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FREQuENCY ANALYSIS OF TIMBER-JOIST FLOORS

INTRODUCTION

One of the reasons for deflection limitations on floor structures

given in current building codes is to provide the necessary stiffness

to reduce vibrations below a limit that humans can tolerate (13, p.

20-25). As early as 1931, tests conducted in Germany established a

direct relationship between human vibratory perceptibility and the fre-

quency and amplitude of undamped sinusoidal oscillations (12, p. 3-8)

Since then, numerous studies have been conducted in order to relate

human vibration response to structural dynamic parameters such as

frequency, amplitude, acceleration and damping (11, p. 1, 6). Any

form of dynamic loading such as falling objects, people and animals

walking, etc. , force the floor structure to oscillate in its natural

modal shapes and frequencies (7, p. 9-11). The response to such a

loading may be a simple free vibration, induced perhaps by a fallen

object, or a more complex response termed random vibration, in-

duced perhaps by several people walking simultaneously on the floor.

Structures loaded with dynamic forces of random or periodic

occurrence must possess such stiffness and mass distribution that

their significant modal frequencies differ from those generated by the

loading. If not, resonant effect can cause stresses of a magnitude far
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beyond the value resulting from static loading.

Whether a structural designer is concerned with the problem of

vibrations as they may occur in a residential building, or as may be

caused by rotating machinery and other moving apparatus in a com-

mercial structure, or the effect of earthquake ground motion on all

types of buildings, he has to establish the contributing natural modal

shapes and frequencies of the structural system.
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REVIEW OF THE MOST IMPORTANT METHODS OF
FREQUENCY ANALYSIS

Determination of Natural Frequency by Solving
Equations of Motion

The frequency equation developed from differential equations of

motion is a polynomial equation of degree n where n is the

number of masses in the vibrating system (2, p. 89-91). The fre-

quency equation of frictionless systems yields real roots, while the

solution for systems with damping consists of conjugate complex roots.

Exact procedures of solving polynomial equations such as Graeffe' s

method are time_consuming and impractical when n becomes

large (8, p. 527). However, application of high-speed digital com-

puters in structural analysis during recent years has made these

methods more attractive.

Approximate Methods Derived from Equations of Motion

In this category there are several methods, of which those list-

ed are the ones most commonly found in the literature.

The Stodola-Vianello Method

This method is the most widely used numerical procedure to

solve equations of motion to establish the natural frequencies and

characteristic modal shapes (2, p. 97-101). Its application is limited
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to systems having relatively few degrees of freedom.

Dunkerley' s Formula

This formula gives an approximate value of the fundamental fre-

quency which is always lower than the true value. Such a value may

be further refined by Newton's method of successive approximation or

by matrix-iteration process (14, p. 189-197).

The Holzer Method

This method is commonly used for analyzing torsional vibrating

systems. It is a trial-and-error method based on the equilibrium

equations (14, p. 201-205).

Energy Methods

Energy methods are based on the principle of periodic exchange

of kinetic and potential energies of a freely vibrating, frictionless

system. The most important method is the Rayleigh procedure, in

which the frequency of the fundamental mode is obtained by equating

the maximum potential and kinetic energies of the vibrating system

(2, p. 105-111). The calculation is based on the assumed shape of a

dynamic deflection curve for the structure. The method yields basic

frequencies which are equal to or higher than the exact values. The

closer the assumed curve to the system's true shape, the closer the



calculated frequency will be to its true value. The errors in the as-

sumed deflection curve have small effect on the deviation of the re-

suiting frequency from its real value as long as the assumed curve

does not violate the boundary conditions of the system (8, p. 71, 72,

120, 121).

Bleich' s Method

5

This method yields exact values of the natural frequencies even

when the system is of a highly complex nature (3, p. 1 023-1 041). It

is based on compatibility conditions. The procedure yields a polyno-

mial frequency equation similar to that obtained from equations of

motion, but it allows the more complex structure to be transformed

into simpler sub-systems which are analyzed individually and then re-

combined into the original system.



SYSTEM AND NOTATIONS

The type of structure analyzed is a typical timber-joist floor

system, constructed according to the provisions of the Uniform Build-

ing Code (6, Sec. 2509). The geometry and notation of the system are

shown in Figure 1. The floor superstructure hereinafter called floor

is considered to be fastened to the joists so that the vertical forces

can be transferred between both parts, but the parts do not form one

composite unit.

