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ﬂ[V;(ri);b;k] and [)[v;bk]. D/[v;(ri);b;k] consists of all

incomplete block designs with v treatments arranged in b blocks of



size k such that treatment Ti is replicated r times and
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tion of optimal designs within the classes described above is also

discussed.
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ON THE THEORY OF (M,S) OPTIMALITY IN
INCOMPLETE BLOCK DESIGNS

1. INTRODUCTION

The general procedure in scientific research is to formulate a
hypothesis and then to test it. The process of hypothesis testing

nzually necessitates the coliection of observations relevant to the

3

5

woothesis. The observations are usually collected in some pattern

b

or zmccnrding to some experimental plan. By an experiment we mean
the planning and ccllection of measurements or observations relevant
+o the testing of some hypothesis. The actual planned schedule for
taking the observations is called the experimental design.

The pioneer in the theory of experimental design was the late
Sir Ronald Fisher. He dominated the history of experimental design
in the nineteen twenties and thirties. It was he who introduced the
concept of randomization into statistics. Randomization is the
principle upon which the application of statistical theory to the design
of experiments is based.

Experimental designs in which treatments are randomly
assigned over the experimental material are called randomized. All
fandornized degigns are based upon the completely randomized design
{CRD). The CRD is fcrimed by dividing the experimental material

into experimental units and then assigning the units to treatments at



random. A treatment assigned to r of the units is said to be
replicated r times. All other randomized designs can be derived
from the CRD by placing restrictions upon the randomization pro-
cedure.

It is sometimes beneficial to partition the experimental material
into blocks which are more homogeneous and randomly assign the
rreatments within each block. Such designs are called randomized
“isck designs and are used in many fields of research. However, if
the number of treatments is too large to preserve homogeneous condi-
tions within complete blocks, or the size of the blocks is determined
by the nature of the experiment, then incomplete block designs are
used. A wide range of these designs is available for planning
experiments in blocks of equal sizes but with a smaller number of
experimental units than the total number of treatments. An experi-
menter who wants all the contrasts between treatments to be con-
founded with blocks to the same extent may use a balanced incomplete
nlock design. A balanced incomplete block design may be constructed
for any number of treatments which occur in blocks of equal size;
but may require a large number of replicates. If the experimenter is
willing to accept that some of the pos sible treatment contrasts are
more confounded than others, one of the various partially balanced
incomplete block designs listed in the standard works on experimental

design may be used. Partially baianced incomplete block designs



usually require a smaller number of replicates. However, the
available lists of designs published in the literature have been
restricted to balanced incomplete block designs and partially balanced
incoinplete block designs with two associate classes. Such lists may
not include the number of treatments the experimenter is actually
interested in or may supply him with plans that require too many
replicates.

The high degree of symmetry in the pattern of balanced and
partially balanced incomplete block designs is in many respects a
desirable property. But the restriction of the designs to equal num-
bers of treatment replications and equal block sizes may be a serious
practical obstacle in many experimental circumstances. Suppose for
instance that the effects of a number of virus innoculations on mice
are to be determined. It would be natural to use litters as blocks,
but if the litters were of unequal sizes or one of the viruses was in
short supply, an incomplete block design with differing block sizes
and differing numbers of replications might need to be used.

The above mentioned restrictions as well as other possible
restrictions in the use of balanced or partially balanced incomplete
block designs give rise to the ''make-shift'' production of designs to
deal with practical situations. Even though there may be severe
limitations placed upon the construction of such designs, the experi-

menter usually has some freedom of choice and may therefore wish to



know which of the possible designs is most desirable in the given
circumstances. In certain cases there may exist known solutions, but
in general the problem may be difficult to answer.

From the class of designs capable of achieving the
experimenter's goals, a decision must be made as to what design to
use. The decision is usually based on physical, economical, or
statistical factors. The use of a statistical standard or criterion to
choose a design is commonly known as the theory of optimal design.
It will be the purpose of this thesis to study the application of the
(M,S) optimality criterion to several classes of incomplete block
designs. Properties of the (M,S) optimal designs within the se

classes and methods of construction will be discussed.



II. BACKGROUND AND DEFINITIONS

In this chapter, we introduce the terminology and notation which
will be used throughout the remainder of this thesis.

y e Tv} denote a set of v treatments. Let
there be n = k,1 experimental units arranged in b blocks,

denoted by Bj, j=1,...,b, with Bj containing k., units. By
J

an incomplete block design with parameters v, r .>r ,byk k
v

10 17k

and incidence matrix N, we shall mean an allocation of the v
treatments in $2, one to each of the n experimental units, such

that treatment T. is replicated r. times and the v xb matrix

i

N = (n..) where n. denotes the number of experimental units in
1] J

block Bj receiving treatment T.l. We shall denote such a block

design by D[v;r

1"""rv;b;kl""’kb;N]' If n,. assumes only

1]

the values zero or one, the design is called binary. If nij assumes

only the values zero, one, or two, the design is called ternary, etc.
We shall sometimes use the notation Ti € Bj to indicate that treat-
ment T. occurs in block B., 1i.e., nij > 1.

i

A block design in which r.=r for each 1 is said to be

eaui-replicated and is denoted by D[v;r;b;kl, N ,kb;N]. A block
design in which k., = k for each j is called proper and is denoted
by D[v;rl, RN rv;b;k;N]. Thus a proper equi-replicated block

degign is one for which r = r for all i and kj =k for all j.



Such a design is denoted by D[v;r;b;k;N].

In experimental design NN' is called the association matrix
and N'N the block characteristic matrix where N' denotes the
transpose of N. The entries of NN' and N'N shall be denoted

by M. and e respectively. Note that in binary designs, A .
i ] Y

indicates the number of blocks treatments Ti and Tj occur in

together and ., denotes the number of treatments that blocks B,

and B. have in common.

J
The statistical model used throughout this thesis in the

g~

discussion of incomplete block designs is one with fixed block effects.

The actual model used is the usual additive two-way model:

Yijk = n o+ ‘c,1 + bj + eijk
where
Yijk = kth observed response of the ith treatment in the jth
block

i = the overall mean effect

t.l = the effect of ireatment T.1

bj = the effect of block Bj
and the e.. . 's are random variables which are uncorrelated, have

ik

2
miean zero, and have constant variance ¢ . The normal equations

for estimating the parameters are:



v
- A )
nfi + Zr’t\ + Zk_b, = ZZY
11 JJ 1
i=1 j=1 ij
A A
rug+r.t +Zn..b.:Zy y  1=1 "V (2.1)
1 i1 ij ] ij
] i
S
k?L"an t+k’&:ZY s J:l’ :b
J 11 J 1]
i j
Let diag(al, oL ,an) denote a matrix with entries a, on
the main diagonal and zeros elsewhere and let R = diag(rl, e rV)
and K = diag(kl, Ce ,kb). From the normal equations, the reduced
normal. equations for estimating treatment contrasts are easily
derived to be
A
Ct=Q (2.2)
where
N ”n o s )
L= (t\l’ Con ,tv) is any solution to (2. 2)
-1
C=R-NK N'
-1
Q=T-NK B
(2.3)
T = column vector of treatment totals
B = column vector of block totals.

The matrix C defined in (2.3) is called the coefficient matrix of the

design or the C-matrix.



A linear combination 4 :'&:C,: lltl +...+ lvtv of the treatment

effects is said to be estimable if and only if there exists a linear

. N ] . 1 — !
combination ¢ ¥, of the observations such that E(’c‘:‘l{) =4, t, One
can easily verify that A"’E' is estimable with respect to a particular

design if and only if £ is in the column space of the C-matrix of

the design. A set of estimable functions £ 'lt, ...,2' t of the treat-

ladiad o~

ment effects is said to be linearly independent if the vectors

1 TR . 4 n form & linearly independent set. For any estimable

Ll

function '&"9 the minimum variance linear unbiased esatimator

({(B.L.U.E.) is where :_1?, is any solution vector to (2.2).

If the goal of the experiment is to estimate treatment
differences unbiasedly, or test the hypothesis that all treatment effects
are the same, then the concept of connectedness plays an important

role. An incomplete block design is said to be connected if its coef-

ficient matrix has rank wv-1. If a design is connected, then

2.t +...+t 12 ¢t is estimable if and only if £  +. ..+ ¢ =0, in
171 vV 1 v
which case the linear function ,&:9 is called a contrast. FElementary
contrasts are those of the form t,1 -t and if a design is connected,
J

all such contrasts are estimable.
The two most frequently studied types of incomplete block
designs are the balanced and partially balanced designs. A proper

equi-replicated binary incomplete block design in which each



treatment occurs with every other treatment X\ times is called a
balanced incomplete block design (BIBD) and is denoted by
BIBD[v;r;b;k;\].

The characteristic property of the BIBD is that the variance of
all best linear unbiased estimators for elementary contrasts is the
same, i.e., var(?i—?,) is constant for all i ¥ j. An alternative to
the requirement of balance in a block design occurs in the usage of
partially balanced incomplete block designs. For the definition of a
partially balanced incomplete block design with m associate
classes, denoted by PBIB(m), the reader is referred to John (1971).
In a PBIB(m) design, all elementary treatment contrasts are not
estimated with the same precision.

The dual of an incomplete block design is obtained by
interchanging the roles of blocks and treatments. If N is the inci-
dence matrix of an incomplete block design, then N' will be the

incidence matrix of the dual design.
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III. INTRODUCTION TO (M,S) OPTIMALITY

A design is said to be optimal within a specified class of designs
if it is determined to be "best" by some well defined criterion.

Manv researchers have tried to characterize the optimal designs
within a given class of incomplete block designs according to various
criteria. This task is difficult in most situations. Many papers have
been written on the subject of optimal design. Some of the most
notable contributions to the theory have been made by Wald (1943),
Fhrenfeld (1955), Kempthorne (1956), Masuyama (1957), Kshiragar
(1958), Kiefer (1958, 1959, 1960, 1971, 1974), Shah (1960) and Takeuchi
(1961).

Important aims in experimental design are to estimate treatment
effects with maximum precision or to perform a test of a null
hypothesis. These considerations lead to different criteria for choos-
ing among the designs in a given class.

Consider a class J¥ of connected incomplete block designs
with v treatments. The three most well known and used optimality
criteria to determine a best design in J{J are the A, D, and E
optimality criteria. These criteria are defined in terms of functions
of the nouzero eigenvalues of the C-matrices of the designs in .
Let XN.,...,\ be these nonzero eigenvalues. The A, D, and

1’ v-1

E optimality criteria are defined as follows:



A-optimality:

D-optimality:

¥ -optimality:

11

. \ -1 . o

minimize Z)\i . This is equivalent to minimizing the
i

average variance of all elementary treatment contrast

estimates.

-1
minimize Il )\i . This is equivalent to minimizing the
1

generalized variance of the estimates of any set of v-!
independent estimable functions of the treatment
effects.

. -1 .
mirimize the maximum X, . This is equivalent to
i

minimizing the maximum variance of the estimates of

all normalized estimable functions of the treatment

] . . . 1 —
effects. [,).)L is normalized if l\,z\/ = 1].

The three criteria mentioned so far are based on different

considerations and need not necessarily agree in comparing two given

designs.

Which criterion should be adopted depends upon the aim in

conducting the experiment. But most often the experimenter is inter-

asted in both the interwval estimation of the treatment effects and the

test of a null hypothesis.

We now set about defining the optimality criterion with which we

will pe concerned. It is easily seen that when a design D has a

v-1

C-matrix with maximal tr C = Z)\i and all of its nonzero

i=1
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eigenvalues equal, then that design will be A, D, and E-optimal in
ﬂ . Rao (1958) has shown that for the C-matrix of a connected
incomplete block design to have all of its nonzero eigenvalues equal,
it must have the form aIV + ﬁJV where IV is the v x v identity
matrix and Jv is that v x v matrix whose entries are all one. A
design having a C-matrix of the form aIV + ﬁJV is called variance
balanced. When a design exists with a C-matrix of the form
aIV + BJV, it is easy to show that a = (tr C)/(v-1) and
B = -(tr C)/(v(v-1)). So if there exists a variance balanced design
De J[J whose C-matrix has maximal trace, then that design will be
A, D, and E-optimal.

However, if in JJ there does not exist a variance balanced
design with a C matrix of maximal trace, it seems reasonable to find
a design D e «J whose C-matrix has maximal trace and is close in
some sense to the desired a[v + ﬁJV form. We now define in what
sense we want the optimal design to be close to the desired
aIV + ﬁJv form.

Let ¢ ={all v xv symmetric matrices} and let ({,<,>)
denote the finite dimensional inner product space consisting of §
and <A,B>=tr AB for A,Be {. Define anormon { by
| Al 2 = <A, A> for Aec¢{ and define the distance between
A,Be { tobe |A-B = CA-B,A B> Note that this is simply ar

extension of the usual Euclidean norm to the set of v x v matrices.
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As before, let JJ be a class of connected incomplete block
designs. We would like to find that design D e ﬂ whose C-matrix
has maximal trace and such that I C-aIV—BJVH . has a minimal
value. Let JV{LJ} denote the set of designs in JJ  with maximal

trace. So we want to find De U} such that

tr(C-al -BJ )2 = min tr(C-al -BJ )‘2
v v v

D MO} v
But since for all D e M{SJ}, tr C 1is constant and CJV =0
(from 4.2.1) it is seen that we are simply looking for D ¢ M{@
2 ;
which has a minimal value for tr C . So in finding a design
De AL} which is "close” to balanced, we are finding a design in

JY which is approximately A,D, and E optimal.
v-1

2 2
Note also that tr C = in . Thus, since tr C 1is constant

1.:1 .
- . 2
for all D e ST}, finding D¢ TVU{L} such that tr C is
v-1
.. . . L. -2
minimal is equivalent to finding D e M{m such that Z ()\,1-)\)

vol i=1
is minimal where (v-1)\ = Z xi . So in finding D e JN{L} with

i)

minimal tr CZ.,. we are finding D e ﬂ who se average nonzero
eigenvalue is as large as possible and whose individual eigenvalues
are as close together as possible.

More generally, let Y be an arbitrary class of designs with

v treatments and b blocks and a fixed number of experimental
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units n. Let Yﬂ_{,@‘} be as defined above. We give the following

definition.

Definition 3. 1. De & is said to be (M.S) optimal if
iy : =2 2
De YU} and tr C” <trC for all D e MDD} A design
D« L0 is said to he S-better than a design D e Do

-2 2
tr C < tr C

The idea of minimizing tr CZ originated with Shah (1960) who
suggested its use in settings where tr C is constant for all designs
in a given class LY . Shah's criterion was extended by Eccleston and
Hedayat (1974) to the (M,S) optimality criterion given in Definition
3.1. . The notation of Definition 3.1 was also used by Eccleston
and Hedayat. However, the motivation and justification for usage of
the (M,S) optimality criterion given above is different than that
given by previcus authors. and for that reason was included in this
thesis,

A distinct advantage of the (M,S) optimality criterion over
other criteria is its computational simplicity. Note that using the
A, D, and E optimality criteria depends upon the knowledge of the
actual eigenvalues of the C-matrices of the designs in L, or the
computation of various determinants for designs in 5. Hence it
may be computationally difficult to find the optimum design in L

particularly if the number of treatments is large or the class of
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designs D s large. The (M,S) optimality criterion on the other
2

hand has a somewhat simple computational form since tr C is

simply the sum of the squares of the elements of C.

Definition 3.2. Let mv;(ri);b;(kj)] denote the class of

incomplete block designs consisting of v treatments arranged in b

biccks such that treatment Ti is replicated r, times and block

B'; contains kj experimental units. Let .O'[v;b;(kj)] denote the
J

~iass of incomplete block designs with v treatments arranged in

b blocks such that block B. contains kj experimental units.

Note that the difference between the two classes of designs
defined above is that the r. are fixed in ﬂ[v;(ri);b;(kj)] where as
they are allowed to vary in mv;b;(kj)].

The classes of designs we will generally be concerned with are

1 J
.D'[v;(r,l);b;k] and ﬂ[v;b;(kj)] where kj:k for all j, denoted

Blv;(r.);b;(k.)] where kj:k for all j, denoted by

by Plvib;k]. In the following chapters, we shall give some of the
properties and say something about the construction of (M,S)

optimal designs in ﬁ[v;(ri);b;k] and Jrlv;b;k].
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IV. PRELIMINARY FACTS AND LEMMAS

In this chapter we shall give some facts and lemmas which will

be referred to throughout the remainder of this thesis.

4.1. Facts Concerning Incidence Matrices

Let Djv;r ST ;b;kl, .. .kb;N"; be an arbitrary binary
L v !

1

incomplete design. Recall that N is the incidence matrix of the

design. In this section, some simple results concerning N = (nij),

NN' = ()\ij), and N'N = (}Lij) will be given.

Lemma 4. 1. 1. Suppose D[v;rl,...,rv;b;kl,...,kb;N] is

an arbitrary binary incomplete block design, then

it
o

i) for fixed p. Zn
Pq P
q

H
=

ii) for fixed ; z n
4 P9 q
p

iii) max[0,r *r -b]< A < minlr ,r |
' P 4 - Pq P q

iv) max|0, kp+kq-v | < Hpq < min -[-kp’ kq]

v) for fixed ) Z)\ = z (k. -1)
P P9 m

q#p Tpe Bm



b
vi) ZZ A = E k (k -1)
Pq / m m

p#q m=1
vii) for fixed , : v = {(r -1)
! P /, "pq m
B
q%’p Tme p
\'%2
viii) ZZ n = }: r (r -1).
j moom
piq m=1
Pi. i) n denotes the number of experimental units
receiving treatment T in block B . Since treatment Tp is

applied to r experimental units, it must be that zn =r .
p + Pq p

ii) Similar to i). 4

iiij] Note that )\pq represents the ordinary Euclidean vector
inner product of the pth row of N withthe qth rowof N.
Since there are only rp ones in the pth rowof N and r
ones in the qth row of N, itis clear thatthe inner product
between these two rows cannct exceed r’ninirp, rq;!;. Also, A\
must be a nonnegative integer, but if rp + rq >b, then the least
numbe r of blocks that treatments Tp and Tq can occur in
together is r +r -b, hence \__ >maxi0.r +r -b; Hence we

q Pq p q

have the desired result.

iv) Similar to iiis.

17
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v) Note that for fixed p, Tp occurs in rp blocks, and
each block B containing T contains k -1 other experimen-
m P m
tal units to which the remaining v-1 treatments can be assigned.
Hence there are Z (km-l) experimental units in the r

T ¢B
p m

blocks containing Tp to which the remaining v-1 treatments can

o

;¢ assigned. Now )\pq indicates the number of experimental units

2ssigned to treatment T in blocks containing Tp, hence when p
ia fixed, it must be that Z)\ = Z (k -1).
7 Pq m
T ¢B
q7p pe m
vi)vvx :Z Z)\ ZZ Z (k —1):§k (k_-1)
lils P9 Pq m L, m m
p#q P q7p p T B, m

since there are k treatments in block B
m m
vii) Similar to v}.

viii) Similar to vi).

Corollary 4. 1.2. When D[v;rl, ce s rv;b;k;N] is a proper

binary incomplete block design, then

i) for fixed p; K;}u =r (k-1)
Ls P9 p

a#p
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0 I3 = et
Pq

p?q

Lemma 4.1.3. Let D[v;r .,rv;b;kl,...,k;N] be a

17 b

binary incomplete block design. If N is partitioned into Nl and

NZ where Nl consists of the first vy rows of N and N2

consists of the remaining Vv - v, TV, Trows of N and Bi

represents that part of block B,1 in the Nl portion of N and

bl represents that part of block Bi in the N2 portion of N,

then
i Y1 b
T N N % ES 5K
i)y 2 ZJ Z hN = 21(, (k. -1) where k., is the number of
joJe i i i
p=1 g>p i=1
experimental units assigned to B1
v v b
ii) 2 Z Z)\ = Sk.ﬂw(k:ﬂq\-l) where k is the number
pa L, i i i
p=v1+l q>p i=1
of experimental units assigned to B1
Vi v b
i) 2 Z N =2 Zk."t(k. )
pq i i
p:1 q:v1+1 i=1

Pf. i) Similar to the proof of 4.1.1 vi).

ii) Similar to the proof of 4. 1.1 vi).
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......

iii) k. +k. =k, and
1 1

1 v
2 z Z \
: Pq
p‘l q:vl+l
v Vv Vl Vl v v
=2 N2 ) N -2 Z Z \
Pq L pq Pq
p=lg>p p=1 q>p p=v,tl qp
b b b
= > (k. +k. )Mk.+k. -1) - Zk (k. -1) - T(k Yk, -1)
41 i1 L 1 i
i=1 i=1 i=1
b
=2 kaﬁ(kf" )
1 1
i=1

Note that this last lemma can be extended to further partitions
»f N in an obvious manner, i.e., by partitioning N1 and NZ,

etc.

4. 2. Facts Concerning C-Matrices

In this section, several facts and lemmas concerning the
coefficient matrices of designs will be given.

Let N(A) and R(A) denote the null space and column space
respectively of an arbitrary matrix A. Let R" denote Euclidean
v-space. It is well-known that the C-matrix for any incomplete block

design with v treatments has the following properties.
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i) Cl =0 where 1 isa vxl wvector of ones.
o~

ii) R(C) _C_ ; where . denotes the orthogonal (4.2.1)
complement.

Let r(A) denote the rank of a matrix A. Let P denote

the orthogonal projection on R(A) where A 1is some matrix.

Then it can be shown that (Rao,(1973))

. 2

i) tr P~ =tr P = r(A), (4.2.2)
Using (4.2.2), the following lemma can be proven.

Lemma 4.2.3. Suppose C is the coefficient matrix of an

arbitrary incomplete block design and let PC denote the orthogonal

projection on B_(C), then

[tr C]Z

2
>
tr C > =(C)

and equality holds if and only if C = YPC for some scalar Y.

Pf. Let ({,<,> denote the finite dimensional inner product
space for v xv symmetric matrices introduced in Chapter ITT. Let
P denote the orthogonal projection on R(C). By the Cauchy-

S5chwarz inequality and (4. 2.2),
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i

2 2 2
[tr C]7 = [tr(P C)]7 = \<C,PC>| < <C,C><P_,P >
C - z

e C%)(tr Pi) = (tr CH)(2(CY) .

i

Also from the Cauchy-Schwarz inequality, we get equality if and only

4.3, A Minimization Problem

In this section, a solution will be given to a minimization
problem which occurs throughout the sequel. An application is also
given.

Let = (%5 xn). We wish to find the minimal value for

n
f(x) = fo (4.3.1)
i=1

over the set of vectors F satisfying

i) the x., are nonnegative integers
1

n
ii) g(gcl):zxi:c (4. 3.2)
i=1

iii) b, <x, <e¢,, 1i=1,...,n
=i -

where «c, bi’ and c, are nonnegative integers for i= 1l,...,n.
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Lemma 4.3.3. Let x=(x,,...,x )¢ F. If there exists p
~ 1 n
and q suchthat 1)x_-x >2, 2)b_ <x -1 and
P q~ P~ P
+ 1< , 1 < .
3) xq < Cq then there exists Y ¢ F such that f(’x) f(’)&)

Pf. Suppose x¢ F and there are components xp and x

of satisfying conditions 1), 2), and 3) of the lemma. Let

X
(44

o~

v =(y,, ...,y ) where y =x -1 and y =x +1 and v, © %
As .

