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Unrelated parallel machines are machines that perform the same function but have 

different capacity or capability. Thus, the processing time of each job would be different 

on machines of different types. The scheduling environment considered is dynamic in 

both job release time and machine availability. Additionally, each job considered can 

have different weight, and due date. Split jobs are also considered in this research. The 

number of jobs that needs to be processed in split -modes is pre - determined and not part 

of the scheduling decision. Additional constraints are imposed on split jobs to ensure that 

the absolute difference in completion time of the split portions of a job is within a user - 

specified margin. These constraints are supported by the Just -In -Time manufacturing 

concept where inventory has to be maintained at a very low or zero level. The objective 

of this research is to minimize the sum of the weighted tardiness of all jobs released 

within the planning horizon. 

The research problem is modeled as a mixed (binary) integer - linear programming 

model and it belongs to the class of NP -hard problems. Thus, one cannot rely on using 

an implicit enumeration technique, such as the one based on branch - and - bound, to solve 

industry-size problems within a reasonable computation time. Therefore, a higher -level 

search heuristic, based on a concept known as tabu search, is developed to solve the 

problems. Four different methods based on simple and composite dispatching rules are 

used to generate the initial solution that is used by tabu - search as a starting point. Six 

different tabu - search based heuristics are developed by incorporating the different 

features of tabu search. The heuristics are tested on eight small problems and the quality 
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of their solutions is compared to their optimal solutions, which are obtained by applying 

the branch -and -bound technique. The evaluation shows that the tabu- search based 

heuristics are capable of obtaining solutions of good quality within a much shorter time. 

The best performer among these heuristics recorded a percentage deviation of only 

1.18 %. 

The performance of the tabu - search based heuristics is compared by conducting a 

statistical experiment that is based on a split -plot design. Three sizes of problem 

structures, ranging from 9 jobs to 60 jobs and from 3 machines to 15 machines are used 

in the experiment. The results of the experiment reveal that in comparison to other 

initial - generation methods, the composite dispatching rule is capable of obtaining initial 

solutions that significantly accelerate the tabu search based heuristic to get to the final 

solution. The use of long -term memory function is proven to be advantageous in solving 

all problem structures. The long -term memory based on maximum- frequency strategy is 

recommended for solving the small problem structure, while the minimum- frequency 

strategy is preferred for solving medium and large problem structures. With respect to 

the use of tabu -list size as a parameter, the variable tabu -list size is preferred for solving 

the smaller problem structure, but the fixed tabu -list size is preferred as the size of the 

problems grows from small to medium and then large. 
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A METHODOLOGY FOR REAL -TIME SCHEDULING OF JOBS WITH 
SPLITTING ON UNRELATED PARALLEL MACHINES 

1. INTRODUCTION 

A scheduling problem consists of two components: the machine configuration and 

the job characteristics. Generally, machine configuration is categorized into single 

machine, parallel machines, flow shop, and job shop settings. Cheng and Sin (1990) 

listed five characteristics of a job: job processing time, due -date requirement, preemptive 

sequencing, precedence constraints, and job release time. The first two job 
characteristics are self - explanatory. The third characteristic allows an operation of a job 
to be interrupted and the machine is taken over by another job that is considered to be 

more urgent. The precedence constraints determine the order in which the jobs have to 

be processed. In a scheduling problem, if the jobs are released at different times, the 

condition is called dynamic. Otherwise, it is a static condition. Similar to jobs, machines 

may be released at different times, which imply dynamic machine availability. Thus, the 

static and dynamic terms are also applied to machine availability time. 

There are three types of parallel machines systems: identical, uniform and 

unrelated parallel machines. The difference between these parallel machines systems is 

characterized by a job's processing time among the machines in parallel. In identical 

parallel machines system, the processing time of a job is the same on all machines in 

parallel. In uniform parallel machines, each machine has a unique speed factor that 

determines jobs' processing time. Thus, the processing time of a job on each machine 

varies by the speed factor of the machine. In unrelated parallel machines, the processing 

time of a job varies arbitrarily between the machines. Identical parallel machines can be 

viewed as a reduced version of uniform parallel machines, which in turn is the reduced 

version of unrelated parallel machines. Unrelated parallel machines can be regarded as 

machines that perform the same function but have different capability or capacity. 

Unrelated parallel machines are very common in the industry. A company may invest in 

similar machines that have different capability, taking into consideration the capital cost, 
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operation cost, and variation in production demand. Therefore, scheduling tasks on 

unrelated parallel machines is an activity that is very much a part of industry scheduling. 

Many research efforts have been performed on unrelated parallel machines scheduling. 

Among the reported studies are Davis and Jaffe, 1979, Lenstra et al., 1987, Hariri and 

Potts, 1991, Suresh and Chauduri, 1994, Glass et al, 1994, Piersma and Van Dijk, 1996, 

Suresh and Chauduri, 1996a and 1996b. These studies will be reviewed briefly in the 

next chapter. 

Jobs that compete for limited resources, i.e. a set of unrelated parallel machines, 

may have different levels of priority and due date. Factors that contribute to setting due 

date of jobs, to mention a few, are customer requirements, resources' capacity, and shop 

congestion level. A job with tight due date, high priority, and/or high workload, may 

need to be split and processed on two machines in parallel. The need for splitting jobs 

typically appears in an operation that imposes large workload on a machine and requires 

the entire job completed before the next operation can be started. Thus it is conceivable 

that the operation following the one performed on split -mode requires a fairly reasonable 

processing time that it can be performed on one unit of machine. It means that the split 

portions of the job would need to be combined into one and moved over to the next 

machine on which the job's operation is scheduled to be performed. 

This research aims at scheduling of jobs with alternative machine options in real 

time. The processing time of each job would be different on machines of different types 

that constitute to the unrelated- parallel machining environment. Some machines may 

turn out to be incapable of processing some jobs in reasonable processing time. Split - 

jobs are also considered in this research. The number of jobs that needs to be processed 

in split -modes is pre - determined and not part of the scheduling decision. Each split 

portion of a job should not be considered as separate jobs, like any other included in the 

set of jobs to be scheduled. A requirement would need to be imposed to ensure that the 

difference in completion time of the split portions of the job should be within a user - 

specified margin. One may even argue that it is perfectly appropriate not to put a 

constraint on the completion time of the split portions of the job. The reason may be that 

the split portion completed earlier can be stacked up right by the machine until the other 

split portion of the job completes its operation on the same machine or another machine 
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in parallel. This line of reasoning is against the underlying concept of Just In Time 

manufacturing because the portion that is completed earlier has to be carried as work -in- 

process (WIP) or finished -goods inventory that it cannot be considered for its next 

operation or be shipped to the customer. In an industry situation, where several jobs 

compete for the same work center and some or even all of them requiring long processing 

times, this can mean a long wait of several hours or even days. It means that it is 

inappropriate to carry a split portion of the job as WIP or finished -goods inventory. 

The scheduling environment of this research is dynamic in both job release time 

and machine availability. However, once a machine becomes available for the first job, it 

is assumed to be available for the remaining duration of the planning horizon or 

scheduling time window. The objective of this research focuses on finding the 

optimal/near - optimal schedule that minimizes the sum of the weighted tardiness of all 

jobs. Such an objective is important in many industry applications since on -time delivery 

is one of the most important factors for customer satisfaction. A job can be viewed as a 

customer order and must be given a `strategic weight' as a reflection of its priority, i.e. 

job with higher priority receives higher weight. Tardiness is evaluated as the difference 

between completion time and due date. If the completion time is less than the due date, 

the tardiness is counted as zero. Weighted tardiness of a job is calculated as job's weight 

times its tardiness. 
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2. LITERATURE REVIEW 

Unrelated parallel machines scheduling is the general case of parallel machines 

scheduling. Identical and uniform parallel machines are two other parallel machining 

environments. Cheng and Sin (1990) gave a comprehensive review on parallel machines 

scheduling problems with conventional performance measures based on due date, 

completion time, and flow time. Alternatively, Lam and Xing (1997) presented a review 

on parallel machine scheduling problems with non - regular performance measures arising 

from the concepts of flexible manufacturing systems (FMS) and just -in -time 

manufacturing (JIT). This review is focused on JIT- oriented criteria, preemption and set 

up times, and capacitated machines scheduling. 

In the past, many efforts have been pursued to identify an efficient scheduling 

scheme for identical and uniform parallel machining environments. Ho and Chang 

(1991) proposed a method to minimize the mean tardiness on identical parallel machines. 

The proposed heuristic used the combination of EDD -SPT dispatching rules and 

smallest load machine rule to obtain the initial schedule. The initial schedule was then 

improved by applying adjacent pairwise interchange technique. Their findings showed 

that the proposed method performed better than the extension of the algorithm reported 

previously by Wilkerson and Irwin (1971). 

Schuften and Leussink (1996) used a branch- and -bound algorithm to solve 

identical parallel machines scheduling with dynamic job release dates, general due dates, 

and family setup times. The objective of the research is to minimize the maximum 

lateness of all jobs released. The research compared the performance of applying two 

methods of lower bound to the branch and -bound algorithm. The first lower bound is 

based on a method presented by Carlier (1987). The second lower bound is obtained by 

allowing job preemption. The study concluded that the algorithm using Carlier's lower 

bound gave the best result. 

One of the studies performed on uniform parallel machines scheduling is by 

Guinet (1995). A heuristic based on simulated annealing is used to solve the uniform 

parallel machines scheduling problem, which is modeled as a transportation problem in 
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order to minimize the sum of tardiness. The result obtained from the heuristic was 

compared to a lower bound of the optimal solution. The study suggested that the 

proposed heuristic gives good results, but only at the expense of a higher computational 

effort. 

Most of the research performed on unrelated parallel machines scheduling was 

focused on minimizing the maximum completion time, which is also known as 

makespan. The following investigation was reported for minimizing makespan in an 

unrelated parallel machining problem. Davis and Jaffe (1979) presented various 

algorithms that were proven to give a solution that is between 'm to 2.5'ßm times the 

optimum in the worst case. Lenstra et al. (1987) developed an approximation algorithm 

that guaranteed a makespan that is no longer than twice its optimal. Hariri and Potts 

(1991) proposed five two -phase heuristics that use linear programming in the first phase 

to generate a partial schedule, and then apply a heuristic method to schedule the 

remaining jobs. The study concluded that the quality of the schedules from the two - 

phase heuristics only is unsatisfactory. Applying either a reassignment heuristic, 

interchange heuristic, or composite of both further improved the resulting schedule. The 

improvement heuristics reduced the makespan significantly at a very small computational 

expense. Suresh and Chaudhuri (1996b) considered a similar problem under two cases of 

dynamic machine availability: deterministic case and probabilistic case. 

Glass et al. (1994), and Piersma and Van Dijk (1996) applied local search 

heuristics to solve the job - scheduling problem on unrelated parallel machines. The 

objective is to minimize the maximum completion time. Glass et al. compared three 

well -known local search methods: simulated annealing, tabu search, and genetic descent 

algorithm, under an environment of static job release and static machine availability. The 

performance of each method was tested under two computational time limits: 20 seconds 

and 100 seconds. This means all methods run for the specified run time, and when the 

time limit was reached, solutions obtained by each method were collected and compared. 

Tabu search showed slightly better performance for 20 seconds time limit and there is no 

significant difference between the three methods for the time limit of 100 seconds. 

Piersma and Van Dijk proposed a local search algorithm that started by assigning each 

job to the machine on which it has the shortest processing time (SPT). A job that has 
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SPT on a machine is referred as job having efficiency value of one on that particular 

machine. Thus, the starting schedule is a schedule where all jobs have an efficiency of 
one on the machines they are assigned to. Since this schedule may result in unbalanced 

workload on the machines, the search procedure is then directed toward the neighborhood 

of the initial solution to evaluate if any superior solution exists. The neighborhood 

solutions are obtained by considering schedules that are less `efficient'. A neighborhood 

solution is accepted only if it yields a shorter makespan than its parent. The result of the 

study showed that the performance of the proposed algorithm was generally better than 

genetic algorithm, simulated annealing and tabu search. The authors also applied the 

proposed `efficient' neighborhood search structure to tabu search, which resulted in 

solutions that are equal to or better than the proposed algorithm. 

In an effort to develop optimal schedules for furniture production, Yaghubian et 

al. (1999) developed a heuristic to solve dry kiln scheduling problem in order to 

minimize maximum tardiness. The problem is a variant of non - identical parallel 

machines scheduling problem with dynamic machine availability, limited machine 

capacity, and transportation time of completed jobs. The effectiveness of the heuristic is 

compared to the branch- and -bound method. The experimental results indicate that the 

heuristic is capable of providing high quality solutions in shorter computation time 

compared to the branch- and -bound method. 

Azizoglu and Kirca (1999) approached unrelated parallel machines problems with 

a general objective that is based on a non - decreasing function of job completion times. 

They considered total weighted flow time as a special case of this objective function. 

The authors developed a lower bounding and reduction mechanism that is incorporated 

into a branch- and -bound algorithm. The performance of the branch- and -bound algorithm 

with lower bounds was compared to the one without lower bound. The computational 

experiment indicates that incorporating reduction and bounding scheme significantly 

improves the performance of the branch - and -bound algorithm. 

In real -life, however, it may be desirable to consider a scheduling problem with 

multiple objectives. Suresh and Chaudhuri (1996a) considered minimizing the maximum 

tardiness and minimizing the makespan simultaneously on unrelated parallel machines. 

The proposed algorithm used a heuristic called GAP/EDD, developed by the authors 
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(1994) to generate an initial solution. This initial solution is used as a starting point for 

tabu search to obtain alternate solutions. The tabu search employed in this algorithm 

only utilized the short-term memory feature. 

Tabu search has shown remarkable success in solving production - scheduling 

problems. Barnes et al. (1995) presented an overview of research on production 

scheduling that applied tabu search. The review listed tabu search -based applications in a 

single- machine problem, travelling salesman problem, parallel machines problem, flow 

shop problem, vehicle routing problem, classical job shop problem, and flexible job -shop 

problem. 

Muller et al. (1995) studied the application of tabu search on solving identical 

parallel machines scheduling problem with sequence dependent setup times to minimize 

makespan. The algorithm consists of three phases: initial assignment, tabu search, and 

post - optimization procedure. In the initial stage, each job is assigned to a machine that 

yields the least increase in completion time. In the tabu search implementation, a 

neighborhood solution is obtained by removing a job from the busiest machines and 

inserting it in another machine. A movement that yields the smallest completion time on 

the busiest processor is applied to the initial solution. This results in a new solution that 

may or may not be better than previous solution. The process is repeated until a pre - 

specified total number of iterations without improvement is reached. The search process 

is then directed to a region that is not explored yet. To employ this diversification 

strategy, the older job that is less frequently moved in the search process is removed from 

its machine and inserted in the machine that yields the minimum increase in makespan. 

The authors compared the performance of this diversification strategy under different 

values of total number of iterations without improvement. 

In parallel- machine scheduling, where the processing time of jobs are extremely 

unevenly distributed, certain machines may have many short tasks assigned, and others 

long tasks. For the objective of minimizing the makespan, Hubscher and Glover (1994) 

applied tabu search with the diversification strategy that seeks to redistribute big jobs and 

small jobs to every machine. This strategy is based on selecting moves that modify the 

solution structure influentially. The study concluded that the proposed diversification 

strategy improved the efficacy of tabu search in obtaining the best solution. 
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Logendran and Sonthinen (1997) applied tabu search to the job -shop scheduling 

problem in a flexible manufacturing system, where each part can have more than one 

process plan and each operation required of a part can be processed on alternative 

machines. The objective of the study is to minimize the longest completion time for the 

last operation of all jobs. The authors compared six different versions of tabu search - 

based heuristics that consisted of all possible combinations of short and long -term 

memory (using maximal and minimal frequency) with fixed and variable tabu -list sizes. 

Experimental results concluded that the combination of long -term memory based on 

maximal frequency and fixed tabu -list size in tabu search is preferred to solve job -shop 

scheduling problems in flexible manufacturing systems. 
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3. PROBLEM STATEMENT 

Scheduling jobs on multiple machines is not only a matter of sequencing decision 

such as in single machine scheduling, but also of machine - allocation decision based on 
machine capability and job characteristics. Referring to the five job characteristics 

mentioned in Chapter 1, the jobs in this research are characterized by general processing 

times, general due date (i.e. every job has a different due date), non - preemptive 

sequencing, independent precedence constraints, and dynamic job release time. This 

research also considers scheduling split jobs in addition to independent jobs. The need 

for splitting jobs was explained in Chapter 1. Each split job is assumed to have another 

split job that comes from the same batch. This means that a batch of job can only be split 

into two portions. Allowing for larger number of lot splits may result in carrying more 

work -in- process inventory as lots that are completed earlier have to wait for their split 

portions in order to move on to the next operation or to be shipped. To maintain a low or 

zero level of work -in- process inventory, it is necessary to ensure that either the same 

completion times or a `small' difference in completion times is identified for the 

operations representing the two split portions of the job. The difference in completion 

times of the two split portions of the job must be within a user- specified margin, which in 

the industry practice is based on some managerial decision. The decision on this margin 

may be based on inventory capacity or life span of the product. 

In addition to above described job characteristics, a `weight' value is given to 

each job that represents the priority level of the job. The weight or delay penalty concept 

was also used by Lee et al. (1997) on a single- machine scheduling problem, and by 

Vepsalainen and Morton (1987) on a job -shop scheduling problem. In addition to delay 

penalty, Ow and Morton (1989) also used early job's penalty in their research on single 

machine scheduling. The objective is to minimize both total earliness and tardiness costs. 

The parallel machining environment used in this research is not strictly unrelated, 

but it is a combination of both unrelated and identical machines. Three levels of machine 

capability are considered: least, medium and most capable. A problem instance may 

have more than one unit of machine of the same level of capability. The processing time 
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of a job varies from one machine to another of different level. However, the processing 

time of the job is the same for machines in the same level. Each machine is available for 

processing at different times. 

The objectives of this research are as follows: 

(i) To develop a mathematical model that aims at minimizing the sum of 
weighted tardiness of all jobs, with some jobs being split jobs, planned to be 

scheduled on mixed unrelated identical parallel machines with dynamic job 
releases and dynamic machine availability. 

(ii) To develop an efficient scheduling algorithm that would solve the model 

developed in (i). 
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4. MODEL DEVELOPMENT 

4.1. Introduction 

The mathematical model for this problem is developed as a mixed integer - linear 

programming problem. The parameters used in the model such as number of jobs, 

number of machines, sets of jobs that are split, machine available time, job release time, 

job weight, job processing time on each machine, job due date, and maximum 

permissible difference between the completion time of split portions of a job are known 

quantities. 

4.2. Assumptions 

(1) The sets of split jobs are known 

(2) Split jobs that come from the same batch have the same release time, weight, and due 

date 

(3) Setup time is assumed to be included in the processing time 

(4) No preemption is allowed 

(5) Machine idleness is allowed at no cost 

(6) Each machine can only process one job at a time 

(7) Typically, a job can be processed on any machine. If a job cannot be processed on a 

machine, it will have very large processing time on that machine 

4.3. Notations 

i = 1,2,3, ..., m machines 

j = 1,2,3, ..., n jobs 

j' = set of non -split jobs 

j" = set of split jobs. 



12 

j1j2 = The first and second split portions of job j, and 01 j2) E j" 

j= {j'uj "} 

p;j = processing time of job j on machine i 

a; = time when machine i becomes available 

r = time when job j is released 

wi = weight assigned to job j 

d = due date of job j 

gj1j2 = maximum permissible difference between the completion time of the split 

portions j 1 and j2 of job j 

M = an arbitrarily large number 

= completion time of job j on machine i 

= tardiness of job j on machine i 

1 if job j is scheduled to be processed on machine i 
x;. _ 0 otherwise 

1 if job k precedes job £ on machine i 

y'k` 0 otherwise 

4.4. Mathematical Model 

n m 

Minimize Z = EE wit, 
j =1 i =1 

subject to: 

Ezï -1 ; j = 1,2,...,n (1) 
i=1 

ci 

ti 

l 



xu (a; + 

cï < ï 
c,e Cik +M(1Y,ke) ? x,ep,e 

Cik ciP + My,ke 1 x,k p,k 

CgY C q12 + M(2 xgl xhj2 ) 

C CS1-1 < q +M(2 x811 xhj2 ) 

cï dj _tu 

tu >_0 

4.5. Model Description 

. i=1,2, ..m j =1,2,...n 

i=1,2, ..m 
j =1,2,...n 

i =1,2, ..m 
j = I,2,...n 

(2) 

(3) 

(4) 

i =1,2,...m 
k,I= 1,2,...n(k< 

i =1,2, ..m 
1,2,...n (k< 

g,h =1,2,...m 
61,j2) Ej" 

. g,h =1,2,...m 
61,j2) Ej" 

i =1,2, ..m 
' j =1,2, ..n 

; 
i=1,2, ..m 
j =1,2,...n 

(6) 

(7) 

(8) 

(9) 

(10) 
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The mathematical model developed above is a mixed (binary) integer - linear 

programming model as both real and binary integer (0/1) variables are included. The 

objective function of the model focuses on minimizing the sum of the weighted tardiness 

of all jobs released. Constraint (1) states that the operation required of each job, either 

split or non - split, is performed on only one machine. As machine availability and job 
release time are dynamic, the earliest start time of a job must be the largest of the job 
release time and the availability time of the machine to which the job is assigned. 

Constraints (2) and (3) jointly ensure that a job's completion time is at least equal to or 

xu(ri+pu)<_cu 

< 

- 

k,1= 

' 

(5) 
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greater than the sum of its earliest start time and its processing time. Constraint (4) states 
that the completion time of a job on a machine is zero if its operation is not performed on 

that machine. Constraints (5) and (6) jointly assure that two jobs are not processed at the 

same time on a machine. Constraints (7) and (8) jointly ensure that the absolute 

difference between the completion time of the split portions, j 1 and j2, of job j is less than 

or equal to the permissible maximum, a 1J2. These constraints are binding only when both 
binary integer variables, )(ail and xhp, equal to one. If the constraints are binding, the 

absolute difference between the completion time of j 1 and j2 will be less than or equal to 

gilj2. Constraint (9) ensures that the tardiness of a job is greater than or equal to the 

difference between its completion time and due date. Finally, constraint (10) guarantees 

that only positive values for tardiness are considered. 

4.6. Computational Complexity of the Research Problem 

The computational complexity of the research problem can be determined from 

considering a special case in total weighted tardiness problem. Lenstra et al. (1977) 

proved that single- machine scheduling problem with all jobs' weight being equal is NP- 

hard in the strong sense. Single- machine problem with equal weight of jobs is a special 

case of unrelated parallel machines with general weight of jobs. If the special case of the 

research problem is strongly NP -hard, then the research problem must be strongly NP- 

hard as well. If a problem is NP -hard, it is very unlikely that its optimal solution can be 

found in polynomial time. 

An implicit enumeration method such as the branch and bound technique can only 

be used to solve small problem instances in reasonable computational time. For medium 

and large problem instances, the branch and bound technique would not only be highly 

time consuming, but in some cases may never find the optimal solution even after an 

exceedingly large computational time. Thus, there is a need for developing a better 

methodology that yields an optimal/near- optimal solution fairly efficiently, especially for 

medium and large problem instances. One of the higher -level search heuristics that has 

been applied to solve production - scheduling problems is tabu search. Barnes et al. 



15 

(1995) presented a review of tabu search application to various machine scheduling 

problems such as single machine, parallel machines, open shop, flow shop and job shop. 

Tabu search -based heuristics have also been applied to scheduling problems with 

different objectives on unrelated parallel machines (Glass et al., 1994, Piersma and Van 

Dijk, 1996, and Suresh and Chaudhuri, 1996a). 



5. HEURISTIC ALGORITHM 

5.1. Introduction 
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The heuristic algorithm utilizes tabu search as the mechanism to explore the 
solution space. Tabu search was first introduced by Glover (1986). It is a strategic 
heuristic procedure for solving combinatorial optimization problems. It is designed to 
overcome the limitation of local optimality that is frequently encountered by other 
methods. Tabu search can guide the search process from one solution state to another by 
strategically constraining and freeing the attributes of the search process. This is possible 
because tabu search uses flexible memory functions that record search information of 
varying time spans. The long -term memory functions can be used to intensify the search 
by reinforcing attributes that are historically found good, or diversify the search to 
unexplored regions. 

The information about tabu search in detail, including fundamental principles, 
advanced settings and guidelines can be found in Glover (1989, 1990a and 1990b). The 
mechanism of tabu search is explained in the next section. Then, four methods to obtain 
the initial solution are presented, followed by generation of neighborhood solutions and 
steps of tabu search. Finally, an example problem is used to show the application of the 
heuristic algorithm. 

5.2. Tabu Search Mechanism 

Tabu search is built on three primary features (Glover, 1990b): 

1. The use of flexible memory structures to store information during the search process. 
It allows the evaluation criteria and historical search information to be exploited more 
thoroughly than by rigid memory structures (as in branch - and - bound) or by 
memoryless systems (as in simulated annealing and other randomized approaches). 
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2. A control mechanism that is based on the interplay between imposing and freeing the 

constraints on the search process (embodied in the tabu restrictions and aspiration 

criteria). 

3. The combination of memory functions of different time spans, from short term to 

long term, to implement strategies for intensifying and diversifying the search. 

The approach taken by tabu search is similar to the hill- climbing heuristic. It directs the 

search progressively from an initial solution to a better one in an upward manner for 

maximizing the objective function. In minimization context, the hill is inverted and the 

direction is downward. The limitation of hill- climbing heuristic is that the optimum 

obtained at the end of the search is a local optimum, which may not be the global 

optimum. Tabu search is capable of guiding such a heuristic away from being trapped at 

a local optimum and to continue the exploration to reach a global optimum or near global 

optimum. 

Tabu search always begins with an initial solution. This initial solution can be 

randomly or systematically generated. It can be a feasible or an infeasible solution. 

However, starting the search with a `good' feasible solution may speed up the process to 

get to an optimal/near- optimal solution. This is because the solution space is wider if the 

search process starts from an inferior initial solution. The wider the solution space is, the 

longer it takes to get to an optimal/near- optimal solution. Consequently, having an 

infeasible solution as an initial solution may prolong the computation time needed by 

tabu search to get to an optimal/near - optimal solution. Since a good initial solution is 

important for tabu search, four different methods for generating initial solutions are 

developed. These methods are explained in detail in the next section. 

Having the initial solution in hand, one can go about exploring the solutions in the 

neighborhood by perturbing the initial solution. Every neighborhood solution is 

evaluated by a performance criterion, which in this research is the total weighted 

tardiness. A neighborhood solution will be considered admissible if the move that yields 

the solution passes a tabu- status check. The primary goal of the tabu restriction is to 

permit the search process to go beyond points of local optimality while still making high 

quality moves at each step. The tabu restriction is embodied in tabu list. The tabu list 

consists of the changes or moves recently applied in order to direct one state of solution 
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to another. It also records recent moves in the order in which they are made. The length 

of time a tabu move is enforced depends on the size of tabu list. Past research has shown 

that tabu -list size depends on the size of the problems being investigated. Thus, a prior 

experimentation is required to determine a good size for the tabu list. 

By restricting the search to moves that are not tabu, the search process is 

prevented from revisiting solutions found earlier. However, a tabu move may yield a 

better solution than the one found so far. Therefore, an aspiration criterion is used to 

counterbalance tabu restrictions. This means that the tabu restriction can be overridden if 
an aspiration criterion is satisfied. The aspiration criterion gives a tabu move a second 

chance to be considered in the search process. After all neighborhood solutions are tested 

against tabu status and aspiration criteria, the move that yields the best solution is 

selected for future perturbation. This solution is admitted to the candidate list (CL). The 

whole process is then repeated until certain criterion is satisfied to terminate the search. 

Every chosen best solution has to be checked against the CL. This check is necessary to 

assure that a solution is not considered more than once for perturbation. 

There are different schemes to terminate the search process. One way is to let the 

process run until a certain size of the CL is achieved. Another method is to let the 

process run up to a certain number of consecutive iterations that do not yield any 

improvement. Yet another method is to impose a limit on the computation time used in 

the search process. 

Essentially, tabu list is the short-term memory of tabu search. The effect of short- 

term memory can be amplified by applying the long -term memory function. The long- 

term memory can be used to direct the search to focus on the region that is historically 

found good (intensification process) or on the region that is hardly visited (diversification 

process). The long -term memory is embodied in a frequency matrix that keeps track of 
the essential information of all previous moves. A new starting point can be identified 

using the information from long -term memory. The search process will use this starting 

point as an initial solution to do a restart. 
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5.3. Initial Solution 

Over the years, researchers have tried to use simple rules to solve tardiness 
problems, which include total tardiness, weighted tardiness and maximum tardiness 
problems. A number of simple dispatching rules such as the Earliest Due Date (EDD), 
Shortest Processing Time (SPT), Minimum Slack (MSLACK) and Slack per Remaining 
Processing Time (S/RPT) have been applied to solve these problems. The first two rules 
are time - independent, meaning that the job priority is dependent on job and machine data, 

and remains the same throughout the scheduling horizon. Contrastingly, the last two 
dispatching rules are time- dependent, i.e. job priority is dependent on the time when 
machines become available after processing the preceding job. In his survey on the total 

tardiness problem, Koulamas (1994) compiled several research efforts that have used 
simple dispatching rules to sort jobs to be allocated to the available machines or to 
construct an initial schedule, which is further improved by applying heuristic methods. 

While simple dispatching rules only use a single attribute to achieve its objective, 
in industry practice, there is more than one attribute that determines a `good' schedule. 

Attribute is a property that belongs to a job or the machine environment under 

consideration such as the job processing time, job due date, job release time, or job 
waiting time. A composite dispatching rule is designed to combine several job and 
machine attributes to obtain a good schedule. It is a function made up of attributes and 

some scaling parameters. A number of composite dispatching rules have been developed 
for different types of machine environments. These include Dynamic Composite 
Rule/DCR (Conway et al., 1967), Cost Over Time /COVERT (Carroll, 1965), Apparent 
Tardiness Cost/ATC (Vepsalainen and Morton, 1987), and Apparent Tardiness Cost with 

Setup /ATCS (Lee et al., 1997). 

In this research, four different methods are used to generate the initial solution for 

tabu search. Two of them are based on EDD. One method is based on a combination of 
Least Flexible Job (LFJ) and Least Flexible Machine (LFM) rules. The last method is a 

modified version of ATC that incorporates dynamic job release time. The following 
notations will be used throughout the development of the algorithm: 

t = clock time 
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i = machine index 

j = job index 

= initial availability time of machine i 

rat; = release time of machine i (after processing a job) 

NS = set of unscheduled jobs 
i* = selected machine index 

j* = selected job index 

maximum permissible difference between the completion time of split portions j 1 

and j2of job j 
pj = processing time of job j on machine i 

ri = release time of job j 
CT(j,i) = completion time of job j on machine i 

ST(j,i) = starting time of job j on machine i 

5.3.1. Earliest Due Date (EDD) 

The following steps are developed based on the EDD rule and used to generate the 

initial solution: 

1. Initially, set t = 0 and mt; = a; V i. Include all jobs into NS. 

2. Select the machine /unit (i) that has the minimum mt. If there is more than one 

machine with minimum mt;, break ties by choosing the machine with the smallest 
index. Let the selected machine be i *. Set t = rat*. 

3. Let SJ = the set of jobs released at or earlier than t, and that can be processed on i* 

(SJ c NS). 

a. If SJ = 0, find a job /jobs from NS that can be processed on i* and has/have 

minimum r. 
i. If all jobs in NS cannot be processed on i *, exclude machine i* from future 

consideration. Go to step 6. 

ii. If only one job is found, select this job and assign it to i *. Go to step 4. 

a; 

cÚ1j2 = 
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iii. If two or more jobs are found, break ties in favor of the EDD rule, followed by 
the highest weight. If job ties still exist, check if a pair of split jobs are among 
the competing jobs. If a pair of split jobs are among the competing jobs, 
select the split portion that has the largest p; *i to i *. Otherwise, assign the job 
with the smallest index to i *. Go to step 4. 

b. If SJ has only one job, assign the job to i *. Go to step 4. 

c. If SJ has two or more jobs, check if any of the jobs in SJ is a split job with its split 

portion eliminated from SJ (i.e. its split portion was scheduled). 

i. If such a job exists, assign it to i *. Go to step 4. 

ii. If two or more such jobs exist, the priority is given to the split job that has its 

split portion eliminated earliest from SJ. Assign this split job to i *. Go to step 

4. 

iii. If such a job does not exist, choose the job with the EDD from the SJ list. 

Break ties by choosing the job with the highest weight. If more than one job 
has the EDD and highest weight, check the split status of these jobs. If a pair 

of split jobs are among the competing jobs, choose the split job portion with 

the largest pj *j; otherwise, choose the job with the smallest index. Assign the 

selected job to i *. Go to step 4. 

4. Set j* = the selected job; ST(j *,i *) = max [mt;, ri.] and CT(j *,i *) = ST(j *,i *) + 

If j* is a non -split job or a split job that has its other split portion unscheduled, go to 

step 5. If j* is a split job and its split portion, denoted by j' *, was scheduled, let i'* 
be the machine on which j'* was scheduled. Check the difference between CT(j *,i *) 

and CT(j' *,i' *). If CT(j' *,i' *) - CT(j *,i *) > CU1j2, set CT(j *,i *) = CT(j' *,i' *) - gj1j2 and 

ST(j *,i *) = CT(j *,i *) - pj *jt. 

5. Set mt;= = CT(j*,i*) . Eliminate j* from NS. 

6. If NS 0, go to step 2. 

The algorithmic procedure in step 4 needs further explanation, specifically for 

split jobs. In general, a split job (j *) that has its split portion (j' *) previously scheduled 

will fall under any one of the following three cases: 1.) CT(j' *,i' *) - CT(j *,i *) > gj1j2; 2.) 

CT(j *,i *) - CT(j' *,i' *) > clop; and 3.) ICT(j' *,i' *) - CT(j *,i *)I _< q¡ki2. An adjustment in 

the completion time of a split portion is required for cases 1 and 2 to make the solution 
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feasible (i.e. to satisfy the JIT constraints). In case 1, the adjustment is made by delaying 
the start time of j* so that the difference between the completion times of j* and j'* is at 

most equal to Tap. In case 2, however, an adjustment in completion time cannot be made 

since j'* was previously scheduled and thus, its start time and completion time are 

considered permanent. Under case 2, the algorithm would identify an infeasible initial 

solution. Starting the tabu search with an infeasible initial solution may prolong the 

computation time required to find an optimal/near - optimal solution. This issue was 

previously discussed in section 5.2. 

5.3.2. Earliest Due Date with consideration for split jobs (EDDsp) 

The scheduling steps using EDDsp are somewhat similar to EDD. The difference 

is in the way the split jobs are scheduled. In EDDsp, immediately after a split portion of 
a job is scheduled, the algorithm will assign its other split portion to the machine that can 

complete it earliest. This is done to ensure that the JIT constraints for split portions of the 

same job are satisfied. This means that the initial solution is guaranteed to be feasible. 

The steps associated with the algorithm can be presented as follows: 

1. Initially, set t = 0 and mt; = a; `d i. Include all jobs into NS. 

2. Select the machine /unit (i) that has the minimum mt. If there is more than one 

machine with minimum mt;, break ties by choosing the machine with the smallest 

index. Let the selected machine be i *. Set t = mti. 
3. Let SJ = the set of jobs released at or earlier than t, and that can be processed on i* 

(SJ c NS). 

a. If SJ = 0, find a job /jobs from NS that can be processed on i* and has/have 

minimum 

i. If all jobs in NS cannot be processed on i *, exclude machine i* from future 

consideration (i.e. machine i* will be no longer considered as one of the 

available machines). Go to step 6. 

ii. If only one job is found, select this job and assign it to i *. Go to step 4. 

r. 
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iii. If two or more jobs are found, break ties in favor of the EDD rule, followed by 
the highest weight. If job ties still exist, check if a pair of split jobs is among 

the competing jobs. If a pair of split jobs are among the competing jobs, 
select the split portion that has the largest pi *j to i *. Otherwise, assign the job 
with the smallest index to i *. Go to step 4. 

b. If SJ has only one job, assign the job to i *. Go to step 4. 

c. If SJ has two or more jobs, break ties in favor of the EDD rule, followed by the 

highest weight. If more than one job has the EDD and highest weight, check the 

split status of these jobs. If a pair of split jobs are among the competing jobs, 
select the split portion of the job that has the largest pi *i to i *. Otherwise, assign 

the job with the smallest index to i *. Go to step 4. 