L

I
I I I

I

I

I
i I

I

I I

I
I

i:
I

p

I

I

I I

I
I

p

i

I I

I

I
I

II I

I

I I

I

I

I I

II

4x 8-foot
plywood sheet

I

I

I

ci

H

II
I I

x

-J---4--blocking

H

H
header

H
floor joists blocking

kk+lk+2'

Figure 1. Layout of timber-joist floor system.
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ASSUMPT IONS

In the following analysis, the assumptions made are:

1. The system oscillates in the elastic range

2. Damping is not included in the calculation

3. The contribution of blocking and headers to the distribution

of forces in the direction across the joists is ignored

4. Rigidity and mass distribution are constant along each joist

5. Rigidity and mass distribution per unit area of floor are

constant.



METHOD OF ANALYSIS

The method of frequency analysis applied was developed by Hans

H. Bleich (3, p. 1030-1032, 1039-1041). The notation is the same as

used by Bleich except that the matrix formulation is used.

The analysis is performed in two steps:

a. Determination of the frequency and modal. shapes of a stat-
ically determinate primary system

b. Influence of the redundancy added to the above analysis.

Frequency and Modal Shape of the Primary System

The complex floor system is initially transformed into a stat-
ically determinate primary system (i. e. , comprised of a series of

simple beams) by releasing the continuity moments in the floor where

it crosses the joists. Exact values of frequencies and shapes of such

a system can be determined by the method which Bleich developed for

solving statically determinate structures (3, p. 1026-1035).

To avoid cumbersome calculations associated with solving of

the polynomial equation required by the above method, the floor mass

is proportionally added to the joist masses, thus generating a primary

system consisting of simple beams. Errors caused by such a simpli-

fication are small if the following requirements are met (3, p. 1036,

1037):



The relative rigidity of the floor must be large in compari-

son to that of the joists. The span of floor superstructure

" is much smaller than the joist span TILl. For this

reason, the relative mid- span deflection of the floor due to

self weight is only a fraction of the corresponding deflection

of the joist. Therefore, the floor simply follows the paths

of the joists, and its modal participation factors are of very

low magnitude.

2. The system should have more than two joists.

3. Exact frequencies of higher modes are not required. This

method gives a very accurate basic frequency but only ap-

proximate values for higher modes. In this calculation only

basic modes of individual joists will be considered. Higher

modes could be important only in a few special cases of

forced vibration.

The modal shapes and frequencies based on a simple beam cal-

culation are given by (3, p. 1041)

and
iJ____

iirymkLL (1)

irr.2 2 fEkik
(A) =i 2L k

(2)

where terms are defined as follows:
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is modal shape,

w is circular frequency, radians per second,

i is mode, i = 1,2,3,...
k is location of joist and nodal location respectively,

E is modulus of elasticity, lb/in2,

I is moment of inertia, in4 and

m is uniformly distributed mass of joist k which includes the

proportionate weight of the floor, lb sec/in2.

Development of the Frequency Equation

The effect of the action of redundant moments on a statically de-

terminate primary system is described by the following two equations

as developed by Bleich (3, Equations 43 and 49):

2
(A).

(---1)c X (3)
(A)

and
2Zw 3. .c. + :; a. X 0 (4)i 1 k j,k k

I
where

i,kSikdm (5)
mand

S EI ('-- dsa ds=\mm (6)j,k k j kEl
5

Terms are defined as follows:



w. is defined by Equation 2,

o is frequency of the floor system,

c. is modal amplitude (2, p. 331),

X is redundant moment at k,

is defined by Equation 1,

is deflection of a primary system due to virtual moment ap-

plied at k,

and

where

11

m is mass,
dk

k -j- where mk is internal virtual moment in a
ds

primary system, and

j is nodal location.

Equations 3 and 4 may be written in matrix formulation as

' -

I
c = aX

t -

2

00)
2

1

0)

20

(7)

(8)

(7a)
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[ci]

I cc=i I (7b)
I I

IC I

[ nj

11 in1

p21 p22 P2n

(7c)

pnl Pfl2 pnn

is the transpose of ,

xl

x
2

(7d)

x
n

olI2

I (8a)I I I

ni

a11 a12

°'21
a22

a=

a a
ni nZ

a
in

a
2n

(8b)

a
nfl
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The symbol n is the number of participating modes of the pri

mary system. Since the modes of a primary system are the basic

modes for the individual joists, and since redundant moments also oc-

cur at each joist, n also equals the number of redundant moments.