1 n P P a 4q
for k #p, k#q. Clearly ze F and

But x -x >2 and so f(y) < f(x) which implies the desired
P q~ A ~

I.et G denote the set of vectors x ¢ F having no components
satisfying conditions 1), 2), and 3) of Lemma 4.3.3. DBy the lemma,
we know that the set of vectors minimizing f(}s) subject to the con-
straints must be contained in G. Let P G and let

7 =1{i,...,n} denote the subscripts of the components of %, and X

If possible, find ,q € J such that x = and x = and
P P> q P Yq q Yp

remove these subscripts from J. Repeat this procedure until no p

and o existfor which x_Fy and x =y . Let J denote the
P q q p

remaining set of subscripts and let z(, and z be those vectors

whose components are the same as those of x and y and whose
o~
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subscripts are in 7. Observe that if TI' = ¢, then f(’g) = f%).

Now suppose J 7 ¢. Let ‘X—u = max{X}. If x <y, then since
1 u u

5‘ X, = } Y., there exists y  such that " > . But then
Ll 1 " - 1 v v v
1eJ ieJ

Vv < ;v < ;u < -);u and we see that L has components satisfying

conditions 1), 2) and 3) of Lemma 4.3.3. But this is impossible

since ye G. If x_ >y, then since 2 X, = % V., there
0 u u 1 1
-—

ied ieJ
. e . L) — — - L 4 .
exists x <y such that x #y_ or x 7y . Without loss of
v v u v v u
_— - —— ke — —— ——
enerality, assume X iy . If > , then > > x ,
g Ly . u yv Xu Yy *u Yv v

and we see that ’)-CJ has components satisfying conditions 1), 2) and

3) of Lemma 4.3.3. But this is a contradiction since ze G, hence
no such situation can occur. If X < '57' , then 7 <x < ';r- ,
u v u u v

and we again see that Y, will have components satisfying the condi-
tions of Lemma 4. 3.3, a contradiction. Hence we see that T must

be the empty set. Thus, all vectors in G give the same values for

f(x), hence they are all optimal solutions.

Theorem 4.3.4. The set of vectors x minimizing (4.3.1)

subject to constraints (4.3 2) consists of those vectors Pt F having
no components x and x such that 1) xp—x‘ > 2,
q :

2) b < x -1, and 3) x tl1 < ¢
PT P q - q
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n

.. 2
Corollary 4.3.5. The minimal value for f(}(}) = Z X, subject
i=1

to the constraints that the x, are nonnegative integers and
n
<

x, = ¢ is achieved when |xi—xj| <1 forall i,j.
- -

i=1

Note that Theorem 4. 3.4 characterizes the set of points which
yield minimal values for f(’{c) subject to the constraints (4.3.2).
The proof of Lemma 4. 3.3 also yields a simple algorithm for finding
zhis minimal value. If B is any vector satisfying the given con-
straints, and if there exists components x and Xq of x such
that x -x >2, x -1>b, and x +1<c, then by forming

p q p p q q
the vector Y, where Yp = Xp -1, Yq = Xq +1, and Vi =% for
k#p, k#qg, wehave f(X/) < f(:c,). By continuing this process until
shere does not exist components of the derived vector satisfying con-
ditions 1), 2) and 3) of Lemma 4. 3. 3, the minimal value of f sub-

ject to the constraints will be achieved. Use of the algorithm is

illustrated in the following example.

Example 4.3.6. In Lemma 4.3.3, let n = 6, ¢ = 33, and let

(8,10), (6,8), (0,6), (0,6), (0,5) and (0,4) represent ordered pairs

ib,c), i=1,...,6, such that b. < x, <c.. Now
i’ i—"1— 1

x=(9,8,5,5,3,3) is a vector satisfying the constraints and
~r

f(f,) = 213. Proceeding as outlined above, we obtain the following

series of vectors and values of f(y).
Fatd
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y f(y)
(8, 8,5,5,3,4) 203
(8,7,5,5,4,4) 195
(8, 0,5,5,5, 4) 191

So the minimal value for f(z) subject to the constraints is 191.

The algorithm given above for minimizing fgzs) subject to the
constraints will be referred to as algorithm (4. 3) for the remainder

of the thesis.

oo

As seen in Corollary 4. 3. 5, the minimal value for X

subject to the constraints that the x, are nonnegative and
n

in = ¢ is achieved when lxi~xj| <1 for all 1i,]j- An easy way

i=1
to determine the actual minimal numerical value is the following.

ILet r = [c/n] where [J denotes the greatest integer function.
Then write ¢ =nr +s =nr +s +sr - sr = (n-s)r + s(r+l). Hence
s of the X, =r+1 and n -s of the X, = r. Note that this rep-

resentation of ¢ as the sum of nonnegative integers differing by one

n
.. , N 2.
is unique, and that the minimal numerical value of Z x, 18
1

2 i= 1

(n»s)r2 + g(rt+l) .
The first step in applying the (M,S) optimality criterion to a

class Jf of incomplete block designs is to determine mMALT.

The next lemma offers a partial solution to this problem. Recall that

ﬁ[v;(ri);b;(kj)] denotes that class of designs with fixed values for
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r, and k, and D’[v;b;(kj)] denotes that class of incomplete block

only, i.e., the r.  are allowed

designs with fixed values for kj :

ﬂ’[v;b;(kj)] denote that subclass of mv;b;(k].)]

to vary. Let ]

having incidence matrices N = (nij> such that lnij ~n,1,j| <1 for

each j and all i7i'

Lemma 4.3.7. a) m{mv;b;(kj)]} = Di[v;b;(kj)].

b) if ﬂl[v;b;(kj)] ~ ,D'[v;(r.l);b;(kj)] 7 4, then

m{D‘[v;(ri);b;(kj)]} = 3'1[v;b;(kj)] ~ .D'[v;(r.l);b;(kj)]-

Pf. a) For each D « Bz[v;b;(k‘\‘]

v b v
\| - L2
i) trszr.~Zk.1 n,,
i J 1
i=1 j:]_ 1:]_
v
ii) §‘n,, = k. for each fixed j.
-~ 1) ]
i=1

iii) |n,-n,.| <1 for each j and i7"
ij i —

By applying Corollary 4. 3.5, it is clear that

-D'l[v;b;(kj)] C m{ﬁtv;b;(kj)]}. Now observe for

De m{ﬁ[v;b; (kj)]}, that i) and ii) above must be satisfied. Further-

more, if D %ﬁlkmb,F, it is easy to sos usging Corcllary 4.3.5 that trC
" [vibi(k )]

will not be maximal, hence swwe must have D e ﬁl . )
' 1

b) The proof is straight forward using (a) and the fact that

ﬁ[v;(ri):b:(kj)] C mv;b;(kj)]-
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Corollary 4.3.8. If ﬂ[V;(ri);b;(kj)] has the property that
lriurj\ <1 for all 1i,j, then

“Yi“til?'[v;(ri);b;(kj)l} = D’[v;(ri);b;(kj)] ~ D'l[v;b; (kj)]-

Pf. From Lemma 4.3.7, it must only be shown that

Dlvi (x )i (e )] ~ I lvibs (k)] 7 o
J

Bv Lemma 4. 3.7 dﬁ'l[v;b;(kj)] = m{ﬂ[v;b;(kj)]}. Let

iy« g{,b,fk}} and suppose 1 - r_ >2 for some P and q.
1 i P 9~
For some o, it must be true that npo = nqo + 1, otherwise
rp < rq. For some such o, let D be anew design with inci-
dence matrix N with n’r‘ = n and nﬁ\ = n and
po qo qo po
nlllw =n for all other u,w. Clearly D « ﬂl[v;b;(kj)] and
1 =y -1 and rq\ =r + 1. Now
P P q q
1 2 2 *2 2
tr C - tr C = + =0,

n tn -n - n
k
po/ko po/kO po/kO qo/ o

hance tr C =tr C . Since this argument may be repeated whenever

r - rq >2, it follows that there exists a design in ﬂl[v;b;(kj)]
j%

with Erp—rq‘ < 1, and the result follows from the previous lemma.



29

4.4, A Maximization Problem

In this section, the solution is given for a maximization problem

which occurs later on in this paper.

Let A be the set of vectors a=(a.,...,a ) and let B be
~ 1 s
he set of vectors b = (bl’ Ce ,bs) satisfying the following con-
sty aints:
i) a, and b,l are integers for i-=1,...,s
i) O <§_‘ai <c+p for i=1l,...,s and ¢ and p are
integers such that c¢,p > 2
‘1'1‘1)0<_bi<_'c for i=1,...,s (4.4.1)
s
iv) ; a, = (ctp)k-1) where k 1is an integer and k > 3.
-
i=1
s
v) qu, = clk~1).
YAVt

-
il
—

vi) s is a fixed integer such that k < s < (ctp)(k-1).

We wish to find max max f (a,b) where

b
5 pas
;aJGA ’k\),eB

S
B 2
fs{.%’.ba) = E;a,lb.1 - Zai )
i=1

i=1
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Note that for fixed 'z}e A, fs(’%,b) is linear in each of the

components of b, So for fixed a2 A, to find max fs(}%’}\)')’
beB
~

select those a, which are maximal and let the corresponding b,1

assume the maximum value imposed by the constraints. But
s

0 <b. <c and Zb, = ¢(k-1), hence to find maxf (a,b) for acA,
S S N A

1 SNII‘)‘
i=1 ReB

pick those k-1 of the 2, which are maximal and let the corres-

ponding bi = c. Clearly, if ge A, anyvector derived by permut-

ing the components of a is in A. In particular, if 3¢ A, let

:a; be that vector obtained from 3, by permuting the components of
~
3, such that a, 22, >... 2> a and let A be the set of all such

ordered vectors. For ac¢ A

k-1 s
s ~2
max f (a,b) = max { (3’13): c ZAa - S‘a, .
N’ E
beB 5777 peB °7 e
~ ~ i=1 i=1
Let
k-1 s
A \ A2
gs@) c Zai d,l
i:]_ 1:1
AN . s )
for all a ¢ A. Clearly maximizing f (a,b) over A and B is
~/ g eV v

A
equivalent to maximizing gs(g_) over A.

A N
Now let A be partitioned into equivalence L(élalss Am

A
according to the rule that %e Am if and only if Z‘Qi = m. Note

i=1



31
that for a given value of s, m will assume all values between
max|0, (c+p)(2kas-2)] and (ctp)(k-1). Within the equivalence

N
classes Am, we have by Corollary 4. 3.5 that

k-1 s
2 2
max g (%)ch— Y’S - 2
P 5 r~ VR i
ae€A . .
~ m i=1 1=k
A A A A N A
where a. >... >a , a,-a <1, and %@ ‘a2 <1
l_ - S ]. -]. k s -

Since the maximal value of g achieved within each
. N . . . .
equivalence class of A is unique and since the vector which achieves
the maximal value within each equivalence class is unique (by the
. A o
ordering in A), we may look for the set of vectors maximizing
A A A~
g .(g) among those vectors in A where |2, -2, | <1 and
s 1 k-
|'3k-’38| < 1. Denote this latter set of vectors by A. So finding

: N
the maximal value for g, over A is equivalent to finding the

maximal value for g, over A. Now let M denote the set of
k-1

integers m such that theve is :.%E A with Z'Ki = m. Note that this
i=1

relationship defines a one to one correspondence between vectors in

A and integers in M. If we consider the function hs(m) = gs(?v)

where E is that vector in A corresponding to m, then maxi-

mizin h over M is clearly equivalent to maximizin over
s y s

A. Note that for m ¢ M and the corresponding a ¢ A,



k-1 s
- N L2 "
h(m)—“g(a)‘cm~33—2aa,
s 5 / i
i=1 i=k
so
k-1 )
=2 = 2 N\ -2, — 2
h (mtl) = c(m+1) - Za (a +1) - Z (a.)-3= -1)
s 1 p q
i=1 i=k
i¥p ifq
=h (m) -22 +2a +tc¢ -2
g p q
where =2 :"'a:\'kn1 and ?fq :gk' Hence
+1) = - 23 +2% tc -2
hs(m 1) hs(m) a a te
Similarly,
h (m-1)=h (m)+2a, -2a +c¢-2,
s s 1 s
Proposition 4.4. 2. The property that Zl -ia—s < (ct2)/2  and
a “a, >(c-2)/2 characterizes all vectors a e A whose corres-
k-1 k — )

ponding values of m ¢ M maximize hs(m).

Pf. Observe that vectors satisfying the conditions in
Proposition 4.4.2 exist since k < s < (ctp)(k-1). Let me M

let E/ be the corresponding vector in A. From the paragraph

32

and

preceding the proposition, we see that h (mt+l) >h (m) if and only
bl

S

if
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+c¢c-22>0

or

and hf‘(m—l) > hs(m) if and only if

h {m-1) -h {m)=2a, -2a_ -c¢c-22>0
s s 1 s
OY
- — ct2
- > e,
8”1 as 2

So for any value of m to yield a maximal value for hs in M,

the vector in A corresponding to it must have the property that
Ek l:ak > (c-2Y/2  and 31 —Es < (c*2)/2. To show that this property
characterizes all vectors in A whose corresponding values of m

rnaximize hs(nl), let Ee A  have the property and let m e M

he the corresponding integer. Consider hs(m+t) where t 1is a

positive integer. If :é is that vector in A associated with mtt,
since mtt >m, we must have Ekv«l <—Ek~1 and 'Ek f_Ek, hence
that Ek—l_a.k z"ék_l—’ak > (c-2)/2. From above, we see that this

implies hs(m+t+1) < hs(m+t), hence that hs(m) zhs(m+t) for all

cositive integers t. Similarly, consider hs(m—t) for all positive

= . . Ll .
integers t. If a s that vector in A corresponding to m-t,
we must have 31 <32, and Es _?_'aTs, hence that
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1—3q _<_-afl—'afs < (c+2)/2. From above, we see that this implies

i1

hs(m~t)_>_hs(m~t—l) for all t, hence that hs(m)Zhs(m—t) for

all t.

Note that the characterization given in Proposition 4. 4. 2 gives
an easy algorithm for determining the maximal value of hs(m).

Let ae A be any vector for which a.-a < 1. Let

Fard 1 S
R.o={a,...,2 =@ ,...,2 ). i
Ry (al, akml) and S1 (ak as) Now simply go through
“he procedure of simultaneously adding one to the minimal value in
R, and subtracting one from the maximal value in S1 until a

vector whose components satisfy Proposition 4.4.2 is found. The
algorithm will be referred to as Algorithm (4.4) throughout the
remainder of this paper. The following example will illustrate its

nse.

Example 4.4.3. Find the maximal value for aib_1 - a,
6 . .

subject to the constraints that Z a
¢

[

i
> b, = 6{(2). Note that s = 6, ¢

1
2) = + = =5 =5 -3 = - == = .
Yy = 4(3) + 2(2), let a, Ta,a; a2, 3 and ag = a, 2

Using the algorithm, we obtain the following sequence of Ri and Si'
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R1:(3,3) Sl:(3,3,2,2)
R, = {4.3) 52:(3,2,232)
R3 = (4,4) S3 =(2,2,2.2)
R4:(5,4) S4:(2,2,2>1)
R51(5¢,5) 852(2,2,1,1)

Note that all of the vectors /é—/ obtained at stages 3, 4, and 5
satisfy Proposition 4.4. 2 and they all yield a maximal value for

f (a,b) of zero.
g NV

Lemma 4.4.4. Let k, ¢, and p be given positive integers.
Let A and B be sets of vectors a =(a,,...,a ) and
s s -~ 1 s
/‘Q/: (bl’ "bs) where s, a_l, and bi are integers satisfying the

following constraints;

1) k < s < (ctp)k-1)

2) 0 < a; < (ctp) dfor i=1. ) S
3) Ogbiic for i=1....,s

s
4) Zai = {¢tp)k-1)

i=1

s

5) Zb, = c(k-1).
i



Let
s s
) 2
f (a,b) = Za b, - a
§ ~~ ii i
i:] L:l
i} If ¢ is an even integer, then
(k-1)(c°-2¢c-4p)
max max max f (a,b) = ¢ S
Y~ 4
s acA beB
~ s~ s
and ii) if ¢ 1is an odd integer
(- Dl(c-1)%-4p]
max max max f (a,b) = .
~ 4
s ae¢A beB
~ g~ s
Pf. For each fixed value of s, let Ks be the set of vectors
E = (é'l, ...,a ) defined previously in this section and let Ms
denote the corresponding set of integers defined previously. Let
hs(m) be that function defined on Ms where
k-1 )
- -2
h(m):mc—Za.z— a
s i i
i=1 i~k
and Ee Ks is the vector corresponding to m ¢ Ms.
Observe now that M ( M for all possible values of s

s = stl

36

and that for each fixed value of m, max hs(m)
s

will occur when for
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s

some value of s and

2 e A ding t 2
a € correspondin (o] m. a. 18 a
s p g i

i=k
minimum subject to the constraints that 0 < a, < c*tp,
ez

s
ZZi = (ctp)(k-1), and k < s < (ctp)(k-1). It is easily seen that
ik

such a minimum will occur when s = (c*+p)(k-1). Note that the vector

e X(C"’p)(k—l) corresponding to m has the property that é.,l =0

or 1 for k < i< (ctpjlk-1) since k-1 < m and

(ctp)k-1)-m < (c+p)(k-1)-(k-1), hence for each m e M

(c+tp)(k-1)’
k-1
h (m) = mc E:ZZ (ctp)(k-1) + m
(ctp)(k-1) i P
i=1
k-1
3 -a < 3 =m.
where a, 2 1 < 1 and Zai m
i=1
So now that value of m for which h (m) is maximal
(ctp)(k-1)
must be determined. Consider m = (c/2)(k-1) when ¢ 1is an
even integer. Note that if ’% € X(C+p)(k—l) is the vector corres-
ponding to m , then a; T .- :ak_l:c/Z and ak:l and

a;\ =0 or 1 Dbecause (c+p)(k—l)—m>:< < (ctp)k-1)-(k-1).

ctp)(k-1)

The components of r% will clearly satisfy Proposition 4. 4.2, hence

this value of m vyields a maximum for h(c+p)(k—1)(m) in

M when ¢ 1is an even integer. This maximal value is
(ctp)(k-1) &

easily seen to be



(k—l)[cz—Zc-4 ]

r
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When ¢ 1is an odd integer, consider m;h = ((c+1)/2)(k-1) in

M(c+p)(k-l) and let ;::Lj be the corresponding vector in

——

Alctp)k-1)

o

Fletp)(k-1)

Note that ail T L.

T %%k k

=0 or 1 because (ctpi{k-1)-m < (ctp)(k-1)-(k-1).

= (ct1)/2 and a =1 and

The components of 3 will clearly satisfy Proposition 4.4. 2, hence

this value of m will yield a maximum for h (m in
y (ct+p)(k-1) )

M(c+p)(k—l) when ¢ is an odd integer. The maximum value is

easily seen to be

(k- D)[(c-1)“-4p]

the desired result.

Proposition 4.4.4 will be of use in Chapter VI in determining

an optimal property for the class of designs ,@'[v;b;k].

Consider now constraints (4.4.1) for two different values of

p. say p, >p1. Let Ai’ i=1,2 be those sets of vectors A

defined previously in this section for the two different sets of con-

straints and let M.1 denote the corresponding sets of integers, i.e.,

s
2=(2.,...,a A i Z = (ct 1), 2.>...>a,
2,7 (a) a)e A if Zai (c pi)(k ), a, > >a,
i=1 -
a.-a <1 and a -a < 1 and me M, if there is 2 e A,
1 k-1 — k s — i ~ i
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k-1

N

such that ZZ,I =m. Let hls(m), i=1,2 Dbe that function defined

i=1
previously on M., i.e.,
i

k-1

S
1 —— ‘—2
hl(m) = mc - za.z - Za.
S 1 1
1 i=k

i:

~——
where m e¢ M., and 2 is the vector in A, corresponding to m.
i i

g

Let me M; mn M and let © and d, be the vectors in
2 ~ ~
Al and A2 corresponding to some such value of m. Since
s s
> ’ ‘. < _.: i . e "_-‘ - < l!
P, > Py ch Zdl and since ST and dk ds < we
- i=k i=k
have c_<_d.1 for i=1,...,s, and so
s s
-2 -2
Zc, < Zd. .
i i
i=k i=k
k-1 k-1
Also, since Zci = Zdi, C1 S 1 < 1 and dl—dk_1<_ 1, we have
i=1 i=1
—Ei:di fOr i: l:"-:k"l> and SO
k-1 k-1
-2 -2
mc - Zc, = mc - Zd
i i
i=1 i=1

Now we have that
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-1

k s k-1 s
1 -2 -2 —7, —
h(m)ch—Ec.—Zc.>mc—Zd, —zd,ZZhZ(m).
S 1 1 1 1 S
1 i=k i=1 i=k

i:

So h (m) > hz(m) for all m e M1 ) MZ.

Now consider m, ¢ M‘2 but m, d Ml. Note that this implies

m, > (c+p1)(k—1). Note also that

bl [(c¥p, k-] = (e+p )i~ De - (- 1)(etp,)”

-

Let ’('iv be the vector in A‘2 corresponding to m.. Observe now

1
. 2 . .
that any polynomial of the form gx-x , g > 0, is decreasing for

x>g/2. For g', we have diz(c+p1)>c/2 for 1< i< k-1

and dj > c+p1 for at least one value of j, 1 < j < k-1, hence

k-1 s
AN
h(rn)—mc—2/ci‘7“—§\d‘2
s 1 1 i /01
i=1 i=k
k-1 k-1 s
- . Z‘a. ] Z‘&.Z N
1 i i
i=1 i=1 1=k
k-1 s
- =2, \ =2
- Z[cd,—d. - )
i i 1
i=1 1=k
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2
< (k—l)[C(c+p1)-(c+p1) ]

= h.[(ctp )-1)] -

2
Hence we see that for all values of m for which hs(rn) is
1
defined, there are values of hs which are larger, hence the maxi-
1
mal value for h is larger than the maximal possible value for
S
2
hs. Since this argument can be repeated whenever P, > Py it

follows that max h (m) decreases as p increases in constraints
S
S

(4.4.1), hence that max max f_ (a,b) decreases as p increases
3¢ A nge B

in constraints (4.4.1).
Suppose now that u > 1 is an integer and that c¢ s
replaced by ¢ -u and p by ptu in constraints (4.4.1).

