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incomplete block designs when the experimental material does not fit

any of the usual textbook situations. The criterion used to determine

an optimal design within a given class Zr of incomplete block

designs is the (M, S) optimality criterion Let C denote the

matrix of coefficients obtained in the reduced normal equations for

estimating the treatment effects in a given incomplete block design.

The (M, S) optimality criterion is to find within the class .13d- the

set of designs whose C-matrices have maximal trace, denoted by

and then to find within those designs with mini-

mum trace of C2; such a design is said to be (M, S) optimal.

The classes of designs we consider are denoted by

sr5- [v ; ( r i) ; b; k] and ,Cylv;b; k] . Inv; (ri);b; k] consists of all

incomplete block designs with v treatments arranged in b blocks of



size k such that treatment T, is replicated r. times and

rirv;b;ki consists of all designs with v treatments arranged in b

blocks of size k. The properties of (M,S) optimal designs within

these classes is studied. Several lower bounds are established for

trace of C2 which help the experimenter to know when a design is

optimal. Through the establishment of these lower bounds, several

well known types of incomplete block designs are shown to be optimal.

The question of how replications should be assigned to treatments for

an (M,S) optimal design in so- [v;b;k] is considered. Construc-

tion of optimal designs within the classes described above is also

discussed.
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ON THE THEORY OF (M,S) OPTIMALITY IN
INCOMPLETE BLOCK DESIGNS

I. INTRODUCTION

The general procedure in scientific research is to formulate a

hypothesis and then to test it. The process of hypothesis testing

u2ua,ity necessitates the collection of observations relevant to the

hvpo The observations are usually collected in some pattern

accoydi to some experimental, plan. By an experiment we mean

the planning and collection of measurements or observations relevant

to the testing of some hypothesis. The actual planned schedule for

taking the observations is called the experimental design.

The pioneer in the theory of experimental design was the late

Sir Ronald Fisher. He dominated the history of experimental design

in the nineteen twenties and thirties. It was he who introduced the

concept of randomization into statistics. Randomization is the

principle upon which the application of statistical theory to the design

of experiments is based.

Experimental designs in which treatments are randomly

assigned over the experimental material are called randomized. All

-L:Lized designs are eased upon the completely randomized design

-_:RD) The CRD is formed by dividing the experimental material

into experimental units and then assigning the units to treatments at
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random. A treatment assigned to r of the units is said to be

replicated r times. All other randomized designs can be derived

from the CRD by placing restrictions upon the randomization pro-

cedure.

It is sometimes beneficial to partition the experimental material

into blocks which are more homogeneous and randomly assign the

Treatments within each block. Such designs are called randomized

':-.1ock:- designs and are used in many fields of research. However, if

the number of treatments is too large to preserve homogeneous condi-

tions within complete blocks, or the size of the blocks is determined

by the nature of the experiment, then incomplete block designs are

used. A wide range of these designs is available for planning

experiments in blocks of equal sizes but with a smaller number of

experimental units than the total number of treatments. An experi-

menter who wants all the contrasts between treatrtients to be con-

founded with blocks to the same extent may use a balanced incomplete

block design. A balanced incomplete block design may be constructed

for any number of treatments which occur in blocks of equal size,

but may require a large number of replicates. If the experimenter is

willing to accept that some of the possible treatment contrasts are

more confounded than others, one of the various partially balanced

incomplete block designs listed in the standard works on experimental

esign may be used. Partially balanced incomplete block designs
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usually require a smaller number of replicates. However, the

available lists of designs published in the literature have been

restricted to balanced incomplete block designs and partially balanced

incomplete block designs with two associate classes. Such lists may

not include the number of treatments the experimenter is actually

interested in or may supply him with plans that require too many

replicates.

The high degree of symmetry in the pattern of balanced and

partially balanced incomplete block designs is in many respects a

desirable property. But the restriction of the designs to equal num-

bers of treatment replications and equal block sizes may be a serious

practical obstacle in many experimental circumstances. Suppose for

instance that the effects of a number of virus innoculations on mice

are to be determined. It would be natural to use litters as blocks,

but if the litters were of unequal sizes or one of the viruses was in

short supply, an incomplete block design with differing block sizes

and differing numbers of replications might need to be used.

The above mentioned restrictions as well as other possible

restrictions in the use of balanced or partially balanced incomplete

block designs give rise to the "make-shift" production of designs to

deal with practical situations. Even though there may be severe

limitations placed upon the construction of such designs, the

tt,enter usually has some freedom of choice and may therefore wish to
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know which of the possible designs is most desirable in the given

circumstances. In certain cases there may exist known solutions, but

in general the problem may be difficult to answer.

From the class of designs capable of achieving the

experimenter's goals, a decision must be made as to what design to

use. The decision is usually based on physical, economical, or

statistical factors. The use of a statistical standard or criterion to

choose a design is commonly known as the theory of optimal design.

It will be the purpose of this thesis to study the application of the

(M,S) optimality criterion to several classes of incomplete block

designs. Properties of the (M,S) optimal designs within these

classes and methods of construction will be discussed.
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II. BACKGROUND AND DEFINITIONS

In this chapter, we introduce the terminology and notation which

will be used throughout the remainder of this thesis.

Let 0 = {T , . . . , Tv} denote a set of v treatments. Let
b

there be n _ k. experimental units arranged in b blocks,

i=1
denoted by B., j = 1, .. , b, with B. containing k. units. By

n incomplete block design with parameters v, r1, , rv, b, ...,kb

and incidence matrix N, we shall mean an allocation of the v

treatments in 0, one to each of the n experimental units, such

that treatment T. is replicated ri times and the v x b matrix

N = (n..) where n.. denotes the number of experimental units in
1J 1J

block B. receiving treatment T.. We shall denote such a block
3

1

des ign by D[v;r , r ;b;lc. k N]. If n.. assumes onlyl' . .. l' . . . , b' 13

the values zero or one, the design is called binary. If n.. assumes
13

only the values zero, one, or two, the design is called ternary, etc.

We shall sometimes use the notation T. E B. to indicate that treat-
]. 3

ment T. occurs in block B., i. e. , n. > 1.
1 J ij

A block design in which r. = r for each i is said to be
i

equi-replicated and is denoted by D[v;r;b;k1,... ,kb;1\1]. A block

design in which k. for each j is called proper and is denoted

Div; r , r v;b;k;Ni. Thus a proper equi-replicated block

is one for which r for all i and k. = k for all
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Such a design is denoted by D[v;r;b;k;N].

In experimental design NN° is called the association matrix

and N'N the block characteristic matrix where I\T° denotes the

transpose of N. The entries of NN° and NIN shall be denoted

by X.. and p... respectively. Note that in binary designs, X.
ij 1J 1J

indicates the number of blocks treatments T. and T. occur in
1

together and denotes the number of treatments that blocks

and B. have in common.

The statistical model used throughout this thesis in the

discussion of incomplete block designs is one with fixed block effects.

The actual model used is the usual additive two-way model:

e

Y.

the

Yi k 1
+ t. + b + e

j j ijk

kth observed response of the ith treatment in the jth

block

= the overall mean effect

t. = the effect -ire: tment T.

b. = the effect of block B.

are random variables which are uncorrelated, have

mean zero, and have constant variance cr
2. The normal equations

for estimating the parameters are:



r.t. +
1 1

i= 1

+ r.t. +
1 1 1

J

j=1

n..b. =
13 3

A "A.
=n .t. + kb

13 1 3 3

ij

7

i = 1,...,v (2. 1)

Let diag(ai, , an) denote a matrix with entries a.
1

on

the main diagonal and zeros elsewhere and let R = diag(r ,rv)

and K = diag(k kb ) From the normal equations, the reduced

normal equations for estimating treatment contrasts are easily

derived to be

CN= Q

where

= (t\t1 ,fit ) is any solution to (2. 2)

C = R - NK -1

Q= T - NK 1B

T = column vector of treatment totals

B = column vector of block totals.

(2. 2)

(2. 3)

The matrix C defined in (2.3) is called the coefficient matrix of the

design or the C-matrix.
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A linear combination ill = 't =
1
t

1
+...+

v
t
v

of the treatment
",090

effects is said to be estimable if and only if there exists a linear

combination c 'Y of the observations such that E(c'y) = I tt. One
0.44... ,"..~ -- 1 nr,

can easily verify that 1 't is estimable with respect to a particular

design if and only if / is in the column space of the C-matrix of

the design. A set of estimable functions fit, . , I t of the treat-
eN,

ment effects is said to be linearly independent if the vectors

form a linearly independent set. For any estimablel' '1 fo

function / the minimum variance linear unbiased estimator

(B. L. U. E. ) is I t where t is any solution vector to (2. 2).

If the goal of the experiment is to estimate treatment

differences unbiasedly, or test the hypothesis that all treatment effects

are the same, then the concept of connectedness plays an important

role. An incomplete block design is said to be connected if its coef-

ficient matrix has rank v- 1. If a design is connected, then

11 t
1

+... +
v
t
v 1

is estimable if and only if 1 +. . . + f = 0, in

which case the linear function / It is called a contrast. Elementary

contrasts are those of the form t t,, and if a design is connected,

all such contrasts are estimable.

The two most frequently studied types of incomplete block

designs are the balanced and partially balanced designs. A proper

equi-replicated binary incomplete block design in which each
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treatment occurs with every other treatment X times is called a

balanced incomplete block design (BIBD) and is denoted by

BIBD[v;r;b;k;X].

The characteristic property of the BIBD is that the variance of

all best linear unbiased estimators for elementary contrasts is the
A Asame, i. e. , var(t.-t.) is constant for all

1
i j An alternative to

the requirement of balance in a block design occurs in the usage of

partially balanced incomplete block designs. For the definition of a

partially balanced incomplete block design with m associate

classes, denoted by PBIB(m), the reader is referred to John (1971).

In a PBIB(m) design, all elementary treatment contrasts are not

estimated with the same precision.

The dual of an incomplete block design is obtained by

interchanging the roles of blocks and treatments. If N is the inci-

dence matrix of an incomplete block design, then N' will be the

incidence matrix of the dual design.



10

III. INTRODUCTION TO (M,S) OPTIMALITY

A design is said to be optimal within a specified class of designs

if it is determined to be "best" by some well defined criterion.

Many researchers have tried to characterize the optimal designs

within a given class of incomplete block designs according to various

criteria. This task is difficult in most situations. Many papers have

been written on the subject of optimal design. Some of the most

notable contributions to the theory have been made by Wald (1943),

Ehrenfeld (1955), Kempthorne (1956), Masuyama (1957), Kshiragar

(1958), Kiefer ( 1958, 1959, 1960, 1971, 1974), Shah (1960) and Takeuchi

(1961).

Important aims in experimental design are to estimate treatment

effects with maximum precision or to perform a test of a null

hypothesis. These considerations lead to different criteria for choos-

ing among the designs in a given class.

Consider a class of connected incomplete block designs

with v treatments. The three most well known and used optimality

criteria to determine a best design in err are the A, D, and E

optimality criteria. These criteria are defined in terms of functions

the non ero eigenvalues of the C-matrices of the designs in cer.

Let k be these nonzero eigenvalues. The A, D, and
1 X'y - 1

E optimality criteria are defined as follows:



A-optimality: minimize

11

1X. . This is equivalent to minimizing the

average variance of all elementary treatment contrast

estimates.

D-optimality: minimize II X.1. This is equivalent to minimizing the

generalized variance of the estimates of any set of v- I

independent estimable functions of the treatment

effects.

E-optimality: minimize the maximum X.1. This is equivalent to

minimizing the maximum variance of the estimates of

all normalized estimable functions of the treatment

effects. [XltN ^Ais normalized if Xi). = 1]."ON
The three criteria mentioned so far are based on different

considerations and need not necessarily agree in comparing two given

designs. Which criterion should be adopted depends upon the aim in

conducting the experiment. But most often the experimenter is inter-

ested in both the interval estimation of the treatment effects and the

test of a null hypothesis.

We now set about defining the optimality criterion with which we

ii De co cerned_ It is easily seen that when a design D has a
v -1

C-matrix with maximal tr C =
i= 1

and all of its nonzero
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eigenvalues equal, then that design will be A, D, and E -optimal in

. Rao (1958) has shown that for the C-matrix of a connected

incomplete block design to have all of its nonzero eigenvalues equal,

it must have the form aIv + p J where 1
v

is the v x v identity

matrix and Jv is that v x v matrix whose entries are all one. A

design having a C-matrix of the form aIv + 13J
v

is called variance

balanced. When a design exists with a C-matrix of the form

al
v

+
v

, it is easy to show that a = (tr C)/(v-1) and

13 = -(tr C)/(v(v-1)). So if there exists a variance balanced design

D e Qty whose C -matrix has maximal trace, then that design will be

A, D, and E-optimal.

However, if in ..er there does not exist a variance balanced

design with a C matrix of maximal trace, it seems reasonable to find

a design D E ej whose C-matrix has maximal trace and is close in

some sense to the desired aIv + form. We now define in what

sense we want the optimal design to be close to the desired

a Iv + (3 Jv form.

Let = {all v x v symmetric matrices} and let , <, >)

denote the finite dimensional inner product space consisting of

and <A, B> = tr AB for A, B E . Define a norm on by

11 All
2

= <A, A.> for A. E and define the distance between

A, B E to be II A-B1 2 = < A- B, A B>. Note that simply an

extens ion of the usual Euclidean norm to the set of v x v matrices.
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As before, let IT be a class of connected incomplete block

designs. We would like to find that design D E grr whose C- matrix

has maximal trace and such that II C -a1
2

v v
has a minimal

value. Let 771{z} denote the set of designs in 1:7 with maximal

trace. So we want to find D E { a such that

tr(C al -13J ) = min tr(C-aI -(3J )2
V v

D E -Pet
V V

But since for all D

(from 4. 2..1) it is seen that we are simply looking for D E j01-

which has a minimal value for tr C2. So in finding a design

tr C is constant and CJv = 0

D e Th{.0e} which is "close" to balanced, we are finding a design in

irr which is approximately A, D, and E optimal.
v-1

Note also that tr C
1

X... Thus, since tr C is constant

for all ID E inA.m, finding D E TyLuzil such that tr C is
v-1

minimal is equivalent to finding D E yrogi} such that X., -X)
2

v-1

is minimal where = X. So in finding D E -'ft{ n} with

minimal tr C2, we are finding D E whose average nonzero

eigenvalue is as large as possible and whose individual eigenvalues

are as close together as possible.

More generally, let ff be an arbitrary class of designs with

v treatments and b blocks and a fixed number of experimental
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units n. Let m{ry} be as defined above. We give the following

definition.

Definition 3. 1. D ter is said to be (M,S) optimal if

D E MA .01 and tr C 2 < tr C 2 for all D E rival. A design

D E ,rf is said to be S-better than a design D E cer if

tr CZ < tr C2

The idea of minimizing tr C2 originated with Shah (1960) who

suggested its use in settings where tr C is constant for all designs

in a given class 17 Shah's criterion was extended by Eccieston and

Hedayat (1974) to the (M,S) optimality criterion given in Definition

3. 1. . The notation of Definition 3. 1 was also used by Eccleston

and Hedayat. However, the motivation and justification for usage of

the (M, S) optimality criterion given above is different than that

given by previous authors.. and for that reason was included in this

thesis.

A distinct advantage of the (M,S) optimality criterion over

other criteria is its computational simplicity. Note that using the

A, D, and E optimality criteria depends upon the knowledge of the

actual eigenvalues of the C-matrices of the designs in oer , or the

computation of various determinants for designs in . Hence it

may be computationally difficult to find the optimum design in 2:1

particularly if the number of treatments is large or the class of
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designs if is large. The (M,S) optimality criterion on the other

hand has a somewhat simple computational form since tr C2 is

simply the sum of the squares of the elements of C.

]Definition3. 2. Let .01v;(r.);b;(k.) denote the class of

incomplete block designs consisting of v treatments arranged in b

blocks such that treatment T. is replicated r. times and block
1 1

contains k. experimental units. Let jalv;b;(k..)1 denote the

s of incomplete block designs with v treatments arranged in

b blocks such that block B. contains k. experimental units.
3

Note that the difference between the two classes of designs

defined above is that the r. are fixed in er[v;(r.);13;(k.)] where as
i 1 3

they are allowed to vary in Xf[v;b;(k.)].
J

The classes of designs we will generally be concerned with are

r5[v;(r.1 );b;(k.)]j
where k. = k for all j, denoted by

:Ay; (r.);b;k] and .1:7[v;b;(k.)] where k, k for all j, denoted
1 3 3

by In the following chapters, we shall give some of the

properties and say something about the construction of (M,S)

optimal designs in D[v;(ri);b;k] and bly;b;k].
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IV. PRELIMINARY FACTS AND LEMMAS

In this chapter we shall give some facts and lemmas which will

be referred to throughout the remainder of this thesis.

4. 1 Facts Concerning Incidence Matrices

Let Div; r . ,r ; b;,k
1,

. .

v
be an arbitrary binary

incomplete design. Recall that N is the incidence matrix of the

design. In this section, some simple results concerning N = (n..),
13

NN' = (X..), and N'N = (14..)
1

will be given.

Lemma 4. 1. 1. Suppose D[v;r . , rv;b;k , kb;N] is

an arbitrary binary incomplete block design, then

i) for fixed

q

n r

ii) for fixed q, n =
Pq q

iii) max [0 , r +r -b 1 < X < minrr , r ]

iv) max i°, kp+k p.pq min fkp, kg)

v) for fixed (km-1)
pq

ofp T E BP m
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X

Pq
pq

b

na=1

k (k -1)m m

vii) for fixed p, I-tpq (rm-1)

T Bm p

ar r (r -1)
pq m m

p ;tq rn--: 1

Pf. i) n denotes the number of experimental units
pq

receiving treatment T in block B . Since treatment T is
P q P

applied to r experimental units, it must be that n = r .

P ' pq P

ii) Similar to 1). q

iii) Note that X represents the ordinary Euclidean vector
Pq

inner product of the pth row of N with the qth row of N.

Since there are only r ones in the pth row of N and r

ones in the qth row of N, it is clear that the inner product

between these two rows cannot exceed Min'r , r a. Also, X
pq

must be a nonnegative integer, but if r + r >b, then the least
P q

number of blocks that treatments T and T can occur in

together is r r b, hence X > maxiO, r -b Hence we
P q pq P q

have the desired result.

iv) Similar to



v) Note that for fixed T occurs in r blocks, and
p p

18

each block Bm containing T contains k -1 other exper imen-
p

tal units to which the remaining v-1 treatments can be assigned.

Hence there are (k -1) experimental units in the r

T E B
m

P m
p

blocks containing T to which the remaining v- 1 treatments can

be assigned. Now indicates the number of experimental units
pq

assigned to treatment T in Mocks containing T , hence when p

X.pq

T E Bqp p m
is fixed, it must be that (km-1)

vi) YY X
Pq / X. (km-1) = km

(km -1)

pig p qVp p T EBP m
:since there are k treatments in block B

m m

vii) Similar to v).

viii) Similar to vi).

Corollary 4. 1. 2. When D[v; r . . , rv;b;k;1\1] is a proper

binary incomplete block design, then

i) for fixed p, = r (k-1)pq p

qjp
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ii) X. = bk(k - 1).

pYq

Lemma 4. 1. 3. Let D[v; r . , rv;b;k
1

, . , kb;IV] be a

binary incomplete block design. If N is partitioned into N1 and

where NI consists of the first vl rows of N and N2

co.nsists of the remaining v v
1

= v2 rows of N and B.

represents that part of block Bi in the N1 portion of N and

then

represents that part of block B. in the N2 portion of N,

V. V.
1 1

i) 2
-2/ Xpq

b
*

(k.
*

k. - 1) where k.
*

is the number of
1 i i

p=1 q >p i =1

experimental units assigned to B..

v v

ii) 2

b

X = IJ*(1J-1) where k. is the number
pq j 1 1 1

p=v, +1 q>p i =1

of experimental units assigned to B. .

1

Hi) 2 X =

Pq
p=1 ci=v

1

b

i= 1

k.
1

(k. ).
1

Pf. i) Similar to the proof of 4. 1. 1 vi).

ii) Similar to the proof of 4. 1. 1 vi).
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iii) k. + k.
*

= k. and
1 1 1

vl

2
Pq

13,1 q=v1+1

v v
v v 1 1 v v

Pq
2 X.Pq 2

Pq
p=lq>p p= I q>p 1+1 q>p

b

= (k.
,

)(k. +k - 1)

i= 1

b ,
= 2 k. (k. )

3. 1.

I

i =1

k.
1

(k. -1)
1

b

-

i= 1

k. )(k.

Note that this last lemma can be extended to further partitions

of N in an obvious manner, i. e. , by partitioning N1 and N2,

etc.

4. 2. Facts Concerning C-Matrices

In this section, several facts and lemmas concerning the

coefficient matrices of designs will be given.

Let N(A) and R(A) denote the null space and column space

respectively of an arbitrary matrix A. Let Rv denote Euclidean

v-space. It is well-known that the C-matrix for any incomplete block

resign with v treatments has the following properties.
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i) C1 = 0 where 1 is a v x 1 vector of ones.

ii) R(C) C where L denotes the orthogonal (4. 2. 1)
047

complement.

Let r(A) denote the rank of a matrix A. Let P denote

the orthogonal projection on R(A) where A is some matrix.

Then it can be shown that (Rao,(1973))

i) tr P2 = tr P = r(A)

Using (4.2.2), the following lemma can be proven.

(4. 2. 2)

Lemma 4. 2. 3. Suppose C is the coefficient matrix of an

arbitrary incomplete block design and let Pc

projection on R(C), then

tr C2 >
[tr C] 2

r(C)

denote the orthogonal

and equality holds if and only if C = yPc for some scalar

Pf. Let g <, >) denote the finite dimensional inner product

space for v x v symmetric matrices introduced in Chapter ITT. Let

P denote the orthogonal projection on R(C). By the Cauchy-
,

Schwarz inequality and (4.2.2),
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[tr C] 2 = [tr(P C)]2 = 1<C,P >12 < <C,C><P ,P
c

>
c

.

= (tr C2)(tr P2) = (tr C )(-1-(C)) .

Also from the Cauchy-Schwarz inequality, we get equality if and only

if C=P.

4. 3 . A Minimization Problem

In this section, a solution will be given to a minimization

problem which occurs throughout the sequel. An application is also

given.