Thus a and 13 must be square matrices.

Ecuation 8 may be written:

X113'

Substituting Equation 8c into Equation 7 gives

where 0 is a null vectorMA

and (13a13'o)c0-

Matrix may be written as

(A) (A)- I- - -

where I is identity matrix

and

2

0

(8c)

(9)

(9a)

(10)

(11)
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Substituting Equations 10 and 11 into Equation 9a gives

1 -1
(- - I - 3a p )c = 0 (12)2 'I wi% *' 4I 'V

0.)

Equation 1 2 is multiplied by scalar w2:

(I + a'' )2]c = 0 (13)
j4%*

Premultiplying Equation 13 by (I+apt 11 results in
-

[(I + papT )1 - c = 0 (14)I I

Equation 14 forms a set of linear and homogeneous equations for val-

ues c. Such equations have a nontrivial solution for c only if the

determinant of coefficients of vector equals zero.

Therefore
1 .1 2I(I+pa I3T ) 0) -wII = 0 (15)' I w-

Equation 15 is a frequency equation of the floor system. It is ex-

pressed in a form which is suitable for computer solution.

Mathematical definitions and rules for matrices used in the pre-

ceding development are based on reference 9, j:. 1-23.

Development of Matrix

Equation 5 can be written in a matrix form:



=Sdm

where

cj

2

and

[qi2..
Therefore

15

(16)

/
11 12 ln p11 p12

I21 22 2n p21 p22

dm

Jn1 n2 nn nl nZ

m (16a)
Figure 2 shows the virtual deflection of the primary system due

to the action of the external virtual moment Xk = 1 in_lb/in. The

functions indicated in the figure are defined as follows (10, p. 87_90):

3 23yZlb (L -2Ly +y ) (17a)24EI

3 23ylb (L -2Ly +y ) (17b)
Z4EIkl

y lb
24EIk

(L3-2Ly2+y3) (l7c)
+1
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= 1I)('T)k1 (17d)

x (17e)

lb x3[(Y) 1J(H+ 6EIf (17f)

and
3lb x

(x) qi(y)1ç1 [(Y)k+1+I(Y)kI]+ 6EIf (17g)
k+ 1

Figure 3 shows the modal deflection of a primary system at

nodal location k. Function is defined by Equation 1.

Sign conventions shown in Figure 4 will be used throughout the

calculation.

Based on Equation 5 and Figures 2 and 3,

k Skkdm [s S kkdm]floor + fSkkdm1 joists

L

tL0 50k 1 1 + k+1

3 L
+ 2[ (xf)J}mfdxdy+$ (yJ(y)mdy

y= 0
where (18)

is mass per unit of floor area,

mk is mass of joist per linear length of joist,

Elk EkIk is rigidity of joist

and Elf EfIf is rigidity of a strip of floor one inch wide.
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kIZ k-if! k k+l
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/
I/I

/ jib // ( )', lb
L // -" //// \- ,1

>x x<

Figure 2. Displacement due to virtual moment Xk = 1 in-lb/in.

V

k-i k k+i---------------------
/ 'I/ /
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/

Figure 3. Modal displacement at the nodal location k.
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xk-i
-..... ..-) k- 1 -.. - k- -

Figure 4. Sign convention.

Substituting Equations 17 into Equation 18 and performing integration
1/gives the following final value of

13k k

m
k,k = (9. 242621)(103)(ib) {L4

mf
1

mk EIkl + Elkl Elk )

3

+ 4. 329265 } (18a)

The following new terms are introduced:

L4mf
Bkk+l = bk 6E1 (19a)

k+ 1

L
Bkkl =bk6EI (l9b)

4L4mf 6mk
Bkk=bk 3EIk (19c)

and
4. 3293m3

Bk,f=bk Elf (19d)

1Refer to Appendix for development.
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where

bk = (9. 242621)(1O) lb
mk

Equations 19 are substituted into Equation 18a:

k,k = [Bkk(Bkk+l+Bkkl+Bkf)J (18b)