Let Kl and A2 denote the sets of vectors defined previously for

constraints (4.4.1) and for constraints (4.4.1) when ¢ is replaced

by c¢c-u and p by ptu respectively. Let M1 and M2

1 2
denote the corresponding sets of integers and let hs and hs

denote the functions defined previously on M1 and Mz. Note that

for the two different sets of constraints, 1\/11 and M2 contain the

1 2
same integers. If m is any integer for which hs and hs are

defined and if :cz and ,‘fL are the corresponding vectors in A1

and ZZ’ then



and
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k-1 k-1

)% ) T
1 1

1:1 1:1

d,
i

e
-0

i=k i=1

w—

implies that T:-i = di for each i, hence that

k-1 s
1 — —
h(m)‘mc—Zc.z—zC.2
S i i
1 i=k

i=

k-1 s
>m(c-u) - ZEZ - 2-2
i i
i=1 i=1
- 1%(m)
S

Sa for all values of u >0,

1
max h (m) > max hz(m) ;
m m

hence we see that as ¢ decreases and ¢+ p remains constant in

constraints (4.

Let ¢

and let p = 2.

4.1), max max fs('%,)p,) will decrease.

aeA beB
~ ~
denote some fixed value of ¢ in constraints (4.4.1)

Fromthe comments following Proposition 4. 4. 4,
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we see that if we simultaneously consider values of ¢ < c and
values of p > B in constraints 4.4.1, we will obtain smaller maxi-
<

mal values of f (a,b) than that obtained for +-15. This observa-
Tl e

tion will prove useful in Chapter VI.



V. (M,S) OPTIMALITY IN D‘[v;(ri)b;k]

in this chapter, we consider the class of designs ﬁ’[v;(r,);b;k]
1
r. <b and v >k. For the rest of

defined in Chapter III where
this chapter, this class of designs shall be denoted by iag

Basic Lower Bounds

N
The first step in applying our optimality criterion is to

the set of designs in L having maximal

there clearly exist binary designs

Teszrmine POLET,

v >k and r,lf_b,

Since
and so by applying Lemma

trace.
in . Hence B~ ,D'l{v;b;k] 7 o,

7, the foliowing statement can be made.

i
F.05.

consists of all the binary designs

mis

Theorem 5.1.1.

in oD,

M

We now investigate the designs in m{ﬁ} which have a

A natural question which arises is just how in fact

2
tr C
One approach to

minimal
. . o 2 .
can a design with minimal tr C be recognized.
answering the question would be to establish lower bounds for
and then try to find designs whose

for designs in m{ﬁ}

. 2
matrices have tr C equal to one of the lower bounds.

tr C

If such

designs can be found, they will clearly be (M,S) optimal in K

several methods of establishing such lower bounds

n what folilows,
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are discussed. We first give a fact recognized by Shah (1960) and
which is implicit in the setting in which the (M,S) optimality

criterion was introduced.

Theorem 5.1.2. If @ is an arbitrary class of incomplete

block designs with v treatments such that tr C is constant for all
D&, then any design in ¥ whose C-matrix has the form

G.Iv + {SJV will be (M,S) optimal in E .

Pf. Let M be the constant such that tr C = M for all
De i . By using Lemma 4.2.3 and the fact that r(C) <v -1 for
all De '¥ , it is easily established that tr C‘2 > M‘2 /(v-1) for all
DeE. Now let D denote any design in ‘E  such that
C = aIv + BJV‘ Because tr(E) = M and because C'l‘i' =0, itis
seen that C = [M/(v-—l)](Iv—v" lJV). But tr 52 = M‘2 /(v-1); so D

must be (M,S) optimal in E .

From Theorem 5. 1.2, any design D with a C-matrix of the
form aIv + ﬁJV will be (M,S) optimal in an arbitrary class of
designs & whenever D e N {F}. For example, a balanced
incomplete block design has a C-matrix of the form aIV +pJ,

Hence if there exists a BIBD in  MU{&E}, then it will be (M,S)

optimal in E .
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Several lower bounds for tr C2 will now be developed for
designs in M{m Some of the lower bounds will be easy to calcu-
late while others will be computationally more difficult, though pos-

sibly more informative. Note that for any design in M{m,

C =R - =~ NN/ (5.1.3)

N L2y, 121 2
_{Z/r_l )(1_k)+kzzzxij, (5. 1. 4)

Also, since tr(NN'") = tr(N'N)

o+
H
O
o™V
1l
—_
N
J
~
o™V
-
=
—
(
e
o™V

)+ = tr(N'N)

fro

v\
() e b2 )b+ — ul (5.1.5)
/i k 2 ij
) k .
i i#j

2
The first lower bournds for tr C will be established using
axpression (5. 1.4). Since v, T b, and k are fixed in M{.U},
2

we see from (5. 1.4) that finding a lower bound for tr C in

MNP} can be accomplished by simply finding a lower bound for
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2 2
tr(NN') , or equivalently, for ZZ )\ij . But a lower bound for this
i]

latter expression can easily be determined. To see this, let us note

that the )\,j are nonnegative integers and from Corollary 4. 1.2 that
i
N
ZJZ )\ij = bk(k-1). Thus by solving the programming problem
/
i
NN 2
wnin ) )X i subject to the constraints that the Xij are nonnegative
FAVYSVER |
i 7
%
sgers such that > 3\ X, = bk(k-1), a lower bound will be deter-
LJj_J 3
J.TJ
. VY Z2 :
mined for /) )\ij in m{m Now by using Corollary 4.3.5, we

i7;

get the following result.

Theorem 5. 1. 6. For any design in ™"mies

ERAPRE

1:/_]

where 1) the Xij are nonnegative integers, ii) ZZ Xij = bk(k-1),
i?j

wdiii) |x % | <1 for 175 pia
and iii) Ix13 g = fo 75, P79

Corollary 5.1.7. Aany design D ¢ JTL{} having an incidence

matrix N with the property that I)\pq-)\ | <1 for p 7q, r7s,

will be (M.,S) optimal in &J.



48
Pf. Any design in YY\{L} having the indicated property will
meet the lower bound established in Theorem 5. 1. 63 hence it will be

(M,S) optimal in L.

Corollary 5. 1. 8. If ri = ¢ for all i, and if in YYL{E}

there exists a PBIB(2) with )\2 = 7\1 + 1, then that design will be

(M,5) optimal in ﬂ

In deriving the lower bound for tr(NN')2 given in Theorem
5.1.6, the most minimal linear constraints which the )\ij must
satisfy were used. When more stringent constraints are considered,
lower bounds which are at least as good as the lower bound given in
Theorem 5. 1. 6 are obtained; but the computational difficulty of cal-
culating these lower bounds increases with the complexity of the con-
straints. Additional constraints will now be considered.

Recall from Corollary 4. 1.2 that for fixed p, Z )\pq:rp(k-l).

a?p
Thas by solving the programming problem min EE x_lz_ subject to
J
ij

the constraints that i) the X'j are nonnegative integers and ii) for
1

each fixed p, z qu = r (k-1), a lower bound will be determined

P
—c q7p
2
ior MY A, in Wjﬂj For each p, let L denote the
L2000 p
i7j

2
minimal value of Z qu subject to the relevant constraints. By

a7t

re



Corollary 4. 3.5, Lp will be the value obtained when

‘x -x l <1
pq pr -
for q#p, r #p. Now L = ZLi gives a lower bound for ZZX;
i 7]
in /YYL{,O'}, hence we may state the following.
Theorem 5.1.9. For any design D ¢ y o,
2 2 N\'\ 2
tr(NN') ZZr. + ZZ X..
i ij
i i?j
where 1) the xij are nonnegative integers, 1ii) for fixed p.
x =r (k-1), and iii) [x_-x_ [ <1 for 7p, r7p-
2 oq - Tp % e < a?p P
q7p
Corollary 5. 1. 10. Any design D ¢ M{m having an
incidence matrix N with the property that for each fixed value of p;

gqu-xprl <1, q#p, r7p, willbe (M,S) optimalin L.

Note that the lower bound given in Theorem 5. 1.9 will always
be at least as good as the lower bound given in Theorem 5. 1.6. The

following example is given to illustrate the computation of these lower

bounds.

Zxample 5.1.11.  Consider

MLO110:5,5,4,4,4,4,4,4,4,4; 14; 3]}
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i) The lower bound given in Theorem 5. 1.6 will first be

2
calculated. We want to find the minimum for ZZ Xij subject to
17
tae constraints that the x., are nonnegative integers and that

1]
e
7 » %, = bk(k-1) = 84. Now 84 can be represented uniquely as the
ialg 1)
=
sum of v(v-1) = 10(9) = 90 nonnegative integers such that

!xﬁa»xrqg <1 for p7q, r?s. Following the procedure outlined

‘e owing Example 4. 3. 6, it is easily seen that

84 = 90(0) + 84 = 6(0) + 84(1).

2
Hence the lower bound for tr(NN') given in Theorem 5. 1.6 is

N e 2+ 6(0)% + 8a(1)" = 262.
Lnd
i

1

2
ii) The lower bound for tr(NN') given in Theorem 5. 1.9

s
will now be calculated. We want to find the minimum for zz X
/ J
1]
subject to the constraints that the Xij are nonnegative integers and
that for each fixed value of p; Zx =r (k-1). For p <2,
/s Paq p
q7p

Zx = e fke1) = 5(2) = 9(1) + 1 = 8(1) + 1(2);
pq p

q7p



hence L as defined in the proof of Theorem 5.1.9 is seen to be

8(1)Z + 1(2)Z = 12. For p >3,

Zx =r (k-1) = 4(2) = 9(0) + 8 = 1(0) + 8(1);
Pq

|Y
q7p
. 2 2
and Lp is seen to be 1(0) + 8(1) . Thus the lower bound for
2
tr(NN') given in Theorem 5.1.9 is

Zr'z + Z L, = 2(5)Z + 8(4)Z +2(12) + 8(8) = 266 .
1 1
i i

The incidence matrix of a design achieving the lower bound

established in ii) is given below:

Bl BZ B3 B4: B5 B6 B7 B8 B9 BlO Bll BlZ B13 B14
Tl 1 1 1 1 1
TZ 1 1 1 1 1
T3 1 1 1 1
T4 1 1 1 1
T5 1 1 1 1
T6 1 1 1 1
T7 1 1 1 1
T8 1 1 1 1
T9 1 1 1 1
TIO 1 1 1 1

51
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One final property possessed by the )\ij which sometimes
2

proves useful in the calculation of lower bounds for tr C in

MUY is that for all i, ]

max[0, r.+r.-b] < \.., < min[r.,r.] . (Lemma 4.1.1)
1] - 1 = 1]

The following example illustrates the use of these new constraints

in conjunction with those already given.

Ixample 5.1.12. Consider m{ﬂ[li', 5,4,2, 1565 2]}

. s 2 . .
i) The minimum for ZZ x,j subject to the constraints that
i

i?j
the xij are nonnegative integers and szij = bk(k-1) = 6(2) = 12
i7j
is seen to cccur when x,. =1 for all i7j. Hence the lower

1]
2
hound for tr(NN')" given in Theorem 5.1.6 is

2 ¥

22 2.2 2
5% +4° +2° 417 + 12(1)" = 58.

ii) If Lp denotes the minimal value for Z qu subject to

52

q7p
th=s constraints that the xp are nonnegative integers and
N\ _ . . _ _ _
x = - hen 3 easily s L. =9, =6, L_=2,

L/J pq rp(k 1), then it i asily seen that ] 9 L2 3
q7p

. 2 . )
and L =1. Hence the lower bound for tr(NN") given in Theorem

4

N2\ 2 2 2

5.1.9is ) r. %*ZL‘:S + 4 +22+1 +9+6+2+1 = 64.
YAV, 1
i i
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iii) For each fixed value of p, let Lp denote the minimal

2
value for Z qu subject to the constraints given in ii) above and

q7p

max[0,r +r -b] < x < min[r ,r ]. For p =1, the actual con-
P - pPq P qq

straints are zqu = 5(1) =5, 3<x <4, 1<x <2, and

- 712 - 13 —
q>1
0 S_x14 < 1. Upon applying Algorithm (4. 3), it is seen that L1 =11
and occurs when X5 © 3, X135~ 1, and X14 " 1. In a similar

manner, it is easily seen that L2 = 10, L3 =2, and L4 = 1. Thus,

2
an even better lower bound for tr(NN') is obtained using the
additional constraints. The actual lower bound is
2

Zr,2+Ll+LZ+L3+L4=52+4Z+Z +12+ll+10+2+l=70.
i

i

The incidence matrix of a design satisfying the lower bound in

iii) is given below:

T1 1 1 1 1 1 5
1 1
TZ 1 1 4
T3 1 1 2
T 1 1
4
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2 ) . .
A lower bound for tr C will now be determined using
expression (5.1.5). Since v, r., b, and k are fixed in YN {FY}.,
2
it is seen from (5. 1. 5) that determining a lower bound for tr C in
o 2
NiS} is equivalent to determining a lower bound for tr(N'N) or

TN 2

> > b Note that the Hij must be nonnegative integers and from
ot Lescd -J

i7)

Lemma 4. 1.1 that

L

1

Y3 Y e
17

Thus, proceeding in the same manner we did in establishing the lower
bound in Theorem 5. 1.6, we can again use Corollary 4.3.5 to obtain

the following result.

Theorem 5. 1.13. For any design in YY)

tr(N 'N)2 zbk2 + ZZ Xizj

i7;

where i) the Xii are nonnegative integers, ii) ZZ Xij ZZ r.l(r.—l)
i ,

ij i

. B < ‘
and 1iii) 'qu erl <1 for p#q, rs

Corollary 5. 1. 14. Any design D « UL} having an incidence

|<l for p#q,r:/s,

matrix with the property that I}qu—prs <

will be (M,S) optimal in ﬂ’
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2 2
For any design with incidence matrix N, tr(NN')" = tr(N'N) .

2 2
However, the lower bounds determined for tr(NN') and tr(N'N)

need not agree as the following example shows.

Example 5.1.15. Consider yN{O(6:3.3,3,3,2,2;4;4]}

2
i) A lower bound will first be determined for tr(NN')

according to Theorem 5. 1. 6. Now bk(k-1) =48 can be represented

uniquely as the sum of nonnegative integers x.1j such that

,xpz -x | <1 for p#q r7s. Following the procedure outlined
7 rs

following Example 4. 3.6, it is easily seen that
48 = 30(1) + 18 = 12(1) + 18(2).

2
Hence the lower bound for tr(NN') given in Theorem 5. 1.6 is

6

2 2 2
5 r"+12(1)7 +18(2)7 = 128. With a little calculation, it can be seen

Led

21
P A

that placing additional constraints upon the X, does not give a
J

2

)

better bound for tr(NN' for this example.

2
ii) A lower bound will now be determined for tr(N 'N)

according to Theorem 5.1.13. Now z ri(ri—l) = 4(3)(2)+2(2)(1)=28
i

has a unique representation as the sum of 12 nonnegative integers

such that prq-x l <1 for p #q, r#s. Itis easily seen that

28 = 12(2) +4 = 8(2) + 4(3).
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2
Hence the lower bound for tr(N'N) given in Theorem 5. 1. 13 is

bk2 + 8(2)2 + 4(3)2 = 132.

The techniques given so far for finding lower bounds for

2 2
tr{NN") and tr(N'N) can also be used to show the nonexistence

certain designs with the property that l)\pq—)\ | <1 or

v -n | <1 for p#q r#s. This follows from the fact that

nYg rs
anv design in JHL{H?} must have an incidence matrix with
r{IaN")T = tr(N ‘N)Z at least as large as any of the lower bounds
established for tr(NN')Z or tr(N 'N)Z. Hence if the lower bound
established in Theorem 5.1.13 for tr(N'N)Z is larger than the

. 2
iower bound established in Theorem 5. 1.6 for tr(NN'), then there

cannot exist a design in YYL{D7} with |)\pq—)\rs| <1 for p?aq

+ 4 g. A similar statement can be made if the lower bound established

2
for tr(N'N)" is smaller than any of the lower bounds established

2
for tr(NN') We can state the following proposition.

Proposition 5. 1. 16. If in ALY r, = rj for all i,j and
2
) in Theorem 5.1.13 is

)2

the lower bound established for tr(N'N
larger than the lower bound determined for tr(NN' in Theorem

5.1.6, then there cannot exist a BIBD or a PBIB(2) with )\2 = )\1 + 1

in TYUDD.



57

Example 5. 1.17. Consider YY{£[10;2;4;51]}.
2
)

i) A lower bound for tr(NN' will first be determined.

ZZ )\ij = bk(k-1) = 4(5)(4) = 80

Write

i7]
2
as 90(0) + 80 = 10(0) + 80(1). Hence the lower bound for tr(NN')
. . ) 2 2 2
given in Theorem 5.1.6 is 10(2)" + 10(0)" + 80(1)" = 120.
: 2
ii) A lower bound for tr(N'N) will not be determined. Write

ZZ . Zr.(r.-l) = 10(2)(1)
]_J 1 1

i7] i
as 12(1) + 8 =.4(1) + 8(2). Hence the lower bound for tr(N'N)Z
. . . 2 2 2
given in Theorem 5.1.13 is 4(5)  + 4(1)  + 8(2)" = 136.

Thus the lower bound established for tr(N'N)Z is larger than

the lower bound established for tr(NN')Z, and so Proposition

5.1.16 may be applied.

Let [+] denote the greatest integer function. For any value
of p let mp = [rp(k—l)/(v—l)]. Now rp(k~l) can be written

uniquely as the sum of v-1 nonnegative integers differing by at

most one. This unique representation is given by

r (k-1) = (v-1)m +n =(v-1-n )m +n (m_ +1).
p p p Pp P Pp P
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Proposition 5.1.18. Let mp and np be as defined above.
Then the following conditions are necessary for a binary design to
exist whose incidence matrix has the property that for each fixed
value of p, ])\ -\ |§__l for q7p, r?p.

pPq PTr
i) m -m < 1 for all 7 q.
| 5 q|__ p7q

ii) Let Jl denote the set of subscripts of treatments having

minimal values of mp. If pe Jl, then v-n_ must be

less than or equal to the number of subscripts in Jl.

iii) Let JZ denote the set of subscripts of treatments having

maximal values of m . If pe J

», then n must be
2 p

less than or equal to the number of subscripts in JZ-
iv) Let JZ be defined as in iii). Then an cannot be odd.

ped,

v) Let Jl be as defined in ii), then Z (v-l-np) cannot

ped,
be odd.

Pf. i) Suppose for all fixed values of i, 1)\.1.-)\.

i 1£|§_l for

j i, e 7 i. Now suppose there exists p and g such that

m -m > 2. From above, we see that since ‘)\ x| <1 for
P a= ps pt
s7p, s7t, and l)\qs—)\ tl <1 for q#s, q7t, we must have
q
A =m_ or m*l forall s7p and X =m_ or m tl for
ps P P qs q q

all s 7 q. But then )\pq must simultaneously equal m_ or
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mp+l and m or m *l, a contradiction since mp—m > 2.

ii) Recalling i) let JZ be defined as in iii) of the proposition.

Assume that for each fixed value of i, I)\ij_)\ill <1 for j 7 i,

£ #i. Assume also that there exists pe Jl with v—np greater

than the number of subscripts in J.. In order for |)\ -\ | <1
1 pq pr

for q¥p, r # p, we must have exactly V—l~np of the )\pq’

p#q, equalto m_. Since v—np is larger than the number of

there must exist se J such that X\ = m .

subscripts in Jl’ 2 ps P

But m_ =m_+*1 and in order for |)\ N | <1 for t¥s,
s P st su —

u?s, wemusthave )\st:ms or ms+l for all t¥s, a

contradiction. Hence it must be that v—np is not larger than the

number of subscripts in Jl.

iii) Similar to ii).

iv) and v) are simple consequences of the fact that NN' is a

symmetric matrix, that Z np denotes the number of )\ij’ i#j,
ped,
equal to the maximal value of mp, and that Z (v—np~l) denotes
ped,

the number of )\ij’ i 4j, equalto the minimal value of mp.
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Example 5.1.19. Consider the class of designs

TYUDI[6;5.4,4,4,4,3;6:4]}. Now m, = [5(3)/5] = 3 and

m,_ = [3(3)/5] = 1, hence statement i) of the proposition is violated.

2
So there cannot exist a design in m{DI6;5,4,4,4,4, 3;6;4]} with an

incidence matrix having the property that for fixed p, |\ | <1

-\
Pq pr
for q#p, r#p.

Example 5.1.20. Consider the class of designs

JTYUDT5:4,4.4,3,3;6;3]}. Now m)=m,=m; =2 and m, =m; =1,

hence Jl={4,5} and J2={1,2,3}. But

r4(k-l) =6=(v-1)m, *+n, =4(1) +2;

2 4

hence v-n, = 3 is larger than the number of subscripts in Jl so

statement ii) of the proposition is violated. Thus, there cannot exist
a design in WU,D’[S;‘L 4,4,3,3;6;3]} with an incidence matrix

having the property that for fixed p, |>\ | <1 for q#%p,

-\
Pg pr
r 4 p.

Example 5.1.21. Consider the class of designs

TN(D18:4,4,4,3,3,3,3,3;9;3]}. Now m =1, 1<i<3 and

m, =0, i>4, hence Jl={4,5,6,7,8} and J2:{1,2,3}. But

r (k-1) = (v-1)m +n =7(1)+1 for e J, ,
p P p P2
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hence Z np = 3 is odd and statement iv) of the proposition is

peJ,

violated. So there cannot exist a design in
M{B'[S;ll,/}, 4,3,3,3,3,3,;9;3]}. having an incidence matrix with the

property that for fixed p, |)\ l <1 for gips r 7 p.

-\
pq Pr

5. Z.  Another Lower Bound

Let 0= ﬁ'[v;(ri);b;k] be defined as in the previous section.
Recall that finding a lower bound for tr C2 in m{m is equiva-
lent to finding a lower bound for tr(NN')2 in N} To this
point, no use has been made of the fact that NN' is a symmetric
matrix. The method given in this section for determining a lower
bound for tr(NN')2 takes advantage of this fact.

Let N be the incidence matrix of a typical design in YYL{T}
consisting of b blocks, each of size k, with v treatments such

that treatment Tp is replicated rp times. Without loss of gen-

erality, suppose r, _>_r2 > er. Now partition N into N1
and N2 where N1 consists of the first v, rows of N and
N2 consists of the remaining v - v, =V, rows of N. So N1
isa vy x b matrix and N2 is a v, X b matrix. Note that the
v

1
> r. = n experimental units assignedto T,,...,T must occur
VAT 1 1 v
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v
in Nl’ the Z r. = mn, experimental units assigned to
=v

T P must occur in NZ and the k experimental units
\4

I.et B1 represent that part of block B. contained in Nl, B1
i
that part of block B, occurringin N,, and let k. and kl
i i

represent the number of experimental units allocated to B_1 and

B, " Then it must be the case that
b
i) Zki = n,
i=1

b
i) zk = n (5.2.1)
1 2
i:

i) k. + k. =k .
1 1

sle st
b b

Without loss of generality let us assume that k, > kZ

> >k
) > >k

b

Let any particular ordered allocation of k1 to B. be called an

i

ordered configuration and denote any such configuration by

EERE b).