Let x x ). We wish to find the minimal value for
no 1' n

11

over the set of vectors F satisfying

i) the x,
1

ii) g(k) =

are nonnegative integers

n

i= 1

(4.3. 1)

c (4. 3. 2)

iii) b, < x, < c,, i = 1, ,n

where c, b., and c. are nonnegative integers for i = 1, ... ,n.
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Lemma 4. 3. 3. Let x = (xl, ,xn) E F. If there exists
."/

and q such that 1) x x > 2, 2) b < x 1 and
P q

3) x + 1 < c ,

q
then there exists y E F such that f(y) < f(x).

1 11#

p

Pf. Suppose "4.X E F and there are components x and
p q

of satisfying conditions 1), 2), and 3) of the lemma. Let
rut

v ) where y = x I and y = x 1 and y xkn

'n p p q q k

for k p, k q. Clearly y E F and

n

f(y) = y.2 = x2 + (x -1)2 + (x +1)
2

---- f(x) + 2(x -x +1).
k q P

kl'p,q

But x x > 2 and so
P q

f(y) < f(x) which implies the desired

result.

Let G denote the set of vectors " ./
x E F having no components

satisfying conditions 1), 2), and 3) of Lemma 4. 3. 3. By the lemma,

we know that the set of vectors minimizing f(x subject to the con-

straints must be contained in G. Let x,y E G and let
"./

n} denote the subscripts of the components of x and

If possible, find p, q E such that x = y and x = y and
P q q p

remove these subscripts from J. Repeat this procedure until no

and a exist for which x = y and x = y . Let J denote the
p q q p

remaining set of subscripts and let -X and y be those vectors

whose components are the same as those of x and y and whose
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subscripts are in T. Observe that if J = co, then f(,) = f(z).

Now suppose J 4. Let xu max& }. If xu < y
u

then since

X . =

E

there exists Yv such that xv > yv But then

yv < x < x < y and we see that has components satisfying
v u

conditions 1), 2) and 3) of Lemma 4.3.3. But this is impossible

since y E G. If xu > yu, then since

E J

there

exists x <
y

/

such that x y or x y . Without loss of
V v u V v u

generality, assume x y . If x > y, then
u v u v

x > y > x ,
V V

and we see that x has components satisfying conditions 1), 2) and

3) of Lemma 4.3. 3. But this is a contradiction since x E C, hence

.111 MIIMM

no such situation can occur. If xu < yv, then yu < xu < yv,

and we again see that y will have components satisfying the condi-

tions of Lemma 4. 3.3, a contradiction. Hence we see that J must

be the empty set. Thus, all vectors in G give the same values for

f(3,,, hence they are all optimal solutions.

Theorem 4. 3. 4. The set of vectors x minimizing (4. 3. 1)

subject to constraints (4. 3 2) consists of those vectors x E F having

no components x and x such that 1) x -x > 2,
p q p

2) b < x -1, and 3) x +1 < c
P q q



Corollary 4.3.5. The minimal value for f().5) =

i= 1

to the constraints that the x, are nonnegative integers and

= c is achieved when I x. -x. I < 1 for all i, j.
1 j

r =1
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subject

Note that Theorem 4.3.4 characterizes the set of points which

yield minimal values for f() subject to the constraints (4. 3. 2).

The proof of Lemma 4.3.3 also yields a simple algorithm for findin.,

Animal value. If x is any vector satisfying the given con-",
straints, and if there exists components x and x of

"x 41
such

p q

that x - x > 2, x - 1 >b , and x + 1 < c , then by forming
p q p q

the vector y where y = x 1, y = x + 1, and
P p q q

Yk x for

k 4 p, k we have f(y) < f(x). By continuing this process until

there does not exist components of the derived vector satisfying con-

ditions 1), 2) and 3) of Lemma 4.3.3, the minimal value of f sub-

ject to the constraints will be achieved. Use of the algorithm is

illustrated in the following example.

(8,

(b

x

Example 4.3. 6. In Lemma 4,3.3, let n = 6, c = 33, and let

10),

c,),
1

(9,

(6, 8), (0,

i = 1,

8, 5, 5, 3, 3)

6), (0, 6), (0,5) and (0,4) represent ordered pairs

, 6, such that b. < x. < c.. Now
1 1 1

is a vector satisfying the constraints and

f(x) = 213. Proceeding as outlined above, we obtain the following

series of vectors and values of f(y).
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f(y)

(8, 8, 5, 5, 3, 4) 203
(8,7,5,5,4,4) 195
(8, 6, 5, 5, 5, 4) 191

So the minimal value for fW subject to the constraints is 191.

The algorithm given above for minimizing f(x) subject to the

constraints will be referred to as algorithm (4. 3) for the remainder

of the thesis

As seen in Corollary 4. 3. 5, the minimal value for x.

subject to the constraints that the x. are nonnegative and

x. = c is achieved when I x, -x.
1 3

< 1 for all j

n

i= 1

An easy way

i= 1

to determine the actual minimal numerical value is the following.

Let r = [chi] where [ ] denotes the greatest integer function.

Then write c = nr s = nr + s + sr sr = (n-s)r + s(r +l). Hence

s of the x, of ther + 1 and n s x. Note that this rep-
].

resentation of c as the sum of nonnegative integers differing by one

is unique, and that the minimal numerical value of x,
2 is

(n-s)r 2 + s(r+1)
2.

The first step in applying the (M, S) optimality criterion to a

class oer of incomplete block designs is to determine 171{.11.1.

The next lemma offers a partial solution to this problem. Recall that

Div; (r.);b;(k.)] denotes that class of designs with fixed values for
J
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r. and k. and ,rr[v;b;(k.)] denotes that class of incomplete block
1 J J

designs with fixed values for k,
J

only, i. e. , the r, are allowed

to vary. Let str[v;b;(k.J )] denote that subclass of Zr[v;b;(k,J )]

having incidence matrices N = (n..) such that In.. -n. ,.1 < 1 for
13 13 13

each j and all i i'.

Lemma 4. 3.7. a)'MUff[v;13;(kA=.51jv;b;(kA
J J

b) If zr
1
[,b;(k .)] , drytv,;(r i);b;(k j)] 4,

'
then

ITLIDtv°,(r.);b;(k.)i} = i[v;b ;(k.)] r- .D1v;(r.);b;(k.)]
1 j J 1 j

Pf. a) For each D E el V ; b k )1

i) tr C =
V

i= 1

r.
1

V

j=1

ii) n.. for each fixed
Y.-/ 13 3

i=1

j.

iii)
13 13

I
< 1 for each j and i

By applying Corollary 4. 3. 5, it is clear that

:IGEri[v;b;(ki)]Trgdv;h;(k.) }

D E V; b; (ki)] }, that i) and ii) above must be satisfied. Further-

more, if D ;b;:'._ st k easy tc. .,,,7ee using Con:nary 4.3.5 that trC

will not be maximal, n:.:^ D r rv;b:(
1 3

b) The proof is straight forward using (a) and the fact that

nIv;(ri);b;(ki)] rilv;b;(ki)i,

Now observe for
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Corollary 4. 3. 8. If ry [ v ; (r.);b;(k.)] has the property that

I ri-ri 1 < 1 for all i, j, then

rrijtilv;(r.);b;(k.)]} -= Div; (r.);b; (k.)] n er[v;b;(k.)].
1 J 1 J 1 J

Pf. From Lemma 4. 3.7, it must only be shown that

tr[v;(r ) ;b;(1c.)] n r[v;b;(k.)] ' cl)
1 3

1 J

.emma 4. 3.7 01[v;b;(ki)] = 171{D[v;b;(k.)]}. Let
J

if rIL J.)

cl and suppose
P

, r
q

> 2 for some p and q.
3

For some o, it must be true that npo = nqo + 1, otherwise

< r . For some such o, let D be a new design with inci-
P q

dente matrix N with npo = nqo and nqo = npo and

uw
nuw

for all other u, w Clearly D E j:f
1
[v;b;(k.)] and

r 1 and r = r + 1. Now
P p q q

* 2 2 *2 *2
tr C - tr C npo /k + npo /ko npo /ko nqo/ko

hence tr C = tr C Sir ce this argument may be repeated whenever

r > 2, it follows that there exists a design in jffily;b;(kj)1
p q

with r -r I < 1, and the result follows from the previous lemma.
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4. 4. A Maximization Problem

In this section, the solution is given for a maximization problem

which occurs later on in this paper.

Let A be the set of vectors a = (al, , as) and let B be

the set of vectors b (b
12 ' bs) satisfying the following con-",

str dints:

i) a. and b. are integers for i 1, , s

< p for i = 1, . . . , s and c and p are

integers such that c, p > 2

iii) 0 < b. < c for i = 1, s (4. 4. 1)

iv) > a. = (c+p)(k-1) where k is an integer and k > 3.

i =1

v) \) b. = c(k-1).
1

vi) s is a fixed integer such that k < s < (c+p)(k-1).

We wish to find max max f
s rib+ ov

(a, b) where
aEA bEB

)2) a.b.
1 1

i= 1 i=1
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Note that for fixed a E A, fsca4,-,...,) is linear in each of the

components of 1). So for fixed a e A, to find max f (a,b),e-
b E B

select those
N

ai which are maximal and let the corresponding b.

assume the maximum value imposed by the constraints. But
s

0 < bi < c and \--/bi = c(k-1), hence to find max f
s
(a, b)

..°

for a E A,
-- .. es.

i=1
b0 E B

pick those k-1 of the a. which are maximal and let the corres
i

ponding b. = c. Clearly, if a E A, any vector derived by permut-
e

".

ing the components of a is in A. In particular, if a E A, let

.0\a be that vector obtained from a by permuting the components of

a.
/

such that al > a2 > . > as and let A be the set of all such
"I

ordered vectors. For a E A
ete

Let

max f (a b) = max f (aet,,b) = c
S "1"0 S !"- /%

b E B bEB
Ise °

k-1 s

gsS c
a. a,

i i
i =1 i =1

k - 1

i= 1

for all a E A. Clearly maximizing f
s

(4"/ a, b) over A and B is
ete r-

/N.
equivalent to maximizing gs(Z over A.

A ^
Now let A be partitioned into equivalence class A

k-1 m
es. 1% oN

according to the rule that A.,E A if and only if a. = m. Note
m 1

i=1



that for a given value of s, m will assume all values between

max[0,(c+p)(2k-s-2)] and (c+p)(k- 1). Within the equivalence

classes Am, we have by Corollary 4.3. 5 that

k-1
V A2 JAZmax g me a, -

A A s es° /J as

a E A.m i= 1 i=k

A A
where aA l >

A> as, al ak- 1
< 1, and aAk

A-a
s

< 1.

Since the maximal value of gs achieved within each

31

equivalence class of A. is unique and since the vector which achieves

the maximal value within each equivalence class is unique (by the

Aordering in A), we may look for the set of vectors maximizing

gs(11..) among those vectors in A where al -a" _11 < 1 and

Ilkls < 1, Denote this latter set of vectors by A. So finding

the maximal value for gs over A is equivalent to finding the

maximal value for g over A. Now let M denote the set of
k-1

integers m such t11.; .,:t thE re is a E A with m. Note that this

1=-1

relationship defines a one to one correspondence between vectors in

A and integers in M. If we consider the function hs(rn) = gs(Z.

where "'7. is that vector in A. corresponding to m, then maxi-

mizing hs over M is clearly equivalent to maximizing gs over

A. Note that for m E M and the corresponding a" E
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h (m) =

k 1

k 1

cm 72 a.....2 ,
Z_J 1 1

i= 1 i=k

-2h (m+1) = c(m +l) a. (a +1) 2

s
i=1
ip

hs(m) - 2-a- + 2717 +c

where 7p = 7k-1 and a

Similarly,

Hence

2

i=k

a_2
_

) (a -1)2

1

hs(m+1) = hs(m) 27
k 1

+ 27-1 + c .2.

hs (m- 1) = h (m) + 27 2-a7 + c 2

Proposition 4.4.2. The property that a
1

--a
s

< (c+2)/2 and

7k-1 k
> (c-2)/2 characterizes all vectors -a- E A whose corres-

ponding values of m E M maximize hs(m).

Pf. Observe that vectors satisfying the conditions in

Proposition 4.4.2 exist since k < s < (c+p)(k-1). Let m E M and

let a be the corresponding vector in A. From the paragraph

preceding the proposition, we see that hs(m+1) > hs(rn.) if and only

if
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or

h (m+1) hs(m) = 217k - k- 1
+ c 2 > 0

c -2
ak-1 ak <

2

and h -1) >hs(m) if and only if

or

h(m.-1) h (m) =2a -2a c - 2 > 0
s 1

c+2as >
2

So for any value of m to yield a maximal value for hs in M,

the vector in A corresponding to it must have the property that

(c- 2)/2 and 7
1
-7

s
< (c+2)/2. To show that this property

characterizes all vectors in A whose corresponding values of m

maximize h (m), let a E A have the property and let m E M

be the corresponding integer. Consider hs(m+t) where t is a

positive integer. If as is that vector in 7i associated with m+t,

rice m +t > m, we must have k 1 < ak
1

and 7
k

<
k

, hence

that ak-l- k >7.k-1-7a7k > (c-2)/2. From above, we see that this

implies h(m+t+1) < h(m+t), hence that h (m) > h (m+t) for all
s s

positive e integers . Similarly, consider hs(m-t) for all positive

integers t. If a is that vector in A corresponding to m-t,

we must have and a > a , hence that
s s
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1 s
a -a <

1 s
< (c+2)/2. From above, we see that this implies

hs (m-t) > hs (m -t- 1) for all t, hence that h (m) > h (m-t) for
S s

all t.

Note that the characterization given in Proposition 4.4. 2 gives

an easy algorithm for determining the maximal value of hs(m).

Md.WS.

Let a E A be any vector for which a
1
-a

s
< 1 . Let

(71, 1)
and S1 = ,-.37s). Now simply go through

procedure of simultaneously adding one to the minimal value in

and subtracting one from the maximal value in S1 until a

vector whose components satisfy Proposition 4.4.2 is found. The

algorithm will be referred to as Algorithm (4. 4) throughout the

remainder of this paper. The following example will illustrate its

use.

Example 4.4.3. Find the maximal value for
6

subject to the constraints that
i =1

) b. = 6(2). Note that s = 6, c = 6, p = 2, and k = 3. Since

= 8(2) and

6

a.b.
1 1

i =1

6

i= 1

'1=1

8(2) = 4(3) + 2(2), let -a-1 =.-"a'
2

= a3 = a4 = 3 and a
5

= a
6

= 2.

using the algorithm, e obtain the following sequence of R. and S..
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R
1

(3, 3) S = (3,
1

3, 2, 2)

R2 = (4,3) S2 = (3, 2, 2, 2)

= (4,4) S
3

= (2 2.2.2)

R4 = (5,4) S4 = (2, 2, 2, 1)

R5 LT (5: 5) S
5

= (2, 2, 1, 1)

Note that all of the vectors 7 obtained at stages 3, 4, and 5

satisfy Proposition 4.4.2 and they all yield a maximal value for

f (a,b) of zero.sr, ev

Lemma 4.4.4. Let k, c, and p be given positive integers.

Let A and Bs be sets of vectors a = (a and
s 4,0 1 a )s

(b1, ,bs) where s, a., and b. are integers satisfying the

folloWing constraints;

1) k < s < (c+p)(k- 1)

2) 0 < a. < (c+p) for

3) 0 < b. < c for i=
1

i =

1, .

1, ..,s
,s

5

i

i=1

= (c+p)(k-1)

c(k-1).
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f (a, b) = a.b. a. .

1 i =1

i) If c is an even integer, then

2

max max max fs (a, b) = 2c 4p)

s aEA bEB

and ii) if c is an odd integer

max max max f (a,b) 1)2-4p]1)[(c

s ae A bE B s 4
eso s f' S

Pf. For each fixed value of s, let A be the set of vectors

`a=
(.71' '7s)

defined previously in this section and let Ms

denote the corresponding set of integers defined previously. Let

h (m) be that function defined on M
s s

where

k-1

h (m) = me 7.2
1 1

i= 1 i=k

and a E As is the vector corresponding to m E Ms.

Observe now that M
s

Ms+1 for all possible values of s

and that for each fixed value of m, max h (m) will occur when for
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some value of s and a E As corresponding to m, is a
i=k

minimum subject to the constraints that 0 < a < c+p,
s

/a. = (c+p)(k-1), and k < s < (c+p)(k-1). It is easily seen that
i

i=k
such a minimum will occur when s = (c+p)(k-1). Note that the vector

a, E A corresponding to m has the property that ;..i = o
(c+p)(k-1)

or 1 for k < i < (c+p)(k-1) since k-1 < m and

(c+p)(k-1)-m < (c+p)(k-1)-(k-1), hence for each m E M (c+p)(k- 1 )'

where

k - 1

,h(c+p)(k-1)(m) = me 2 (c +p)(k -1) + m

alak-1 1

i=1

k-1

and j a. = m.
i=1

So now that value of m for which h(c+p)(k-1)(m) is maximal

must be determined. Consider m = (c /2)(k-1) when c is an

even integer. Note that if a E A, is the vector corres-
tc+p)(k-1)

ponding to m , then a
1

= = ak1 c /2 and a
k

= 1 and

= 0 or 1 because (c+p)(k- 1)-m < (c+p)(k- 1) -(k- 1).
a(c+P)(k- 1)

The components of a will clearly satisfy Proposition 4. 4. 2, hence

this value of m yields a maximum for h(c+p)(k-1)(m) in

when is an even integer. This maximal value is
(c+P)(k-1)

easily seen to be
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(k-1){c2-2c-4p]
r

When c is an odd integer, consider m = ((c+1)/2)(k-1) in

*
M(c+p)(k-1) and let a be the corresponding vector in...

.A Note that a.
*

= .. . a*
*

= (c+1)/2 and a
k

= 1 and
)(c+p)(k- IT i k -1

a(c+
= 0 or I because (c+p)(k-1)-m < (c +p)(k- 1) -(k- 1).

p)(k- 1)

The components of a will clearly satisfy Proposition 4.4. 2, hence
.....#

this value of m will yield a maximum for h(c+p)(k-1)(m) in

M(c+p)(k-1) when c is an odd integer. The maximum value is

easily seen to be

(k-1)[(c-1) 2-4p]

4

the desired result.

Proposition 4.4.4 will be of use in Chapter VI in determining

an optimal property for the class of designs ,t2S[v;b;k].

Consider now constraints (4. 4. 1) for two different values of

say ip

2
> p

1.
Let A., = 1, 2 be those sets of vectors

defined previously in this section for the two different sets of con-

straints and let M. denote the corresponding sets of integers, i.

a = (a
1

... a
S

) E A if0
i=1

(c+Pi)(k 1), > a ,
s

MM.

a there is a E A.
1 k- 1 k s 1 ONO 1



such that

k -1

= m. Let hi

i=1
previously on M., i. e. ,

m
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, i = 1, 2 be that function defined

k -1

hs(m) = me
i=1 i=k

a.
2

111where m aand is the vector in A. corresponding to m.
1

Let m E andrTh M2 and let c and d be the vectors in

Al and A2 corresponding to some such value of m. Since

NNOP
..

p2 p1, C < d., and since c
k

-c
s

and d
k

-d
s

< 1, we

i=k i=k
have c. < d. for i = 1, . . , s, and so

1 1

s s
1c2 < -7:-.12

i i
i=k i=k

k -1 k -1

Also, since c. = d., c -c < 1 and d -d < 1, we have
1 k- 1 1 k - 1

i= 1 i= 1

c. = d. for i = 1, , k- 1, and so
1 1

k 1 k -1

mc
2

c. = mc
1

di2.--

i= 1 i=1

Now we have that



h
1s(m) = mc

k -1 s k 1

-
L,

>
1

mc IC-12 -
1

JC1.2 h2(rri) .

s

i=k i= 1 i=k
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So h
1 (m) > h (m.) for all m E M n M
S 1 2

Now consider m1 E M2 but m1 d MI. Note that this implies

ml > (c+pi)(k-1). Note also that

hs1 [(c+p
1
)(k-1)] = (c+p

1
)(k- 1)c (k-1)(c+p

1
)2

Let d be the vector in A2 corresponding to m
1.

Observe now

that any polynomial of the form gx-x2, g > 0, is decreasing for

x > g /2. For d, we have d. > (c+p
1
) > c /2 for 1 < i < k-1

candd. > +pi for at least one value of j, 1 < j < k- 1, hence

k - 1 s
7-'h 2(m

) = m c 7 2,7
S 1 1 1 _1

i = 1 i=k

k -1 k -1

-= c 71i2

i=k

k -1

J [C7 -7 .2
1 1

1

k-1

< [ c71. -7.2]

i= 1

i=k
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< 1 )[ c ( c+p ) - ( +p )21

= hs1 [(c+p
1
)(k-1)] .

Hence we see that for all values of m for which h
2(m) is

defined, there are values of h1
s

which are larger, hence the maxi-

mal value for h1
s

is larger than the maximal possible value for

hs2 . Since this argument can be repeated whenever it

follows that max h (n-i) decreases as p increases in constraints

(4.4. 1), hence that max max fs (a, b)
".0

aEA bEB

in constraints (4.4. 1).

decreases as p increases

Suppose now that u > 1 is an integer and that c is

replaced by c u and p by p + u in constraints (4. 4. 1).

Let Al and A2 denote the sets of vectors defined previously for

constraints (4.4. 1) and for constraints (4.4. 1) when c is replaced

by c - u and p by p + u respectively. Let M
1

and M2

denote the corresponding sets of integers and let h and h2
s

1

s

denote the functions defined previously on M1 and M2. Note that

for the two different sets of constraints, MI and M2 contain the

same integers. If m is any integer for which h1
s

and hs2 are

defined and if c and d are the corresponding vectors in Al

and A2, then



and

implies that

42

k -1

i= 1

k-1

i =1

= rdi
i=k i=1

for each i, hence that

h
1
(m) = me

k -1

LLLLLLii 7,2
i =1

> m( c -u ) -

= h2(m) .

So for all values of u > 0,

k -1

2c.

i=k

i=1i=1

max h1s(m) > max h s2 (m) ,
m m

hence we see that as c decreases and c + p remains constant in

constraints (4.4. 1), max max fs
(a, b) will decrease.

aEA bEB

Let c denote some fixed value of c in constraints (4.4. 1)

and let p = 2. From the comments following Proposition 4. 4. 4,



we see that if we simultaneously consider values of c < c and

values of

43

in constraints 4.4.1, we will obtain smaller maxi-

mal values of f
s
(a,b) than that obtained for c + p. This observa-

tion will prove useful in Chapter VI.