The coefficient k k+1 is determined in the same way as

k except that the virtual unit moment is applied at nodal location

k+1, which translates virtual displacements in Figure 2 to the next

nodal location on the right. Figure 2 applies if all the subscripts of

the functions listed in the figure are increased by one. Figure 3 re-

mains unchanged. The resulting expression is

1
mf mk

k,k+1 24262l)(lO3)(lb)TL4[(k Elk )3 +
EIkm L

3mf
+ (0. 5)(4. 329265) Elf

3
(20)

or

k,k+1 = 0. S(Bk,k4Bk,k+l+Bk,f) (20a)

Similarly:

1
mf mk

k,k-1 = 242621)(10)(lb) 1L[( EI ) + Iml
3

+ (0. 5)(4. 329265) Elf (21)
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k,k-1 = 0. 5(Bk k4Bk kl+Bk,f) (21a)

Coefficient k, k+2 is obtained in a similar way by integration

over all the masses of the primary system for virtual displacement

caused by virtual moment Xk+Z = 1 in-lb/in and for modal displace-

ment at the nodal location k. The expression thus obtained is

L4m
k+2 = 24262l)(l0)(lb)()(m 6E1 = Bkk+l (22)

k k+l

Similarly:

and

k-2 = 242621)(103)(lb)(
Lm

Jm 6EIkl ) = Bkkl (23)

k,j = 0 if k+ 3jk - 3

1/2 1/2The dimensions of coefficient 3 are (lb sec in ).

Development of Matrix L

Equation 6 can be written in a matrix form:

C- dsa = I m'm
S

(24)

where rn = . . . ii ], rn' is the transpose of rn, and s
1 2 n w

and El are location variables.
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Therefore

/
m1m1 m1m2 mlmn a11 a12 U1

m m m m ... m m a a. ... a
I 21 22 2n 21 22 2n

I ds

4

I m m m m ... m m a a .. . a
/ n 1 n 2 nn ni n2 nn
S (24a)

Figure 5 shows internal virtual moments in the primary system

due to the action of external virtual moment X = 1 in-lb/in. The

moments are drawn on the compression side of the member. The

functions indicated in the figure are defined as follows:

and

lb yry)k...l -''k+l (L_y) (25a)

- lbym(y) = (L-y) (25b)

y >k1/
1 in-lb/i74/

Figure 5. Internal moments due to virtual moment Xk = 1 in-lb/in.
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Based on Equation 6 and Figure 5, k is evaluated as follows:

('-z dx 1 IC' 2 dx1
ak,k j mf El] floor +) mk El] Joistsx f y k

L

$(LlbX
2 dx +$ m(y)i]1

x=O EIfL
=0

21 21
+ {rn(y)k] + [m(y)1] El }dy (26)

k+ 1

Substituting Equations 25 into Equation 26 and integrating-1

2Lllb2 lb2L5 1 4 1Ukk 3E11 2 EIklEIKl) (26a)

The following new terms are introduced:

and

L lb2Af 6EIf (27a)

Ak=_ (27b)

Akl El (27c)
k+l

Akl Elkl (27d)

2Refer to Appendix for development.
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where

a lb2L5
1 ZO

Substituting Equations 27 into Equation 26a:

akk = 4(Af+Ak) + Ak-i + Ak+l (26b)

Coefficients a are developed in the same manner as a onk,k+l k,k
the basis of internal virtual moments caused by external virtual unit

moments applied at nodal locations k and k+l. They equal:

LL1b2 lb2L5
ak,k+l aklk = 6EI

6O
)(+EI1 ) (28)

k k+i

or

a. =A - 2(A +A ) (28a)k,k+l f k k+i

Similarly:
lb2 L5

kk+Z = k+Zk l2O2EI = Ak+i (29)

k+ 1and

a =0 if k+3<j<k-3k,j

The dimensions of the coefficient a are (in_lb).
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NUMERICAL EXAMPLE

Floor Specifications

One of the test floor systems constructed in the Forest Research

Laboratory, Oregon State University, was used to demonstrate the

preceding developments on an actual structure.

Using the symbols defined in Figure 1, the system has the fol-

lowing specifications:

Geometry: L = 184 in, = 16 in, n = 17

Joists: size, 2 x 10 inches; species, Western Hemlock; grade,

utility

Floor: half-inch five-ply plywood sub-floor; species, Douglas

fir; grade, C-D

Nailing of plywood to the joists: 8d common nails spaced 6 in

along the plywood edges and 10 in at intermediate loca-

tions

Supports: unrestrained, simple.