4. Let the selected job be j *; ST(j *,i *) = max [mt1 *, CT(j *,i *) = ST(j *,i *) + pi?, and 

mti= = CT(j *,i *). If j* is a non -split job, go to step 5. If j* is a split job, let its split 

portion be j' *. Let SM be a set of machines that can process j' *. Calculate the 

starting and completion time of j'* on each machine included in SM: ST(j'*,k) = max 

[mtk, r' =], CT(j' *,k) = ST(j' *,k) + pkj' *, k E SM. Select the machine that can 

complete j'* the earliest and call this machine i'*. Let CT(j' *,i' *) and ST(j' *,i' *) be 

the completion and start time of j'* on i'*, respectively. Check the difference 

between CT(j *,i *) and CT(j' *,i' *): 

a. If CT(j' *,i' *) - CT(j *,i *) > giij2, set CT(j *,i *) = CT(j' *,i' *) - q¡12, ST(j *,i *) _ 
CT(j *,i *) pis?. Set tilt* = CT(j *,i and nit,* = CT(j' *,i' *). Eliminate j* and j'* 
from NS. Go to step 6. 

b. If CT(j *,i *) - CT(j' *,i' *) > quiz, set CT(j' *,i' *) = CT(j *,i *) - q¡12, ST(j' *,i' *) = 

CT(j' *,i' *) - pr *Fs. Set mfr. = CT(j' *,i' *). Eliminate j* and j'* from NS. Go to 

step 6. 

c. If ICT(j *,i *) - CT(j' *,i' *)I <_ gjlj2, set mt;'. = CT(j' *,i' *). Eliminate j* and j'* from 

NS. Go to step 6. 

Note: The adjustment in completion times of the split portions of a job to meet JIT 

requirement, if needed, is made only by delaying the start time of a split portion. One 

may consider starting a split portion earlier rather than delaying the start time as 

another way of adjusting the completions times to meet the JIT requirement. The 

rj], 
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adjustment done by this way may cause changes on the start and completion times of 
the jobs that were previously scheduled. This possibility is ignored since all jobs that 
were previously scheduled are considered to have permanent start time and 
completion time. 

5. Eliminate j* from NS. 

6. If NS 0,goto step 2. 

Step 4 shows the primary difference between EDD and EDDsp. EDDsp method 
assures that the absolute difference in completion times between the split portions of a 
job is at most equal to Cj1j2. Thus, this method will surely identify a feasible initial 
solution. 

5.3.3. Least Flexible Job and Least Flexible Machine (LFJ/LFM) 

Centeno and Armacost (1997) developed an algorithm for scheduling jobs in 
parallel machines with dynamic job release time, due dates, and different machine 
capability in order to minimize the maximum lateness. The lateness of a job is different 
from the tardiness. Lateness is evaluated as completion time minus due date, thus it may 
be a negative, zero or positive value. On the other hand, tardiness can either be zero or 
positive value. Machine capability is reflected in the number of jobs the machine is 

capable of processing, i.e. the most capable machine has the potential to process the most 
number of jobs. The job due date is generated as the job release time plus a constant. 
The algorithm is based on Least Flexible Job (LFJ) and Least Flexible Machine (LFM) 
rules. LFJ is defined as the job that can be processed by the least number of machines. 
LFM is the machine that is capable of processing the least number of jobs. The LFJ rule 

gives higher priority to less flexible jobs and thus, prevents them from being late due to 
their inflexibility. The LFM rule ensures that less capable machines get a fair share of 
assignment as more capable machine. 

A method to generate the initial solution is developed based on Centeno and 
Armacost's algorithm. This method uses the same mechanism as that in EDDsp to 

a 
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schedule split jobs and make the adjustment to the completion times of the split portions 

of a job. The steps associated with this method can be documented as follows: 

1. Initially, set t = 0, mt; = a; V i and include all jobs in NS. 

2. Check if any r 5 t. If yes, then go to step 4: 

3. Set t = min [r] where j E NS. 

4. Choose the least flexible job with r < t. If two or more jobs are chosen, select the job 

with min ri. If two or more jobs with min ri are selected, do one of the following: 

a. If the split jobs are among the selected jobs, choose the pair of split jobs with the 

smallest indices. Go to Step 6. 

b. If all selected jobs are non - split, choose the job with the smallest index. Go to 

step 5. 

5. Let the selected job be j *. Find the least flexible machine that can process j* and is 

currently idle. If two or more machines are found, break ties by selecting the 

machine with the smallest index. If all capable machines are busy, then go to step 8. 

Let the selected machine be i *. Set ST(j *,i *) = max [t, mt.], CT(j *,i *) = ST(j *,i *) + 

pii and mt.. = CT(j*,i*). Eliminate j* from NS and go to step 7. 

6. Find the least flexible machine that is capable of processing the selected pair of split 

jobs (a machine that is capable of processing one split portion of a job should be able 

to process the other split portion), and is currently idle. If two or more machines are 

found, break ties by selecting the machine with the smallest index. If all capable 

machines are busy, then go to step 8. Let the selected machine be i *. From the two 

split portions, let the split portion that has the larger processing time on i* be j *, and 

the other split portion be j' *. Assign j* to i* and set ST(j *,i *) = max [t,mt;.], 

CT(j *,i *) = ST(j *,i *) + pi *? and mt; = CT(j *,i *). Let SM be the set of machines that 

can process j'*. Calculate the starting and completion time of j'* on each machine 

included in SM: ST(j'*,k) = max [mtk, r s], CT(j'*,k) = ST(j'*,k) + pki'., k E SM. 

Select the machine that can complete j'* the earliest and call this machine i' *. Let 

CT(j' *,i' *) and ST(j' *,i' *) be the completion and start time of j'* on i'*, respectively. 

Check the difference between CT(j *,i *) and CT(j' *,i' *): 



26 

a. If CT(j' *,i' *) - CT(j *,i *) > gj1j2, set CT(j *,i *) = CT(j' *,i' *)- gjlj2, ST(j *,i *) _ 
CT(j *,i *) pi*. Set nit* = CT(j *,i *) and mti,* = CT(j' *,i' *). Eliminate j* and j'* 
from NS. Go to step 7. 

b. If CT(j *,i *) - CT(j' *,i' *) > gj1j2, set CT(j' *,i' *) = CT(j *,i *) - q¡1j2, ST(j' *,i' *) = 
CT(j' *,i' *) - pj' *j' *. Set mti'. = CT(j' *,i' *). Eliminate j* and j'* from NS. Go to 
step 7. 

c. If ICT(j *,i *) - CT(j' *,i' *)j <_ clop, set mt1' = CT(j' *,i' *). Eliminate j* and j'* from 
NS. Go to step 7. 

7. Set newt = min [mti] V i and t = max [t,newt]. Go to step 9. 

8. Set newt = min [mti], for all machine i that are capable of processing j* (from step 5) 

or the selected pair of split jobs (from step 6). Set t = newt and go to step 2. 

9. If NS * 0, go to step 2; otherwise, stop. 

5.3.4. Apparent Tardiness Cost (ATC) 

Rachamadugu and Morton (1981) developed a look -ahead rule for the single 
machine weighted tardiness problem. This heuristic uses the composite dispatching rule 
to calculate the Apparent Priority (AP) for all unscheduled jobs. By extending the use of 
AP rule, Vepsalainen and Morton (1987) developed the Apparent Tardiness Cost (ATC) 
rule to schedule jobs in job shop environment in order to minimize the total weighted 
tardiness. Lee et al. (1997) further applied the ATC rule to the single machine scheduling 
problem with sequence dependent setup time in order to minimize the total weighted 
tardiness. This rule is called Apparent Tardiness Cost with Setups (ATCS) rule. 

ATC rule calculates the priority index for all unscheduled jobs at any instant 
when a machine is free. The priority function is evaluated as: 

w max[di pi t,0] 
PI (t) = exp p kp 1 

where t is the time when the machine is available; pi, di are the weight, processing 

time and due date of job j, respectively; p is the average processing time of all remaining 

unscheduled jobs, and k is the look -ahead parameter. This function consists of two 

wi, 
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components: wi /pi and the exponential term. The first component gives a high priority to 

the job that has small processing time and large weight. Thus, it represents the Weighted 

Shortest Processing Time (WSPT) dispatching rule. The numerator in the second 

component is max (di-pp -t, 0), which can be translated as the slack for job j at time t. In 

general, this component gives a high priority to jobs with small slack. Thus, it represents 

the least -slack dispatching rule (LSR). The parameter k provides the look -ahead 

capabilities of the ATC rule. It means that parameter k carries the value, which 

represents the shop congestion level. It is related to the number of competing jobs 

(Rachamadugu and Morton, 1981). In their experimental study, Lee et al. (1997) have 

shown that this parameter depends on the characteristics of the problem instance. 

In order to apply the ATC rule to unrelated parallel machines with dynamic 

machine availability and dynamic job releases, the priority function should be changed. 

The processing time of job j on machine i, pii, must be used instead of pi in the function as 

this research deals with an unrelated parallel machining environment. No changes are 

necessary to incorporate dynamic machine availability, as in the original application of 
ATC, the priority index is evaluated for all unscheduled jobs whenever a machine 

becomes available. The applications of ATC rule in previous studies assume static job 
releases. For dynamic job release time, Lee et al. (1997) suggested that the job selected 

(based on the priority index) should be among the released jobs. This practice prevents 

unreleased jobs from competing with released jobs for the available machine. A different 

mechanism should be developed to provide all jobs (released or not) the same 

opportunity to compete for the available machine. It should be reflected in the priority 

index. Therefore, an additional component that considers job release time is included in 

the priority function. Three models that use job release time were tested: 

max[ri t,0] 
1. exp 

ki 

2. exp 
ri t 
ki 

3. exp 
kr 

r 
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where ri is the release time of job j; t is the time when the machine is available; r is the 
average release time of the remaining unscheduled jobs, and k is a look -ahead parameter. 

In the first model, job release time influences the priority index only if the job 
release time is larger than the current time, t. In other words, a job that was released prior 
to or at t will get its priority value from other components of ATC. On the contrary, in 
the second and third models, job release time influences the priority index regardless of 
when the job is released, i.e. before or after t. In the second model, the impact of job 
release time on the priority index is amplified by t. The priority index will increase 
exponentially if t is larger than the job release time. In the third model, the impact of the 
job release time on the priority index is not influenced by t. All three models give high 
priority to a job with small release time. 

Intuitively, the first model serves the objective of minimizing the total weighted 
tardiness better than the other models. Once a job is released, the criticality of the job 
should be determined by the weight of the job and how close the job is to its due date. 
The time span after the job is released (i.e. the waiting time of the job on the shop floor) 
should not matter as much as meeting the due date. In the second and third models, the 
waiting time is considered along with the weight and slackness of the job. In order to 
compare the performance of the three models, 15 problem instances were generated. 
These problem instances have different total number of jobs and machines. The 
processing time, release time, weight, and due date for each job, and the machine release 
time are generated by randomization procedure. Each model is then applied to all 
problem instances. The test results show that the first model yields the best solution 62% 
of the time, second model 15 %, and third model 23 %. Thus, the first model is used to 
accurately depict the priority function. The priority function selected for the scheduling 
problem on unrelated parallel machines with dynamic job release and dynamic machine 
availability is: 

PI t. = w ex P 
max[d p;; t; ,0] 

ex 
max[rr t; ,O] 

,( ,) 
pi; k1P; kgf 

PI; = the priority index of job j 
t; = time when machine i is available 

p; = processing time of job j on machine i 

_ 
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= average processing time of the remaining unscheduled jobs that can be processed on 

machine i 

wi, ri, = weight, release time, and due date of job j, respectively 

r = average release time of the remaining unscheduled jobs that can be processed on 

machine i 

k1, k2 = look -ahead parameters 

It is important to use the appropriate values of kl and k2 as they represent the 

look -ahead capability of the ATC rule. The values of the parameters k1 and k2 depend on 

the problem instance as they essentially perform scaling for shop congestion level of the 

problem instance. Therefore, before any explanation on these parameters is given, it is 

important to know the factors that characterize a problem instance. Four different factors 

are used to characterize a problem instance in this research; they are number of jobs (J), 

number of machines (M), tardiness factor (T) and due date range factor (R). The last two 

factors have been used before by Lee et al. (1997), Suresh and Chaudhuri (1994), and Ow 

and Morton (1989) to determine the due date of a job. The tardiness factor, T, is defined 

as T = 1- d / Cmax where d is the average due date and Cmax is the maximum completion 

time of all jobs released (makespan). Ow and Morton (1989) state that "T is a coarse 

measure of the proportion of jobs that might be expected to be tardy in an arbitrary 

sequence ". A large value of T means that the average due date is much smaller than Cmax, 

which implies that the completion times of most jobs are bound to exceed their respective 

due dates. On the other hand, a small value of T implies that most jobs are bound to 

complete before their respective due dates. Thus, large value of T indicates tight due 

dates and small T loose due dates. The due date range factor, R, is defined as R = (dmax 

dm;n) / Cmax where dmax and dm;n are the maximum and minimum due date, respectively. R 

provides the measure of variability of the due dates. Different combinations of T and R 

generate due dates with various characteristics such as those shown in Table 5.1 (Suresh 

and Chaudhuri, 1994). 

T, R and Cmax have to be used simultaneously in order to generate due dates of 

jobs. However, Cmax is schedule- dependent. An estimation scheme has to be developed 

pi 

di 



for Cm. Given the job processing time, job release time and machine availability time, 

the Cm. of the problem can be estimated as: 

Cma, = 

m m 

ax[ri,a;] +p;i E i=1 
mi 

m 
mi 

n Ema*ia;j+pii E i=1 

i=1 mi 
n 

ifn>_m 

otherwise 
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where n = total number of jobs; m = total number of machines; mi = total number of 
machines that can process job j; ri = release time of job j; a; = availability time of machine 

i; pi = processing time of job j on machine i 

Table 5.1 Due date classification 

ti R Degree of 
tightness 

Width of 
range 

0.2 0.2 Loose Narrow 
0.2 0.5 Loose Medium 
0.2 0.8 Loose Wide 
0.5 0.2 Medium Narrow 
0.5 0.5 Medium Medium 
0.5 0.8 Medium Wide 
0.8 0.2 Tight Narrow 
0.8 0.5 Tight Medium 
0.8 0.8 Tight Wide 

The appropriate values for kiand k2 have to be selected for ATC rule to be an 

effective dispatching rule. Since ki and k2 are predicted to be problem dependent, it is 

necessary to find the values of ki and k2 as a function of J, M, i, and R. An experimental 

study similar to the one conducted by Lee et al. (1997) is performed to determine k1 and 

k2 for the priority function used in this research. This experimental study is conducted to 

investigate k1= f (J, M, i, R) and k2 =f2 (J, M, i, R). The experiment is conducted over 

1 

max[r. 
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five values of job (J = 5, 20, 35, 55, 70), four values of machines (M = 3, 8, 14, 20), five 

values of ti ('c = 0.2, 0.35, 0.5, 0.65, 0.8), and four values of R (R = 0.2, 0.4, 0.7, 1.0). A 

problem type is determined by a combination of these four factors. Thus, there are a total 

of 400 (5 *4 *5 *4) unique problem types. Within each problem type, two problem 

instances are generated by using different random number seeds, resulting in a total of 
800 problem instances. 

From the total number of jobs, J, 25% of the jobs are assumed to be split jobs. 

Since split jobs have to be in pairs, the total number of split jobs should be even. If 
25 % *J results in a decimal value, the value rounded to the nearest even number is used. 

If 25 % *J results in an odd number, the value rounded up to the nearest even number is 

used. For example, if J = 35, the total number of split jobs will be 10 or 5 pairs of split 

jobs. The split status is randomly assigned to the jobs until the total number of split jobs 

is reached. The machines can be grouped into three levels of capability: least, medium 

and most capable machines. All three types of machines are included in each problem 

instance. Each machine type may have more than one unit. The sum of machine units of 
all machine types is equal to M. The least, medium and most capable machines have the 

potential to process 50 %, 70% and 85% of all jobs, respectively. Each machine type is 

assigned a coefficient of capability, am, which is uniformly distributed over the interval 

[1,10]. Thus, three values are needed for am, one for each machine type. The largest 

value is given to the least capable machine and smallest to the most capable machine. 

This coefficient is used to generate job processing times. The processing times are 

uniformly distributed over the interval [am + 1, am +20] for non -split jobs and [am + 11, 

am + 20] for split jobs. The processing times of a job are the same for machines of the 

same type. Job release time and machine availability time are generated from a Poisson 

distribution (Schutten and Leussink, 1996, and Suresh and Chudhuri, 1996b) with 

parameter . = 5. Job weight is uniformly distributed over the interval [1,4]. The due 

dates are generated from a composite uniform distribution based on R and i (Lee et al., 

1997). With probability i the due date is uniformly distributed over the interval [ d R d, 

d] and with probability (1 -ti) over the interval [ d, d + (Cmax - d)R]. 
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For each problem instance, the ATC rule is applied repeatedly using different 

combinations of values for k1 and k2. The values of k1 tested range from 0.2 to 8.0 with 

an increment of 0.2, and the values of k2 tested range from 0.2 to 6.0 with an increment of 
0.2. Thus, there are a total of 1200 combinations of k1 and k2 values. For each problem 

instance, the values of the total weighted tardiness (TWT) were evaluated as a result of 
applying the ATC rule repeatedly using 1200 combinations of k1 and k2. All k1 values 

that yielded the minimum total weighted tardiness (MTWT) are identified. The average 

of these k1 values is referred to as lcl . The average of all k2 values that yielded the 

minimum total weighted tardiness is collected the same way as k1, and it is referred to as 

k2. A range of ki values is then selected by considering the entire range of k1 (0.2, 0.4, 

0.6, ...8.0) with k2 that resulted in total weighted tardiness that is less than or equal to 

MTWT(1 +13). The parameter ß is a tolerance value for MTWT that is a decreasing 

function of ti and ranges from 0 to 0.065 (Lee et al., 1997). The value of 0.065 (6.5 %) is 

the upper limit of the tolerance value for MTWT. Although the scheduling problem that 

was addressed by Lee et al. is different from the problem addressed in this research, the 

upper limit off!. that they used is very reasonable. It provides sufficient flexibility for 

selecting an appropriate range of k1 values. The midpoint of the selected range of k1 is 

used as the recommended value for k1. Similarly, a range of k2 values is selected by 

considering the entire range of k2 (0.2, 0.4, 0.6, ...6.0) with ly that resulted in total 

weighted tardiness that is less than or equal to MTWT(l +ß). The midpoint of the 

selected range of k2 is used as the recommended value for k2. Therefore, each problem 

instance has a pair of recommended values for k1 and k2. The entire procedure is 

repeated until all 800 problem instances are tested. 

In an initial data exploration, the experimental results for the recommended values 

of k1 appeared to form two clusters, one cluster around the smaller values of k1 (i.e. 0 to 

2.5) and the second one ranges from 3.9 to 4.5 with a concentration at 4.1. A preliminary 

investigation is done to explore the cause of these clusters. This leads to checking why a 

number of data points are concentrated at 4.1. The investigation is carried back to the 

range of values used to identify the recommended k1 as a midpoint. It appeared that the 

entire range of values between 0.2 and 8.0 contributed to the recommended k1 of 4.1. 
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Recall from the testing procedure, the range of k1 is selected by considering the entire 

range of ki (0.2, 0.4, 0.6, ...8.0) with k2 that resulted in total weighted tardiness that is 

less than or equal to MTWT(1 +(3). The implication of the entire range being selected is 

that each value from 0.2 to 8.0 yields the same TWT. This implies that the problem 

instances with recommended k1 equals to 4.1 are not responsive to different values of k1 

used in the ATC rule. This means that applying the ATC rule to these problem instances 

will yield the same total weighted tardiness regardless of the value of k1 used. Thus, 

there is no need to find the function that relates k1 to the values of the factors (J, M, ti, R) 

that correspond to these problem instances. A further analysis shows that there is a 

commonality in the ratio of J/M between the problem instances with recommended k1 of 
4.1. Generally, when J/M ratio of the problem instances is less than 1.7, their 

recommended k1 is approximately equal to 4.1. This means that problem instances with 

J/M ratio less than 1.7 are generally not responsive to the changes in k1. 

Excluding all data points that have J/M ratios less than 1.7, a multiple linear 

regression analysis is conducted on the remaining data. In the first attempt, k1 is fitted on 

a simple model that includes only all main effects (J, M,ti, R). Using a test significance 

level (a) of 0.05, it turned out that factor J does not have a statistically significant effect 

on k1. Then, excluding factor J, k1 is fitted to a richer model that included the main 

effects M, ti, R, and all possible interaction terms between them. The significant 

interaction terms are M *i and R *ti. Lastly, k1 is fitted to an even richer model that 

included M, i, R, M *ti, R *i, the quadratic terms and cubic terms of the main effects. 

Only the quadratic term of i showed any statistical significance and none of the cubic 

terms were significant. When the interaction of R and T is included in the model, the 

main effect R turns out to be insignificant. Since it is logically inconsistent to propose 

that the effect of R is dependent on ti but there is no effect of R, the main effect of R is 

retained in the model. The residual plot and normal probability plot for this model are 

shown in Figure A.1 (Appendix A.1). The residual plot against fitted k1 showed that the 

variance increases as the fitted value increases. The normal probability plot indicates 

lack of normality. In an attempt to obtain a better model, two transformation methods 

appropriate to fix data with non - constant variance and non - normality are applied to k1: 
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natural logarithm (Log) and square -root (Sqrt) transformations. Then, the regression 

analysis is applied to Log(ki) and Sqrt(ki) to fit the transformed k1 to the main effects, 

interaction terms, quadratic terms and cubic terms. The residual plots and normal 

probability plots for Sqrt(ki) and Log(ki) are shown in Figure A.2 A.3 (Appendix A.1), 

respectively. Comparing the normal probability plots for Sqrt(ki) and Log(ki), the 

residuals for Sqrt(ki) still indicate lack of normality. Thus, natural logarithm 

transformation is chosen over square root. Recall that two interaction terms (M *T and 

R *T) were statistically significant in the regression model before any transformation was 

applied to k1. However, when natural logarithm is applied to k1, the only significant 

interaction term is R *i. The fmal regression model selected for k1 is: 

Log(ki) = 1.8297 0.0326 *M 0.2628 *R 3.4394 r 0.9927 *R *T + 3.4555 *T2 

This model is used to predict the value of ki for problem instances with J/M ratio equal to 

or larger than 1.7. The Analysis of Variance (ANOVA) tables and R2 statistics for the 

regression model on k1, Sqrt(ki), and Log(ki) are shown in Table A.1 A.3 (Appendix 

A.1), respectively. The estimates of coefficient with standard errors for Log(ki) model 

are shown in Table A.4 of Appendix A.1. 

Recall that problem instances with J/M ratio less than 1.7 are generally not 

responsive to the changes in k1. Thus, any value of k1 from 0.2 to 8.0 is basically good 

for these problem instances. However, a small number of problem instances in this 

category have recommended k1 values that are smaller than 1.5. Therefore, as k1 values 

smaller than 1.5 are good for all problem instances with J/M ratio less than 1.7, it is 

reasonable to recommend a value of k1 that lies within the range from 0.2 to 1.5 to these 

problem instances. For the experiments described in chapters 6 and 7, the values of k1 

used is fixed to 1.0 for problem instances with J/M ratio less than 1.7. 

The analysis procedure for k2 is similar to k1. In the initial data exploration, the 

recommended values for k2 were found to form two clusters: one cluster is around the 

smaller values (i.e. 0 to 2.0) and the other is around 3.1 to 3.3 with a concentration at 3.1. 

A similar situation was encountered in the initial data exploration for k1. This leads to 

checking the data points that are concentrated at 3.1. The investigation is carried back to 

the range of values used to identify the recommended k2 as a midpoint. Recall from the 

testing procedure, the range of k2 is selected by considering the entire range of k2 (0.2, 
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0.4, 0.6, ...6.0) with 14 that resulted in total weighted tardiness that is less than or equal 

to MTWT(1 +13). It appeared that the range of k2 that resulted in a midpoint of 3.1 is 

between 0.2 and 6.0. The implication of the entire range being selected is that each value 

from 0.2 to 6.0 yields the same TWT. This implies that problem instances with 

recommended k2 of 3.1 are not responsive to the value of k2 used in ATC rule. It means 

that their total weighted tardiness remains the same regardless of the value of k2 being 

used. Thus, there is no need to find the function that relates k2 to the values of the factors 

(J, M, i, R) that correspond to these problem instances. The problem instances that 

obtained recommended k2 of 3.1 have a ratio of J/M that is less than 1.7 or larger than 

7.3. Thus, only problem instances with J/M ratio between 1.7 and 7.3 are considered 

further in the multiple linear regression analysis. The attempt is to fit k2 to all main 

factors (J, M, ti, R), the interactions, quadratic term and cubic term of main factors. The 

effects that appeared to be statistically significant for a = 0.05 are J, M, i, J *M, and J *ti. 

The normal probability plot and residual plot for this model is shown in Figure A.4 

(Appendix A.2). As the normal probability plot indicates that the distribution of the 

residuals is non - normal, square -root and natural logarithm transformation are applied to 

k2. The normal probability plots and residual plots for the regression model on Log(k2) 

and Sqrt(k2) are shown in Figure A.5 A.6 (Appendix A.2), respectively. The residual 

plot and normal probability plot for Log(k2) are not much different from the plots for 

Sqrt(k2). The main effect and interaction terms that appear to be significant are exactly 

the same for both models. However, the R2 statistic, which is the percentage of variation 

explained by the model, for Sqrt(k2) is greater than Log(k2). Therefore, the square root 

transformation is selected over the natural logarithm. The final regression model selected 

for k2 is: 

Sqrt(k2) = 2.2707 0.0174 *J 0.0912 *M + 0.5022 *T + 0.0017 *J *M 0.0193 *J *i 
The ANOVA tables and R2 statistics for the regression models on k2, Log(k2), and 

Sqrt(k2) are shown in Table A.5 A.7 (Appendix A.2), respectively. The estimates of 

coefficients and standard errors for Sqrt(k2) model are shown in Table A.8 (Appendix 

A.2). This model is used to predict the value of k2 for problem instances that have J/M 

ratio lies between 1.7 to 7.3. 
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As most problem instances with J/M ratio less than 1.7 and larger than 7.3 are not 

responsive to the values of k2 used, any value from 0.2 to 6.0 is basically good for these 

problem instances. However, a small number of problem instances in this category have 

recommended k2 values that are smaller than 1.5. Therefore, as k2 values smaller than 

1.5 are good for all problem instances with J/M ratio less than 1.7 and larger than 7.3, it is 

reasonable to recommend a value of k2 that lies within the range from 0.2 to 1.5 to these 

problem instances. For the experiments described in chapters 6 and 7, the values of k2 

used is fixed to 1.0 for problem instances with J/M ratio less than 1.7 and larger than 7.3. 

For a particular problem instance, the appropriate values of k; and k2 are 

estimated as follows: 

For k1, calculate Log(ki) using the selected regression model and take the exponent of 
the calculated result. 

For k2, calculate Sqrt(k2) using the selected regression model and take the square - 

term of the calculated result. 

It is important to apply the functions (regression models) only to problem instances that 

have values of factors within the range used in the experiment, i.e. 5 5 J _< 70, 3 M <_ 

20, 0.2 i <_ 0.8, and 0.2 <_ R 5 1.0. To estimate k1 and k2 for a wider range of values of 

J, M, ti, and R, another experiment that incorporates those values has to be conducted. 

Once the look -ahead parameters are evaluated for a particular problem instance, 

the priority function is ready to be applied. The split portions of a job are scheduled 

using the same mechanism as that in EDDsp or LFJ/LFM. It means that the necessary 

adjustment to the completion time is made on the split portions of a job to assure that the 

initial solution is feasible. The scheduling steps that use the modified ATC rule can be 

documented as: 

1. Initially, set t; = 0 and mt; = a; `d i. Include all jobs into NS. 

2. Select the machine /unit (i) that has the minimum mt. If there are more than one 

machine with minimum nit, break ties by choosing the machine with the smallest 

machine index. Let the selected machine be i *. Set t; = 

3. Let SJ = the set of jobs that can be processed on i *, SJ c NS. If SJ = 0, exclude 

machine i* from future consideration and go to step 7. Calculate the priority index 

for each job in SJ using the priority function. 

5 

mt;.. 

< 
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4. Identify the job with the highest priority index (PI). If the highest PI belongs to a 

non -split job, select that job. If the highest PI belongs to a split job, select the split 

portion of the job that has the highest processing time on machine i *. If two or more 

jobs tie for the highest PI and split jobs are among them, the priority is given to split 

jobs. If there are no split jobs among the ties, choose the job with the smallest job 

index. 

5. Set j* = the selected job: ST(j *,i *) = max [t, rit], CT(j *,i *) = ST(j *,i *) + p; ? and mti. 

= CT(j *,i *). If j* is a non -split job, go to step 6. If j* is a split job, let the split 

portion of j* be j'*. Let SM be the set of machines that can process j'*. Calculate the 

starting and completion times of j'* on each machine included in SM: ST(j' *,k) = 

max [mtk, CT(j' *,k) = ST(j'*,k) + pkr, k E SM. Select the machine that can 

complete j'* earliest and call this machine i'*. Let CT(j' *,i' *) and ST(j' *,i' *) be the 

completion and start time of j'* on i'*, respectively. Check the difference between 

CT(j *,i *) and CT(j' *,i' *): 

a. If CT(j' *,i' *) - CT(j *,i *) > q¡1 j2, set CT(j*,i*) = CT(j' *,i' *) - q¡2j2, ST(j *,i *) _ 

CT(j *,i *) p;y =. Set mtis = CT(j*,i*) and mti.= CT(j' *,i' *). Eliminate j* and j'* 
from NS. Go to step 7. 

b. If CT(j *,i *) - CT(j' *,i' *) > g11J2, set CT(j' *,i' *) = CT(j *,i *) - ST(j' *,i' *) _ 

CT(j' *,i' *) p; =i'_. Set mti.* = CT(j' *,i' *). Eliminate j* and j'* from NS. Go to 

step 7. 

c. If ICT(j *,i *) - CT(j' *,i' *)I <_ q¡1j2, set mtr. = CT(j' *,i' *). Eliminate j* and j'* from 

NS. Go to step 7. 

6. Eliminate j* from NS. 

7. If NS 0, go to step 2. 

5.4. Generation of Neighborhood Solutions 

The application of tabu search begins with the initial solution as the seed. Two 

methods are developed to generate a set of neighborhood solutions from a seed. The total 

weighted tardiness is evaluated for each of the solutions generated by applying these 

ri>.], 

gjij2, 

- 

x 
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methods. The best solution is then selected as the new seed to generate a new set of 
neighborhood solutions. This process is repeated at every iteration of tabu search until 

the search is terminated. The performance criteria and the steps related to tabu search 

application are explained in the next section. 

In order to generate a set of neighborhood solutions from a chosen seed, two types 

of moves are applied to the seed: swap moves and insert moves. A swap move is a move 

that interchanges the positions of two jobs that are assigned to the same machine or two 

different machines. An insert move is a move that inserts a job to any machine except the 

one that it currently occupies. A swap move allows two jobs from the same or different 

machines to exchange positions. An insert move allows a job to move from one machine 

to another. The structure of solutions produced by swap moves is always the same as the 

structure of its parent solution (seed). In other words, swap moves do not change the 

total number of jobs that are assigned to each machine. On the contrary, insert moves 

always produce solutions that change the total number of jobs assigned to a machine. 

The swap move and insert move are described separately in the following two 

subsections. 

5.4.1. Swap Move 

Let JAI and JB1 be the jobs considered for swap. JAI and JB1 are currently 

scheduled on machine Ma and Mb, respectively. Let [...JAo, JAI, JA2, JA3...] be the 

partial sequence of jobs assigned to Ma and [...JBo, JBI, JB2, JB3...] be the partial 

sequence of jobs assigned to Mb. JAI and JB1 are allowed to exchange positions if all of 
the following conditions are satisfied: 

1. JAI can be processed on Mb and JB1 can be processed on Ma. 

2. rJA< < CT(JB1,Mb) and rm1 < CT(JA1,Ma). 

3. If JAI is a split job, the split portion of JAI is not scheduled on Mb. If JB1 is a split - 

job, the split portion of JB1 is not scheduled on Ma. 

The third condition is used to avoid generating an infeasible solution. Scheduling 

two split portions of a job on the same machine would very unlikely satisfy the JIT 



39 

constraints. The only exception will be when gju2 is large and/or the difference between 

the processing times of the split portions of a job is relatively large. However, it is 

unreasonable to use a large gi1i2 as the sole purpose of using it is to impose the JIT 

requirement on the completion times of the split portions. It is also unreasonable to have 

a large difference in processing times between two split portions. One might as well treat 

the job as a whole, not splitting it into two in the first place. 

If JAI and JB1 satisfied all three conditions, proceed with swapping JAI and JBI. 

The start time and completion time of JAI and JBI must be revised. To differentiate the 

current start and completion times from the revised times, a subscript `r' is added to the 

notation such that the revised start time and completion time are denoted by ST, and CTr, 

respectively. ST,(JAI,Mb) is set to be equal to the completion time of the job that 

precedes JBI, i.e. CT(JB0,Mb), or rJA, , whichever is larger. ST,(JBI,Ma) is set to be 

equal to the completion time of the job that precedes JAI, i.e. CT(JAo,Ma), or time 

whichever is larger. If JBI is the first job in the sequence on Mb, then ST,(JAI,Mb) is set 

to be equal to the max [rrA1, aMb]. On the other hand, if JAI is the first job in the sequence 

on Ma, set ST,(JBI,Ma) to the max [rmi, aMa]. CTr(JAI,Mb) and CTr(JBI,Ma) are then set 

to be equal to ST,(JAI,Mb) + pMbJA, and ST,(JBI,Ma) + pMan3i, respectively. 

Once the swap move is applied, the start time and completion times of the jobs 

following MI on Ma (i.e. JA2, JA3...) and JAI on Mb (i.e. JB2, JB3...) have to be revised 

accordingly. This is accomplished by setting ST,(JA2,Ma) = max [CT((JBI,Ma), rJA, ] 

and CT,(JA2,Ma) = ST,(JA2,Ma) +13mam, ; ST,(JA3,Ma) = max [CT,(JA2,Ma), rJA ] and 

CT,(JA3,Ma) = ST,(JA3,Ma) +pMaJA, ; and so on. The revision is performed in the same 

manner for all jobs following JAI on Mb. 

Split jobs may be involved in the swapping process in several ways. One or both 

swapped jobs may be split jobs. Split jobs may be included in the sequence of jobs that 

follow the swapped jobs. In any case, these situations require further investigation to 

ensure that the split jobs satisfy the JIT requirement. If the JIT constraint is violated 

between the split portions of a job, the start and completion times of one of the split 
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portion have to be adjusted to attain a feasible schedule. This adjustment is categorized 

into three levels as follows: 

I. First -level adjustment 

The first -level adjustment is applicable if JAI and/or JB1 is a split job and the JIT 

constraint for these split jobs is violated. The completion time of JAI must be 

compared with the completion time of its split portion. Let JA1' be the split portion 

of JAI and Mc is the machine to which JA1' is assigned. If the absolute difference 

between CTKJAI,Mb) and CT(JAI',Mc) is larger than the maximum allowance, gj1;2, 

ST and CT of JAI' have to be revised so that the JIT constraint for split jobs is not 

violated. The ST and CT of JAI' are revised so that the difference between 

CTr(JA1,Mb) and CT,(JAI',Mc) is not any larger than chip. As the job swapping is 

initiated by JAI, a sequence change for JAI' on Mc would be considered to attain 

feasibility. If any sequence change has to be made, the job, whose position on Mc is 

taken by JAI' should be sequenced right after JAI'. If JB1 is a split job, let JB1' be 

the split portion of MI and Md be the machine to which JBI' is assigned. The 

absolute difference between CT1(JBI,Ma) and CT(JB1',Md) must be within the 

maximum allowance, q¡1;2. If the JIT requirement is violated, the same process of 
revision applied to JAI' should be applied JBI'. 

2. Second -level adjustment 

The second -level adjustment is applicable if one or more split jobs are sequenced 

following JAI on Mb or JB1 on Ma, and the JIT constraint for these split jobs is 

violated. It is also applicable if JAI or MI is a split job, and the split jobs that are 

sequenced following JAI' on Mc or MI' on Md violate the JIT constraint. Identify 

any violation of the JIT constraint in the completion times of these split jobs. If any 

violation is detected, sequence changes are not allowed to attain feasibility since the 

associated split job is not the split portion of the job that initiated swapping. Such a 

split job, if exists, would be moved either forward or backward to attain feasibility 

without changing the sequence on the machine. 