44

V. (M,S) OPTIMALITY IN .Cr[v;(r.)b;k]

In this chapter, we consider the class of designs IY[v;(r.);b;k]

iefined in Chapter III where r. < b and v > k. For the rest of

is chapter, this class of designs shall be denoted by IT.

Basic Lower Bounds

The first step in applying our optimality criterion is to

one 111. t.er the set of designs in O having maximal

trace. Since v > k and r. < b, there clearly exist binary designs

in rt.' . Hence Bei[v;b;k] 4, and so by applying Lemma

3. 7, the following statement can be made.

Theorem 5. 1. 1. 711{/31- consists of all the binary designs

or

We now investigate the designs in in{ dell which have a

minimal tr C2. A natural question which arises is just how in fact

a design with minimal tr C2 be recognized. One approach to

answering the question would be to establish lower bounds for tr C

for designs in 111{r1}; and then try to find designs whose

Inatrices have tr C 2 equal to one of the lower bounds. If such

designs can be found, they will clearly be (M, S) optimal in.
In what follows, several methods of establishing such lower bounds

2
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are discussed. We first give a fact recognized by Shah (1960) and

which is implicit in the setting in which the (M, S) optimality

criterion was introduced.

Theorem 5. 1. 2. If is an arbitrary class of incomplete

block designs with v treatments such that tr C is constant for all

D E o , then any design in whose C-matrix has the form

aIv + pJv will be (M,S) optimal in .

Pf . Let M be the constant such that tr C = M for all

D E . By using Lemma 4.2.3 and the fact that r(C) < v - 1 for

all D E it is easily established that tr C2 > M
2/(v-1) for all

D E T... Now let D denote any design in dC such that

C = aIv + v Because tr() = M and because 71 = 0, it is

seen that C = [mitv-1)](I -v-1,c). But tr C 2 = M2 /(v-1); so D

must be (M,S) optimal in .

From Theorem 5. 1.2, any design D with a C-matrix of the

form aIv + pJv will be (M, S) optimal in an arbitrary class of

designs whenever D E MAX /. For example, a balanced

incomplete block design has a C-matrix of the form aIv + f3Jv.

Hence if there exists a BIRD in ?tux}, then it will be (M, S)

optimal in %.



Several lower bounds for tr C2 will now be developed for

46

designs in "rn{ff}. Some of the lower bounds will be easy to calcu-

late while others will be computationally more difficult, though pos-

sibly more informative. Note that for any design in rri,t,01,

TA.

C = R - 1

C
2 1 2tr ) 1- ) + tr(NN1)

k
1

1

r.2)(1- 1)2+ 2

1 k 2 ij
k .

1

2 2
Also, since tr(NNT) = tr(NN)

tr C 2
=

2 2 1r, )(1- k
) + tr(N'N)2

1

= ( r. )(1- )+b + 2
L../ 1

The first lower bounds for

ression (5. 1.4), Since v,

tr C 2

r., b,

2

13

(5. 1. 3)

(5. 1. 4)

(5. 1. 5)

will be established using

and k are fixed in /Y1..{.C7},

we see from (5. 1.4) that finding a lower bound for tr C2 in

in} can be accomplished by simply finding a lower bound for



tr(NNI)
2, or equivalently, for
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2X. . But a lower bound for this

latter expression can easily be determined. To see this, let us note

that the X... are nonnegative integers and from Corollary 4. 1.2 that

ti

iJ.
= bk(k-1). Thus by solving the programming problem

/ \x. subject to the constraints that the
a 1J

integers such that

mined for

13

x.. are nonnegative

bk(k-1), a lower bound will be deter-

in ?Merl. Now by using Corollary 4. 3. 5, we

get the following result.

Theorem 5. 1. 6. For any design in I-n{4M

2 \
.2

2
x..

13

where i) the x.. are nonnegative integers, ii)

and iii) I x.. -x I < 1 for j, p

= bk(k- 1),

Corollary 5. 1. 7. Any design D E {17} having an incidence

matrix N with the property that I X. pq rs I < 1 for p q, r s;

will be (M, S) optimal in f5 .
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Pf. Any design in Yrt{fi} having the indicated property will

meet the lower bound established in Theorem 5. 1. 6; hence it will be

(M,S) optimal in deir .

Corollary 5. 1. 8. If r. = r for all i, and if in -
{,Cr}

the re exists a PBIB(2) with X2 = X1 + 1, then that design will be

( S) optimal in ri.

In deriving the lower bound for tr(NN?)
2 given in Theorem

5. 1. 6, the most minimal linear constraints which the X.. must
13

satisfy were used. When more stringent constraints are considered,

lower bounds which are at least as good as the lower bound given in

Theorem 5. 1. 6 are obtained; but the computational difficulty of cal-

culating these lower bounds increases with the complexity of the con-

straints. Additional constraints will now be considered.

Recall from Corollary 4. 1. 2 that for fixed p, =r (k -1).
Pq P

qP
2Thus by solving the programming problem min x. subject to

ij
the constraints that i) the x.. are nonnegative integers and ii) for

each fixed p, x = r (k 1), a lower bound will be determined
Pq P

qYp

:(2, r h2J --yrjp-}. For each p, let L denote the

minimal value of x2 subject to the relevant constraints. By
Pq
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Corollary 4. 3. 5, L will be the value obtained when I x -x I < 1
pq pr

for q p, r p. Now L = Li gives a lower bound for

irk{ hence we may state the following.

Theorem 5. 1. 9. For any design D E

tr(NNI)z >
2

iij

2
x..

1J

where i) the x.. are nonnegative integers, ii) for fixed p,

x = r (k-1), and iii)
pq p

gip
x -x I < 1pq pr for q p, r

Corollary 5. 1. 10. Any design D E In{ori} having an

p.

Incidence matrix N with the property that for each fixed value of

-X. I < 1, q p, r I p, will be (M,S) optimal in jtr.
pq pr

Note that the lower bound given in Theorem 5. 1. 9 will always

he at least as good as the lower bound given in Theorem 5. 1. 6. The

following example is given to illustrate the computation of these lower

bounds.

a.:_mide 5.1 11 Consider

7)1{.0110; 5, 5, 4, 4,4, 4, 4, 4,4, 4; 14; 3] }.



i) The lower bound given in Theorem 5. 1. 6 will first be
2

ij
calculated. We want to find the minimum for subject to

the constraints that the x.. are nonnegative integers and that
iJ

\T-X-
x.. = bk(k-1) = 84. Now 84 can be represented uniquely as the

L-1 13
1

sum. of v(v-1) = 10(9) = 90 nonnegative integers such that

I < 1 for p q, r s. Following the procedure outlined
TT) rs

foL!_owin.g Example 4. 3. 6, it is easily seen that

84 = 90(0) + 84 = 6(0) + 84(1).

Hence the lower bound for tr(NNI) given in Theorem 5. 1. 6 is

r 2
+ 6(0)2 + 84(1)2 = 262.

L..' 1

2
ii) The lower bound for tr(NN') given in Theorem 5. 1.9

will now be calculated. We want to find the minimum for

50

object to the constraints that the are nonnegative integers and

that for each fixed value of p, x = r (k-1). For p < 2,
.2./pq p

q4p

xpq = rp(k---1) = 5(2) = 9(1) + 1 = 8(1) + 1(2);

qYp
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hence L as defined in the proof of Theorem 5.1.9 is seen to be

8(1)2 + 1(2)2 = 12. For P > 3,

x = r (k-1) = 4(2) = 9(0) + 8 = 1(0) + 8(1);

qp
P

and L is seen to be 1(0)2 + 8(1)2. Thus the lower bound for
p
2tr(NN') given in Theorem 5.1.9 is

r.2 +L = 2(5)2 + 8(4)2 + 2(12) + 8(8) = 266

The incidence matrix of a design achieving the lower bound

established in ii) is given below:

BBBBBB
B1 B2 B3 B4 B5 6

BB
B7 8

BB
B9 10 B1111 12

B
13

B
14

T1 1 1 1 1 1 5

T2 1 1 1 1 1 5

T3 1 1 1 1 4

T4 1 1 1 1 4

T5 1 1 1 1 4

T6 1 1 1 1 4

T7 1 1 1 1 4

T8 1 1 1 1 4

T9 1 1 1 1 4

T10 1 1 1 1 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3



One final property possessed by the X.. which sometimes
13

proves useful in the calculation of lower bounds for tr C2 in

is that for all i, j

m.ax[0,r.+r.-13] < X.. < min[r., r.] . (Lemma 4. 1. 1)
1 j j

T following example illustrates the use of these new constraints

in conjunction with those already given.

Example 5. 1. 12. Consider )+11.-L,[4; 5,4,2, 1;6; 2]}.

i) The minimum for

3

the areare nonnegative integers and

2x. subject to the constraints that

= bk(k -1) -= 6(2) = 12

i /j

is seen to occur when x.. = 1 for all i j. Hence the lower

bound for tr(NIVI)
2 given in Theorem 5. 1. 6 is

+ 42 + 22 + 12 + 12(1) = 58.

ii) If L denotes the minimal value for x subject to
P pq

ci,p

the constraints that the x are nonnegative integers and
pq

x = r (k-1), then it is ea.sily seen that L
1

= 9, L2 = 6, L3 = 2,
Z-J pq p
gip

2
and L4 = i. Hence the lower bound for tr(NNT)

5. 1.9 is
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given in Theorem

2 + 42 +22+ 12 + 9 + 6 + 2 + 1 = 64.



iii) For each fixed value of
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let L denote the minimal
p

value for x2 subject to the constraints given in ii) above and
pq

q/p
max[0, r +r -b] < x < min[r , r ]. For p = 1, the actual con

p q pq P q

straints are x = 5(1) = 5,
Li pq

< 4, 1 < x
13

<2, and

q>1

x14 < 1. Upon applying Algorithm (4. 3), it is seen that L1 = 11

and occurs when x12 = 3, x13 = 1, and x14 = 1. In a similar

manner, it is easily seen that L2 = 10, L3 = 2, and L4 = 1. Thus,

an even better lower bound for tr(NN') 2 is obtained using the

additional constraints. The actual lower bound is

r. + L
1

+ L2 + L3 + L4 = 52 + 42 + 22 + 12+ 11+10+2+1 = 70.

i

The incidence matrix of a design satisfying the lower bound in

iii) is given below:

B1 B2 B3 B4 B5 B6

T
1

1 1 1 1 1 5

T2 1 1 1 1 4

T3 1 1 2

T 1 1
4

2 2 2 2 2 2
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A lower bound for tr C2 will now be determined using

expression (5. 1.5). Since v, r., b, and k are fixed in -yrt..{.5},

it is seen from (5. 1. 5) that determining a lower bound for tr C2 in

Trt{ ja} is equivalent to determining a lower bound for tr(NN)2 or

..2P- Note that the must be nonnegative integers and from
J3

Lemma 4. L l that

= r.(r. -1).

Thus, proceeding in the same manner we did in establishing the lower

bound in Theorem 5. 1. 6, we can again use Corollary 4.3. 5 to obtain

the following result.

Theorem 5. 1. 13. For any design in -yru,tr},

tr(N'N)2 >bk2
+

2
X.

where i) the x.. are nonnegative integers, ii

and iii) I x -x < 1 for p q, r s.
pq rs

1

r.(r. -1)
1 1

Corollary 5. 1. 14. Any design D E Tr..{,0} having an incidence

matrix with the property that I p.pq-p.rs < 1 for p q, r s,

will be (M., S) optimal in 0.
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For any design with incidence matrix N, tr(NN1)2 = tr(NIN)2.

2 2
However, the lower bounds determined for tr(NN') and tr(N'N)

need not agree as the following example shows.

Example 5 . 1 . 1 5 . Consider -)71{,,Cr[6; 3, 3, 3, 3, 2, 2; 4; 4]}.

i) A lower bound will first be determined for tr(NN')
2

according to Theorem 5. 1. 6. Now bk(k-1) = 48 can be represented

uniquely as the sum of nonnegative integers x., such that

p q, r s. Following the procedure outlined-x
r S

< 1 for

following Example 4. 3. 6, it is easily seen that

48 = 30(1) + 18 = 12(1) + 18(2).

2
Hence the lower bound for tr(NNI) given in Theorem 5. 1. 6 is

6

+ 12(1)2 + 18(2)2 = 128. With a little calculation, it can be seen

i,1

that placing additional constraints upon the x., does not give a

better bound for tr(NN`)2 for this example.
2

ii) A lower bound will now be determined for tr(N'N)

according to Theorem 5.1. 13. Now r.(r.-1) = 4(3)(2)+2(2)(1)=28
1 1

has a unique representation as the sum of 12 nonnegative integers

such that Ixpq-xrs I < 1 for p q, r s. It is easily seen that

28 = 12(2) + 4 = 8(2) + 4(3).



Hence the lower bound for tr(N'N)
2 given in Theorem 5. 1. 13 is

bk
2

+ 8(2)2 + 4(3)2 132.

The techniques given so far for finding lower bounds for

2tr(NN') and tr(NN)2 can also be used to show the nonexistence

certain designs with the property that X. -X < 1 or
pq rs

rs I < I for p q, r s. This follows from the fact that

any design in w{jr must have an incidence matrix with

;'.<TN' )2 = tr (N '1\1)2 at least as large as any of the lower bounds

established for tr(NN') 2 or tr(NIN)
2

. Hence if the lower bound

established in Theorem 5.1. 13 for tr(NN) 2 is larger than the
2

lower bound established in Theorem 5. 1.6 for tr(NN ) ,
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then there

cannot exist a design in with I X -X I < 1 for p q,
pq rs

r s. A similar statement can be made if the lower bound established

2
for tr(NIN) is smaller than any of the lower bounds established

for tr(NN')
2. We can state the following proposition.

PropositionLLi±. If in Trutyl, r. for all i, j and

the lower bound established for tr(N'N) 2 in Theorem 5. 1. 13 is

larger than the lower bound determined for tr(NN')2 in Theorem

5. 1. 6, then there cannot exist a BIBD or a PBIB(2) with X2 = X1 + 1

Tn,{0.}-
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Example 5. 1. 17. Consider M0[10;2;4;5] }.

i) A lower bound for tr(NNT)
2 will first be determined.

iij
X.. = bk(k-1) = 4(5)(4) = 80

as 90(0) + 80 = 10(0) + 80(1). Hence the lower bound for tr(NN')

given in Theorem 5.1.6 is 10(2)2 + 10(0)2 + 80(1)2 = 120.

2
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ii) A lower bound for tr(N'N)2 will not be determined. Write

N.13 .. = r.(r.-1) = 10(2)(1)

as 12(1) + 8 =,4(1) + 8(2). Hence the lower bound for tr(N'N)

given in Theorem 5. 1.13 is 4(5)2 + 4(1)2 + 8(2)2 = 136.

2

Thus the lower bound established for tr(NN) is larger than

the lower bound established for tr(NN')

5. 1. 16 may be applied.

and so Proposition

Let [.] denote the greatest integer function. For any value

of p let m = [r (k-1)/(v-1)]. Now r (k-1) can be written
P p

uniquely as the sum of v- 1 nonnegative integers differing by at

most one. This unique representation is given by

r (k-1) (v-1)m + n = (v-1 -n )m + n (m +1).
p P p p p p
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Proposition 5.1.18. Let m and n be as defined above.

Then the following conditions are necessary for a binary design to

exist whose incidence matrix has the property that for each fixed

value of p, I X -X. I < 1 for q p, r p.
pq pr

i) Im -m I < 1 for all p q.
P q

ii) Let J1 denote the set of subscripts of treatments having

minimal values of m . If p E J1, then v-n must be
pp

less than or equal to the number of subscripts in J1.

iii) Let J2 denote the set of subscripts of treatments having

maximal values of m . If p E J2, then n must be

less than or equal to the number of subscripts in J2.

iv) Let J2 be defined as in iii). Then Lnp cannot be odd.
p E J2

v) Let J
1

be as defined in ii), then (v- 1 -n ) cannot

be odd.

Pf. i) Suppose for all fixed values of i,
1.

< 1

i. Now suppose there exists p and q such that

for

m -m > 2. From above, we see that since I? -') 1 < 1 for
P q ps pt

s i p, s t, and I Xqs °X qt1 < 1 for q s, q t, we must have

X = m or m +1 for all s i p and X = m or m +1 fo r
qs qPs p P q

all s i q. But then X must simultaneously equal m or
Pq P
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m +1 and m or m +1, a contradiction since m -m > 2.
P q

ii) Recalling i) let J
2

be defined as in iii) of the proposition.

Assume that for each fixed value of i, 1 k .-X. 1 < 1 for j i,
i3 1/

i i. Assume also that there exists p E J1 with v -np greater

than the number of subscripts in J I.
In order for

1 -X 1 < 1pq pr

for q i p, r 7' p, we must have exactly v-l-n of the X. ,

P pq

p q, equal to m . Since v-n is larger than the number of

subscripts in J1, there must exist s E J2 such that X = m .
ps p

<But m = m +1 and in order for
s p 1Xst-X

1 for t s,sul

u s, we must have Xst = ms or ms+1 for all t s, a

contradiction. Hence it must be that v-n is not larger than the
p

number of subscripts in J1.

iii) Similar to ii).

iv) and v) are simple consequences of the fact that NN' is a

symmetric matrix, that n denotes the number of X.., i j,
P 1J

pEJ
2

equal to the maximal value of m , and that (v-n -1) denotes

the number of X.., i j,
13

pEJ1

equal to the minimal value of m .
p
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Example 5.1.19. Consider the class of designs

Th{r516;5,4,4,4,4,3;6;411. Now m
1

= [5(3) /5] = 3 and

m
2

= [3(3)/5] = 1, hence statement i) of the proposition is violated.

So there cannot exist a design in 'WI {,016; 5,4,4,4,4,3; 6;41} with an

incidence matrix having the property that for fixed p, < 1
pq pr

for q p, r p.

Example 5.1.20. Consider the class of designs

TM/Y[5;4,4,4,3,3;6; 3]}. Now m1 = m2 = m3 = 2 and m4 = m5 =1,

hence J1 = {4, 5} and J2 = {1,2,3}. But

r4 (k 1) = 6 = (v-1)m2 + n4 = 4(1) + 2;

hence v-n
4

= 3 is larger than the number of subscripts in J1 so

statement ii) of the proposition is violated. Thus, there cannot exist

a design in 101{,015;4,4,4,3,3; 6; 3]} with an incidence matrix

having the property that for fixed

r

P, 1) -x I <pq pr 1 for q t p,

Example 5.1.21. Consider the class of designs

nicri[8;4,4,4,3,3,3,3,3;9; 3] }. Now m. = 1, 1 < i < 3, and

m,
1

= 0, i > 4, hence J
1

{4,5,6,7,8} and J2 = {1,2,3}. But

r (k-1) = (v-1)m
P

+ n
P

= 7(1) + 1 for p E J
2

,



hence

pJ2
violated. So there cannot exist a design in

"irjr,18;4, 4, 4, 3, 3, 3, 3, 3, ; 9; 311. having an incidence matrix with the

property that for fixed p, IX. -X. I < 1 for q i p, r p.
pq pr

n = 3 is odd and statement iv) of the proposition is
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Another Lower Bound

Let = Inv;(ri);b;k] be defined as in the previous section.

Recall that finding a lower bound for tr C2

lent to finding a lower bound for tr(NN')2

in W{I} is equiva-

in -neuurf}. To this

point, no use has been made of the fact that NN' is a symmetric

matrix. The method given in this section for determining a lower

bound for tr(NN')2 takes advantage of this fact.

Let N be the incidence matrix of a typical design in )11,11,71

consisting of b blocks, each of size k, with v treatments such

that treatment T is replicated r times. Without loss of gen-

erality, suppose

and N2 where

p

> r
2

> > r
v

. Now partition N into N1

consists of the first v
1

rows of N and

consists of the remaining v
2

rows of N. So N1

is a v
1

x b matrix and N2 is a v2 x b matrix. Note that the

ri = n1 experimental units assigned to , Tv, must occur

1



in N
1

, the r. n
2

experimental units assigned to

i=v1+1

T v ±1 , Tv must occur in N2 and the k experimental units
s.

,

assigned to block B. must be allocated between. N1 and N2.
**

Let B. represent that part of block B. contained in

that part of block B, occurring in N2, and let k. and k.
1

represent the number of experimental. units allocated to B.`

Then it must be the case that

k. nl
i =1

i=1
2

iii) k. k. = k
1 1
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(5. 2. 1)

Without loss of generality let us assume that k1 _>k2 kb.

Let any particular ordered allocation of k. to B. be called an

ordered configuration and denote any such configuration by

(k... , kb).

Note that when N is partitioned as above,
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tr(NN') 2 = tr(N
1 1
N' )2 + tr(N

2
NI )2 + 2 .

i=1 v1+1

Recall from Lemmas 4. 1. 1 and 4. 1. 3 that the entries in the three terms

en in the expression above for tr(NN 1)2

j>i
Ai.= C

1
where C

1J
i= 1

ii) 2 C2
where C2

i=v 1+1 j >

1 V

must satisfy

k. (k. -1)
1 1

1=1

Ali = C12 where C12 =

iv) max[0,r +r -b] < A < min[r , r ]
P q Pq p q

b

i=1

k. (k. )
1 1

Hence we see that for a given ordered configuration

(kl, , kb),
2

a lower bound for tr(NN') can be determined for any

design whose incidence matrix has that configuration by solving the

integer programming problem of minimizing

v v
1

2 x?,

1=1 i=1 j>i j >i

v
1 V

i=1 j=v1+1

2x..
13

(5. 2. 2)
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subject to the constraints that

i=1 j>i

= ci

C2.
xij

Pi
(5. 2. 3)

iii) 2 )
L-1

x
ij

C
12

j=1 j=v1+1

iv) max[0, r +r -b] < x < min[r , r
P q Pq p q

For a design having a given ordered configuration, the actual minimal

value is obtained by applying Algorithm (4. 3) to each of the terms in

2. 2) subject to the relevant constraints in (5. 2. 3). Observe that

if two distinct configurations yield the same values of C1' C2, and

12 then the same minimal value for (5.2. 2) subject to (5. 2. 3) will

obtained. Now observe that

1

ii)

i=1

k-1) = C
1

-+ (C12/2)

i=v1+1

r,(k-1) = C2 + (C12/2).