To solve matrix Equation 15, the first and last joists in the sys_

tern, denoted as numbers 0 and 18, are assumed to have infinite ri-

gidity. The reasoning for such an assumpLion is as follows. If joist

no. 0 were free to vibrate it would possess the value (y)0 (Figure

3), which would in turn generate the element
13c].'

which would
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again increase the size of matrix by the order of one. The same

consideration applies to joist no. 18. Therefore the size of matrices

a, and c would be 19 x 19. Since no elements of a with ei-

ther subscript equal to 0 or 18 can exist, all the elements of the first

row and column, as well as the last row and column of matrix a.

are equal to zero. Such a matrix is a singular one whose inverse

cannot be determined, which would render matrix Equation 15 insol-

uble.

The error due to the above assumption is small and localized

to the region at both ends of the floor.

Further Properties of Joists

Table 1 in Appendix II summarizes the following properties of

joists:

Moment of Inertia

The moment of inertia of rectangular joists was determined by

measuring the depth and breadth near the center point.

Modulus of Elasticity

The modulus of elasticity was established from bending tests of

individual joists performed according to ASTM-Designation D 198-Z7

(1961), (1, p. 130-42).
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The mass of each joist was obtained by weighing each individual

unit before construction.

Further Properties of Plywood

Moment of Inertia

The plywood was placed so that the grain direction of the top,

center, and lower laminations was at right angles to the length of the

joists. In calculating the net moment of inertia (If) the two re-

maining intermediate plies were neglected, since their grain direction

is perpendicular to the major bending stresses and hence they contrib.

ute little in the way of resistance (5, p. 11). Figure 6 shows a cross

section of the plywood as used in th floor.

-T-

o. 5 in

= 0. 00825 in4 per 1-in wide strip

0. 1-inch plies

[ir ection

lirection

Figure 6. Cross-section of the plywood sheet.
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Modulus of Elasticity

The major bending action in the plywood superstructure is about

an axis parallel to the span of the joists. The plywood sheet acts as a

slab on elastic supports, i. e. , bending actions occur in two directions

simultaneously, and hence double curvature will result. However,

the curvature in the y_direction is prevented by the relatively rigid

joists to which the sheet is nailed. Thus, the sheet deflects as a simple

beam. The effective modulus of elasticity calculated from such de-

flection, hereinafter called the modulus of elasticity, is larger than

the 'tpure" modulus in the same direction obtained on the basis of un-

restrained deflection of the plywood sheet.

To determine the effective modulus of elasticity, five randomly

selected plywood sheets were tested as shown in Figure 7. Five four-

feet long dummy joists were nailed to the plywood in exactly the same

way as for the floor system. A strip load of 1. 25 lb/in was applied

along both four-feet edges. Deflection was measured at points 1, 2,

and 3, from which the average deflection of each sheet Z was de-

termined. The modulus of elasticity was calculated by the following

formula:
wab cEf 81 Zfo (30)

where all the symbols are apparent from Figure 7 or have already
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been defined. Five test sheets generated a mean modulus of elasticity

of

Ef = 1,908 ksi

with a standard deviation of 37 ksi.

1

= 32"
cl6' c=16"

umniy joist

Figure 7. Test layout for modulus of elasticity of plywood sheet.

Mass

Ten randomly chosen plywood sheets were weighed, giving an

average weight (W) of 44. 1 lb per sheet. The mass per unit area

was calculated as follows:

wmf = = 0. 2480 x 2 310 lb sec un (31)
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29

2A = 32 ft is area of plywood sheet

and g = 32. 16 ft/sec2 is gravity acceleration.

Determination of Matrix

Coefficients B were calculated by substituting numerical val-

ues of L, , Ef I If rnf Elk, mk and mk in Equations 19. The

calculations were performed on the electronic Monro calculator, Epic

2000. This enabled the coefficients to be determined in one pro-

grammed operation. The values are given in Table 2 in Appendix II.

These B values were substituted into Equations 18b, 20a, 21a, 22,

and 23, which were evaluated on the aforementioned electronic calcu-

lator, so that all the non-zero elements of matrix 3 were obtained.

The elements of matrix 3 are shown in Table 3 (Appendix II).