3. Third -level adjustment 

The third -level adjustment is applicable to the split jobs that are not sequenced on 

Ma, Mb, Mc and Md. Let Mx be one of the machines on which these split jobs are 
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scheduled. Identify any violation of the JIT constraint in the completion times of the 

split jobs scheduled on Mx. If any violation is detected, sequence changes on Mx are 

not allowed to attain feasibility since the associated split job is not the split portion of 
the job that initiated swapping. Let JX be the split job on Mx that violates the JIT 

constraint. The start and completion times of JX are revised only if JX falls into one 

of the following criteria: 

a. JX is the last job sequenced on Mx, or 

b. All jobs that are sequenced following JX on Mx are non -split jobs, or 

c. JX is followed by only one split job. Let JY be that split job, JY' be the split 

portion of JY, and My be the machine on which JY' is scheduled. JY' should be 

the last job sequenced on My, or all jobs that are sequenced following JY' on My 

are non -split jobs. 

In the process of revising and adjusting the start time and completion time of the split 

portions of a job to attain feasibility, the start time of a split portion may need to be 

delayed, which would cause machine idleness. Intuitively, a problem instance that 

consists of two or more pairs of split jobs could get continuous revision on the start time 

and completion time of several jobs. This may cause unending revision on the schedule. 

For this reason, the criteria in the third -level adjustment are added in order to prevent the 

schedule from being repeatedly adjusted. 

5.4.2. Insert Move 

Let JAI be the job considered to be inserted into the position that is currently 

occupied by JBI on machine Mb. JAI is currently scheduled on Ma. Let [...JAo, JAI, 

JA2, JA3...] be the partial sequence of the jobs assigned to Ma and [...JBo, JBI, JB2, 

JB3...] be the partial sequence of the jobs assigned to Mb. JAI can take over the position 

occupied by JB 1 on Mb if all of the following conditions are satisfied: 

1. Mb is capable of processing JAI. 

2. rJAi < CT(JB 1,Mb). 

3. If JAI is a split job, the split portion of JAI is not scheduled on Mb. 
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After inserting JAI on Mb, the partial sequence of jobs on Ma and Mb will appear 

as follows: Ma: [...JA0, JA2, JA3...] and Mb: [...JBo, JAI, JB1, JB2, JB3...]. Before 

determining the start time of JAI, a check has to done if JAI is preceded by any split jobs 

and if the JIT requirement on the split portions of these jobs is violated. If the JIT 

requirement is violated, the start and completion times of these split portions would be 

revised to attain feasibility without changing job sequences. STr(JA1,Mb) is then set 

equal to max [CT,(JBÖ,Mb), rJA, ]. If there is no job that precedes JB1 (MI is the first job 

in the sequence on Mb), set STr(JA1,Mb) to be the max [ rJA, , a Mb ]. CTr(JA1,Mb) is equal 

to STr(JA1,Mb) plus PMI,JA, The start time and completion time of the jobs following 

JAI on Mb (i.e. JBI, JB2, JB3...) and the remaining jobs on Ma (i.e. JA2, JA3...) have to 

be revised accordingly. On Mb, set STr(JB1,Mb) = max [CTr(JA1,Mb), rJB ] and 

CTr(JBI,Mb) = STr(JB1,Mb) + pMbJB, ; set STr(JB2,Mb) = max [CT.(JBI,Mb), rJB ] and 

CTr(JB2,Mb) = STr(JB2,Mb) + pMbJB, ; and so on. On Ma, set STr(JA2,Ma) = 

max [CT(JAo,Ma), rJA, ] and CTr(JA2,Ma) = STr(JA2,Ma) + PMJJA2 ; set STr(JA3,Ma) = 

max [CTr(JA2,Ma), rJA, ] and CT,(JA3,Ma) = STr(JA3,Ma) + PMaJA3 ; and so on. 

Further investigation is required to ensure that the split jobs satisfy the JIT 

requirement. If the JIT constraint is violated between the split portions of a job, the start 

and completion times of one of the split portion have to be adjusted to attain feasible 

schedule. This adjustment is categorized into three levels as follows: 

1. First -level adjustment 

The first -level adjustment is applicable if JAI is a split job and the JIT constraint for 

JAI and its split portion is violated. The completion time of JAI must be compared 

with the completion time of its split portion. Let JAI' be the split portion of JAI and 

Mc is the machine to which JA1' is assigned. If the absolute difference between 

CT,(JAI,Mb) and CT(JA1',Mc) is larger than the maximum allowance, gjtj2, ST and 

CT of JAI' have to be revised so that the JIT constraint is not violated. The ST and 

CT of JAI' are revised so that the difference between CTr(JA1,Mb) and CTr(JA1',Mc) 

is not any larger than q¡Ij2. As the job insertion is initiated by JAI, a sequence change 

for JA1' on Mc would be considered to attain feasibility. If any sequence change has 

. 
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to be made, the job, whose position on Mc is taken by JAI' should be sequenced right 

after JAI'. 
2. Second -level adjustment 

The second -level adjustment is applicable if one or more split jobs are sequenced 

following JAI on Mb or JAo on Ma, and the JIT constraint for these split jobs is 

violated. It is also applicable if JAI is a split job, and the split jobs that are sequenced 

following JAI' on Mc violate the JIT constraint. Identify any violation of the JIT 

constraint in the completion times of these split jobs. If any violation is detected, 

sequence changes are not allowed to attain feasibility since the associated split job is 

not the split portion of the job that initiated the insert move. Such a split job, if exists, 

would be moved either forward or backward to attain feasibility without changing the 

sequence on the machine. 

3. Third -level adjustment 

The third -level adjustment is applicable to the split jobs that are not sequenced on 

Ma, Mb, and Mc. Let Mx be one of the machines on which these split jobs are 

scheduled. Identify any violation of the JIT constraint in the completion times of the 

split jobs scheduled on Mx. If any violation is detected, sequence changes on Mx are 

not allowed to attain feasibility since the associated split job is not the split portion of 
the job that initiated the insert move. Let JX be the split job on Mx that violates the 

JIT constraint. The start and completion times of JX are revised only if JX falls into 

one of the following criteria: 

a. JX is the last job sequenced on Mx, or 

b. All jobs that are sequenced following JX on Mx are non -split jobs, or 

c. JX is followed by only one split job. Let JY be that split job, JY' be the split 

portion of JY, and My be the machine on which JY' is scheduled. JY' should be 

the last job sequenced on My, or all jobs that are sequenced following JY' on My 

are non -split jobs. 

The criteria in the third -level adjustment are included for the same reason as in the swap 

move, i.e. to prevent unending revision on the schedule. 



44 

5.5. Steps of Tabu Search 

The steps based on tabu- search mechanism are documented as follows: 

Step 1: Using the initial solution as seed, apply swap moves and insert moves to obtain a 

set of neighborhood solutions. The swap moves are attempted on any possible 

combinations of two jobs. A problem instance with n jobs has (21= n! possible 
J (n -2) 2 

combinations of swap moves. A swap move is applied to a pair of jobs if they satisfy the 

conditions listed in Section 5.4.1. In applying insert moves, the attempt is to insert every 

job to different positions in all machines except the machine that the job is currently 

occupying. The total number of positions on a machine to insert a job to is equal to all 

occupied positions plus one last unoccupied position. For example, if k positions on a 

machine are initially occupied, then a job is inserted to k + 1 positions on the same 

machine. The conditions for insert move listed on Section 5.4.2 must be satisfied before 

the move is applied. The results of both swap and insert moves are a set of solutions 

considered as the neighborhoods of the initial solution. 

Step 2: Evaluate the total weighted tardiness (TWT) of every solution in the 

neighborhood. Schedules that violate maximum permissible constraint on split jobs are 

given a penalty. This penalty is introduced as a big number added to the TWT value, 

which in turn reflects the infeasibility built into the solution. 

Step 3: Select the solution that yields the best (minimum) TWT value. If there is more 

than one best solution, choose the first -best solution. Apply the move that results in the 

selected best solution to the initial solution. The following parameters used for tabu 

search have to be updated: 

(1) Tabu list: This list consists of the most recent moves. The move that results in the 

selected best solution must be recorded. If it is a swap move, record in the tabu list the 

pair of jobs being exchanged. The pairs of jobs that appear in the tabu list indicate that 

these pairs have been swapped before at some previous iterations. These pairs of jobs are 

not allowed to exchange positions in the next iteration unless an aspiration criterion is 

satisfied. If the best solution is the result of an insert move, record in the tabu list the job 

index along with the position and machine occupied by the job before the move was 
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applied. The job, position and machine that appear in the tabu list indicate that this job is 
not allowed to be inserted back to this position and machine in the next iteration unless an 
aspiration criterion is satisfied. 

The length of time a move remains tabu depends on the size of tabu list. For 
example, if the size of tabu list is equal to 4, then a move will stay tabu for four iterations. 
The entries in the tabu list are first -in -first -out (FIFO). When the tabu list is stored up to 
its size, the oldest entry is removed before the new one is entered. 

Since tabu list stores the recent moves applied as the search progresses, it is 
necessary to make the size of tabu list proportional to the total number of possible moves. 
The total number of possible moves of a solution would increase as the number of jobs 
and machines increases, and decrease as the number split jobs increase. Therefore, the 
size of tabu list is dependent on the total number of jobs, machines and total pairs of split 
jobs. Two different types of tabu list size are studied in this research: fixed tabu list size 
and variable tabu list size. An initial experimentation was conducted to determine 
appropriate tabu list size for different problem instances. Based on the result of the 
experiment, the following formulae are developed: 

For fixed tabu list size, use the following formula: 

The fixed size of tabu list = INT(N *IM/(3 *iSP)) 
For variable tabu list size, use the following formulae: 

The initial size of tabu list = INT(N *IM/(3 *ISP)) 

The decreased size of tabu list = INT(N* IM/(4 *.SP)) 
The increased size of tabu list = INT(N *IM/(2.5 *. ISP)) 

where N is the total number of jobs, M is the total number of machines, and SP is the 
total number of pairs of split jobs. 

LxJ , 
INT(x) = 

Fx1, 

if x is a real number with a decimal value < 0.5 

if x is a real number with a decimal value >_ 0.5 

(2) Aspiration Level (AL): Aspiration criterion is the condition a tabu move has to 
satisfy in order to be released from its tabu restriction. At the beginning of the search 
process, Aspiration Level (AL) is set equal to the TWT of the initial solution. At every 
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iteration, if the TWT of the selected best solution is less than AL, it is updated to be equal 

to the TWT of the selected best solution. If a tabu move results in TWT that is better 
than AL, the move is released from tabu restriction and its corresponding schedule is 

included in the set of solutions considered for selection. 

(3) Candidate List (CL) and Index List (IL): Candidate List consists of the best solution 

selected at each iteration. Index List consists of all local optima evaluated during the 

search process. The initial solution (So) is considered as the first local optimum, 

therefore it is admitted to the IL as well as the CL. As implied in Step 2, the total 

weighted tardiness (TWT) of a solution is used as the performance measure. Suppose 

that the best solution obtained by perturbing So is Si. Si is admitted to CL. If TWT of Si 

< TWT of So, S1 will receive a star ( *), which indicates that it has the potential to become 

a local optimum. Suppose that the iteration after Si results in S2. If TWT of S1 _< TWT 

of 52, then S1 will receive another star. Otherwise, S2 will receive a star. A solution that 

receives double star ( * *) implies that it is the next local optimum and is admitted to the 

IL. At every iteration, before a solution is admitted to the CL, it has to be checked 

against all entries in the CL. If the solution already exists in the CL, another best solution 

has to be chosen instead. 

(4) Number of iterations without improvement (IT): Initially, the number of iterations 

without improvement is set to zero. If there is no improvement in the total weighted 

tardiness value (i.e. the current TWT is equal to or larger than previous TWT), increase 

the number of iterations without improvement by one. Once an improvement in the TWT 

is made, reset the number of iterations without improvement to zero. 

(5) Long -term memory (LTM) matrix: The long -term memory matrix is a frequency 

matrix that keeps track of the number of times a job is processed on a particular machine. 

It is used when the algorithm employs the long -term memory function of tabu search. 

The size of the LTM matrix is equal to the number of jobs times the number of machines. 

Initially, all entries or cells in the LTM matrix are set equal to zero. Exception is given to 

the cells that correspond to the jobs that cannot be processed on certain machines; these 

cells will remain empty throughout the search. The LTM matrix is updated at every 

iteration. Every time an iteration is made, each cell that corresponds to the machine on 

which a job is processed, is increased by one. The LTM matrix provides information 
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about which machine is the most or the least frequently used by a job. This information 
is used to determine the restarting point for diversifying the search process. 

Step 4: The stopping criteria used to terminate the search are the maximum number of 
iterations without improvement (ITmax) and maximum entries into the IL (ILmax). Both 
criteria are dependent on the size of the problem instance, which is proportional to the 
total number of jobs. ITmax increases as the number of jobs increases, so does ILmax. 

Based on preliminary experimentation, ITmax and ILmax are developed as: 

ITmax = INT(N /6.25) 

ILmax = INT(N /4) 

where N is the total number of jobs. 

The stopping criteria for fixed and variable size of tabu list are as follows: 

For the fixed tabu list, the search is terminated if ITmax or ILmax is reached, 

whichever is activated first. 

For the variable tabu list, ILmax is used in conjunction with the following steps: 

(i) If there is no improvement in the last ÍITmax/31 iterations with the initial size of 
tabu list, decrease the size of tabu list to the decreased size evaluated in step 3. 

(ii) If there is no improvement in the last ÍITmax/31 iterations with the decreased 

size of tabu list, increase the size of tabu list to the increased size evaluated in 

step 3. 

(iii) If there is no improvement in the last IITmax/31 iterations with the increased 

size of tabu list, terminate the intensification search. 

If neither of the stopping criteria is met, repeat Step 1 to Step 3 on the selected best 

solution instead of the initial solution. The process is repeated until a stopping criterion 

is met. 

Step 5: The intensification and diversification strategy of tabu search can be applied by 

using the information provided by the LTM matrix. Two different approaches are taken 

to diversify the search: long term memory based on maximum frequency (LTM -max) and 

long term memory based on minimum frequency (LTM -min). The first approach directs 

the search to restart from the regions that are considered `good' during the previous 

search. The second approach directs the search to restart from the regions that were least 
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or never explored before. The guidelines for the use of LTM matrix are developed as 

follows: 

For LTM -max, select the job - machine pair with maximum frequency in the matrix, 
and fix the job to the respective machine throughout the search until the next restart is 

invoked. If there is a tie in maximum frequency, use row -wise first -best strategy. 

Care should be taken in identifying the cell with maximum frequency. If there is one 

or more jobs that can be processed on only one machine, the tally in the cells 

corresponding to these jobs processed on the machine would be the maximum. It is 

meaningless to fix these jobs to the machine since without doing so the jobs will not 

be processed on other machine throughout the course of the search process. Thus, the 

job - machine pair with maximum frequency should be selected from among the jobs 
that can be processed on two or more machines. 

For LTM -min, select the job - machine pair with minimum frequency in the matrix, 

and fix the job to the respective machine throughout the search until the next restart is 

invoked. Similar to LTM -max, use the row -wise first -best strategy to break ties. 

The job selected from the LTM matrix is referred to as `fixed job' and the 

machine, which it is supposed to fix on, is referred to as `fixed machine'. The schedule 

used for restart is generated from the initial solution. The restart solution will be similar 

to the initial solution if ̀ fixed job' is already assigned to `fixed machine' in the initial 

solution. The difference between the initial solution and the restart solution is the `fixed 

job' will not be removed from the `fixed machine' until another restart is invoked. If 
`fixed job' is not assigned to `fixed machine' in the initial solution, the restart solution is 

generated by applying insert move to the initial solution, i.e. the `fixed job' is inserted to 

the first position of the `fixed machine'. The insertion to the first position of ̀ fixed 

machine' is preferred to incorporate a situation such as no jobs are processed on the 

`fixed machine' and thus, `fixed job' will become the first job as well as the only job 
processed on it. If `fixed job' is a split job and its split portion is assigned to `fixed 

machine' in the initial solution, then inserting `fixed job' to `fixed machine' will very 

likely result in an infeasible solution. Thus, to overcome this problem, a swap move is 

used instead of an insert move to exchange the `fixed job' with its split portion. 
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The tabu list, AL and IT must be re- initialized at the beginning of each restart. 
Using the restart solution as a starting point, repeat Step 1 to Step 4. The total number of 
restart used in this research is assumed to be 2. Two restarts have been used by 
Logendran and Sonthinen (1997), and Karim (1999). 

Step 6: Utilizing only the short-term memory function of tabu search, the entire search 
should be terminated at the end of Step 4. For long -term memory function, the entire 

search is terminated when the total number of restarts is reached. For both memory 
functions, the optimal/near - optimal solution is the solution with the minimum TWT 
selected from the Index List. 

The steps of the tabu- search based heuristics are summarized in the flow chart shown in 

Figure 5.1. The programming for the entire algorithmic steps were written in commands 
for MATLAB version 4.2 (The MathWorks, 1984 - 1994). The programs are written in 

the form of script files and function files, which are executable from MATLAB. 

5.6. Application of Heuristic Algorithm to Example Problem 

An example problem is presented to illustrate the application of the heuristic. The 

example problem, shown in Table 5.2, involves nine jobs and four machines. This 
example was carefully constructed to represent a situation that is typically found in the 

industry. Three different types of machines are considered. These include 1 unit of the 

most capable machine (M1), two units of the least capable machine (M31 and M32), and 

one unit of machine with medium capability (M2). M31 and M32 are identical machines. 

The capability of each machine is indicated by the length of time each machine takes to 

process a job. Take J2 as an example: M1, as the most capable machine, takes relatively 

shorter time (4 units of time) than M2 (8 units) and M31/M32 (9 units). Jobs that cannot 

be processed on certain machines are assumed to have infinite processing time such as J5 

on M1. Infinite processing time is indicated by infinity sign (co) in Table 5.2. 
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There are two pairs of split jobs in this example: J41 -J42 and J71 -J72. The size of 
the split portions of J4 and J7 is not equal. J4 when split, results in processing time of 7 
and 8 on Ml, and 9 and 11 on M2. This shows a general case where an unequal split 
results in unequal processing times that are close. If the size of the split portions is equal, 
the split will result in equal processing time. The challenge for a scheduler is to split the 
job more or less equally to obtain unequal processing times that are close. The maximum 
allowable limit for the difference in completion time between two split portions, Cb 1J2, is 
assumed equal to 1 time unit. The split portions of a job have to be scheduled in such a 
way that they meet constraints (7) and (8) mentioned in Section 4.4. Each machine is 
made available at different times: M1 is available at t = 0, M2 and M31 at t = 2, and M32 
at t = 5. Each job has a different weight, release time and due date. Split jobs that came 
from the same `batch' have the same weight, release time and due date. The four 
methods described in Section 5.3 are applied to this example problem to obtain initial 
solutions. 

Table 5.2 Example problem with 9 jobs and 4 machines 

Machine 

Job 
Weight 

Job 
Release 
Time 

Job Due 
Date 

M1 M2 M31 M32 
Machine 

Availability 0 2 2 5 
Job Job Processing Time on Machine 

J1 10 co co 0o 1 1 15 
J2 4 8 9 9 2 4 12 
J3 CO 5 8 8 2 3 7 

J41 7 9 co co 3 4 10 
J42 8 11 co CO 3 4 10 
J5 03 4 6 6 2 9 18 
J6 8 10 co 00 1 8 20 

J71 CO 6 9 9 2 5 11 
J72 co 7 11 11 2 5 11 
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a. The following evaluations are obtained by applying the EDD method to the example 
problem: 

At t = 0, mtM1= 0, mtM2 = 2, mtM31 = 2, mtM32 5. NS = 

[J 1,J2,J3 ,J41,J42,J5,J6,J71,J72] . 

The machine with minimum mt; is Ml, t = O. No job is released at t. Since J1 can 

be processed on M1 and has minimum ri, J1 is selected to be processed on Ml. 
ST(J1,M1) = max [0,1] = 1, CT(J1,M1) = 1 + 10 = 11, mtM1= 11. NS = 

[J2,J3,J41,J42,J5,J6,J71,J72]. 

M2 and M31 have minimum mt. M2 is selected over M31 because M2 has 

smaller index. Setting t = 2, no unscheduled jobs are released earlier than or at t. 

Since J3 can be processed on M2 and has minimum r , J3 is assigned to M2. 

ST(J3,M2) = max [2,3] = 3, CT(J3,M2) = 3 + 5 = 8, mtM2 = 8. NS = 

[J2,J41,J42,J5,J6,J71,J72] . 

The next machine with minimum mt; is M31, t = 2. No unscheduled jobs are 

released earlier than or at t. Since J2 can be processed on M31 has minimum r, 
J2 is selected to be processed on M31. ST(J2,M31) = max [2,4] = 4, CT(J2,M31) 

= 4 + 9 = 13, mtM31= 13. NS = [J41,J42,J5,J6,J71,J72]. 

The next machine with minimum mtl is M32 and t = 5. SJ = [J71,J72]. Note that 

J71 and J72 are split jobs of the same batch. Since p.32J72 > pMS2J71, J72 is chosen 

to be assigned to M32. ST(J72,M32) = 5, CT(J72,M32) = 16, mtM32 = 16. NS = 

[J41,J42,J5,J6,J71 ]. 

mt; = [11,8,13,16]. M2 has the minimum nit and t = 8. SJ = [J41,J42,J6,J71]. 

J71 is selected from SJ list because the split portion of J71, i.e. J72 was 

scheduled. ST(J71,M2) = 8 and CT(J71,M2) = 14. As CT(J72,M32) 

CT(J71,M2) = 2 > 1 (i.e. gj1J2), the start time of J71 is delayed. Thus, CT(J71,M2) 

= 16 1 = 15, ST(J71,M2) = 15 6 = 9, mtM2 = 15. NS = [J41,J42,J5,J6]. 

mt; = [11,15,13,16]. M1 has the minimum mt; and t = 11. SJ = [J41,J42,J6]. The 

jobs in SJ list that have the EDD are J41 and J42. Since pM1J42> PM1J419 J42 is 

selected over J41 and assigned to Ml. ST(J42,M1) = 11, CT(J42,M1) = 19, mtM1 

= 19. NS = [J41,J5,J6]. 
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mti = [19,15,13,16]. M31 has the minimum mti, t = 13, and SJ = [J5]. Assign J5 
to M31 with ST(J5,M31) = 13, CT(J5,M31) = 19, mtM31= 19. NS = [J41,J6]. 
mti = [19,15,19,16]. M2 has the minimum mti, t = 15, and SJ = [J41,J6]. Since 
the split portion of J41 (i.e. J42) is scheduled previously, J41 is chosen to be 
scheduled on M2. ST(J41,M2) = 15 and CT(J41,M2) = 24. Although the JIT 
constraint for J41 and J42 is violated (i.e. CT(J41,M2) CT(J42,M1) = 5 > 1), no 
attempt is made to achieve feasibility because J42 was scheduled before and its 
assignment is considered permanent. Thus, this initial solution is infeasible. Set 
mtM2 = 24 and NS = [J6]. 

mti = [19,24,19,16]. The machine with minimum mti is M32. However, the 
remaining unscheduled job (i.e. J6) cannot be processed on M32. Thus, M32 is 
excluded from future consideration. 

Excluding M32, mti = [ 19,24,19]. The machines with minimum mti are M1 and 
M31. M1 is selected over M31 because M1 is the machine with smaller index. J6 
is the only job left to be scheduled. J6 is assigned to M1 with ST(J6,M1) = 19, 
CT(J6,M1) = 27, and mtM, = 27. 

b. The following evaluations are obtained by applying the EDDsp method to the 
example problem: 

At t = 0, mtM I = O, mtM2 = 2, mtM31= 2, mtm32 5. NS = 
[J 1,J2,J3,J41,J42,J5,J6,J71,J72]. 

The machine with minimum mti is Ml, t = O. No job is released at t. Since J1 can 
be processed on M1 and has minimum ri, J1 is selected to be processed on Ml. 
ST(J1,M1) = max [0,1} = 1, CT(J1,M1) =1 + 10 =11, mtMl =11. NS = 

[J2,J3,J41,J42,J5,J6,J71,J72]. 

Both M2 and M31 have minimum mti. M2 is selected over M31 because M2 is 
the machine with smaller index. Setting t = 2, no jobs are released earlier than or 
at t. Since J3 can be processed on M2 and has minimum rr, J3 is assigned to M2. 
ST(J3,M2) = max [2,3] = 3, CT(J3,M2) = 3 + 5 = 8, mtM2 = 8. NS = 

[J2,J41,J42,J5,J6,J71,J72]. 

= 
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The next machine with minimum mt; is M31, t = 2. No jobs are released earlier 

than or at t. Since J2 can be processed on M31 and has minimum rj, J2 is selected 

to be processed on M31. ST(J2,M31) = max [2,4] = 4, CT(J2,M31) = 4 + 9 = 13, 

mtM31= 13. NS = [J41,J42,J5,J6,J71,J72]. 

The next machine with minimum mt; is M32 and t = 5. SJ = [J71,J72]. Note that 

J71 and J72 are split jobs of the same batch. Since p,32J72 > pM32J71, J72 is chosen 

to be assigned to M32. ST(J72,M32) = 5, CT(J72,M32) = 16 and mtM32 =16. At 

this point, the attempt is to find a machine that J71 can be assigned to and can be 

completed at the earliest time. SM, the group of machines that can process J71, 

consists of M2, M31 and M32. The tentative start time and completion time of 
J71 on these machines are as follows: 

M2: ST =max [8,5] =8 and CT 8 +6= 14; 

M31: ST =max [13,5] = 13 and CT= 13 +9 =22; 
M32: ST = max [16,5] = 16 and CT = 16 + 9 = 25; 

J71 can be completed earliest on M2. Thus, J71 is assigned to M2. Since 

CT(J72,M32) CT(J71,M2) = 2 > q¡1j2, delay the start time of J71 so that 

CT(J71,M2) = 15 and ST(J71,M2) = 9. mtM2 = 15, mtM32 16 and NS = 

[J41,J42,J5,J6]. 

mt; = [11,15,13,16]. The machine with minimum mt; is Ml, t = 11 and SJ = 

[J41,J42,J6]. Both J41 and J42 have the same EDD. As pM1J42 > PM1J41, J42 is 

chosen over J41. ST(J42,M1) =11, CT(J42,M1) = 19, and mtM1 =19. At this 

point, the challenge is to find a machine on which J41 can be completed at the 

earliest time. SM = [M1,M2]. The tentative start time and completion time of J41 

on these machines are as follows: 

Ml: ST = max [19,4] = 19 and CT = 19 + 7 = 26; 

M2: ST = max [15,4] = 15 and CT= 15 +9 =24; 
J41 can be completed earliest on M2. Thus, J41 is assigned to M2. Since 

CT(J41,M2) CT(J42,M1) = 24 19 = 5 > q¡1j2, the start time of J42 on M1 is 

delayed such that CT(J42,M1) = 23 and ST(J42,M1) = 15. mtM1= 23, mtM2 = 24, 

and NS = [J5,J6]. 
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mt; = [23,24,13,16]. The machine with min nit; is M31, t = 13 and SJ = [J5]. J5 is 

assigned to M31 with ST(J5,M31) = 13 and CT(J5,M31) = 19. mtM31= 19 and 

NS = [J6]. 

nit _ [23,24,19,16]. The last job to be scheduled is J6. It can only be processed 

on M1 or M2. Since M1 is released earlier than M2, J6 is assigned to M1 with 

ST(J6,M1) = 23 and CT(J6,M1) = 31. mtM1= 31. 

c. The following evaluations are obtained by applying the LFJ/LFM method to the 

example problem: 

Set t = 0; mt; = [0, 2, 2, 5]; NS = [ J1 ,J2,J3,J41,J42,J5,J6,J71,J72]. 

Since no jobs are released at t = 0, t is advanced to 1 (i.e. min release time of all 

unscheduled jobs). Since J1 is the only job released at t = 1, J1 is selected and 

assigned to M1 as the only available machine. ST(J1,M1) = 1 and CT(J1,M1) = 

11. mtM1 11, NS = [J2,J3,J41,J42,J5,J6,J71,J72], newt = min [11,2,2,5] = 2, t = 

max [1,2] = 2. 

Since no jobs are released earlier than or at t = 2, set t = min [ri] = 3. Since J3 is 

the only job released at t, J3 is selected. Both M2 and M31 are available and 

capable of processing J3. M2 is capable of processing a total of 8 out of 9 jobs, 

while M31 is capable of processing 5 jobs. Since M31 is less flexible than M2, 

M31 is selected. Assign J3 to M31 with ST(J3,M31) = 3 and CT(J3,M31) = 11. 

mtM31 = 11, NS = [J2,J41,J42,J5,J6,J71,J72], newt = min [11,2,11,5] = 2 and t = 

3. 

Since no jobs are released earlier than or at t = 3, set t = min [ri] = 4. J2, J41, J42 

are released at t = 4. The least flexible among these three jobs are J41 and J42. 

The least flexible machine that can process both J41 and J42 is Ml. However, 

M1 is not available until t =11. The only capable machine that is currently idle is 

M2. Since pM2J42 > pmr41, assign J42 to M2 with ST(J42,M2) = 4, CT(J42,M2) = 

15 and mtM2 = 15. At this point, the attempt is to fmd a machine that can 

complete J41 earliest. SM = [M1,M2]. The tentative start time and completion 

time of J41 on these machines are as follows: 

Ml: ST = max [11,4] = 11 and CT= 11 +7 =18; 
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M2: ST = max [15,4] = 15 and CT = 15 + 9 = 24; 

As M1 can complete J41 earliest, J41 is assigned to M1. Since CT(J41,M1) 

CT(J42,M2) = 3 > gj1j2, the start time of J42 on M2 is delayed such that 
CT(J42,M2) = 17 and ST(J42,M2) = 6. mtM1= 18, mtM2 = 17, NS = 

[J2,J5,J6,J71,J72]. Set newt = min [18,17,11,5] = 5, t = max [4,5] = 5. 

At t = 5, J2, J71 and J72 have been released. The least flexible among these jobs 
are J71 and J72. As M32 is the only available machine, it is selected. Since 

PM32J72 > PM32J71, assign J72 to M32 with ST(J72,M32) = 5, CT(J72,M32) = 16 

and mtM32 = 16. At this point, the attempt is to find a machine that can complete 

J71 earliest. SM = [M2,M31,M32]. The tentative start time and completion time 

of J71 on these machines are as follows: 

M2: ST =max [17,5] = 17 and CT= 17 +6 =23; 
M31: ST = max [11,5] = 11 and CT = 11 + 9 = 20; 

M32: ST max [16,5] = 16 and CT 16 +9 25; 

As M31 can complete J71 earliest, J71 is assigned to M31. Since CT(J71,M31) 

CT(J72,M32) = 4 > quiz, the start time of J72 on M32 is delayed such that 

CT(J72,M32) = 19 and ST(J42,M32) = 8. mtM31= 20, mtM32 = 19, NS = 

[J2,J5,J6]. Set newt = min [18,17,20,19] = 17, t = max [5,17] = 17. 

At t = 17, J2, J5 and J6 have been released. The least flexible among the released 

jobs is J6. The only available machine that is capable of processing J6 is M2. 

Thus, J6 is assigned to M2 with ST(J6,M2) = 17 and CT(J6,M2) = 27. mtM2 = 27, 

NS = [J2,J5], newt = min [18,27,20,19] = 18, t = max [17,18] = 18. 

At t = 18, J2 and J5 have been released. The least flexible among the released 

jobs is J5. All machines capable of processing J5 are not available at t = 18. 

Thus, newt and t are updated. From all machines that are capable of processing 

J5, newt = min [27,20,19] = 19 and t = 19. 

At t = 19, J2 and J5 have been released. The least flexible job is J5. The only 

available machine that is capable of processing J5 is M32. Thus, J5 is assigned to 

M32 with ST(J5,M32) = 19 and CT(J5,M32) = 25. mtM32 = 25, NS = [J2], newt = 

min [18,27,20,25] = 18, t = max [19,18] = 19. 
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Finally, the only job left is J2. The available machine at t = 19 is Ml. Thus, J2 is 
assigned to M1 with ST(J2,M1) = 19 and CT(J2,M1) = 23. mtM1= 23, newt = min 
[23,27,20,25] = 20, t = max [19,20] = 20. 

d. The following evaluations are obtained by applying the ATC method to the example 
problem: 

Prior to applying the ATC method to the example problem, it is necessary to 
determine the appropriate look -ahead parameters (i.e. k1 and k2). The regression models 
developed in Section 5.3.4. are applicable when J/M > 1.7 for k1 and 1.7 < J/M < 7.3 for 
k2. Since J/M of this example problem is 2.25 (9/4), k1 and k2 can be determined by 
applying these models to the example problem. The models need four variables, i.e. J, 

M, T and R. J = 9 and M = 4 in this example problem. The value of T and R can be 
evaluated from their functions: 

1-d R d. 
Cm= C. 

d-15+12+7+10+10+18+20+11+11-1267 
; dmax = 20; dmin = 7 

9 

Makespan can be estimated by using the equation given in Section 5.3.4. 

fsum = max[1,0] +10 max[4,0] + 4 + max[4,2] + 8 + max[4,2] + 9 + max[4,5] + 9 
1 4 

max [3,2] +5 + max[3,2]+ 8 + max[3,5] +8 max[4,0] + 7 + max[4,2] + 9 
3 2 

max[4,0] + 8 + max[4,2] +11 max[9,2] +4 +max[9,2] + 6 +max[9,5] + 6 
2 3 

max[8,0]+ 8 + max[8,2] +10 max[5,2] +6 +max[5,2] +9 +max[5,5] +9 
2 3 

max[5,2] + 7 + max[5,2]+ 11 + max[5,5] + 11 

3 
=11 +11.75 +10.67 +12 +13.5 +14.33 +17 +13 +14.67 
= 117.92 

C 
fsum 

29.48 
max 4 

Therefore, T = 1- (12.67/29.48) = 0.57 and R = (20- 7)/29.48 = 0.44 

r= and d 

= 
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The calculations to obtain k, and k2 are as follows: 
Log(ki) = 1.8297 0.0326 *(4) 0.2628 *(0.44) - 3.4394 *(0.57) - 

0.9927 *(0.44) *(0.57) + 3.4555 *(0.57)2 = 0.4969 
k1 = exp(0.4969) = 1.64 

Sqrt(k2) = 2.2707 0.0174 *(9) 0.0912 *(4) + 0.5022 *(0.57) + 0.0017 *(9) *(4) 
- 0.0193 *(9) *(0.57) = 1.9977 

k2 = (1.9977)2 = 3.99 

Once the appropriate values of k1 and k2 are determined, the ATC method can be applied 
to the example problem: 

Set t = 0, mt; _ [0,2,2,5], NS = [ J1 ,J2,J3,J41,J42,J5,J6,J71,J72]. 
Machine with minimum mt; is Ml. SJ = [J1,J2,J41,J42,J6]. The Priority Index is 
evaluated for each job listed in SJ. 