(5.2.4)
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From (5. 2.4), we see that when one of the values of CI, C2, or C12

is known, the remaining values are completely determined. Hence

when two configurations yield the same value of C1, they must

also yield the same values for C2 and C12 and the same mini-

mal values for tr(NN') . So for a particular partition, to find a

lower bound for tr(NN, )2, we must find those values of C
1,

C2,

and C12 and those configurations giving these values of C1, C2,

and C12 which yield the smallest possible minimal value for

(5.2.2) subject to (5.2. 3). A. method will now be given for doing this.

Let (k1, , kb) be any ordered configuration and let the

values of C1, C2, and C12 given by this configuration be denoted
F\

by C1' C2, and C12. Now take any m and n such that

k >k and such thatm n

i) k. > k
1 m i < m

ii) k. < kn, > n

k +1 < min [k, vm 11
1

iv) kn +1 < minrk, v21

Form a new ordered configuration with km

(5, 2. 5)

replaced by km+1

and kn replaced by k
n

-I in the old ordered configuration. Let

p = k kn. Then the values of C
1

C and C12 that are given



by the new ordered configuration are C1 +2p+2, C
2

+2p+2, and

C12 -4p-4. Let any ordered pair of block sizes km and kn

,
satisfying (5. 2. 5) and such that km-kn = p be denoted by

(k
* *

,k ) . Note that for each distinct ordered pair
Tr, 11 1)

(km, kn)p of

block sizes, a distinct ordered configuration can be generated from

(k1, , kb) in the manner described above. So there is a one to
,

one correspondence between ordered pairs (km, kn)p and distinct

ordered configurations which can be generated from (k1, , kb).

Note also that the least amount by which C
A

l
can be increased by
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forming a new configuration in this way is two and that this will occur

when p = O.

Observe that if in the above process of generating configurations

* *
from (k1, kb), there are ordered pairs of block sizes

(k, k.
*

1 J Pi
and (k. , k ) satisfying (5. 2. 5) with

1 rflp2

that configuration formed from (k. ,k )
1 m p2

P2 >131, then

can be generated from

the configuration formed from (k. , k. ) . This is done by first
1 3

p1

lrmingthe configuration with k. + and k.-1 giving C1+2p1+2

and then from this configuration forming the one associated with the

ordered pair (k ,k )h m pz-p1-1 satisfying (5.2. 5) where kh = k .

A similar argument can be made for ordered pairs of the form

(k. ,k.) and (k, k. ) p2 > pl. It is also a simple matter to
1 3 pl m P2
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see that if there are ordered pairs of the form (k. ,k. ) and
1 p1

*
(km, kn)p2 with p

2
> > 2, then that configuration generated for

1
+2p

2+2
using (km, kn ) can be generated from a configuration

P2

* *

giving '11 +2p
2

-2p1+4. With this in mind, we give the following

definition:

Definition 5. 2. 6. Let (kl, , kb) denote some ordered

configuration for a given partition. We shall say that a configuration

which is derived from (k
1,

, kb) using the ordered pair

(k. ,k.
j

)
p

satisfying (5. 2. 5) is minimally derivable from (k1, , kb)

if there do not exist other ordered pairs satisfying (5. 2. 5) of the

form

i) (k. ,k ) ,
1 m q

ii) (k, kj )m q

iii) (km n )
q

q < p

p > q > 2.

If
1

is some value of C
1

for which an ordered

configuration exists, then it is easily seen that all ordered configura-

tions giving are minimally derivable from configurations

associated with smaller values of Cl.

With these things in mind, let vl assume a particular value

and let (ki, , kb) be that unique ordered configuration where



b

. = n
1

and kl b
< 1. Using Corollary 4. 3. 5, it is seen that
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i= 1

this configuration gives the minimal possible value for C
1

and C2,

hence the maximal possible value for C12. Let C1, C2, and C12

denote the values of C
1,

C2, and C12 given by this configuration.

Beginning with C1, apply Algorithm (4. 3) to the problem of deter-

mining a minimal value for (5.2. 2) subject to the constraints given in

(5. 2. 3) for successively larger values of C1

tions exist.

for which configura-

Those values of Cl for which ordered configurations

exist are determined by minimally deriving configurations from

ordered configurations associated with smaller values of C1. For

instance, the set of ordered configurations giving the value of C
1

closest to Cl must be minimally derived from that configuration

,giving Cl etc.

For a fixed value of Cl, let x and y denote the minimal

calculated using Algorithm (4, 3) for the sum ofvalues of x and
pq st

squares associated with C1 and C? respectively such that x +.
pal

and xst4-1 still satisfy the appropriate constraints,

and y = xst . then

and

max[0, r +r -b] < x +1 < min[r , r
P q Pq p q

max[0, r
s
+r

t
-13] < x st+1 < min[r

s
, rt] .

if x x
Pq
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Similarly, let > z
2

be the maximal values of the

calculated for the sum of squares associated with C12 such that

z1-1 and z 2-1 still satisfy the constraints for the corresponding

x... In applying Algorithm (4. 3), it is easily seen that the minimal

value calculated for (5. 2. 2) subject to (5. 2. 3) for C1+2 contains

exactly the same values of x., as the minimal value obtained for
iJ

Cl except that x is replaced by x+1, y by y+1, and z
1

by

z
1
-2 if z

1
-z > 2 and z1 2 satisfies the constraints on the

corresponding x.., otherwise z is replaced by zl -1 and z
2

is replaced by z2-1. From this it is seen that when z
1

-z
2

> 2

and z 1- 2 still satisfies the constraints on the corresponding x.,,

a smaller minimal value for (5. 2, 2) subject to (5. 2. 3) is obtained

for C1+2 if and only if 2z1 > x+y1-3, a larger minimal value is

obtained if and only if 2z1 < x+y+3, and no change occurs if and

only if 2z1 x-ty+3, In all other cases, i. e. , when z -z2 < I or

when z
1

-z
2

> 2 and
z

does not satisfy the constraints for the

corresponding x.., a smaller minimal value for (5, 2. 2) subject to

(5.2. 3) is obtained for C
1

+2 if and only if zi+z2 > x4-,y+2, a

larger minimal value is obtained if and only if z1 +z2 < x+y+2, and

no change occurs if and only if z
1
+z

2
= x+y+2.

Let e-Cl be some value of C1 such that

conditions 17,,-.1.r.;



i) z
1

-z
2

> 1, z 1-2 still satisfies the conditions for

the corresponding

ii) "4. > 1, le -2
1

-z
2 1
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x.. and 22°
1

< "1"x+Yf "

does not satisfy the conditions (5. 2. 7)

0for the corresponding x.. and z01,
l
+z"2 < xt74-

".iii) z
2

-z < I and 11#
1

<
1 z 2

"of "Nor.ere x, 7, z
1,

and z
2

are defined in the same manner as x, y,

mat

or

fJ'
and z 2.

Then for all values of C1 > C
1,

it is easily seen

2z ^/
1

< 2 z
< x".0+Y",+3 < X+y+3

,no
z

1
+z

2 1
< z

2
< x+y+2 < x+y+2.

Hence all values of Cl >N1 will give larger values of (5.2.2)
1

subject to (5. 2. 3) than Tl. So by beginning with C1 and deter-

mining lower bounds for successively larger values of C1 until

ehe
some Cl for which any of conditions (5. 2. 7) hold, all values of C1

Wilding the smallest minimal value of (5. 2.2) subject to (5. 2. 3) will

be determined. The general procedure will be illustrated by the

following examples.

Example 5.2.8. Consider the class of designs

7aff)17;5,5, 5, 5,4,4,4;8;4D and let v
1

= 4. That ordered



configuration which minimizes Cl when v
1

= 4 is

(3,3,3,3,2,2,2,2), and C
1

-= 32, C
2

= 8, and C12 = 56.

0411=.

Beginning with Ci, we must now determine a minimal value for

4 7 7 4 7

/ -1-3. Li
2 +2 1 x. + 2

2 x..2

ij ij ij
i=1 i=1 j>i i=5 j>i

E4ubject to the constraints that

4

i) 2 xij = C1

i=1 j>i

ii)

i=5 j>i

4 7

ij
=C2

i=1 j=5

= C12

i=1 j=5

iv) max[0, r +r -b] < x < min[r r .

P q Pq p q
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(5. 2, 9)

(5. 2. 10)

For C
1

= 32, we see upon applying Algorithm (4. 3) to each of

the expressions in (5. 2. 9) subject to the relevant constraints in

(5. 2. 10) that a minimal value is reached when x.. = 2 or 3 for

1 < i, j < 4, i j; = 1 or 2 for 5 < i, j < 7, i j; and

x =2 or 3 for 1 < i < 4, 5 <j <7. Let x, y, z1, and z
2

defined as in the previous paragraph. For Cl = 32, x = 2, y = 1,



and z1 =z2 =3. Since z
1

-z
2

< 1 and z 1+z 2
> x+y+2, we see
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that a larger value of C
1

will yield a smaller value of (5.2. 9) sub-

ject to (5. 2. 10). Hence we see that we must find the next value of

C
I

for which configurations exist as well as the configurations

yielding this value of C1.

The set of ordered pairs of block sizes from (3, 3, 3,3,2,2,2,2)

which satisfy Definition 5.2.6 are {(k l' k4)0,
5

(k_,k8)0} and the con

rations giving Cl = 34 which are minimally derivable using

these ordered pairs are easily seen to be (4, 3, 3, 2, 2, 2, 2, 2) and

(3, 3, 3, 3, 3, 2, 2, 1). Observe that the ordered pair (kl, k
8)1

does

not satisfy Definition 5.2.6, hence that configuration formed from this

ordered pair is not minimally derivable from (3, 3, 3, 3, 2, 2, 2, 2).

Thus we see that the next largest value of CI is 34.

When Cl = 34, it is easily seen upon applying Algorithm (4. 3)

to each of the expressions in (5.2.9) subject to the relevant constraints

in (5. Z. 10) that x = 2, y = 1, and zj. = z2 = 3. Hence z1 -z2 < 1

and z
1
+z

2
> x+y+2; so from (5.2.7), we see that a larger value of

will give a smaller value of (5.2.9) subject to (5.2. 10). Those

ordered configurations which are minimally derivable from those

configurations giving C1 = 34 are given below as well as the

ordered pairs of block sizes satisfying Definition 5.2.6 used to

generate them.
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Configuration
Ordered

Pair
Derived

Configuration
New Value

of Cl

(4, 3, 3, 2, 2, 2, 2, 2) (k 2, k 3)0 (4, 4, 2, 2, 2, 2, 2, 2) 36

(k4, k 5)0 (4, 3, 3, 3, 2, 2, 2, 1) 36

(k
1, k 3)1 (5, 3,2,2,2,2,2,2) 38

* *
(k2, k 8)1 (4, 4, 3, 2, 2, 2, 2, 1) 38

:4, *
3, 3, 3, 3, 3, 2,2, 1) (k.1,1(5)0 (4, 3, 3, 3, 2, 2, 2, 1) 36

* *
(k 6,

k 7)0
(3, 3, 3, 3, 3, 3, 1, 1) 36

(k1, k7)1 (4, 3, 3, 3, 3, 2, 1, 1) 38

(k6, k 8)1 (3, 3, 3, 3, 3, 3, 2, 0) 38

From above, we see that the next largest value of Cl is 36.

When C1 = 36 and Algorithm (4. 3) is applied to (5. 2. 8)

subject to (5.2. 9), it is easily seen that x = 2, y = 2, and

= z
2

= 2. Hence z
1

-z
2

< 1 and z
1

+z
2

< x+y+2; so from

(5. 2. 7), we see that Cl = 38 will give a larger minimal value for

(5. 2. 8) subject to (5. 2. 9). Hence when C
1

= 36, C2 = 12, and

= 56, we obtain a lower bound for tr(NN') 2 for v1 = 4. The

actual lower bound is easily seen to be 376. With a little calculation:,

it is also easy to see that none of the lower bounds obtained using the

inethods of Section 5. 1 is as large as this.

Note that we do not only have a lower bound for



tr(NN')
2, but we have the set of ordered configurations which any

design with tr(NN')
2 376 must possess when its incidence matrix

is partitioned as in this example. From above, we see that those

ordered configurations are

(3,3,3,3,3,3,1.1)1.

{(4,4,2,2,2,2,2,2), (4,3,3,3,2,2,2, 1),
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Example 5.2.10. Consider the class of designs

littja5; 5,5,4,3,1;6;311.

i) The lower bound for tr(NN')
2 given following Theorem 5.1.9

v ill first be determined. For a fixed value 'of i, let L, denote the

minimum of x, subject to the constraints that the2 i j,
1J n

j

are nonnegative integers, max[0, r.+r.-13] < x.. < min [r., r.], and
3 13 3

1

x. r.( -1). Upon applying Algorithm (4.3) to the problem of
11 Y

mining L. subject to the relevant constraints, it is seen that

I_.1 L230, = 30, L3 = 20, L4 = 10, and L5 = 2. Hence a lower

bound for tr(NN') 2 is r.2 + = 2(5)2 +42 +3 2
+

? L. = 168.

ii) The lower bound for tr(N'N) 2 given in Theorem 5.1.13

will now be determined. Note that

r.(r. -1) = 58
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Using Corollary 4.3.5, we see that the lower bound for tr(NN)2

given in Theorem 5.1.13 occurs when two of the
13

are equal to

one and the remaining x.. equal. two. The actual lower bound is

bk
2

+ 2(1)2 + 28(2)2 " 168,

2iii) A lower bound will now be determined for tr(NN') by

the method given in this section for v
1

= 4. Note that the only

possible ordered configuration is (3, 3, 3, 3, 3, 2), hence the only

possible values for CI, C2, and C12 = 2r5(k-1) are 32, 0, and 4

respectively. Hence we must determine a lower bound for

5 5 5

ri2 + 2 x.. subject to the constraints that
i=1

i) The x, are nonnegative integers

ii) max[0, r.+r.-b] < x.. < min[r., r.]
1 J 13 j

iv) x
i5

4.

32

By applying Algorithm (4. 3), it is seen that a lower bound for

tr(NN 1)2 is attained when X = X = 0, X _.

45 1 5 1 4

ET X. J and A T h 1 o r bout b i
1 3 23 12

for tr(NNI) 2 is 172. Note that this lower bound is larger than
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those obtained in i) and ii) and the design whose incidence matrix is

given below meets this lower bound; so it is (M,S) optimal.

B1 B2 B
3

B4 B5 B6

T1 1 1 1 1 1 5

T
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VI. (M,S) OPTIMAL DESIGNS IN D(v;b;k]

In this chapter, we consider the class of designs etf [v;b;k].

Recall that this class consists of all those designs having v treat-,

its arranged in b blocks of size k, v > k. For simplicity, we

i simply denote this class of designs by ,& in the rest of this

chapter. The essential difference between and the class of

designs Zriv;(r,);b;lei considered in the last chapter is that in the

after class of designs, the r, are all fixed, while in rf the r.

are allowed to vary. Clearly fr contains that class of designs

jl[v;(r.);b;k] for all possible (r.).

The first step in applying our optimality criterion is to

determine -ret:iff, the class of designs in Jj with maximal

trace. From Lemma 4. 3. 7, 171.fril .er[v;b;k]. Since v > k,

0,[v;b ;k] clearly consists of all the binary designs in fr.. Hence

we may state the following.

Theorem 6. 1. ITUrn consists of all the binary designs in ,r5

We must now find those designs in

minimal values for trC 2
. Since the

which have

r. are allowed to vary in

natural_ question which arises is just how in fact should the

he assigned to treatments in an (M,S) optimal design in Since

our goal is to find the design in )11{tirj whose C-matrix is closest



to the form aIv + p Jv, a "reasonable" answer would be to

allocate replications to the various treatments as "equally" as pos-

sible, i. e. , such that I r. -r. I < 1 for all i, j. A result will be
1 3

given which partially affirms this answer.

If D[v;(ri);b;k;N] is a design in I, , then

1
C . , rv] k NN ,

.

From (6. 2), if NN' = and N'N = (11)
IJ 1J

or

tr C2 = (1- )(

we see that

1r.
2 ) + 2 tr(NN')2

1= (1- 1
)
2

2
( r. ) +

k
i

tr C2 = (1- 2

= (1- )

X.2

r.2)
+

2
tr(N IN)

2

1
k

r. ) +b + 12

k
1

ij

2

ij

(6. 2)

(6. 3)

(6. 4)
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We wish to show that if D is a design in Tri _WI with the

property that r. -r. > I for some i i j, then there exists a designi 3

D in -ni{er} which is S -better than D with the property that
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r.
j

-r < 1 . In order to show that D is S-better than D, it

must be shown that tr C2 tr C 2
> 0 where C and C are the

coefficient matrices of D and D respectively. We will show that

under certain conditions, there exists at least one replication of

treatment Ti occurring in a block Bm not containing T.

which may be reassigned to treatment T. within the same block to
*Ms

form a new design D which is S-better than D.

Without loss of generality, let D be a design in Truly} for

which r
1
-r

2
> 2, e. , r

1
= r 2+p where p is a positive integer

greater than one. Let N = (n..) be the incidence matrix of D and

let N = (n..) be the incidence matrix of a design derived from D

by reassigning a replication of T1 to T2 in some block B
m.

,

amilm INOi.e. , nlm = 0, n2m = 1, and n.. = n. for all other j. Let
13

Nas, as.
N' = (Z..). After a reassignment of treatment replications in some

block Bm, we have:

71
-1 for T. occurring in block B

J
lj J m

72j = k23.+1 for T. occurring in block B
J m

X22= 22+1

7 = x . for all other i, j.
ij 13

In order for the reassignment of treatment replications to make the

design D S-better than D, it must satisfy the following:



-tr C2
2tr C = (1- -1 )2

1

1 2 2) +
(1- ) (r

1

2
+r

2 k .

2

2
(1- -1 )2(2r

1
-2r 2-2) + Z2 L

T. E B
J m
j>2

2 x2 2
+

2j k2T EB
3 m
j >2

2

2
k T. B

J m
j>2

1.(\.

2j
+ )

2

(X.1j -1)2

T. EB
J m
j>2

= 2(1_ -1 4(k-2(p-1)
2

1) 4
2 L lj

4
2j

k T. Bin
j>2

T E B
m

j>2

80
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2(k-1)(pk-p-k-1)
2

+
4

X
1 j 2j- 42 X > 0

k k T EB k
i.'

j ler 1 j m
j>2 j>2

which is equivalent to

(k-1)(pk-p-k-1) + 2 X 2 / X
2j

> 0.
13

T.EB T.EB
J m J m
j>2 j>2

(6.5)

If ihequali y (6. 5) holds for any replication reassignment of T1 to

T2, then such a reassignment will make the design S -better.

As a special case, note that when k = 2 and r1 = r2+p,

p > 2, there will always exist at least one k > 2j sincelj

Xlj = r1 > .5X2j r2. If >
2..C,

then there must exist a
Z_J.-

block Bm containing T1 and T/ but not T2. If a replication

reassignment is made from T1 to T2 within the block Bm,

then inequality (6. 5) will be satisfied, and the design will be made

3-better- So when k = 2, there always exists a treatment replica-

tion of T1 which may be reassigned to T2 to make the design

S-better when r
1
-r

2
> 2.

Mol-e gclirally, let us assume that k > 3. For simplicity let

us also assume that X.12 = 0. We wish to show that at least one of the

replications for T, may be reassigned to T2 to make the



design S-better. If this is not the case then

2
2

C
2----2 Itr C -tr = (k-1)(pk-p-k-1) + 2

T. E B
J m
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X - 2 A < 0
lj 2j

T. E B
m

j>2 j>2

for every Mock B containing Hence, summing over all

blocks containing Tr we get

(r2 +p)(k- 1)(pk- p -k -1) + 2 Xii - 2

= (r 2
+0k-1)(pk-p-k-1) + 2

T
1

EBm T.EB m T
1
EBm T.EB m

j>2 j>2

j>2

2

1j
j>2

X < 0
J 2j

(r 2
+p)(k-1)(pk-p-k-1) 2

2 lj X.
2j l

-
j

j>2 j>2

2j

(6. 6)

So if it can be shown that an upper bound for the right hand

side of (6. 6) is less than ((r2+p)(k- 1)(pk-p-k- 1)) /2, then it follows

that there exists at least one replication of T1 which may be reas-

L,igned to T2 within a block to make the design S-better. Note that

lj and X 2j
must satisfy certain constraints, namely that all

entries must be nonnegative integers, 0 <
13

. < r
1

, 0 < . r
23 2



and since X12 = 0, ri(k-1) and X
2j

r2(k-1). By

j>2 j>2

Lemma 4.4.4, we know that when r
2

is even

ma.x
2 subject to the constraints given above is

3 23 lj
j >2 j>2

-Or.) -2r2-4p)) /4, hence a reassignment of treatment replications
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can be made when

(k-1)(r -2r
2

-4p) (k-1)(r
2
+p)(pk-p-k-1)

4 2

or equivalently, when

r
2

2 < 2p(r 2-1)(k-1) + 2p
2(k-1) 2r2k

' so from Lemma 4.4.4, we know that when r2 is odd,

max x1jx2j- lj
(k4 -1) kr2-1)2-4p].

j>2 j>2

(6. 7)

Hence a reassignment of treatment replications can be made when

or equivalently, when

(k 1)(r +p)(pk-p-k-1)
-1)2-4p] <

2



r2
2+1 < 2p(r2-1)(k-1) + 2p2(k-1) 2r2k.

84

(6. 8)

Note that if inequality (6. 7) or (6. 8) is satisfied for some value

of p, then it will be satisfied for all larger values of p. In par-

ticular, when (6. 7) or (6. 8) is satisfied for p = 2, it will be satis-

fied for all larger values of p. When p = 2, (6.7) reduces to

and (6. o) educes to

r
2

< 2(k-1)

(r2 +2)2 < 2k(r 2+2) 1.

Hence we have the following result.

and

(6. 9)

(6. 10)

Lemma 6. 11. Consider a binary design with v treatments

blocks of size k such that for T. and T., r.-r. > 2,
1 3 1

e. , r. = r.+p. Let denote the number of experimental units
1 j

assigned to T. which occur in blocks not containing T.. Then if

c is even and c < Z(k- 1) or ii) c is odd and

(c +2) + 1 < 2k(c+2), then there exists a treatment replication of

T. which may be reassigned to T. which will make the design

,ter.