In calculating the elements of matrix 3, the following aspect

was taken into consideration. Since the alternate plywood sheets as

shown in Figure 1 are butt-jointed at joists no. 3, 6,9, 12 and 15, the

virtual unit moment Xk = 1 in-lb/in applied at the above nodal loca-

tions acts only over half the span. Thus all the elements of columns

3, 6, 9, 12 and 15 in matrix are in reality one-half of those values

obtained from Equations 18b, 20a, 21a, 22, and 23. Matrix 3 writ-

ten in a proper form would be obtained by substituting the appropriate

values of Table 3 into Equation 7c.
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Determination of Matrix

The values of the coefficients of A were calculated by substi-

tuting numerical values for L, ., EfJ If Ek and 1k into Equations

27. The resulting values were further substituted into Equations 26b,

28a, and 29, so that all the non-zero elements of matrix a were ob-

tamed. As before, all the calculations were performed on the elec-

tronic calculator. The elements of matrix a are shown in columns

2 to 6, Table 4 (Appendix II). The proper form of the matrix may

be obtained by substituting the values of Table 4 into Equation 8b.

As in the calculation of matrix 3, partial discontinuity at

nodal locations 3,6,9, 12, and 15 has to be accounted for. Since both

subscripts of the elements of denote the location of the action of

external virtual unit moments, all the elements of both rows and col-

umns 3,6,9, 12, and 15 equal one-half of those obtained by Equations

26b, 28a, and 29.

Determination of Matrix

Considering the fundamental mode of joist k only, the square

of Equation 2 becomes:

4E1
2 kWk,k2 çT (32)

The elements of matrix shown in column 7, Table 4 are
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obtained by substituting the values for L, Ek, 'k' and mk' into

Equation 32. The proper form of matrix could be obtained by

substituting the values of column 7, Table 4 into Equation 8a.

Solution of the Frequency Equation

Matrix Equation 15 was solved using the high speed digital corn-

puter. The computation and the programming were performed by the

Computer Center, Oregon State University. Both the matrix opera_

tions and the solution for characteristic values were performed in only

one operation. The program can be extended by adding to it a subpro-

gram for determination of the matrices a, l and

The resulting frequencies of the floor system are shown in col-

umn 3 of Table 5, Appendix II. They are arranged in ascending order

where individual rows represent the modal numbers.

Comparison of Calculated and Test Results

Since the analyzed floor system has the same specifications as

the test one, the calculated frequencies are compared to those obtained

from the tests.

Brief Description of the Testing Procedure

The floor system initially deflected by a 200 lb load applied at

the floor center was allowed to vibrate freely when the load was
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suddenly taken off the floor. Linear variable differential transformers,

with movable cores attached to the bottom of each joist and coils fixed

to the permanent base, were used as transducers. A signal was am-

plified and recorded in an oscillograph calibrated in such a way that

time versus deflection traces were obtained.

Evaluation of Test Results

Most of the time-deflection plots obtained by testing are of a

compound nature, with two or more modes combined into one complex

trace, as may be seen in Figure 8. Since such a trace cannot be bro-

ken into simple modes by simple observation or reading, the following

approximation is taken into consideration. Those regions on the trace

which have a smooth shape similar to the sine curve, such as regions

I and II in Figure 8, are selected. It is thought that either one mode

only, or two or more modes with frequencies of similar magnitude act

in these regions.

Some values determined as described above may be in error and

some may not even appear isolated enough to be recognized. Those

frequencies that could be obtained are shown' in column 4 of Table 5.

The mode of each frequency obtained from the test was determined by

comparing it to the closest calculated frequency. Column 5, Table 5,

lists the periods (T) in seconds per cycle determined directly from

the test curves.
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Figure 8. Example of time-deflection trace of freely vibrat-
ing floor system.

Comparison

Column 2 of Table 5 shows the frequencies of the primary sys-

tern. The difference between the values in columns 2 and 3 is due to

the action of redundant moments in the floor. There is a good corre-

spondence between the calculated values and those obtained from the

tests, as shown in columns 3 and 4 of Table 5. The largest discrep-

ancy, which occurs at the first mode, is less than 2%.
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CONCLUSIONS

The procedure applied and further developed in this work may

be used to determine the natural frequencies of joist floors of any

kind: timber, concrete, steel or composite types. Equation 15 ap-

plies to all of them, while the expressions for the elements of ma-

trices a. and 3 may be used in all cases with insignificant bending

action along the joists.
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APPENDIX I