Note that when N is partitioned as above;
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Recall from Lemmas 4. 1.1 and 4. 1. 3 that the entries in the three terms

given in the expression above for 1:r(NN')2 must satisfy

Vl v
) 5 Y N = _ sk :}:_1
i) /, ij C ] where C1 k.1 (k.1 )

1
i=1j>i

v v b
ii) 2 /, Z )\ij = C2 where C2 = Zki (k.1 ~1)
=v

Vi v b
« — - 2 \:z\k
iii) 2 Z 2 )\ij C12 where C12 Zkl (k1 )
i=1 j=v, +1 i=1
iv) max[0,r +r -b] <\ f_min[r ,r ] .
P 49 P4 P 4

Hence we see that for a given ordered configuration

sk 2
tr(NN') can be determined for any

(kli . . :kb):

a lower bound for
design whose incidence matrix has that configuration by solving the

integer programming problem of minimiz ing

\'2

v i Y v v 1 v

AT ™ 2 2

Zr,z+27 < 42 Z Zx,_+22 Z %~ (5.2.2)
i L 1] 1] 1]

=1 i=1 i>i i=vl+1 j>i i=1 j:v1+1
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subject to the constraints that

-

(&S]
X
1

@]

) 2 - C
ii) Z z xij ’

(5.2.3)
Vl At
—
iy 2 _
iii) Z Z x1J C12
1:1j:vl+1

iv) max[0.r +r -b] < x <_m'1n[r ,r ).
L Pq P q

For a design having a given ordered configuration, the actual minimal
value is obtained by applying Algorithm (4. 3) to each of the terms in

{5.2.2) subject to the relevant constraints in (5.2.3). Observe that

if two distinct configurations yield the same values of Cl’ CZ’ and
C]Z’ then the same minimal value for (5.2.2) subject to (5.2.3) will

he obtained. Now observe that

(5.2.4)
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From (5.2.4), we see that when one of the values of Cl, CZ, or C12
is known, the remaining values are completely determined. Hence
when two configurations yield the same value of Cl’ they must

also yield the same values for C2 and C12 and the same mini-~

2
mal values for tr(NN')". So for a particular partition, to find a
lower bound for tr(NN'")", we must find those values of Cl, CZ’

and C12 and those configurations giving these values of Cl’ CZ’

and ClZ which yield the smallest possible minimal value for

(5.2.2) subject to (5.2.3). A method will now be given for doing this.

s
3%

Let (k,,... ,kb) be any ordered configuration and let the

values of C._, CZ, and Cl given by this configuration be denoted

2

AN
2 and CIZ' Now take any m and n such that

k _>_kr; and such that

i) k. >k , i<m
1 m

ii) k. <k, i>n
1 n
(5.2.5)

s .
iii) km+1 < min [k,vl]

]

iv) kn +1 < minfk, 7

Form a new ordered configuration with km replaced by kr;lJrl
and kn replaced by k;-l in the old ordered configuration. Let

p- k -k . Then the values of C,, C and C that are given

m n 1’ 12

Z’
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o) N
by the new ordered configuration are Cl+2p+2, C2+2p+2, and

’y . . .
C12—4p—4. Let any ordered pair of block sizes km and kn

satisfying (5.2.5) and such that k;l—k; = p be denoted by

(km ,kq\) . Note that for each distinct ordered pair (k_ kq\) of
m n'v m n'p

block sizes, a distinct ordered configuration can be generated from

(kq I ,km in the manner described above. So there is a one to

b)
one correspondence between ordered pairs (k;l, k;)p and distinct

ordered configurations which can be generated from (k;, ces k;).

Note also that the least amount by which 6\1 can be increased by
forming a new configuration in this way is two and that this will occur
when p = 0.

Observe that if in the above process of generating configurations

from (k;, .. ,k;), there are ordered pairs of block sizes

(ki' ) kj') and (k.1 , krn)p satisfying (5.2.5) with P, > Py then

Py 2

that configuration formed from (k;, kin)p can be generated from
2

the configuration formed from (k;\,kjp)p . This is done by first
1

b3 sk 7\
forming the configuration with ki +1 and kj— 1 giving C 1+Zpl+2
and then from this configuration forming the one associated with the

ordered pair (kh’km)pz-pl-l satisfying (5.2.5) where kh = kj -1.

A similar argument can be made for ordered pairs of the form

(k‘;ﬁ’kaj) and (k,.\ ,kfﬁ) ., p, >p, Itis also a simple matter to
1P m j Pp 2 1
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see that if there are ordered pairs of the form (k;, k;\)p and
1
(k:n,k;)pz with P, > P, >2, then that configuration generated for
+2 +2 . sk ’ sk '. .
el P, using (km kn)p2 can be generated from a configuration

giving 61+2p2~2p1+4. With this in mind, we give the following

definition:

Definiticn 5.2. 6. Let (kfl'\, R k;) denote some ordered

configuration for a given partition. We shall say that a configuration

which is derived from (k;, Ceas k_;) using the ordered pair
(k;\,k;)p satisfying (5. 2. 5) is minimally derivable from (kl\, . ,k;)

if there do not exist other ordered pairs satisfying (5. 2.5) of the

form

If @1 is some value of C1 for which an ordered
configuration exists, then it is easily seen that all ordered configura-
tions giving /él are minimally derivable from configurations

associated with smaller values of Cl'

With these things in mind, let v assume a particular value

1

and let (k‘l‘\, ce e ,k;) be that unique ordered configuration where
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Zkl = ny and k;-k; < 1. Using Corollary 4.3.5, it is seen that

i=1

this configuration gives the minimal possible value for Cl and CZ’
hence the maximal possible value for CIZ' Let 81’ CZ’ and 812
denote the values of Cl’ CZ, and C12 given by this configuration.

e

Beginning with C apply Algorithm (4. 3) to the problem of deter-

l’
mining a minimal value for (5.2.2) subject to the constraints given in

(5.2.3) for successively larger values of Cl for which configura-

tions exist. Those values oi Cl for which ordered configurations

exist are determined by minimally deriving configurations from
ordered configurations associated with smaller values of Cl. For

instance, the set of ordered configurations giving the value of Cl

—

closest to Cl must be minimally derived from that configuration

giving Cl, etc.

For a fixed value of Cl’ let x and y denote the minimal

values of qu aad x ¢ calculated using Algorithm (4. 3) for the sum of
a

squares associated with C; and C, respectively such that » 4
2 pa

and Xstﬂ still satisfy the appropriate constraints, i.e,, if x = x
' Pq

and =x . then
y st ¢

max[0, r +tr ~b] < x +1 < minl[r ,r ]
P 9 - Pq - P q

and

+r - < +1 < i .
rnaLx[O,rs r, b] < Xy 1 _mln[rs,rt]
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Similarly, let zZy 2 z, be the maximal values of the Xij

calculated for the sum of squares associated with ClZ such that
zl—l and ZZ-l still satisfy the constraints for the corresponding

xij' In applying Algorithm (4.3), it is easily seen that the minimal

value calculated for (5.2.2) subject to (5. 2. 3) for Cl+Z contains

exactly the same values of x,, as the minimal value obtained for
1]

Cl except that x 1is replaced by xtl, y by y*tl, and z, by

zl--Z if zl-»zZ > 2 and zl—Z satisfies the constraints on the

corresponding x,j, otherwise z) is replaced by zl-—l and z,
i

is replaced by zz—l. From this it is seen that when z,-2, > 2

and zl~2 still satisfies the constraints on the corresponding x..,
a smaller minimal value for (5.2.2) subject to (5.2.3) is obtained
for Cl+2 if and only if .Zzl > xty+3, a larger minimal value is

obtained if and only if Zzl < xty+3, and no change occurs if and

only if Zz1 = xtyt3. In all other cases, i.e., when z,-2, < 1 or

when ZZ, > 2 and zlwz does not satisfy the constraints for the

corresponding Xij’ a smaller minimal value for (5.2.2) subject to

(5.2.3) is obtained for C1+2 if and only if z;1+z2 > xtytZ2, a

-

larger minimal value is obtained if and only if Zl+ZZ < xtytZ,  and

no change occurs if and only if Z1+ZZ = xtyt2l.

Let 'v(gl be some value of C1 such that - . cf the following

conditions holds,
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i) ’ill —'z"Z > 1, ’Z.I_Z still satisfies the conditions for
the corresponding x,1j and 2'2’1 < ?<’+'37'+3
ii) ’E"l —"z’2 > 1, '2[1—2 does not satisfy the conditions (5.2.7)

for the corresponding Xij and ’Zl*l"zvz < R2

i) ¥, %, < 1 and %42 < U2,

here % AREEE and ,sz are defined in the same manner as X, y:
N . . .
z., and Zy- Then for all values of Cl > Cl, it is easily seen
p
nat
22, < 2| < X3 < wtyts
or

Lad
2,2, 5_’z"l+’£"2 < 4542 < xtyt2.

Jence all values of C1 >fé{l will give larger values of (5.2.2)
subject to (5.2.3) than Cl. So by beginning with C, and deter -
mining lower bounds for successively larger values of Cl until
some Cl for which any of conditions (5.2.7) hold, all values of Cl
vielding the smallest minimal value of (5.2.2) subject to (5.2.3) will

be determined. The general procedure will be illustrated by the

following examples.

Example 5.2.8. Consider the class of designs

7”;{5'[7;5,5,5,5,4,4,4;8;4]} and let vy T 4. That ordered
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configuration which minimizes C1 when v, = 4 is
(3,3,3,3,2,2,2,2), and Cl =32, C2 = 8, and C12 = 56.
Beginning with E—l’ we must now determine a minimal value for

707 4 7
x . 1t 2 Z ZXZ + 2 Z ZXZ (5.2.9)
ij 1

1j>i i=5 j>i i=1j=5

gl

N 2
r. + 2
)i
1=1

1t

[ N

subject to the constraints that

4
?Z x :Cl

i=l j>i

/J.;;

[\
g
n—l-x
il
O
[\

i=5 j>i
(5.2.10)
4 7
iii) 2 Z inj = C12
i=1 ;=5
iv) max[0,r +r -b] < x_ < min[r ,r ].
P q - pPa T P 4
For El = 32, we see upon applying Algorithm (4. 3) to each of

the expressions in (5.2.9) subject to the relevant constraints in

{5.2.10) that a minimal value is reached when Xij =2 or 3 for

iii,jf_cl,i#’j;xij:lorl for 5< i, j<7,1%j and

x.. =2 or 3 for 1<i<4,5<j<7. Let x y: 2z and z,

ye¢ defined as in the previous paragraph. For Cl =32, x=2,y= 1,
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=z = ' -z < + +
and z, 7 z, 3. Since zy-z, < 1 and 2z %z, > xtytl, we see

that a larger value of C1 will yield a smaller value of (5.2.9) sub-

ject to (5.2.10). Hence we see that we must find the next value of

C] for which configurations exist as well as the configurations

yielding this value of Cl'

The set of ordered pairs of block sizes from (3,3,3,3,2,2,2,2)

which satisfy Definition 5. 2. 6 are {(kl, k4)0, (k5, k8)0} and the con-

figurations giving C1 = 34 which are minimally derivable using

these ordered pairs are easily seen to be (4,3, 3,2,2,2,2,2) and

(3,3,3,3,3,2,2,1). Observe that the ordered pair (ks kg

) 8) does

1

not satisfy Definition 5.2.6, hence that configuration formed from this
ordered pair is not minimally derivable from (3,3,3,3,2,2,2,2).
Thus we see that the next largest value of C is 34.

1

When C1 = 34, it is easily seen upon applying Algorithm (4. 3)
to each of the expressions in (5.2.9) subject to the relevant constraints
in (5.2.10)that x =2, y=1, and z) =2y~ 3. Hence z) -2, <1
and z1+z2 > xty+2; so from (5.2.7), we see that a larger value of
Cl will give a smaller value of (5.2.9) subject to (5. 2. 10). Those
ordered configurations which are minimally derivable from those
configurations giving C1 = 34 are given below as well as the

ordered pairs of block sizes satisfying Definition 5. 2. 6 used to

generate them.



Ordered Derived New Value
Configuration Pair Configuration of Cl
(4,3,3,2,2,2,2,2) (kz,k:)o (4,4,2,2,2,2,2,2) 36
(g,  (4.3.3.3,2,2,2,1) 36
(oky),  (5.3.2,2,2,2,2,2) 38
(k:,k*)l (4,4,3,2,2,2,2,1) 38
3,3,3,3,3,2,2,1) (kj,k:)o (4,3,3,3,2,2,2,1) 36
(kz,kj)o (3,3,3,3,3,3,1,1) 36
(kj,kj)l (4,3,3,3,3,2,1,1) 38
(kZ,kz)l (3,3,3,3,3,3,2,0) 38

From above, we see that the next largest value of

C1 is  36.
When Cl = 36

and Algorithm (4. 3) is applied to (5.2.8)
subject to (5.2.9), it is easily seen that

Zy T ZZ = 2.

x =2, y=2, and
Hence z,-z, <1 and =z +z2 < xtyt2; so from
(5. 2.7), we see that C

1 ° 38 will give a larger minimal value for
(5.2.8) subject to (5.2.9). Hence when Cl = 36, C2 = 12, and
<. =56, we obtain a lower bound for

2
tr(NN')

for
sctual lower bound is easily seen to be 376.

vy = 4. The

With a little calculation:
it is also easy to see that none of the lower bounds obtained using the

~ethods of Section 5.1 is as large as this.

Note that we do not only have a lower bound for

73
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tr(NN')", but we have the set of ordered configurations which any
design with tr(NN')2 = 376 must possess when its incidence matrix
is partitioned as in this example. From above, we see that those

orderad configurations are {4,4,2,2,2,2,2,2),(4,3,3,3,2,2,2, 1),

(3,3,3,3,3,3, L, )}

Example 5.2.10. Consider the class of designs

WU BT5:5,5,4, 3, 1;6;3]}.

2
i) The lower bound for tr(NN')"  given following Theorem 5.1.9
will first be determined. For a fixed value of i, let L.1 denote the

2
minimum of inj subject to the constraints that the x, ., i 7 i
1)
j#i

are nonnegative integers, max|0, ri+rj -b] < Xij < min [ri, rj], and

inj = r.l(k—l). Upon applying Algorithm (4. 3) to the problem of
A

determining L. subject to the relevant constraints, it is seen that
i ,

I"l = 30, L2 = 30, L = 20, L = 10, and L = 2. Hence a lower

>
bound for tr(NN') is Z Z +42+ 32+ 17+ ZL,1 = 168.

i
2
ii) The lower bound for tr{(N'N) given in Theorem 5.1.13

will now be determined. Note that

Sy Dt o

143 i
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2
Using Corollary 4. 3.5, we see that the lower bound for tr(N'N)

given in Theorem 5. 1. 13 occurs when two of the x.  are equal to
1

one and the remaining Xij equal two. The actual lower bound is

ka + 2(1)Z + 28(2)2 = 168,

2
iii) A lower bound will now be determined for tr(NN') by

the method given in this section for v, T 4. Note that the only

possible ordered configuration is (3,3,3,3,3,2), hence the only

possible values for C C and Cl = 2r5(k~l) are 32, 0, and 4

1’ 720 2

respectively. Hence we must determine a lower bound for

5 5
N 2 . :
T, + 2 Xij subject to the constraints that

i=1 i=1j>1
i) The Xij are nonnegative integers
ii) max[0, r,+r -b] < x.. < min[r,r |
1] - Tij = 17
4 4
iii) 2 Z ZX" =32
1]
i=1j>i
4
i 2 = 4.
iv) Z X
i=1

By applying Algorithm (4. 3), it is seen that a lower beund for

2
tr(NN')” is attained when X, =X =0, N =X =1, A =)

(g™
o2l
N
$3
y—
s
2
’3
—
AN
2
IS

A = A = 3, and A =4, The lower bourd obtainad
13 23 7 1 ‘ e ’

for 1:1'(NN')‘2 is 172. Note that this lower bound is larger than

AN



those obtained in i) and ii) and the design whose incidence matrix is

given below meets this lower bound; so it is (M,S) optimal.

B1 B2 B3 B4 B5 B6

T1 1 1 1 1 1 5

TZ 1 1 1 1 1 5

T 1 1 1 1

¥y 4

T4 1 1 1 3
1

T5 1
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VI. (M,S) OPTIMAL DESIGNS IN DTvib;k]

In this chapter, we consider the class of designs L [v;b;k].
Recall that this class consists of all those designs having v treat-
rments arranged in b blocks of size k, v >k. For simplicity, we
shall simply denote this class of designs by L~ in the rest of this
chiapter. The essential difference between LY and the class of
designs ﬁ[v;(ri);’b;k] considered in the last chapter is that in the
‘atier class of designs, the r, are all fixed, while in B the r,
are allowed to vary. Clearly D contains that class of designs
fﬂv;(ri);b;k] for all possible (ri)'

The first step in applying our optimality criterion is to
determine M{ﬂﬂr, the class of designs in B’ with maximal

trace. From Lemma 4.3.7, mies = ﬁzl[v;b;k]. Since v >k,

K[vx;b;k] clearly consists of all the binary designs in b’ Hence
y y g

we may state the following.

Theorem 6. 1. m{ﬁ} consists of all the binary designs in ﬂ

We must now find those designs in MESL?  which have

2
minimal values for tr C . Since the r. are allowed to vary in

e

Wl

= naltural gquestion which arises is just how in fact should the r,
he assigned to treatments in an (M,S) optimal design in JJ. Since

our goal is to find the design in M{m whose C-matrix is closest
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to the form aIV + BJV, a "reasonable" answer would be to
allocate replications to the various treatments as "equally” as pos-
sible, i.e., such that |ri—rj| < 1 forall 1i,j. A result will be

given which partially affirms this answer.

If D[v;(ri);b;k;N] is a design in 5, then

— . i _!_ I
C~d1ag[rl,...,rv] - T NN (6.2)

From (6.2), if NN'-= O\ij) and N'N = (uij), we see that

tr C2 =(1- 2 ) Zr_z) +—l 1:r(NN')2
k i 2
B k
i
12 2.1 2
-0t sHe s )l (6. 3)
) k .
i i#j
or
tr CZ = (1- 2 )(Z r‘z) + L 1:r(N’N)2
k i k2

~——

(Zr,‘Z) ib o+ = ZZ u (6. 4]
i kZ ij

i ij

We wish to show that if D is a designin FY{L? with the

3

property that r.l—ri >1 for some 1i¥ j» then there exists a design

']Sl in "YT'L{D'} which is S-better than D with the property that
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!;—1_‘;31 < 1. Inorder to show that D is S-better than D, it
must be shown that tr C2 - tr .(.3’2 >0 where C and C are the
coefficient matrices of D and D respectively. We will show that
under certain conditions, there exists at least one replication of
treatment T.1 occurring in a block Bm not containing T,
which may be reassigned to treatment T. within the same block to
form a new design D which is S-better than D.

Without loss of generality, let D be a design in ML} for

which r -r, >2, 1i.e., r, =r

1752 1 2'l‘p where p is a positive integer

greater than one. Let N = (n..) be the incidence matrix of D and

1]
let N = (ﬁij) be the incidence matrix of a design derived from D
by reassigning a replication of T1 to T2 in some block Bm’
ie., n. =0, 1 =1, and T, =n,, for all other i.j. Let
Im 2m ij ij
ﬁ ﬁ = (-):,_). After a reassignment of treatment replications in some
1]
block B , we have:
m
.,): . =n,.-1 for T. occurring in block B
1j 13 ] m
. = a_.+1 for T. occurring in block B
2y 2j 3 g
- - +
)\22 )\22 1

-)T.. = \,. for all other 1,j.
1) 1]

In order for the reassignment of treatment replications to make the

design D S-better than D, it must satisfy the following:
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which is equivalent to

(k-1){pk-p-k-1) + 2 z I\lj -2 Z )\Zj >0, (6.5)

T.eB T.¢B
J m J m

j>2 j>2

If irequality {6.5) holds for any replication reassignment of Tl to

T then such a reassignment will make the design S-better.

2)

As a special case, note that when k =2 and r, = r2+pa

p > 2, there will always exist at least one X\ 1 > )\Zj since

N,

)

N, = > 3\)\ = . If X > ) i

2N r, /2 r, f 12 )\21 then there must exist a
jF1 372

biock Bm containing T1 and Tl but not TZ. If a replication

reassignment is made from T, to T2 within the block Bm:

then inequality (6. 5) wiil be satisfied, and the design will be made
5-better. So when k = 2, there always exists a treatment replica-

tion of Tl which may be reassigned to T2 to make the design

S-better when r.-r

> 2.
12—'2

Mere gensrally, let us assume that k > 3. For simplicity let

ug also assume that )\12 = 0. We wish to show that at least one of the

r. replications for T. may be reassigned to T2 to make the
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design S-better. If this is not the case then

2
2 —
K [er c%-tr TY] = (k-1)(pk-p-k-1) + 2 Z N -2 }: N, <0
j j

2
T.eB T.e«B
J m J m

j>2 j>2

for every block Bm containing Tl. Hence, summing over all

blocks containing Tl’ we get

(r,+p) (k- 1)(pk-p-k-1) Z Z }: Z

eB T EB T eB T eB
J>2 J>2

2
= + - -p-k-1) + 2 N, -2 AN <O
ey B pkeprke ) 2 ) A2 ) gy S
j>2 J>2

(rZ+p)(k—l)(pk—p—k—l) »
> iz)")"“z)‘" (6. 6)

So if it can be shown that an upper bound for the right hand

side of (6. 6) is less than ((r2+p)(k—1)(pk—p—k—1))/2, then it follows

that there exists at least one replication of T1 which may be reas-

signed to TZ within a block to make the design S-better. Note that

h,. and )\2. must satisfy certain constraints, namely that all

1j j

entries must be nonnegative integers,
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and since )\12 =0, Z )\lj = rl(k—l) and Z )\Zj = rz(k—l). By
j>2 j>2
Lemma 4.4.4, we know that when r, is even

N \ .2
MIRK ZJ Klj)\Zj - Z)\lj, subject to the constraints given above is

ji>2 j>2

2
(k-1)(r, -2r -4p))/4, hence a reassignment of treatment replications

2

can be made when

or equivalently, when

2 2
r, < Zp(rz—l)(k—l) + 2p (k-1) - Zrzk . (6.7)
Also from Lemma 4.4.4, we know that when r is odd,

2

2 (k-1) 2
max Z )xlj)\zj— Z )\lj S [(1‘2‘1) '4p]-
j>2 J>2

Hence a reassignment of treatment replications can be made when

(k- 1)(r, +p) (pk -p-k-1)
2 2

1)%-ap] <

or equivalently, when



rZZ-I-l < Zp(rz—l)(k—l) + sz(k—l) - Zrzk. (6. 8)

Note that if inequality (6.7) or (6. 8) is satisfied for some value
of v, then it will be satisfied for all larger values of p. In par-
ticular, when (6.7) or (6.8) is satisfied for p = 2, it will be satis-

fied for all larger values of p. When p =2, (6.7) reduces to

< 2(k-1) (6.9;

r

2

and (6. 8) reduces to

(r2+2)2 < 2k(r,42) - L. (6. 10)

Hence we have the following result.

Lemma 6.11. Consider a binary design with v treatments

and b Dblocks of size k such that for Ti and TJ., ri—rjzia

iLe., r = rj+p. Let c denote the number of experimental units
1

assigned to Tj which occur in blocks not containing Ti° Then if

iy ¢ is evenand ¢ < 2(k-1) or ii) ¢ is odd and

z
(ct2)” + 1 < 2k(ct2), then there exists a treatment replication of

T,1 which may be reassigned to Tj which will make the design

S-peiter.