Job P; r Priority Index 

J1 

(!'M1J2+PM1J41 

+PM1J42+PM1J6)/4 

rM1J2+rM1J41 

rMIJ42+rM1J6)/4 

1 ex 
10 

max[15 -10 0,0] max[1- 0,0] - 
1.64 * 6.75 

exp 
3.99 * 5 

= (4+7+8+8)/4 (4 +4 +4 +8)/4 
= 6.75 5 = 0.0605 
(PM1J1+PM1J41 rM1J1+rM1J41 2eX max[4 - 0,011 

J2 +PM1J42+PM1J6)/4 rM1J42+rM1J6)/4 

`-max[12-4-0,0]lex_r 
4 P 

1.64 * 8.25 J PLL 3.99 * 4.25 j 
= (10 +7 +8 +8)/4 (1+4+4+8)/4 = 0.2186 
= 8.25 4.25 
M1J1+PM1J2 rM1J1+rM1J2 3 - exp max[10 - 7- 0,0] 

exp max[4 - 0,0] 
1.64 * 7.5 3.99 * 4.25 J41 +PM1J42+PM1J6)/4 rM1J42+rM1J6)/4 7 

= (10+4+8+8)/4 (1+4+4+8)/4 = 0.2652 
=7.5 4.25 
(YMIJI+PMIJ2 

J42 +PM1741+PM1J6)/4 
rM1J1+rM1J2 

rM1J41+rM1J6)/4 

3 expl- max[10 -8- 0,0]1eXpr max[4 0,01 
3.99*4.25 8 L 1.64*7.25 J LL 

= (10+4+7+8)/4 
= 7.25 

(1+4+4+8)/4 
4.25 

= 0.2503 

(PM1J1+PM1J2 rM1J1+rM1J2 1 max[20 8 - 0,0] max[8 0,0] 

J6 +PM1J41+PM1J42)/4 rM1J41+rM1J42)/4 8 
exp 

1.64*7.25 
exp 

3.99*3.25 
= (10+4+7+8)/4 (1+4+4+4)/4 = 0.0246 
= 7.25 3.25 

The job with the highest priority index is J41. Since J41 is a split job and PM1J41 < 

PM1J42, J42 is selected to be assigned to Ml. ST(J42,M1) = 4, CT(J42,M1) = 4 + 8 = 
12, mtM1= 12. At this point, J41 has to be assigned to the machine that can complete 

L 

[ 
J J 

r 
J 
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it earliest. J41 can be processed on two machines: M1 and M2. The tentative ST and 

CT of J41 on these machines are: 

Ml: ST =max [12,4] = 12, CT= 12 +7 19 

M2: ST = max [2,4] = CT =4 +9= 13 

Thus, J41 is assigned to M2 with ST(J41,M2) = 4, CT(J41,M2) = 13. The difference 

in completion times between J41 and J42 is equal to ciu2. No revision is needed here. 

mtm2 = 13, NS = [J1,J2,J3,J5,J6,J71,J72]. 

mt; = [12,13,2,5]. The machine with minimum nit is M31 and t = 2. SJ = 

[J2,J3,J5,J71,J72] and the priority indices for these jobs are 0.1888, 0.2393, 0.1141, 

0.1926, 0.1576, respectively. Since J3 obtained the highest index, it is assigned to 

M31 with ST(J3,M31) = [2,3] = 3 and CT(J3,M31) = 3 + 8 = 11. mtm31= 11, NS = 

[J 1,J2,J5,J6,J71,J72] . 

nit = [12,13,11,5]. The machine with minimum mt; is M32 and t = 5. SJ = 

[J2,J5,J71,J72] and the priority indices for these jobs are 0.2222, 0.1729, 0.2222, 

0.1818, respectively. There is a tie between J2 and J71. As J71 is a split job, it has 

higher priority than J2. Since pM3272 > pM32J71, J72 is selected to be assigned to M32. 

ST(J72,M32) = 5, CT(J72,M32) = 16, and mtM32 = 16. At this point, the effort is to 

find a machine that can complete J71 earliest. The start times and completion times 

of the machines capable of processing J71 are: 

M2: ST = max [13,5] = 13, CT =13 +6= 19, 

M31: ST = max [11,5] = 11, CT = 11 + 9 = 20, 

M32: ST = max [16,5] = 16, CT = 16 + 9 = 25, 

Thus, J71 is assigned to M2. Since CT(J71,M2) CT(J72,M32) = 3 > q;1j2, the start 

time of J72 on M32 has to be delayed such that CT(J72,M32) = 18 and ST(J72,M32) 

= 7. mtm2 19, mtM32 =18, and NS = [J1,J2,J5,J6]. 

mt; = [12,19,11,18]. The machine with minimum mt; is M31 and t = 11. SJ = [J2,J5] 

and the priority indices for these jobs are 0.2222, 0.3115, respectively. As the job 

with highest priority index, J5 is assigned to M31 with ST(J5,M31) = 11 and 

CT(J5,M31) = 17. mtm31 17 and NS = [J1,J2,J6]. 
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nit = [ 12,19,17,18]. The machine with minimum mt; is M1 and t = 12. SJ = 

[J1,J2,J6] and the priority indices for these jobs are 0.100, 0.500, 0.125, respectively. 

As the job with highest priority index, J2 is assigned to M1 with ST(J2,M1) = 12 and 

CT(J2,M1) = 16. mtM1= 16 and NS = [J1,J6]. 

nit; = [16,19,17,18]. The machine with minimum mt; is M1 and t = 16. SJ = [J1,J6] 

and the priority indices for these jobs are 0.100, 0.125, respectively. As the job with 

highest priority index, J6 is assigned to M1 with ST(J6,M1) = 16 and CT(J6,M1) = 

24.mtM1= 24 and NS =[J1]. 

nit; = [24,19,17,18]. At this point, the only unscheduled job is J1, which can be 

processed only on Ml. Thus, J1 is assigned to M1 with ST(J1,M1) = 24, CT(J1,M1) 

= 34 and mtM1 =34. 

Table 5.3 shows the summarized initial schedule and weighted tardiness obtained 

by applying these methods. The weighted tardiness is evaluated as a job's weight times 

max [due date completion time, 0]. The total WT is the sum of the weighted tardiness 

of all jobs. If a solution is infeasible (i.e. some constraints are violated), the TWT would 

receive a penalty. As shown in Table 5.3, the solution yielded by EDD method is 

infeasible, i.e. the difference in completion times between J41 and J42 as two split 

portions of a job is larger than clip. Therefore, this solution receives a penalty of M, 

which indicates a very large number that reflects the infeasibility of a solution. The 

EDDsp, LFJ/LFM, and ATC methods yield feasible initial solutions with the lowest TWT 

obtained by the ATC method. 

With the initial solution in hand, the effort to find an optimal/near- optimal 

solution is continued by applying the steps of tabu search documented in section 5.5. 

Although the ATC method yields the most superior initial solution, the initial solution 

generated by EDD method is selected to demonstrate the application of tabu search. This 

is done in order to demonstrate the capability of tabu search in using an infeasible initial 

solution to finally identify an optimal/near - optimal final solution. A Gantt chart of the 

initial solution generated by EDD method is shown in Figure 5.2. 
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Table 5.3 Initial solutions of example problem 

Jobs 
EDD EDDsp LFJ/LFM ATC 

MC CT WT MC CT WT MC CT WT MC CT WT 
J1 1 11 0 1 11 0 1 11 0 1 34 19 
J2 31 13 2 31 13 2 1 23 22 1 16 8 
J3 2 8 2 2 8 2 31 11 8 31 11 8 

J41 2 24 42 2 24 42 1 18 24 2 13 9 
J42 1 19 27 1 23 39 2 17 21 1 12 6 
J5 31 19 2 31 19 2 32 25 14 31 17 0 
J6 1 27 7 1 31 11 2 27 7 1 24 4 

J71 2 15 8 2 15 8 31 20 18 2 19 16 
J72 32 16 10 32 16 10 32 19 16 32 18 14 

Total WT 100 + M 116 130 84 
MC = machine index, CT = job's completion time, WT = job's weighted tardiness 

M1 

M2 

M31 

M32 

J1 

1 (10) 11 

J42 

(8) 19 

J6 

(8) 27 

J3 

3 (5) 8 

J71 

9 (6) 15 

J41 

(9) 24 

4 

J2 

(9) 13 

J5 

(6) 19 

0 5 

J72 

(11) 16 

Figure 5.2 Gantt Chart for initial solution of example problem generated by applying 
EDD method 

Step 1 & 2 All possible interchange (swap) of two jobs are considered. The swap 

between J1 and J2 is ruled out, as J1 cannot be processed on M31. A similar situation 

exists for J1 with J3 and J1 with J41. The swap between J1 and J42 is feasible as both 

are processed on Ml, J42 is not processed on M1, r 1 < CT(J42,M1) and rr42< CT(J1,M1). 

. 

, 

® 
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Swapping J1 and J42 results in the following changes on Ml: ST,(J42,M1) = 4 and 
CTi(J42,M1) = 12, STr(J1,M1) = 12 and CTr(J1,M1) = 22, STr(J6,M1) = 22 and 
ST,(J6,M1) = 30. Note that the subscript `r' following ST and CT denotes that they are 
revised. As the CT of J41 in the initial solution is 24, the TIT requirement on J41 and J42 
is violated. Because the swap move is initiated by J42, a sequence change for J41 on M2 
would be considered to attain feasibility. This is the first -level adjustment mentioned in 
section 5.4.1. J41 is moved forward so that its completion time on M2 would be 11 (i.e. 
1 units less than CT(J42,M1)). However, this is only possible if J41 is released at t = 2. 
Thus, ST,(J41,M2) = 4 and CT,(J41,M2) = 13. The revised ST and CT for the rest of the 
jobs processed on M2 are: STr(J3,M2) = 13 and CT,(J3,M2) = 18, ST,(J71,M2) = 18 and 
CTr(J71,M2) = 24. The JIT requirement on J71 and J72 is violated because CT(J72,M32) 
in the initial solution is 16. Since J71 is scheduled on the same machine as J41, a second - 
level adjustment is applied. J72 has to be moved forward on M32 to attain feasibility 
without changing the sequence. This results in ST,(J72,M32) = 12 and CT,(J72,M32) _ 
23. The resulting solution is feasible with a TWT of 108. 

The swap between J1 and J5 is ruled out as J1 cannot be processed on M31. 
Exchanging J1 and J6 is feasible since J1 and J6 are scheduled on M1 in the initial 
solution, r 1 < CT(J6,M1) and rJ6 < CT(J 1,M 1). Swapping J1 and J6, the new start and 

completion times for jobs scheduled on Ml are: STr(J6,M1) = 8 and CTr(J6,M1) = 16, 

STr(J42,M 1) = 16 and CT,( J42, 1) = 24, STr(J 1,M 1) = 24 and CTI(J 1,M 1) = 34. The 
revised completion time of J42 on M1 does not violate the JIT requirement as 
CT(J41,M2) = 24 in the initial solution. The TWT for swapping J1 with J6 is 127. 

J2 and J3 is the next feasible swap move to consider. Swapping J2 and J3 results 
in the following changes on M2: ST,(J2,M2) = 4 and CTr(J2,M2) = 12, ST,(J71,M2) = 12 

and CTr(J71,M2) = 18, ST,(J41,M2) = 18 and CT,(J41,M2) = 27; on M31: ST,(J3,M31) = 
3 and CTr(J3,M31) = 11, ST,(J5,M31) = 11 and CT,(J5,M31) = 17. Notice that the JIT 
requirement on J71 and J72 is violated as CT(J72,M32) in the initial solution is equal to 

16. The revised start and completion times of J72 on M32 are: ST,(J72,M32) = 6 and 
CT,(J72,M32) = 17. The JIT requirement on J41 and J42 is also violated as CT(J42,M1) 
= 19 in the initial solution. Since J41 is scheduled on the same machine as J2, a second - 
level adjustment is applied. The new start and completion times of the jobs processed on 
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M1 are: STr(J1,M1) = 1 and CT,(J1,M1) = 11, STr(J42,M1) = 18 and CT,(J42,M1) = 26, 

STr(J6,M1) = 26 and CTr(J6,M1) = 33. This schedule results in a TWT of 146. The job 
swapping is continued in the same fashion until all feasible swap moves are made. Table 

5.4 shows all feasible swap moves applied to the initial solution along with their TWT 

values. 

Table 5.4 The neighborhood solutions of initial solution as a result of applying swap and 
insert moves 

Swap Moves 
Swap Jobs TWT Swap Jobs TWT 

J1 and J42 108 J3 and J71 175 
J1 and J6 127 J41 and J42 120 
J2 and J3 146 J41 and J71 116 
J2 and J5 120 + M J42 and J6 123 
J2 and J71 133 J5 and J71 117 
J2 and J72 108 + M J5 and J72 114 
J3 and J41 100 J71 and J72 112 

Insert Moves 
Job Machine Position TWT Job Machine Position TWT 
J2 M1 1 130 J5 M2 2 154 
J2 M1 2 118 J5 M2 3 144 
J2 M1 3 146 J5 M2 4 134 
J2 M1 4 158 J5 M32 1 224 
J2 M2 1 214 J5 M32 2 106 + M 
J2 M2 2 193 J6 M2 2 191 
J2 M2 3 190 J6 M2 3 170 
J2 M2 4 152 J6 M2 4 119 
J2 M32 1 215 J71 M31 1 126 
J2 M32 2 122 + M J71 M31 2 124 
J3 M31 1 150 J71 M31 3 130 
J3 M31 2 158 J72 M31 1 148 + M 
J3 M31 3 154 J72 M31 2 226 
J3 M32 1 214 J72 M31 3 138 
J3 M32 2 148 

Insert moves are now considered. 31 cannot be inserted to other machines as it 

can only be processed on M1. Inserting J2 in the first position of M1 (i.e. preceding J1) 
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is feasible as J2 can be processed on M1 and rJ2 < CT(J 1,M 1). The new start and 

completion times of the jobs scheduled on M1 are: STr(J2,M1) = 4 and CT,(J2,M1) = 8, 
STr(J1,M1) = 8 and CT,(J1,M1) = 18, ST,(J42,M1) = 18 and CTr(J42,M1) = 26, 
ST,(J6,M1) = 26 and CTr(J6,M1) = 34. As CT(J41,M2) in the initial solution is 24, the 
JIT requirement on J41 and J42 is violated. In order to satisfy the JIT requirement, the 
start and completion times of J41 on M2 are revised to be STr(J41,M2) = 16 and 
CTr(J41,M2) = 25. This is the second -level adjustment mentioned in section 5.4.2. 
Notice that this revision does not affect the other jobs sequenced on M2. As J2 is moved 
to Ml, M31 is left with J5. The new start and completion times of J5 are: STr(J5,M31) = 
9 and CT,(J5,M31) = 15. The TWT of this schedule is 130. 

The next feasible insert move is to insert J2 to the second position of Ml (i.e. 
between J1 and J42). The new start and completion times of the jobs scheduled on M1 
are: ST,(J1,M1) = 1 and CT,(J1,M1) = 11, ST,(J2,M1) = 11 and CTr(J2,M1) = 15, 
STr(J42,M 1) = 15 and CTr(J42,M 1) = 23, ST,(J6,M1) = 23 and CTr(J6,M 1) = 31. Notice 
that the new completion time evaluated for J42 on M1 does not violate the JIT 
requirement as CT(J41,M2) is 24 in the initial solution. On M31, the new start and 
completion times for J5 are: STr(J5,M31) = 9 and CT,(J5,M31) = 15. The TWT of this 
schedule is 118. 

Inserting J2 to the third position of M1 (i.e. between J42 and J6) is the next 
feasible move. Before J2 is inserted, notice that the JIT requirement on J41 and J42 is 
violated in the initial solution. In order to fix this violation, the start time of J42 on M1 is 

delayed such that STr(J42,M 1) = 15 and CTr(J42,M 1) = 23. The complete revised start 
and completion times of the jobs sequenced on M1 are: STr(J1,M1) = 1 and CTr(J1,M1) _ 
11, STr(J42,M1) = 15 and CTr(J42,M1) = 23, ST,(J2,M1) = 23 and CTr(J2,M1) = 27, 

ST,(J6,M1) = 27 and CT,(J6,M1) = 35. The TWT for this schedule is 146. The insert 
moves are continued in the same fashion for all feasible moves. The overall insert moves 
applied to the initial solution and their total weighted tardiness values are shown in Table 

5.4. 

Step 3 The minimum TWT is 100. The move that results in this value is swapping J3 
with J41. The schedule generated by swapping J3 with J41 would be used as the seed for 
next iteration. At this point, the following parameters need to be updated: 
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(1) Tabu list 

The primary use of tabu list is to prevent the search from revisiting previous 

solutions or repeating its previous moves. Whenever a move is made, the tabu list is 

updated by storing the attributes of the move. In this case, J3 and J41 are the first entry 

in the tabu list. The presence of J3 and J41 in the tabu list implies that these jobs are not 

allowed to swap positions for the number iterations indicated by the size of the tabu list 

unless an aspiration criteria is satisfied. As mentioned in section 5.5, two types of tabu 

list size are used: fixed tabu list size and variable tabu list size. The tabu list size is 

evaluated as follows: 

For fixed tabu list size = INT(9 *44 /(3 *I2)) = INT(4.24) = 4. 

For variable tabu list size: 

The initial size = INT(9 *.4/(3 *I2)) = INT(4.24) = 4 

The decreased size = INT(9 *QÍ4/(4 * .I2)) = INT(3.18) = 3 

The increased size = INT(9 *-44/(2.5 *42)) = INT(5.09) = 5. 

(2) Aspiration Level (AL) 

The AL is initially set equal to the TWT of the initial solution, which is 100 + M. 

Since swapping J3 with J41 yields a TWT of 100, the AL is updated to be equal to 100. 

If a tabu move in the next iteration results in a TWT that is less than 100, the move is 

released from its tabu restriction. 

(3) Candidate List (CL) and Index List (IL) 

Initially, the initial solution (So) is admitted to both CL and IL as it is considered a 

local optimum. As the solution obtained by swapping J3 with J41 (i.e. Si) is selected as 

the best solution, Si is admitted to CL. Since Si is better than So, Si receives a star, which 

indicates that it has the potential to become a local optimum. At this point, the CL has 

two entries and IL has one entry: 

CL: { [J1/M1(1,11), J2/M31(4,13), J3/M2(3,8), J41/M2(15,24), J42/M1(11,19), 

J5/M31(13,19), J6/M1(19,27), J71/M2(9,15), J72/M32(5,16)]; 

[J1/M1(12,22), J2/M31(4,13), J3/M2(19,24), J41/M2(4,13), J42/M 1(4,12), 

J5/M31(13,19), J6/M1(22,30), J71/M2(13,19), J72/M32(7,18)] } 

IL: { [J1/M1(1,11), J2/M31(4,13), J3/M2(3,8), J41/M2(15,24), J42/M1(11,19), 

J5/M31(13,19), J6/M1(19,27), J71/M2(9,15), J72/M32(5,16)] } 
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(4) Number of iterations without improvement (IT) 

Initially, IT equals to zero. Since there is improvement in the TWT, i.e. a change 

from 100 + M to 100, the IT remains to be zero. 

(5) Long -term memory (LTM) matrix 

As mentioned in Section 5.5, the LTM matrix records the tally of the jobs 

processed on the machines. In this case, the matrix consists of 9 x 4 cells. Initially, all 

36 cells are set equal to zero. The first iteration obtained by swapping J3 with J41 results 

in the following entries in LTM matrix, as presented in Table 5.5. 

Step 4 To terminate the search, two stopping criteria are used: ITmax and ILmax. For 

fixed and variable size of tabu list, the stopping criteria are evaluated as follows: 

For fixed tabu list size: 

ITmax = INT(9 /6.25) = INT(1.44) = 1 

ILmax = INT(9 /4) = INT(2.25) = 2 

The search is terminated if ITmax reaches 1 or ILmax reaches 2, whichever comes 

first. 

Table 5.5 Entries into the LTM matrix after perturbing the initial solution 

Job Index M1 M2 M31 M32 
J1 1 - - - 
J2 0 0 1 0 
J3 - 1 0 0 

J41 0 1 - - 
J42 1 0 - 
J5 - 0 1 0 
J6 1 0 - - 

J71 1 0 0 
J72 - 0 0 1 

For variable tabu list size: 

The ITmax and ILmax are evaluated the same way as in fixed tabu list size. The 

ILmax is used in conjunction with the following steps: 

- 
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(i) If there is no improvement in the last rí/31 = 1 iteration with the initial size of 
tabu list, decrease the size of tabu list to the decreased size evaluated in step 3. 

(ii) If there is no improvement in the last F1/31 = 1 iteration with the decreased size 
of tabu list, increase the size of tabu list to the increased size evaluated in step 3. 

(iii) If there is no improvement in the last 11/31= 1 iteration with the increased size 
of tabu list, terminate the search. 

At this point of the search, both stopping criteria are not met. Thus, the search is 
continued until one of the stopping criteria is met. In this example problem, the search is 
terminated after 5 iterations are made. Coincidentally, both stopping criteria are activated 
simultaneously, i.e. the number of iterations without improvement is equal to 1 and the 
number of entries into the IL has reached 2. The results of the search using the fixed size 
of tabu list and short-term memory are summarized in Table 5.6. 

Table 5.6 Results of tabu search applied to the initial solution of the example problem 

Iteration 
No. 

Move 
applied Entry into the CL 

TWT Entry into 
the IL 

0 -- 
[J1/M1(1,11), J2/M31(4,13), J3/M2(3,8), 
J41 /M2(15,24), J42/M 1(11,19), J5/M31(13,19), 
J6/M 1(19,27), J71 /M2(9,15), J72/M32(5,16)] * * 

100 +M Yes 

1 

Swap 
(J3,J41) 

[J1/M1(12,22), J2/M31(4,13), J3/M2(19,24), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 
J6/M1(22,30), J71/M2(13,19), J72/M32(7,18)]* 

100 

2 
Swap 

(J1 ,J6) 
[J1/MI(20,30), J2/M31(4,13), J3/M2(19,24), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 
J6/M1(12,20), J71/M2(13,19), J72/M32(7,18)]* 

98 

3 
Insert 

(J3,M32, 
Pl) 

[.11 /M1(20,30), J2/M31(4,13), J3/M32(5,13), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 
J6/M1(12,20), J71/M2(17,23), J72/M32(13,24)]* 

96 

4 
Swap 

(J71,J72) 
[JI/M1(20,30), J2/M31(4,13), J3/M32(5,13), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 
J6/M1(12,20), J71/M32(13,22), J72/M2(14,21)] ** 

88 Yes 

5 
Swap 

(J2,J3) 
[J1/M1(20,30), J2/M32(5,14), J3/M31(3,11), 
J41/M2(4,13), J42/M1(4,12), J5/M31(11,17), 
J6/M1(12,20), J71/M32(14,23), J72/M2(15,22)] 

88 
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The CL has 6 entries and the IL has 2 entries. The best solution obtained by employing 

short-term memory function is found at the fourth iteration with a TWT value of 88. The 

best solution is pointing to the following schedule: [ J1/M1(20,30), J2/M31(4,13), 

J3/M32(5,13), J41/M2(4,13), J42/M 1(4,12), J5/M31(13,19), J6/M 1(12,20), 

J71/M32(13,22), J72/M2(14,21) ]. 

Step 5 At this point, the search can be restarted from a different region of the solution 

space. The restarting point is identified from the LTM matrix. The entries into the LTM 

matrix at the time the search is terminated is shown in Table 5.7. For the maximum 

frequency approach, the cells that have the maximum tally, which is 5, is J1 on Ml, J41 

on M2, J42 on Ml, J5 on M31, and J6 on M1. Notice that J1 can only be processed on 

one machine (i.e. M1), thus J1 is not considered. The row -wise first best strategy points 

to fixing J41 on M2. Thus, the first restart solution based on maximal frequency is 

generated by fixing J41 on M2 in the initial solution. The first restart solution is 

[J1/M1(1,11), J2/M31(4,13), J3/M2(3,8), J41/M2(15,24), J42/M1(11,19), J5/M31(13,19), 

J6/M1(19,27), J71/M2(9,15), J72/M32(5,16)]. The tabu list and IT are re- initialized back 

to zero. The AL is reset to the TWT of the restart solution, which is equal to 100 +M. 

Repeat Step 1 to Step 4 using the first restart solution as a new starting point. 

Table 5.7 Entries into the LTM matrix at the end of the search using the initial solution 

Job Index M1 M2 M31 M32 
J1 5 - - - 
J2 0 0 4 1 

J3 - 2 1 2 
J41 0 5 - - 
J42 5 0 - 
J5 0 5 0 
J6 5 0 - 

J71 - 3 0 2 
J72 - 2 0 3 

Based on the LTM -max, the results obtained with the first restart are shown in 

Table 5.8. The underlined job indicates that it is fixed to the machine throughout the first 

- 

- 
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restart. The first restart is terminated after 4 iterations because the number of iterations 

without improvement has reached its maximum, which is 1 (for fixed tabu list size). 

Coincidentally, the number of entries into IL also reached its maximum (2). The best 

solution obtained from the first LTM -max restart is found at the third iteration with a 

TWT value of 90. 

Table 5.8 Results from the first restart based on maximal frequency 

Iteration 
No. 

Move 
applied Entry into the CL 

TWT Entry into 
the IL 

0 -- 
[J1/M1(1,11), J2/M31(4,13), J3/M2(3,8), 
J41/M2(15,24), J42/M1(11,19), J5/M31(13,19), 100+ Yes 
J6/M1(19,27), J71/M2(9,15), J72/M32(5,16)]* * 

1 

Swap 
(J1,J42) 

[J1/M1(12,22), J2/M31(4,13), J3/M2(13,18), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 108 
J6/M1(22,30), J71/M2(18,24), J72/M32(12,23)]* 

2 
Insert 

(J3,M32, 
Pl) 

[Ji/MI(12,22), J2/M31(4,13), J3/M32(5,13), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 98 
J6/M1(22,30), J71/M2(17,23), J72/M32(13,24)]* 

3 
Swap 

(J71,J72) 
[J1/M1(12,22), J2/M31(4,13), J3/M32(5,13), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 90 Yes 
J6/M1(22,30), J71 /M32(13,22), J72/M2(14,21)] * * 

4 
Swap 

(J2,J3) 
[J1/M1(12,22), J2/M32(5,14), J3/M31(3,11), 
J41/M2(4,13), J42/M1(4,12), J5/M31(11,17), 90 
J6/M1(22,30), J71 /M32(14,23), J72/M2(15,22)] 

Since the total number of restart is set equal to 2, the search process is entitled to a 

second restart. Again, the restarting point is determined by selecting the job - machine 

pair with maximum frequency from the LTM matrix. The entries to LTM matrix at the 

termination of the first restart are shown in Table 5.9. Using the row -wise first best 

strategy, the maximum frequency points to fixing J42 on M1 (fixing J41 on M2 was used 

in the first restart). Thus, the second restart solution is generated by fixing J42 on M1 in 

the initial solution. The second restart solution is [J1/M1(1,11), J2/M31(4,13), 

J3/M2(3,8), J41/M2(15,24), J42/M1(11,19), J5/M31(13,19), J6/M1(19,27), 
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J71/M2(9,15), J72/M32(5,16)]. The tabu list and IT are re- initialized back to zero. 

Repeat Step 1 to Step 4 using the second restart solution as a new starting point. 

Table 5.9 Entries into the LTM matrix at the end of the first restart based on maximum 
frequency 

Job Index M1 M2 M31 M32 
J1 9 - - - 
J2 0 0 7 2 
J3 - 3 2 4 

J41 0 9 - - 
J42 9 0 - - 
J5 - 0 9 0 
J6 9 0 - - 

J71 - 5 0 4 
J72 - 4 0 5 

The results obtained with the second restart based on maximum frequency are 

shown in Table 5.10. The underlined job indicates that it is fixed to the machine 

throughout the second restart. The second restart is terminated after 4 iterations because 

the number of iterations without improvement has reached its maximum, which is 1 (for 

fixed tabu list size). Coincidentally, the number of entries into IL also reached its 

maximum (2). The best solution obtained from the second restart is found at the third 

iteration with a TWT value of 104. 

Step 6 Once the entire search is terminated, the optimal/near - optimal solution is selected 

from the Index List as the solution with the minimum total weighted tardiness. The best 

solution of all is pointing to the one obtained in the initial search with a TWT of 88. The 

schedule that corresponds to this solution is [J1/M1(20,30), J2/M31(4,13), J3/M32(5,13), 

J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), J6/M1(12,20), J71/M32(13,22), 

J72/M2(14,21)]. 
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Table 5.10 Results from the second restart based on maximal frequency 

Iteration 
No. 

Move 
applied Entry into the CL 

TWT Entry into 
the IL 

0 -- 
[J1/M1(1,11), J2/M31(4,13), J3/M2(3,8), 
J41/M2(15,24), J42/M 1(11,19), J5/M31(13,19), 100+ Yes 
J6/M 1(19,27), J71 /M2(9,15), J72/M32(5,16)] * * 

1 

Swap 
(J71,J72) 

[J1/M1(1,11), J2/M31(4,13), J3/M2(3,8), 
J41/M2(15,24), J42/M1(15,23), J5/M31(13,19), 
J6/M 1(23,31), J71 /M32(5,14), J72/M2(8,15)] * 

112 

2 
Swap 

(J3,J41) 
[J1/M1(12,22), J2/M31(4,13), J3/M2(20,25), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 106 
J6/M 1(22,30), J71/M32(10,19), J72/M2(13,20)] * 

3 
Swap 

(J 1,J6) 
[Jl/M1(20,30), J2/M31(4,13), J3/M2(20,25), 
J41/M2(4,13), J42/M1(4,12), J5/M31(13,19), 104 Yes 
J6/M1(12,20), J71/M32(10,19), J72/M2(13,20)] ** 

4 
Swap 

(J2,J3) 
[J1/M1(20,30), J2/M2(20,28), J3/M31(3,11), 
J41/M2(4,13), J42/M1(4,12), J5/M31(11,17), 
J6/M1(12,20), J71/M32(10,19), J72/M2(13,20)] 

104 

Table 5.11 summarizes the best solutions obtained from the initial solution and 

the two restarts using LTM -max. The table shows that the best solutions obtained by the 

two restarts are not any better than the best solution obtained by the initial search. The 

quality of the best solutions obtained in the two restarts is actually much inferior than the 

one obtained in the initial search. This implies that the application of long -term memory 

does not improve the quality of solution obtained by the short-term memory. There are 

two possible reasons for this occurrence. First, the best solution obtained in the initial 

search is the optimal solution. Second, the approach used in the long -term memory 

function is not capable of directing the search to a different region. In this case, the first 

reason is not the right one to explain this occurrence. The best solution (88) obtained in 

the initial search is not the optimum, as it will be proven in Chapter 6. The second reason 

is the right explanation here, i.e. the maximum frequency approach is not effective 

enough in guiding the search to a different direction. In light of this finding, the 

minimum frequency approach of long -term memory function is applied. 
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Table 5.11 Summary of results for the entire search process based on LTM -max 

Restart 
No. Best solutions obtained TWT 

J1/M1(20,30), J2/M31(4,13), J3/M32(5,13), J41/M2(4,13), J42/M1(4,12), 

Initial J5/M31(13,19), J6/M 1(12,20), J71 /M32(13,22), J72/M2(14,21) 88 

J1/M1(12,22), J2/M31(4,13), J3/M32(5,13), J41/M2(4,13), J42/M1(4,12), 

First J5/M31(13,19), J6/M 1(22,30), J71/M32(13,22), J72/M2(14,21) 90 

JI/M1(20,30), J2/M31(4,13), J3/M2(20,25), J41/M2(4,13), J42/M1(4,12), 

Second J5/M31(13,19), J6/M1(12,20), J71/M32(10,19), J72/M2(13,20) 104 

Referring to the LTM matrix at the time of termination of the initial search in 

Table 5.7, the job - machine pair with minimum frequency, which is 0, would be J2 on M1 

if row -wise first best strategy is used. Therefore, the starting point for the first restart 

using the minimum frequency will be generated from the initial solution by fixing J2 on 

Ml. In the initial solution, J2 is processed on M31. J2 has to be removed from M31 and 

inserted to the first position of M1, i.e. preceding J1. This insert move would cause 

changes in the start and completion times of the jobs processed on M1 as follows: 

ST,(J2,M1) = 4 and CTr(J2,M1) = 8, ST,(J1,M1) = 8 and CT,(J1,M1) = 18, ST,(J42,M1) 

= 18 and CTr(J42,M1) = 26, STr(J6,M1) = 26 and CTr(J6,M1) = 34. As the JIT 

requirement on J41 and J42 is violated (i.e. ICT(J41,M2) CT,(J42,M1)I = 2 > q¡lj2) , the 

start time of J41 on M2 has to be delayed such that ST,(J41,M2) = 16 and CTr(J41,M2) = 

25. Thus, the starting point for the first restart using minimum frequency is 

[J1/M1(8,18), J2/M1(4,8), J3/M2(3,8), J41/M2(16,25), J42/M1(18,26), J5/M31(9,15), 

J6/M1(26,34), J71/M2(9,15), J72/M32(5,16)] with a TWT value of 130. Using this 

solution from LTM -min as a restarting point, the search is continued in a similar fashion 

as in LTM -max. Based on the LTM -min, the results obtained with the first restart are 

shown in Table 5.12. J2 on M1 is underlined as a sign that J2 is fixed to M1 throughout 

the first restart. The first restart is terminated after 5 iterations because both IT and 

entries into the IL have reached their maximum. The best solution from the first restart is 

obtained at iteration 4 with a TWT of 81. 

The second restart based on LTM -min would use the information provided by the 

LTM matrix at the time of termination of first restart. This matrix is shown in Table 
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5.13. The minimum frequency, which is 0, is pointing to J2 on M2 if row -wise first best 
strategy is used. Thus, J2 would be fixed on M2 throughout the second restart. Since J2 

is processed on M31 in the initial solution, the starting point for the second restart will be 

generated from the initial solution by removing J2 from M31 and inserting it to the first 

position of M2. The generated solution is [J1/M1(1,11), J2/M2(4,12), J3/M2(12,17), 

J41/M2(23,32), J42/M1(23,31), J5/M31(9,15), J6/M1(31,39), J71/M2(17,23), 

J72/M32(11,22)]. Using this solution, the search is restarted in the similar fashion as in 

LTM -max and the results are shown in Table 5.14. 

Table 5.12 Results of first restart based on minimum frequency 

Iteration 
No. 

Move 
applied Entry into the CL 

TWT Entry into 
the IL 

0 -- 
[J1/M1(8,18), J2/M1(4,8), J3/M2(3,8), 

130 Yes J41/M2(16,25), J42/M1(18,26), J5/M31(9,15), 
J6/M 1(26,34), J71 /M2(9,15), J72/M32(5, 16)] * * 

1 

Swap 
(J3,J41) 

[J1/M1(16,26), J2/M1(12,16), J3/M2(19,24), 
112 J41/M2(4,13), J42/M1(4,12), J5/M31(9,15), 

J6/M 1(26,34), J71 /M2(13,19), J72/M32(7,18)] * 

2 
Insert 
(J71, 

M31,P1) 

[J1/M1(16,26), J2/M1(12,16), J3/M2(13,18), 
94 J41/M2(4,13), J42/M1(4,12), J5/M31(15,21), 

J6/M1(26,34), J71/M31(6,15), J72/M32(5,16)]* 

3 
Swap 

(J3,J71) 
[J1/M1(16,26), J2/M1(12,16), J3/M31(3,11), 

86 J41/M2(4,13), J42/M1(4,12), J5/M31(11,17), 
J6/M 1(26,34), J71 /M2(13,19), J72/M32(7,18)] * 

4 
Insert 

(J6,M2, 
P3) 

[J1/M1(16,26), J2/M1(12,16), J3/M31(3,11), 
81 Yes J41/M2(4,13), J42/M1(4,12), J5/M31(11,17), 

J6/M2(19,29), J71/M2(13,19), J72/M32(7,18)] ** 

5 
Swap 

(J5,J71) 
[J1/M1(16,26), J2/M1(12,16), J3/M31(3,11), 

83 J41/M2(4,13), J42/M1(4,12), J5/M2(13,17), 
J6/M2(17,27), J71 /M31(11,20), J72/M32(8,19)] 

The summary of the best solutions obtained from the initial search and the two 

restarts using LTM -min is shown in Table 5.15. The first restart using LTM -min yields a 

solution that is better than the one obtained by the initial search. This solution has an 

objective function value (i.e. TWT) of 81. The Gantt Chart for this solution is shown in 

Figure 5.3. In Chapter 6, this solution is proven to be the optimum. Therefore, for this 
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example problem, the minimum frequency approach is more effective in identifying an 

optimal/near - optimal solution than the maximum frequency approach. 

Table 5.13 Entries into the LTM matrix at the end of first restart based on minimum 
frequency 

Job Index M1 M2 M31 M32 
J1 10 - - - 
J2 5 0 4 1 

J3 4 4 2 
J41 0 10 - - 
J42 10 0 - - 
J5 - 1 9 0 
J6 8 2 - - 

J71 - 6 2 2 
J72 - 2 0 8 

Table 5.14 Results of second restart based on minimum frequency 

Iteration 
No. 