Sample Calculations

Development of Co elf i c ient s k, k

L
Y)[i(L3zLy2+y3)]( [Jii 1k,k

=o
(J SIflL 24 mkEIkl

1 2 x 1 1 2 x
Elk 1+ El k

+ El EI +---J-1}mfdxdy
k+1 k+1 k

xç T1Y 21b+
"0 'y=0 Ji sin ) Jm 6EI (xT)1mfdxdy

+s (sin)(L
2 y m)[Ylb (L32Ly2+y3)]()mkdy

y=O

2[2 x 1 1 x 1 4 1- mL El + El El + El + El )mfdx
L x=0 k-i k+1 k-i k k+i

Zmk lb L
3 wy

El 1() $ y(L3-2Ly2+y )(sln
k y=O

lb L
+ 3EI )mf j (x - )dx $ sin dY} (A-i)

x=0 y=O

The following integral was evaluated from integral tables (4,

p. 116):

$0 y(L3-2y2+y3)(sin )dy = 0. 156852L5 (A-2)



and

i;i

L 2L
$ (sin)dy= (A-3)
y=o

Integrating expression A-i between x 0 and x . and substitut-

ing Equations A-2 and A-3 into Equation A-i gives:

1 1 1 1 4 1

k,k LlZEIklEIk+l3kiEI )mf
k k+1

2m lbmf
z.e3 2L

EIkJ(0 156852L + 3EI )(_j_)(__)]

1 1 8(9. 245621)(iO3)lb {L4[(EI+EI (,EI)1mk k+ 1

3mf.
+ (4. 329265) EIf}

which is identical to Equation 18a.

Development of Coefficients Uk k

Substituting Equation 25 into Equation 26 gives

Zdx I

ak, k 2$L(lb) -
+ t$

{I(LY)I2dY}
[ELkl EI Elk k+1y=O

2L lb2 lb2L5 1 4
3EIf +

120 Elkl :F+EI
k k+1

which is identical to Equation 26a.



APPENDIX II

Tables

Table 1. Properties of joists.

k

E
ksi

I

in

-4mxlO
lb sec in

-4m'xlO
lb sec in

0 1,650 108. 667 6. 2708 10. 2361
1 1,736 112. 550 6. 1875 10. 1528
2 1.944 106. 773 6.2708 10. 2361
3 1,608 108. 871 5. 8333 9.7986
4 1,227 104.400 5.3958 9.3611
5 1,693 107.663 6.8889 10.8542
6 1,616 103.782 5.7917 9.7570
7 1,355 105.918 5.7431 9.7084
8 1, 274 107.735 6. 0556 10. 0209
9 1,719 112. 103 6. 6250 10. 5903

10 2, 062 104. 907 6. 6667 10. 6320
11 1,078 113. 120 7. 0208 10. 9861
12 1,758 101. 397 7.4097 11. 3750
13 1,761 109. 082 5. 4792 9. 4445
14 1,462 110. 922 7. 1042 11. 0695
15 1,497 105. 710 6. 6667 10. 6320
16 1,541 105. 681 6. 0972 10. 0625
17 1,976 108. 304 7. 1458 11. 11111

18 1,731 116. 762 7. 3681 1.1. 3334



Table 2. Coefficients B.

b (Bk k 0 k, k+1 0 (Bk k- i)1 0 k, f)lO

1 1. 8641 25. 4853 0.8981 1. 0396 .1. 0994
2 1. 8565 24. 1174 1. 0604 0.9501 1. 0949
3 1. 8975 27. 7923 1.4812 0. 9141 1. 1191
4 1. 9413 36. 8542 1. 0650 1. 1089 1. 1449
5 1. 8028 28. 5196 1. 0750 1.4074 1. 0633
6 1.9015 28.9298 1.3249 1.0432 1.1215
7 1. 9063 28. 8350 1. 3889 1. 1366 1.4243
8 1. 8698 35. 8480 0. 9703 1. 3028 1. 1028
9 1. 8252 26. 5539 0. 8437 1. 3298 1. 0764

10 1. 8216 23. 7150 1.4938 0. 9453 1. 0743
11 1.7920 42. 9590 1. 0053 0.8284 1. 0569
12 1.7611 30. 0430 0.9168 1.4442 1. 0386
13 1. 9327 24. 7215 1. 1918 1. 0842 1. 1399
14 1. 7852 32. 4589 1. 1281 0. 9293 1. 0529
15 1. 8216 32. 4173 1. 1185 1. 1233 1. 0743
16 1. 8724 30. 3994 0. 8749 1. 1832 1. 1043
17 1.7819 24. 6549 0. 8816 1. 0941 1. 0509