Pf. Without loss of generality, let i = 1 and j = 2. Note

that in the paragraph preceding the lemma, it was assumed that
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X12 = 0. However, if 1.12 = z, partition N into (N
I
, N2) where

N2 consists of the blocks where T1 and T2 occur together and

N1 consists of the remaining blocks. Then by applying the above

proof to the N1 portion of the incidence matrix, the proof

goes through as before since the N2 portion of the incidence matrix

is irrelevant in the argument.

Note that according to Lemma 6.11, there does not necessarily

have to exist a treatment replication of T. which may be reassigned

to T. to make the design S-better when r. -r. > 2. The next
1 3

example illustrates a situation in which such a reassignment cannot

be made to make the design S-better.

Example 6.12. Consider the class of designs j5[12;14;3],

and a design whose incidence matrix has the form shown at the top

of page 86.

Now for T
1

and T2 we have that

T.B
J m
j>2

(k-1)(k-3)
2j lj 2

T.E B m
j>2

for 1 < m < 8; hence no replication of T
1

may be reassigned to

T2 to make the design S-better (i.e. , see (6. 5)).



B11 2 B33 4
BB
B5 6

BBBB
B7 B8 9 10 B1111 12

B
13

B
14

86

T1 1 1 1 1 1 1 1 1 8

T2 1 1 1 1 1 1 6

T3 1 1 1 1 1 1 1 1 1 1 10

T4 1 1 1 1 1 1 1 1 1 1 10

T5 1 1

T6 1 1

T7 1 1

T8 1 1

T9 1 1

T10 1 1

T11 1 1

T12 1 1

3 3 3 3 3 3 3 3 3 3 3 3 3 3 1

Note that Lemma 6. 11 may be applied in any situation where

c, < 2(k-1) or (c +2)2 + 1 < Zk(c,+2) and it does not depend upon

how many treatments v are in D. It is this lack of dependence

on v which makes the result both general and at the same time

inapplicable in some fairly obvious situations. In general, when the

number of blocks is larger than the number of treatments, the lemma

may not apply. The following example illustrates where the lemma is

not applicable but where an argument similar to the one given in the
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proof of Lemma 6.11 justifies a replication reassignment.

Example 6. 13. Consider IX= Z. [6; 14;3] and D E TY/ { rjr}

with rl = 8 and r2 = 6. We would like to show that a treatment

replication of T1 can be reassigned to T2 to make the design

S -better . Lemma 6.11 cannot be used to justify this reassignment in

a L cases since if c > 4, c > 2(k-1) = 4. To show that a treatment

replication may always be reassigned from T1 to treatment T2

make the design S-better, an argument similar to the one used to

prove Lemma 6.11 can. be applied, i. e. , if

max
J 2j

j > 2 j>2

2
(r

2
+p)(k-1)(pk-p-k-1)

lj 2

zzien it will follow that there exists at least one replication of treat-

ment T1 which may be reassigned to treatment T2 to make the

design S-better. However, to apply this argument, the maximum

value of X.
13

A
2

- X.2 must be determined subject to the
j lj

j>2 j>2

relevant constraints. As opposed to Lemma 6.11, this maximal

value will depend on the specific number of treatments in the design.

(4. 4) may be used to obtain this maximal value. The

problem becomes equivalent to finding
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4

max a.h.

i= 1

4

i=1

subject to the constraints that i) the a, and b. are integers,
1 1

a. < 8, iii) 0 < b. < 6, iv)

4

i= 1

= 8(2) = 16 and

/ b. = 6(2) = 12. The maximal value as determined by
1

i= 1

n (4 4) is found to be

(r2+p)(k-1)(pk-p-k-1)
-8< 0 ;

hence a treatment replication may be reassigned from treatment T1

to T2 to make the design S-better.

Now let D be an arbitrary design in ')/11,{1'} which has

> 7 for some i. Since bk = 14(3) = 6(7), it follows that there

must exist r. < 7, hence r.-r. > 2. Since a reassignment of
1

..reatment replications could be made whenever r. = 8 and r. = 6,
1

it follows from the comment following Example 4. 4. 3 that a reas-

signment of treatment replications can be made to make D S better

whenever r. > 8 and r. < 6. Hence it follows that an (M,S)1 J

r,ptim.al design in

r < 1

1-1[ 14,3] must have the property that

for all i, j.
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Many more individual situations not covered by Lemma 6.11

can be handled in the same way as Example 6.13. However, we now

apply Lemma 6. 11 to get a more general result concerning the

parameters v, b, and k and the allocation of replications to

treatments for an (M,S) optimal design in fr.

Theorem 6. 14. i) An (M, S) optimal design Dr' [v;b;2]

must have the property that < 1 for all i. j.

ii) Let [--] denote the greatest integer function. If

k > 3 and any of the following conditions hold, then the (M,S) optimal

design in ri[v;b;k] must have the property that ir.-r. I <1 for all i, j.

a) bk /v = r is an integer and r < 2k-2

b) bk iv is not an integer but [bk/v] = r < 2k-3

c) bk /v is an integer and b (bk/v) = b r < 2k-2

d) bk /v is not an integer and b - [bk /v] = b r 2k-2

Pf. i) Preceding Lemma 6. 11, it was shown that when k = 2

and r. -r. > 2, it is always possible to reassign a treatment repli-
3.

cation from T, to T. to make the design S -better .
1 J

ii) a) Suppose bk /v = r is an integer and r < 2k-2 and

suppose D is an arbitrary design in Tn {LI} with r, > r for

some i. Since vr = bk and r. > r, there must exist T.
1

with r. < r; hence r.- > 2. However, since r < 2k-2,
1



r. < 2k-3, hence by applying Lemma 6. 11, we see that there must
J

exist a treatment replication of T. which can be reassigned to T

to make the design S-better. Since this argument can be repeated

for any r. > r, it follows that an (M,S) optimal design in 0/-7

must have the property that I r.-r. I < 1 for all i, j.

b) Suppose [bk/v] = r and r < 2k-3. Note that

13!-, = cr+d = (v -d)r + d(r+1) is a unique representation for bk as

the sum of nonnegative integers differing by at most one. Suppose

is an arbitrary design in MO} with r. r or r+1. If

r. r.> +1, then there exists r. < r, hence r. > 2. However,
1 3

1

since r < 2k-3, r. < 2k-3, and by applying Lemma 6.11, we see
J

that there must exist a treatment replication of T, which can be
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reassigned to T. to make the design S-better. Similarly, if

r, there will exist r. > r+1 such that a treatment replication
J

of T. may be reassigned to T. to make the design S-better.

Since this argument can be repeated for any r Jr or r.+1,

it follows that an (M, S) optimal design in der must have the

property that I r, -r. < 1.
1 j

c) Suppose bk iv = r is an integer and b-r < 2k-2. If D

is a design in WIffijr with r. > r, then there must exist T.

with r. < r, hence > 2. If c denotes the number of blocks
1 jJ

containing T. but not T., then c < b-r.
1

< b-r < 2k-2. Hence
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c < 2k-3, and by applying Lemma 6. 11, we see that there must

exist a treatment replication of T. which can be reassigned to Ta
1

to make the design S-better. Since this argument can be repeated for

any rp < r, it follows that an (M,S) optimal design in

must have the property that Ir. -r.j < 1 for all i, j
J

d) Suppose May is not an integer but

b - [bk /v] = b-r < 2k-2 and suppose D is a design in

-Er

r. r or r+1. If r. > r+1, then there must exist T.
1 1

with r. < r, hence r.-r. > 2. If c denotes the number of
1 j

blocks containing T. but not T., then c < b-r. < b-r < 2k-2.
3

1 1

Hence c < 2k-3, and by applying Lemma 6.11, we see that a reas

signment of a treatment replication from T. to T. can be made
i J

to make the design S-better. If r. < r, then there must exist T.
1 J

with r. > r+1. If c denotes the number of blocks containingJ'
T. but not T., then c < b -r. < b-r < 2k-2. Hence c < 2k-3

1

and by applying Lemma 6. 11, we see that a reassignment of a treat-

ment replication can be made to make the design S-better. Since this

argument holds for any r r or r+1, the result follows.

Note that the above theorem takes care of many practical

u6tions . in general, there must be many more blocks than treat-

rn.ents before the theorem does not apply. However, as seen in

Example 6.13, in many classes of designs not covered by Theorem
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6. 14, it can be shown that an (M,S) optimal design must have the

property that I r. -r. < 1 for all i, j.

A natural conjecture stemming from the above discussion is

than an (M,S) optimal design in otr must always have the

property that I r. -r. I < 1 for all i, j. A general result of this
3

sort has eluded the author. It can be shown that whenever v < 6 or

v = ki 2, an (M, S) optimal design must have the equal allocation

property, but for arbitrary v > 7 the question is still open except

for the cases covered by Theorem 6. 14.

As for the class of designs D[v;(ri);b;k], the question arises

of how to tell when a design is (M,S) optimal in Zr. Again a

reasonable answer seems to be to establish lower bounds for tr C

for designs in 7 {.0} and then find designs in ynt,81 whose

2

C-matrices have tr C2 equal to one of the lower bounds established.

Such designs will clearly be (M,S) optimal in 17Y. It has been

shown for many classes of designs 0/5 that an (M,S) optimal

design must have the property that I r. -r. I < 1 for all i, j. For
j

these classes of designs, it is clear that applying the methods of the

last chapter to establish lower bounds for tr C2 for designs in

jOlv;(r.);b;lci} where I r. -r. I < 1 for all i, j will also

establish lower bounds for tr C2 for designs in yr_un. However,

for those classes of designs where it is not known how replications

should be assigned to treatments, lower bounds must be established
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for
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From expression (6. 3), we see that establishing a lower bound

tr C 2
in 77Z.{1 can be accomplished by simultaneously

establishing a lower bound for

Lemma 4. 1. 1, we have that

i) = bk and ii)

V-,
2

i j
r, and kin Yft{"...}. By

= bk(k 1)

From above, we see that finding a lower bound for tr C 2
in

Can be accomplished by simultaneously solving the integer program-

ming problems cf

i) min and ii) min

subject to the constraints that

i) m. > 0 and1 = bk

iii) x.. > 0 for all i j and iv)

2x..
13

bk(k 1).

(6. 15)

(6. 16)

By applying Corollary 4. 3. 5 to each of the expressions appearing in

(6. 15) subject to the relevant constraints given in (6, 16), we obtain

the following result.
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Theorem 6. 17. If D E m{, n, then

tr C2 > (1- 1 )2 1
+ 2-

k

re i) the m. are nonnegative integers, ii)

1

= bk,

ii) Irn.-m
j

< 1, iv) the x.. are nonnegative integers,

x.. = bk(k-1) and vi) I x.. -xpq < 1 for all i l j, p q.

i 1j

Corollary 6. 18. Any design D E Trull having the property

'hat I r. -r. I < 1 for all i, j and whose incidence matrix N has
1 J

the property that NN' = (X..) where I X- .-X I < 1 for i i j,
13 13 pq

T: 4 q, will be (M, S) optimal in p- .

Corollary 6. 19. If bk/v is an integer and if in bi_.{.51 there

exists a BIBD or a PBIB(2) with X.2 = X.1+1, then that design will be

(M, S) optimal in in .

From expression (6. 1.4), we see that establishing a lower

bound for tr CZ in Taffy} can also be accomplished by simultan-

wsly establishing a lower bound for

own By Lemma 4. 1. 1,

r.2 and
1

2 in



= bk and ii

i j

From the above, we see tha4

2r bk

1=1

jr-,r} can bo esta.blislied by simultan.cou

gramming pr

i) ruin and ii) min

subject to the constraints that

and

i) m. > 0 and ii) m. bk1 1

iii) xi. > 0 for all ij and iv

However, it is easily seen that the minimum for

2.

2 - bk
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(6. 20)

(6.21)

2 subject to

iij

the constraints that the x.. are nonnegative integers and

M increases as M increases. Hence simultaneously

iij
minimizing the terms in (6.20) subject to (6.21) is accomplished by
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2
m, subject to the relevant constraints in (6. 21),

2x... With this in mind and applying
xij

i j

Corollary 4. 3.5, we may state the following.

Theorem 6.22. For any design D E water},

tr C2 > );m2) b +
12 2

13

where i) the m. are nonnegative integers, ii) m. = bk,

-m. I< 1 for all i, j, iv) the x, , are nonnegative
3

integers, v)

i1j, p q.

i=1

m.(m. -1), and vi) x.. - x I < 1 for
13 pq

Corollary 6.23. Any design D having the property

that I r. -r. I < 1 for all i, j, and whose incidence matrix N has
1 3

the property that N 'N = (p...13 ) where I p...
13

la 1
< 1 for i j,pq

p i q, will be (M,S) optimal in alfr.
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VII. CONSTRUCTION OF (M,S) OPTIMAL DESIGNS

7. 1. Complementary Designs

Let D[v;r . , rv;b;k1, ,kb;N] denote a binary incomplete

block design. We form the complementary design D by changing

the zeros in. N to ones and the ones to zeros. The new design is

easily seen to have parameters

by= v, r. -r., b = b, k. = v-k., N= J-N (7. 1. 1)
1 1

where J is a v x b matrix of ones. Also, the association matrix

for the new design is N
*

N = ()ii) where = b + r, r.
13 13 1 j

for all i,, j and the block characteristic matrix is N N = (p...)
13

where v + k. - k,.
13 1 3

If denotes some class of binary incomplete block designs,

let denote the class of complementary incomplete block designs

Theorem 7. 1. 2. Consider de. = Z7v;(ri);b;k] where r. < b

and v > k. If D is a design which is (M,S) optimal in

then D is (M,S) optimal in .a[v;(b-ri);b;v-k].

Pf. Note that yru.01 consists of all the binary designs in

denote the class of designs which are complements

of designs in -10(t{,r..1. Now observe that
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Tri101 =rn{Olv;(b-ri);b;v-k]} since both classes consist of the

;binarydesigns in Mv;(b-r.) b;v-k]. So finding a design in

.01v;(b-ri);b;v-k] which is (M,S) optimal in equivalent to finding a

design in

r,,
1

Cr
2

with minimal tr . Recall that for fixed

finding a design in with minimal

lent to finding a design with a minimal value for

D E 'YY1 ferl,

b(b-1)v 2 + 2v

4k

c+ ')-- p..2=
___., 13

*2
tr C is equiva

*2
. But for

r.(r.-1) 4b(b-1)vk +
1 1

+ 4b(b -1)k2
13

where c is constant because the r.
1

expression, we see that finding a minimal value for

-ma)} is equivalent to finding a minimal value for

2

13

are fixed. From this last
2

in

1i3

in

iJj

MUM , i. e. , equivalent to finding a minimal value for tr C2 in



7{in. Hence finding an (M,S) optimal design in

if{ v; (b r );b;v-kj

in it:f

is equivalent to finding an (M, S)

99

optimal design

Theorem 7. 1.3. If a binary design D(v;ri, . , rv;b;k;N) has

he property that I p..,-p. < 1 for i j, m, then the corn-
1.1

*
piementary des ign has the property that ..-P. < 1 for all

Pf. Simply observe that

ij -1.1.1m = (b +µ.. -2k) (b+11 m-2k)! = < 1

for ail i i, Q l m.

Corollary 7. 1. 4. If a binary design D(v; ri, . , rv;,b;k;N) in

jjv;b;k] has the property that r pq rs I
< 1. --r. < 1 and

nor all p q. r 1 s, then the complementary design is

S) optimal in

Pf. The parameters of the complementary design are given in

Observe that I ri --r. I = I (b-r.)-(b-r.);
1

Ir.-r. < 1 and
3 1 3

by Theorem (7. 1.3) -11/m < 1 for i 3, / m. Now, by

applying Corollary 6. 18, we see that D is (M,S) optimal in

,
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Corollary 7. 1. 5. If D is a binary design in j:5 [v;b;k] with

the property that < 1 and X,.
1

D is (M,S) optimal in LI-[v;b; v-k].

< for all i j, then

Pf. Note that if X.. < 1, then no two treatments occur in

more than one block together. Hence no two blocks can have more

than one treatment in common. So p... < 1 for all i j. Hence
13

t-L.. -I-I I
< 1 for all i j, f m, and the result follows from

1.3 im
Corollary 7. 1. 4.

Theorem 7. 1. 6. Suppose D is a binary design in

rf=.01v;b;k] which is (M,S) optimal and has the property that

I r. -r. I < 1 for all i, j. If v > 2k, then D is (M, S) optimal
3

in Zr[v;b;v-k].

Pf. Let Trt{ri} denote the class of designs which are

complements of designs in ijn. Observe that

v; b; v k D = .yrton since both classes consist of the binary

designs in Div;b;v-k 1. So finding an (M,S) optimal design in

D[v;b;v-k] is equivalent to finding a design in )1/1._*{/D-} with mini-

2mal tr C. For any design D E -11/1
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r.2

2 V *2 * 1
+ b + *2

k
L__./ 1

i=1

v
(v-k)(v-k-2) 2 1(b-r.) + b +

2 1 2

i=1(v-k) (v k)

= (constant) +

2
(v+p...-2k)

13

v(v-21t) r 2
1 k(k-2) r.2

2 i(v -k)(v-k) .
1=1

2
r

2

= 1

= (constant) + J r.V(V-21)1 2

2
[tr C 2 -b]

i
(v-k) (v-k)

i

2

13

*2
From this last expression, we see that when v > 2k, tr C

is minimal when

'Ant-Pet?I L14.1
i=

is minimal and when tr C 2 is minimal in
1

Theorem 7. 1.7. Suppose D is a binary design in cri[v;b;k]

such that I r.-r. I < 1 for all i, j, and suppose D is (M,S)
j

optimal in or [v;b;v-k]. If v < 2k, then D is (M,S) optimal

in 4r[v;b;

Pf. Similar to Theorem 7. 1. 6.
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It will be shown in the next example that S-betterness is not

necessarily preserved in j:/[v;b;k] under the operation of comple-

mentation.

Example 7.1.8. Consider fl[7; 5;3]. Let D1 and D2 be

given by the following incidence matrices.

B1 B2 B3 B4 B5 B1 B3 B4 B5

T1 1 1 1 3 T
1

1 1 1 3

T2 1 1 1 3 T2 1 1 2

T3 1 1 2 T3 1 1 2

T4 1 1 2 T4 1 1 2

T5 1 1 2 T5 1 1 2

T6 1 1 2 T6 1 1 2

T7 1 1 T7 1 1 2

3 3 3 3 3 3 3 3 3 3

Now tr C z 19 1/3 and tr C 2 19 7/9, hence
1

tr Ci2 < tr C22
. If we take complements of DI and D2, then

2
designs D1 and D2 are obtained where tr Cl = 40 1/4 and

*2 *2 *2
tr C2 = 39 5/8, hence tr CI > tr C2 . So "S-betterness" is not

necessarily preserved under complementation in 177,-[v;b;k].

Corollary 7. 1.9. If the parameters in ,,t)[v;b;k] satisfy any

of the conditions in Theorem 6.14 and v > 2k, then the complement
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of an (M,S) optimal design in *b' [v;b;k] will be (M,S) optimal

in j'i[v;b;v-k].

Pf. If the parameters in Zr[v;b;k] satisfy any of the

nditions in Theorem 6.14, then an (M,S) optimal design in tfv;b;k]

must have the property that Ir. < 1 for all i,j. The result

en follows from Theorem 7. 1. 6.

Corollau7. 1. 10. If the parameters in jr[v;r;v-k] satisfy

any of the conditions in Theorem 6. 14 and v < 2k, then the comple-

ment of an (M,S) optimal design in Xr[v;b;v-k] will be (M,S)

optimal in .[v;b;k].

Pf. Similar to that of Corollary 7. 1.9.

While it is not yet known whether the complement of an (M,S)

optimal design in if [v;b;k] is always (M,S) optimal in

D[v;b;v-k], such a conjecture appears extremely reasonable. If it

could be proven that an (M, S ) optimal design in fily;b;k1 always

has the property that < 1, then the conjecture would easily
J

be affirmed by what has been proven here.

Clearly the operation of complementation is not an actual method

of construction, but it can be useful in that it may be easier to con-

struct the complement of the desired (M,S) optimal design rather

than the actual needed design. As an example, consider the
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construction of the (M,S) optimal design in Ii[v;b;k] where

v = k+1. Since v < 2k, if an (M,S) optimal design in the trivial

class of designs II [v;b; 1] has the property that lr.-r.1 < 1 for
j

all i, j, then by Theorem 7.1.7, its complement will be (M,S)

optimal in cry [v;b;k] where v = k+1. But for any design in

,Drv;b; 1], C is the zero matrix, hence every design in ,Cf[v;b;1]

is trivially (M, S) optimal. Therefore, we must simply find a

sign in otT[v;b;1] with I r. -r
j

I < 1 for all i,j. But such a

design can always be found in ff [v;b;1] since the design having an

incidence matrix N = (n ) with n = 1 for p = 1, , v, and
pq pq

p p

(1-r ) + r.
P v 1

1

q <

i=1

r., and n = 0 elsewhere has this
1 Pq

property. Hence Theorem 7.1.7 is applicable, and the (M,S)

optimal design in cry [v;b;k] where v = k+1 is the complement of

the design in Z[v;b;1] described above.

E)carnple:7. 1.11. Suppose we wish to find an (M,S) optimal

des ign in .en6;10;5]. Let us construct the (M,S) optimal design

in er[6;10;1]. This is simply any design in 13-[6;10;1] with

-r.i < 1. The incidence matrix of the design described above

raving this property is giver; below.
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

T1 1 1 2

T2 1 1 2

T3 1 1 2

T4 1 1 2

T5 1 1

T6 1 1

1 1 1 1 1 1 1 1 1 1

The complement of the above design is (M, S) optimal in

[6; 10;5].

7. 2. (M, S) Optimal Designs in ogIv;b; 2]

In experimental work, particularly in some fields of biology,

clocks of size two are of fairly frequent occurrence. For example,

an experimenter may have blocks consisting of twins, or halves of

plants, or halves of leaves. Since experiments with blocks of size

two are of importance, we now restrict ourselves to the construction

of (M,S) optimal designs in Iff[v;b;2].

Recall from Theorem 6.14 that the (M,S) optimal design

[v;b;2] must have the property that I r. -r.

to this, the following theorem can be stated.