Move 
applied Entry into the CL 

TWT Entry into 
the IL 

0 -- 
[J1/M1(1,11), J2/M2(4,12), J3/M2(12,17), 

214 Yes J41/M2(23,32), J42/M1(23,31), J5/M31(9,15), 
J6/M1(31,39), J71/M2(17,23), J72/M32(11,22)] ** 

i 
Swap 

(J2,J41) 
[J1/M1(12,22), J2/M2(24,32), J3/M2(13,18), 

144 J41/M2(4,13), J42/M1(4,12), J5/M31(9,15), 
J6/M1(22,30), J71 /M2(18,24), J72/M32(12,23)]* 

2 
Insert 
(J71, 

M31,P1) 

[J1/M1(12,22), J2/M2(18,26), J3/M2(13,18), 
106 J41/M2(4,13), J42/M1(4,12), J5/M31(15,21), 

J6/M1(22,30), J71/M31(6,15), J72/M32(5,16)]* 

3 
Swap 

(J3,J71) 
[J1/M1(12,22), J2/M2(19,27), J3/M31(3,11), 

100 J41/M2(4,13), J42/M1(4,12), J5/M31(11,17), 
J6/M1(22,30), J71 /M2(13,19), J72/M32(7,18)] * 

4 
Swap 

(J1,J6) 
[J 1 /M 1(20,30), J2/M2(19,27), J3/M31(3,11), 

98 Yes J41/M2(4,13), J42/M1(4,12), J5/M31(11,17), 
J6/M1(12,20), J71/M2(13,19), J72/M32(7,18)] ** 

5 
Swap 

(J5,J71) 
[J1/M1(20,30), J2/M2(17,25), J3/M31(3,11), 
J41/M2(4,13), J42/M1(4,12), J5/M2(13,17), 
J6/M 1(12,20), J71 /M31(11,20), J72/M32(8,19)] 

98 

- 
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Table 5.15 Summary of results for the entire search process based on LTM -min 

Restart 
No. Best solutions obtained TWT 

J1/M1(20,30), J2/M31(4,13), J3/M32(5,13), J41/M2(4,13), J42/M1(4,12), 
Initial J5/M31(13,19), J6/M1(12,20), J71 /M32(13,22), J72/M2(14,21) 88 

J1/M1(16,26), J2/M1(12,16), J3/M31(3,11), J41/M2(4,13), J42/M1(4,12), 
First J5/M31(11,17), J6/M2(19,29), J71/M2(13,19), J72/M32(7,18) 81 

J1/M1(20,30), J2/M2(19,27), J3/M31(3,11), J41 /M2(4,13), J42/M1(4,12), 
Second J5/M31(11,17), J6/M1(12,20), J71 /M2(13,19), J72/M32(7,18) 98 
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Figure 5.3 Gantt Chart for the optimal solution of the example problem 
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6. THE OPTIMALITY OF TABU - SEARCH BASED HEURISTIC ALGORITHM 

The efficacy of the proposed heuristic algorithm is an important issue. It can be 
measured by the final solution and the total computation time the algorithm takes to attain 
it. The quality of the final solution evaluated by the heuristic can be assessed if either the 
optimal solution is known, or in the absence of an optimal solution, a suitable lower 
bound for the problem investigated is known. Referring back to the mathematical model 
developed in Chapter 4, an optimal solution may be obtained for small problem instances 
by solving the model implicitly using the branch - and -bound enumeration technique. 

In order to show how a model can be formulated for a problem instance, the 
example problem used in Chapter 5 is used again. The model formulation follows the 
mathematical model developed in Chapter 4. Recall that there are two sets of binary 

variables, xis and yii,. The first variable, xis, receives a value of 1 if job j is assigned to 
machine i, or 0 otherwise. Generally, if each assignment of a job on a machine is 
considered, then there will be a total of n *m number of variables for xis, where n = total 
number of jobs and m = total number of machines. Similarly, there will be a total of n *m 
number of variables for cif and tÿ, which are two sets of real variables. In special cases 
where some jobs cannot be processed on some machines, one can exclude the variables 
that correspond to those assignments. Thus, in a real unrelated parallel machining 
environment, the total number of variables for xÿ, cif, and tip will each be typically less 
than n *m. The second variable, y;,,, receives a value of 1 if job k precedes job Q on 

machine i, or 0 otherwise. There are a total of m *n *(n -1)/2 number of variables for yi,, if 
all machines are assumed to be capable of processing all jobs. 

In the general model formulation for the example problem, each of the nine jobs 
are given the chance to be processed on each of the four machines. In this type of setting, 
all jobs can be processed on all machines, even though some machines are less capable 
than the others. This results in a total of 252 variables including 180 binary variables, 
and 541 constraints. This model is presented in Appendix B. In the course of 
formulating constraints (7) and (8) (see section 4.4 of Chapter 4), which are the JIT 
constraints for a pair of split jobs, the two split portions are given the chance to be 



77 

processed on the same machine. This is done in order to accommodate the possibility of 
having a relatively large value of a 1j2 that would make the assignments of the split 

portions of a job on the same machine to be feasible. Thus, the model formulation for the 

example problem as presented in Appendix B is developed to provide the big picture 

where each machine is given the chance to process each job, and the split portions of a 

job are given the chance to be processed on the same machine. On the other hand, one 

can also formulate a more restricted (compact) model, i.e. a model that only incorporates 

the feasible jobs -to- machine assignments, and only allows the split portions of a job to be 

processed on two different machines. This type of model formulation would result in 

fewer variables and constraints. For the example problem, the compact model 

formulation would result in a total of 127 variables including 81 binary variables, and 

256 constraints. The general model formulation is used in this research because it 

provides a comprehensive insight to a problem structure. 

In order to identify the optimal solution for the example problem, its 

corresponding formulated model was solved using the branch - and -bound enumeration 

method incorporated in Hyper Lingo 4.0 (LINDO Systems, 1998) computer software. It 

was run on a Pentium III 450 MHz machine with 128 MB RAM. After a run time of 17 

hours, 30 minutes and 46 seconds, Hyper Lingo 4.0 identified a global optimum of 81. 

The large amount of time that Hyper Lingo 4.0 needs to identify the optimal solution is 

partly due to the large number of binary variables (180) included in this model. Hyper 

Lingo 4.0 does not seem to be efficient enough to solve such a small problem, although it 

uses the branch - and -bound technique, which is an implicit enumeration algorithm for 

solving combinatorial optimization problems. 

In order to further examine the efficiency of Hyper Lingo 4.0, eleven more 

problem instances were generated and input to it. These problem instances were 

generated to be large enough for Hyper Lingo 4.0 to solve. In other words, the total 

number of variables and constraints of these problem instances are within the capacity of 

Hyper Lingo 4.0, which is 2000 constraints and 4000 variables. Except for the number of 
split jobs, the rest of the data for these problem instances are generated using the 

procedure described in section 7.1 of chapter 7. The data are presented in Table C.1 of 
Appendix C. Although these problem instances are sufficiently large for Hyper Lingo 
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4.0, their problem structures are considered small based on the categorization used in this 

research (see Chapter 7). The linear solver was allowed to run up to 72 hours to identify 

the optimal solution for each problem. The run time limit imposed here is extremely long 

in comparison to the run time required by the heuristic algorithm (i.e. less than 2 minutes) 

to solve the same problem. The results are presented in Table 6.1 Even though the run- 

time limit was set to 72 hours, 4 out of 11 problems (i.e. Problem Instance 8, 10, 11, 12) 

were not solved optimally. A feasible solution was obtained for Problem Instance 10, but 

it was not identified as a global optimum. The solver was not able to find any feasible 

solution for each of the remaining three problems when the run time reached 72 hours. 

The result of the experiment shows that the problem addressed in this research is highly 

complex. Its mathematical model is computationally difficult to solve, even when the 

size of the problem is small. 

Table 6.1 Results of solving the problems implicitly using Hyper Lingo 4.0 

Problem 
Instance 

Problem Structure Number of 
Constraints 

Number of 
Variables on Time 

(sec) Number 
of Jobs 

Pairs of 
split jobs 

Number of 
Machines Binary Real 

1 8 2 4 456 144 64 380 (Opt) 7441 
2 8 2 5 588 180 80 70 (Opt) 10152 
3 9 2 3 396 135 54 351 (Opt) 2386 
4 9 2 4 541 180 72 81 (Opt) 63046 
5 10 2 3 466 165 60 450 (Opt) 34904 
6 10 2 4 634 220 80 338 (Opt) 215613 
7 11 2 3 542 198 66 130 (Opt) 77242 
8 11 2 4 735 264 88 Infeasible 259200 
9 12 2 3 624 234 72 64 (Opt) 177596 
10 12 2 4 844 312 96 600 (Feas) 259200 
11 15 2 6 1869 720 180 Infeasible 259200 
12 17 3 5 1944 765 170 Infeasible 259200 

Note: Problem Instance # 4 is the example problem used in Chapter 5. Opt implies that 
the solution is an optimum, while Feas implies that the solution is feasible but not 
optimal. 
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6.1. Comparison Between the Optimal Solution and Solution Obtained by the 
Heuristic Algorithm 

With the optimal solution obtained by Hyper Lingo 4.0, one can assess the quality 

of the solution generated by the tabu- search based heuristic algorithms. The tabu search 

heuristic begins with an initial solution. Referring back to Chapter 5, four different 

methods to generate the initial solution were developed. These methods will be referred 

to as IS1 for EDD method, IS2 for EDDsp method, IS3 for LFJ/LFM method, and IS4 for 

ATC method. The initial solution generated by each of these methods is used as a 

starting point for the tabu- search based heuristic. Tabu search has a few features that 

affect its performance as a heuristic algorithm. These features include short- term/long- 

term memory function and fixed/variable size of tabu list. There are two different 

approaches in the application of long -term memory function: the maximum frequency 

and the minimum frequency. The heuristic algorithms developed in this research 

encompass the combinations of these features, as shown in Table 6.2. 

Table 6.2 Tabu - search based heuristic algorithms used in this research 

Types of Heuristic Memory function Size of Tabu List 
TS 1 Short Fixed 
TS2 Long -Max Fixed 
TS3 Long -Min Fixed 
TS4 Short Variable 
TS5 Long -Max Variable 
TS6 Long -Min Variable 

Each initial solution method (IS) is used in combination with each type of tabu - 

search heuristics (TS). Thus, there are a total of 24 heuristic combinations. Each 

combination is tested on 8 problem instances presented in Table 6.1. The remaining four 

problem instances are not used since Hyper Lingo 4.0 failed to identify the optimal 

solutions for them, and thus there is no basis for comparison. The solutions obtained by 

the algorithm are then compared to the corresponding optimal solutions obtained by 
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Hyper Lingo 4.0. The percentage deviation of the algorithms from the optimal solutions 

is evaluated and reported in Table 6.3. Table 6.4 shows the computation time of each 

algorithm. The computation time presented in the table is the sum of time IS takes to 

generate the initial solution and the time TS takes to complete the search. 

Table 6.3 Percentage deviation of the solutions obtained by the heuristics for small 
problems 

Problem 
Instance 

TS1 TS2 TS3 
IS1 IS2 IS3 IS4 IS1 IS2 IS3 IS4 IS1 IS2 IS3 IS4 

8J*2SP*4M 2.1 2.1 2.1 2.6 2.1 0 2.1 2.1 0 2.1 2.1 2.6 
8J*2SP*5M 2.9 0 0 18.6 0 0 0 17.1 2.9 0 0 18.6 
9J*2SP*3M 0.6 1.7 3.7 1.7 0.6 1.7 0 0.6 0.6 1.7 3.7 1.7 
9J*2SP*4M 8.6 8.6 14.8 0 8.6 8.6 1.2 0 0 0 14.8 0 

10J*2SP*3M 7.8 7.8 11.1 7.8 7.8 0 0 7.8 6.7 6.7 7.8 0 
10J*2SP*4M 0 0 0 0 0 0 0 0 0 0 0 0 
11J*2SP*3M 6.2 0 6.2 40 0 0 6.2 6.2 6.2 0 6.2 6.2 
12J*2SP*3M 3.1 3.1 23.4 78.1 3.1 3.1 3.1 3.1 3.1 3.1 23.4 70.3 

Average 3.91 2.91 7.66 18.60 2.78 1.68 1.57 4.61 2.43 1.70 7.24 12.42 

Problem 
Instance 

TS4 TS5 TS6 
IS1 IS2 IS3 IS4 IS1 IS2 IS3 IS4 IS1 IS2 IS3 IS4 

8J*2SP*4M 2.1 2.1 2.1 2.6 2.1 0 ' 2.1 2.1 0 2.1 2.1 2.6 
8J*2SP*5M 2.9 0 0 18.6 0 0 0 17.1 2.9 0 0 18.6 
9J*2SP*3M 0.6 1.7 3.7 1.7 0.6 1.7 0 0.6 0.6 1.7 3.7 1.7 
9J*2SP*4M 8.6 8.6 14.8 0 8.6 8.6 1.2 0 0 0 14.8 0 

10J*2SP*3M 7.8 7.8 11.1 7.8 7.8 0 0 0 6.7 6.7 0 0 
10J*2SP*4M 0 0 0 0 0 0 0 0 0 0 0 0 
11J*2SP*3M 6.2 0 6.2 6.2 0 0 6.2 6.2 6.2 0 6.2 6.2 
12J*2SP*3M 3.1 3.1 23.4 78.1 3.1 3.1 0 3.1 3.1 3.1 23.4 70.3 

Average 3.91 2.91 7.66 14.37 2.78 1.68 1.18 3.63 2.43 1.70 6.27 12.42 

Note: J = jobs, SP = pairs of split jobs M = machines 

The average percentage deviation of all 24 heuristic combinations is 5.4% with 

six of the heuristic combinations below 2 %. From the 24 heuristic combinations, 

IS3/TS5 appears to be the most effective heuristic combination in identifying the optimal 

solutions. The average percentage deviation for IS3/TS5 is 1.18 %. The next best 
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performer is IS3/TS2, which has an average percentage deviation of 1.57 %. Both of 
these heuristic combinations use LFJ/LFM method as the initial solution generation 

method, and long -term memory with maximum- frequency strategy in the tabu- search 

based heuristic. Both of these heuristic combinations only take approximately 12 

seconds to complete compared to 20 hours, which is the average time that Hyper Lingo 

4.0 takes to find the optimal solutions for all eight problem instances. Based on the 

average percentage deviation, one may conjecture that the combination of IS3 and TS5 is 

the most effective heuristic combination in identifying optimal or near optimal solutions 

for the small problem structure. 

Table 6.4 Computation time of the heuristics for small problems (in seconds) 

Problem 
Instance 

TSI TS2 TS3 
ISl IS2 IS3 IS4 IS1 IS2 IS3 IS4 IS1 IS2 IS3 IS4 

8J*2SP*4M 4.3 4.7 6.3 5.6 7.3 8.7 12.6 9.7 7.4 8.3 10.8 8.5 
8J*2SP*5M 5.9 4.6 4.5 5.3 10.8 9.7 9.1 11.6 8.7 9.3 8.6 9.9 
9J*2SP*3M 6.6 5.3 6.4 5.1 10.3 9.2 10.5 8.2 9.5 9.4 12.9 8.2 
9J*2SP*4M 4.7 4.7 4.1 3.6 8.5 9.0 8.1 5.8 8.4 8.0 7.8 6.9 
10J*2SP*3M 6.5 6.6 5.6 5.8 12.8 14.2 11.5 10.5 12.9 13.6 13.1 11.5 
10J*2SP*4M 5.8 6.4 8.2 8.1 11.4 12.0 13.1 12.3 13.8 12.6 15.5 10.2 
11J*2SP*3M 9.0 8.0 6.3 6.2 18.4 16.4 13.6 12.4 16.7 16.5 12.7 12.5 
12J*2SP*3M 11.2 9.5 8.1 5.7 24.6 21.6 18.3 12.0 19.7 19.3 17.6 11.7 

Average 6.74 6.21 6.18 5.65 13.00 12.60 12.09 10.32 12.13 12.13 12.37 9.92 

Problem 
Instance 

TS4 TS5 TS6 
IS1 IS2 IS3 IS4 ISI IS2 IS3 IS4 IS1 IS2 IS3 IS4 

8J*2SP*4M 5.2 3.8 4.4 3.6 8.2 7.0 8.8 7.0 7.3 8.7 10.3 9.4 
8J*2SP*5M 4.9 5.5 5.3 5.4 9.7 11.5 9.6 9.7 10.2 9.2 9.0 9.3 
9J*2SP*3M 4.5 4.7 5.2 4.8 8.0 8.5 8.6 7.7 8.2 7.8 7.5 6.5 
9J*2SP*4M 5.3 5.2 4.0 3.6 9.2 9.2 8.0 6.5 8.0 7.9 7.4 6.3 
10J*2SP*3M 6.6 6.3 6.2 6.3 13.8 13.4 13.1 11.9 12.5 11.4 13.2 10.9 
10J*2SP*4M 6.3 6.2 5.8 5.2 11.8 11.5 10.8 9.0 12.0 12.1 12.5 10.7 
11J*2SP*3M 9.8 9.5 7.8 8.5 20.3 20.5 16.8 15.7 18.6 19.0 13.9 14.8 
12J*2SP*3M 9.5 9.6 8.0 6.4 24.2 22.9 18.6 13.8 21.0 21.5 17.3 13.8 

Average 6.51 6.34 5.83 5.47 13.15 13.06 11.78 10.16 12.22 12.19 11.38 10.22 

Note: J = jobs, SP = pairs of split jobs M = machines 
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The average computation time of all 24 heuristic combinations is 9.9 seconds. 
This is tremendously short in comparison to the computation time Hyper Lingo 4.0 takes 
to find the optimal solutions, which is 20 hours on average over 8 problem instances. 

Within a level of TS, IS4 appears to be fastest among the four levels of IS. The 

superiority of IS4 from the other levels of IS is later confirmed in a statistical analysis 
explained in chapter 7. Comparing the levels of TS, the computation times for TS 1 and 

TS4 turn out to be shorter than the computation times for TS2, TS3, TS5 and TS6. This 
is due to the fact that TS1 and TS4 use the short-term memory of tabu search, while TS2, 

TS3, TS5, TS6 use the long -term memory. 

6.2. The Effectiveness of Tabu - Search Based Heuristics for Medium and Large 
Problems 

The branch- and -bound enumeration technique is not efficient enough to solve for 

the optimal solution when the size of a problem structure grows larger. The branch -and- 

bound enumeration technique is not capable of identifying the optimal solutions for four 

problem instances mentioned in the previous section although these problems are 

categorized as small. For medium and large problem instances, the effectiveness of the 

heuristics can be assessed if a suitable lower bound for the problem investigated is 

known. However, the problem structure does not seem to lend itself to conveniently 

identify a lower bound. An alternative way to assess the effectiveness of the heuristics 

for medium and large problems is by testing the heuristics on carefully constructed 
problem instances with a known optimal total weighted tardiness (TWT) of zero. The 

effectiveness of the heuristics can be evaluated by measuring how much their TWT 

deviates from the optimum which is zero. A problem instance with an optimal TWT of 
zero is generated by using the following procedure: 

1. Generate a problem instance using steps 1 to 9 of the procedure outlined in section 

7.1 of Chapter 7. 

2. Randomly assign each job to a machine. In the process of the random assignment, 

care should be taken to ensure that split jobs satisfy the JIT requirement. Record the 

completion times of all jobs. 
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3. Set the due dates of all non -split jobs equal to their completion time. The due dates 
for the split portions of a job should be set equal to the largest completion time of the 
two split portions. 

For the medium problem structure, 5 problem instances are generated using the 
above procedure. The choice of only 5 problem instances is based on two reasonings. 
First, there are 24 heuristic combinations (4 levels of IS and 6 levels of TS) to be tested. 
With 5 problem instances, the actual number of problem tested is 120 (24 *5). Second, 
each heuristic combination requires 3 minutes to 3 hours of computation time to solve a 
medium problem instance. Thus, solving 5 problem instances of medium size with all 
heuristic combinations would need fairly large computational effort. 

The combinations of IS1 IS4 and TS TS6 are applied to each problem 
instance. Once the values of the TWT from the heuristic combinations are obtained, they 
are compared to the TWT of the optimal schedule, which is zero. However, an 
evaluation for percentage deviation is not possible since that would lead to a division by 
zero. To overcome this problem, the point of reference, which is the TWT of the optimal 
schedule, must be shifted to a positive value. This can be accomplished by delaying the 
completion times of all jobs in the optimal schedule by one unit of time and thus, the 
TWT would be greater than zero. Generally, this results in a TWT that is equal to the 
sum of the weights of all jobs. This generalization only holds true if the split portions of 
a job are completed at the same time in the optimal schedule. If the completion times of 
the split portions of a job are not the same in the optimal schedule, one of the two split 
portions will not be tardy and thus the weight of this split portion should not be included 
in the evaluation for the TWT. This TWT is used as a new reference point in evaluating 
the percentage deviation of the solutions obtained by the heuristics. Thus, the percentage 
deviation is evaluated as: 

TWT reference point *100% if TWT > reference point 
Percentage Deviation = reference point 

0 if TWT <_ reference point 

The results of applying the heuristics to the five medium problem structures are 

presented in Table 6.5. The first seven columns show the TWT obtained by each 
heuristic combination. The last seven columns show the percentage deviation of the 
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TWT obtained by each heuristic combination. Almost half of the heuristic combinations 
are able to identify the true optimal TWT of zero for the problem instance with 25 jobs 
and 10 machines. Most of the heuristic combinations obtained TWT that are less than the 
reference point, except in the problem instance with 45 jobs and 6 machines. 

Table 6.5 Results of applying the heuristics to medium problem structures with zero 
values of TWT 

25 Jobs, 10 Machines (Reference Point = 53) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dey TS1 TS2 TS3 TS4 TS5 TS6 
IS1 4 4 4 4 4 0 IS1 0.0 0.0 0.0 0.0 0.0 0.0 
IS2 4 4 4 4 4 0 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 4 3 0 0 0 0 IS3 0.0 0.0 0.0 0.0 0.0 0.0 
IS4 4 0 0 0 0 0 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

30 Jobs, 9 Machines (Reference Point = 77) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dey TS1 TS2 TS3 TS4 TS5 TS6 
IS1 10 10 10 10 10 10 IS1 0.0 0.0 0.0 0.0 0.0 0.0 
IS2 14 14 14 14 14 14 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 49 11 11 11 11 11 IS3 0.0 0.0 0.0 0.0 0.0 0.0 
IS4 24 24 24 24 24 24 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

35 Jobs, 8 Machines (Reference Point = 78) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dev TS1 TS2 TS3 TS4 TS5 TS6 
1St 69 36 11 69 36 11 IS 1 0.0 0.0 0.0 0.0 0.0 0.0 
IS2 1 1 1 1 1 1 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 11 11 11 11 11 11 IS3 0.0 0.0 0.0 0.0 0.0 0.0 
IS4 97 63 93 97 63 93 IS4 24.4 0.0 19.2 24.4 0.0 19.2 

40 Jobs, 7 Machines (Reference Point = 86) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dey TS1 TS2 TS3 TS4 TS5 TS6 
IS1 57 57 57 57 57 57 IS 0.0 0.0 0.0 0.0 0.0 0.0 
IS2 45 45 45 45 45 45 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 47 47 47 47 47 47 IS3 0.0 0.0 0.0 0.0 0.0 0.0 
IS4 70 70 68 70 70 68 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

45 Jobs, 6 Machines (Reference Point = 106) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dey TS1 TS2 TS3 TS4 TS5 TS6 
IS1 153 149 153 153 149 153 IS1 44.3 40.6 44.3 44.3 40.6 44.3 
IS2 153 149 153 153 149 153 IS2 44.3 40.6 44.3 44.3 40.6 44.3 
IS3 225 225 174 225 225 174 IS3 112.3 112.3 64.2 112.3 112.3 64.2 
IS4 191 184 138 191 184 138 IS4 80.2 73.6 30.2 80.2 73.6 30.2 
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To view the performance of each heuristic combination, the average percentage 

deviation over the five problem instances is evaluated and presented in Table 6.6. Four 
heuristic combinations, i.e. IS1/TS2, IS2/TS2, IS1/TS5, and IS2/TS5, appear to have the 

same minimum average percentage deviation of 8.11%. The percentage deviation 

averaged over the five problem instances and the 24 heuristic combinations is 12.9 %. 

Based on these results, one-may conjecture that the heuristics are sufficiently effective in 

identifying very good near optimal solutions, if not the optimal solutions, for the medium 

problem structure. 

Table 6.6 Average percentage deviation of the solutions obtained by the heuristics for 
medium problem structure 

Initial Solution 
Generation Method 

Tabu - Search Based Heuristics 
TS1 TS2 TS3 TS4 TS5 TS6 

IS1 8.87 8.11 8.87 8.87 8.11 8.87 
IS2 8.87 8.11 8.87 8.87 8.11 8.87 
IS3 22.45 22.45 12.83 22.45 22.45 12.83 
IS4 20.91 14.72 9.88 20.91 14.72 9.88 

A similar effort is made to assess the effectiveness of the heuristics in identifying 

optimal solutions for large problem structure. This time, four problem instances that 

range from 50 to 60 jobs and 11 to 15 machines are generated. The problem structure 

that falls within this range is considered large problem in this research. Considering the 

computation time required by each heuristic to solve a large problem is between 4 14 
hours, and there are a total of 24 heuristic combinations, testing the heuristics on many 

problem instances can take up a large computational effort. Therefore, only four problem 

instances are used. The random assignment procedure that was used for medium problem 

structure is now applied to the large problem structure. For each problem instance, an 

optimal schedule with zero value of TWT is obtained by setting the due dates equal to the 

completion times of the jobs. All 24 heuristic combinations are applied to each problem 

instance and the TWT of the final solutions is evaluated accordingly. The percentage 
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deviation of the final solutions is also evaluated the same way as in the medium problem 
structure. 

The TWT and percentage deviation obtained by each heuristic combinations are 
reported in Table 6.7. In the problem instance with 50 jobs and 11 machines, four of the 
heuristic combinations are able to identify solutions with TWT that is very close to zero. 
All of the heuristic combinations are able to identify solutions that are smaller than the 
reference point in two problem instances. 

Table 6.7 Results of applying the heuristics to large problem structures with zero values 
of TWT 

50 Jobs, 11 Machines (Reference Point = 111) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dev TS1 TS2 TS3 TS4 TS5 TS6 
ISl 31 27 31 31 31 31 IS1 0.0 0.0 0.0 0.0 0.0 0.0 
IS2 31 27 31 31 31 31 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 23 11 13 23 11 13 IS3 0.0 0.0 0.0 0.0 0.0 0.0 
IS4 34 4 2 34 4 2 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

53 Jobs, 13 Machines (Reference Point = 126) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dev TS1 TS2 TS3 TS4 TS5 TS6 
IS1 217 85 80 217 85 80 IS1 72.2 0.0 0.0 72.2 0.0 0.0 
IS2 93 85 93 93 85 93 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 148 148 97 148 148 97 IS3 17.5 17.5 0.0 17.5 17.5 0.0 
IS4 115 93 110 115 93 110 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

58 Jobs, 12 Machines (Reference Point = 136) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dev TS1 TS2 TS3 TS4 TS5 TS6 
IS1 165 137 165 173 137 173 IS 1 21.3 0.7 21.3 27.2 0.7 27.2 
IS2 131 109 131 131 109 131 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 226 187 189 226 187 189 IS3 66.2 37.5 39.0 66.2 37.5 39.0 
IS4 159 132 159 159 132 159 IS4 16.9 0.0 16.9 16.9 0.0 16.9 

60 Jobs, 15 Machines (Reference Point = 144) 
TWT TS1 TS2 TS3 TS4 TS5 TS6 % Dev TS1 TS2 TS3 TS4 TS5 TS6 
ISI 54 18 23 54 18 23 IS1 0.0 0.0 0.0 0.0 0.0 0.0 
IS2 30 25 29 30 25 29 IS2 0.0 0.0 0.0 0.0 0.0 0.0 
IS3 68 68 55 68 68 55 IS3 0.0 0.0 0.0 0.0 0.0 0.0 
IS4 55 25 38 55 25 38 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

The average percentage deviation of the solutions obtained by each heuristic 
combination is evaluated over all four - problem instances and summarized in Table 6.8. 
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As seen from this table, the average percentage deviation evaluated for all tabu- search 
based heuristic that use IS2 as the initial solution generation method is zero. This means 
that the combination of IS2 and any TS is capable of identifying solutions that are smaller 
than the reference point. IS4/TS2 and IS4/TS5 also obtain an average percentage 

deviation of zero. The percentage deviation averaged over the four problem instances 
and the 24 heuristic combinations is 6.9 %. Based on these results, it can be concluded 

that the heuristics have been very effective in identifying very good near optimal 

solutions for the large problem structure. 

Table 6.8 Average percentage deviation of the solutions obtained by the heuristics for 
large problem structure 

Initial Solution 
Generation Method 

Tabu - Search Based Heuristics 
TS1 TS2 TS3 TS4 TS5 TS6 

IS1 23.39 0.18 5.33 24.86 0.18 6.80 
IS2 0.00 0.00 0.00 0.00 0.00 0.00 
IS3 20.91 13.74 9.74 20.91 13.74 9.74 
IS4 4.23 0.00 4.23 4.23 0.00 4.23 
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7. RESULTS AND DISCUSSIONS 

Recall from Chapter 6, the tabu- search based heuristic algorithms are proven to be 

highly efficient in comparison to the implicit enumeration technique (namely branch -and- 

bound) in solving small problem structures. Each heuristic algorithm only takes an 

average of 10 seconds to solve the problem, while the branch- and -bound technique 

embedded in Hyper Lingo 4 takes an average of 20 hours. Furthermore, the quality of the 

solutions generated by these heuristic algorithms deviates 5.4% in average from the 

optimum. One of the algorithms, i.e. IS3/TS5 obtained solutions that deviate only 1.18% 

in average from the optimal solutions. For medium and large problem structures, the 

effectiveness of the algorithms was assessed by solving problem instances that are 

constructed to have zero total weighted tardiness. The average percentage deviation 

evaluated over all heuristic algorithms is 12.9% for medium problem structure and 6.9% 

for large problem structure. Based on these results, the tabu- search based heuristic 

algorithms can be conjectured to provide very good near optimal solutions, if not optimal, 

to problem structures with no known optimal solutions. The research question is now 

focused on evaluating the comparative performance of the tabu- search based heuristics, 

aided by the initial solution generation methods. Precisely, the intent of the research is to 

evaluate the performance of each algorithm as the size of the problem structure grows 

from small to medium and then large. 

The size of a problem structure is determined by the number of jobs, n, and total 

number of machines, m. Based on the size of problems used by Yaghubian et al. (1999), 

the size of the problem structures covered in this research is defined as follows: 

Small size: up to 20 jobs and 5 machines, 

Medium size: 21 45 jobs and 6 10 machines, 

Large size: 46 60 jobs and 11 -15 machines. 

These sizes are selected to cover a wide variety of scheduling problems encountered in 

industry practice, and whether the computation time required to solve them using the 

algorithms lies within reasonable expectations. Most of the small problem structures can 

be solved in less than 1.5 minutes. The medium problem structures require 3 minutes to 
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3 hours of computation time. Solving a problem structure as large as 60 jobs and 15 

machines may take as long as 14 hours. The increase in the computational time is due to 

the increase in the complexity of the problem, presented in the form of an enlarged search 

space. The increase in search space has caused the algorithm to consider more 

neighborhood solutions before selecting the best solution and then applying the move that 

results in that best solution. The increase in search space also delays the termination of 
the search as more moves are required before the stopping criteria is activated. 

Once the sizes of the problem structures are established, an experiment can be 

conducted to address the following research issues: 

1. To analyze the performance of the four initial solution generation methods on each 

size of the problem structure. 

2. To analyze the performance of the six tabu- search based heuristics on each size of the 

problem structure. 

3. To examine if the performance of the six tabu- search based heuristics is affected by 

the initial solution generation methods used. 

4. To analyze the impact of the features incorporated in the tabu search, in particular the 

tabu list size and the memory function, on each size of the problem structure. 

To address these research issues, a multi- factor experiment based on split -plot design is 

considered. The design of this experiment is explained in detail in section 7.2. 

7.1. Data Generation 

As mentioned before, the total number of jobs and machines involved defines the 

structure of a problem. In the experiment, the data for each job and machine, namely the 

job processing time, job weight, job release time, job due date, and machine availability 

are generated using randomization procedure. The notation used for the total number of 

jobs is n and the total number of machines is m. The procedure used to generate the data 

for each problem instance is documented as follows: 

(1) The total number of split jobs, sn, in a problem instance is determined to be equal to 

0.25n. Since split jobs have to be in pairs, the number of split jobs should be even. 



90 

If 0.25n results in a decimal number, round the value to the nearest even number. If 
0.25n results in an odd number, round up the value to the nearest even number. 

(2) To determine the jobs that will receive split status, i.e. split jobs, a set of random 

numbers that are uniformly distributed over the interval [0,1] is generated. The 

total number of random numbers in the set is equal to n ' *sn (sn is evaluated in 

step (1)). Count the quantity of random numbers in the set that has value < 0.25. If 
the total count is not equal to Y2* sn, generate a new set of random numbers and 

repeat the count. If the total count is equal to Y2* sn, assign an index number of 
1,2,3,... n ' /Z *sn to each random number in the set. As the index numbers are later 

used as indices for the jobs, the index numbers that are assigned to random numbers 

with value < 0.25 become the indices of the first split portions of the jobs with l' 
added as the last digit of the indices. The second split portions of the jobs are 

assigned the same indices as the first split portions but the last digit of the indices is 

`2'. For example, if the random number with value < 0.25 is assigned an index of 
6, then the first split portion of the job has an index of J61 and the second split 

portion J62. 

(3) The maximum permissible limit for the difference in completion time between two 

split portions of a job, gj1j2, is equal to 1 time unit. 

(4) Three levels (types) of machine capability are included in a problem instance: the 

least, medium and most capable machines. The subsequent statements explain how 

the type of the machines and the total unit for each machine type is determined. 

Initially, three machine indices (Ml, M2 and M3) are developed. Three random 

numbers are generated from a uniform distribution over the interval [1,10]. These 

random numbers are used as coefficients of machine capability, a;, for each 

machine type i. The first a; is assigned to M1, the second to M2 and so on. The 

machine that receives the smallest a; is referred to as the most capable machine, 

Consequently, the machine that receives the largest a; is referred to as the least 

capable machine. If m is larger than 3, generate m 3 random numbers that are 

uniformly distributed over the interval [0,1]. Count the quantity of random 

numbers that have value less than or equal to 1/3, between 1/3 and 2/3, and larger 

than 2/3. The smallest of the three counts is the additional units for the most 
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capable machine. This means that if the smallest of the three counts equals to zero, 

the most capable machine does not have any additional unit. The largest of the 
three counts is the additional units for the least capable machine. Consequently, the 

machine with medium capability will have additional units equal to the second 

largest of the three counts. 

(5) The least, medium and most capable machines are assumed to have the potential to 

process 50 %, 70% and 85% of all jobs, respectively. These job percentage is noted 

as ß; for each machine type i. ß; is used to determine whether job j can be 

processed on a machine type i or not. First, a uniformly distributed random number 

RN in [0,1] is generated. If RN > ß;, then job j is assigned infinite processing time 

on machine type i. If RN < ß;, the processing time of job j on machine type i is 

determined in step (6). If the split portion of a job was assigned infinite processing 

time on machine type i, then its other split portion would also receive an infinite 

processing time on the same type of machine. 

(6) The processing times are uniformly distributed over the interval [a; + 1, a; +20] for 

non -split jobs and [a; + 11, a; + 20] for split jobs. The processing times of a job are 

the same on machine units of the same type. 

(7) The release times of the jobs are generated from Poisson distributed random 

numbers with mean interarrival rate of 5. Poisson distribution was used to generate 

job release time by Schutten and Leussink (1996). These random numbers must 

take integer values. 

(8) Machine availability time is generated from Poisson distributed random numbers 

with interarrival rate of 5. Suresh and Chudhuri (1996) used Poisson distribution to 

model the occurrence of machine non - availability. These random numbers must 

take integer values. 

(9) Job weight is generated from uniformly distributed random numbers over the 

interval [1,4]. These random numbers must be integers. 

(10) The due dates of the jobs are generated from a composite uniform distribution based 

on the user- defined due date range factor (R) and the due date tightness factor ('r). 

A random number RN from a uniform distribution over the interval [0,1] is 

generated. If 0 _< RN < i, the due date is generated from uniformly distributed 
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random numbers over the interval [d -Rd, d]. If RN> T, the due date is generated 

from uniformly distributed random numbers over the interval [U + (Cmax - 

The due dates must be integer values. The evaluation for C. and d is described in 

Section 5.3.4. 

Notice that all random numbers in the procedure above are generated from uniform 

distribution except for job release time and machine availability time, which are 

generated from Poisson distribution. The reasoning for the different types of distribution 

used is that uniform distribution is appropriate to model a length or duration of a process, 

while Poisson distribution is the appropriate distribution to model the occurrence of an 

event at a point of time. 

7.2. Design of Experiment 

To address research questions 1,2, and 3, a multi- factor experimental design is 

employed. Two performance measures are used: the total weighted tardiness and the 

total computation time of the algorithms. Two factors are used in the experiment, they 

are the initial solution generation methods (IS) and the different types of tabu- search 

based heuristics (TS). As described in Chapter 6, there are four different levels of IS and 

six different levels of TS. 

In the beginning of this chapter, three different sizes of problem structures were 

defined and discussed. Within each size, there are different structures to consider. 

