, n̄, n̄′)

VA-Chc1

sat(C ∧ C′) sat(C ∧ ¬C′) (C ∧ C′,S, a) ⇓VA n̄ (C ∧ ¬C′,S, a′) ⇓VA n̄
(C,S,C′〈a, a′〉) ⇓VA C′〈n̄, n̄′〉

VA-Chc2

unsat(C ∧ C′) sat(C ∧ ¬C′) (C ∧ ¬C′,S, a′) ⇓VA n̄
(C,S,C′〈a, a′〉) ⇓VA n̄

VA-Chc3

sat(C ∧ C′) unsat(C ∧ ¬C′) (C ∧ C′,S, a) ⇓VA n̄
(C,S,C′〈a, a′〉) ⇓VA n̄

Figure 5.2: Big-step semantics of Variational IMP expressions
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Type of judgment ⇓VB
(C,S, e) ⇓VB b̄

VB-Bool

(C,S,b) ⇓VB b

VB-Not

(C,S, e) ⇓VB b̄
(C,S,not e) ⇓VB liftA(¬, b̄)

VB-And

(C,S, e) ⇓VB b̄ (C,S, e′) ⇓VB b̄′

(C,S, e and e′) ⇓VB liftA2(∧, b̄, b̄′)

VB-Less

(C,S, a) ⇓VA n̄ (C,S, a′) ⇓VA n̄′

(C,S, a < a′) ⇓VB liftA2(<, n̄, n̄′)

VB-Chc1

sat(C ∧ C′) sat(C ∧ ¬C′) (C ∧ C′,S, e) ⇓VB b̄ (C ∧ ¬C′,S, e′) ⇓VB b̄
(C,S,C′〈e, e′〉) ⇓VB C′〈b̄, b̄′〉

VB-Chc2

unsat(C ∧ C′) sat(C ∧ ¬C′) (C ∧ ¬C′,S, e′) ⇓VB b̄
(C,S,C′〈e, e′〉) ⇓VB b̄

VB-Chc3

sat(C ∧ C′) unsat(C ∧ ¬C′) (C ∧ C′,S, e) ⇓VB b̄
(C,S,C′〈e, e′〉) ⇓VB b̄

Figure 5.2: Big-step semantics of Variational IMP expressions (continued)

We also present the big-step operational semantics for VIMP expressions and state-
ments. In the following sections we will discuss specific elements of these definitions. We
begin by defining variational operations, such as configuration and selection as explained
in Chapter 2. We then examine the need for maintaining a variational context during
execution, especially in its relation to the variable store. After, we turn to a discussion
of catchable exceptions. Next we discuss interacting with control structures. Finally, we
present the formal big-step operational semantics for VIMP expressions and statements.
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(Variational optional integers)
m ::= • Nothing

| n Integer literal
| C〈m,m〉 Choice

(Store)
S ::= empty Empty store
| ins((x,m),S) Insert value m as variable x in S

(Variational integers)
n̄ ::= n Integer literal
| C〈n̄, n̄〉 Choice

(Variational booleans)
b̄ ::= b Boolean literal
| C〈b̄, b̄〉 Choice(Error lists)

l ::= [] Nil
| (C, n̄) : l Cons

(Error context)
E ::= [] Nil
| l : E Cons

Type of judgment ⇓V
(C,S, E, s) ⇓V (S, E)

V-Sat

sat(ctx(C, E)) (C,S, E, s) ⇓VS (S′, E′)
(C,S, E, s) ⇓V (S′, E′)

V-Unsat

unsat(ctx(C, E)))
(C,S, E, s) ⇓V (S, E)

Figure 5.3: Big-step semantics of Variational Imp statements
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Type of judgment ⇓VS
(C,S, E, s) ⇓VS (S, E)

VS-Skip

(C,S, E,skip) ⇓VS (S, E)

VS-Assn

(ctx(C, E),S, a) ⇓VA n̄
(C,S, E, x := a) ⇓VS (vupdate(ctx(C, E), x, n̄,S), E)

VS-Seq

(C,S, E, s) ⇓V (S′, E′) (C,S′, E′, s′) ⇓V (S′′, E′′)
(C,S, E, s ; s′) ⇓VS (S′′, E′′)

VS-If
(ctx(C, E),S, e) ⇓VB b̄

(C ∧whenTrue(b̄),S, E, s) ⇓V (S′, E′) (C ∧whenFalse(b̄),S′, E′,S′′) ⇓V (E′′,)
(C,S, E, if e then s else s′) ⇓VS (S′′, E′′)

VS-While

(ctx(C, E),S, e) ⇓VB b̄ (C ∧whenTrue(b̄),S, E, s) ⇓V (S′, E′)
(C ∧whenTrue(b̄),S′, E′,while e do s) ⇓V (S′′, E′′)

(C,S, E,while e do s) ⇓VS (S′′, E′′)

VS-Throw

(ctx(C, l : E),S, a) ⇓VA n̄
(C,S, l : E, throw a) ⇓VS (S, ((C, n̄) : l) : E)

VS-Try

(C,S, [] : E, s) ⇓V (S′, [] : E)
(C,S, E, try s catch x with s′) ⇓VS (S′, E)

VS-Catch

(C,S, [] : E, s) ⇓V (S′, l : E)
(catchCtx(C, l),vupdate(ctx(catchCtx(C, l), E), x,extract(l),S′), E, s′) ⇓V (S′′, E′)

(C,S, E, try s catch x with s′) ⇓VS (S′′, E′)
nonempty l

VS-Chc

(C ∧ C′,S, E, s) ⇓V (S′, E′) (C ∧ ¬C′,S′, E′, s′) ⇓V (S′′, E′′)
(C,S, E,C′〈s, s′〉) ⇓VS (S′′, E′′)

Figure 5.3: Big-step semantics of Variational Imp statements (continued)
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unsat = not ◦ sat
taut = unsat ◦ Not
x ⇒ y = taut ((Not x) :||: y)

sel :: Cond → V a → V a
sel _ (One x) = One x
sel c (Chc c′ l r)
| c ⇒ c′ = sel c l
| c ⇒ (Not c′) = sel c r
| otherwise = Chc c′ (sel c l) (sel c r)

evalCond :: [Dim] → Cond → Bool
evalCond ds (Lit b) = b
evalCond ds (Ref x) = x `elem` ds
evalCond ds (Not c) = not (evalCond c)
evalCond ds (And c c′) = evalCond c && evalCond c′

evalCond ds (Or c c′) = evalCond c || evalCond c′

conf :: [Dim] → V a → a
conf _ (One x) = x
conf ds (Chc c l r) = if evalCond ds c then conf ds l else conf ds r

Figure 5.4: Variational operations for VIMP

5.1 Variational Operations

In order to successfully relate variational IMP back to its non-variational counterpart we
must define configuration and selection for VIMP. We assume solving for satisfiability as
a primitive operation; in practice this can be implemented by offloading these calls to a
SAT solver.