Pf. Without loss of generality, let i=1 and j = 2. Note

that in the paragraph preceding the lemma, it was assumed that
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A . =0. However, if X _ =z, partition N into (NI’N ) where

12 12 2

N‘2 consists of the blocks where T1 and T2 occur together and

N1 consists of the remaining blocks. Then by applying the above

proof to the Nl portion of the incidence matrix, the proof

goes through as before since the N2 portion of the incidence matrix

is irrelevant in the argument.

Note that according to Lemma 6. 11, there does not necessarily
have to exist a treatment replication of T.l which may be reassigned
to T. to make the design S-better when r.-r. > 2. The next

J J

example illustrates a situation in which such a reassignment cannot

be made to make the design S-better.

Example 6.12. Consider the class of designs m12;14;3],

and a design whose incidence matrix has the form shown at the top
of page 86.

Now for T1 and T2 we have that

z N - Z N < (k-1)(k-3)
2j 1 — 2

T.e B TeB

] m j m

j>2. j>2.

for 1 < m < 8; hence no replication of T1 may be reassigned to

T2 to make the design S-better (i.e., see (6.5)).



Bl BZ B3 B4 B5 B6 B? B8 B9 BlO Bll BlZ Bl3 Bl4

Tl 1 1 1 1 1 1 1 1 8
T2 1 1 1 1 1 1 6
T3 1 1 1 1 1 1 1 1 1 1 10
T4 1 1 1 1 1 1 1 1 1 1 10
TS 1 1
T6 1 1
T,7 1 1
T8 1 1
T9 1 1
TlO 1 1
Tll 1 1
le 1 1

Note that Lemma 6. 11 may be applied in any situation where
c < 2(k-1) or (c +Z)Z +1 < Zk(c‘,.JrZ) and it does not depend upon
how many treatments v are in D. It is this lack of dependence
on v which makes the result both general and at the same time
inapplicable in some fairly obvious situations. In general, when the
number of blocks is larger than the number of treatments, the lemma
may not apply. The following example illustrates where the lemma is

not applicable but where an argument similar to the one given in the
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proof of Lemma 6. 11 justifies a replication reassignment.

Example 6. 13. Consider =7 [6;14;3] and D e MO}

with ry =8 and rp = 6. We would like to show that a treatment

replication of Tl can be reassigned to T2 to make the design

S.better. Lemma 6.11 cannot be used to justify this reassignment in

all cases since if ¢

v

4, ¢ > 2(k-1) = 4. To show that a treatment
replication may always be reassigned from T1 to treatment T2
s rnake the design S-better, an argument similar to the one used to

prove Lemma 6. 11 can be applied, i.e., if

(r +tp)(k-1)(pk-p-k-1)
o 2 <
max /\lJ ZJ lJ 2 )

j>2 j>2
cnen it will follow that there exists at least one replication of treat-
ment T, which may be reassigned to treatment T2 to make the

design S-better. However, to apply this argument, the maximum

value of E KleZ‘ - Z )x?i, must be determined subject to the
J J

j>2 j>2

relevant constraints. As opposed to Lemma 6. 11, this maximal
value will depend on tke specific number of treatments in the design.
Algorithm (4. 4) may be used to obtain this maximal value. The

problem becomes equivalant to finding
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subject to the constraints that i) the a; and b are integers,

i 0< a <8 i) 0< b, <6, Za = 16 and
i=1

b, = 6{2) = 12. The maximal value as determined by

Algonrithm (4. 4) is found to be

(r2+p)(k-1)(pk~p—k-1)

- < = .
8 > 0

hence a treatment replication may be reassigned from treatment T1

to T, to make the design S-better.

Now let D be an arbitrary design in "}“/L{ﬁ} which has

o > 7 for some 1i. Since bk = 14(3) = 6(7), it follows that there

must exist r, < 7, hence ri—rj > 2. Since a reassignment of
‘reatment replications could be made whenever r, =8 and r, = 6.
L J

¢t follows from the commenis following Example 4. 4. 3 that a reas -

signment of treatment replications can be made to make D S-better

whenever r, > 8 and r, < 6. Hence it follows that an (M.,S)
1 J
rptimal design in IT{", i4;3] must have the property that

ixr] < 1 for all i,j.
iy -
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Many more individual situations not covered by Lemma 6. 11
can be handled in the same way as Example 6. 13. However, we now
apply Lemma 6. 11 to get a more general result concerning the
parameters v, b. and k and the allocation of replications to

treatments for an (M,S) optimal design in .,Ijr

Theorem 6.14. i) An (M,S) optimal design in [J[v:b:2]

must have the property that |ri—rj| < 1 for all 1i.j.
ii) Let [-] denote the greatest integer function. If
k > 3 and any of the following conditions hold, then the (M,S) gptimal
design in ff[v;b;k] must have the property that lri—r]. | <1 for all i,j.
a) bk/v=r is an integer and r < 2k-2
b) bk/v is not an integer but [bk/v] = r < 2k-3
c) bk/v is an integer and b - (bk/v) =b - r < 2k-2

d) bk/v is not an integer and b - [bk/v] =b - r < 2k-2

Pf. i) Preceding Lemma 6. 11, it was shown that when k = 2

and ri—rj > 2, it is always possible to reassign a treatment repli-

cation from Ti to Tj to make the design S-better.
ii) a) Suppose bk/v = r is an integer and r < 2k-2 and
suppose D is an arbitrary design in YYU{L} with r, >r for

some 1. Since vr = bk and r,1>r, there must exist Tj

with rj < r; hence r,-r. 2 2. However, since r < 2k-2,
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r. < 2k-3, hence by applying Lemma 6. 11, we see that there must
exist a treatment replication of T_1 which can be reassigned to Tj
to make the design S-better. Since this argument can be repeated
for any T > r, it follows that an (M.,S) optimal design in ﬂ
must have the property that |r,1—rj| < 1 for all 1i,j.

b) Suppose [bk/v]=r and r < 2k-3. Note that
bl = crtd = (v-d)r + d(rtl) 1is a unique representation for bk as
the sum of nonnegative integers differing by at most one. Suppose D
is an arbitrary design in M{,U} with r. fr or rtl. If
r. > r+l, then there exists rj < r, hence roT > 2. However,
since r < 2k-3, rj < 2k-3, and by applying Lemma 6.11, we see
that there must exist a treatment replication of T,1 which can be
reassigned to Tj to make the design S-better. Similarly, if
r. < r, there will exist rj > rtl such that a treatment replication
of Tj may be reassigned to T.1 to make the design S-better.

Since this argument can be repeated for any r #r or r+l,
it follows that an (M,S) optimal design in ﬁ must have the
property that {ri-rjl < 1.

c) Suppose bk/v =r is an integer and b-r < 2k-2. If D
is a design in 7}’)_{,@} with r. > r, then there must exist Tj
with r, <r, hence r.o-T > 2. If c¢ denotes the number of blocks

J

containing Tj but not Ti’ then ¢ _<_‘b—r,1 < b-r < 2k-2. Hence
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¢ < 2k-3, and by applying Lemma 6. 11, we see that there must

exist a treatment replication of Ti which can be reassigned to Tj
to make the design S-better. Since this argument can be repeated for
any rp < r, it follows that an (M,S) optimal design in ‘ol
must have the property that |r,1—rjl < 1 forall i,j.

d) Suppose bk/v is not an integer but
b - [bk/v] =b-r < 2k-2 and suppose D 1is adesign in mio
with r, #r or rtl. If r > r+l, then there must exist Tj
with rj < r, hence r,l—rj > 2. If ¢ denotes the number of
blocks containing Tj but not Ti’ then c¢ < b—ri < b-r < 2k-2.
Hence c¢ < 2k-3, and by applying Lemma 6.11, we see that a reas-

signment of a treatment replication from T, to T, can be made
1 J

to make the design S-better. If r, < r, then there must exist Tj
with r, > rtl. If c¢ denotes the number of blocks containing

Ti but not TJ,, then ¢ <_b-rj < b-r < 2k-2. Hence c¢ < 2k-3
and by applying Lemma 6. 11, we see that a reassignment of a treat-

ment replication can be made to make the design S-better. Since this

argument holds for any rp #r or rtl, the result follows.

Note that the above theorem takes care of many practical
<itustions. In general, there must be many more blocks than treat-
ments before the theorem does not apply. However, as seen in

Example 6. 13, in many classes of designs not covered by Theorem
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6. 14, it can be shown that an (M,S) optimal design must have the
property that lr_l—rjl < 1 for all i,j.

A natural conjecture stemming from the above discussion is
than an (M,S) optimal design in LI must always have the
property that Ir.l-rj | < 1 for all 1i,j. A general result of this
cort has eluded the author. It can be shown that whenever v < 6 or
v = k+2, an (M,S) optimal design must have the equal allocation
property, but for arbitrary v >7 the question is still open except
for the cases covered by Theorem 6. 14.

As for the class of designs mv;(ri);b;k], the question arises
of how to tell when a design is (M,S) optimal in D’ Again a

2
reasonable answer seems to be to establish lower bounds for tr C

for designs in m{m and then find designs in mm whose
C-matrices have ftr CZ equal to one of the lower bounds established.
Such designs will clearly be (M,S) optimalin I, 1t has been
shown for many classes of designs LS thatan (M,S) optimal
design must have the property that |r.1—rjl <1 for all 1i,j. For
these classes of designs, it is clear that applying the methods of the
last chapter to establish lower bounds for tr C2 for designs in
YD Tvs (x )ibsk]}  where |r,1-rj| <1 forall i,j will also
establish lower bounds for tr C2 for designs in YLD}, However.
for those classes of designs where it is not known how replications

shiould be assigned to treatments, lower bounds must be established
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taking into consideration the variation of the r.
From expression (6.3), we see that establishing a lower bound
for tr C2 in 7)’7{,1(7} can be accomplished by simultaneously

T

2 \\ . 2 oy :
establishing a lower bound for Z r, and Z} )x.l. in YYL{J). By
s 1]

i i7j
Lemma 4.1. 1, we have that

1) zr, = bk and ii) EZK,.Zbk(k—l).
i 1)

i i7]
2
From above, we see that finding a lower bound for tr C in m{m
can be accomplished by simultaneocusly solving the integer program-

ming problems cf

i) min Zmiz and ii) min ZZ X'fj (6.15)
i 7]

subject to the constraints that

i =~

i) m, >0 and 1i) Z m, = bk (6.16)
i

iii) x,

v

0 for all i#j and iv) ZZ X, = bk(k-1).
17

By applying Corollary 4. 3.5 to each of the expressions appearing in
(6. 15) subject to the relevant constraints given in (6. 16), we obtain

the following result.
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Theorem 6.17. If D e YT{L}, then

2 1 2
tr C > - Z rn _— ZZ x_z_
k 1)

i7j

where i) the m, are nonnegative integers, ii) Zm = bk,
i

Pidy }mi—mji < 1, iv) the x,. are nonnegative integers,
\\;‘ —bkkl) and vi) |x. .-x | <1 forall i#j, p?q.
1 P9
i#j

Corollary 6.18. Any design D¢ YL} having the property

that |ri—rj‘ < 1 for all 1i,j and whose incidence matrix N has
the property that NN'= (A .) where N.. -\ <1 for i#?j,

property i TR IS j
r#q will be (M,S) optimal in .

Corollary 6.19. If bk/v is an integer and if in YL {fJ} there

exists a BIBD or a PBIB(2) with )\Z = )\1+1, then that design will be

{M,S) optimal in L.

From expression {6. 1.4), we see that establishing a lower

2
bound for tr C in ‘)’n{ﬂ} can also be accomplished by simultan-

2

2
souely establishing a lower bound for Z r. and ZZ Hij in

i i?j

)/fL{D} . By Lemma 4.1. 1,
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v v
N N N .2
= - - -1) =
1) Z rl bk and ii) Z_/ HiJ Z_/_/ rl(r,l ) rl bk
i ij i=1 i=1
From the above, we see tha' =z lowev Houwnd  fTopr  ty C in

¢ > . ) . . «
{)’"ﬂ_{f:)} car be established by simultancously sclving the integoer pro-

gramming problems

N N '
i) min Zm_ and ii) min Z> xa {(6.20)
1 L 1)
i=1 i7]

subject to the constraints that

v
i) m, >0 and 1ii) > m. = bk
1= ] 1
i1l
and {6.21)
. . . \ N\ 2
iii) x.. > 0 for all i :I{J and iv) ZZ X, . = m. - bk,
1] — 1] ;1
i7j i

. : N\ L2 ,
However, it is easily seen that the minimum for ZZ x_ ., subject to
1
i

the constraints that the x,., are nonnegative integers and
1

Zz %x.. = M increases as M increases. Hence simultaneously
1)
i7;

minimizing the terms in (6.20) subject to (6.21) is accomplished by
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2
first minimizing Zmi subject to the relevant constraints in (6. 21),
1
and then minimizing xij . With this in mind and applying
i?j

Corollary 4. 3.5, we may state the following.

Theorem 6.22. For any design D e m{D'},

2 1 2
tr C >(1-*2-)( m,2)+b+—‘ X..
- k i 2 ij

: k -

i 13(3

where 1i) the m, are nonnegative integers, 1ii) Zmi = bk,
i

iii) lmi—mj| < 1 forall 1i,j, iv) the x,, are nonnegative

v
integers, V) ZZX = Zm,(m,—l), and vi) |x..-x | <1 for
ij i ij “pq
ij i=1

1?{], p#q.

Corollary 6.23. Anydesign D ¢ VU{0} having the property

that |r_1—rj| < 1 for all i,j, and whose incidence matrix N has

the property that N'N = (pij) where |Hij_Hpql <1 for idj,

p?q, will be (M,S) optimal in b
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VII. CONSTRUCTION OF (M,S) OPTIMAL DESIGNS

7.1. Complementary Designs

Let D[v;r . ,rv;'b;kl, Ce ,kb;N] denote a binary incomplete

17

block design. We form the complementary design D" by changing
the zeros in N to ones and the ones to zeros. The new design is

easily seen to have parameters

where J isa v xb matrix of ones. Also, the association matrix

for the new design is N N  =(\.) where N\, =b+\ . -r -r,
ij ij ij i j

g N* = (p,.)

for all j,j and the block characteristic matrix is N i

where p =v+tu. -k, -k.
1) 1) 1 J

If F denotes some class of binary incomplete block designs,

let 3-: denote the class of complementary incomplete block designs.

Theorem 7.1.2. Consider £ :mv;(ri);b;k] where r,1 <b
and v >k. If D is a design whichis (M,S) optimal in b,

then in is (M,S) optimal in .D/[v;(b—r.l);b;v—k].

Pf. Note that TNA{L?} consists of all the binary designs in
"Q)/ . 5K . .
AL Let Y)’Ul 7} denote the class of designs which are complements

of designs in Y¥1{[7}. Now observe that
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M{E} :}’n{MV;(b—ri);b;v—k]} since both classes consist of the
binary designs in ﬁ[v*;(b—ri);b;v—k]. So finding a design in
D'[v; (b-r.l);b;v-k] which is (M, S) optimal in equivalent to finding a
. - . . o .
design in Y Z{D} with minimal tr C . Recall that for fixed
- sk kP
T finding a design in m{jj} with minimal tr C is equiva -

NN w2
lent to finding a design with a minimal value for ZZ M., . Butfor
) 1]

D ML), i)
O\, +2 0 N\, 2
ZZ(H.U.) = ZZ (v*p,‘ij~2.k)
i7] i#j
2 \ - N2
=b(b-1)v +2v Zr.(r.—l) - 4b(b-1)vk + ZZ we
ii ij
i i7j
- 4k ZZ by T 4b(b-1)K°
i7;
_ VN2
St ZZ Bt
ij

where ¢ 1is constant because the r,l are fixed. From this last

N sk Z‘
expression, we see that finding a minimal value for ZZ'\M,U,) in
17
. . . . NN\ 2
WL{D} is equivalent to finding a minimal value for /, Hij in
7]
2

m{U}, i.e., equivalent to finding a minimal value for tr C in
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M{D} Hence finding an (M,S) optimal design in

g;ﬁﬂ[v;(b\-ri);b;v~k} is equivalent to finding an (M,S) optimal design

inﬂ-

Theorem 7. 1.3. If a binary design D(v;rl, R rv;b;k;N) has

the property that \Hijupﬂm‘ <1 for i#j, 1 7 m, then the com-
plementary design has the property that !H_Hﬂm’ < 1 for all
ij -

1 7 m.

1
R

Pf. Simply observe that

‘“1j"“£ml = (bt -2k) - (bt -2l = fwy-w 1<

for all 17j, £7m.

Corollary 7.1.4. 1If a binary design D(v;rl, R rv;b;k;N) in

IHv:b:k] has the property that |ri~-rj| < 1 and lppq~|¢rs| < 1

for all p7q. r #s. thenthe complementary design D is

{?4.8) optimal in ﬁ[v;b;v—k}.

Pf. The paramneters of the complementary design are given in

t

711y Observe that 11 -r, |
]

by Theorem (7.1.3) %pp | <1 for i#j, £ #m. Now, by
ij " Im

|(b-r,)-(b-r.)| = |r,-r.| < 1 and
i j i

applying Corollary 6. 18, we see that D is (M,S) optimal in

=T . 1
Sk
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Corollary 7.1.5. If D is a binary design in D[v;b;k] with

the property that Iri—rjl < 1 and )\ij < 1 forall i7j, then

D< is (M,S) optimal in 5[V;b;v—k].

Pf. Note that if )\.l. < 1, then no two treatments occur in
more than one block together. Hence no two blocks can have more
than one treatment in common. So Hij < 1 forall i#j. Hence

“Lij—ulm’ <1 forall i 73, £ # m, and the result follows from

Corollary 7. 1. 4.

Theorem 7.1.6. Suppose D is a binary design in

ﬂ=5[v;b;k] which is (M,S) optimal and has the property that

|ri—rj| < 1 forall i,j. If v >2k, then D is (M,S) optimal

in T [v;b;v-k].

Pf. Let W’L{ﬁ} denote the class of designs which are
complements of designs in 7 {L}. Observe that
m{ﬂ[v;b;v-k]} = }ﬂ{m since both classes consist of the binary
designs in JJ[v;b;v-k ]. So finding an (M,S) optimal design in
5[v;b;v-k] is equivalent to finding a design in ‘V}f({ﬁ} with mini-

mal tr CZ. For any design D « }/)/”f{[j(},
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1]

v
*®2 2 *2 B 1 52
tr C (1~ =) ?r. tb + 0 ZZH
YR *2 ij

k i=1 k i7;
v
- feskil k) Z(b-rl)z b+ — ZZ (v -2K)
(v-k) - (v-k) 14
v v
vi{v-2k) 2 2
= (constant) * 2] Z o * 2 klk-2) Z T
(v-k) 7 (v-k) o
i i
+ ZZ u.z.
1)
ij
v > |
= (constant) + [V_(V-—sz—)] Z r,2 + k [tr Cz—b] .
i 2
(v-k) -1 (v-k)

32
From this last expression, we see that when v > 2k, tr C

\%

2 2
is minimal when Z r. is minimal and when tr C is minimal in
i

m{m i=1

Theorem 7.1.7. Suppose D is a binary design in ﬁ[v;b;k]

such that ]ri~r_ | <1 for all i,j, and suppose D is (M,S)
J
optimal in D'[v;b;v—k]. If v < 2k, then D is (M,S) optimal

in 5[v;b;k}.

Pf. Similar to Theorem 7.1.6.
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It will be shown in the next example that S-betterness is not
necessarily preserved in g[v;b;k] under the operation of comple-

mentation.

Example 7.1.8. Consider Jr[7:5:3]. Let D1 and D‘2 be

given by the following incidence matrices.

B1 BZ B3 B4 B5 Bl BZ B3 B4 B5
T1 1 1 1 3 T1 1 1 1 3
T2 1 1 1 3 T2 1 1 2
T3 1 1 2 T3 1 1 2
T4 1 1 2 T4 1 1 2
T5 1 1 2 T5 1 1 2
T6 1 1 2 T6 1 1 2
T7 1 1 T7 1 1 2

3 3 3 3 3 3 3 3 3 3

2 2
Now tr C1 =19 1/3 and tr c‘2 =19 7/9, Thence

2 2
tr C1 < tr C‘2 . If we take complements of D1 and DZ, then
sk sk <2
designs Dl and D‘2 are obtained where tr C1 =40 1/4 and
>}<2 *2 %2 " "o
tr C‘2 =39 5/8, hence tr C1 > tr C2 . So "S-betterness is not

necessarily preserved under complementation in f)/[v;b;k].

Corollary 7.1.9. 1If the parameters in ﬂ[v;b;k] satisfy any

of the conditions in Theorem 6. 14 and v > 2k, then the complement
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of an (M,S) optimal design in JJ[v;b;k] will be (M,S) optimal

in .,Ef[v;b;v—k].

Pf. If the parameters in lD’[v;b;k] satisfy any of the
ccnditions in Theorem 6.14, then an (M,S) optimal design in mv;b;k]
must have the property that |ri-rj| < 1 for all 1i,j. The result

then follows from Theorem 7.1.6.

Corollary 7. 1.10. If the parameters in °ﬁ'[v;r;v—k] satisfy

any of the conditions in Theorem 6. 14 and v < 2k, then the comple-
ment of an (M,S) optimal design in ﬂ[v;b;v—k] will be (M,S)

optimal in I v;bsk].
Pf. Similar to that of Corollary 7.1.9.

While it is not yet known whether the complement of an (M. S)
optimal design in b'[v;b;k] is always (M,S) optimal in
JIlv;b;v-k], such a conjecture appears extremely reasonable. If it
could be proven that an (M,S) optimal design in ,@'[v;b;k] always
has the property that Iri-rjl < 1, then the conjecture would easily
be affirmed by what has been proven here.

Clearly the operation of complementation is not an actual method
of construction, but it can be useful in that it may be easier to con-
struct the complement of the desired (M,S) optimal design rather

than the actual needed design. As an example, consider the
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construction of the (M,S) optimal design in ﬁ[v;b;k] where
v = ktl. Since v < 2k, if an (M,S) optimal design in the trivial
class of designs LT lv;b;1] has the property that |ri—rj\ < 1 for
all i,j, then by Theorem 7.1.7, its complement will be (M,S)
optimal in ﬂ[v;b;k] where v = ktl. But for any design in
Jlv;b;1],  C  is the zero matrix, hence every design in Llv;b;1]
is trivially (M,S) optimal. Therefore, we must simply find a
dzgign in ST v;b;1]  with |ri-rjl < 1 for all 1i,j. Butsucha
design can always be found in ﬁ[v;b;l] since the design having an

incidence matrix N =(n ) with n =1 for p=1,...,v, and
Pq Pq

p

P
\1 -r ) 3\ < Zr., and n =0 elsewhere has this
4__, i i pa

i=1

property. Hence Theorem 7.1.7 is applicable, and the (M,S)
optimal design in JJ[v;b;k] where v = ktl is the complement of

the design in .@[v;b;l] described above.