< 1. In addition
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Theorem 7.2.1. An (M,S) optimal design D E ,[v;b;2]

with incidence matrix N can always be constructed such that

I r, -r. I < 1 for all i, j and such that NN' (X..) where
1 3

13

pq
I < 1 for all i j, p q.

ij

Pf. From Theorem 6.14, the (M,S) optimal design in

[v;b;2] must have the property that Ir. -r.I < 1 for all
j

Let X = [2b/v(v-1)] where [ ] denotes the greatest integer

function. To obtain the desired association matrix, we must have

= X or X+1 for all i 4 j. Let D E ,Er be such that

r. -r. I < 1 for all i, j. Let N be the incidence matrix of D
1 J

and let NN' (X..). Suppose for some i 4 j,
X..

> X+1. Without

loss of generality, suppose X12 > X+1. Since 2b = r. and

r -r. I < 1 for all i, j, we must have that X < r
1
/(v-1) < X+1.

J

So there must exist a nonnegative integer al such that

rl = (v-1-al)X + al(X.+1) =
j>2

lj

Since X12 > X.+1, there must exist Tm such that k 1m < X; so

> Z. Since I r -r I < 1 and r = > X we must2 m m im

also have that
>mj 2j

j>2 j>2
j/rn

i4m
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Hence for some treatment T , X > k2p. Now assign a
p mp

replication of treatment T2 occurring in a block containing T1 to

T and a replication of treatment T occurring in a block con-
m m

taining T to treatment T2. Since k = 2, the new design

has incidence matrix N with NN' = (X..) where

712 = k12-1 7
2

= x +1
p 2p

7,1m = xlm+1 = x -1rnp rnp

and k.. = X.. for all other i, j. Now
13 13

tr(NN')2 tr(71 ITI)2

2 .4.2
= 2(k2

12
2 2 2

+k lm+X2p +Xmp ) (X12 -FX.
lm+X.2p+Xmp)

= 4(k12-Xlm) + 4(X -X ) 8 > 0mp 2p

since X12-k lm > 2 and kmp > X2p. So tr(17171)2 < tr(NN ')2.

A similar interchange can be made to reduce tr(NN') 2 when there

xzsts kij < X for some i j. So by beginning with an arbitrary

design D E withwith incidence matrix N, we can make inter-

changes as described above to reduce tr(NN') 2 whenever X.. X
13

+1 for some i =f j. Since there are only finitely many designs

in a.t7'., we will eventually obtain a design D having incidence



108

rake.",
matrix N such that NN = .) where rr,..fr I < 1 for all

1J 1J pq

i. j, p q.

We shall now give an easy process by which the (M,S)

op imal design in .5[v;b;2] may be constructed.

In the first stage of the construction process, we assign T1

to experimental units occurring in the first r1 blocks of the design:,

i. e , nlm 1 for 1 < m < r
1

. Beginning with T2' we then

entiailly assign treaanents to the experimental units remaining in

blocks
1

,B r, i.e. , T2 is assigned to the experimental

unit remaining in B1 T3 is assigned to the experimental unit

remaining in B2, etc. If rl > v-1, then Tv is assigned to

the experimental unit remaining in Bv-1, T2 is assigned to the

.-.xperimental unit remaining in B
v,

and the process of assigning

..ucceeding treatments to succeeding blocks is continued until treat-

ments have been assigned to all of the experimental units occurring

in blocks Bl, ,B . The following examples illustrate how ar
1

typical incidence matrix might look after the first stage of the con-

struction process, depending on whether r
1

< v-1 or rl > v-1.

Example 7.2.2. Consider 1/[6;10;2]. After the first stage,

the design we are constructing for this class of designs has the follow-

ing form (note that r1 < v-1).
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

T1 1 1 1 1 4

T 1 4

T3 1 3

T4 1 3

T5 1 3

6
3

2 2 2 2 2 2 2 2 2 2

Example 7.2.3. Consider Z[5; 13;2]. After the first stage,

the design being constructed for this class of designs has an incidence

matrix with the following form (note that r1 > v-1).

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

1 1 1 1 1 1 6

1 1 5

T3 1 1 5

T4 1 5

T5 1 5

2 2 2 2 2 2 2 2 2 2 2 2 2

Note that after the first stage of the construction process,

sn m I

< 1 for /,m > 1. Note also that for i > 2, there are

replications of treatment T. which have not yet been
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assigned to blocks and which must occur in blocks Br
1+

1
, Bb.

We start the second stage of the construction process by taking

r 2-X12 replications of T2 which have not yet been assigned

to blocks and assign T2 to experimental units occurring in blocks

n
2m

= 1 forBr e. ,

rl+r
2

-X.12. We now sequentially assign treatments to

xperimental units remaining in blocks B ,Br +r -Xrim/
l 2 12

beginning with the treatment after which the sequential assignment of

treatments to succeeding blocks ended in stage one, i.e. , if the

sequential assignment of treatments to succeeding blocks ended in

stage one with T being assigned to B, then the procedure isrl
begun in stage two by assigning treatment Ts+1 or T3 to the

experimental unit remaining in Br
+1

depending upon whether
1

s = v or 2, and then Ts+2 or T4 is assigned to Br +2'

After the second stage of the procedure, the incidence matrix of the

design being constructed may look as in the following examples.

etc.

Example 7.2.2. (Cont. ) After the second stage of the procedure,

the incidence matrix of the design being constructed has the following
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

T
1

1 1 1 1 4

T2 1 1 1 1 4

T3 1 1 3

T4 1 1 3

T5 1 3

T6 1 3

2 2 2 2 2 2 2 2 2 2

Example 7.2.3. (Cont. ) After the second stage of the

procedure, the incidence matrix of the design being constructed has

the following form.

BBBBBBBBBB
B1 B2 B3 B4 B5 B6 B7 B8 B9 1 B110 11 12

BB13

Ti 1 1 1 1 1 1 6

T
2

1 1 1 1 1 5

T3 1 1 1 5

T
4

1 1 5

T5 1 1 5

2 2 2 2 2 2 2 2 2 2 2 2 2

We now repeat the procedure for each succeeding treatment

until the design is complete, i.e. , at the pth stage of the
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P-1

construction process, we take the rp replications of
ip

i= 1

rcatment T which have not been assigned to blocks in the previous

stages, and assign

P-1

i=1 j>i

P-113-1

ij

T to
p

p

+ 1 < m <

i=1

experimental units in blocks Bm

r. -

i=1 j>i

We then sequentially

assign treatments to the experimental units remaining in the blocks

which T was assigned beginning with the treatment after which the

sequential assignment of treatments to succeeding blocks ended in

stage p-1. Note that each stage may be identified with a particular

row of the incidence matrix in which that particular stage begins,

e. , stage p begins in row p of N.

Example 7. 2.2. (Cont. ) Following the above design procedure

we obtain a design in 1.'7[6;10;2] with the following incidence matrix.

B
1

B
2

B
3

B4 B5 B6 B7 B8 B9 B
10

T1 1 1 1 1 4

T
2

1 1 1 1 4

T3 1 1 1 3

T4 1 1 1 3

T5 1 1 1 3

T6 1 1 1 3

2 2 2 2 2 2 2 2 2 2
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Example 7.2.3. (Cont. ) Following the above design procedure,

we obtain a design in ,F),15;13;2] with the following incidence matrix.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13

1 1 1 1 1 1 6

1 1 1 1 1 5

1 1 1 1 1 5

T4 1 1 1 1 1 5

1 1 1 1 1 5

2 2 2 2 2 2 2 2 2 2 2 2 2

From Theorem 7.2.1 and this construction process, we can

easily determine the (M,S) optimal design in ,[v;b;k] where

v = k+2 as the following result shows.

Corollary2 The (M,S) optimal design in trf[v;b;k]

where v = k+2 is the complement of the (M,S) optimal design in

Z[v;b;2].

Pf. Since v = k+2 and v = k+2 < 2k for all k > 2,

Theorem 7. 1. 7 is applicable and the result follows.

Example 7. 2. '5. If we take the complement of the design

obtained in Example 7.2.2, the (M,S) optimal design in ff[6; i0 ;4]

will be determined and it has the following incidence matrix.
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B8 B9 B10

T1 1 1 1 1 1 1 6

T2 1 1. 1 1 1 1 6

T3 1 1 1 1 1 1 1 7

T4 1 1 1 1 1 1 1 7

T5 1 1 1 1 1 1 1 7

T6 1 1 1 1 1 1 1 7

4 4 4 4 4 4 4 4 4 4

Note that as a result of Theorem 7.2. 1 and Corollary 7. 2.4,

we know that the (M,S) optimal design in lv;b;k] when v = k+2

must always have the property that I r. r < 1 for all i, j.
j

7. 3. Constructing (M, S) Optimal Designs from
Known Optimal Designs

The concept of a dual incomplete block design will be used

several times in this section. Recall from Chapter II that if

D[v;ri, , rv;b;ki, ,kb;1\1] is a binary incomplete block design,

then the dual design is that design obtained by inter changing the roles

of blocks and treatments. If N is the incidence matrix of the dual

design, then N = N'.

A linked block design with parameters v, b, r, k and µ is

defined to be a binary incomplete block design with v treatments

arranged in b blocks of size k where each treatment is



115

replicated r times and any two blocks have exactly µ treatments

in common. Clearly, the dual of a linked block design is a BIBD.

We shall now discuss several methods of obtaining (M,S) optimal

designs from linked block designs.

i) Suppose from a linked block design with parameters

v, b, r, k and we eliminate m treatments such that no two of

the eliminated treatments occur in the same block. Then the blocks

break up into two groups, the first of which consists of those blocks

from which a treatment was eliminated and the last group consists of

those blocks from which no treatment was eliminated.

Clearly any block from which a treatment was eliminated will

have 4-1 treatments in common with blocks from which the same

treatment was eliminated and II treatments in common with all

other blocks. The blocks from which no treatment was eliminated

will have la treatments in common with all other blocks. Thus,

after the elimination of treatments, we will have a block design with

v-m treatments, mr blocks of size k-1, b-mr blocks of size k,

and with an incidence matrix N such that N'N = (p...) where
13

3
p.1.. p. or p.-1 for all i j. If D denotes the dual of this

latter design, then v = b, = k or k-1, b = v-m, k = r, and

N N' = (X..) where X... = p. or p.- 1 for all i j. Note that D
13

is (M,S) optimal in .5 [773 ;Td An example will now be given to

.qustrate this construction technique.
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Example 7.3.1. Consider the symmetrical BIRD with X. = 2,

v = b = 7 and r = k = 4. The design is given by the following inci-

dence matrix.

B
1

B2 B3 B4 B5 B6 B7

T1 1 1 1 1 4

T.
L.

1 1 1 1 4

T3 1 1 1 1 4

T4 1 1 1 1 4

T.
n

1 1 1 1 4

T6 1 1 1 1 4

T7 1 1 1 1 4

4 4 4 4 4 4 4

When we eliminate treatment T1 and take the dual, we get the

following (M, S) optimal design in Er[7;6;4].

B
1

B2 B3 B4 B5 B6

T
1

1 1 1 1 4

T2 1 1 1 3

T3 1 1 1 3

T4 1 1 1 3

T
5

1 1 1 1 4

T6 1 1 1 3

T,_
i

1 1 1 1 4

4 4 4 4 4 4
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ii) Suppose now we take a set of m treatments in a linked

block design, no two of which occur in the same block, and replace

each trea lent in the set by a group of two treatments occurring in

the same blocks as the original treatment. Upon adding these treat-

ments, we get a block design with v+m treatments, mr blocks of

size k+1, b-mr blocks of size k, and an incidence matrix N

such that NW = (p...) where = µ or [1+1. If D denotes the

dual of this latter design, then v = b, r. = k or k+1, b = v+m,

7-- r, and T\T = (T..) where X.. = p. or 11+1. Clearly this

latter design will be (M,S) optimal in 4(5[v;S;Tc].

Example 7. 3.2. Suppose in Example 7. 3. 1, instead of

eliminating treatment T1, we replace it with two treatments each

occurring in the same block as T
1.

When this is done, and when the

dual of the constructed design is taken, we get an (M,S) optimal

design in {7;8;4]

B1

with the following incidence matrix.

B2 B3 B4 B5 B6 B7 B8

T1 1 1 1 1 4

T
2

1 1 1 1 1 5

T3 1 1 1 1 1 5

Ti
,_

1 1 1 1 1 5

T5 1 1 1 1 4

T6 1 1 1 1 1 5

T7 1 1 1 1 4

4 4 4 4 4 4 4 4
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We shall now devise some methods for constructing (M,S)

optimal designs from designs which are already known to exist. As

an example, it was shown in an earlier chapter that if a balanced

incomplete block design or a PBIB(2) with X.2 = X.1+1 exists in

[v;b;k], then that design will be (M,S) optimal in oer [v;b;k].

If possible, we would like to use those known and tabulated designs

which are (M, S) optimal to derive (M,S) optimal designs with

different parameters. To this end, we have the following result.

Theorem 7. 3. 3. Let D be an (M,S) optimal binary design

in rilv; (r.);b;kj whose incidence matrix N has the property that

i
< for all i j, m. Then any combination of dis-

j

tinct columns of N will give the incidence matrix of an (M,S)

optimal design in orj[v;(1..);m;k] where m represents the number

of distinct columns in the new design and fir, the number of repli-
i

cations of T..

Pf. Simply observe that any combination of distinct columns of

still has the property that m < 1 for i j,
1

hence from Corollary 5. 1. 14, the design is (M,S) optimal.

Recall the definition of a linked design given earlier in this

section. We now extend this definition to a partially linked incomplete

block design. A partially linked incomplete block design with m

associate classes is a binary design consisting of an arrangement of
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treatments, each replicated r times, contained in b blocks

of size k such that the dual design is a PBIB(m). We shall denote

such a design by PLIB(m).

Let N be the v x b incidence matrix of a linked incomplete

block design or a PLIB(2) with the property that = p. or
iJ

Clearly these designs will be (M,S) optimal in Q[v;b;k]; hence

by Theorem 7. 3. 3 by taking any combination of m distinct columns

N, we will still have an (M,S) optimal design in

,5[v;(1-.);m;k]. However, such a design may not be (M,S) optimal

in the larger class of designs D[v;m;k], since it may not have the

property that

x M.

4ii
-1

j
< 1 for all i, j. However, if N1 is the

by eliminatingincidence matrix derived from N = (N1, N2)

N2 and has the property that ir\.1\' .1 < 1, then N1 will be the

incidence matrix of an (M,S) optimal design in C[v;m;k]. Note

that N2 will also be the incidence matrix of an (M,S) optimal

design in oplv;b-m;k1. Note also that any single column may be

eliminated from N or any two columns i and j can be

eliminated from N if µij = max[0, 2k -v] and still have an (M, S )

optimal design in c[v;b -1;k] and oblv;b-2;k1 respectively.

In general, suppose we are looking for an (M, S) optimal

design in orj[v; (r. ) b; or .[v;b;k] where bk iv is not an

integer. Keep v and k fixed and find the smallest positive r

and b > b such that vr' = Wk. If there exists an (M,S) optimal
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design in ..rj[v;bt;k] with an incidence matrix N such that

p, _ p,/m I < 1 for i j, Q m then by taking any b columns of

N having the proper parameters, we will have the incidence matrix

of an (M,S) optimal design in cri[v;(ri);b;k] or Ifi[v;b;k].

Since the construction of incomplete block designs where bkiv

is an integer has been studied extensively, many designs having the

< 1 for allproperty that X...-X i j, m have been
ij Im

catalogued and published. So if we are looking for a design in

[ v ;1 ; k] with the property that I 1-1. -11 m < 1 for all i j,

/ m, it may simply be a matter of finding the dual of the desired

design in some published catalogue of designs. An example will

illustrate the technique.

Example 7.3.4. Suppose we are looking for an (M,S) optimal

design in V9;5;6]. The smallest possible integers such that

yr' = blk are 1.31 = 6 and r' = 4; so we are seeking a design in

.eS1 9 ; 6; 6] with the property that l [I.. m < 1 for all i j,

m, or equivalently, a design in .1,[6;9;4] with the property

that 1X -X
j

< 1 for all i j, Q m. Using the Tables of

Partially Balanced Designs with Two Associate Classes we see that

a PBIB(2) design in 6;9;4] exists with the property that

X2 = X1+1. This design is given by
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B1 B2 B3 B4 B5 B6 B7 B8 B9

T1 1 1 1 1 1 1 6

T2 1 1 1 1 1 1 6

T3 1 1 1 1 1 1 6

T4 1 1 1 1 1 1 6

T5 1 1 1 1 1 1 6

T
6

1 1 1 1 1 1 6

4 4 4 4 4 4 4 4 4

Clearly, if we eliminate any row in the above design and take

the dual, we will have a design which is (M,S) optimal in

41[9; 5; 6]. The final design is given below.

B1 B2 B3 B4 B5

T1 1 1 1 1 4

T2 1 1 1 3

T3 1 1 1 3

1 1 1 1 4

T_ 1 1 1 3

T, 1 1 1 3

T7 1 1 1 1 4

T8 1 1 1 3

T9 1 1 1 3

6 6 6 6
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7.4. Patchwork Techniques

For i = 1, ,t, let D. kr.;r
1

, , r
v.

;b.;k
b.

;N.] be an
1

1 1

t

D = v D. denote
i=1 1

incomplete block design defined on 2.. Let

ithedesign obtained by combining all the D., e. , D is that

t
design defined on = v S2, consisting of the b =

i=1 1
i= 1

blocks

contained in D
1

D,, ,Dt. An interesting and practically useful
2

problem is to find necessary and sufficient conditions on the D.

which will make D an (M,S) optimal design. The solution to

this problem is in general unknown and appears to be very difficult.

However, we now give some techniques for combining designs so as

to yield (M,S) optimal designs.

i) Let D = D[v;ri, , r
v

;b;k;N] denote a binary incomplete

block design defined on C2 such that N N = (X..) has all of its off
13

40\ "diagonal elements equal. Let D D[v;r 1' , rv;b;k;N] be a binary

incomplete block design also defined on with NN' = (1;_i) where

II. .--X < 1 for all i j, p q. Let D = D v D denote the
ii pq

design defined on C2 whose incidence matrix N is given by

Note that D is binary and that NN' = (X..) where

= for all i j. Hence
13 13
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Xii --Xpq 1 1(X..+X13 -.) +k )1

13 Pq Pq
-k 1 < 1

pq
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for all i j, p q. By Theorem 5. 1. 1 and Corollary 5. 1.7, D

will be (M,S) optimal in Xj[v;(77+/.)71A;k]. If D also has the
1 i

property that 1(71 .4%..1 )-(7.4j )1 < 1 for all i Y j, then by

, ollary 6. 18, D will. be (M,S) optimal in etityrbA';k1.

Example 7.4. 1. Let D denote the BIBD with X. = 1 whose

ncidence matrix N is given below.

B1 B2 B3 B4 B5 B6 B7

T1 1 I 1 3

T2 1 1 1 3

1 1 1 3

T4 1 1 1 3

T5 1 1 1 3

T6 1 1 1 3

T7 1 1 1 3

3 3 3 3 3 3 3

Let D. denote that design whose incidence matrix consists of

the first i columns given below, 1 < i < 5.



T1

B1

1

B2 B3

1

B4 B5

T2 1 1

T3 1 1

T4 1 1

T
5

1 1

T
6

1 1

T7 1 1 1

3 3 3 3 3

All of the designs D=DiD. will be (M, S) optimal in

17;7+i;3] for i= 1, , 5.

ii) Let D = D[y;r1,... ,ry;b;k;1\1] be a binary incomplete

block design defined on 0 with X.. = x or x+1 for all i j.

If there exists a set G consisting of rn > k treatments in 0

such that X.,. = x for all T., T. E G, then a block containing any
1 j

k of the treatments in G may be added to D and the resulting

design D will be (M, S ) optimal in the class .,Er of designs

with b+1 blocks of size k and fixed replication sizes to which

I) belongs.

To see that ID is optimal in II, note first that 1) is a

124

binary design. Note also that if N is the incidence matrix

for D, then where A.. = A.. either T. or T.
13 ij 1
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does not occur in block b+1, and X.. = Xii+1 if both Ti and T.

occur in block b+1. Hence x or x+1 for all i j, so by
iJ

Theorem 5.1.1 and Corollary 5.1.7, D will be (M,S) optimal

in tr
Note that this process of adding blocks to a design D may be

continued as long as there exists a set G of treatments in

satisfying the necessary conditions.

Example 7.4.2. Let D[9;3;9;3;N] be the PBIB(2) with

0 and X2 = 1 whose incidence matrix is given below.

Bi B. B3 B4 B5 B6 B7 B8 B9

T1 1 1 1 3

T2 1 1 1 3

T3 1 1 1 3

T4 1 1 1 3

T
5

1 1 1 3

T6 1 1 1 3

T7 1 1 1 3

T
8

1 1 1 3

T9 1 1 3

3 3 3 3 3 3 3 3 3
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Note that X14 = X17 = X.47 = 0. Hence a column B
10

containing treatments T1, T4, and T.7 may be added to the above

des ign, and the resulting design will be (M, S) optimal in

1119;4:3,3,4,3,3,4,3,3;10;3].

iii) Let D = D[7; r1, , r...;b;k;N] be a binary incomplete

block design defined on S2 "N'N = (7..) where T7).. = p. for
1J 1J

es.,
j . Let D = ro;b;k;NJ be a binary incomplete

As\ A
clock design defined on 2 with C.->-= 4) and with N'N (4..)

where rii*.--1\-1. ! < 1 for all i j, p 1 q. Let D denote the design
1.J pq

imam

defined on v whose incidence matrix N is given by (/))-

Note that D is binary and that N'N = (p...) where

11---=+
1.j1,

for all iIj. Hence

+ +°Ne. ) < 1
pq pq pq pq

for all i I j, p 1 q. By Theorem 5.1.1 and Corollary 5.1.14,

;willbe (M, S) optimal in 4,15[7-4;(r.) bik+1c] where r. r.,
-- is,

1 < < r , v+1 < v< d-v.

iv) Let D = D];r1, r;b;k;N] be a binary incomplete

block design defined on 2 with N'N = (7. ) and which is (M,S)
13

",,s,optimal in 1,7; );b7k]. Let D DI_V;r b;k.;Ni denote
I\

a (Lomplete binary randomized block design defined on Q with
A ", ^ A A

Q r. S-2 - .43, . e. , r. =b for all i and N'N = (p.. . ) where
1 ij
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for all i j. Now let D denote the design defined on

whose incidence matrix N is equal to

Note that D is a binary design hence it will have maximal

tr C in crrr---er[74; (ri);b;7+1 where

and r. rte. for vfor 7+1 < i < +v.i

for 1 < i < v
eta,

Note also that if the incidence N

of any design D E Tatfil is partitioned as in the previous para-
N

graph, i. e. , N = (N ) where N1 and N2 have the same row
2 Aand column sums as the incidence matrices for D and D above,

then it is easily seen

e4$
tr(NN1

2
= tr(N

1
NI

1)
2

+ M

where M is a constant for all designs in -M{olf1}. From this last

expression, we see that finding an (M,S) optimal design in itr is
equivalent to finding an (M,S) optimal design in z-[v, (7);brk].

o D as defined above will be (M,S) optimal in IX.