Figure 5.4 shows the implementation of the selection and configuration options for
generic formula trees as defined in Section 2.2, using Haskell as a metalanguage. We
show the implementation for generic formula trees here, with the understanding that
it is trivially extended to VIMP’s use of choices directly embedded into the syntax of
the language. We begin by defining some useful utility functions when dealing with
satisfiability, particularly the ability to express logical implication.

The selection function sel takes a condition and a variational value. If the variational
value is a choice, sel checks to see if the supplied condition implies that the condition of
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the choice is either true or false, returning the recursively selected left or right alternative,
respectively. If the provided condition does not necessarily imply either the truth or
falsehood of the choice’s condition, then both alternatives are selected on and maintained
as a choice with the original condition.

The configuration function conf takes a list representing a set of dimensions and a
variational value as its arguments. These dimensions can be viewed as features that are
“turned on” and should therefore evaluate to True, with all other dimensions evaluating to
False. Put another way, the configuration function requires a variable assignment for all
of the dimensions in a configuration space in order to evaluate all conditions. With this
assignment, configuration is a straightforward task of evaluating each choice’s condition
and selecting either the left or right alternative depending on if it evaluates to True or
False, respectively.

We utilize the selection function when performing variable lookup using a variational
store, as explained in the following section. The configuration function is used to relate
the result of variational execution back to individual variants, a process which we detail
in Section 5.5.

5.2 Variational Context and Variational Store

When describing the issues involved in the interaction between mutable state and variation
in Section 3.2, we noted the need for (1) maintaining a variational context (a boolean
formula or condition) during execution and (2) using this variational context when
interacting with the variable store. This is a solution first discovered by [11] in their work
on a variational model of execution for the While language.

Maintaining the variational context is fairly straightforward. During execution of a
variational program, whenever a choice is encountered, the execution splits into two
separate paths corresponding to each alternative. First, the interpreter must check whether
a particular alternative is even possible given the current variational context. For example,
if the current context is the condition ¬A, then for a given choice A〈l,r〉, there is no need
to evaluate the left alternative, as the current variational context implies that configuration
is impossible and can be automatically ruled out. Therefore, for a given variational context
C and a choice with condition C′, the interpreter checks whether C ∧ C′ and C ∧ ¬C′ are
satisfiable, only then proceeding to execute the left and right alternatives, respectively.
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In the case that a context and a choice’s condition are satisfiable, the execution then
proceeds by extending the current variational context for each alternative. For variational
context C and a choice with condition C′, the left alternative should be evaluated with
the context C ∧ C′ and the right alternative with C ∧ ¬C′.

With the variational context established, we can move on to the definition of the
variational variable store. A non-variational store is a data structure that supports a
lookup operation of type lookup :: Var → Store → Value, and update of type update

:: Var → Value → Store → Store. A variational store is a data structure that supports
a lookup operation of type vlookup :: Cond → Var → VStore → V Value and update of
type vupdate :: Cond → Var → V Value → VStore → VStore. In essence, a variational
store takes the current variational context as an additional argument to all of its operations,
which now operate on variational values rather than plain values. Taking the current
variational context as an argument to all operations is necessary in order to avoid
situations like those described in Section 3.2, where a block is conditionally evaluated
only in some variants but not others. This information can now be safely carried by the
variational context and passed to the variational store when required.

In Figure 5.5 we provide a sample implementation of a variational store based on the
variational map data structure [11, 27]. Variational maps are an efficient map data struc-
ture for storing variational values and are easily built using an existing non-variational
map. The basic idea is that for a non-variational map of values of type v, a variational
map uses the same underlying data structure but with values of type V (Maybe v). The
variational values in the map must be of type Maybe v in order to account for cases where
a value is assigned in one variant but not in others. Our sample variational store is built
on top of Haskell’s Data.Map library, but in theory any map data structure should suffice.

In vlookup we throw a runtime exception when a variable is undefined. Our semantics
does not define the behavior of trying to access an undefined variable, but such cases
are easily detected and prevented by a type system. Variational type systems have been
studied extensively, and readers seeking static guarantees that undefined variable access
is impossible are referred to those works [12, 5, 6].

The implementation of vupdate that we present here, while adequate, has the potential
for additional optimization. Currently, vupdate simply creates what amounts to a labeled
list of variational values, where the variational context in which a variable was assigned
is used as the label. This means that in order to lookup a variational value in a context
stored at the end of such a list of length n, we must first perform n satisfiability checks.
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type VOpt v = V (Maybe v)
type VStore v = Map Var (VOpt v)

assertExists :: VOpt v → V v
assertExists (One Nothing) = error "trying to access an undefined variable"
assertExists (One (Just v)) = One v
assertExists (Chc c l r) = Chc c (assertExists l) (assertExists r)

vlookup :: Cond → Var → VStore v → V v
vlookup c k vst = assertExists $ sel c (lookup′ k vst)
where
lookup′ k m = case lookup k m of
Just v → v
Nothing → error "trying to access an undefined variable"

vupdate :: Cond → Var → V v → VStore v → VStore v
vupdate c k v vst = case lookup k vst of

Nothing → insert k (Chc c (fmap Just v) (One Nothing))
Just old → insert k (Chc c (fmap Just v) old)

Figure 5.5: Variational map operations
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Because satisfiability checks have the potential to be expensive operations, we would like
to reduce the need for them as much as possible. BDD solvers are built to solve these
sorts of problems, but integrating them with variational values is a non-trivial task and
is left as a subject for future research. Short of integrating a BDD solver, there are other
optimization or simplification operations that could be performed [26, 9], but which to
perform and how frequently is also a subject beyond the scope of the current work.