Within a problem structure, one can generate different problem instances (test problems) 

using the procedure documented in section 7.1. Since one problem instance is different 

from another, an experiment that involves various problem instances and various problem 

structures will collect large variability of results. The variation can be reduced by 

treating each problem instance as a block. Blocking the problem instance is necessary to 

eliminate the influence of the differences between problem instances. Thus, the 

differences in the performance of the algorithms, if identified, can be wholly attributed to 

the effect of the algorithms and not to the difference between problem instances. 

d)R]. 
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All 24 (4 levels of IS * 6 levels of TS) combinations of both factors are tested in 
each block. At this point, the experimental design looks like a randomized complete 
block design. However, it is not possible to completely randomize the order of the factor 
combinations applied to a block as required in a randomized complete block design. 
Therefore, a split -plot design is selected in which IS is the whole plot treatment and TS is 

the subplot treatment. TS is considered as subplot treatment because it is the factor 
posing the maximum interest in the design. For further details on randomized complete 
block design and split plot design, refer to the text by Montgomery (1991). 

The experiment includes all three sizes of problem structures. For small size 
category, three different problem structures are used; they are 9 jobs and 4 machines, 12 

jobs and 3 machines, and 17 jobs and 5 machines. Another three problem structures are 

used under medium size category: 25 jobs and 10 machines, 35 jobs and 8 machines, and 

45 jobs and 6 machines. For large size category, the types of problem structures are 

reduced to two. This reduction is due to its extensive computation time as explained in 

the beginning of this chapter. The two problem structures used for large size category 

are: 50 jobs and 11 machines, and 60 jobs and 15 machines. 

Within each problem structure, 5 problem instances are generated. Each problem 
instance is characterized by the combination of the due date tightness factor (R) and the 

due date range factor (t) used to generate the due dates of jobs in the problem. The 

combination of R and T determines the characteristic of the due date, as documented in 

Table 5.1. In order to cover different characteristics of due dates, 5 combinations of R 
and T are selected from Table 5.1. Each combination is used in each problem instance 

(block) as: 

Block 1: T =0.2 and R =0.8, 

Block 2: T 0.5 and R = 0.5, 

Block 3: T = 0.8 and R = 0.2, 

Block4: T =0.2 and R =0.2, 

Block 5: r= 0.8 and R =0.8. 

The five combinations are used consistently over each problem structure. 
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The data generated for the experiment using the procedure described in section 

7.1 is presented in Table D.1 - D.3 in Appendix D for all problem structures. The 

experiment is performed on Pentium III 450 MHz machines with 128 MB RAM. 

7.3. Experimental Results and Analysis 

The results of the experimentation are presented in Table E.1 Table E.3 of 
Appendix E for small, medium and large problems, respectively. In these tables, the total 

weighted tardiness is the final best solution obtained by a tabu- search based heuristic 

(TS) using the initial solution generated by an initial solution generation method (IS). 

The computation time is the total time taken by an initial solution generation method and 

a tabu- search based heuristic to identify the final solution. The summary of the results 

collected for each problem structure is shown in Table 7.1. The analysis of results will be 

focused on the total weighted tardiness first and then on the computation time. 

Table 7.1 Summary of experimental results 

Performance 
Measure 

Average Total Weighted 
Tardiness 

Average Computation Time 
(in seconds) 

Problem Structure Small Medium Large Small Medium Large 

Levels 
of IS 

IS1 258.76 772.02 953.3 41.7 1810 15803 
IS2 259.42 774.33 937.4 37.85 1741 16268 
IS3 261.47 778.84 936.8 46.23 2389 18004 
IS4 261.93 768.77 937.2 30.35 1355 11242 

Levels 
of TS 

TS1 264.34 782.93 955.8 13.6 781 7716 
TS2 258.38 769.70 933.9 42.3 2228 20979 
TS3 259.24 768.48 932.8 43.5 2226 19617 
TS4 263.97 782.42 954.0 18.7 804 6466 
TS5 257.22 769.93 937.2 60.0 2519 18738 
TS6 259.24 767.48 933.4 56.1 2384 18460 

Note: The average total weighted tardiness for each level of IS/TS is obtained by taking 
the average of total weighted tardiness over all blocks and all levels of TS/IS. The 
average computation time is evaluated in the same way as average total weighted 
tardiness. 



95 

7.3.1. Total Weighted Tardiness 

As the summary of results only shows the average of the total weighted tardiness 
(TWT), one cannot conclusively say that the level of factors that has the minimum 
average TWT is, in a statistical sense, better than the rest. In order to perform a statistical 
analysis on the TWT, a preliminary data exploration is necessary to examine the 
distribution of TWT. It is widely known that the statistical analysis methods such as t- 

test are a powerful tool if the data is normally distributed. Graphic tools such as box plot 

is very useful to detect any departure from the assumption of normal distribution. The 

box plots of the TWT for all levels of IS and all levels of TS are shown in Figure F.1 - 

F.3 of Appendix F for small, medium and large problem structures. These box plots are 

generated by STATGRAPHICS Plus version 3.0 (Statistical Graphics, 1994 -1997) 

statistics software. The plots show that the data distribution is highly skewed and long - 

tailed, which implies a severe departure from the normality assumption. This is due to 

the big discrepancy between the values of the TWT as a result of using different 

combinations of due date tightness factor (t) and due date range factor (R). A problem 

instance that has a small i and large R, or small i and small R would tend to yield a 

relatively small or even zero value of TWT. On the other hand, a problem instance with 

large i and small R would tend to yield a relatively large value of TWT. Furthermore, 

the TWT cannot be normally distributed since the values of TWT are integers (discrete) 

while normal distribution is a continuous distribution. Due to the non - normality of the 

data distribution, parametric methods such as F -test and t- test are not appropriate for 
analyzing the experimental results. 

The alternative to F -test and t- test are non - parametric methods known as 

Friedman test and Wilcoxon signed -rank test. Friedman test is useful to check if there is 

any significant difference between the treatment (factor) levels. If there is an evidence of 
significant difference between the treatment levels, Wilcoxon signed -rank test will be 

applied to identify which treatment level performs distinguishably better than the rest. 

Friedman test utilizes rank transformation that is applied to the response variable (i.e. 

TWT) and a test statistic is evaluated on the ranks. Originally, Friedman test was used 
for analysis in single factor, randomized block experiment. After small modifications of 
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the procedure, the test can be used to test for main effects and interactions in multi- factor 

experiments involving randomized block design. For a detailed description on the 

application of Friedman test, refer to the text by Conover (1999). The description on the 

modifications to the procedure can be found in the texts by Bradley (1968), and Neave 

and Worthington (1988). 

For each size of problem structure, Friedman tests are applied to test three 

different hypotheses as stated below: 

Hypothesis 1. Ho: 

Hl: 

Hypothesis 2. Ho: 

H1: 

Hypothesis 3. Ho: 

H1: 

There is no difference in the TWT obtained for the problem instances 

using the four initial solution generation methods (IS). 

At least one of the initial solution generation methods tends to yield 

smaller TWT than the others. 

There is no difference in the TWT obtained for the problem instances 

using the six tabu search heuristics (TS). 

At least one of the tabu search heuristics tends to yield smaller TWT 

than the others. 

There is no interaction between IS and TS. 

There is interaction between IS and TS. 

The results of Friedman tests are summarized in Table 7.2. With a = 0.05, there 

is no significant difference between the levels of IS for all sizes of problem structure. On 

the contrary, there is strong significant difference between the levels of TS for all sizes of 

problem structure. 

Table 7.2 Summary of results from Friedman tests 

Problem 
Structure 

Hypotheses 1 (IS) Hypotheses 2 (TS) Hypotheses 3 (IS *TS) 
Test Statistics p -value Test Statistics p -value Test Statistics p -value 

Small 0.638 0.8876 31.574 < 0.0001 25.938 0.0387 
Medium 0.891 0.8277 42.094 < 0.0001 17.846 0.2708 
Large 2.576 0.4616 26.309 < 0.0001 24.853 0.0520 
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It is pertinent to check if the interaction effect between the levels of IS and TS is 

significant. If the interaction between IS and TS is significant, the effect of TS may be 

obscured by the interaction effect. For a significance level of 0.05, the interaction 

between IS and TS is significant for small problem structure. Thus, Wilcoxon signed- 

rank tests are applied to identify which combinations of IS and TS that differ 

significantly. For a detailed description on the application of the Wilcoxon signed -rank 

test, refer to Conover (1999). For small problem structure, there are a total 276 

comparisons between all possible pairs of 24 combinations of IS and TS. Only 2 out of 
the 276 comparisons turn out to be significantly different, they are: IS4/TS1 with 

IS2/TS5, and IS4/TS4 with IS2/TS5. Since the other combinations of IS and TS do not 

show any significant difference, then it is safe to make pairwise comparisons just 
between the levels of main effects (i.e. IS or TS). Since there is no significant difference 

between the levels of IS (the p -value of the tests are > 0.05) for all sizes of problem 

structure, then the pairwise comparisons are conducted only between the levels of TS. 

The comparisons between the levels of TS are necessary in order to identify which level 

of TS, without the effect of IS, performs significantly better. This is done by applying 

Wilcoxon signed -rank tests on the TWT between different levels of TS. The results are 

shown in Table F.1 of Appendix F. 

73.2. Computation Time 

Recall from the previous section that the Friedman tests show that the TWT 

between the levels of IS is not significantly different. Thus, the performance of each 

level of IS is now evaluated based on the computation time. Similar to TWT, an initial 

data exploration is performed on the computation time as the second response variable in 

the experiment. The box plots of the computation time are shown in Figures G.1 G.3 of 
Appendix G for all sizes of problem structure. The plots show that the distribution of 
computation time is highly skewed and the variance of each level of factor (i.e. IS or TS) 

is not equally spread. This is because some levels of IS or TS tend to take computation 

times that are much higher than the other levels. The largest computation time is more 
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than ten times as large as the smallest computation time. To stabilize the spread of the 

data variance, a natural - logarithm data transformation is applied. The distribution of the 

transformed computation time has a normal shape and the variance is equally spread as 

shown in Figures G.4 G.6 of Appendix G. Since the normality assumption for 

parametric statistical methods is met, an analysis of variance (ANOVA) or F -test can be 

applied to the log- transformed computation time (LOG_CT). The ANOVA table is 

shown in Tables G.1 G.3 of Appendix G for small, medium, and large problem 

structure, respectively. These ANOVA tables are constructed based on the analysis 

guidelines for split -plot design described in Montgomery (1991). 

The ANOVA tables show that the effects of IS and TS are significant to the log - 

transformed computation time for small, medium and large problem structures. The 

interaction between IS and TS is significant only for the small problem structure. Due to 

the interaction effect, the comparisons between two levels of IS should be made within a 

fixed level of TS as shown in Table G.4 of Appendix G for small problem structure. 

For medium and large problem structures, the comparisons between two levels of 
IS are performed differently from small problem structure. Since the interaction between 

IS and TS is not significant in medium and large problem structures, the comparisons 

between two levels of IS can be made over all levels of TS as shown in Table G.5 of 
Appendix G. The multiple comparisons are based on Duncan's multiple range test. The 

box plots, analysis of variance, and Duncan's multiple range tests are performed on 

STATGRAPHICS Plus 3.0. 

7.4. Discussion 

Recall that in order to identify the level of TS that perform significantly better 

than the others, the Wilcoxon signed -rank tests are applied on the TWT between the 

levels of TS. To help visualize the results of Wilcoxon signed -rank tests, a table is 

constructed in terms of homogeneous groups. A homogeneous group consists of the 

levels of TS that are not significantly different. The homogeneous groups in terms of the 

TWT from small problem structure are shown in Table 7.3. In this table, the averages of 
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TWT and computation time are taken from Table 7.1 and the levels of TS that have sign 

"X" within the same group imply that they are not significantly different. Table 7.3 

shows that there are three homogeneous groups of TWT for the small problem structure. 

TS5 is significantly different from TS3, TS6, TS4, and TS1. There is no significant 

difference between TS5 and TS2. TS2 is significantly different from TS4 and TS1, but 

not significantly different from TS3 and TS6. Clearly, TS5 and TS2 outperform the other 

levels of TS. Since TS5 and TS2 are not statistically different, the selection between 

them has to be based on the numerical difference. As TS5 has smaller average TWT 

than TS2, TS5 is selected as the tabu- search heuristic for small problem structure. 

Table 7.3 Homogeneous groups of TWT for small problem structure 

Levels of TS Average TWT Average CT Homogeneous Groups 
TS5 257.22 60.0 X 
TS2 258.38 42.3 X X 
TS3 259.24 43.5 X X 
TS6 259.24 56.1 X X 
TS4 263.97 18.7 X 
TS1 264.34 13.6 X 

Note: CT = computation time 

As Friedman tests showed that there is no significant difference in the TWT 

between the levels of IS, the analysis is directed toward the computation time required by 

each level of IS. Since the interaction between IS and TS is significant in terms of 
computation time, the multiple comparisons between the levels of IS is made by fixing 

TS at TS5 as the selected tabu- search based heuristic for small problem structure. The 

results of these multiple comparisons obtained using Duncan's multiple range tests are 

shown in Table G.4. The homogeneous groups in terms of the computation time for 

small problem structure are shown in Table 7.4. The averages of the computation time 

and the TWT are taken from Table 7.1, and the interpretation of the homogeneous groups 

is similar to previous explanation. As seen from Table 7.4, each level of IS is 

significantly different from each other in terms of the computation time. IS4 has the 
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smallest average computation time and is statistically different from the other levels. 

However, IS4 yields the largest average TWT. As the TWT between the levels of IS was 

analyzed to be not statistically different from each other, the decision to select the best 

performer would be based on the computation time. Therefore, IS4 is selected as the 

method to generate initial solutions for TS5 in small problem structure. 

Table 7.4 Homogeneous groups of computation time with TS fixed at TS5 (small 
problem structure) 

Levels of IS Average CT Average TWT Homogeneous Groups 
IS4 45.4 259.20 X 
IS2 56.5 255.53 X 
IS1 64.8 255.53 X 
IS3 73.4 258.60 X 

Note: CT = computation time; the average CT and average TWT are obtained with TS 
fixed at TS5 

As an afterthought, in section 6.1 of Chapter 6, IS4 was evaluated to yield the 

largest average percentage deviation and the smallest computation time within the levels 

of TS fixed at TS5. The heuristic combination that obtained the smallest average 

percentage deviation was IS3/TS5. This agrees with the experimental results obtained in 

this section, i.e. IS3 and IS4 are not statistically different in terms of the TWT, but the 

average TWT obtained by IS3 is numerically smaller than IS4. Furthermore, TS5 is the 

one that has the smallest average TWT among the six heuristics. 

The homogeneous groups in terms of the TWT for medium problem structure are 

shown in Table 7.5. TS6, TS3, TS2, and TS5 are significantly different from TS4 and 

TS1. In other words, TS2, TS3, TS5, and TS6 obtained results that are statistically better 

than TS1 and TS4. However, there is no significant difference between TS2, TS3, TS5, 

and TS6. If one has to choose among TS2, TS3, TS5, and TS6, it has to be based on the 

difference in average TWT. Therefore, TS6, as the heuristic that yields the smallest 

average TWT, is selected to be the tabu- search based heuristic for medium problem 

structure. 
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The selection of the initial solution generation method for medium problem 

structure is based on the computation time since there is no significant difference 

evaluated between the levels of IS in terms of solution quality (TWT). As the interaction 

between IS and TS is not significant in terms of computation time, the comparisons 

between any two levels of IS can be made over all levels of TS. The comparisons 

between any two levels of IS are done using Duncan's multiple range test and the 

detailed results are shown in Table G.5. The results of Duncan's analysis are 

summarized in Table 7.6, which shows four homogeneous groups. In terms of the 

computation time, all four levels of IS are significantly different from each other. IS4 is 

evaluated as the one that requires the shortest computation time as well as having the 

smallest average TWT. Thus, IS4 is selected as the initial solution generation method for 

medium problem structure. 

Table 7.5 Homogeneous groups of TWT for medium problem structure 

Levels of TS Average TWT Average CT Homogeneous Groups 
TS6 767.48 2384 X 
TS3 768.48 2226 X 
TS2 769.70 2228 X 
TS5 769.93 2519 X 
TS4 782.42 804 X 
TS1 782.93 781 X 

Note: CT = computation time 

Table 7.6 Homogeneous groups of computation time for medium problem structure 
Levels of IS Average CT Average TWT Homogeneous Groups 

IS4 1355 768.77 X 
IS2 1741 774.33 X 
IS1 1810 772.02 X 
IS3 2389 778.84 X 

Note: CT = computation time 
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The results of this statistical analysis agree with the results of the experimentation 

on medium problem structures mentioned in section 6.2 of chapter 6. Recall from Table 

6.6, IS1/TS2, IS1/TS5, IS2/TS2, and IS2/TS5 are the heuristic combinations that obtained 

the minimum average percentage deviation of all 24 heuristic combinations. The results 

of the statistical analysis performed on medium problem structures point to the fact that 

there is no significance difference between IS1, IS2, IS3, and IS4. For TS, Table 6.6 

shows that TS2, TS3, TS5 and TS6 obtained average percentage deviations that are equal 

to or smaller than TS1 and TS4. This means that the first four levels of TS always give 

better performance than the last two. This is consistent with the results of the statistical 

analysis summarized in Table 7.5, which shows that TS2, TS3, TS5, and TS6 are 

statistically different from TS1 and TS4. 

For large problem structure, the homogeneous groups in terms of the TWT are 

shown in Table 7.7. TS2, TS3, TS5 and TS6 are significantly different from TS1 and 

TS4. This means that TS2, TS3, TS5 and TS6 obtained solutions that are significantly 

better than TS1 and TS4. However, there are no significant differences between TS2, 

TS3, TS5 and TS6. Due to the statistical indifference, the decision to select a level of TS 

has to be based on the numerical difference. Since TS3 has the smallest average TWT, it 

is selected as the tabu search -based heuristic for large problem structure. 

Table 7.7 Homogeneous groups of TWT for large problem structure 

Levels of TS Average TWT Average CT Homogeneous Groups 
TS3 932.80 19617 X 
TS6 933.40 18460 X 
TS2 933.90 20979 X 
TS5 937.20 18738 X 
TS4 954.00 6466 X 
TS1 955.80 7716 X 

Note: CT = computation time 

The decision to select a good initial solution generation method for large problem 

structure is based on the computation time as there is no significant difference between 
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the levels of IS in terms of solution quality (TWT). The four IS methods are compared 

using the Duncan's analysis and the detailed results are shown in Table G.5 of Appendix 

G. Four homogeneous groups are identified as shown in Table 7.8. Similar to small and 

medium problem structure, IS4 in large problem structure is evaluated as the one taking 

the shortest computation time. In terms of solution quality, IS4 is only 0.04% larger than 

IS3, which is the one that yields the smallest average TWT. Furthermore, IS3 requires 

60% more computation time than IS4. Based on these reasons, IS4 is selected as the 

initial solution generation method for large problem structure. 

Table 7.8 Homogeneous groups of computation time for large problem structure 

Levels of IS Average CT Average TWT Homogeneous Groups 
IS4 11242 937.2 X 
IS1 15803 953.3 X 
IS2 16268 937.4 X 
IS3 18004 936.8 X 

Note: CT = computation time 

The results of this statistical analysis is in agreement with the results of the 

experimentation performed on large problem structures mentioned in section 6.2 of 
chapter 6. Although the way that the problems are constructed in section 6.2 is fairly 

different from the problems used in the statistical analysis, they cover the same size of 
problem structures. Recall from Table 6.8, IS2 and IS4 turned out to yield average 

percentage deviation that is smaller or in some cases zero, than IS1 and IS3. Since the 

results of the statistical analysis point to no- significant difference between the levels of 
IS, the selection of IS level is mainly based on numerical difference. For TS, Table 6.8 

shows that TS2, TS3, TS5 and TS6 obtained average percentage deviations that are equal 

to or smaller than TS1 and TS4. This is consistent with the results of the statistical 

analysis summarized in Table 7.7, which shows that TS2, TS3, TS5, and TS6 are 

statistically different from TS1 and TS4. 
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7.4.1. The Influence of Initial Solution Generation Methods to Tabu - Search Based 
Heuristics 

The initial solution generated by each IS for each problem instance is shown in 

Table E.1 Table E.3 of Appendix E. Obviously, IS4 always results in generating an 

initial solution that is better than the other three methods. Starting the tabu search from a 

good initial solution accelerates the search process. The computation time required by a 

tabu- search based heuristic that uses IS4 to generate the initial solution is always shorter 

in comparison to the heuristics that use other IS methods. This is the primary advantage 

of using IS4 as an initial solution generation method. However, the best initial solution 

may not always result in the best final solution. For example, in the small problem 

structure previously discussed, after being used in conjunction with the tabu- search based 

heuristics, IS4 was evaluated to have the shortest average computation time but its 

average total weighted tardiness was the highest among the four methods. Although 

employing IS4 as an initial solution generation method in small problem structure is not 

advantageous in terms of the quality of final solution, it shows a better performance as 

the problem size increases. In medium problem structure, IS4 was evaluated as the one 

having the smallest average total weighted tardiness as well as the shortest computation 

time in comparison to the other IS methods. In large problem structure, the average total 

weighted tardiness evaluated for IS4 is the second best after IS3 while maintaining its 

superiority in computation time. Thus, IS4 is preferable as an initial solution generation 

method. 

The efficiency of IS4 is expected in this research. Two reasons explain the 

efficiency of IS4. First, IS4 is an initial solution generation method that utilizes 

composite dispatching rules, which are represented in a priority index function (i.e. the 

ATC function). Composite dispatching rules consider several jobs and machines 

attributes simultaneously, which is certainly more preferable than a simple dispatching 

rule such as EDD. Second, more effort was spent in developing IS4 in comparison to 

developing the other three methods. The effort spent in developing IS4 includes 

developing an ATC function that incorporates all aspects of the scheduling problem 
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stated in this research, and identifying the appropriate value to be used in the look -ahead 
parameters. 

7.4.2. The Use of Long -Term Memory in Tabu - Search Based Heuristics 

Recall that two types of memory are being used among the six different tabu - 

search based heuristics. The short-term memory is used in TS1 and TS4, while the long- 

term memory is used in TS2, TS3, 15 and TS6. The short-term memory search always 

takes shorter computation time than the long -term memory. With the extra amount of 
time spent in computing with the long -term memory, one might ask if the application of 
long -term memory actually improves the solution quality. In order to answer the 

question, comparisons between the heuristics that use short term and long term memory 

are performed. The comparisons have to be made within the group of heuristics that uses 

the same type of tabu list (fixed or variable) so that any recognized differences, if exist, 

would be attributed to the use of different memory features alone. From among the tabu - 

search based heuristics that use fixed tabu list, TS1 will be compared to TS2 and TS3. 

Accordingly, TS4 will be compared to TS5 and TS6 from among the heuristics that use 

variable tabu list. The comparisons are performed using two types of test: Wilcoxon 

signed rank test and numerical difference test. Wilcoxon signed -rank test is a statistical 

test and thus, its results carry more weight than numerical difference test. The results of 
the numerical difference tests are considered when the results of the Wilcoxon signed- 

rank tests point to non - significant differences. The results of the comparisons using 

Wilcoxon signed -rank test are obtained from Table F.1 of Appendix F. The numerical 

difference test compares the numerical differences between the average TWT of two 

heuristics. The results of both tests are presented in Table 7.9. The entries in each row 

can be interpreted as follows: 

A "No" means that the two heuristics are not significantly different. 

A " +" sign means that the second heuristic performs better than the first. A " -" sign 

means that the first heuristic performs better than the second. 
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Table 7.9 Comparisons between the use of short-term memory and long -term memory 

Test Type Size of 
Tabu List Comparisons Size of Problem Structure 

Small Medium Large 

Wilcoxon 
Signed- 

Rank Test 

Fixed TS 1 &TS2 + + + 
TS 1 &TS3 No + + 

Variable TS4 & TS5 + + + 
TS4 &TS6 No + + 

Numerical 
Difference 

Fixed TS 1 & TS2 + + + 
TS 1 & TS3 + + + 

Variable TS4 &TS5 + + + 
TS4 & TS6 + + + 

From Table 7.9, based on Wilcoxon signed -rank test, only 2 of 12 comparisons appear to 

be not significant. The two non - significant differences occur in small problem structure. 

For medium and large problem structure, the use of long -term memory is always proven 

to be beneficial. All 12 comparisons using numerical difference tests favor the use of 
long -term memory. Thus, it is concluded that the use of long -term memory significantly 

improves the quality of solution as the problem size moves from small to large. 

Within the application of long -term memory, the use of maximal frequency is 

compared to the use of minimal frequency. In this case, TS2 and TS5 will be compared 

to TS3 and TS6. The two types of test mentioned above will be applied. The results of 
the comparisons are presented in Table 7.10. 

Based on Wilcoxon signed -rank test, only 2 out of 12 comparisons show 

preference for LTM -max over LTM -min. The remaining comparisons by Wilcoxon 

signed -rank test show that the difference is non - significant. The numerical difference 

tests give quite a different result from Wilcoxon signed -rank test. Using the numerical 

difference test, 4 of 12 comparisons prefer LTM -max, while 8 comparisons prefer LTM - 

min. Further observations on the problem structure reveals that the numerical difference 

test do not exactly give results contrary to Wilcoxon signed -rank test. The two 

comparisons based on Wilcoxon signed -rank test that prefer LTM -max are identified in 

small problem structure. The four comparisons based on numerical difference test that 

prefer LTM -max are also identified in small problem structure. For medium and large 
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problem structures, the numerical difference test shows preference for LTM -min. 

Therefore, the conclusion drawn from these tests is that LTM -max gives better 

performance than LTM -min when applied to small problem structure. For medium and 

large problem structure, although the results are only based on numerical difference test, 

there is suggestive evidence that LTM -min has resulted in a smaller total weighted 

tardiness than LTM -max. 

Table 7.10 Comparisons between the use of LTM -max and LTM -min 

Test Type Comparisons Size of Problem Structure 
Small Medium Large 

Wilcoxon 
Signed -Rank 

Test 

TS2 & TS3 No No No 
TS2 & TS6 No No No 
TS5 & TS3 - No No 
TS5 & TS6 No No 

Numerical 
Difference 

TS2 & TS3 - + + 
TS2 & TS6 - + + 
TS5 & TS3 - + + 
TS5 & TS6 - + + 

7.4.3. The Use of Tabu -List Size in Tabu - Search Based Heuristics 

Another feature of tabu search that has been applied in this research is the use of 
different types of tabu -list size. Two different types of tabu -list size have been used: 

fixed and variable. The fixed tabu -list size is incorporated in TS1, TS2 and TS3, while 

the variable size is incorporated in TS4, TS5, and TS6. The comparisons between the use 

of fixed and variable tabu -list size will be done by comparing TS1, TS2, and TS3 with 

TS4, TS5 and T6, respectively. However, the comparisons are made only between the 

heuristics that use the same type of memory functions. The two tests used in the previous 

section will be applied here. The results are presented in Table 7.11. 

- 
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Table 7.11 Comparisons between the use of fixed and variable size of tabu list 

Test Type Memory 
Feature Comparisons Size of Problem Structure 

Small Medium Large 
Wilcoxon 
Signed- 

Rank Test 

Short TS1 & TS4 No No No 
Long -max TS2 & TS5 No No No 
Long -min TS3 & TS6 No No No 

Numerical 
Difference 

Short TS 1 & TS4 + + + 
Long -max TS2 & TS5 + - - 
Long -min TS3 & TS6 No + - 

Based on Wilcoxon signed -rank test, none of the comparisons turned out to be 
significantly different. The numerical difference tests show preference for variable tabu - 
list size in 5 comparisons, preference for fixed tabu -list size in 3 comparisons, and no 
preference in one comparison. Although one cannot confidently draw a conclusion that 
variable tabu -list size is preferred over fixed tabu -list size, there is a slight evidence that 
the use of variable tabu -list size has resulted in smaller total weighted tardiness than fixed 

tabu -list size. This is particularly true in smaller size of problem structure. But as the 

size of problem structure grows, the performance of fixed tabu -list size is increasingly 
better. The change of performance can be seen in the results of the numerical difference 

tests for medium and large problem. In Table 7.11, the scenario changes from one of no- 
preference for any tabu -list size in small problem to one of preference for fixed tabu -list 

size in medium problem, and then to two preferences for fixed tabu -list size in large 
problem. 

In conclusion, the ATC method is preferred as the initial solution generation 
method to be used with the tabu- search based heuristic. In applying the tabu- search 
based heuristic, the use of long -term memory is definitely crucial in obtaining a good 
final solution. The long -term memory should be employed with maximum- frequency 

strategy to solve small problem structure, but with minimum- frequency strategy for 

medium and large problem structure. In addition, variable tabu -list size is preferred for 

solving smaller problem structure, while fixed tabu -list size is preferred as the size of the 
problem structures increases. 
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The possible reasoning for the results stated above can be explained by means of 
the search space. The search space for the small problem structure is not as wide as 

medium or large problem structures that an intensification search (LTM -max) is 

sufficiently powerful to identify near optimal/optimal solutions. The use of variable tabu 

list size further enhances the performance of the intensification search by providing more 

flexibility in constraining and releasing the tabu restriction. On the other hand, due to the 

expansion of the search space of medium and large problem structures, a diversification 

search (LTM -min) is necessary in order to identify near optimal/optimal solutions. Since 

the diversification search explores the solutions in a new region, keeping the tabu list to a 

fixed size enables the search process to gradually explore each solution in the new region 

and identify solutions of good quality. 
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8. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Job scheduling problems on unrelated parallel machines with dynamic machine 

availability and dynamic job release time has been addressed in this research. Unrelated 

parallel machines are machines that can perform the same function but have different 

capacity or capability. Since each machine has different capability, the processing times 

of a job may differ from one machine to another. The machines considered in this 

research have dynamic availability time, which means that each machine may become 

available at a different time. The objective of this research is to minimize the sum of 
weighted tardiness of all jobs released within the planning horizon. This research 

objective can be translated into on -time delivery or meeting customer's due dates. Such 

an objective is very important in the industry practice because on -time delivery is a 

contributing factor to customer satisfaction. Each job in the scheduling problems 

considered in this research has a job release time, due date, and weight, which can be 

viewed as a customer's order placement date, shipment date, and priority, respectively. 

Some jobs considered in the research problem have to be processed in a split mode. 

These jobs are referred to as split jobs. The difference between the completion times of 
the split portions of a job should be within a user - specified margin. The constraints 

imposed on the completion times of split jobs are supported by the Just -In -Time 

manufacturing concept where inventory has to be maintained at a very low or zero level. 

The research problem is formulated as a mixed (binary) integer - linear 

programming model with the objective function focused on minimizing the total 

weighted tardiness of all jobs released. The computational complexity of the research 

problem is shown to be strongly NP -hard. An implicit enumeration method such as the 

branch - and -bound technique can only be used to solve small problem instances in 

reasonable computation time. For medium and large problem instances, the branch and 

bound technique would not only be very time consuming, but in some cases may never 

find the optimal solution even after investing an exceedingly large computation time. 

Knowing the inefficiency of the implicit enumeration method, a higher -level search 

heuristic, based on a concept known as tabu search, is applied to solve the research 
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problem. Six different tabu- search based heuristics are developed by incorporating the 
different features of tabu search such as short and long term memory with fixed and 

variable tabu -list size. Four different methods are developed to generate the initial 

solution that can be used by tabu search as a starting point. Two of the initial solution 

generation methods are developed based on a simple dispatching rule known as Earliest 

Due Date (EDD). The difference between these two methods is that one of them 
incorporates the mechanism to ensure that the initial solution is feasible and the other one 

does not. Another method is based on Least Flexible Job (LFJ) and Least Flexible 

Machine (LFM) rule. The fourth method is based on a composite dispatching rule called 

Apparent Tardiness Cost (ATC) rule. The ATC method is adapted from a priority index 

function that was developed for single machine scheduling problem with static job 
release time and static machine availability. Since the scheduling problem addressed in 

this research is for unrelated parallel machines with dynamic job release time and 

dynamic machine availability, the existing priority index function was revised to 

incorporate these aspects. An experimental study was conducted to identify the 

appropriate values for the look -ahead parameters used in the function. 

In order to assess the quality of the final solutions obtained from tabu- search 

based heuristics, twelve small problem instances were generated and solved with the 

branch -and bound technique embedded in Hyper Lingo 4.0, and the tabu- search based 

heuristics. Using the branch - and -bound technique, 8 out of the 12 problem instances 

were solved optimally within the stipulated time limit of 72 hours. The optimal solutions 
are then compared with the solutions obtained from the tabu- search based heuristics. The 

heuristics obtain solutions that deviates 5.4% in average from the optimal solutions. One 

of the heuristics (IS3/TS5) obtained solutions that have average percentage deviation of 
only 1.18 %. Furthermore, each heuristic only needs 10 seconds in average to solve the 

problems in comparison to Hyper Lingo 4.0 that takes 20 hours in average to identify the 

optimal solutions. Thus, the tabu- search based heuristics are capable of obtaining 

solutions of good quality within a much shorter time. 

Since the optimal solutions for medium and large problem structures are not 

attainable, the effectiveness of the tabu- search based heuristics is evaluated differently 

from small problem structure. Five problem instances of medium size and four problem 
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instances of large size were constructed to have zero total weighted tardiness. Then, the 

tabu- search based heuristics were applied to each problem instance. Since the optimal 

solutions for these problem instances have zero total weighted tardiness, the point of 
reference for evaluating the deviation is shifted to a positive value. This reference point 

is obtained by delaying the completion times of all jobs in the optimal schedule by one 

unit of time. Thus, the percentage deviation of the solutions obtained by the heuristics 

was evaluated based on this reference point. The results show that the average 

percentage deviation evaluated over the heuristics is 12.9% for medium problem structure 

and 6.9% for large problem structure. 

A more complete experiment with a broader scope was conducted to assess the 

performance of the heuristics as the size of problem grows from small to medium to 

large. A multi- factor experiment with split -plot design was conducted. Each problem 

instance was treated as a block in the experiment. The design of the experiment included 

two different factors. The four initial solution generation methods (IS 1 IS4) were the 

levels of one factor and the six tabu- search heuristics (TS1 TS6) were the levels of the 

other factor. The total weighted tardiness and the computation time were the two 

performance measures used. The results of the experiment show that IS4, which refers to 

the ATC method, is recommended as the initial solution generation method for all 

problem sizes. The ATC method is capable of obtaining an initial solution that helps the 

tabu- search based heuristic to get to the final solution within a short time. TS5, TS6, and 

TS3 are recommended as the tabu- search based heuristic for the small, medium and large 

problems, respectively. The use of long -term memory function is definitely 

recommended in solving all problem structures. The maximum - frequency strategy is 

recommended to be used with long -term memory function to solve small problem 

structure. On the other hand, the minimum- frequency strategy is recommended for 

medium and large problem structures. The variable tabu -list size is preferred for solving 

smaller problem structure, but the fixed tabu -list size is preferred as the size of the 

problems grows larger. 

As mentioned before, this research focuses on minimizing the total weighted 

tardiness, which is tailored toward satisfying customer demand. Since machine 

utilization or workload is not included in the objective function, it is possible that the 

1 
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schedule obtained cause an unbalanced workload on the machines. Therefore, further 
research may consider balancing workload on machines in addition to minimizing total 
weighted tardiness. Balancing machine workload is an important issue since unbalanced 

workload may become the cause of early tool wear or frequent machine breakdown. 

Another important objective is to consider minimizing job earliness and tardiness 

simultaneously. With this objective, the jobs will be processed and completed close to its 

due date. This is a very relevant objective in modern industry practice as it is closely 

related to Just -In -Time manufacturing. Ow and Morton (1989) addressed this objective 

in their research to solve the single - machine scheduling problem. 

In this research, the set up times of all jobs are sequence - independent and 

assumed to be included in the processing time, which may not necessarily be true in all 

cases. Thus, this research can be extended to consider sequence - dependent set up time 

for all jobs. Lee et al. (1997) did the study on single machine scheduling with sequence- 

dependent set up time to minimize the total weighted tardiness. In their work, the job 
release time and machine availability are completely static. 