7.5. A Heuristic Approach to the Construction of (M,S)
Optimal Designs

While a direct method of constructing (M,S) optimal designs

is not given in this section, the procedure described can be of great

vatue to the experimenter in constructing optimal designs in situations

where the previously given methods of construction are not applicable.



Let jf7=ifi[v;(r.);b;k]. In Chapter V, various methods were

given for determining lower bounds for tr(NN`) 2
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for designs in the

class TruLT. If a design exists having an incidence matrix with

tr(NN')2 equal to one of the lower bounds established, we would like

to use the information gained in the establishment of the lower bound

to aid in the construction of the design.

Let N be the incidence matrix of a typical design in *YrUZI}

where r? > > r . Now partition N into N1 and N2
v

where N1 consists of the first v
1

rows of N and N2 con-

sists of the remaining v-v
1

rows of N. Note that the

1

=1

the

i n replications assigned to T , . , T
1 1

must occur in N1,vl

izy 1+ 1

occur in N2, and the k experimental units assigned to block B.

r. = n2 replications assigned to T v1+1' , Tv must

must be allocated between N
1

and N2. Let us use the same nota-

tion and terminology as in Section 5. 2. Recall that if (k
1, ... 'kb)

denotes any particular ordered configuration, then a minimal value

for tr(NN')2 can be determined for any design whose incidence

matrix has that ordered configuration. This minimal value is deter-

mined by sowing the integer programming problem of minimizing

(5. 2.2) subject to the constraints given in (5. 2. 3).



In Section 5. 2, a method was given for determining those
2

values of Cl yielding a lower bound for tr(NN') in 7W}
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and for finding those configurations yielding these values of Cl for

a given partition of N. If the process of determining a lower bound

for tr(NNI)
2 and determining those configurations yielding the

lower bound is carried on for each possible partition of N, a great

deal of information about the incidence matrix of a design with

Er(NNI)
2 equal to the lower bounds established is obtained. We

would now like to use this information to construct an (M, S) optimal

design for Several examples will be given on how to do this.

Before proceeding, we shall give several facts which will prove
......useful later. Let vi >1.1 represent two different partitions of an

incidence matrix N of a particular design D E -muff} and let
^* A*-,-

1k , .. , kb} and ik - , kb} represent the actual unordered con-

figurations of the incidence matrix of the design for these two parti-

tions of N. If C and C
1

are the values of Cl given by

these configurations respectively, then by a proof analogous to that

given for Lemma 4. 1. 3, it can be shown that



A
1

wax.

V
1

--
C

I
C + 2

13

j _e
-v 1+1 1+1

j>i

In particular, when

vl

i =1 i =1

err.. e%
G

1
C =

vi

z 2
1V1

i=1 E Bvl m

km.
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(7. 5. 1)

(7. 5. 2)

.....
Note also that for any design D when v

I
= v1+1, the values of

in tki, , kb} must be obtainable from the values in

1

/V1t
, kb} by adding one to exactly of the k..

v
I

From this point on, if VI s, let Cs, Cs, and Cs
1 2 12

denote the values of CI, C2, and C12

configuration under consideration.

which are given by the

Example 7. 5. 3. Suppose we wish to find an (M,S) optimal

design in =, t ` [ 6 ; 5 , 5 , 5 , 4 , 4 , 4 ; 94;9; 3]. The values of Cl, Cs
2

and

yielding lower bounds for tr(NN')2

12
for the various partitions of

as determined using the methods of Section 5. 2 are given below.
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The various ordered configurations yielding these lower bounds are

also given.

s Cs
1

CZ Cs
21

LB Configurations

1 0 34 20 225 (1,1,1,1,1,0,0,0,0)

2 4 18 36 225 (2,2,1,1,1,1,1,1,0)

3 12 6 36 225 (2,2,2,2,2,2,1,1,1)

4 24 2 28 225 (3,3,2,2,2,2,2,2,1)

5 30 0 16 225 (3,3,3,3,3,2,2,2,2)

It is seen in using Algorithm (4. 3) to calculate the lower bounds for

various partitions that for a design to have an incidence matrix

with tr(NN')2 = 225, it must be the case that X.. = 1 or 2 for

all i j. Now observe that for each value of s , we have the

ome.,,x,that unusual situation that there are unique values of Cl

2giving the lower bounds for tr(NN?) and unique ordered configura-

tions giving these values of Cl. So in order for any design to have
2an incidence matrix with tr(NNt) equal to the lower bound estab-

lished, it must have the ordered configuration given above for each

different partition.

Note that when s = 3, for any design in TYL{fn

i) C
3

12
= 2(X +X.

13
+X

23
)

1

3
i) C2 = 2(X

4.
+X -1A5

6
)



iii) C1
3

2
-=

ij
i =1 j=-4

So for any design to have an incidence matrix with < 1
13 m

for i j, Q m, it must have Cl = 12, C23 = 6, and C3
2

= 36.
1

Hence it must have

i) 1.12 = X.13 = X23 = 2

ii) X45 = X46 = X56 1

iii) X.. = 2, i < 3, j > 3.
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Using this information, we shall set about constructing an (M,S)

optimal design in J.

Since C12 =4 and 1.12 = 2, it is easily seen that the first

two rows of any design having tr(NN')
2

= 225 must have the follow-

ing form.

B2

T1 1 1 1 1 1

T2 I I 1 1 1

2 2 1 1 1 1. 1 1 0

5

5

For the incidence matrix must have an ordered

configuration of the form (2,2, 2, 2,2,2,1,1, 1). Using (7.5.2),

since C
3 C1 8, treatment T3 should be assigned to
1
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experimental units in blocks such that k
*

= 4 where the k

T3 E Bm

are taken from the unordered configuration given above for s =

and in such a way that X.12 = X13 = 2. The three rows given below

satisfy these properties.

B
1

B2 B
3

B4 B
5

B
6

B7 B8 B
9

T1 1 1 1 1 1 5

T
2

1 1 1 1 1 5

T
3

2 2 2 2 1 2 2 1 1

For s = 4, the incidence matrix must have an ordered

configuration of the form (3, 3, 2, 2, 2, 2, 2, 2, 1). Using (7. 5. 2),

4since C
1

C
I

3 = 12, treatment T4 must be assigned to experi-

mental units in blocks in such a way that

na

k = 6 where the

T4 E Bm

are taken from the unordered configuration given above for

s = 3 and in such a way that X =
14 X24 X34

2. The four rows

given below satisfy these properties.
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B1 B2 B3 B4 B5 B6 B7 B8 B9

T1 1 1 1 1 1 5

T2 1 1 1 1 1 5

T3 1 1 1 1 1 5

T4 1 1 1 1 4

3 2 2 2 2 3 2 1 2

Continuing in this manner, we get the following design.

B1 B2 B3 B4 B5 B6 B7 B8 B9

T1 1 1 1 1 1 5

T, 1 1 1 1 1 5

T3 1 1 1 1 1 5

T4 1 1 1 1 4

T5 1 1 1 4

T6 1 1 1 1 4

3 3 3 3 3 3 3 3 3

Note that the design is (M, S) optimal since I X..-Xf m < 1 for

i

ij

j, f gym.

For Example 7.5.3, any (M, S) optimal design having an incidence

matrix with tr(NN')2
-= 225 had to possess the particular ordered

configurations given for each value of s . Hence in this sense, the
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(M,S) optimal design in .n[6;5,5,5,4,4,4;9;3] was completely

determined.

Several more examples will now be given on how to use the

information collected from the establishment of the various lower

bounds in the construction of optimal designs.

Example 7.5.4. Consider the class of designs

Cl, s17.= er17; 6,6,6,6,6,5,5; 10;4]. The values of
l

C2, and C12

yielding lower bounds for tr(NN') 2 for the various partitions of N

as determined using the methods of Section 5.2 are given below. The

various ordered configurations yielding those lower bounds are also

given.

s C1
1
s s

2
C C s

2
LB Configurations

2 6 54 60 578 (2,2,2,1,1,1,1,1,1,0)

3 18 30 72 578 (3,2,2,2,2,2,2,1,1,1)

(2,2,2,2,2,2,2,2,2,0)

4 36 12 72 578 (3,3,3,3,2,2,2,2,2,2)

5 62 2 56 586 (4,3,3,3,3,3,3,3,3,2)

64 4 52 (4,4,3,3,3,3,3,3,2,2)

6 90 0 30 578 (4,4,4,4,4 4,3,3,3,3)

Note that the lower bound established for tr(NN')2 in Tr{er}

when a = 5 is 586 and there are two values of CI5 giving this
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5lower bound. When Cl = 62, it is seen in using Algorithm (4. 3) to

calculate the lower bound, that any design whose incidence matrix

has tr(N1\11)
2

= 586 must have X.. = 3 or 4 for 1 < i4j < 5,

\
6

1, and X. = 2 or 3 for all other i i j. When C
1

5 = 64,
13

any design whose incidence matrix has tr(NN') 2
= 586 must have

X = 3 or 4 for 1 < < 5, X.67 = 2, and Xi, = for all other
ij

j. When a situation such as this occurs, one can only choose a

particular configuration giving the lower bound and use this as a base

from which to start constructing the design.

We will now construct an (M,S) optimal design using that

ordered configuration associated with Cl = 62 as a base configura-
5 5

tion. Since CI5 = 62 = ., the set of X.. minimizing
1J 1J

5 5 i=1 j>i

2 > > X.2 subject to the usual constraints is seen from Algorithm
i=1 j>i

(4. 3) to consist of one Xii equal to four, and nine of the X.. equal

to three. Without loss of generality, assume that X.45 = 4, hence

= 3 for all other i,j < 5, i j. Making this assumption, it is
13

easily seen using (7. 5. 2) that any design having an incidence matrix

with the X.. equal to the above, must have Cl2 = 6, Cl = 18,
13

= 36, and C1 62 The configurations associated with these

values of s and C
1

are given below.
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Cls Configurations

2 6 (2,2,2,1,1,1,1,1,1,0)

3 18 (3,2,2,2,2,2,2,1,1,1)

(2,2,2,2,2,2,2,2,2,0)

4 36 (3,3,3,3,2,2,2,2,2,2)

5 62 (4,3,3,3,3,3,3,3,3,2)

Note that there are two possible ordered configurations

associated with CI3 = 18. However, for any design to have an inci-

dence matrix with X. equal to the above, it must have an ordered

configuration of the form (3,3,3,3,2,2,2,2,2,2) when s = 4.

This configuration must be obtainable from the configuration given for

s = 3 by adding one to r4 of the k. in the configuration given

for s = 3. This will clearly be impossible if for s = 3, the

incidence matrix has an ordered configuration of the form

(2, 2, 2, 2, 2, 2, 2, 2, 2, 0). Hence any design having an incidence matrix

with X... equal to the above must have an ordered configuration of

the form (3,2,2,2,2,2,2,1,1,1) when s = 3. Using this informa-

tion we now set about the construction process.

Clearly when s = 2 and CI
2

= 6, the first two rows of the

design must have the following form.



B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

T1 1 1 1 1 1 1 6

T2 1 1 1 1 1 1 6

2 2 2 1 1 1 1 1 1 0

For s = 3, the incidence matrix must have an ordered

configuration of the form (3,2,2,2,2,2,2,1,1,1). Using (7.5.2)

since
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C
1

3
C

1

2 = 12, treatment T3 should be assigned to experi-

mental units in blocks in such a way that
JJ

k = 6 where the

T3 E Bm

k`\ are taken from the unordered configuration given above form

s = 2 and in such a way that X.13 = X.23 3. The three rows given

below satisfy these properties.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B
10

T1 1 1 1 1 1 1 6

T2 1 1 1 1 1 1 6

T3 1 1 1 1 1 1 6

3 2 2 2 2 1 2 2 1 I

For s = 4, the incidence matrix of a design with X..
ij

equal to the above must have an ordered configuration of the form
4 3(3,3,3,3,2,2,2,2,2,2). Using (7.5.2), since C
1

C
1

= 18, treat-

rit T4 should be assigned to experimental units in blocks in such



a way that k = 9 where the k
*

are taken from the
T4 E Bm
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unordered configuration given above for s = 3 and in such a way

that X.14 = X24 =x`34 = 3. The four rows given below possess these

Properties.

B1
B2 B3 B4

B5 B6 B7 B8 B9 B10

T
1

1 i 1 1 1 1 6

1 1 1 1 1 1 6

T3 1 1 1 1 1 1 6

T4 1 1 1 1 1 1 6

3 3 2 3 2 2 3 2 2 2

For s = 5, the incidence matrix of a design with X.. equal

the above must have an ordered configuration of the form
5 4

( 4, 3, 3, 3, 3, 3, 3, 3, 3, 2). Using (7.5.2), since C
1

C
1

= 26, T5

should be assigned to experimental units in blocks in such a way that

k = 13 where the k are taken from the unordered conm m
T5 E Bm

figuration given above for s = 4 and in such a way that

."'15 = ).25
'''.35

.-_, 3 and X
45

= 4. The five rows given below possess

these properties.
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B
1

B2 B3 B4 B5 B6 B
7

B8 B9 B
10

T
2

1 1 1 1 1 1 6

T3 1 1 1 1 1 1 6

T
4

T
5

1 1 1 1 1 1 6

3 3 3 4 2 3 3 3 3 3

Note that at this point, the remaining portion of the design is

Ltically determined. All that remains is to assign treatments T6

and T7 to experimental units in blocks in such a way that X67 = 1

and X.i.6 and
X.7

equal two or three for all i < 5. The optimal

design which is finally derived is given by the following incidence

matrix.

T
2

B
1

B2 B3 B4 B5 B6 B7 B8 B9 B
10

1 1 1 1 1 1 6

1 1 1 1 1 1 6
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One more example will be given to illustrate that even with a

knowledge of the various lower bounds and of the configurations yield-

ing these lower bounds for the various partitions, an (M, S) optimal

design whose incidence matrix has tr(NN; )2 equal to one of the

lower bounds established may be difficult or impossible to construct.

Example 7.5.10. Consider the class of designs
s sjy[7;4,4,4,4, 4,4, 3;9;3]. The values of Cl, C2 , and C12

fielding lower bounds for tr(NN') 2 for the various partitions of N

as determined using the methods of Section 5.2 are given on the follow-

ing page. The various ordered configurations yielding these lower

bounds are also given.

Notice that there are many more configurations yielding lower

bounds for the various partitions in this example than in previous

examples. In using Algorithm (4.3) to calculate these lower bounds,

it is easily seen that for a design to have an incidence matrix N

with tr(NNI)2 equal to the lower bounds established, it must have

NN' (k..) where X.. = 1 or 2 for all i j When so many

configurations yield lower bounds for the various partitions, one can

simply choose one value of Cl which has some "nice" property and

then use a cc igrura.tion yielding this value of Cl as a base for the

construction process as in the previous example.
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s sC
1

s
C2

sC12 LB Configurations

2 2 14 38 183 (2,1,1,1,1,1,1,0,0)

4 16 34 (2,2,1,1,1,1,0,0,0)

3 6 12 36 183 (2,2,2,1,1,1,1,1,1)

8 14 32 (3,2,1,1,1,1,1,1,1)

(2,2,2,2,1,1,1,1,0)

10 16 28 (3,2,2,1,1,1,1,1,0)

(2,2,2,2,2,1,1,0,0)

12 18 24 (3,3,1,1,1,1,1,1,0)

(3,2,2,2,1,1,1,1,0)

(2,2,2,2,2,2,0,0,0)

4 16 6 32 183 (3,2,2,2,2,2,1,1,1)

(2,2,2,2,2,2,2,2,0)

18 18 28 (3,3,2,2,2,1,1,1,1)

(3, 2, 2, 2, 2, 2, 2, 1, 0)

20 10 24 (3,3,3,2,1,1,1,1,1)

(3,3,2,2,2,2, 1, 1,0)

5 28 2 24 183 (3,3,3,2,2,2,2,2,1)

30 4 20 (3,3,3,3,2,2,2,1,1)

6 42 6 12 183 (3,3,3,3,3,3,2,2,2)
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Note that when s 3, Cl3 = 6 yields a lower bound for

2 3
tr(NN`) . The "nice" properties of this particular value of Cl are

3
t) that there is a unique configuration giving the value of Cl and

ii) that any design having an incidence matrix with this ordered con-

figuration and with tr(NNT)
2

= 183 must have X12 = X13 = X.23 = 1

and X.. = 1 for j > i, i > 4. (This is easily seen when the lower
iJ

und for Cl = 6 is calculated using Algorithm (4.3)) We shall

i3.0 W use this information to construct an (M,S) optimal design

in ri .

From the basic configuration, we know that C2 = 12 and that

for an incidence matrix to have this configuration and tr(NNI)
z

= 183

it must have X45 = X.46 -x`47 = 1. But r4(k-1) = 8 = so

from. (7.5.2) we have

X.14 +x`24
+ X34

4 3Cl -C1

2
5.

i4

o C = C 3
1- 10 = 16. Similarly, it can be seen that for an

1

incidence matrix to have an ordered configuration of the form
2

(2, 2, 2, 1, 1, 1, 1, 1, 1) for s = 3 and tr(NN`) equal to the lower

bound established, those configurations for s = 5, 6 must give

value s of C
1

5
= 28 and

6 The configurations yielding these

values of C1 are given below.
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s Cs
1

Configurations

3 6 (2,2,2,1,1,1,1,1,1)

4 16 (3,2,2,2,2,2,1,1,1)

(2,2,2,2,2,2,2,2,1)

5 28 (3,3,3,3,2,2,2,1,1)

6 42 (3,3,3,3,3,3,2,2,2)

Note that when s = 4, there are two possible ordered

configurations associated with C
4 = 16. However, for s = 5 there

a unique configuration given and it must clearly be obtainable from

the configuration given for s = 4 by adding one to r
5

of the ki

occurring in the configuration given for s = 4. This will clearly be

impossible if for s = 4, the incidence matrix has an ordered con-

ration of the form (2,2,2, 2, 2, 2,2,2,1). Hence any design having

-in incidence matrix with tr(NN') 2 equal to the lower bound estab-

ii and configuration (2,2,2,1,1,1,1,1,1) for s = 3 must

have an ordered configuration of the form (3,2,2,2,2,2,1,1,1) for

s --- 4.

We know that for any incidence matrix to have the basic
2

configuration given for s = 3 and tr(NN`) = 183, it must have

12
=

13 A-23
Using this information, it is easily seen that the

'irst three rows of the incidence matrix must have the following form.
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B1 B2 B3 B4 B5 B6 B7 B8 B9

T1 1 1 1 1 4

T2 1 1 1 1 4

T3 1 1 1 1 4

2 2 1 1 2 1 1 1 1

For s = 4, the incidence matrix must have an ordered

configuration of the form (3,2,2,2,2,2,1, 1, 1). Using (7.5.2), since

C
I

3 = 10, T
4

should be assigned to experimental units in

blocks in such a way that k = 5 where the k"'m m are taken
T4 E Bm

from the actual unordered configuration given above for s = 3.

Also from (7.5.2), in order for I X.. -X I < 1 for all i / j,
13 /m

i i m, we must have two of the \i4 equal to two and one of the

equal to one for i < 3. The four rows given below have these

properties.

B
1

B2 B3 B4 B5 B6 B7 B8 B9

T.
1

1 1 1 1 4

T2 1 1 1 4

1 1 1 1 4

T4 1 1 1 1 4

3 2 2 1 2 2 1 2 1



For s = 5, the incidence matrix must have an ordered

configuration of the form (3, 3, 3, 2, 2, 2, 2, 2, 1). Using (7. 5. 2),

since C
1

5 -C
4

= 12, T5

in blocks in such a way that

should be assigned to experimental units

k = 6 where the k arem m
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T5 E Bm

taken from the actual unordered configuration given above for s = 4.

Also from (7.5.2), in order for ij
< 1 for all i j,

m, we must have two of the X
i5

equal to two and two of the

Xi5 equal to one for i < 4. The five rows given below possess these

properties.

B
1

B2 B3 B4 B5 B6 B7 B8 B9

T. 1 1 1 1 4

T2 1 1 1 1 4

T3 1 1 1 1 4

T4 1 1 1 1 4

T5 1 1 1 1 4

3 2 3 1 3 2 2 2 2

Continuing in this manner, we finally derive the design whose

incidence matrix is given below.
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B1 B2 B3 B4 B5 B6 B7 B8 B9

T1 1 1 1 1 4

T2 1 1 1 1 4

T3 1 1 1 1 4

T4 1 1 1 1 4

T5 1 1 1 1 4

T6 1 1 1 1 4

T7 1 1 1 3

3 3 3 3 3 3 3 3 3

From this example, it is seen that constructing an (M,S)

optimal design may not be easy even with the use of the information

concerning lower bounds and configurations. In general, if one can

start with a configuration having some "nice" properties, such as

almost all of the X.. in one part of the partition having one value,

then the construction is somewhat easier.

There are several things the experimenter should be aware of

in using the information made available to him in this section to con-

struct (M,S) optimal designs. The simple fact that for each value

if it is possible to find values of C , C2 and C12 which give

lower bounds having the property that X.. = m or m+ 1 for all
13

j does not guarantee that such a design will exist, it is simply a

good indicator that such a design will exist. (A counter example is
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found in the class of designs ,E1[9; 5, 5, 5, 5, 4, 4,4, 4, 4;10;4]. ) In

fact, the construction of the designs in this section presupposes the

existence of designs having incidence matrices attaining the lower

bounds established for the different partitions. However, if that
2

lower bound determined for tr(NIN) given in Theorem 5.1. 13 is

larger than any of the lower bounds established for the various parti-

tions of N, then no design whose incidence matrix has tr(NN') 2

equal to the lower bounds calculated by the method of Section 5. 2 will

exist and the construction technique given in this section will be of

little use.
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VIII. MISCELLANEOUS RESULTS

8.1. (M,S) Optimality and Connectedness

In this section, the relationship between connectedness and

(M, S) optimality is examined in some of the classes of designs we

have been considering.