In VIMP, each evaluation step requires the current variational context. In VIMP’s
expressions, the variational context is passed to the lookup operation for any variable
reference. Similarly, in VIMP’s statements the variable assignment operation takes the
current variational context as an argument.

5.3 Variational Exceptions

Catchable exceptions are the other type of side effect that we want VIMP to support. In
Section 3.3 we outlined the primary requirement for exceptions in a variational setting:
when an exception is thrown in a particular variant, all execution in that variant should
stop until the error is (optionally) caught, but other variants should continue their
execution unaffected. In order to achieve this, we utilize the existing framework we have
built for tracking the current variational context but with some modifications to account
for the presence of exceptions.

If we wish to stop execution in a variant when an exception is thrown, then the throw
operation needs to be capable of returning its current variational context along with the
specific error code of the exception. We have already incorporated a variational context
into the execution of VIMP, so it is a trivial extension to have throw return this value. The
variational context framework also easily supports preventing the continued execution of
variants that are in an error state. We simply need to incorporate an error condition into
our satisfiability checks such that the variational context is unsatisfiable for variants in an
error state. Because an exception may have been thrown in the current variant, we extend
our satisfiability checks to occur before executing each statement. This means that before
beginning execution on a new statemtent we now check for (1) whether the configuration
for the current variant is even possible and (2) whether the variant is currently in error
and should not be executed. The error condition can be easily derived by taking the
disjunction of the variational contexts returned by all throw operations. To make entering
an error context impossible we take the conjunction of the current variational context
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type Err = (Cond, V Int)
type Stack a = [a]

ctx :: Cond → Stack [Err] → Cond
ctx c st

| [] ← concat st = c
| errs ← concat st = c :&&: f errs

where
f [(c,_)] = c
f ((c,_):es) = c :||: f es

catchCtx :: Cond → [Err] → Cond
catchCtx c errs = c :&&: foldl f (Lit False) errs
where
f c (c′,_) = c :||: c′

extract :: [Err] → V Int
extract [] = error "no values to extract"
extract [(_,v)] = v
extract ((c,v):es) = Chc c v (extract es)

Figure 5.6: Variational error helper functions

and the negation of the error context and check it for satisfiability before entering a new
variant.

Supporting catchable exceptions gives us several additional challenges. We need to
be able to “roll back” the error context to a previous state. This suggests that during
execution the error context and corresponding values should be kept in a stack. When we
enter a new try block we push an empty error frame onto the stack. All error values and
their contexts thrown in the execution of the try block get added to the top of the stack.
We pop the top frame of the stack when we reach the corresponding catch block. If we
reach the catch handler with a non-empty top stack frame, we then need to (1) extract the
variational value of all of the error codes thrown during the try block and assign it to
the provided variable name and (2) execute the catch block from within the combined
variational context that those exceptions were thrown in.

With these requirements in mind, we define the error context carried during execution
to be a stack of lists of pairs of error conditions and error codes. We also define the helper
functions ctx, catchCtx and extract. ctx retrieves the condition for the satisfiability check
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before entering a new variant by combining the error context and the variational context.
catchCtx determines the correct variational context for a catch block based on the top
frame of the error stack. extract creates a variational value from all of the error codes
thrown in a try block, again based on the top stack frame. Haskell implementations of
these functions are presented in Figure 5.6.

While we do not include a mechanism for it in our formal semantics, it is possible
to implement an additional optimization for variational languages with exceptions.
Satisfiability checks are expensive, and so performing a satisfiability check before each
statement is executed is undesirable. In order to avoid this, variational interpreters can
add a flag to signal when a block is “dead” and can safely stop execution. A call to throw
sets the flag to indicate that further execution can be safely halted. The flag is removed
when it occurs within a try block once execution reaches the corresponding catch block.
For all other instances the flag indicates that the execution of a statement can safely be
skipped.

This flag value has an interesting interaction with choices. We only wish for a choice
statement to set its flag when all variants can safely be ignored. If there is a single variant
that is still active, then a choice statement should not set its flag, in this way suppressing
the flags of its children. When the flag is set from inside of a choice, there is a simple
procedure to check if the choice should propagate or suppress the flag. If both alternatives
are either unsatisfiable or have the flag set, then the parent choice should set its flag,
indicating that execution is halted for all possible variants. In the Resource DSL (Section
6.2.3), we implement this system via an error monad, with errors serving as the flags and
inserting catches for choices in order to inspect whether the parent should propagate the
errors or suppress them.

5.4 Control Structures

Control structures are another aspect of VIMP where the interaction with variation plays a
crucial role. IMP’s control structures—if . . . then . . . else and while . . . do—conditionally
execute statements based on the evaluation of a boolean expression. In VIMP, this presents
two issues. First, any variation in the condition of a control structure necessarily affects the
conditionally executed block. Second, a formula tree representing a variational boolean
value may contain multiple distinct true or false values. As with most other operations
in VIMP, such as addition or comparison, we simply lift them into the applicative functor
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whenTrue :: V Bool → Cond
whenTrue (One True) = Lit True
whenTrue (One False) = Lit False
whenTrue (Chc c l r) = (c :&&: whenTrue l) :||: (Not c :&&: whenTrue r)

whenFalse = Not ◦ whenTrue

Figure 5.7: Control structure helper functions

for formula trees. However, when interacting with control structures this approach causes
significant inefficiencies. The applicative functor simply unwraps each leaf value in the
tree and continues execution. This might lead us to reevaluate the same conditional block
repeatedly, only with different variational contexts. Any sharing between executions of
this conditional block would be lost.

The first issue is easily resolved by adding the context that caused the boolean value to
be true (or in the case of else blocks, false) to the variational context for the conditionally
executed statements. For example, in the statement if A〈true,false〉 then s else s′, the
statement s would be evaluated with variational context A, while s′ would be evaluated
under ¬A.

For the second issue, we need a way to extract a condition that encompasses all
variants where a variational boolean value is true or, in the case of else blocks, false.
With these conditions in hand, we can simply evaluate a conditional block under the
current variational context extended by the proper condition. For this, we define two
functions, whenTrue and whenFalse that return these conditions for a given variational
boolean. This technique was also originally discovered in [11]. Figure 5.7 presents sample
implementations of these functions.

5.5 Big-Step Semantics of VIMP

Finally we are prepared to present the big-step operational semantics for VIMP. Figures 5.2
and 5.3 define the big-step semantics for VIMP expressions and statements, respectively.