Table 3. Elements of matrix,- -3 . 1/2 1/2Dimensions: (10 )(in lb sec)
k,k k,k+1 k,k-1 k,k+2 k,k-2

1 -2. 2448 1. 1496 0 0. 0449
2 -2. 1012 0. 5243 1. 0706 0. 1060 0

3 -1. 2139 1. 1493 1. 2627 0. 1481 0. 0914
4 -3. 3535 1. 6870 0. 8391 0. 0533 0. 1109
5 -2. 4974 0. 6321 1. 1977 0. 1075 0. 0704
6 _1. 2720 1. 2376 1. 2939 0. 1325 0. 1043
7 -2. 5185 1. 2202 0. 6353 0. 0694 0. 1137
8 -3. 2472 0. 8267 1. 5870 0. 0970 0. 0651
9 -1. 1652 1. 2128 1. 1156 0. 0844 0. 1330

10 _2. 0202 0. 9407 0. 5252 0. 0747 0.0945
11 -4. 0069 0. 9999 2. 0351 0. 1005 0. 0414
12 -1. 3322 1. 3707 1. 2653 0. 0917 0. 1444
13 -2. 1306 1. 0547 0. 5381 0. 0596 0. 1084
14 -2. 9349 0. 7250 1.4897 0. 1128 0. 0465
15 -1.4551 1.4509 1.4499 0.1119 0.1123
16 -2. 7237 1. 4002 0. 6693 0 0. 1183
17 -2. 1628 0 1. 0665 0. 0547
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Table 4. Elements of matrices,and.

Dimensions;_102in-lb
2

°k,k+l akkl °k,k+2 akk2
1 2 3 4 5 6 7

1 33. 6622 -10. 5250 1. 6538 16, 355
2 33. 1362 - 5. 6704 -10. 5250 3. 9217 17, 233

3 18. 4121 - 7. 7223 - 5. 6704 2. 6797 1. 6538 15, 183

4 41. 5966 -15. 1345 - 7.7223 1. 8833 3. 9217 11,629
5 36. 9898 - 6. 3013 -15. 1345 4. 0936 2. 6797 14, 271

6 18. 6975 - 7. 3184 - 6. 3013 2.3918 1. 8833 14, 608
7 40. 7006 -16. 4536 - 7.3184 2. 5010 4. 0936 12, 563
8 40. 8248 - 7. 0058 -16. 4536 3. 5627 2. 3918 11, 560
9 17. 4485 - 5. 1776 - 7. 0058 1. 5869 2. 5010 15, 464

10 34. 3582 -14. 4900 - 5. 1776 2.8150 3. 5627 17, 290
11 42. 0159 - 7. 9227 -14. 4900 3. 8515 1. 5869 9,433
12 18. 5402 - 5. 8667 - 7. 9227 1. 7870 2. 8150 13, 317
13 34. 8515 -12. 4975 - 5.8667 2.1168 3.8515 17, 285
14 37. 3171 - 7.0131 -12.4975 4.3384 1.7870 12,450
15 19. 1367 - 6.9953 - 7.0131 2.1079 2.1168 12,497
16 36. 8797 -11. 7298 - 6. 9953 4. 3384 13, 754
17 32. 9151--11.7298-2. 1079 16, 368
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Table 5. Natural frequencies.

Frequencies, cps
Floor system Period

Calculated TestPrimary test values
Modes system values values sec/cycle

1 2 3 4 5

1 15. 439 12. 947 13. 2 0. 076
2 17. 111 14. 449 14. 3 0. 070
3 17. 162 14. 519
4 17. 761 14. 887 14. 9 0. 067
5 17. 793 15. 476 15. 6 0. 064
6 17. 839 16. 119 16. 1 0. 062
7 18. 368 16. 387 16.4 0. 061

8 18. 665 16. 641 16.7 0. 060
9 19. 013 17. 071 17. 0 0. 059

10 19. 236 17. 161 17. 2 0. 058
11 19. 612 17. 937 17.9 0. 056
12 19. 793 18. 247 18. 2 0. 055
13 20. 256 18. 711
14 20. 263 19. 062 18.9 0. 053
15 20.892 19.638 19.6 0.051
16 20.925 19.942
17 20. 929 20. 182