Further research could also focus on comparing the performance of tabu search to 

other higher -level heuristics such as genetic algorithm and simulated annealing in solving 

the scheduling problems addressed in this research. The performance of these heuristics 

has been compared to tabu search in solving different types of scheduling problems (Park 

and Kim, 1997, Piersma and Van Dijk, 1996, Glass et al., 1994). These heuristics have 

shown different performances in different applications. More insights can be gained by 

applying simulated annealing or genetic algorithm to the research problem and 

comparing their results to the results obtained from this research. 
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APPENDIX A. REGRESSION ANALYSIS FOR THE LOOK -AHEAD 
PARAMETERS 

Appendix A.1 Regression Analysis for the First Look -Ahead Parameters (k1) 
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Table A.1 Analysis of Variance and R2 statistics for the regression model on k1 

Source Sum of Squares Df Mean Square F -Ratio p -value 
Model 222.46 6 37.08 17.93 0.0000 

Mach 39.71 1 39.71 19.20 0.0000 
Range 0.30 1 0.30 0.14 0.7045 
Tao 59.10 1 59.10 28.59 0.0000 
Mach *Tao 14.72 1 14.72 7.12 0.0079 
Range *Tao 9.40 1 9.40 4.55 0.0334 
Tao *Tao 60.84 1 60.84 29.43 0.0000 

Residual 1137.16 550 2.07 
Total (Corrected) 1359.62 556 

R2= 16.3619% 
R2 (adjusted for Df) = 15.4495% 

Table A.2 Analysis of Variance and R2 statistics for the regression model on Sqrt(ki) 

Source Sum of Squares Df Mean Square F -Ratio p -value 
Model 28.242 6 4.70699 21.22 0.0000 

Mach 4.169 1 4.16926 18.79 0.0000 
Range 0.102 1 0.10186 0.46 0.4983 
Tao 5.620 1 5.62011 25.33 0.0000 
Mach *Tao 1.057 1 1.05731 4.77 0.0294 
Range *Tao 1.036 1 1.03644 4.67 0.0311 
Tao *Tao 5.819 1 5.81897 26.23 0.0000 

Residual 122.011 550 0.221838 
Total (Corrected) 150.253 556 

R2= 18.7962% 
R2 (adjusted for Df) = 17.9104% 
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Table A.3 Analysis of Variance and R2 statistics for the regression model on Log(ki) 

Source Sum of Squares Df Mean Square F -Ratio p -value 
Model 72.853 5 14.571 27.14 0.0000 

Mach 23.742 1 23.742 44.22 0.0000 
Range 0.541 1 0.541 1.01 0.3158 
Tao 8.195 1 8.195 15.26 0.0001 
Range *Tao 2.280 1 2.280 4.25 0.0398 
Tao *Tao 9.460 1 9.460 17.62 0.0000 

Residual 295.818 551 0.537 
Total (Corrected) 368.671 556 

R2= 19.761% 
R2 (adjusted for Df) = 19.0329% 

Table A.4 Coefficient Estimates for the regression model on Log(ki) 

Parameter Estimate Standard Error 
Constant 1.8297 0.2449 
Mach - 0.0326 0.0049 
Range - 0.2628 0.2618 
Tao - 3.4394 0.8803 
Range *Tao - 0.9927 0.4817 
Tao *Tao 3.4555 0.8232 
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Appendix A.2 Regression Analysis for The Second Look -Ahead Parameter (k2) 
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Table A.5 Analysis of Variance and R2 statistics for the regression model on k2 

Source Sum of Squares Df Mean Square F -Ratio p -value 
Model 194.632 5 38.926 22.93 0.0000 

Job 14.377 1 14.377 8.47 0.0038 
Mach 84.383 1 84.383 49.70 0.0000 
Tao 5.754 1 5.754 3.39 0.0664 
Job *Mach 53.923 1 53.923 31.76 0.0000 
Job *Tao 15.225 1 15.225 8.97 0.0029 

Residual 660.449 389 1.698 
Total (Corrected) 855.081 394 

R2 = 22.7618% 
R2 (adjusted for d.f.) = 21.769% 

Table A.6 Analysis of Variance and R2 statistics for the regression model on Log(k2) 

Source Sum of Squares Df Mean Square F -Ratio p -value 
Model 94.051 5 18.810 22.71 0.0000 

Job 10.431 1 10.431 12.59 0.0004 
Mach 43.318 1 43.318 52.29 0.0000 
Tao 1.151 1 1.151 1.39 0.2393 
Job *Mach 32.009 1 32.009 38.64 0.0000 
Job *Tao 5.880 1 5.880 7.10 0.0080 

Residual 322.267 389 0.828 
Total (Corrected) 416.318 394 

R2= 22.5911% 
R2 (adjusted for d.f.) = 21.5961% 
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Table A.7 Analysis of Variance and R2 statistics for the regression model on Sqrt(k2) 

Source Sum of Squares Df Mean Square F -Ratio p -value 
Model 30.163 5 6.033 24.35 0.0000 

Job 2.769 1 2.769 11.18 0.0009 
Mach 13.583 1 13.583 54.82 0.0000 
Tao 0.598 1 0.598 2.41 0.1212 
Job *Mach 9.242 1 9.242 37.30 0.0000 
Job *Tao 2.067 1 2.067 8.34 0.0041 

Residual 96.376 389 0.248 
Total (Corrected) 126.539 394 

R2 = 23.8371% 
R2 (adjusted for d.f.) = 22.8582% 

Table A.8 Coefficient Estimates for the regression model on Sqrt(k2) 

Parameter Estimate Standard Error 
Constant 2.2707 0.2169 
Job - 0.0174 0.0052 
Mach - 0.0912 0.0123 
Tao 0.5022 0.3233 
Job *Mach 0.0017 0.0003 
Job *Tao - 0.0193 0.0067 
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APPENDIX B. MODEL FORMULATION FOR THE EXAMPLE PROBLEM 

Note: This mathematical model is the result of applying the mathematical formulation 
described in Chapter 4 to the example problem used in Chapter 5. The example 
problem has 9 jobs, 4 machines and 2 pairs of split jobs. The model is presented 

in Hyper Lingo 4.0 format. 

MODEL: 
!Objective Function; 

MIN= 1 *t11 + 1 *t21 + 1 *t31 + 1 *t41 +2 *t12 +2 *t22 +2 *t32 +2 *t42 +2 *t13 +2 *t23 
+ 2*t33 + 2*t43 + 3*t14 + 3*t24 + 3*t34 + 3*t44 + 3*t15 + 3*t25 + 3*t35 + 3*t45 
+ 2 *t16 +2 *t26 + 2 *t36 + 2 *t46 + 1 *t17 + 1 *t27 + 1 *t37 + 1 *t47 + 2 *t18 + 2 *t28 
+ 2 *t38 + 2 *t48 + 2 *t19 + 2 *t29 + 2 *t39 + 2 *t49; 

!Constraint (1); 
x11 +x21 +x31 +x41 = 1; 
x12 +x22 +x32 +x42= 1; 
x13 +x23 +x33 +x43 = 1; 

!Constraint (2); 
x11 *(1 +10) < =c11; 
x21 * (1 + 1000) <= c21; 
x31 * (1 + 1000) <= c31; 
x41 * (1 + 1000) <= c41; 
x12 * (4 + 4) <= c12; 
x22 * (4 + 8) <= c22; 
x32 * (4 + 9) <= c32; 
x42 * (4 + 9) <= c42; 
x13 * (3 + 1000) <= c13; 
x23 * (3 + 5) <= c23; 
x33 * (3 + 8) <= c33; 
x43 * (3 + 8) <= c43; 

!Constraints (3); 
x11 *(0 +10) < =c11; 
x21 * (2 + 1000) <= c21; 
x31 * (2 + 1000) <= c31; 
x41 * (5 + 1000) <= c41; 
x12 * (0 + 4) <= c12; 
x22 * (2 + 8) <= c22; 
x32 * (2 + 9) <= c32; 
x42 * (5 + 9) <= c42; 
x13 * (0 + 1000) <= c13; 
x23 * (2 + 5) <= c23; 
x33 * (2 + 8) <= c33; 
x43 * (5 + 8) <= c43; 

!Constraints (4); 
cll <= 10000 *x11; 
c21 <= 10000 * x21; 
c31 <= 10000 * x31; 
c41 <= 10000 * x41; 

x14 +x24 +x34 +x44= 1; 
x15+x25+x35+x45= 1; 

x16 +x26 +x36 +x46= 1; 

x17 +x27 +x37 +x47= 1; 
x18 + x28 + x38 +x48= 1; 
x19 +x29 +x39 +x49= 1; 

x14 * (4 + 7) <= c14; x17 * (8 
x24 * (4 + 9) <= c24; x27 * (8 
x34 * (4 + 1000) <= c34; x37 * (8 
x44 * (4 + 1000) <= c44; x47 * (8 
x15 * (4 + 8) <= c15; x18 * (5 
x25 * (4 + 11) <= c25; x28 * (5 
x35 * (4 + 1000) <= c35; x38 * (5 
x45 * (4 + 1000) <= c45; x48 * (5 
x16 * (9 + 1000) <= c 16; x19 * (5 
x26 * (9 + 4) <= c26; x29 * (5 
x36 * (9 + 6) <= c36; x39 *(5 
x46 * (9 + 6) <= c46; x49 * (5 

x14 * (0 + 7) <= c14; x17 * (0 
x24 * (2 + 9) <= c24; x27 * (2 
x34 * (2 + 1000) <= c34; x37 * (2 
x44 * (5 + 1000) <= c44; x47 * (5 
x15 * (0 + 8) <= c15; x18 * (0 
x25 * (2 + 11) <= c25; x28 * (2 
x35 * (2 + 1000) <= c35; x38 * (2 
x45 * (5 + 1000) <= c45; x48 * (5 
x16 * (0 + 1000) <= c 16; x19 * (0 
x26 * (2 + 4) <= c26; x29 * (2 
x36 * (2 + 6) <= c36; x39 * (2 
x46 * (5 + 6) <= c46; x49 * (5 

+ 8) <= c17; 
+ 10) <= c27; 
+ 1000) <= c37; 
+ 1000) <= c47; 
+ 1000) <= c18; 
+ 6) <= c28; 
+ 9) <= c38; 
+ 9) <= c48; 
+ 1000) <= c19; 
+ 7) <= c29; 

+11) < =c39; 
+ 11) <= c49; 

+ 8) < c17; 
+ 10) <= c27; 
+ 1000) <= c37; 
+ 1000) <= c47; 
+ 1000) <= c18; 
+ 6) <= c28; 
+ 9) <= c38; 
+ 9) <= c48; 
+ 1000) <= c19; 
+ 7) <= c29; 
+ 11) <= c39; 
+ 11) <= c49; 

c12 < =10000 * x12; c13 <= 10000 * x13; 
c22 <= 10000 * x22; c23 <= 10000 * x23; 
c32 <= 10000 * x32; c33 <= 10000 * x33; 
c42 <= 10000 * x42; c43 <= 10000 * x43; 
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II*SZX=<(S£ZA I)*0000i +£ZoSZ3 `000!*81X=<(811A t)*00001 + 113 810 
`6*17ZX =< (VEZA t)*0000I + £Z3 trZ3 8*LIX =< (LI IA I)s0000I + 113L13 
`L4,6ZX=<(6ZZA I)s0000I +ZZo-6Z3 `000!*91X=<(9IIA i)*0000! + 113 9P 
`9s8ZX =< (BZZA I)*0000i +ZZ3 8Z3 `8*SiX =<(5I IA I)s0000i + 113-513 

!0I *LZX =< (LZZA 0s0000i + ZV LZ3 `L*17iX =< (17I IA I)*00001 + I I3 VP 
`b*9ZX=< OM( I)*00001 +ZZo-9Z3 `000I*£!X=< (EI IA i)*0000i + II3-£!3 

II*SZX=<(SZZA- I)*00001 +ZZ3-SZ3 `tr*ZIX=<(ZIIX- I)*00001 + II3Z13 
`(S) s;uwtsuoDi 

`-6trX * 0000I => 6173 `LbX * 00001 => L173 `S17X * 00001 => S173 
`6£X * 00001 => 6£3 !LEX * 00001 => L£3 !SEX * 00001 => 5£3 
`6ZX * 0000! => 6Z3 `LZX * 0000! => LZ3 `SZX * 0000! => SZ3 
`6IX*00001 =>613 `LIX*0000I=>Lio `SiX*0000l=>Si3 
`817X * 0000! => 8170 `9bX * 0000! => 9173 °17bX * 0000! => 17b3 
!8£X * 00001 => 8£3 `9£X *00001 => 9£3 *Ex * 00001 => 17£0 
`8ZX * 0000! => 8Z3 `9ZX * 00001 => 9Z3 `17ZX * 00001 => 17Z3 
!8iX*00001=>813 `9íX*00001=>9I3 `17íX*00001=>17io 

0£! 



c39 c33 + 10000*(1 y339) >= x39* 11; c45 c42 + 10000*(1 y425) >= x45* 1000; 
c35 c34 + 10000*(1 y345) >= x35* 1000; c46 c42 + 10000 *(1 y426) >= x46 *6; 
c36 c34 + 10000*(1 y346) >= x36 *6; c47 c42 + 10000*(1 y427) >= x47* 1000; 
c37 c34 + 10000*(1 y347) >= x37* 1000; c48 c42 + 10000 *(1 y428) >= x48 *9; 
c38 c34 + 10000*(1 y348) >= x38 *9; c49 c42+ 10000 *(1 y429) >= x49*11; 
c39 c34 + 10000*(1 y349) >= x39 *11; c44 c43 + 10000*(1 y434) >= x44* 1000; 
c36 c35 + 10000*(1 y356) >= x36 *6; c45 c43 + 10000*(1 y435) >= x45* 1000; 
c37 c35 + 10000*(1 y357) >= x37* 1000; c46 c43 + 10000*(1 y436) >= x46 *6; 
c38 c35 + 10000*(1 y358) >= x38 *9; c47 c43 + 10000 *(1 y437) >= x47* 1000; 
c39 c35 + 10000*(1 y359) >= x39 *11; c48 c43 + 10000 *(1 y438) >= x48 *9; 
c37 c36 + 10000*(1 y367) >= x37* 1000; c49 c43 + 10000*(1 y439) >= x49* 11; 
c38 c36 + 10000*(1 y368) >= x38 *9; c45 c44 + 10000*(1 y445) >= x45* 1000; 
c39 c36 + 10000*(1 y369) >= x39* 11; c46 c44 + 10000*(1 y446) >= x46 *6; 
c38 c37 + 10000*(1 y378) >= x38 *9; c47 c44 + 10000 *(1 y447) >= x47* 1000; 
c39 c37 + 10000*(1 y379) >= x39* 11; c48 c44 + 10000*(1 y448) >= x48 *9; 
c39 c38 + 10000*(1 y389) >= x39 *11; c49 c44 + 10000*(1 y449) >= x49* 11; 
c42 c41 + 10000 * (1 y412 ) >= x42 * 9; c46 c45 + 10000 *(1 y456) >= x46 *6; 
c43 c41 + 10000*(1 y413) >= x43 * 8; c47 c45 + 10000*(1 y457) >= x47* 1000; 
c44 c41 + 10000*(1 y414) >= x44* 1000; c48 c45 + 10000 *(1 y458) >= x48 *9; 
c45 c41 + 10000*(1 y415) >= x45* 1000; c49 c45 + 10000 *(1 y459) >= x49* 11; 
c46 c41 + 10000*(1 y416) >= x46 *6; c47 c46 + 10000*(1 y467) >= x47* 1000; 
c47 c41 + 10000*(1 y417) >= x47* 1000; c48 c46 + 10000*(1 y468) >= x48 *9; 
c48 c41 + 10000*(1 y418) >= x48 *9; c49 c46 + 10000 *(1 y469) >= x49* 11; 
c49 c41 + 10000*(1 y419) >= x49* 11; c48 c47 + 10000 *(1 y478) >= x48 *9; 
c43 c42 + 10000*(1 y423) >= x43 * 8; c49 c47 + 10000*(1 y479) >= x49* 11; 
c44 c42 + 10000*(1 y424) >= x44* 1000; c49 c48 + 10000*(1 y489) >= x49* 11; 

!Constraints (6); 

cll c12 + 10000 * y112 >= x11 * 10; 
cl l c13 + 10000 * y113 >= x11 * 10; 
cl l c14 + 10000 * y114 >= x11 * 10; 
cl l c15 + 10000 * y115 >= x11 * 10; 
cll c16 + 10000 * y116 >= x11 * 10; 
cl l c17 + 10000 * y117 >= x11 * 10; 
c l lc18 + 10000 * y118 >= x11 * 10; 
c l lc19 + 10000 * y119 >= x11 * 10; 
c12 c13 + 10000 * y123 >= x12 * 4; 
c12 c14 + 10000 *y124 >= x12 * 4; 
c12 c15 + 10000 * y125 >= x12 * 4; 
c12 c16 + 10000 * y126 >= x12 * 4; 
c12 c17 + 10000 * y127 >= x12 * 4; 
c12 c18 + 10000 * y128 >= x12 * 4; 
c12c19+ 10000 * y129>=x12 * 4; 
c13 c14 + 10000 * y134 >= x13 * 1000; 
c13 c15 + 10000 * y135 >= x13 * 1000; 
c13 c16 + 10000 * y136>=x13 * 1000; 
c13 c17 + 10000 * y137 >= x13 * 1000; 
c13 c18 + 10000 * y138 >= x13 * 1000; 
c13 c19 + 10000 * y139 >= x13 * 1000; 
c14 c15 + 10000 * y145 >= x14 * 7; 
c14 c16 + 10000 * y146 >= x14 * 7; 
c14 c17 + 10000 * y147 >= x14 * 7; 
c14 c18 + 10000 * y148 >= x14 * 7; 
c14 c19 + 10000 *y149 >= x14 * 7; 
c15 c16 + 10000 * y156 >= x15 * 8; 
c15 c17 + 10000 * y157 >= x15 * 8; 

c15 c18 + 10000 * y158 >= x15 * 8; 
c15 c19 + 10000 *y159 >= x15 * 8; 
c16 c17 + 10000 *y167 >= x16 * 1000; 
c16 c18 + 10000 * y168 >= x16 * 1000; 
c16 c19 + 10000 *y169 >= x16 * 1000; 
c17 c18 + 10000 *y178 >= x17 * 8; 
c17 c19 + 10000 * y179 >= x17 * 8; 
c18 c19 + 10000 * y189 >= x18 * 1000; 
c21 c22 + 10000 * y212 >= x21 * 1000; 
c21 c23 + 10000 * y213 >= x21 * 1000; 
c21 c24 + 10000 * y214 >= x21 * 1000; 
c21 c25 + 10000 * y215 >= x21 * 1000; 
c21 c26 + 10000 * y216 >= x21 * 1000; 
c21 c27 + 10000 * y217 >= x21 * 1000; 
c21 c28 + 10000 * y218 >= x21 * 1000; 
c21 c29 + 10000 * y219 >= x21 * 1000; 
c22 c23 + 10000 * y223 >= x22 * 8; 
c22 c24 + 10000 * y224 >= x22 * 8; 
c22 c25 + 10000 * y225 >= x22 * 8; 
c22 c26 + 10000 * y226 >= x22 * 8; 
c22 c27 + 10000 * y227 >= x22 * 8; 
c22 c28 + 10000 * y228 >= x22 * 8; 
c22 c29 + 10000 * y229 >= x22 * 8; 
c23 c24 + 10000 * y234 >= x23 * 5; 
c23 c25 + 10000 * y235 >= x23 * 5; 
c23 c26 + 10000 * y236 >= x23 * 5; 
c23 c27 + 10000 * y237 >= x23 * 5; 
c23 c28 + 10000 * y238 >= x23 * 5; 
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c23 c29 + 10000 * y239 >= x23 * 5; c35 c38 + 10000 * y358 >= x35 * 1000; 
c24 c25 + 10000 * y245 >= x24 * 9; c35 c39 + 10000 * y359 >= x35 * 1000; 
c24 c26 + 10000 * y246 >= x24 * 9; c36 c37 + 10000 * y367 >= x36 * 6; 
c24 c27 + 10000 * y247 >= x24 * 9; c36 c38 + 10000 * y368 >= x36 * 6; 
c24 c28 + 10000 * y248 >= x24 * 9; c36 c39 + 10000 * y369 >= x36 * 6; 
c24 c29 + 10000 * y249 >= x24 * 9; c37 c38 + 10000 * y378 >= x37 * 1000; 
c25 c26 + 10000 * y256 >= x25 * 11; c37 c39 + 10000 * y379 >= x37 * 1000; 
c25 c27 + 10000 * y257 >= x25 * 11; c38 c39 + 10000 * y389 >= x38 * 9; 
c25 c28 + 10000 * y258 >= x25 * 11; c41 c42 + 10000 * y412 >= x41 * 1000; 
c25 c29 + 10000 * y259 >= x25 * 1 1 ; c41 c43 + 10000 * y413 >= x41 * 1000; 
c26 c27 + 10000 * y267 >= x26 * 4; c41 c44 + 10000 * y414 >= x41 * 1000; 
c26 c28 + 10000 * y268 >= x26 * 4; c41 c45 + 10000 * y415 >= x41 * 1000; 
c26 c29 + 10000 * y269 >= x26 * 4; c41 c46 + 10000 * y416 >= x41 * 1000; 
c27 c28 + 10000 * y278 >= x27 * 10; c41 c47 + 10000 * y417 >= x41 * 1000; 
c27 c29 + 10000 * y279 >= x27 * 10; c41 c48 + 10000 * y418 >= x41 * 1000; 
c28 c29 + 10000 * y289 >= x28 * 6; c41 c49 + 10000 * y419 >= x41 * 1000; 
c31 c32 + 10000 * y312 >= x31 * 1000; c42 c43 + 10000 * y423 >= x42 * 9; 
c31 c33 + 10000 * y313 >= x31 * 1000; c42 c44 + 10000 * y424 >= x42 * 9; 
c31 c34 + 10000 * y314 >= x31 * 1000; c42 c45 + 10000 * y425 >= x42 * 9; 
c31 c35 + 10000 * y315 >= x31 * 1000; c42 c46 + 10000 * y426 >= x42 * 9; 
c31 c36 + 10000 * y316 >= x31 * 1000; c42 c47 + 10000 * y427 >= x42 * 9; 
c31 c37 + 10000 * y317 >= x31 * 1000; c42 c48 + 10000 * y428 >= x42 * 9; 
c31 c38 + 10000 * y318 >= x31 * 1000; c42 c49 + 10000 * y429 >= x42 * 9; 
c31 c39 + 10000 * y319 >= x31 * 1000; c43 c44 + 10000 * y434 >= x43 * 8; 
c32 c33 + 10000 * y323 >= x32 * 9; c43 c45 + 10000 * y435 >= x43 * 8; 
c32 c34 + 10000 * y324 >= x32 * 9; c43 c46 + 10000 * y436 >= x43 * 8; 
c32 c35 + 10000 * y325 >= x32 * 9; c43 c47 + 10000 * y437 >= x43 * 8; 
c32 c36 + 10000 * y326 >= x32 * 9; c43 c48 + 10000 * y438 >= x43 * 8; 
c32 c37 + 10000 * y327 >= x32 * 9; c43 c49 + 10000 * y439 >= x43 * 8; 
c32 c38 + 10000 * y328 >= x32 * 9; c44 c45 + 10000 * y445 >= x44 * 1000; 
c32 c39 + 10000 * y329 >= x32 * 9; c44 c46 + 10000 * y446 >= x44 * 1000; 
c33 c34 + 10000 * y334 >= x33 * 8; c44 c47 + 10000 * y447 >= x44 * 1000; 
c33 c35 + 10000 * y335 >= x33 * 8; c44 c48 + 10000 * y448 >= x44 * 1000; 
c33 c36 + 10000 * y336 >= x33 * 8; c44 c49 + 10000 * y449 >= x44 * 1000; 
c33 c37 + 10000 * y337 >= x33 * 8; c45 c46 + 10000 * y456 >= x45 * 1000; 
c33 c38 + 10000 * y338 >= x33 * 8; c45 c47 + 10000 * y457 >= x45 * 1000; 
c33 c39 + 10000 * y339 >= x33 * 8; c45 c48 + 10000 * y458 >= x45 * 1000; 
c34 c35 + 10000 * y345 >= x34 * 1000; c45 c49 + 10000 * y459 >= x45 * 1000; 
c34 c36 + 10000 * y346 >= x34 * 1000; c46 c47 + 10000 * y467 >= x46 * 6; 
c34 c37 + 10000 * y347 >= x34 * 1000; c46 c48 + 10000 * y468 >= x46 * 6; 
c34 c38 + 10000 * y348 >= x34 * 1000; c46 c49 + 10000 * y469 >= x46 * 6; 
c34 c39 + 10000 * y349 >= x34 * 1000; c47 c48 + 10000 * y478 >= x47 * 1000; 
c35 c36 + 10000 * y356 >= x35 * 1000; c47 c49 + 10000 * y479 >= x47 * 1000; 
c35 c37 + 10000 * y357 >= x35 * 1000; c48 c49 + 10000 * y489 >= x48 * 9; 

!Constraints (7) 
c14 c15 <= 1 + 10000*(2 x14 x15); c34 c35 <= 1 + 10000*(2 x34 x35); 
c14 c25 <= 1 + 10000 *(2 x14 x25); c34 c45 <= 1 + 10000 *(2 x34 x45); 
c14 c35 <= 1 + 10000*(2 x14 x35); c44 c15 <= 1 + 10000*(2 x44 x15); 
c14 c45 <= 1 + 10000 *(2 x14 x45); c44 c25 <= 1 + 10000 *(2 x44 x25); 
c24 c15 <= 1 + 10000 *(2 x24 x15); c44 c35 <= 1 + 10000 *(2 x44 x35); 
c24 c25 <= 1 + 10000 *(2 x24 x25); c44 c45 <= 1 + 10000 *(2 x44 x45); 
c24 c35 <= 1 + 10000 *(2 x24 x35); c18 c19 <= 1 + 10000 *(2 x18 x19); 
c24 c45 <= 1 + 10000 *(2 x24 x45); c18 c29 <= 1 + 10000 *(2 x18 x29); 
c34 c15 <= 1 + 10000 *(2 x34 x15); c18 c39 <= 1 + 10000 *(2 x18 x39); 
c34 c25 <= 1 + 10000 *(2 x34 x25); c18 c49 <= 1 + 10000 *(2 x18 x49); 
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c28 c19 <= 1 + 10000 *(2 x28 x19); c38 c39 <= 1 + 10000 *(2 x38 x39); 
c28 c29 <= 1 + 10000 *(2 x28 x29); c38 c49 <= 1 + 10000 *(2 x38 x49); 
c28 c39 <= 1 + 10000 *(2 x28 x39); c48 c19 <= 1 + 10000 *(2 x48 x19); 
c28 c49 <= 1 + 10000 *(2 x28 x49); c48 c29 <= 1 + 10000 *(2 x48 x29); 
c38 c19 <= 1 + 10000*(2 x38 x19); c48 c39 <= 1 + 10000 *(2 x48 x39); 
c38 c29 <= 1 + 10000 *(2 x38 x29); c48 c49 <= 1 + 10000 *(2 x48 x49); 

!Constraints (8); 
c15 c14 <= 1 + 10000*(2 x14 x15); c19 c18 <= 1 + 10000 *(2 x18 x19); 
c25 c14 <= 1 + 10000 *(2 x14 x25); c29 c18 <= 1 + 10000 *(2 x18 x29); 
c35 c14 <= 1 + 10000 *(2 x14 x35); c39 c18 <= 1 + 10000 *(2 x18 x39); 
c45 c14 <= 1 + 10000 *(2 x14 x45); c49 c18 <= 1 + 10000 *(2 x18 x49); 
c15 c24 <= 1 + 10000 *(2 x24 x15); c19 c28 <= 1 + 10000 *(2 x28 x19); 
c25 c24 <= 1 + 10000 *(2 x24 x25); c29 c28 <= 1 + 10000 *(2 x28 x29); 
c35 c24 <= 1 + 10000 *(2 x24 x35); c39 c28 <= 1 + 10000* (2 x28 x39); 
c45 c24 <= 1 + 10000 *(2 x24 x45); c49 c28 <= 1 + 10000 *(2 x28 x49); 
c15 c34 <= 1 + 10000*(2 x34 x15); c19 c38 < =1 + 10000 *(2 x38 x19); 
c25 c34 <= 1 + 10000 *(2 x34 x25); c29 c38 <= 1 + 10000 *(2 x38 x29); 
c35 c34 <= 1 + 10000 *(2 x34 x35); c39 c38 <= 1 + 10000 *(2 x38 x39); 
c45 c34 <= 1 + 10000 *(2 x34 x45); c49 c38 <= 1 + 10000 *(2 x38 x49); 
c15 c44 <= 1 + 10000 *(2 x44 x15); c19 c48 <= 1 + 10000 *(2 x48 x19); 
c25 c44 <= 1 + 10000 *(2 x44 x25); c29 c48 <= 1 + 10000 *(2 x48 x29); 
c35 c44 <= 1 + 10000 *(2 x44 x35); c39 c48 <= 1 + 10000 *(2 x48 x39); 
c45 c44 <= 1 + 10000 *(2 x44 x45); c49 c48 <= 1 + 10000 *(2 x48 x49); 

!Constraints (9); 
cll-15<=t11; c23 7 <= t23; c35-10<=t35; c47 20 <= t47; 

c21 15 <=t21; c33-7<=t33; c45-10<=t45; c18 11 <=t18; c31-15<=t31; c43-7<=t43; c16-18<=t16; c28 11 <= t28; 
c41-15<=t41; c14 10 c26 18 <= t26; c38 11 <= t38; c12-12<=t12; c24 10 <= t24; c36-18<=t36; c48 11 <= t48; 

c22 12 <= t22; c34 10 <= t34; c46-18<=t46; c19 11 <=t19; 
c32 12 <= t32; c44 10 <= t44; c17-20<=t17; c29 11 <= t29; 
c42 12 <= t42; c15 10 <=t15; c27 20 <= t27; c39 11 <=t39; c13-7<=t13; c25 10 <= t25; c37-20<=t37; c49 11 <= t49; 

!Constraints (10); 
tl l >= 0; t32 >= 0; t14 >= 0; t35 >= 0; t17 >= 0; t38 >= 0; 

t21 >= 0; t42 >= 0; t24 >= 0; t45 >= 0; t27 >= 0; t48 >= 0; 
t31 >= 0; t13 >= 0; t34 >= 0; t16 >= 0; t37 >= 0; t19 >= 0; 
t41 >= 0; t23 >= 0; t44 >= 0; t26 >= 0; t47 >= 0; t29 >= 0; 
t12 >= 0; t33 >= 0; t15 >= 0; t36 >= 0; t18 >= 0; t39 >= 0; 
t22 >= 0; t43 >= 0; t25 >= 0; t46 >= 0; t28 >= 0; t49 >= 0; 

!Declare binary integer variables 
@BIN(xl1); @BIN(x43); @BIN(x36); @BIN(x29); @BIN(y123); 
@BIN(x21); @BIN(x 14); @BIN(x46); @BIN(x39); @BIN(y 124); 
@BIN(x31); @BIN(x24); @BIN(x17); @BIN(x49); @BIN(y 125); 
@BIN(x41); @BIN(x34); @BIN(x27); @BIN(y 112); @BIN(y 126); 
@BIN(x12); @BIN(x44); @BIN(x37); @BIN(y 113); @BIN(y 127); 
@BIN(x22); @BIN(x15); @BIN(x47); @BIN(y114); @BIN(y 128); 
@BIN(x32); @BIN(x25); @BIN(x 18); @BIN(y 115); @BIN(y 129); 
@BIN(x42); @BIN(x35); @,BIN(x28); @BIN(y 116); @BIN(y 134); 
@BIN(x13); @BIN(x45); @BIN(x38); @BIN(y117); @BIN(y135); 
@BIN(x23); @BIN(x16); @BIN(x48); @BIN(y118); @BIN(y 136); 
@BIN(x33); @BIN(x26); @BIN(x 19); @BIN(y 119); @BIN(y137); 
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APPENDIX C. DATA FOR SMALL PROBLEM INSTANCES 

Table C.1 Data pertains to the small problem instances used in Chapter 6 

8J 

4M 

2SP 

Machine 
Availability 

Mac ine 
Job 

Weight 

Job 

Release 
Time 

Job 

Due 
Date 

M 1 

M21 
M22 M3 

7 6 3 
Job Index Job Processing Time on Machine 

J1 15 00 00 6 3 8 9 
J21 21 0o co 23 2 6 10 
J22 20 co co 23 2 6 10 
J3 00 18 18 14 4 6 9 
J4 4 c0 co 19 4 6 9 

J51 21 21 21 24 3 1 18 
J52 14 28 28 23 3 1 18 
J6 8 21 21 00 4 5 9 

8J 

5M 

2SP 

Machine 
Availability 

Machin 
Job 

Weight 

Job 
Release 
Time 

Job 
Due 
Date 

M1 M21 M22 
I 

M31 M32 
6 14 8 3 4 

Job Index Job Processing Time on Machine 
J11 13 28 28 27 27 4 6 26 
J12 15 24 24 22 22 4 6 26 
J2 00 28 28 co co 3 8 29 
J3 5 11 11 c0 00 3 7 30 

J41 15 21 21 co 00 1 3 26 
J42 15 23 23 co co 1 3 26 
J5 4 28 28 20 20 3 3 18 
J6 18 12 12 15 15 1 4 20 

9J 

3M 

2SP 

Machine 
Availability 

Machine 
Job 

Weight 

Job 
Release 

Time 

Job 
Due 
Date 

M1 M2 M3 
5 7 1 

Job Index Job Processing Time on Machine 
J1 11 27 00 2 6 23 
J2 9 19 co 4 11 26 
J3 23 14 6 2 3 30 
J4 co co 23 4 6 30 

J51 25 co 23 4 6 25 
J52 21 oo 23 4 6 25 
J61 19 28 co 1 6 25 
J62 25 19 co 1 6 25 
J7 11 co co 4 4 22 
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9J 

5M 

2SP 

Machine 
Availability 

Machin 
Job 

Wei t 

Job 
Release 
Time 

Job 
Due 
Date 

M1 M21 J M22 M631 2 
3 2 l 

9 
Job Index Job Processing Time on Machine 

Jl 17 17 17 11 11 1 4 19 
J2 20 0o co 00 co 1 4 35 
J3 6 13 13 10 10 3 5 8 

J41 0o 22 22 24 24 4 7 36 
J42 0o 20 20 15 15 4 7 36 
J51 19 27 27 18 18 3 2 34 
J52 18 28 28 17 17 3 2 34 
J6 14 27 27 co 0o 3 4 38 
J7 0o 0o co 14 14 3 8 26 

10J 

3M 

2SP 

Machine 
Availability 

Machine 
Job 

Weight 

Job 
Release 

Time 

Job 
Due 
Date 

Ml M2 M3 
7 3 2 

Job Index Job Processing Time on Machine 
J1 11 11 co 3 0 15 
J2 16 co 25 4 4 13 

15 J3 9 12 03 4 4 
J4 24 10 0o 4 

1 

5 16 
J51 co 22 27 4 15 
J52 co 22 24 1 4 15 
J61 18 co 27 3 4 13 
J62 23 0o 24 3 4 13 
J7 8 CO CO 1 7 14 
J8 7 7 _ 20 1 5 15 

10J 

4M 

2SP 

Machine 
Availability 

Ma hine 
Job 

Weight 

Job 
Release 

Time 

Job 
Due 
Date 

Ml l M 12 M2 M3 
3 2 6 6 

Job Index Job Processing Time on Machine 
J1 0o I 03 CO 18 1 4 18 
J2 03 co 13 27 1 4 48 
J3 13 13 14 13 3 5 46 
J4 00 CO 10 26 4 7 50 

J51 0o co 16 23 3 2 37 
J52 0o 0o 19 21 3 2 37 
J61 03 co 22 27 3 4 23 
J62 0o CO 23 23 3 4 23 
J7 co oo co 26 3 8 43 
J8 21 21 23 23 4 3 40 

11J 

4M 

2SP 

Machine 

Availability 
Machine 

Job 
Weight 

Job 

Release 
Time 

Job 

Due 
Date 

M11 M612 
i 

M2 M3 
2 3 Job Index Job Processing Time on Machine 

J11 28 28 00 19 3 3 47 
J12 23 23 co 17 3 3 47 
J2 18 18 23 9 1 6 40 
J3 CO 00 CO 15 1 9 36 
J4 co 0o co 22 2 6 43 
J5 12 12 13 19 4 1 42 
J6 21 21 co 12 3 6 24 
J7 21 21 13 14 2 2 54 
J8 27 27 15 20 2 5 52 

J91 25 25 18 15 4 2 36 
J92 24 24 16 17 4 2 36 
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17J 

5M 

3SP 

Machine 
Availability 

achin 
b Job 

Release 
Time 

Job 
Due 
Date 

M11 M12 1 1 
M2 

3 
613 

2 
M3 

9 
Job Index Processing Job Time on Machine 

J1 co co co 11 co 4 3 73 
J21 co CO co 27 18 1 6 71 
J22 co co 03 24 26 1 6 71 
J3 co co oo co 9 4 6 72 

J41 23 23 23 20 co 3 6 73 
J42 28 28 28 28 co 3 6 73 
J5 12 12 12 11 10 4 8 72 
J6 11 11 11 14 14 1 4 73 
J7 11 11 11 18 9 2 5 70 
J8 co co co CO 16 3 7 71 

, J9 co co co 12 16 2 7 57 
J10 14 14 14 21 25 2 4 73 
J11 28 28 28 22 11 3 5 72 

J121 co CO co 27 26 2 6 72 
J122 co co co 21 19 2 6 72 
J13 24 24 24 16 co 1 5 72 
J14 18 18 18 9 17 4 1 69 

Note: Each of these problem instances uses gj1j2 = 1. 