The judgments for variational expressions require a triple of the current variational
context (which has been merged with the error context at the statement level), the variable
store, and the expression, producing a variational integer or boolean. The variational
context is used as an argument to perform a lookup in the variable store whenever a
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variable reference is countered. It is also used to check when entering a new variant via a
choice that the configuration is satisfiable. Because exceptions cannot be thrown at the
expression level we do not need to incorporate an error context or perform satisfiability
checks before each expression. We utilize the standard applicative functor lifting functions,
liftA and liftA2 to support embedding operations such as addition or comparison within
a variational context.

The rules VA-Num, VA-Add, VB-Bool, VB-Not, VB-And, and VB-Less are fairly
straightforward extensions of their non-variational counterparts. We simply lift values
and operations into the applicative functor for formula trees as in Section 3.1. VA-Ref is
the only rule that interacts with the variable store, performing variational lookup using the
variational context as described in Section 5.2. Finally, we have rules for handling choices.
VA-Chc1 and VB-Chc1 deal with the case in which both alternatives are satisfiable given
the current variational context, executing both alternatives and placing the result values
back into a choice with the same condition as the expression. VA-Chc2 and VB-Chc2

handle the case where the left alternative is unsatisfiable given the current variational
context. This means we can safely eliminate the choice and replace it with the result of
evaluating the right alternative. VA-Chc3 and VB-Chc3 handle the same case but for
when the right alternative is unsatisfiable. There is no need for a rule for when both
variants are unsatisfiable, as our semantics prevents fully unsatisfiable contexts at the
statement level before evaluating any expressions.

The semantics of VIMP statements is slightly more complex when compared with
expressions. First, we develop two separate judgment forms ⇓V and ⇓VS. ⇓V judgments
check whether the current context is satisfiable before executing the statement. ⇓VS

judgments evaluate a statement given that it is in a satisfiable context. In this sense,
⇓V can be seen as a wrapper ensuring satisfiability of contexts before proceeding with
evaluation. Both judgments take a 4-tuple of the current variational context, the variable
store, the current error context, and the statement to evaluate, and produce an updated
state and error context.

V-Unsat expresses the notion that if the current variational context combined with the
error context is unsatisfiable, then the statement should not be executed and the execution
state should not change. V-Sat confirms that a the current variational context combined
with the error context is satisfiable and then evaluates the statement with the appropriate
⇓VS rule.
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VS-Skip is self-explanatory. VS-Assn assigns a variable to the result of evaluating the
given variational arithmetic expression. The store is updated according to the variational
update operation defined in Section 5.2, taking the current variational context as an
additional argument. VS-Seq simply sequences the execution of two statements.

For control structures, first we have the rule VS-If. First we evaluate the conditional
expression e to a variational boolean value b̄. We then use the functions whenTrue and
whenFalse (Section 5.4) to extract the variational contexts under which b̄ is true or false,
respectively. In the case that b̄ is false in all variants, whenTrue returns the context value
false (the same holds for true and whenFalse). We evaluate the then statement under the
current variational context combined with the value returned by whenTrue and the else
statement under the current variational context combined with the value returned by
whenFalse. Because the whenTrue and whenFalse functions return false when there are no
variants that satisfy their condition, the combined variational context is unsatisfiable and
will be caught by the rule V-Unsat, resulting in an unchanged program state. Otherwise,
these branches are evaluated under the variational context that represents all variants
where they are reachable.

VS-While operates on similar principles to VS-If, using whenTrue to extract the context
under which the value returned by evaluating the condition is true and then evaluating
the do statement. We then continue execution by reevaluating the while statement with
the current variational context combined with the context value returned by whenTrue
and with the updated variable store and error context produced by the do statement. For
terminating loops, the context returned by whenTrue should grow successively smaller
until no variants are true. At this point, the variational context will be unsatisfiable and
execution on the loop will be halted by the V-Unsat rule. It should be noted that one
consequence of allowing possibly infinite loops in a variational language is that if one
variant has an infinite loop then execution on any other variant cannot proceed.

VS-Throw evaluates its variational arithmetic expression to a variational integer error
code and adds that value and the variational context in which the error was produced to
the top frame of the error stack. VS-Try handles the case where the try block does not
throw any errors. It first pushes an empty frame onto the top of the error stack, evaluates
the try block statement, and finally checks to see if the top frame of the stack remains
empty, signaling that no exceptions were thrown in the try block. In this case we can
proceed without evaluating the catch block.
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type Store v = Map Var v

confStore :: [Dim] → VStore Int → Store Int
confStore ds = map fromJust (filter isNothing (map (conf ds)))

confErr′ :: [Dim] → [Err] → Maybe Int
confErr′ ds [] = Nothing
confErr′ ds ((c,i):es)
| evalCond ds c = Just i
| otherwise = confErr′ ds es

confErr :: [Dim] → Stack [Err] → Maybe Int
confErr ds st = confErr′ ds (concat st)

Figure 5.8: Configuration functions for variable store and error contexts

VS-Catch handles the case where a try block does throw an exception. Like VS-Try, it
pushes an empty frame onto the top of the error stack, but in this case, the error frame is
nonempty after evaluation of the try block, meaning that at least one variant has thrown
an exception. It extracts a context value and variational integer representing all the error
codes thrown via the catchCtx and extract functions, respectively (see Section 5.3). We
then update the variable store at the supplied variable name, using the values returned
by catchCtx and extract as the variational context and variational value arguments to the
variational update operation. In this way, we extend the variable environment with the
variational error code value but only for the variants that threw an exception within the
try block. With the error code information now placed in the variable store, we execute
the catch statement in the variational context returned by catchCtx.

Finally, VS-Chc handles choices at the statement level. The left alternative is evaluated
under the current variational context combined with the condition of the choice, and
the right alternative is evaluated under the current variational context combined with
the negation of the condition. We can safely thread the resulting state of evaluating
the left alternative to the right alternative without any concerns, because the variation-
preservation property does not permit execution in one condition to affect its negation.

The initial evaluation step should begin with the variational context true, an empty
variable store, and the error context [[]]. Derivations result in a variational variable store
and an error context. In order to relate these results back to the non-variational IMP, we
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must define proper configuration operations for these results. Sample configuration func-
tions are given in Figure 5.8. Configuring a variational map is a matter of configuring all
the values in the map, filtering out those that configure to Nothing, and then unwrapping
the remainder from Just. Configuring the error context just requires us to search all of
the values until we find one that has a condition that evaluates to True under the given
configuration.