Example 7.1.11. Suppose we wish to find an (M,S) optimal

design in Lr16:10;5]. Let us construct the (M,S) optimal design
in Jr[6;10;1]. This is simply any design in JfF[6;10;1] with
lr: —rjl < 1. The incidence matrix of the design described above

L

naving this preperty is given below.



B1 B‘2 BB B5 B, B_L B, B B1

3 74 6 7 8 9 0
Tl 1 1 2
TZ 1 1 2
T3 1 1 2
T4_ 1 1 2
T5 1 1
T6 1 1

The complement of the above design is (M,S) optimal in

F3l6;10;5].

€

7.2. .(M,S) Optimal Designsin BTv;b;2]

In experimental work, particularly in some fields of biology,
Slocks of size two are of fairly frequent occurrence. For example,
an experimenter may have blocks consisting of twins, or halves of

plants, or halves of leaves. Since experiments with blocks of size
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two are of importance, we now restrict ourselves to the construction

of (M,S) optimal designs in JJ[v;b;2].

Recall from Theorem 6.14 that the (M,S) optimal design

v JTlv;v;2] must have the property that lr.l—rjl < 1. In addition

to this, the following theorem can be stated.



Theorem 7.2.1. An (M,S) optimal design D e E[v;b;?.]

with incidence matrix N can always be constructed such that
\r;—rjl < 1 for all i,j and such that NN'= ()\,lj) whe re

N, -h <1 forall i7j, p?q
Mgl S j q

Pf. From Theorem 6.14, the (M,S) optimal design in

L ﬂ[v;b;Z] must have the property that |r,1—rj| < 1 for all
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i,j- Let A= [Zb/v(v—l)] where [-] denotes the greatest intege:

function. To obtain the desired association matrix, we must have

A, =N or \tl for all i# j. Let De 5 be such that

i]

lri—rj| < 1 forall 1i,j. Let N be the incidence matrixof D
and let NN' = ()\ij). Suppose for some i 7 j, )\ij > \+1. Without

ioss of generality, suppose )\12 > \t1. Since 2b = Zri and

i

ir,—rjl <1 forall i,j, we musthave that X\ < rl/(v—l) < N+1.
: S

So there must exist a nonnegative integer a, such that

r, = (v—l—al))\ +a,(A+1) = Z )\lj .

1
j>2
Since X\ > x+1, there must exist T such that X\ < \j; 80
12 m Ilm —

N > 2. Since |r,-r ‘ <1 and r = z N, , we must
12 im T 2 m' - m im

- iFm
also have that Z N> Z .. .

mj 2j
j22 ji>2

3 #m
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Hence for some treatment T , \ > N, . Now assign a
p mp 2p
replication of treatment TZ occurring in a block containing T1 to
Tr*‘ and a replication of treatment Tm occurring in a block con-
taining T_ to treatment TZ. Since k =2, the new design D
has incidence matrix N with NN' = ()\‘_,lj) whe re
.. = -1 . o=+
12 )\12 )\Zp 2p !
N,o=, +] = -]
Im Im mp mp

and M., = \,. for all other 1i,j. Now

2 -
tr(NN')" - tr(N N')
A R G G G TN C wat G G
12 'Im 2p mp 12 1 2p mp
= + - - >
4()\12 )\lm) 4()\rn )\Zp) 8 0
: == 2 e
since A, .-\ >2 and M\ >N, . So tr(NN" < tr(NN') .
12 Im — mp 2p

2
A similar interchange can be made to reduce tr(NN"Y) when there

exists )\i' < N for some i 7 j. So by beginning with an arbitrary
J

design D« JF with incidence matrix N, we can make inter-

2

) whenever \.. 7\

changes as described above to reduce tr (NN i

»+1 for some i 7 j. Since there are only finitely many designs

in ﬁ, we will eventually obtain a design D having incidence
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matrix N such that NN'= 6;',”,) where rx’ijqul < 1 for all

i#’j,p#q.

We shall now give an easy process by which the (M,S)
optimal design in _D’[v;b;Z] may be constructed.

in the first stage of the construction process, we assign T

108

1
to experimental units occurring in the first r, blocks of the design.
1.8, , 1 = 1 , 1 < < . inni i )
ie.y oy 1 for Sm<r, Beginning with T2 we then

segaentially assign treatments to the experimental units remaining in

blocks Bl’ . B o, e, T2 is assigned to the experimental
r

T, is assigned to the experimental unit

unit remaining in Bl’ 3

remaining in B etc. If r, > v-1, then TV is assigned to

2’ 1

T is assigned to the

the experimental unit remaining in B 1 >
V-

experimental unit remaining in B , and the process of assigning
\4

succeeding treatments to succeeding blocks is continued until treat-

ments have been assigned to all of the experimental units occurring

in blocks Bl, ...,B . The following examples illustrate how a
r
1

typical incidence matrix might look after the first stage of the con-

struction process, depending on whether r, < v-1 or r, > v-1.

Example 7.2.2. Consider .D"[6;10;2]. After the first stage,

the design we are constructing for this class of designs has the follow-

ing form (note that r, < v-1).



109

B1 B2 B3 B4 B5 B6 B7 B8 B(9 Blo

T1 1 1 1 1 4
TZ 1 4
T3 1 3
T4 1 3
’1’5 1 3
'1’6 3

Example 7.2.3. Consider ﬂ[5;13;2]. After the first stage,

the design being constructed for this class of designs has an incidence

matrix with the following form (note that ry > v-1).

B, B, B, B, B, B, B, B B, B B B B

1 3 74 75 "6 7 8 9 T10 11 12 13
T, 1 1 11 1 1 6
T, 1 1 5
T, 1 1 5
T, 1 5
T, 1 5

Notve that after the first stage of the construction process,

IS ‘ < 1 for {4,m > 1. Note also that for i > 2, there are
Y Im' — Z

r.-\,. replications of treatment T,1 which have not yet been

1i
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assigned to blocks and which must occur in blocks Br IEERRE

1

We start the second stage of the construction process by taking

the rz-xlz replications of T2 which have not yet been assigned

to bliocks and assign T2 to experimental units occurring in blocks

B ,.,....B , i.e., n =1 for

r +1 < m < r tr -N. . We now sequentially assign treatments to

;... B
4y -
r1+1 rl r2 )\12

experimental units remaining in blocks B

beginning with the treatment after which the sequential assignment of
treatments to succeeding blocks ended in stage one, i.e., if the

sequential assignment of treatments to succeeding blocks ended in

stage one with TS being assigned to Br , then the procedure is
1
begun in stage two by assigning treatment TSJrl or T3 to the
experimental unit remaining in Br . depending upon whether
1
s =v or 2, and then TSJFZ or T4 is assigned to Br1+2’ etc

After the second stage of the procedure, the incidence matrix of the

design being constructed may look as in the following examples.

Example 7.2.2. (Cont.) After the second stage of the procedure.

the incidence matrix of the design being constructed has the following

LOTTY .



B B
, B, By By By By B, Bg By By,

Tl 1 1 1 1 4
T2 1 1 1 1 4
T3 1 1 3
T4 1 1 3
T5 1 3
T6 1 3

Example 7.2.3. (Cont.) After the second stage of the

oprocedure, the incidence matrix of the design being constructed has

the following form.

B
Bl BZ B3 B4 B5 B6 B7 B8 B9 BlO Bll BIZ 13

T] 1 1 1 1 1 1 6
TZ 1 1 1 1 1 5
1 1 1
T3 5
T 1 1 5
4
1 1

T5 5

We now repeat the procedure for each succeeding treatment

until the design is complete, i-e., at the pth stage of the
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p-1
construction process, we take the rp - Z)\i replications of
i=1

treatment Tp which have not been assigned to blocks in the previous

p-1 stages, and assign Tp to experimental units in blocks Bm,
p-1lp-1 p P P
Z Z)\ +1<m¢< Zri - Z Z)\i, . We then sequentially
- J
i=1 j>i i=1 i=l j>i

assign treatments to the experimental units remaining in the blocks tc
which Tp was assigned beginning with the treatment after which the
sequential assignment of treatments to succeeding blocks ended in
stage p-1l. Note that each stage may be identified with a particular
row of the incidence matrix in which that particular stage begins,

i.e., stage p Dbegins inrow p of N.

Example 7.2.2. (Cont.) Following the above design procedure

we obtain a design in i,a'[é; 10;2] with the following incidence matrix.

Bl B2 B3 B4 B5 B6 B,7 B8 B9 B10

T1 1 1 1 1 4
T2 1 1 1 1 4
T3 1 1 1 3
T4 1 1 1 3
T5 1 1 1 3
T6 1 1 1 3
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Example 7.2.3. (Cont.) Following the above design procedure.

~

we obtain a design in jj?’[S;lJ;Z] with the following incidence matrix.

1 374 75 76 7 "8 79 10 11 12 13
T, 1111 6
r, |1 1 11 1 5
T, 1 1 111 5
3
T, 1 1 1 1 1 5
I, 1 1 1 1 1 5
2 2 2 2 2 2 2 2 2 2 2 2 2

From Theorem 7.2.1 and this construction process, we can
easily determine the (M,S) optimal design in mv;b;k] where

v = kt2 as the following result shows.

Corollary 7.2.4. The (M,S) optimal design in JJ [v;b;k]

where v = kt2 1is the complement of the (M,S) optimal design in

JIiv;b;2].

Pf. Since v =kt2 and v =kt2 < 2k for all k> 2,

Theorem 7.1.7 is applicable and the result follows.

Example 7.2.5. 1If we take the complement of the design

cbtained in Example 7.2.2, the (M,S) optimal design in ﬂ[é; 10:4]

will be determined and it has the following incidence matrix.
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T1 1 1 1 1 1 1 6
T2 1 1 1 1 1 1 6
T3 1 1 1 1 1 1 1 7
T4 1 1 1 1 1 1 1 7
T5 1 1 1 1 1 1 1 7
T6 1 1 1 1 1 1 1 7

Note that as a result of Theorem 7.2.1 and Corollary 7. 2.4,
we know that the (M,S) optimal design in 7 [v;b;k] when v = k+2
must always have the property that Iri—r,l < 1 for all 1i,j.
J

7.3. .Constructing (M,S) Optimal Designs from
Known Optimal Designs

The concept of a dual incomplete block design will be used
several times in this section. Recall from Chapter II that if

D[V;rl’ Ces rv;b;kl, ...»k ;NJ] 1is a binary incomplete block design,

b
then the dual design is that design obtained by interchanging the roles
of blocks and treatments. If N is the incidence matrix of the dual
design, then N = N'.

A linked block design with parameters v,b,r,k and p  is

defined to be a binary incomplete block design with v treatments

arranged in b blocks of size k where each treatment is
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replicated r times and any two blocks have exactly P treatments
in common. Clearly, the dual of a linked block design is a BIBD.

We shall now discuss several methods of obtaining (M,S) optimal
designs from linked block designs.

i) Suppose from a linked block design with parameters
v,b,r,k and M, we eliminate m treatments such that no two of
the eliminated treatments occur in the same block. Then the blocks
bLreak up into two groups, the first of which consists of those blocks
from which a treatment was eliminated and the last group consists of
those blocks from which no treatment was eliminated.

Clearly any block from which a treatment was eliminated will
have p-1 treatments in common with blocks from which the same
treatment was eliminated and p treatments in common with all
other blocks. The blocks from which no treatment was eliminated
will have § treatments in common with all other blocks. Thus,
after the elimination of treatments, we will have a block design with
v-m treatments, mr blocks of size k-1, b-mr blocks of size k.
and with an incidence matrix N such that N'N = (Hij) where

B.. = or m-1 for all i'fj. If D denotes the dual of this

latter design, then ¥ = b, T. =k or k-1, B = v-m, k=r. and

i

Eif‘i*'q':(i'ij) where ‘:‘:’ij:p or M-1 for all i#j. Note that D

is (M,S) optimalin ﬁ[‘x‘?,‘f),‘l'{] An example will now be given to

Jtlustrate this construction technique.



Example 7. 3. 1.

V:b:7

and

dence matrix.

When we eliminate treatment

following

(G2 5N w o b

GG

~ o

(M,S) optimal design in m7;6;4].

Mo 3
o e W N

-1

r =k

4.

1 1
1 1
4 4

Consider the symmetrical BIBD with X = 2,
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The design is given by the following inci-

T

1

K N N N U N N

and take the dual, we get the

B. B, B B, B. B

1

2
1

3

4
1

1
1

5

1
1

6

B W R W W W h
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ii) Suppose now we take a set of m treatments in a linked
block design, no two of which occur in the same block, and replace
each treatment in the set by a group of two treatments occurring in
the same blocks as the original treatment. Upon adding these treat-
ments, we get a block design with vtm treatments, mr blocks of
size ktl, b-mr blocks of size k, and an incidence matrix N

such that N'N:(pij) where Mij:pt or p+l. If D denotes the

—
—

dual of this latter design, then v =b, r. =k or ktl, b =vtm,

al: =r, and N N'= Kij) where Tij =u or ptl. Clearly this

latter design will be (M,S) optimalin 3[‘\;,3,‘{(]

Example 7.3.2. Suppose in Example 7. 3. 1, instead of

eliminating treatment T we replace it with two treatments each

1,

occurring in the same block as Tl. When this is done, and when the

dual of the constructed design is taken, we get an (M,S) optimal

design in 6@[7;8;4] with the following incidence matrix.

B1 BZ B3 B4 B5 B6 B7 B8

T, 1 11 1 4
1
T, 1 1 11 5
T 111 1 1 5
3
T, 1 1 1 1 1 5
T, 111 1 4
o]
T 11 111 5
6
1 11 1 4
Iq
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We shall now devise some methods for constructing (M,S)
optimal designs from designs which are already known to exist. As
an example, it was shown in an earlier chapter that if a balanced
incomplete block design or a PBIB(2) with )\2 = )\1+1 exists in
MV;b;k], then that design will be (M,S) optimal in g[v;b;k].
If possible, we would like to use those known and tabulated designs

which are (M,S) optimal to derive (M,S) optimal designs with

different parameters. To this end, we have the following result.

Theorem 7.3.3. Let D be an (M,S) optimal binary design

in g[v;(ri);b;k] whose incidence matrix N has the property that
ipij—plm{ < 1 forall i#j, £ #m. Then any combination of dis-
tinct columns of N will give the incidence matrix of an (M,S)

optimal design in ﬁ[v; (‘;\i);m;k] where m represents the number

of distinct columns in the new design and 4'\1 the number of repli-

cations of T_l.

P{f. Simply observe that any combination of distinct columns of
N  still has the property that “Lij -p£m’ <1 for i¥j, £ # m,
hence from Corollary 5. 1. 14, the design is (M,S) optimal.

Recall the definition of a linked design given earlier in this
section. We now extend this definition to a partially linked incomplete
block design. A partially linked incomplete block design with m

associate classes is a binary design consisting of an arrangement of
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v treatments, each replicated r times, contained in b blocks
of size k such that the dual design is a PRIB(m). We shall denote
such a design by PLIB(m).

lLet N bethe v xb incidence matrix of a linked incomplete
block design or a PLIB(2) with the property that Hij = M or ptl.
Clearly these designs will be (M,S) optimal in g[v;b;k]; hence
by Theorem 7. 3.3 by taking any combination of m distinct columns
of N, we will still have an (M,S) optimal design in
v (;\i);m;k]. However, such a design may not be (M,S) optimal
in the larger class of designs ‘D'[v;m;k], since it may not have the
property that l'?i!l\"jl < 1 for all i,j. However, if Nl is the
vxm incidence matrix derived from N = (NI’NZ) by eliminating
NZ and has the property that |,r\1—/r\J| < 1, then Nl will be the
incidence matrix of an (M,S) optimal design in ﬁ[v;m;k]. Note
that NZ will also be the incidence matrix of an (M,S) optimal
design in mv;b-m;k]. Note also that any single column may be
eliminated from N or any two columns i and j can be
eliminated from N if Hij = max[0, 2k-v] and still have an (M,S)
optimal design in PIlvib-1;k] and LDlvib-2;k] respectively.

In general, suppose we are looking for an (M,S) optimal
design in E[v;(ri);b;k] or D’[v;b;k] where bk/v is not an

integer. Keep v and k fixed and find the smallest positive r'

and b'>1b such that vr' = b'k. If there exists an (M,S) optimal
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design in ﬁ[v;b';k] with an incidence matrix N such that
lpij_plml < 1 for i743j, £ #m then by taking any b columns of
N having the proper parameters, we will have the incidence matrix
of an (M,S) optimal design in ﬂ[v;(ri);b;k] or JJ[v;bjk].

Since the construction of incomplete block designs where bk/v
is an integer has been studied extensively, many designs having the
property that I)\ijmxﬂm! < 1 for all i74j, £ #m have been
catalogued and published. So if we are looking for a design in

| < 1 for all it#j,

. . 3 -
E[v,b ;k]  with the property that 'Hij Hﬂm

4 #m, it may simply be a matter of fi»nding the dual of the desired
design in some published catalogue of designs. An example will

illustrate the technique.

Example 7.3.4. Suppose we are looking for an (M,S) optimal

design in ﬁ‘);S;é]. The smallest possible integers such that
vr' =b'k are b'=6 and r'=4; so we are seeking a design in

L5{9;6;6] with the property that <1 forall if“j,

B M
£ #m, or equivalently, a design in .,8'[6;9;4] with the property

| <1 forall i#j, £ #m. Using the Tables of

that |\, -\
ij 4m

Partially Balanced Designs with Two Associate Classes we see that

a PBIB(2) design in m6;9;4] exists with the property that

N, F >\1+1. This design is given by



Clearly, if we eliminate any row in the above design and take

the dual, we will have a design which is

Br[9; 5; 6].

B, B, B, B, B_L B, B, B, B

1

Tl 1
T2 1
T3 1
T4 1
T5
Te

4

2 3 74 75 76 7 8 79
1 1 1 1 1 6
1 1 1 1 1 6
1 1 1 1 6
1 1 1 1 1 6
1 1 1 1 1 1 6
1 1 1 1 1 1 6
4 4 4 4 4 4 4 4

(M, S)

The final design is given below.

optimal in

121
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7.4. Patchwork Techniques

For i=1,...,t, let D_[v,l;r,...,r bk ;N,l] be an
1 .

t
incomplete block design defined on Qi' Let D= v Di denote

i=1
the design obtained by combining all the D.l, i.e., D 1is that
t
t
design defined on 2 =  §£2, consisting of the b = Zb, blocks
i=1 ' i
i=1
contained in D, D,,... ,Dt. An interesting and practically useful

problem is to find necessary and sufficient conditions on the D,1
which will make D an (M,S) optimal design. The solution to
this problem is in general unknown and appears to be very difficult.
However, we now give some techniques for combining designs so as
to yield (M,S) optimal designs.

i) Let 5 = D[v;?l, c ,?v;‘g;k;‘ﬁ] denote a binary incomplete

block design defined on £ such that N N' = ()\ij) has all of its off

. A A A .
diagonal elements equal. Let D = D[v;rl, cees rv;b;k;N] be a binary

AA
incomplete block design also defined on £ with NN'= ()x\ij) where
l)tij:’)tpql <1 forall i#¥j, p7q. Let D=Duw D denote the
design defined on £ whose incidence matrix N is given by

SN
17, 0y, Note that D is binary and that NN' = ()\ij) where
NERVS 4‘,* for all i 7 j. Hence

iJ 1] 1}
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for all i7j, p7 q. By Theorem 5.1.1 and Corollary 5.1.7, D
. 1 . . - AT N
will be (M,S) optimal in ﬂ[v;(ri+ri);b+b;k]. If D also has the
. ‘ evg _L’\ A . .
property that |(r_1ar,1)—(?j+rj)‘ < 1 forall i7j, thenby

Corollary 6. 18, D will be (M,S) optimal in Do Bkl

Example 7.4.1. Let D denote the BIBD with \ =1 whose

incidence matrix N is given below.

B, B, By By Bg B, By

m
Ty 1 1 1 3
1 1 1 3
TZ
T3 1 1 1 3
1 1 1 3
T4
T_ 1 1 1 3
o]
1 1 1
T6 3
1 1 1
T7 3

Let D,1 denote that design whose incidence matrix consists of

the first 1 columns given below, 1 < i < 5.



All of the designs D =D D_1 will be (M,S) optimal in
DN7:7+4;3] for i=1,...,5.

ii) Let D = D[v;r . rv;b;k;N] be a binary incomplete

1"

block design defined on £ with )\ij =x or xtl for all i#j.

If there exists a set G consisting of m >k treatments in £
such that )\ij = x for all T.l, Tj ¢ G, then a block containing any
k of the treatments in G may be added to D and the resulting

design D will be (M,S) optimal in the class L oof designs
with b+l blocks of size k and {ixed replication sizes to which

D belongs.

~——— ——

To see that D is optimal in —D’, note first that D 1is a

——

binary design. Note also thatif N is the incidence matrix

-

for B, then _l\.l-l-\l-':()\,_) where ‘)_\.__:)\,, if either T. or
ij ij ij i

124
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does not occur in block b+l, and _):ij = )\ij+1 if both Ti and Tj

occur in block btl. Hence )\ij:x or xtl1 forall i7j, soby

Theorem 5. 1.1 and Corollary 5.1.7, D will be (M,S) optimal
in 5

Note that this process of adding blocks to a design D may be
continued as long as there exists a set G of treatments in £

satisfying the necessary conditions.

Example 7.4.2. Let D[9:;3;9;3;N] be the PBIB(2) with

,\1 =0 and )\2 = 1 whose incidence matrix is given below.
Bi BZ B3 B4 B5 B6 B7 B8 Bg
T1 1 1 1 3
T2 1 1 1 3
T3 1 1 1 3
T4 1 1 1 3
T5 1 1 1 3
T6 1 1 1 3
T7 1 1 1 3
T8 1 1 1 3
T9 1 1 1 3
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Note that K14 = ,\17 = K47 = 0. Hence a column BlO

containing treatments T , T

1 4’ and ’I';7 may be added tc the above

design, and the resulting design will be (M,S) optimal in
Ir9;4.3,3,4,3,3,4,3,3;10;3].
iii) Let D = D[%;

1
block design defined on (73 with N'N = (*..) where W..=p for
A
e K

1) 1]
. # a

all 14j. Let D = Dm; 1 ,?\@;b; ;N] be a binary incomplete
: 7\ e A
plock design defined on &£ with £ ~ /57\ ¢ and with N N m 1,)

J
4 N .. .
where |W, Hpqi 1 forall i7j, p7q. Let D denote the design

<

- A

defined on £ £ whose incidence matrix N is given by (@).
Note that D is binary and that N'N = (pij) whe re

M. . —?.4'@.1_ for all i#j. Hence

[T I AR

R - Y [ = ‘s
J P4 11 Pa Pq 1)  Pq

for all i #j, p#q By Theorem 5.1.1 and Corollary 5.1.14, D

will be (M,S) optimal in ﬂ ) b; k+k] where r = ?i’
1<i<¥ r :'E‘j,‘\7+1< i<'\7+<>.
S 1 s 0 =1
iv) Let D = D[::;;i, ,?ﬁ;b,‘k,ﬁ] be a binary incomplete

block design defined on £  with NN = (h..) and which is (M.,S)

A , ’”~
sptimal i ﬁr fr ok k Let D=D v;?‘ s e e ,';\,\éb;k;N' denote
v

2\
a complete binary randomrized block design defined on £ with

- N\ A NN
R~ Q=¢, i.e., r, =b forall i and N'N = ({l\i.) where
J
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N\
ﬁ'_. =’k for all i j. Now let D denote the design defined on

o—

= % o . .
2% whose incidence matrix N 1is equal to ()s)»

Note that D is a binary design hence it will have maximal

tr ¢ in D,=ﬁ[?r+{\\r;(ri);b;-§+@ where r. :';i for 1< i i_\;
_ A e . - A . .. ~
and r, = r. for ‘vtl < i €< v+v. Note also that if the incidence N
1
of any design D erL{.@'} is partitioned as in the previous para-
~J N1
graph, i.e., N = (N )  where N1 and N2 have the same row
2

—

and column sums as the incidence matrices for D and D above.:

then it is easily seen
vy

where M is a constant for all designs in m{m From this last

expression, we see that finding an (M,S) optimal design in I is

equivalent to finding an (M,S) optimal design in ,D’[?/', (?;);b;k].