Recall that an incomplete block design with v treatments is

aid to be connected if its coefficient matrix has rank (v-1). We

now present an alternative characterization of connectedness which

was given by Eccleston and Hedayat (1974).

i) A design D is connected if and only if its incidence matrix

N cannot be partitioned after any permutation of rows and columns

into the form cliag(N Na), 1 < a < v where the N. are the

incidence matrices of connected subsets of treatments.

Theorem 8.1.1. Consider the class of designs

in- = Div; (ri);b;k1 where b > 2 and r. > 2 for each i. If
i

D E M. { II is a disconnected design with incidence matrix N, then

there exists a connected design
2

such that tr(NNI) > tr(N NI) .

ETT1171 with incidence matrix

Pf. Suppose D E {,15} is disconnected. Then the incidence

matrix N can be partitioned as in i) above. Suppose a 7-- 2.

I N. 'NBirkes, Dodge, and Seely (1972) have proven that if N is the v x b
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incidence matrix of a connected binary incomplete block design and if

there are more than observations, then there exists at least

one observation which may be removed from D and the design will

still be connected. Since r, > 2 for each1 and since N1 and

N, are the incidence matrices of connected subsets of treatments in

D, there will exist observations which can be removed from N1

and N2 such that the resulting incidence matrices will still be con-

nected. Suppose an observation of treatment Tf in block Bu

may be removed and suppose an observation of treatment T in
g

block B may be removed such that the resulting incidence

matrices N1 and N2 are still connected. Now assign the repli-

cation of Tf occurring in block Bu to block T and the
g

replication of T occurring in block Bw to . After the inter
fg

of replication assignments, we have a new design D with

incidence matrix Now because N1 and N2 are connected

and because
f

n
w

1, it is easy to see that N cannot be parti-

tioned as in i) above. Hence D is a connected design. Further-

more, N r=

ij
) where

off
< X. -1 for T occurring in Bu, f ifff

X
DI

> I for T
1

occurring in B
w

, I g

7g/
< X. 1 for TI occurring in B , .2 Vggl w

> 1 for T
1

occurring in B
u

, I 71 f.TO
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tr(NN')2 tr(77')2 = 2 / [Xf/ 2 7.2 ] + 2 [072
f

]f
T E Bu T

I
E Bw

I 4g

+ 2 / [X2
gl

] + 2

TI EB
w

Yg

TI E Bu

If

> 2 \c 2

[Xi/
(Xfi -1)2] - 2

T1 Bu
/if

0 X
raps'?

ge

Tf esw
I Ig

1

+ 2 > [X2 -(X. -1)2] + 2 1

TI (B.
w

T E Bu

.12Yg Q f

4 X.f./ + 4 XV -8(k-1) > 0

TI Bu T
I

E Bw

1 Yf e Vg

as we were to show. Now if a > 2, the argument can be repeated

for all pairs of connected subsets, and the result follows.

Corollary 8. 1.2. If ff is as in Theorem 8. 1.1, then there

exists an (M,S) optimal design in rr which is connected.
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The following is an example of a design which is (M,S) optimal

in orf[v;(r.);b;k], but which is not connected.

Example 8.1.3. Consider the class of incomplete block designs

[6;2;6;2]. Then the design with the following incidence matrix

i.s (M,S) optimal in etr since X.. = 0 or 1 for all i j, but

it is clearly not connected by i) of this section.

T1

T2

T3

B1

1

1

B2

1

1

B3

1

1

B4 B5 B6

2

2

2

T4 1 1 2

T5 1 1 2

T,
b

1 1 2

2 2 2 2 2 2

However, by interchanging the replications of treatments T3 and

T4 occurring in blocks B3 and B
4

respectively, a design is

obtained which is connected and is still (M,S) optimal in fi

Corollary 8.1.4. Consider the class of designs tr [v;b;k].

if the parameters b, k, and v satisfy any of the conditions of

Theorem 6. 14 and if [bk/v] > 2, then there exists an (M, S )

optimal design in iv;b;k1. which is connected.
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Pf. If b, k, and v satisfy any of the conditions of

Theorem 6. 14, then the (M,S) optimal. design must be contained

in the class of designs [v; (r. ); b; k]
1

where

i, j. Since [bk/v] > 2, r. > 2 for all 1,

Corollary 8.1.2 are satisfied.

r. -r.
1 j

and the

< 1 for all

conditions of

Theorem 8. 1. 5. Let ,17[v;(r.);b;k] be a class of designs

with r. < b for each i and r (k-1) > v-1 for some
1

P. Then

if D E 711{,tJ} is disconnected, then there exists a connected design

which is S-better than D.

Pf. Suppose D E is disconnected and has incidence

matrix N. Then N can be partitioned as in i) given at the begin-

ning of this section where
1 a

are the incidence matrices

of connected subsets of treatments. Note that D must be a binary

design. Without loss of generality suppose ri(k-1) > (v-1). Now if

N1 is an m x n matrix then X. = 0 for 1 < i < m,

m < j < v. Since ri(k-1) > (v-1 ) and

m

= r (k-1), therelj 1

j> 1

must exist Xlp > 2 for some 2 < p < m. Denote one of the blocks

in which T1 and T occur together by Bu. Now choose any

block Bw w > n+1 and any treatment T occurring in block

B and assign the treatment replication of T1 occurring in block
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Bu to B and the treatment replication of T occurring in B
w q w

to B . After the interchange of replication assignments, we have a
0:17.10 gis 0,15

new design D with incidence matrix N and N N` = (X..). As in
13

the proof of Theorem 8. 1. 1, using 1 = f and q = g, we see that

---
tr(NN°)

2
tr(N N 2 > 4 X lk + 4 / Xq/ -- 8(k-1) > 0

Bu T/ Bw
f=i1

since Xlp > 2 and X
11

> 1 for T/ E Bu and Xq/ > 1 for

T E B . Now if the new design is not connected, by permuting the

i > 2 rows and columns of the new design, N can be partitioned

in the same manner as N. Note that after the partitioning, there will

still exist cif 2 for some f. Now we can repeat the argumentif
2

even above for reducing tr(NN T)
. This procedure may be followed

until a connected design is obtained or until X
13

> 1 for all j > 1.

Note that any design for which X . > 1 for all j > 2 cannot belj

partitioned as in i) given at the beginning of this section, hence it will

be connected, and the result follows.

Corollary 8. 1.6. Let Z[v;(r.);b;k] be a class of designs

and r (k-1) > v--1 for some p. Then
p

with r.. < e

the (iv", S) optimal design in 1-{ 1Y} must be connected.
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Corollary 8. 1. 7. Consider the class of designs tr[v,b,k].

if i) bk /v = r is an integer and r(k-1) > y-1 or ii) iv is not

an integer and {[bk /v] +1}(k- 1) > v- 1, then an (M, S) optimal

des ig in nlv;b;k] must be connected.

Ff. An (M,S) optimal. design in or)-[v;b;k] must be binary,

hence it must be contained in one of the classes v;(r.);b;k]

satisfying the conditions of Corollary 8. 1. 6. Since bk has a unique

representation as the sum of nonnegative integers differing by one,

any class of designs ,Cr[v.,(r.);b;k] contained in .17[N,r;b;k] must

have at least one r such that r (k-1) > (v-1), and the result
p p

follows.

For further results on the relationship between the (M,S)

optimality criterion and connectedness, the reader should see

Eccleston and Hedayat (1974).

8. 2 . (M, S) Optimality and the Estimation of
Block Effects

Using the two way classification model given in Chapter II, we

shall now investigate how the application of the (M,S) optimality

criterion to on of the treatment parameters in the model

effects the estimation of the block parameters in the model. We shall

consider the class of designs ri rf[v;(r.);b;k] where r. < b and

v > k.



The reduced normal equations for estimating the block effects

b' (b ,bb) for any design DE fr are given by
10"

where

Fb =Gti

-1 -1F = kIb - N' diag(r
1

ry )N

G = B N' di ag (r1-
1 1,r

v
)T
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(8.2. 1)

(8. 2. 2)

and N, B and T are the same as defined in (2.1.3). Let

M.F{D.} {D E 17: tr F is maximal }.

Definition 8. 2. 3. D E oV is said to be (M,S) optimal for
QM.

estimating b if D E {. and tr F < tr F2 for all

D E irrtF(D). D E .0 is said to be S-better than D E 1 for esti-

mating b if tr F2 < tr F2.

Lemma 8. 2 4. yr1F{.CT} = inter = all binary designs in ryl.

Pf. From (8. 2. 2), we see that for any design D c ,

tr F bk
-1 2r. n.

ji

Using this expression, a proof similar to that given for Theorem 5.1.1



will yield the desired conclusion.

From (8. 2. 2), for D E

tr F2 = bk
2

+ v(1 -2k) +

ji

From (8. 2. 6), we see that finding a lower bound for tr F2 in

is equivalent to finding a lower bound for

v v

r.2 x2
1 ij

i= 1 jii
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(8. 2. 6)

(8.2.7)

in F{ifi}.
But by Corollary 4. 1.2, for each fixed value of i,

= r.1 (k-1) .

j

From (8.2.7) and (8.2.8), we see that if we solve the integer

programming problem of minimizing

v
2

L! 1 LJ 1J

i= 1 jii

(8.2.8)

subject to the constraints that i) the x.. are nonnegative integers



and ii) for each fixed value of i,

obtain a lower bound for tr F2 in

we immediately get the following.
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= r.(k-1), then we will
13 1

{r5}. By Corollary 4. 3. 5,

Theorem 8. 2. 9. For any design D E )71F{fr} with incidence

matrix N,

tr F2 > kak2 + v(1 -2k) + r.2 2

ij
j

where i) the x.. are nonnegative integers, ii) for fixed values of

x = r (k- 1) and iii) x -x
I

< 1 for p q, p r.
pq p pq pr

q/p

Corollary 8.2. 10. Any design D Ern{ in such that for each

fixed value of p, pq pr 1 for q p, r p, will be (M,S)

optimal in r:r for estimating both t and b.

Note that if the rolls of blocks and treatments are interchanged

in sb"' , i.e. , we consider the class of designs .13- which are duals

to designs in er, we get the following corollary.

Corollary 8.2. 11. Let denote the class of designs which

are duals to designs in er Then any D Eff(SD1 such that for each
e."

fixed value of ID, I µpq- prI <_ 1 for q p, r p, will. be (M., S)

optimal for estimating b and t.
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The following is an example of a design which is (M,S)

optimal in r".. for estimating t but not (M,S) optimal for esti-

mating b.

Example 8. 2. 12. Consider the class of designs

ri[5; 6, 5, 4, 4, 2;7;3] which is considered in Example 8. 3. 2.
CINO

Consider also the two designs D E )3* and D E b which are

considered in that example. Now D was (M,S) optimal in xr

for estimating ,,t) If F and F denote the matrices which are

obtained for estimating e,,d) from D and D respectively; then it

is easily seen that tr F2 = 44.25555 and tr F2 = 43.99167. Hence

D is not (M, S) optimal in OCT for estimating 1,2,.

Note that if blocks are considered as a factor with b levels

and treatments are considered as a factor with v levels in Corol-

laries 8.2. 10 and 8.2.11, then any design whose incidence matrix

satisfies either of the corollaries will be (M,S) optimal for esti-

mating the levels of both factors.

We now restrict attention to the case where r. = r < b for

all i. For any design in this class,

tr C 2 vr 2 1
(1-

tr F2 = bk2 1(1-

)
2

)
2

+

+

1 tr(NN') 2

1

(8.

(8.

2.

2.

13)

14)tr(NTN)
2r



From expressions (8. 2. 13) and (8.2.14), it is clear that any design

which minimizes tr C2 in

and any design which minimizes
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will also minimize tr(NI\r) 2

tr F2 in -rn.{ser} = TrIF{B-}

also minimize tr(1\11N)
2. Hence we may state the following.

will

Theorem 8. 2. 15. Any design in =er[v;(ri);b;k] where

r = r < b for all i and v > k which is (M,S) optimal in atr

for estimating t will also be (M,S) optimal for estimating b.

8.3. (M, S) Optimality and Other Optimality Criteria

In this section, we will draw some comparisons between the

(M,S) optimality criterion and the A, D, and E optimality cri-

teria which were introduced in Chapter III.

Consider any class Fr of connected binary incomplete block

designs with three treatments such that tr C = (constant) for all

DE 4ttr. Let X1 > X2 denote the nonzero eigenvalues of a C-matrix

of a design in . Suppose D is (M,S) optimal in e. ,

2 2 2

2
< X

1
A.+ for all D E Otr Since

tr 7=71 + 7
2

= X1 +X = tr C for all. D E otr,

C12
2 + 2 7 = x

2
2X X = (tr C)2

2

2 1 2 1 2 2

for all D E ; and since D is (M,S) optimal in otr
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k
7

k >X
1

X
2

for all D E hence D is also D-optimal in er.
2

Now since D is D -- optimal,

+).
1 1 1 2 tr C (constant)

T- -
71 7'

2
7

172
7

17 2
712

hence D is also A.-optimal in tr. . Finally, it is easily shown that

= 4- X2 and 7 2 + 7,
2
2 < 2 +

1 1 2
then

>
2

>
2"

hence 7
2

is maximal in der and D is also
*NW

E-optimal in .er .

Proposition 8.3.1. For any class der of designs as defined

the previous paragraph, any design which is (M,S) optimal in

el will also be A, D, and E optimal in f, .

General results concerning the relationship between the (M,S)

optimality criterion and the A, D, and E optimality criteria for

classes of designs with more than three treatments appear difficult to

obtain. However, Takeuchi (1961) was able to show that if in any

class of connected binary designs contained in .3r[v;r;b;k]

there exists a group divisible PBIB(2) with 1 Xij m I

< 1 for all

i j, .e m, then that design will be A. and E optimal in grY

Such designs are also (M., S) optimal.

Mitchell (1971) ran a computer search for small D-optimal

designs. In the classes of designs .f:f [v;r;b;k] which he considered,
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the D-optimal design (or its dual), turned out to be either a BIBD or

a PBIB(2) with IX.. -X im < 1 for all j, f m. Such designs

are also (M,S) optimal.

However, to conclude that (M,S) optimal designs are always

A, D, and E optimal is not true as the following example shows.

Exarr2pLc8.3.2. Consider the class of designs

15;6,5,4.4,2;7;3]. By considering the class of complementary

designs [as in Section 7. 1], it is easily seen that an (M,S) optimal

design D for this class is given by the following incidence matrix.

B1 B2 B3 B4 B5 B6 B7

T1 1 1 1 1 1 1 6

T
2

1 1 1 1 1 5

T3 1 1 1 1 4

T4 1 1 1 1 4

T5 1 1 2

3 3 3 3 3 3 3

The C-matrix for this design is

12 -4 -3 -3 -2

-4 10 -3 -2 -1

1/3 -3 -3 8 -2 0

-3 -2 -2 8 -1

-2 0 -1 4



Let X1 > X.2 > X.3 > k
4

denote the nonzero eigenvalues of this

matrix, then

i) X. = 5. 1577 k
2

= 3. 9811 X.3 = 3. 3039 X4 = 1. 5593

i=1
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1/X, = 1/5. 1557 + 1/3. 9811 + 1/3. 3039 + 1/1. 5593 = 1. 3891
1

4
iii) 11 X.,

1
= (5. 1557)(3. 9811)(3. 3039)(1. 5593) = 105. 74

i=1

4

iv) tr C 2
= X. = (5. 1557)2 + (3. 9811)2 + (3. 3039)2 + (1. 5593)2

i= 1

= 55. 778

Now consider the design D in fl[5; 6,5, 4, 4, 2;7;3] given by

the following incidence matrix.

T1

B1 B2

1

B3

1

B4

1

B5

1

B6

1

B7

1 6

T2 1 1 1 1 1 5

T3 1 1 1 1 4

T4 1 1 1 1 4

T5 1 1 2

3 3 3 3 3 3 3

The C- matrix for this design is given by
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Let >7.

1/3

3

12

-4

-4

-3

-1

X.
4

-4 -4 -3 -1

16 -2 -1

-2 8 -1 -1

-3 -1 8 -1

-1 -1 -1 4

denote the nonzero eigenvalues for this

matrix, then

So

= 5. 2827 72 = 4. 1091 13 = 2. 9415 7`4 = 1. 6667

ii)

iii)

iv)

4

1/7.
1

i= 1

4
=

1. =1
1

tr C =

=

=

(5.

(5.

56.

1/5. 2827 + 1/4. 1091 + 1/2. 9415 + 1/1. 6667

2827)(4. 1091)(2. 9415)(1. 6667) = 106.42

2827)2 + (4. 1091)2 + (2. 9415)2 + (1. 6667)2

2219,

= 1.3725

i) 74 " 1. 667 > X4 = 1.5591

= 1. 3725 < 1/X. = 1. 3891
1 1 1

1=1

4 4
iii) II X. = 106.42 > II X. = 105. 74

1=1 1 1=1
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C2iv) tr C
i= 1

506/9 > tr C2
4

z
= 502 /9 ,

i =1

So D is A, D, and E "better " than D, in

,5;6,5,4,4,2;7;3] but D is (M, S) optimal in

Z[5;6,5, 4, 4, 2;7;3].
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IX. SUMMARY

The problem we have considered in this thesis is the

determination of optimal incomplete block designs when the experi-

mental material does not fit any of the usual text book situations. The

criterion used to determine an optimal design within a given class tr

of incomplete block designs is the (M,S) optimality criterion.

This criterion is to find within the class the set of designs whose

-matrices have maximal trace, denoted by Tntl, and then to

find within yntiffl those designs with minimum trace of C2; such

a design is said to be (M,S) optimal.

Chapters II and III are basically introductory. Chapter II is

used to introduce the notation and terminology which are used through-

out the thesis. In Chapter III, the (M, S) optimality criterion is

introduced. The reasons for using the (M,S) optimality criterion

to determine optimal incomplete block designs are 1) designs which

are (M, S) optimal also tend to be A, D, and E optimal since

they have C-matrices which are close to the ideal aIv + (3J
v form and

ii) its computational simplicity.

In Chapter IV, several facts and lemmas used later on in the

thesis are given. In Sections 4.3 and 4.4, the solutions are given

for two integer programming problems which occur naturally with the

(M, S) optimality criterion.
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The class = fi[v;(ri);b;k] of incomplete block designs

r. < b is studied in Chapter V. This class consists of all
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designs with v treatments arranged in b blocks of size k such

that treatment Ti is replicated r. times. 171.{-n consists of

all the binary designs in Li It is shown that finding a design innt,tn

with a minimal tr C2 is equivalent to finding a design in Mt&

with a minimal tr(NN')2 and tr(N'N)2. Using the results of Sec-

tion 4. 2, several lower bounds are established for tr(NN') 2
and

tr(N'N)2 for designs in eyn{/,'} to help the experimenter know

when a design is optimal. Through the establishment of these lower

bounds, several well known standard types of designs are shown to be

(M, S) optimal. In particular, any design whose association matrix

or block characteristic matrix has the property that Xij < 1

for all i j, f m or
i

< 1 for all i j, m, will
j m

be (M, S ) optimal. In this chapter it is also shown how lower

bounds for tr C2 can be used to show the nonexistence of certain

PBIB(2)'s with X.2 = 11+1. In Section (5.2), a lower bound is devel-

oped which is dependent upon partitioning the incidence matrix of a

typical binary design in In determining this lower bound, the set

of ordered configurations which any design must have whose incidence

matrix has tr(NNI) equal to the lower bound established are also

determined. It is shown in Chapter VII how these configurations can
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sometimes be used to help the experimenter construct an (M, S)

optimal design in rt.
In Chapter VI, the class er' --zinv;b;k] of incomplete block

designs is studied. This class consists of all designs with v treat-

ments arranged in b blocks of size k. The class 'Mf.Cr} con-

sists of all the binary designs in ,Cri. Since the ri are allowed to

vary in et the first question considered is how replications should

be assigned to treatments in an (M,S) optimal design. It is shown

that in most cases, the (M,S) optimal design in Z have

the property that I r. -r. < 1 for all i j. Using the results of
j

Chapter IV, several lower bounds are established for tr(NN') 2
and

tr(N'N) 2 for designs in -rytz}. In establishing these lower bounds

it is seen that anv binary design with I r. -r. I < 1 for all i, j and
j

whose incidence matrix has the property that I X.ii-X.smI < 1 for all

i ij, f m, or I < 1 for all i j, m, will be

(M,S) optimal in Zr[v;b;k].

Several methods of constructing (M,S) optimal designs in

bly;b;k1 and triv;(r.);b;k] are presented in. Chapter VII. In

Section 7.1, several results concerning complementary incomplete

block designs are given. Basically, it is shown that the complement

of an (M,S) optimal design in tr[v;(r.);b;k] will be (M,S)

optimal in blv;(b-r.);b;v-k] and under certain conditions, the

complement of an (M,S) optimal design in crfiv;b;k1 will be
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(M,S) optimal in [v;b;v -k]. In Section 7. 2, a method is given for

constructing an (M,S) optimal design in ornv;b;2]. Using this

construction process and the results of Section 7. 1, the (M,S)

optimal design in Z[v;b;k] where v = k+2 is also easily obtained.

Section 7.3 is used to show how (M,S) optimal designs may be con-

structed from known (M,S) optimal designs. In Section 7. 4, sev-

eral different methods of combining incomplete block designs to

obtain (M, S) optimal block designs are discussed. A heuristic

approach to the construction of (M,S) optimal designs is given in

Section 7. 5. The approach is based upon the technique given in Sec-

tion 5. 2 for determining lower bounds for tr(NN')2 in

Trif 1)1 v; r ); b; k and for determining the various configurations

yielding these lower bounds. The construction process presupposes

the existence of a binary design in Div;(ri);b;ki whose incidence

matrix has tr(NN')2 equal to the lower bounds established by the

method of Section 5. 2.

Chapter VIII contains miscellaneous results. It is shown in

Section 8. 1 that for most classes of designs Z[v;(ri);b;k] and

er[v;b;k], the (M,S) optimal design must be connected. In Section

8. 2 it is shown that many designs which are (M,S) optimal for esti-

mating treatment effects are also (M,S) optimal for estimating

block effects. Section 8. 3 is used to show that for many classes of

designs, the (M,S) optimal design tends to be A, D, and E

optimal. However, an example is given which shows this is not always

the case.
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