With our definition of both variational execution and configuration for VIMP, we are
able to assert that VIMP satisfies the variation-preservation property (Section 2.3). Put
simply, the result of evaluating a VIMP program and then configuring it with a set of
dimensions should yield the same result as configuring the VIMP program with the same
set of dimensions and then evaluating it using our semantics for plain IMP. Indeed, we
rely on this property throughout our semantics, as highlighted in our explanation above
of the behavior of the VS-Chc rule. We leave a formal proof that VIMP satisfies this
property to future work.
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Chapter 6 – The Resource DSL

The work on variational imperative programming we have described up to this point
was motivated by our experience developing the Resource DSL. The Resource DSL is
designed with the intent of allowing easy specification of resource requirements in highly
configurable systems. Modern software systems often have complex interactions in terms
of resource requirements between different subsystems, and managing these interactions
and determining configurations that fulfill a certain set of requirements is often a nontriv-
ial task. The Resource DSL makes the specification and management of these interactions
much more feasible and maintainable. Because of the highly configurable and constantly
evolving nature of modern software systems the Resource DSL utilizes the principles
of variational programming discussed above in order to support the simultaneous ver-
ification of resource requirements for systems with large feature sets. In this section
we describe the design and implementation of the Resource DSL including several case
studies of its use. In particular we pay special attention to the practical concerns brought
on by integrating choices into an imperative language.

6.1 Syntax

6.1.1 Resources

In our language a resource is represented by a distinct primitive value. These primitive
values can be either booleans, integers, floating point numbers, strings, or the unit value,
as defined by the following Haskell datatype:

data PVal

= Unit

| B Bool

| I Int

| D Double

| S Symbol

All resources are maintained in a global resource environment during execution of a
program in the Resource DSL. This environment is a mapping from paths to resource
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values. Paths are analogous to the Unix filesystem paths that most programmers are
already familiar with, allowing for simple organization of resources in treelike structures.
For example, a system may place its server bandwidth resource at /Server/Bandwidth,
while placing its client bandwidth at /Client/Bandwidth. Again, by analogy to filesystem
paths, resource paths can be either absolute or relative. Relative paths are evaluated with
respect to the execution environment’s current path. For example, a reference to the
resource at the relative path ../GPU/Speed would evaluate to /Servers/Hardware/GPU/Speed

given an execution environment with /Servers/Hardware/CPU as its current path.
The global resource environment is quite similar to VIMP’s variable store. Both are

used to maintain a global, mutable store of values. As such, we define the resource
environment to be a variational map from paths to values of type V (Maybe PVal).

6.1.2 Expressions

Of course, primitive resource values are of little use without ways of manipulating
them. To this end the Resource DSL supports a number of common operations over
primitive values in the form of a simple expression language. Expressions are formed
by immutable variable references, references to resources by their specific path, literal
primitive values, and a number of common unary, binary, and ternary operations, such
as addition, negation, equality, ternary conditions, etc.

data Expr

= Ref Var

| Res Path

| Lit (V PVal)

| P1 Op1 (V Expr)

| P2 Op2 (V Expr) (V Expr)

| P3 Op3 (V Expr) (V Expr) (V Expr)

In order to support variational execution of programs in the resource DSL, we embed
choices directly into the syntax of the language, which we first encounter here in the
definition of expressions. In contrast to VIMP’s approach, we opt to use the generic
implementation of formula trees at all points in the language. This permitted us to write
a single monadic handler for dealing with variational values at all syntactic levels of the
language. We present this handler in Section 6.2.2.
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The Resource DSL also supports unary functions over primitive values. The body of
the function is simply a choice of expressions as defined above. The function takes a
single parameter, which is a combination of the name of the parameter it will be bound
to in the body of the function and the type of the parameter. Because the type of the
parameter may depend on the variant it is located in, we define types to be a choice of
primitive types. Typechecking is currently handled dynamically at runtime, although in
the future we would like to potentially implement static typechecking for the language.

data PType = TUnit | TBool | TInt | TFloat | TSymbol

data Param = Param Var (V PType)

data Fun = Fun Param (V Expr)

In contrast with VIMP, all variables, such as those created here as the parameters to
unary functions, are immutable. This helps to simplify the semantics of the language, as
well as preventing hard-to-detect user error when interacting with mutable variables.

6.1.3 Effects on Resources

Having established the representation of resources in our DSL as well as their manip-
ulation via expressions and unary functions, we now turn to defining effects on the
global resource environment. The Resource DSL supports four basic effects on resources:
creation, deletion, modification, and checking/verification. As with VIMP, all effects on a
mutable variational map like the resource environment must be performed with a given
variational context. Deletion is the simplest, removing the resource at a particular path
and replacing it with Nothing. Creation takes a path and an expression that produces a
variational primitive value and inserts that value into the resource environment. Modifi-
cation takes a unary function over the value of the resource and replaces it with the result
of the function. Checks take a unary function over the value of the resource that returns a
boolean, with True indicating success and False indicating failure. When a check fails, an
error is thrown, with an error message indicating what check failed. In this way, checks
allow for a user to specify conditions or requirements that must hold for a particular
resource.
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data Effect

= Create (V Expr)

| Check Fun

| Modify Fun

| Delete

6.1.4 Statements

Statements are used in order to sequence and combine the above effects into programs
in the Resource DSL. The most basic statement is the Do command, which takes a path
to a resource and applies an effect to the resource located there. The other statements
are a collection of control structures that allow for the sequencing and construction of
programs out of these Do commands. If and For are straightforward control structures
that allow for conditional execution and looping, respectively. In executes a block in
the context of a particular path, where all relative paths in an In block are evaluated
with reference to the supplied path value. This allows users to easily describe work that
should be done in particular resource sub-environments. Let allows for the extension of
the current variable environment at the statement level. Finally, Load permits the calling
of named subroutines with a list of arguments.