So D as defined above will be (M,S) optimal in ol

7.5. A Heuristic Approach to the Construction of (M,S)
Optimal Designs

While a direct method of constructing (M.,S) optimal designs
is not given in this section, the procedure described can be of great
value to the experimeuter in constructing optimal designs in situations

where the previously given methods of construction are not applicable.
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Let oﬁ:B[v;(ri);b;k]. In Chapter V, various methods were
given for determining lower bounds for tr(NN')2 for designs in the
class 7’)’7\{,@'} If a design exists having an incidence matrix with
tr(NN')Z equal to one of the lower bounds established, we would like
to use the information gained in the establishment of the lower bound
to aid in the construction of the design.

Let N be the incidence matrix of a typical design in mw}
where r, >r, >...2 T Now partition N into N1 and N2

i 2 - -

where N1 consists of the first v, rows of N and N2 con-

sists of the remaining v-v, TOWSs of N. Note that the

1
zr. = n, replications assigned to Tl’ .., T must occur in Nl,
1 Vl
i=1 v
the z r. = n, replications assigned to TV1+1, cees TV must
= +1
i=v,
occur in NZ’ and the k experimental units assigned to block B_1

must be allocated between N1 and NZ. Let us use the same nota-

tion and terminology as in Section 5.2. Recall that if (krl‘\, C ,kb)

denotes any particular ordered configuration. then a minimal value
"o . . o

for tr(NN') can be determined for any design whose incidence

matrix has that ordered configuration. This minimal value is deter-

mined by soiving the integer programming problem of minimizing

{5.2.2) subject to the constraints given in (5. 2. 3).
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In Section 5.2, a method was given for determining those
2
values of C1 yielding a lower bound for tr(NN') in mw}

and for finding those configurations yielding these values of C1 for
a given partition of N. If the process of determining a lower bound
for 1:r(NN')‘2 and determining those configurations yielding the
lower bound is carried on for each possible partition of N, a great
deal of information about the incidence matrix of a design with
tr(NN')Z equal to the lower bounds established is obtained. We
would now like to use this information to construct an (M,S) optimal
design for ﬁ Several examples will be given on how to do this.
Before proceeding, we shall give several facts which will prove
useful later. Let ‘\71 >/‘>1 represent two different partitions of an
incidence matrix N of a particular design D ¢ m{.@'} and let
{T(|, c e ,T(b} and {?(1, - ,’}\<b} represent the actual unordered con-

figurations of the incidence matrix of the design for these two parti-

N\
tions of N. If C and C1 are the values of C

1 given by

1

these configurations respectively, then by a proof analogous to that

given for Lemma 4. 1. 3, it can be shown that
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> T
1 1 1 1
- A\
c -G =2 N o/ Z)\,,
L i i
i=1 j:'\>1+1 1=’€r‘l+1 i>i
b b
- A A - K - i
:Zz( —k.)(k)+ZZ(k i )(k.—’l\{—l) (7.5.1)
i i i 1L
i=1 i=1
. - A\
In particular, when vy T Vl+l’
VoS
V1
o -\ Va %S
c, -C, =2 New =2 z k . (7.5.2)
1 1 iv, m
1:]. T-— €B
v m
1
Note also that for any design D when ;‘l :/\>l+l, the values of
El in {'Kl, S, ’T(b} must be obtainable from the values in
Sk AN Pt
{Q ,...,k } by adding one to exactly rm of the k..
1 b v 1
1
. . . _ s s s
From this point on, if v, T s let Cl, C2 , and ch

denote the values of Cl’ CZ’ and Cl2 which are given by the

configuration under consideration.

Example 7.5.3. Suppose we wish to find an (M,S) optimal

design in L= [J16:5.5,5,4,4,4;9;3]. The values of C}, C,,

; 2
v, yielding lower bounds for tr(NN')

for the various partitions of

N  as determined using the methods of Section 5. 2 are given below.
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The various ordered configurations yielding these lower bounds are

also given.

S C? C; Ciz LB Configurations

1 0 34 20 225 (1,1,1,1,1,0,0,0,0)
2 4 18 36 225 (2,2,1,1,1,1,1,1,0)
3 i2 6 36 225 (2,2,2,2,2,2,1,1,1)
4 24 2 28 225 (3,3,2,2,2,2,2,2,1)
5 30 0 16 225 (3,3,3,3,3,2,2,2,2)

It is seen in using Algorithm (4. 3) to calculate the lower bounds for
the various partitions that for a design to have an incidence matrix
with ’cr(NN')2 = 225, it must be the case that >\'1j =1 or 2 for
all i7j. Now observe that for each value of s, we have the
somewhat unusual situation that there are unique values of Csl’
giving the lower bounds for ’cr(NN')2 and unique ordered configura-
tions giving these values of Ci. So in order for any design to have
an incidence matrix with ‘tl‘(NN')Z equal to the lower bound estab-
lished, it must have the ordered configuration given above for each

different partition.

Nate that when s = 3, for any design in
y g

3
i) ¢ = Nt
)G =2 ot 31k, )
.. 3 NN
i) Gy = 20y gty Fhge)
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3 6
3 _
iii) ClZ =2 z z)\ij .

i=1 j=4
So for any design to have an incidence matrix with |)\ij_)\£ml <1
e . 3 3 3 _
for 19’J, £ # m, it must have Cl: 12, 02:6’ and 012—36'

Hence it must have

i) )\122)\132)\2322
= \ = =1
) Ay T Mg T s
Hi) N, =2, i<3,j> 3,

Using this information, we shall set about constructing an (M, S)

optimal design in ﬁ

2
Since Cl =4 and )\12 = 2, it is easily seen that the first

two rows of any design having tr(NN') = 225 must have the follow-

ing form.

B1 B_2 B3 B4 B5 B6 B7 B8 Bg

T 1 1 1 1 1 5

or s = 2, the incidence matrix must have an ordered

b

configuration of the form (2,2,2,2,2,2,1,1,1). Using (7.5.2),

since C13 - C1 = 8, treatment T3 should be assigned to



133

experimental units in blocks such that Z km =4 where the km

T3 € Bm
are taken from the unordered configuration given above for s =2
and in such a way that A, =X _ = 2. The three rows given below

12 13

satisfy these properties.

BIBZB B, B_ B B7B B

3 4 5 6 8 9
Tl 1 1 1 1 1 5
TZ 1 1 1 1 1 5
T3 1 1 1 1 1 5

For s =4, the incidence matrix must have an ordered

configuration of the form (3,3,2,2,2,2,2,2,1). Using (7.5.2),
4 3

since C, - Cl = 12, treatment T4 must be assigned to experi-
mental units in blocks in such a way that Z km = 6 where the

T4€Bm

k are taken from the unordered configuration given above for

= 3 = = = 2.
s = 3 and in such a way that )\14 )\24 )\34 The four rows

given below satisfy these properties.
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B B, B, B, B B, B B, B
5 7

1 72 73 74 6 8 9
T] 1 1 1 1 1 5
T‘2 1 1 1 1 1 5
1 1 1 1 1 5
T3
1 1 1 1 4
T4
3 2 2 2 2 3 2 1 2
Continuing in this manner, we get the following design.
Bl B‘2 B3 B4 B5 B6 B7 B8 B9
T1 1 1 1 1 1 5
T, 1 1 1 1 1 5
1 1 1 1 1 5
T3
1 1 1
T4 4
T5 ] 1 1 1 4
T 1 1 1 4
6
3 3 3 3 3 3 3 3 3
I < 1 for

Note that the design is (M.S) optimal since |>\ij->\

if3, £ #m.

fm

For Example 7.5.3, any (M,S) optimal design having an incidence

. 2
matrix with tr(NN')" = 225 had to possess the particular ordered

configurations given for each value of

s .

Hence in this sense, the
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(M,S) optimal design in 5[6;5, 5,5,4,4,4:;9;3] was completely
determined.
Several more examples will now be given on how to use the
information collected from the establishment of the various lower

bounds in the construction of optimal designs.

Example 7.5.4. Consider the class of designs

° and C°

L= P17:6,6,6,6,6,5,5;10;4]. The values of C° 5 -

1,
. . N . "
yielding lower bounds for tr(NN') for the various partitions of N

as determined using the methods of Section 5.2 are given below. The

various ordered configurations yielding those lower bounds are also

given.
c’ c® c® LB Confi ti
S 1 2 12 on 1gura 10ons
2 6 54 60 578  (2,2,2,1,1,1,1,1,1,0)
3 18 30 72 578  (3,2,2,2,2,2,2,1,1,1)
(2,2,2,2,2,2,2,2,2,0)
4 36 12 72 578  {3,3,3,3,2,2,2,2,2,2)
5 62 2 56 586  (4,3,3,3,3,3,3,3,3,2)
64 4 52 4,4,3,3,3,3,3,3,2,2)
6 90 0 30 578  (4,4,4,4,4,4,3,3,3,3)

2
Note that the lower bound established for tr(NN')

in YA

when 8 =5 1is 586 and there are two values of C? giving this
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lower bound. When C? = 62, it is seen in using Algorithm (4. 3) to

calculate the lower bound, that any design whose incidence matrix

2
has tr(NN')” = 586 must have X, =3 or 4 for 1< i¥j < 5,

1)
5
N T 1, and )\ij =2 or 3 for all other i7j. When C1 = 64,
2
any design whose incidence matrix has tr(NN')" = 586 must have
A..=3 or 4 for 1<i¥j<5, \,,=2, and \,, =2 for all other
1] - - 67 1]

i #j. When a situation such as this occurs, one can only choose a
particular configuration giving the lower bound and use this as a base
from which to start constructing the design.

We will now construct an (M,S) optimal design using that

ordered configuration associated with Cl = 62 as a base configura-

5 5
. . 5
tion. Since C, = 62 = 2 Z Z)\ij, the set of )\ij minimizing
5 5 i=1 j>i

N\ 2
2 > ; N.. subject to the usual constraints is seen from Algorithm
s La 1)

i=1i>i
{(4.3) to consist of one X, . equal to four, and nine of the \,, equal
1 1)
to three. Without loss of generality, assume that X\, . = 4, hence

45

. =3 forall other 1i,j < 5, i+ j. Making this assumption, it is
J

easily seen using (7. 5. 2) that any design having an incidence matrix

2 3
with the )\ij equal to the above, must have C1 =6, Cl = 18,

PR
A

: 5 . . . .
n 36, and <. © 62 The configurations associated with these

1

values of s and ClS are given below.
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s C? Configurations
2 6 (2,2,2,1,1,1,1,1,1,0)
3 18 (3,2,2,2,2,2,2,1,1,1)

(2,2,2,2,2,2,2,2,2,0)
4 36 (3,3,3,3,2,2,2,2,2,2)

5 62 (4:3:3: 3:3:3:3: 3; 3:2)

Note that there are two possible ordered configurations
associated with Cl = 18. However, for any design to have an inci-
dence matrix with )\ij equal to the above, it must have an ordered
configuration of the form (3,3,3,3,2,2,2,2,2,2) when s = 4.
This configuration must be obtainable from the configuration given for
s =3 by adding one to Ty of the k1 in the configuration given
for s = 3. This will clearly be impossible if for s = 3, the
incidence matrix has an ordered configuration of the form
(2,2,2,2,2,2,2,2,2,0). Hence any design having an incidence matrix
with )\ij equal to the above must have an ordered configuration of
the form (3,2,2,2,2,2,2,1,1,1) when s = 3. Using this informa-
tion we now set about the construction process.

2
Clearly when s =2 and C1 = 6, the first two rows of the

design must have the following form.
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For s = 3, the incidence matrix must have an ordered

configuration of the form (3,2,2,2,2,2,2,1,1,1). Using (7.5.2)
3 L2

since C1 - Cl = 12, treatment T3 should be assigned to experi-
mental units in blocks in such a way that Z km = 6 where the

B
T3€ m

km are taken from the unordered configuration given above for

s =2 and in such a way that )\13 = )\23 = 3. The three rows given

below satisfy these properties.

1 2 3 74 6 7 8 9 10
Tl 1 1 1 1 1 1 6
1 1 1 1 1 1
T, 6
1
T3 1 1 1 1 1 6

For s =4, the incidence matrix of a design with )\ij

equal to the above must have an ordered configuration of the form

. 4 3
(3,3,3,3,2,2,2,2,2,2). Using (7.5.2), since C1 - C1 = 18, treat-
ment T should be assigned to experimental units in blocks in such

4
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a way that Z km = 9 where the km are taken from the
T4EBm

uncrdered configuration given above for s =3 and in such a way

that )\14 = )\24 = )\34 = 3. The four rows given below possess these

properties.

B B, B, B, B_ B B7 B, B Bl

1 2 3 74 5 6 8 9 0
Tl 1 i 1 1 1 1 6
TZ 1 1 1 1 1 1 6
1 1 1 1 1 1
T3 6
1 1 1 1 1
T, 1 6

For s =5, the incidence matrix of a design with )\ij equal

iz the above must have an ordered configuration of the form

(4,3,3,3,3,3,3,3,3,2). Using (7.5.2), since C15 - Cf = 26, T5

should be assigned to experimental units in blocks in such a way that

N K %
> k =13 where the k are taken from the unordered con-
/o m m
=B

TS ““m

figuration given above for s =4 and in such a way that

A= R, TR, T3 a P i i be’

15 )25 35 3  and 45 The five rows given below possess

these properties.
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1 2 3 74 5 6 8 9 0
T1 1 1 1 1 1 1 6
TZ 1 1 1 1 1 1 6
T3 1 1 1 1 1 1 6
T4 1 1 1 1 1 1 6
T5 1 1 1 1 1 1 6

3 3 3 4 2 3 3 3 3 3

Note that at this point, the remaining portion of the design is

vractically determined. All that remains is to assign treatments T

6

and T7 to experimental units in blocks in such a way that )\67 =1

and )\'16 and '\17 equal two or three for all i < 5. The optimal

design which is finally derived is given by the following incidence

matrix.

B B, B, B, BL B, B, B, B, B
3 7

1 2 4 5 6 8 9 10
T]_ 1 1 1 1 1 1 6
TZ 1 1 1 1 1 1 6
T3 1 1 1 1 1 1 6
T4 1 1 1 1 1 1 6
T5 1 1 1 1 1 1 6
T6 1 1 1 1 1 5
T7 1 1 1 1 1 5
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One more example will be given to illustrate that even with a
knowledge of the various lower bounds and of the configurations yield-
ing these lower bounds for the various partitions, an (M,S) optimal
design whose incidence matrix has tr(NN’)2 equal to one of the

lower bounds established may be difficult or impossible to construct.

Example 7.5.10. Consider the class of designs

and C°

7.4 2O 8 5
Di7:4.4,4.4,4,4.3;9;3]. The values of C 5 12

1’
vielding lower bounds for 1:r(NN')2 for the various partitions of N
as determined using the methods of Section 5.2 are given on the follow-
ing page. The various ordered configurations yielding these lower
bounds are also given.

Notice that there are many more configurations yielding lower
kounds for the various partitions in this example than in previous
examples. In using Algorithm (4. 3) to calculate these lower bounds,

it is easily seen that for a design to have an incidence matrix N

2
with tr(NN') equal to the lower bounds established, it must have

NN = ()\ij) where )\ij =1 or 2 for all i#j. When so many

configurations yield lower bounds for the various partitions, one can

simply choose one value of C which has some '"nice' property and
pPly 1 prop y

then use a corfiguration yieclding this value of C1 as a base for the

construction process as in the previous example.
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10

12

16

18

20

28

30

42

14

16

12

14

16

18

18

10

1N

38

34

36

32

28

24

32

28

24

24

20

12

LB

183

183

183

183

183

Configurations
2,1,1,1,1,1,1,0,0)
2,2,1,1,1,1,0,0,0)
(2,2,2,1,1,1,1,1,1)
(3,2,1,1,1,1,1,1,1)
(2,2,2,2,1,1,1,1,0)
(3,2,2,1,1,1,1,1,0)
(2,2,2,2,2,1,1,0,0)
(3,3,1,1,1,1,1,1,0)
(3,2,2,2,1,1,1,1,0)
2,2,2,2,2,2,0,0,0)
(3,2,2,2,2,2,1,1,1)
(2,2,2,2,2,2,2,2,0)
(3,3,2,2,2,1,1,1,1)
(3,2,2,2,2,2,2,1,0)
(3,3,3,2,1,1,1,1,1)
(3,3,2,2,2,2,1,1,0)
(3,3,3,2,2,2,2,2,1)
{3,3,3,3,2,2,2,1,1)

(3,3,3,3,3,3,2,2,2)

142
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3
Note that when s = 3, Cl = 6 vyields a lower bound for

2 . ' ; .
tr(NN')". The "nice” properties of this particular value of C, are

i) that there is a unique configuration giving the value of Cl and

ii) that any design having an incidence matrix with this ordered con-

2
. . . 1 = o = =
figuration and with tr(NN') 183 must have A\ 12 A 13 )\23 1

and )\i, =1 for j>1i, 1> 4. (This is easily seen when the lower
j Z

Hound for Clj = 6 1is calculated using Algorithm (4. 3).) We shall

sow use this information to construct an (M,S) optimal design

in Dﬂ.

From the basic configuration, we know that C2 = 12 and that
2
for an incidence matrix to have this configuration and tr(NN') = 183
i = = = 1. - = = s
it must have )\45 )\46 )\47 But r4(k 1) 8 Z')\i‘i S0
i74

from (7.5.2) we have

C —C13
+ + = =
MaT e T T T 2 °
~4 3 _ " .
S0 Cp 7 (Jl + 10 = 16. Similarly, it can be seen that for an

incidence matrix to have an ordered configuration of the form

, . A . 2
{2,2,2,1,1,1,1,1,1) for s =3 and tr(NN") equal to the lower

bound established, those configurations for s = 5,6 must give
5 . _ )
values of C1 =28 and Cl = 42. The configurations yielding these

s
values of Cl are given below.
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s C? Configurations
3 6 (2,2,2,1,1,1,1,1,1)
4: 16 (33212:2121211:1:1)

2,2,2,2,2,2,2,2,1)

5 28 (3,3,3,3,2,2,2,1,1)
6 4:2 (3: 3: 3: 3: 3: 3: Z:Z’Z)
Note that when s = 4, there are two possible ordered

coufigurations associated with Cf = 16. However, for s =5 there
is a unique configuration given and it must clearly be obtainable from
the configuration given for s = 4 Dby adding one to re of the k;z
occurring in the configuration given for s =4. This will clearly be
impossible if for s = 4, the incidence matrix has an ordered con-
figuration of the form (2,2,2,2,2,2,2,2,1). Hence any design having
an incidence matrix with tr(NN')Z equal to the lower bound estab-

iished and configuration (2,2,2,1,1,1,1,1,1) for s =3 must

have an ordered configuration of the form (3,2,2,2,2,2,1,1,1) for

s = 4.

We know that for any incidence matrix to have the basic
ronfiguration given for s = 3 and tr(NN') = 183, it must have
Ao = Ao, = Ak, -~ 1. Using this information, it is easily seen that the

T1z 13 23

first three rows of the incidence matrix must have the following form.



B1 B‘2 B3 B4 B5 B6 B7 B8 B9

T1 1 1 1 1 4
TZ 1 1 1 1 4

1 1 1 1 4
T3

For s =4, the incidence matrix must have an ordered

145

configuration of the form (3,2,2,2,2,2,1,1,1). Using (7.5.2), since

) A
C; - C; = 10, T4_ should be assigned to experimental units in
blocks in such a way that Z km = 5 where the km are taken
B
T4E m

from the actual unordered configuration given above for s = 3.

Also from (7.5.2), in order for lxij-x | <1 forall i¥j,

Ifm
£ # m, we must have two of the )\14 equal to two and one of the
)\14 equal to one for i < 3. The four rows given below have these

properties.

1 2 3 6 8 9

T1 1 i 1 1 4
5 1 1 1 1
12 4
T, 1 1 1 1 4

3

5 1 1 1 1 4
r14
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For s =5, the incidence matrix must have an ordered

configuration of the form (3,3,3,2,2,2,2,2,1). Using (7.5.2),

5 .4
since C1 -C, =12, T5 should be assigned to experimental units
in blocks in such a way that z k =6 wherethe k  are
m m
T5 ) Bm

taken from the actual unordered configuration given above for s = 4.

Also from (7.5.2), in order for |xij -\, | <1 forall if¥j,

Ifm
¢ ¥ m, we must have two of the >\i5 equal to two and two of the
)\,15 equal to one for i < 4. The five rows given below possess these
properties.

2 73 74 75 76 8 9
TI 1 1 1 1 4
’1"Z 1 1 1 1 4
1“3 1 1 1 1 4
T4 1 1 1 1 4
T5 1 1 1 1 4

Continuing in this manner, we finally derive the design whose

incidence matrix is given below.
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T1 1 1 1 1 4
T2 1 1 1 1 4
']f’3 1 1 1 1 4
T4 1 1 1 1 4
T5 1 1 1 1 4
T6 1 1 1 1 4
T7 1 1 1 3

From this example, it is seen that constructing an (M, S)
optimal design may not be easy even with the use of the information
concerning lower bounds and configurations. In general, if one can
start with a configuration having some "nice" properties, such as
almost all of the )\ij in one part of the partition having one value,
then the construction is somewhat easier.

There are several things the experimenter should be aware of
in using the information made available to him in this section to con-
struct (M,S) optimal designs. The simple fact that for each value
of s it is possible to find values of Cf, CZ and Csiz which give
lower bounds having the property that )\ij =m or mtl for all
i7j does not guarantee that such a design will exist, it is simply a

good indicator that such a design will exist. (A counter example is
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found in the class of designs [J19;5,5,5,5,4,4,4,4,4;10;4]. ) In
fact, the construction of the designs in this section presupposes the
existence of designs having incidence matrices attaining the lower
bounds established for the different partitions. However, if that
lower bound determined for tr(N 'N)Z given in Theorem 5.1.13 is
larger than any of the lower bounds established for the various parti-
tions of N, then no design whose incidence matrix has ’cr(NN')2
cqual to the lower bounds calculated by the method of Section 5. 2 will

exist and the construction technique given in this section will be of

little use.
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VIII. MISCELLANEOUS RESULTS

8. 1. (M,S) Optimality and Connectedness

Tn this section, the relationship between connectedness and
{M,S) optimality is examined in some of the classes of designs we
have been considering.