One particular difficulty arises in determining how to represent a variational block
of statements. Typically we would use a simple list of statements, but in the variational
setting we must ask what kind of variational list we should use. Fortunately, recent
work [24] has determined segment lists to be a particularly efficient implementation of
variational linked lists. A segment list is a list of segments, where segments are either
plain lists or a choice between segment lists. Therefore, we define our blocks to be
segment lists of statements.
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data Segment a = Elems [a] | Split Cond (SegList a) (SegList a)

type SegList a = [Segment a]

type Block = SegList Stmt

data Stmt

= Do Path Effect

| If (V Expr) Block Block

| In Path Block

| For Var (V Expr) Block

| Let Var (V Expr) Block

| Load (V Expr) [V Expr]

6.1.5 Models and Profiles

Programs in the resource DSL are organized into models and profiles. Both take a list of
initial parameters as input, which are converted into variables when evaluating the body
of the program. Models are more straightforward to define, as their body is simply a
statement block. By contrast, a profile body is a direct mapping from resource paths to
variational lists of effects. Profiles therefore do not support any of the control structures
available to models. Viewed another way, profiles are models that are restricted to In

and Do statements. In fact, the Resource DSL provides a utility function toProfile that
automatically converts a model to a profile provided that the model’s body only contains
In and Do statements.

data Profile = Profile [Param] (Map Path (SegList Effect))

data Model = Model [Param] Block

One might ask why include profiles at all if they are strictly a subset of models? The
answer is that, where possible, profiles are to be preferred over models because they are
declarative definitions of resource specifications. Declarative Profiles are much easier to
compose and reason about in comparison to imperative Models. Certain parts of the
Resource DSL even go so far as to require profiles, such as the specification of mission
requirements, which should only ever be made up of Check effects. Models should only
be used where necessary, which typically means resource configurations that are sensitive
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to the order in which effects are carried out or that require runtime decision making
enabled through control structures.

The execution environment maintains a dictionary of profiles and models. This is
used to look up the corresponding profile or model when a call to the Load command is
made. In this way users can organize their programs via subroutines that are called from
a parent model.

6.2 Execution

The links between VIMP and the Resource DSL should now hopefully be apparent.
Both are variational imperative languages that require support for mutable state and
errors/exceptions. We now demonstrate how the Resource DSL implements some of the
techniques detailed in VIMP in a real-world interpreter written in Haskell. In Haskell,
side effects are typically implemented monadically, with multiple side effects being
implemented by a monad transformer stack [15]. The principal evaluation mechanism in
the Resource DSL is also monadic. Specifically, we utilize a reader monad instance for
handling the current resource path prefix (set by In statements), the immutable variable
environment, and the dictionary of Models and Profiles; a state monad instance for
handling the resource environment; and an exception monad instance for throwing
runtime exceptions. We encountered some challenges in integrating variation into a
monad transformer stack. This section details our conclusions with regards to how to
successfully integrate variation into a monadic approach to effect handling.

6.2.1 Uncooperative Monads

Our first thought was simply to integrate the monad for formula trees into an existing
reader-state-exception transformer stack by creating a monad transformer for formula
trees. After all, we already have an existing monad instance for formula trees. This would
provide the benefit of easily integrating choices in the highly composable pattern that is
the hallmark of monad transformers. As our work on VIMP shows, this would have never
succeeded. Adding the monad instance for formula trees to the stack would not provide
a variational context, or any other of the elements necessary to support side effects in a
variational setting.
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This result is also unsurprising considering existing research into monad transformers.
The list monad transformer has been proved to only be valid when composed with
commutative monads, which includes our use of the state and exception monads [10].
The list monad is used to model nondeterminism. The monad instance for formula trees
can be seen as modeling a kind of labeled nondeterminism. This can be further verified
by comparing the behavior of both monads, which unwrap a collection of values, perform
some computation, and place the results back into the collection. Given the proof that
the list transformer monad only holds for commutative monads, it is no surprise that the
similar variational monad also does not work by itself as a monad transformer.

This result is somewhat unfortunate, as it means that the variational monad is not
easily composable with existing languages that utilize monad transformer stacks for
effect handling. The work on VIMP further supports this conclusion, as it suggests that
integrating variation into an effectful language requires explicit support for a variational
context that governs the execution of the language. However, we found that, while
easily composing variation into an existing monad transformer stack is not possible, it is
possible to keep the existing monad transformers as long as the proper care is taken with
their usage. The next section describes our custom monadic handler for dealing with
variation generically in the Resource DSL.

6.2.2 The Evaluation Monad

Rather than extending our monad transformer stack to handle variation, we simply retain
the same monad transformer stack and add a special handler for dealing with variational
values. We add the variational context to the reader context and the error context to
the state context. Unlike VIMP, we do not have a method for catching exceptions in
the Resource DSL, so we have no need for a stack to roll back errors. Instead, the error
context is made up of a condition that indicates which variants are in error and a single
variational error value that contains all of the errors encountered. We provide the full
definition of the monad transformer stack and their respective contexts in Figure 6.1.

From here, we can begin to define a monad instance for handling variational values.
Because it makes generically handling errors easier, we wrap all values in a Maybe, so
that variational values in the Resource DSL all have the form V (Maybe a). This allows us
to return a default value from alternatives that are in an error state while introducing
minimal computational overhead.
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data Error = . . .

data StateCtx = SCtx {
renv :: Map Path (V (Maybe PVal)),
errCtx :: Cond,
errVal :: V (Maybe Error)

}

data ReaderCtx = RCtx {
prefix :: Path,
environment :: Map Var (V (Maybe PVal)),
dictionary :: Dictionary,
vCtx :: Cond

}

type MonadEval m =
(MonadError (V (Maybe Error)) m, MonadReader RCtx m, MonadState StateCtx m)

-- | A specific monad for running MonadEval computations
type EvalM a = ExceptT Mask (StateT StateCtx (Reader Context)) a

Figure 6.1: Monad transformer stack definition
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We define a function vBind that is analogous to the monadic bind operation, but for
the type MonadEval m => m (V (Maybe a)) (Figure 6.2). As Haskell does not allow us to
write monad instances for this type, we define it as a standalone function. Of note is that
vBind demonstrates the flag-based exception handling optimization described in Section
5.3.

vBind employs several helper functions. vMove takes the condition of a choice and
an action in the evaluation monad representing the computation to be carried out in
evaluating a single alternative of a choice. It retrieves the current variational context and
error context, combines them with the condition argument, and checks if the combined
context is unsatisfiable. If it is unsatisfiable, there is no need to evaluate the action, and
instead an error is thrown for the current variant, which will be caught by the original
choice. Otherwise, it evaluates the action in the context of the variational context extended
by the condition argument.

vHandle takes the condition of the choice and monadic actions for both alternatives. It
calls vMove for each alternative. It then catches any exceptions thrown in the alternatives,
either by vMove before execution of the action or during execution of the action itself. If
both alternatives throw errors, the error is propagated by the choice, as in the optimiza-
tion detailed in Section 5.3. Otherwise, it suppresses the exceptions thrown by single
alternatives and replaces them with a placeholder Nothing value.

vBind handles the variational value itself. First, it extracts the variational value from
within the evaluation monad. Then, it handles the value based on its case. If the value is
One Nothing, it simply returns One Nothing in a manner analogous to the behavior of the
plain Maybe monad. In the case of a variational value that is not a choice or Nothing, we
simply apply the function passed to vBind to the underlying value. Finally, in the case
of a choice, we wrap each alternative in the provided action and pass execution to the
vHandle helper function.

To resolve the problem of Haskell not permitting a monad definition for the type of
vBind, we wrap it in a newtype VM m a and define the monad instance for this type, with
the constraint that m implements MonadEval:
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vMove :: MonadEval m ⇒ Cond → m a → m a
vMove c m = do
vctx ← getVCtx
e ← getErrCtx
let c′ = vctx :&&: c
if (unsat (c′ :&&: Not e)) then
throwError (One Nothing)

else
local (λ(Ctx p m dict _) → Ctx p m dict c′) m

vHandle :: MonadEval m ⇒
Cond →
m (V (Maybe a)) →
m (V (Maybe a)) →
m (V (Maybe a))

vHandle c l r = do
let r′ = vMove (Not c) r
let l′ = vMove c l
l′′ ← l′ `catchError` (λe → do
r′ `catchError` (λe′ → throwError (Chc c e e′))
return (One Nothing))

r′′ ← r′ `catchError` (λ_ → return (One Nothing))
return (Chc c l′′ r′′)

vBind :: MonadEval m ⇒ m (V (Maybe a)) → (a → m (V (Maybe b))) →
m (V (Maybe b))
vBind v f = do
v′ ← v
case v′ of
(One Nothing) → return (One Nothing)
(One (Just a)) → f a
(Chc c l r) → let

f′ v = vBind (return v) f
in vHandle c (f l) (f r)

Figure 6.2: Definition of vBind
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newtype VM m a = VM { unVM :: (m (VOpt a)) }

instance (MonadEval m) ⇒ Functor (VM m) where

fmap = liftM

instance (MonadEval m) ⇒ Applicative (VM m) where

pure = return

(<∗> ) = ap

instance (MonadEval m) ⇒ Monad (VM m) where

return = VM ◦ return ◦ One ◦ Just

v >>= f = VM $ vBind (unVM v) (unVM ◦ f)

6.2.3 Throwing Exceptions

Throwing exceptions is handled by the function vError, which retrieves the current
variational context from the reader context, updates the error context in the state to be the
disjunction of the current error context and the variational context, updates the variational
error value in the state with the Error value just thrown, and finally throws an error in
the exception monad to halt execution for the current variant.

vError :: MonadEval m ⇒ Error → m a

vError e = do

vctx ← getVCtx

updateErrCtx (λc → c :||: vctx)

updateErrVal (λm → Chc vctx (One (Just e)) m)

throwError (One (Just e))

6.2.4 Interacting with the Resource Environment

Just like with VIMP, all interaction with the resource environment occurs within a partic-
ular variational context, retrieved from the current reader monad context. Additionally,
the Resource DSL places requirements that attempting to access or modify a resource
that does not exist, or create a resource at a path in which one already exists, results in a
thrown exception. For brevity, we only present the variational lookup operation in Figure
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vLookup′ :: (MonadEval m, Ord k) ⇒
k →
Map k (V (Maybe v)) →
m (V (Maybe v))

vLookup′ k env
| Just v ← lookup k env = do
c ← getVCtx
return $ select c v

| otherwise = return (One Nothing)

checkExists :: MonadEval m ⇒ Error → V (Maybe v) → m ()
checkExists e (One Nothing) = vError e
checkExists _ (One (Just _)) = return ()
checkExists e (Chc c l r) = vHandleUnit c (checkExists e) l r

vLookup :: (MonadEval m, Ord k) ⇒
Error →
k →
Map k (V (Maybe v)) →
m (V (Maybe v))

vLookup e k env = do
v ← vLookup′ k env
checkExists e v
return v

Figure 6.3: Implemenation of variational lookup

6.3 for the resource environment, omitting the implementations for modification, deletion,
and creation. The helper function vLookup’ performs lookup on the variational map by
selecting on the value at the given key using the current variational context. The resulting
value is then passed to the checkExists helper function, which throws a variational error
for variants where the requested value does not exist. Note that vHandleUnit, here omitted,
is similar to vHandle except for the type m () rather than m (V (Maybe a)).

6.3 Evaluation and Use Cases

We implemented a full variational interpreter for the Resource DSL. Users provide a main
application model, an initial resource environment, mission requirements in the form of
a profile of Check commands, a dictionary of available profiles and models, and initial
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parameters to the application model. The interpreter runs the main application model
and then checks it against the mission requirements. As outputs it produces the final
variational resource environment, the error context, and the error value. All successful
configurations should result in a variant that is not present in the error context. For
unsuccessful configurations, selecting or configuring the variational error value produces
an appropriate error message to help the user in determining the cause of the failure,
which could be either a runtime error like a failed typecheck, or a failed call to the Check

command.
Our implementation also comes with a convenient command-line interface for inter-

acting with variational programs. Users are given the option of performing selection or
configuration prior to execution. This allows users to eliminate configurations that they
are not interested in, increasing efficiency in cases where certain configurations can be
ruled out ahead of time. Keeping track of the error context allows us to use this value to
support queries where a user supplies a boolean formula representing a configuration
that they are interested in and the query returns whether that condition has any successful
configurations, including a sample list of possible configurations generated by the built-in
SAT solver.

Our DSL has been tested against three example problems as part of its evaluation. The
first test scenario concerned determining correct specification of resource environments
that depend on location-based data, such as with GPS systems. The second test scenario
concerned common networking resource requirements, such as making certain that there
is enough available bandwidth in a network to handle transmissions of a particular size.
The final test scenario concerned maintaining agreement between servers and clients in
their use of cryptographic protocols provided by different available libraries.