Recall that an incomplete block design with v treatments is
zaid to be connected if its coefficient matrix has rank (v-1). We
now present an alternative characterization of connectedness which
was given by Eccleston and Hedayat (1974).

i) Adesign D is connected if and only if its incidence matrix
N cannot be partitioned after any permutation of rows and columns
into the form diag(Ni, ....N ), 1< a< v where the N,1 are the

a

incidence matrices of connected subsets of treatments.

Theorem 8.1.1. Consider the class of designs

= -(r.):b:k] > 2 > 2 i.
ﬁ D‘[vy(ri,,b,kj where b > and r. 2 for each 1i. If

Ty e Afn{ﬁ} is a disconnected design with incidence matrix N, then
there exists a connected design D ¢ ’H{m with incidence matrix

~———

. —— >
N such that tr(NN'}L > triN N') .

Pf. Suppose D e {7} is disconnected. Then the incidence
matrix N can be partitioned as in i) above. Suppose a = 2.

Birkes, Dodge, and Seely (1972) have proven that if 'II\I\ is the Txb
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incidence matrix of a connected binary incomplete block design and if
there are more than B-1 observations, then there exists at least

one observation which may be removed from /D\ and the design will

still be connected. Since r. > 2 for each 1 and since N1 and
N2 are the incidence matrices of connected subsets of treatments in
D, there will exist observations which can be removed from N1

and NZ such that the resulting incidence matrices will still be con-

nected. Suppose an observation of treatment Tf in block B
u

may be removed and suppose an observation of treatment T in

block Bw may be removed such that the resulting incidence

matrices -—N—l and —I\TZ are still connected. Now assign the repli-
cation of Tf occurring in block Bu to block T and the
g
replication of Tg occurring in block BW to T, . After the inter-
I

change of replication assignments, we have a new design D with

o P

incidence matrix N. Now because N1 and NZ are connected
and because .Ef =1, it is easy to see that N cannot be parti-
\

at—

tioned as in i) above. Hence D 1is a connected design. Further-

— — —

more, N' = ()x,lj) where
N.o< n -1 T yeourri in . LA
a0 S My for , occurring in Bu f
x> ing i ., 4
g 2 for TJZ occurring in Bw ¢ g
ng < xgﬂ -1 for Tﬂ occurring in BW, (4g
by > 1 for T occurring in B , f 7 f.
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Thus

—— D i 2 =2 -2
7 1 - 1 - - + _
tr(NN")" - tr(NN') 2 Z [xu xﬂ] 2 Z [0 x”]
TleBu TﬁeBW
L7f L#g
+2 Z [x?‘ ~x2]+zZ [o-xz]
gt g gl
TleBw TleBu
L17g L7f
. 5 -
> 2 \ -1 -2 1
22 ) D=0y -7 Z
TleBu TleBW
27#f 1g
N 2 2
+2 - -1 + 2 1
Z/ [ng (ng ] Z
TleBw TleBu
1ig 27f

= ‘ + - -
4 Z Nep + 4 Z hyg “8lk-1) 2 0
TleB

B
T! “Pw
L7f 14g
as we were to show. Now if a > 2, the argument can be repeated

for all pairs of connected subsets, and the result follows.

Corollary 8.1.2. If [ is as in Theorem 8. 1.1, then there

exists an (M,S) optimal design in [J which is connected.
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The following is an example of a design which is (M, S) optimal

in (,D’[v;(ri);b;k], but which is not connected.

Example 8. 1.3. Consider the class of incomplete block designs

;Ci'w ..
At = mb;Z;é;ZJ. Then the design with the following incidence matrix

iz (M,S) optimal in ﬁ since )\ij:O or 1 for all i#j, but

it ie clearly not connected by i) of this section.

T1 1 1 2
T2 1 1 2
1 1 2

T3

1

T4 1 2
1 1 2

TS
T, 1 1 2

(o}

However, by interchanging the replications of treatments T3 and

occurring in blocks B and B respectively, a design is

T
4 3 4

obtained which is connected and is still (M,S) optimal in ,D,

Corollary 8. 1.4. Consider the class of designs b’[v;b;k].

If the parameters b, k, and v satisfy any of the conditions of
Theorem 6. 14 and if [bk/v] > 2, then there exists an (M,S)

optimal design in fj[v;b;k] which is connected.
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Pf. If b, k, and v satisfy any of the conditions of
Theorem 6. 14, then the (M,S) optimal design must be contained
in the class of designs 5[v;(ri);b;k] where |r_1-rjI < 1 for all
i,j. Since [bk/v]>2, r >2 for all i, and the conditions of

1

Corollary 8.1.2 are satisfied.

Theorem 8.1.5. Let f7[v;(ri);b;k] be a class of designs

with r,1 < b foreach i and r (k-1)> v-1 for some p. Then
if De m{ﬁ} is disconnected, then there exists a connected design

D« YUL} which is S-better than D.

Pf. Suppose D e’mt[j} is disconnected and has incidence
matrix N. Then N can be partitioned as in i) given at the begin-
ning of this section where Nl, R ,Na are the incidence matrices

of connected subsets of treatments. Note that D must be a binary

design. Without loss of generality suppose rl(kul) > (v-1). Now if

Nl is an m x n matrix then )\ij =0 for 1 <i<m,
m
m < j < v. . Since rl(k~1) > (v-1) and z xlj = rl(k~1), there
j>1
must exist le > 2 for some 2 < p < m. Denote one of the blocks
in which T1 and Tp occur together by Bu. Now choose any

block Bw’ w > ntl and any treatment Tq occurring in block

Bw and assign the treatment replication of T, occurring in block
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BU to B and the treatment replication of Tq occurring in B
A w

to BU. After the interchange of replication assignments, we have a
new design D with incidence matrix T'\T and N N' = Kij)' As in
the proof of Theorem 8.1.1, using 1 =f and q =g. we see that

Tl Z ‘--,-‘i 2
tr(NNY) ™ - tr(NN') > 4 Nt 4 N - 8(k-1) >0
- 1k qt
Tl € Bu Tl € Bw
141 t4q

since A > 2 and X\ > 1 for T, ¢ B and X\ > 1 for
Ip— 14 — J u qlf —

Tg € Bw. Now if the new design is not connected, by permuting the

i>2 rows and columns of the new design, N can be partitioned
in the same manner as N. Note that after the partitioning, there will

still exist )\’fg > 2 for some £. Now we can repeat the argument
ig =

—— D
ziven above for reducing tr(NN')". This procedure may be followed

urntil a connected design is obtained or until Klj > 1 for all j> 1.

—ly
Note that any design for which )\lj > 1 for all j > 2 cannot be

partitioned as in i) given at the beginning of this section, hence it will

be connected, and the result follows.

Corollary 8. 1. 6. ILet B[V;(r.);b;k] be a class of designs
i
with r, < b {or each i and rp(k—l) > v-1 for some ©p. Then
{ o= Z

the (M,S) optimal design in UL} must be connected.
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Corollary 8.1.7. Consider the class of designs ﬁ[v;b;k].

if i) bk/v =r is an integer and rf(k-1) > v-l or ii} bk/v is not
an integer and {[bk /v]+1H(k-1) > v-1, then an (M.:S) optimal

desig: in ﬁ[v;b;k] must be connected.

Pi{. An (M,S) optimal design in B[V;b;k] must be binary,
hence it raust be contained in one of the classes D’[v;(ri);b;k]
savisfying the conditions of Corollary 8. 1. 6. Since bk has a unique

ntaticn as the surn of nonnegative integers differing by one,

o

repres
any class of designs D’[v;(ri);b;k] contained in ,U[v;b;k] must
and the result

have at least one rp such that rp(k—l) > (v-1),

follows.

For further results on the relationship between the (M.S)
optimality criterion and connectedness, the reader should see
Eccleston and Hedayat (1974).

8. 2. (M.,S) Optimality and the Estimation of
Block Effects

Using the two way classification model given in Chapter 1I, we
shall now investigate how the application of the (M.,S) optimality
criterion to the estiraaiion of the treatment parameters in the model

effects the estimation of the block parameters in the model. We shall

cengider the class of designs ﬁ -"-mv;(ri);b;k] where r, < b and

v > k.
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The reduced normal equations for estimating the block effects

J&' = (bl, .. ,bb) for any design D « B are given by

FB =G (8.2. 1)
~
where
F = kI - N'diag( - 'l)N (8.2.2)
b 1aglr, ,...,rV . L.
B L -1 -1
G =B - N'diag(r, ;....r )T
1 v

and N, B and T are the same as defined in (2.1.3). Let

'fTIF{@} ={D 65: tr F is maximal}.

Definition 8.2.3. D« D’ is said to be (M,S) optimal for

estimating R/ if De%{ﬁ} and tr ¥ < tr F for all

D« mF(m' -5 € ﬁ is said to be S-better than D ¢ ,5' for esti-

-2 2
mating ,P, if tr ¥ < trF .

Lemma 8.2.4. mF{ﬁ} = m{D'} = {all binary designs in U}

Pf. From (8.2.2), we see that for any design D ¢ b

— _1 R 2
tr F = bk - r, n,,.
i ij
J

i

Using this expression, a proof similar to that given for Theorem 5. 1.1
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will yield the desired conclusion.

From (8.2.2), for D e &V

2 2 -2 2
tr ¥ = bk + v(l1-2k) + Z ri Z)\ij (8.2.6)
i jfi
. . 2 .
Trom (8.2.6), we see that finding a lower bound for tr F in

)/(F{D} is equivalent to finding a lower bound for

v v

Zr._z Z x‘.z. (8.2.17)
1 1]

i=1 jfi

Yh = rk-1) (8.2.8)
L 1)

From (8.2.7) and (8.2.8), we see that if we solve the integer

programming problem of minimizing

1

<

-2 2

CRN

1 [ 1]
j#i

1

subject to the constraints that 1) the xij are nonnegative integers
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and ii) for each fixed value of i, ZX,U. = ri(kul), then we will
j#i
2
obtain a lower bound for tr F in m{ﬂ} By Corollary 4. 3.5,

we immediately get the following.

Theorem 8.2.9. For any design D e mF{D'} with incidence

matrix N,

2 2 -2 2
tr F > bk +V(1—Zk)+Zr, X,
- i ij
i j#i
where i) the x.,, are nonnegative integers, ii) for fixed values of

1

) X = r (k-1) and iii) |[x -x < 1 for 4 ,p#r.
prqp |pqpr|" pra

q7p
Corollary 8.2.10. Any design D GM{D‘} such that for each

¢
|
i

SN < 1 for fp, r¥p, willbe (M,S)
™ pr| < q?p p i

fixed value of p,
optimal in .U for estimating both L and b,
Note that if the rolls of blocks and treatments are interchanged

~
in &J, i.e., we consider the class of designs [J which are duals

to designs in B we get the following corollary.

7
Corollary 8.2.11. Let £ denote the class of designs which

e
are duals to designs in 7. Then any ’ﬁ’emm such that for each

fixed value of p, |T: -T.t/ | <1 for q#p. r#p, willbe (M,S)

o,
R

. . . N
optimal for estimating b an
Pl
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The following is an example of a design which is (M, S)
optimal in E for estimating L, but not (M,S) optimal for esti-

mating ,}3,&

Exarnple 8.2.12. Consider the class of designs

jff‘: l5;6.5,4,4,2;7;3] which is considered in Example 8.3.2.
Comnsider also the two designs D e L and D« L~ which are
considered in that example. Now D was (M,S) optimal in .D'
for estimating /:t/ If F and F denote the matrices which are
obtained for estimating (b/ from D and D respectively; then it

is easily seen that tr FZ = 44.25555 and tr .iT‘—Z = 43.99167. Hence

D is not (M,S) optimal in L for estimating '_1\)/

Note that if blocks are considered as a factor with b levels
and treatments are considered as a factor with v levels in Corol-
laries 8.2.10 and 8.2.11, then any design whose incidence matrix
satisfies either of the corollaries will be (M,S) optimal for esti-
mating the levels of both factors.

We now restrict attention to the case where r, =r < b for

all i. For any design in this class,

) +*'1‘“tr(NN') (8.2.13)

el ]

2
tr C = vwvr (1-

and

tr F~ =bk (1- —) +~1'—tr(N'N)Zi (8.2.14)

H
V]
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From expressions (8.2.13) and (8.2.14), it is clear that any design
2 2

which minimizes tr C in M} will also minimize tr(NN')

2
and any design which minimizes tr F in m{,a'} = 'mF{‘B’} will

2
also ininimize tr(N'N) . Hence we may state the following.

Theorem 8.2.15. Any design in ﬁ:ﬁ[v;(ri);b;k] where
r =r <b forall i and v >k whichis (M,S) optimal in ﬁ

t

for estimating b, will also be (M,S) optimal for estimating b,

8.3. (M,S) Optimality and Other Optimality Criteria

In this section, we will draw some comparisons between the
(M,S) optimality criterion and the A, D, and E optimality cri-
teria which were introduced in Chapter III.

Consider any class B of connected binary incomplete block
designs with three treatments such that tr C = (constant) for all
DedT. Let )\1 > )\2 denote the nonzero eigenvalues of a C-matrix
of a design in 0. Suppose D is (M,S) optimal in ﬁ, i.e.,
:f +“X2 < )\Z + AZZ for all Deo . Since

trC =%, +X, =2 +)\, =tr C forall DO,
[ I

for all Deb’; and since D is (M,S) optimal in B’,
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A\, 2 A\, forall Def. hence D is also D-optimal in £ .
Now since D is D-optimal,
] NS )
T A1 2 tr G (constant)
T, MK TN, BB

hence D 1is also A-optimal in B Finally, it is easily shown that

] AEA = A+ 1 + < ) + R

if M \2 )\1 \, and )\1 )\2 < \1 )\Z then

. wy— ane A o

N2 )\1 > KZ > 7\2; hence )\Z is maximal in &J and D is also
4

E-optimal in ﬁ‘

Proposition 8.3. 1. For any class b, of designs as defined

in the previous paragraph, any design which is (M,S) optimal in

‘B/ will also be A, D, and E optimal in ﬁ

General results concerning the relationship between the (M;S)
optimality criterion and the A, D, and E optimality criteria for
classes of designs with more than three treatments appear difficult to
obtain. However, Takeuchi (1961) was able to show that if in any
ciass 3 of connected binary designs contained in B’[V;r;b;k]

there exists a group divisible PBIB(2) with l)\ij -X | < 1 for ail

Im
i7i, £ 7m, then that designwillbe A and E optimalin L .
Such designs are aiso (M,S) optimal.

Mitchell (1971) ran a computer search for small D-optimal

Aesigns. In the classes of designs H[v;r;b;k] which he considered,
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the D-optimal design (or its dual), turned out to be either a BIBD or

a PBIB(2) with lxﬁmx | <1 forall i7j, £ #m. Suchdesigns

Im
are also (M.S) optimal.

However, to conclude that (M,S) optimal designs are always

A, D, and E optimal is not true as the following example shows.

Example 8.3.2. Consider the class of designs

ﬁﬂ:?;(); 5,4,4,2;7;3). By considering the class of complementary
designs [as in Section 7. 1], it is easily seen that an (M,S) optimal

design D for this class is given by the following incidence matrix.

1 2 4 6 7
T1 1 1 1 1 1 1 6
T2 1 1 1 1 1 5
T3 1 1 1 1 4
T4 1 1 1 1 4
T5 1 1 2

The C-matrix for this design is

- -
12 -4 -3 -3 -2
-4 10 -3 -2 -1
1/3 -3 -3 8 -2 0
-3 -2 -2 8 -1
-2 -1 0 -1 4
o -
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ILet N, >XA, >N >\ denote the nonzero eigenvalues of this

i) N, =5.1577 )\Z=3.9811 )\3:3.3039 )\4:1.5593

1/5.1557 + 1/3.9811 + 1/3.3039 + 1/1.5593=1. 3891

,d.
=5
g

[

S

>

L
Hi

i=1
4
iii) 1 X, = (5.1557)(3.9811)(3. 3039)(1.5593) = 105. 74
=1
4
iv) tr G° = fo = (5.1557)° + (3.9811)° + (3.3039)° + (1.5593)°
i=1
= 55.778

Now consider the design D in Ir5;6,5,4, 4, 2;7:3] given by

the following incidence matrix.

Tl 1 1 1 1 1 1 6
1 1 1 1 1

T2 5

1 1

T3 1 1 4
1 1 1

T4 1 4
1 1 2

T5

The C-matrix for this design is given by



matrix,

S50

iii)
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r =
12 -4 -4 -3 -1
-4 16 -2 -3 -1
1/3 -4 -2 8 -1 -1
-3 -3 -1 8 -1
-1 -1 -1 -1 4 l

-

>

vV
>

Y
>’

then

7,1:5.2827 N =4.1091 N =2.9415 X, = 1.6667

2 3 4

4

1/Xi = 1/5.2827 + 1/4.1091 + 1/2.9415 + 1/1. 6667 =1.3725
i=1
4
X, = (5.2827)(4. 1091)(2.9415)(1. 6667) = 106. 42
i=1
er T2 = (5.2827)° + (4.1091)° + (2.9415)° + (1. 6667)°

56.2219,

4 4

4 4

Zg 1f§i: 1.3725 < zz 1/n. = 1.3891
1

iz i=1

4 _ 4

X, =106.42 > I X = 105.74

i=1 i=1
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s
So D is A, D, and E 'better"than D, in
Dl56,5,4,4,2;7;3] but D is (M,S) optimal in

PI5;6,5,4,4,2;7;3].
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IX. SUMMARY

The problem we have considered in this thesis is the
determination of optimal incomplete block designs when the experi-
mental material does not fit any of the usual text book situations. The
criterion used to determine an optimal design within a given class E
of incomplete block designs is the (M,S) optimality criterion.

This criterion is to find within the class ﬁ the set of designs whose
C-matrices have maximal trace, denoted by m{D}, and then to
find within M{U} those designs with minimum trace of CZ; such
a design is said to be (M,S) optimal.

Chapters II and III are basically introductory. Chapter II is
used to introduce the notation and terminology which are used through-
out the thesis. In Chapter III, the (M,S) optimality criterion is
introduced. The reasons for using the (M,S) optimality criterion
to determine optimal incomplete block designs are 1i) designs which
are (M,S) optimal also tend to be A, D, and E optimal since
they have C-matrices which are close to the ideal aIV t BJV form and
ii) its computational simplicity.

In Chapter IV, several facts and lemmas used later on in the
thesis are given. In Secticns 4.3 and 4.4, the solutions are given
for two integer programming problems which occur naturally with the

(M,S) optimality criterion.
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The class D' =ﬂ[v;(ri);b;k] of incomplete block designs
where r. < b is studied in Chapter V. This class consists of all
designs with v treatments arranged in b Dblocks of size k such
that treatment Ti is replicated r, times. mm consists of
all the binary designs in Jj’ It is shown that finding a design inm{m

2
with a minimal tr C is equivalent to finding a design in Y/ l{m

2 2
with a minimal tr(NN') and tr(N'N) . Using the results of Sec-
2
tion 4.2, several lower bounds are established for tr(NN') and
] 2 . . .
tr(N'N) for designs in 'Y)Q{D? to help the experimenter know

when a design is optimal. Through the establishment of these lower
bounds, several well known standard types of designs are shown to be
(M,S) optimal. In particular, any design whose association matrix

or block characteristic matrix has the property that |\, -\ | <1

ij 4m

forall i4j, £ #m or |u,lj—|¢ ‘f_l forall i#j, £ #m, will

Im
be (M,S) optimal. In this chapter it is also shown how lower
bounds for tr C2 can be used to show the nonexistence of certain
PBIB(2)'s with )\2 = )\1+1. In Section (5.2), a lower bound is devel-
oped which is dependent upon partitioning the incidence matrix of a
typical binary design in H In determining this lower bound, the set
of ordered configurations which any design must have whose incidence

matrix has tr(NN')d equal to the lower bound established are also

determined. It is shown in Chapter VII how these configurations can
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sometimes be used to help the experimenter construct an (M,S)
optimal design in QD,
In Chapter VI, the class D' :U[v;b;k] of incomplete block
designs is studied. This class consists of all designs with v treat-

ments arranged in b blocks of size k. The class WL{D’} con-
sists of all the binary designs in 'D/ Since the r. are allowed to
vary in D’, the first question considered is how replications should
be assigned tc treatments in an (M,S) optimal design. It is shown
that in most cases, the (M,S) optimal design in J[J must have
the property that lr_l—rj| < 1 for all i#j. Using the results of
Chapter IV, several lower bounds are established for 1:r(NN')2 and
tr(N'N)2 for designs in mw} In establishing these lower bounds
it is seen that anv binary design with Iri—rj| < 1 forall i,j and

whose incidence matrix has the property that lxij-x | < 1 for all

Im

i4j, £ #m, or ‘pii-—p | <1 forall i7j, £#m, willbe

fm
(M, S) optimal in ﬁ[v;b;k].

Several methods of constructing (M.S) optimal designs in
DTV;b;k] and mv;(ri);b;k] are presented in Chapter VIIL. In
Section 7.1, several results concerning complementary incomplete

block designs are given. Basically, it is shown that the complement

of an (M,S) optimal design in [JIv;(r.);b;k] will be (M,S)

i
optimal in mv;(b«ri);b;v-k] and under certain conditions, the

complement of an {M,S) optimal design in mv;b;k] will be
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(M,S) optimal in b’[v;b;v-k]. In Section 7.2, a method is given for
constructing an (M,S) optimal design in mv;b;Z]. Using this
construction process and the results of Section 7.1, the (M,S)
optimal design in mv;b;k] where v = kt2 is also easily obtained.
Section 7.3 is used to show how (M,S) optimal designs may be con-
structed from known (M,S) optimal designs. In Section 7.4, sev-
eral different methods of combining incomplete block designs to
obtain (M,S) optimal block designs are discussed. A heuristic
approach to the construction of (M,S) optimal designs is given in

Section 7. 5. The approach is based upon the technique given in Sec-
tion 5. 2 for determining lower bounds for ’cr(NN')‘2 in
mmv;(r.l);b;k]} and for determining the various configurations
yielding these lower bounds. The construction process presupposes
the existence of a binary design in mv;(ri);b;k] whose incidence
matrix has tr(NN')2 equal to the lower bounds established by the
method of Section 5. 2.

Chapter VIII contains miscellaneous results. It is shown in
Section 8.1 that for most ciasses of designs D’[v;(ri);b;k] and
mv;b;k], the (M,S) optimal design must be connected. In Section
§.2 it is shown that many designs which are (M,S) optimal for esti-
mating treatment effects are also (M,S) optimal for estimating
block effects. Section 8.3 is used to show that for many classes of
designs, the (M,S) optimal design tends to be A, D, and E

optimal. However, an example is given which shows this is not always

the case.
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