All of these test scenarios demonstrated the utility of a fully variational model of
execution, but the final test scenario in particular provided an interesting test case.
We were able to encode each cryptographic cipher, mode, keysize, and padding as a
distinct dimension, along with the various libraries that provide this functionality. This
allowed for our variational interpreter to potentially check all possible cryptographic
configurations of server and client at once. This also meant that if a user were only
interested in a particular subset of features, such as only AES encryption with CBC mode,
they could simply preconfigure the program according to those specifications, avoiding
unnecessary computation.
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Chapter 7 – Related Work

As discussed at various points in this thesis, the formal semantics we have developed for
variational imperative languages is in part a synthesis of existing techniques developed
for existing variational interpreters. The present work builds upon this by bringing all of
these techniques together and providing a formal semantics for reasoning about them.
It also demonstrates how to support catchable exceptions in a variational environment,
which to our knowledge is absent from previous work. In this chapter we compare our
work to preceding work on variational execution, highlighting the development and
implementation of several techniques utilized here.

The first to develop a notion of variational execution were Erwig and Walkingshaw in
their 2011 GTTSE tutorial [8]. While it does not address the interaction of side effects with
variation, it set the stage for future research by developing the choice calculus, as well as
the functor, applicative, and monad instances that we have made use of in this work.

Kästner et al. [11] developed a proof-of-concept variational interpreter for the While

language. This works shares a significant amount in common with our work on IMP, as
both utilize toy imperative languages to develop a theory of variational execution with
side effects. This work originated the concepts of maintaining a variational context during
execution, defining a variational store as a variational map with lookup and update
operations that take the variational context as an argument, and the use of the whenTrue()
helper function in conjunction with control structures. However, the variational While

language only supports a single type of side effect—mutable state—and therefore is
incapable of analyzing the interactions between multiple different types of effects and
variation. Additionally, the evaluation of the language is only presented as Scala functions
rather than a formal big-step semantics.

Around the same time, Kim, Khurshid, and Batory developed shared execution for
testing software product lines [14]. Shared execution primarily focuses on low-level
support for variation at the level of a language VM. Unlike the variational While language,
shared execution is not built on the formal foundation of the choice calculus, and thus its
support for variation is handled on a more ad hoc case-by-case basis, in particular in its
merging of shared contexts. Nevertheless, shared execution does contain an analogue of
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the variational context with variational store pattern for dealing with variational mutable
state.

Another seemingly independent development of variational execution was Austin
and Flanagan’s faceted evaluation for Javascript [4]. In this case, choices, or facets as they
are termed by Austin and Flanagan, represent desirable security properties of Javascript,
where private dataflows correspond to the right alternative and public dataflows corre-
spond to the left alternative. Again, this work contains an analogue of the variational
context with variational store pattern, in this case referring to the variational context as the
program counter. Faceted evaluation only allows dimensions as tags for its choices, rather
than arbitrary boolean expressions, which decreases the expressiveness of the language
but obviates the need for satisfiability checking. Faceted evaluation additionally provides
a formal semantics for a language they call λfacet. It is also the only approach that attempts
to provide a mechanism for variational IO side effects such as interacting with the file
system. However, in comparison with the other approaches to variational execution
presented here, faceted evaluation is primarily concerned with dataflow security and not
with developing general models of variational programming.

Building on the above work with the While language, Nguyen, Kästner, and Nguyen
developed the Varex interpreter for a subset of PHP [20]. Varex successfully demonstrated
the ability to test plugin interactions in the highly configurable WordPress application.
Varex adds support for throwing exceptions, but they are not catchable. Varex’s excep-
tions are also reported directly when encountered as a side effect of execution, rather
than producing a variational error value as the result of execution. Varex especially
demonstrates the utility of developing a variational interpreter for a subset of an existing
language.

Meinicke’s VarexJ is an implementation of a variational Java VM [17]. VarexJ handles
both throwing and catching exceptions, but it does so at the level of Java bytecode
instructions. This low-level approach is therefore difficult to generalize to arbitrary
variational imperative languages, and is of more use when variationalizing a VM.

Variational interpreters are not the only places where side effects and variation
interact. For example, Chen, Erwig, and Walkingshaw’s work on typing variational
lambda calculus makes use of masks that are similar to VIMP’s error contexts [5]. The
central notion here is that when typechecking a variational program, it is desirable to
continue typechecking variants that are not in an error state when an error is encountered
in a separate variant.
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Chapter 8 – Conclusion and Future Work

This thesis has provided a formal operational semantics for the variational imperative
language VIMP. The techniques formalized in VIMP were then demonstrated in the
implementation of the Resource DSL. Our intention is for this work to serve as the basis for
future development of variational imperative languages. By providing a formal semantics
as well as a detailed description of the various techniques involved in the implementation
of variational imperative languages, we hope that future language developers will be able
to more fully focus on language-specific features, rather than being bogged down in the
common details of the interaction of variation with side effects.

It is our hope that the formal semantics that we have developed here could serve
as the basis for a formal proof that VIMP satisfies the correctness property outlined in
Section 2.3. Such a proof would give the highest level of confidence that the techniques
outlined herein are sound and can safely be applied to more complex languages.

This work has focused primarily on mutable state and exceptions. It is an area of
future research to explore the interactions of other types of effects with variation. In
particular, it is unclear how variational programs that must somehow interact with the
outside world through IO operations should be handled. It is likely that a variational
language that supports IO would also need to be paired with variational constructs in the
operating system itself, such as variational files and filesystems, variational databases, etc.
There has already been some progress made in this area on the database front [2, 3], but
more work is necessary with regards to how to integrate variational execution with such
operating system entities.

For the Resource DSL, we are interested in the possibilities that built-in support
for SAT solving has for optimization. In our implementation of the test scenarios for
the Resource DSL we noted that many computations that currently occur at runtime
in our language could potentially be offloaded to a SAT or SMT solver. We are also
interested in continuing to explore the domain of resource specifications for the potential
to support fully declarative specifications. In the current iteration of the Resource DSL we
reluctantly included models as a way to encode fully imperative programs with support
for sequencing and control structures. If possible, we would like to move further in the
direction of our declarative profiles. This however would require ways of addressing
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resource configurations in which the order in which effects are performed and sequenced
is important in a declarative way, which ultimately may not be possible.
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