6 6 Weight 



139 

APPENDIX D. EXPERIMENTAL DATA 

Appendix D.1 Experimental Data Generated for All Problem Structures 

PT = processing times of jobs; Wgt = weight of jobs; RT = release time of jobs; 
DD = due date of jobs 

Table D.1 Data for small problem structure 

9 Jobs and 4 Machines Block 1 

Machine Type M1 M2 M3 
Units 1 1 2 

Availability 6 2 7, 5 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
20 9 co J1 3 9 45 
21 16 co J21 2 9 40 
14 22 00 J22 2 9 40 
15 4 18 J3 2 5 25 
18 5 12 J4 3 6 41 
5 22 20 J5 2 5 11 

16 co 00 J6 4 3 31 
13 co co J7 3 4 40 
21 4 co J8 3 5 43 

9 Jobs and 4 Machines Block 2 
Machine Type Ml M2 M3 

Units 1 2 1 

Availability 5 5, 3 4 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
co 13 6 J1 1 7 35 
co ao 20 J2 1 4 31 
12 14 co J3 2 5 17 
23 co 12 J4 3 6 29 
0o 12 14 J5 3 1 29 
24 co 21 J61 1 10 22 
23 co 21 J62 1 10 22 
12 27 5 J7 1 4 26 
9 30 9 J8 3 5 22 

9 Jobs and 4 Machines Block 3 
Machine Type MI M2 M3 

Units 2 1 1 

Availability 8, 1 5 6 
PT on Machine Job 

MI M2 M3 Index Wgt RT DD 
19 18 co J11 4 6 10 
23 18 00 J12 4 6 10 
co co 20 J2 1 2 13 
5 co 15 J3 1 7 10 
co co 22 J4 1 5 9 
20 co co J5 4 3 10 
co 6 4 J6 1 2 9 
co co 6 J7 3 6 10 
9 13 14 J8 2 3 9 

9 Jobs and 4 Machines Block 4 
Machine Type Ml M2 M3 

Units 1 2 1 

Availability 5 3, 1 6 
PT on Machine Job 
MI M2 M3 Index Wgt RT DD 
9 03 25 J1 4 8 47 

20 co 15 J2 3 6 48 
16 23 24 J31 3 5 46 
21 23 26 J32 3 5 46 
6 16 23 J4 1 10 47 
8 21 11 J5 3 4 46 
17 co 24 J6 3 6 46 
18 19 20 J7 3 2 46 
co 21 25 J8 3 5 47 



9 Jobs and 4 Machines Block 5 
Machine Type MI M2 M3 

Units 1 2 1 

Availability 5 5, 5 6 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
8 17 00 J1 2 6 8 
7 0.3 21 J2 3 6 13 
4 Co 8 J3 4 4 7 
2 CO 23 J4 2 4 25 
9 20 12 J5 2 6 9 
17 12 17 J6 1 4 9 
2 15 03 J7 3 7 9 
17 00 15 J81 2 3 4 
14 CO 19 J82 2 3 4 

12 Jobs and 3 Machines Block 1 

Machine Type M1 M2 M3 
Units 1 1 1 

Availability 6 5 7 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
15 21 00 J1 1 7 83 
8 4 00 J2 3 6 81 
CO 00 27 J3 4 6 75 
00 9 00 J4 2 8 75 
7 2 16 J5 3 2 82 
16 3 25 J6 1 6 85 
25 00 20 J71 3 5 77 
21 CO 26 J72 3 5 77 
11 13 00 J8 3 1 83 
12 4 25 J9 2 7 84 
CO 17 20 J101 2 6 77 
Co 18 20 J102 2 6 77 

12 Jobs and 3 Machines Block 2 
Machine Type M1 M2 M3 

Units 1 1 1 

Availability 5 5 6 
PT on Machine Job 

Ml M2 M3 Index Wgt RT DD 
21 14 9 J1 4 3 45 
13 19 21 J21 3 7 26 
14 16 19 J22 3 7 26 
22 00 17 J3 2 6 59 
9 12 00 J4 2 5 48 
10 00 00 J5 3 2 49 
9 9 co J6 2 7 24 
19 23 03 J71 2 4 49 
19 18 00 J72 2 4 49 
9 6 00 J8 1 6 57 

13 ao 00 J9 3 6 33 
8 02 00 J10 2 3 50 
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12 Jobs and 3 Machines Block 3 
Machine Type M1 M2 M3 

Units 1 1 1 

Availability 3 3 5 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 

00 14 8 J1 1 6 21 
00 9 00 J2 1 8 15 
21 7 23 J3 3 4 14 
13 6 14 J4 2 3 15 
11 3 m J5 2 1 17 
23 21 00 J6 4 7 15 
22 13 26 J71 2 6 16 
16 18 25 J72 2 6 16 
co 20 17 J81 4 8 16 
00 13 18 J82 4 8 16 
17 18 00 J9 1 4 16 
00 15 J10 4 4 16 

12 Jobs and 3 Machines Block 4 
Machine Type M1 M2 M3 

Units 1 1 1 

Availability 3 1 11 

PT on Machine Job 
Ml M2 M3 Index Wgt RT DD 
23 17 00 J1 4 2 63 
ea 5 00 J2 2 2 78 
15 11 22 J3 2 7 79 
11 14 19 J4 4 7 78 
23 18 w J51 4 7 81 
16 23 00 J52 4 7 81 
9 12 11 J6 4 7 78 

23 23 03 J71 2 6 80 
21 15 00 J72 2 6 80 
20 20 w J8 3 7 80 
21 24 00 J9 2 3 79 
03 24 00 J10 2 8 81 
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12 Jobs and 3 Machines Block 5 
Machine Type M1 M2 M3 

Units 1 1 1 

Availability 5 3 1 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
19 co co J1 2 2 6 
co 16 6 J2 3 4 6 
17 25 17 J31 1 4 9 
24 29 17 J32 1 4 9 
22 24 22 J41 3 5 17 
22 28 21 J42 3 5 17 
co oo 15 J5 4 5 4 
9 co 7 J6 4 2 16 
11 co co J7 2 2 68 
CO co 8 J8 4 5 6 
23 14 24 J9 3 3 15 
24 co CO J10 2 2 50 

17 Jobs and 5 Machines Block 1 

Machine Type M1 M2 M3 
Units 1 1 3 

Availability 5 5 6, 4, 3 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
7 25 co J1 1 7 40 
CO 20 19 J21 4 6 74 
co 17 22 J22 4 6 74 
17 6 co J3 1 8 25 
co 24 co J4 1 12 33 
co 16 17 J5 2 5 68 
co 17 9 J6 3 6 58 
co 20 19 J71 4 6 76 
co 19 20 J72 4 6 76 
15 17 15 J8 4 3 77 
21 co co J9 4 4 68 
20 17 co J10 2 8 74 
12 11 16 J11 3 4 71 
13 20 co J12 1 8 76 
26 17 co J13 1 5 65 
co 8 19 J14 2 3 77 
co 13 co J15 4 3 77 
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17 Jobs and 5 Machines Block 2 
Machine Type M1 M2 M3 

Units 1 2 2 
Availability 4 5, 7 4, 2 
PT on Machine Job 

MI M2 M3 Index Wgt RT DD 
19 co 22 J11 4 5 26 
18 00 26 J12 4 5 26 
10 0o co J2 2 8 23 
17 co 00 J3 2 5 35 
3 co 26 J4 4 11 55 

20 12 co J5 4 7 45 
17 22 12 J6 4 6 51 
7 0o co J7 4 6 27 
7 co 12 J8 4 4 49 

20 15 25 J9 3 4 56 
co 19 27 J10 4 5 38 
6 co CO J11 3 7 40 
17 co 0o J12 3 4 50 
16 24 co J131 3 5 24 
16 18 co J132 3 5 24 
12 22 co J14 4 4 32 
10 co co J15 2 5 22 

17 Jobs and 5 Machines Block 3 
Machine Type M1 M2 M3 

Units 2 2 1 

Availability 6, 5 6, 2 8 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
22 co 16 J1 4 4 15 
co 25 8 J2 4 6 14 
8 17 2 J3 4 8 14 
15 19 co J4 2 3 14 
7 co 12 J5 3 5 16 
10 co 11 J6 2 6 13 
17 co 18 J71 4 3 14 
16 co 12 J72 4 3 14 
19 co 5 J8 1 3 14 
16 CO 21 J91 4 7 14 
21 co 19 J92 4 7 14 
10 0o 7 J10 2 8 15 
23 CO 15 J11 3 1 15 
17 21 10 J12 4 5 14 
7 20 10 J13 4 4 14 
15 co 9 J14 3 3 15 
17 co 12 J15 4 4 15 

, 



17 Jobs and 5 Machines Block 4 
Machine Type Ml M2 M3 

Units 2 2 1 

Availability 1, 5 8, 4 5 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
22 28 15 JI 3 2 70 
26 25 8 J2 4 7 55 
26 23 22 J3 1 7 69 
24 13 10 J4 3 1 70 
16 0o 12 J5 3 6 70 
24 20 18 J6 1 4 71 
ao 22 15 J71 3 4 68 
0o 24 18 J72 3 4 68 
8 0o 10 J8 3 7 71 
co co 12 J9 3 6 69 
7 0o 22 J10 3 3 69 
20 co 23 J11 4 4 72 
20 27 19 J12 1 2 60 
19 21 22 J131 3 8 69 
20 23 24 J132 3 8 69 
26 20 20 J14 1 6 71 
20 0o 11 J15 1 8 71 
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17 Jobs and 5 Machines Block 5 
Machine Type M1 M2 M3 

Units 3 1 1 

Availability 4, 5, 5 2 7 
PT on Machine Job 

MI M2 M3 Index Wgt RT DD 
0o 16 20 J1 1 7 4 
0o 7 12 J2 4 7 6 
11 22 7 J3 2 4 14 
0o co 8 J4 1 3 31 
27 25 11 J5 1 1 9 
19 11 21 J6 1 6 12 
16 23 7 J7 3 2 4 
15 18 10 J8 3 8 6 
21 23 10 J9 3 5 15 
21 17 15 J10 4 5 12 
17 24 J11 1 4 4 

03 18 23 J12 2 3 48 
00 22 11 J13 1 7 11 

20 18 21 J141 4 4 63 
19 22 16 J142 4 4 63 
co 24 21 J151 1 2 34 
0o 23 16 J152 1 2 34 
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Table D.2 Data for medium problem structure 

25 Jobs and 10 Machines Block 1 

Machine Type M1 M2 M3 
Units 4 2 4 

Availability 4, 5, 3, 9 3, 6 
10, 3, 
6,6 

PT on Machine Job 
MI M2 M3 Index Wgt RT DD 
00 22 00 J1 3 4 42 
00 19 14 J21 2 9 47 
0o 19 22 J22 2 9 47 
0o 19 8 J3 4 7 44 
00 15 9 J4 2 7 44 
8 6 8 J5 1 6 43 

27 17 16 J6 3 8 46 
00 19 03 J71 2 2 49 
0o 14 03 J72 2 2 49 
8 14 8 J8 1 5 49 

26 0o 17 J9 3 1 37 
18 4 9 J10 4 6 49 
0o 10 co J11 1 5 49 
13 co 11 J12 3 5 49 
9 19 6 J13 4 7 20 
00 21 8 J14 3 7 42 
21 3 6 J15 1 4 44 
23 22 20 J161 2 9 46 
27 19 21 J162 2 9 46 
co 19 co J17 2 3 49 
co 3 00 J18 1 4 49 
21 4 11 J19 4 5 38 
co 3 co J20 1 5 48 
8 22 7 J21 4 2 13 
co 22 7 J22 2 7 43 
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25 Jobs and 10 Machines Block 2 
Machine Type M1 M2 M3 

Units 3 3 4 
Availability 6, 6, 8 7, 3, 5 1, 5, 9, 4 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
5 13 16 J1 3 5 32 
5 26 19 J2 2 4 27 
co 13 co J3 2 4 32 
co 11 13 J4 3 5 18 
15 26 14 J5 4 5 26 
3 co 17 J6 4 9 23 
7 8 24 J7 4 5 41 
6 co 17 J8 1 4 16 
13 18 co J91 3 3 39 
14 26 co J92 3 3 39 
19 co 26 J10 4 7 17 
12 20 19 J11 3 9 27 
18 26 co J121 4 8 36 
22 20 co J122 4 8 36 
7 12 co J13 4 1 32 
7 co 19 J14 2 3 38 
7 18 23 J15 2 4 28 
16 17 co J16 2 5 38 
7 co 30 J17 1 0 32 
4 13 14 J18 1 1 23 
3 25 co J19 1 5 26 
co 26 30 J201 1 3 35 
03 27 30 J202 1 3 35 
co 21 27 J21 1 5 29 
16 21 co J22 3 4 18 
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25 Jobs and 10 Machines Block 3 
Machine Type Ml M2 M3 

Units 5 2 3 

Availability 7 58 S ' 5, 2 5, 7, 5 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
19 10 26 J1 2 4 12 
co 15 26 J2 1 7 11 
co 14 co J3 4 2 20 
20 14 11 J4 2 1 12 
co 14 19 J51 3 8 13 
co 16 25 J52 3 8 13 
22 20 26 J61 3 2 11 
24 16 25 J62 3 2 11 
28 12 20 J7 4 8 19 
co 22 9 J8 4 6 11 
co 15 24 J9 1 7 15 
19 21 27 J10 1 12 12 
11 19 26 J11 3 4 11 
co 3 co J12 4 3 12 
co 17 24 J131 3 5 11 
co 15 20 J132 3 5 11 
24 11 co J14 2 2 11 

20 co 24 J15 3 3 12 
11 10 co J16 2 8 11 
17 co co J17 1 5 13 
17 15 co J18 1 4 11 
co 22 25 J19 3 6 12 
19 10 co J20 2 6 17 
11 19 co J21 1 5 12 
co 22 17 J22 4 5 11 
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25 Jobs and 10 Machines Block 4 
Machine Type M1 M2 M3 

Units 3 4 3 
Availability 5, 5, 5 5, 1, 2, 4 4, 3, 6 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
7 co co J1 1 2 47 
21 co 13 J2 3 4 49 
co co 12 J3 1 5 48 
20 27 10 J4 4 6 47 
co 0o 22 J5 1 8 48 
20 21 14 J6 1 6 47 
9 co 11 J7 4 5 48 
16 ao 13 J8 2 9 49 
23 17 16 J9 1 7 44 
co co 19 J101 4 9 48 
0o co 18 J102 4 9 48 
co 11 co Jll 1 5 47 
21 0o co J12 2 8 48 
18 11 15 J13 4 4 48 
co co 25 J14 1 5 47 
24 co 17 J151 2 6 48 
15 co 17 J152 2 6 48 
14 co 11 J16 3 7 45 
10 22 co J17 3 6 40 
20 22 23 J181 2 5 48 
22 23 24 J182 2 5 48 
15 co 24 J19 4 6 47 
17 ao 10 J20 1 6 47 
6 03 co J21 1 5 47 
13 co co J22 2 7 49 
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25 Jobs and 10 Machines Block 5 
Machine Type Ml M2 M3 

Units 1 7 2 

Availability 7 9' 3' 3, 7, 
4, 3, 7 

8, 2 

PT on Machine Job 
Ml M2 M3 Index Wgt RT DD 

0o 20 24 J1 3 6 6 
0o co 13 J2 3 1 6 
ao 21 ao J3 4 5 29 
8 co 14 J4 2 2 14 

20 23 15 J5 4 2 7 
12 co co J6 1 8 4 
21 co 19 J7 2 4 10 
17 23 0o J8 4 2 10 
w 14 8 J9 2 4 32 
14 co 0o J10 3 6 9 
0o 21 15 J11 2 3 8 
6 11 0o J12 4 6 3 

20 21 0o J13 1 10 8 
20 14 13 J14 1 5 11 
0o 11 24 J15 4 3 11 
10 0o 18 

22 
J16 3 9 7 

14 00 J171 1 7 9 
16 0o 25 J172 1 7 9 
19 0o 21 J181 1 2 3 
17 0o 26 J182 1 2 3 
6 0o co J19 3 5 3 
15 23 8 J20 1 5 5 
21 23 03 J211 2 5 3 
21 25 co J212 2 5 3 
13 0o co J22 1 2 14 
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35 Jobs and 8 Machines Block 1 

Machine Type M1 M2 M3 
Units 3 1 4 

Availability 5, 3, 5 4 5, 4, 5, 3 
PT on Machine Job 

Ml M2 M3 Index Wgt RT DD 
19 23 30 J11 2 8 62 
17 15 29 J12 2 8 62 
0o 19 0o J2 2 8 81 
5 11 25 J3 4 3 63 
17 7 21 J4 1 3 44 
19 20 23 J51 2 4 22 
24 15 30 J52 2 4 22 
23 17 0o J6 4 1 96 
22 co 18 J7 3 5 93 
17 23 23 J81 4 8 79 
23 17 30 J82 4 8 79 

13 0o J9 3 4 87 
17 15 0o J10 3 3 95 
12 0o 0o J11 4 6 96 
9 11 0o J12 2 7 52 
19 5 21 J13 1 4 84 
21 12 03 J14 3 4 43 
19 14 03 J15 2 2 96 
0o 15 O0 J16 1 1 81 
19 10 14 J17 2 4 84 
23 co 28 J18 1 2 95 
w 15 03 J19 2 7 68 
17 5 03 J20 2 6 83 
15 21 03 J211 1 8 88 
22 21 0o J212 1 8 88 
10 20 03 J22 3 3 77 
17 16 26 J23 1 4 87 
ao 15 0o J24 1 3 87 
20 11 26 J25 1 5 87 
6 23 27 J26 3 3 88 
10 12 29 J27 1 7 90 
22 19 11 J28 4 4 83 
0o 8 Oa J29 3 3 93 
5 9 03 J30 2 6 93 
5 13 03 J31 2 0 42 
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35 Jobs and 8 Machines Block 2 
Machine Type M1 M2 M3 

Units 4 1 3 
Availability 2, 4, 3, 3 3 9,7,6 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
0o 21 17 J11 4 8 50 
0o 13 26 J12 4 8 50 
18 12 7 J2 2 4 53 
00 3 13 J3 4 2 38 
co 4 9 J4 4 2 74 
24 9 00 J5 4 4 70 
co 6 24 J6 1 7 65 
0o 18 21 J71 4 5 35 

16 25 J72 4 5 35 
23 15 00 J8 1 4 49 
0o 5 15 J9 1 4 72 
00 12 00 J10 2 4 73 
0o 19 23 J11 2 7 66 
25 22 21 J12 3 1 69 
11 00 0o J13 3 2 66 
26 18 00 J141 3 4 69 
26 13 00 J142 3 4 69 
13 a0 18 J15 2 11 64 

27 7 24 J16 2 2 26 
w 13 00 J17 4 5 30 
0o 4 11 J18 2 7 30 
20 9 13 J19 1 7 62 
co 8 17 J20 2 5 32 
16 11 ao J21 1 6 64 
00 00 14 J22 4 8 76 
10 3 w J23 1 7 40 
0o 19 10 J24 4 2 72 
0o 00 19 J25 4 5 65 
00 22 w J26 4 3 54 
00 10 Oo J27 3 8 58 
22 11 24 J28 3 2 27 
00 15 23 J291 2 7 72 
00 20 22 J292 2 7 72 
21 9 co J30 2 6 50 
12 22 21 J31 1 7 64 
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35 Jobs and 8 Machines Block 3 
Machine Type M1 M2 M3 

Units 1 4 3 

Availability 4 6, 7, 5, 8 5, 4, 3 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
9 8 20 J1 3 3 17 
0o w 21 J2 4 5 17 
18 16 19 J31 2 3 20 
25 24 25 J32 2 3 20 
14 25 6 J4 3 7 19 
11 0o 22 J5 3 5 17 
23 0o 17 J6 2 5 18 

22 17 co J7 1 2 20 
6 0o 0o J8 4 11 20 
13 ao 15 J9 4 5 18 
24 ao 0o J10 2 3 17 
00 18 co J11 1 5 17 
9 11 0o J12 3 3 18 

23 16 17 J131 3 7 36 
22 25 21 J132 3 7 36 
8 0o 25 J14 3 3 17 
16 17 7 J15 3 7 18 
6 15 12 J16 3 10 17 

8 21 10 J17 2 3 20 
21 18 10 J18 2 6 20 
17 18 24 J19 2 4 17 
18 6 9 J20 2 4 19 
00 00 13 J21 4 6 17 

16 0o 20 J22 4 6 20 
7 21 0o J23 4 4 20 
17 18 21 J241 1 0 19 

19 20 22 J242 1 0 19 
00 24 14 J25 4 1 32 

23 20 8 J26 2 7 20 
21 16 6 J27 4 1 19 
7 13 00 J28 2 3 17 
7 18 17 J29 4 7 19 
19 00 25 J301 2 5 20 
24 w 17 J302 2 5 20 
24 00 21 J31 2 4 17 
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35 Jobs and 8 Machines Block 4 
Machine Type M1 M2 M3 

Units 5 1 2 

Availability 24, 5 ' 8 9, 2 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
co 18 20 ji 2 3 90 
w 21 18 J2 4 5 91 

29 7 8 J3 3 3 92 
13 15 19 J4 2 8 92 
18 15 6 J5 3 1 87 
17 22 18 J6 3 4 89 
10 18 co J7 1 6 90 
17 18 15 Jg 1 7 92 
17 8 16 J9 4 3 90 
20 4 24 J10 1 7 90 
co 17 12 J11 3 4 89 
00 21 9 J12 1 3 87 
co 14 co J13 4 4 91 
0o e3 23 J14 4 9 93 
CO 17 19 J15 4 6 93 
0o 19 20 J161 3 9 90 
0o 21 20 J162 3 9 90 

24 18 18 J17 1 5 90 
29 18 10 J18 1 2 92 
17 9 17 J19 1 4 91 
29 23 6 J20 1 9 84 
28 21 22 J21 2 3 93 
0o 23 17 J22 2 2 90 
25 16 19 J231 4 9 92 
24 23 16 J232 4 9 92 
27 18 8 J24 3 5 92 
00 16 19 J25 4 6 91 
0o 15 25 J261 2 1 91 
co 14 16 J262 2 1 91 
10 5 22 J27 2 3 91 
co 21 23 J281 4 7 89 
co 16 19 J282 4 7 89 
18 11 24 J29 1 6 92 
co 14 co J30 2 7 93 
00 14 11 J31 4 1 93 
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35 Jobs and 8 Machines Block 5 
Machine Type M1 M2 M3 

Units 4 3 1 

Availability 4, 3, 6, 1 4, 9, 2 7 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
0o CO 3 J1 4 5 26 
9 10 13 J2 3 4 18 
16 6 15 J3 1 4 78 
co co 13 J4 2 7 5 
0o 21 3 J5 4 7 19 
co 16 16 J6 4 4 11 

8 0o 2 J7 4 5 14 
19 19 12 Jg 2 9 12 
21 17 14 J91 3 4 8 
24 24 14 J92 3 4 8 
24 00 11 J10 1 5 17 
18 ao 8 J11 3 5 18 
25 14 14 J12 4 5 10 
21 17 17 J13 4 1 19 
19 18 14 J141 1 7 6 
23 22 21 J142 1 7 6 
11 21 6 J15 2 5 58 
0o 11 18 J16 1 9 9 
19 21 6 J17 2 1 9 
10 24 0o J18 2 3 16 
23 24 2 J19 3 5 18 
17 0o 3 J20 2 3 12 
co 24 18 J211 1 6 19 
co 24 19 J212 1 6 19 
18 22 20 J221 1 4 18 
20 23 17 J222 1 4 18 
00 7 co J23 4 7 14 
co 15 3 J24 1 2 15 
18 co 20 J25 1 5 12 
00 21 0o J26 2 5 16 
0o 0o 12 J27 4 3 12 
0o 22 11 J28 1 2 19 
16 11 16 J29 1 3 8 
0o 11 20 J30 1 6 18 
co co 2 J31 1 9 27 
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45 Jobs and 6 Machines Block 1 

Machine Type M1 M2 M3 
Units 2 2 2 

Availability 4, 5 4, 1 3, 5 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
12 20 0o Jl 1 6 118 
4 0o 0o J2 2 2 151 
23 co 9 J3 1 5 151 

15 CO 00 J4 3 6 93 
22 CO 16 J5 4 2 159 
11 23 0o J6 1 6 168 
23 25 18 J71 2 4 146 
23 27 27 J72 2 4 146 
16 CO 02 J8 2 2 122 
17 00 0o J9 1 3 163 
16 24 co J101 2 7 143 
15 26 0o J102 2 7 143 
19 0o 22 J11 3 5 149 
17 co co J12 1 7 168 
4 26 15 J13 3 4 60 
9 0o 00 J14 4 10 163 
7 15 ao J15 3 3 164 

22 28 17 J16 2 5 151 
co co 24 J17 1 4 110 
19 17 17 J18 3 2 167 
14 co 21 J19 1 1 160 
12 18 24 J20 4 9 172 
16 29 21 J211 1 6 145 
17 26 25 J212 1 6 145 
21 14 27 J22 2 6 101 
11 14 13 J23 4 6 151 

14 26 co J24 1 1 169 
10 27 co J25 4 9 163 
22 co 18 J26 3 5 150 
15 27 23 J271 2 4 168 
15 26 19 J272 2 4 168 
5 27 23 J28 3 8 163 
12 21 8 J29 4 6 151 
co 28 15 J30 1 3 156 
23 co 12 J31 2 12 110 
6 20 27 J32 3 6 158 
co 00 24 J331 4 7 169 
co co 19 J332 4 7 169 
23 CO 26 J34 1 6 146 
6 00 26 J35 3 6 160 

23 CO 19 J361 2 3 148 
22 CO 20 J362 2 3 148 
10 29 13 J37 3 3 156 
21 28 14 J38 4 8 155 
17 00 8 J39 4 2 162 
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45 Jobs and 6 Machines Block 2 
Machine Type Ml M2 M3 

Units 2 3 1 

Availability 6, 7 2, 7, 5 9 
PT on Machine Job 

Ml M2 M3 Index Wgt RT DD 
12 co 16 Jl 1 0 103 
co 21 co J2 1 5 65 
co co 25 J3 1 3 61 
19 20 12 J4 2 3 52 
19 co 17 J51 4 5 77 
20 co 19 J52 4 5 77 
11 co CO J6 4 5 105 
21 22 12 J7 1 7 116 
23 co 20 J81 4 6 115 
21 co 25 J82 4 6 115 
24 23 18 J9 3 9 78 
0o 28 24 no 1 4 92 
co co 7 J11 3 5 80 
19 26 24 J12 4 3 131 
CO CO 13 J13 2 8 96 
23 25 16 J14 4 8 68 
21 22 16 J15 3 7 119 
co 16 9 J16 2 7 106 
co 12 10 J17 2 4 69 
21 25 21 J181 3 3 76 
24 26 21 J182 3 3 76 
24 27 19 J19 1 5 63 
20 co co J20 3 8 146 
12 10 8 J21 3 3 110 
0o 23 23 J22 3 2 131 
8 co op J23 2 6 134 

26 21 17 J241 4 9 106 
23 27 24 J242 4 9 106 
16 co co J25 1 2 56 
20 0o 20 J26 1 7 60 
27 22 15 J27 2 5 69 
12 23 13 J28 2 4 78 
co 0o 17 J29 4 8 95 
22 co 18 J30 1 1 71 
12 20 co J31 2 4 53 
ao co 25 J32 2 3 102 

21 co 25 J331 2 9 87 
20 co 17 J332 2 9 87 
9 12 19 J34 3 3 123 
co co 11 J35 2 6 61 
13 11 18 J36 2 4 100 
co 12 24 J37 2 7 142 
18 23 21 J381 2 5 54 
20 20 19 J382 2 5 54 
25 co 20 j39 4 3 86 
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45 Jobs and 6 Machines Block 3 
Machine Type M1 M2 M3 

Units 3 1 2 
Availability 2, 6, 7 5 4, 10 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
00 19 co J1 1 9 39 
co 20 03 J2 4 4 34 
21 17 18 J31 3 6 33 
27 20 24 J32 3 6 33 
19 16 18 J4 4 4 37 
14 co 0o J5 1 4 39 
0o 13 0o J6 1 2 40 
ao 16 03 J7 1 2 35 
0o 26 13 Jg 2 8 35 
13 25 10 J9 ao 1 8 37 
co 25 co J10 1 4 33 
00 23 23 J11 1 7 36 
11 25 CO J12 3 6 39 
27 12 23 J13 0o J13 3 7 65 
23 21 0o J14 I 7 39 
ao 9 co J15 1 6 40 
co 9 co J16 2 11 49 
19 8 co J17 2 7 35 
0o 14 16 J18 3 8 40 
co 19 21 J19 1 2 36 
0o 16 03 J20 1 3 40 
0o 25 27 J21 2 5 37 
co co 24 J221 2 2 48 
0o co 19 J222 2 2 48 
0o 14 0o J23 3 7 34 
22 23 25 J241 1 5 36 
23 23 18 J242 1 ' 5 36 
0o 20 26 J251 2 5 34 
co 26 27 J252 2 5 34 
19 7 00 J26 2 2 35 
28 11 21 J27 4 0 39 
0o 20 26 J28 4 7 34 
ao 23 15 J29 4 4 35 
00 18 22 J301 1 4 39 
co 25 23 J302 1 4 39 
0o 9 23 J31 1 7 40 
24 12 0o J32 1 7 37 
0o 21 26 j33 2 4 36 
co 9 22 J34 4 5 39 
co co 25 J35 3 8 34 
26 15 18 J36 1 6 39 
ao 26 co J37 3 12 35 
27 18 27 J381 2 3 62 
24 25 21 J382 2 3 62 
co 22 9 j39 4 8 34 
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45 Jobs and 6 Machines Block 4 
Machine Type M1 M2 M3 

Units 2 2 2 
Availability 7, 6 6, 7 6, 7 
PT on Machine Job 

M1 M2 M3 Index Wgt RT DD 
24 28 co J1 4 9 162 
14 18 0o J2 3 6 165 
26 co 23 j3 4 4 166 
16 19 23 J4 4 5 164 
19 0o 22 J5 4 9 167 
28 19 30 J61 4 1 142 
26 24 24 J62 4 1 142 
16 12 co J7 3 12 162 
20 14 0o Jg 3 4 165 
21 12 J9 1 5 163 
14 23 co J10 2 4 160 
12 16 24 J11 2 4 165 
10 23 17 J12 1 8 151 
10 14 4 2 162 
26 27 CO J14 1 3 156 
23 co 28 J151 2 7 160 
19 0o 24 J152 2 7 160 
25 24 24 J161 2 3 161 
21 27 26 J162 2 3 161 
21 co co J17 2 6 148 
9 22 co J18 2 0 166 

21 21 co J19 3 3 161 
21 25 co J201 4 7 130 
24 28 co J202 4 7 130 
22 23 25 J21 2 1 150 
26 11 co J22 3 2 165 
21 11 0o J23 3 6 150 
28 18 29 J24 1 3 166 
9 12 13 J25 1 6 164 

21 co co J261 3 5 166 
28 co co J262 3 5 166 
11 9 co J27 4 4 161 
17 co 11 J28 2 8 163 
13 17 0o J29 4 3 134 
15 11 18 J30 4 1 160 
14 co 03 J31 1 9 139 
27 co 27 J32 4 4 164 
28 9 0o J33 2 4 166 
25 25 co J34 4 3 131 
20 21 co J351 4 5 151 
24 24 03 J352 4 5 151 
14 03 co J36 1 7 160 
15 co 00 J37 1 2 162 
11 10 co J38 3 7 164 
17 0o 15 j39 2 5 160 
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45 Jobs and 6 Machines Block 5 
Machine Type M1 M2 M3 

Units 2 2 2 
Availability 3, 5 6, 2 6, 5 
PT on Machine Job 

Ml M2 M3 Index Wgt RT DD 
CO CO 11 Jl 4 5 26 
0o 0o 21 J2 4 4 8 
9 co 3 J3 1 8 61 
7 0o 21 J4 2 4 26 
21 ao 8 J5 2 4 8 
20 0o 13 J6 1 9 28 
10 0o 17 J7 2 3 7 
24 0o co J8 2 2 26 
co 29 8 j9 3 12 8 
00 CO 13 J10 2 7 26 
co a0 21 J11 3 9 9 
11 19 13 J12 4 4 21 
24 00 17 J131 3 3 111 
18 CO 18 J132 3 3 111 
6 co 9 J14 3 9 133 
19 25 16 J15 1 6 19 
20 co 3 j16 1 7 22 
co CO 14 J171 2 5 22 
co co 19 J172 2 5 22 
00 co 2 J18 3 5 134 
24 co 15 J19 2 7 16 
21 23 16 J20 1 7 23 
5 co 5 J21 4 5 16 
19 29 co J221 3 1 10 
17 23 co J222 3 1 10 
11 co co J23 4 4 20 
0o op 20 J24 2 5 25 

20 co 10 J25 1 3 72 
21 03 9 J26 3 5 9 
17 co 14 J271 3 8 26 
21 0o 17 J272 3 8 26 
23 co 15 J281 4 3 17 
17 co 19 J282 4 3 17 
17 27 17 J291 3 4 98 
23 27 21 J292 3 4 98 
17 19 2 J30 2 5 22 
co co 5 J31 2 8 18 
22 19 4 J32 3 3 31 
11 28 18 J33 1 3 32 
22 co 6 j34 2 6 20 
24 30 10 J35 4 3 10 
11 co 17 J36 4 7 8 
0o co 3 J37 4 3 12 
16 17 4 J38 1 12 16 
co 23 16 J39 1 5 18 
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Table D.3 Data for large problem structure 

50 Jobs and 11 Machines Block 1 

Machine Type M1 M2 M3 
Units 5 2 4 

Availability 3, 3, 6, 2, 2 2, 5 5, 5, 3, 6 
PT on Machine Job PT on Machine Job 

MI M2 M3 Index Wgt RT DD M1 M2 M3 Index Wgt RT DD 
co co 14 JI 4 5 113 co 22 J24 4 3 95 
ao co 20 J2 1 3 109 26 26 23 J25 3 6 24 
26 26 co J3 1 4 101 12 12 15 J26 3 7 104 
0o 0o 9 J4 3 7 100 0o co 25 J27 2 7 109 
21 21 13 J5 3 6 46 CO CO 24 J281 4 5 111 
0o 00 15 J6 3 3 45 0o ao 20 J282 4 5 111 
co co 10 J7 1 5 108 28 28 21 J291 1 5 104 
24 24 13 J8 4 5 105 28 28 18 J292 1 5 104 
27 27 19 J91 1 7 100 co 0o 16 J30 1 5 83 
30 30 27 J92 1 7 100 ao co 18 J31 3 7 107 
00 00 11 J10 2 2 107 17 17 13 J32 4 6 107 
co co 20 J11 1 4 104 0o ao 25 J33 1 5 106 
co co 17 J12 3 5 33 28 28 21 J34 3 3 103 
ao CO 21 J131 3 9 104 25 25 21 J351 1 6 97 
co ao 19 J132 3 9 104 30 30 23 J352 1 6 97 
12 12 24 J14 4 5 101 CO co 21 J36 2 5 109 
14 14 20 J15 1 3 112 22 22 25 J371 4 5 96 
19 19 19 J16 4 6 101 22 22 20 J372 4 5 96 
20 20 22 J17 1 5 111 17 17 co J38 2 3 95 
co co 20 J18 2 2 95 co co 16 J39 1 6 106 
11 11 11 J19 2 2 79 co co 27 J40 3 7 113 
co co co J20 3 2 102 16 16 13 J41 3 7 99 
co co 16 J21 1 1 102 co co 26 J42 3 4 106 
co co 12 J22 3 7 107 24 24 21 J43 3 6 100 
co 0o 8 J23 4 4 97 0o a0 10 J44 2 6 110 
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50 Jobs and 11 Machines Block 2 
Machine Type M1 M2 M3 

Units 5 2 4 

Availability 6 6,33' 
',7 4, 2 7,6,7,5 

PT on Machine Job 
hell M2 M3 Index Wgt RT DD 
18 co 22 J1 4 5 70 
27 20 10 J2 2 4 41 
co 12 17 J3 4 8 36 
co 4 18 J4 4 2 40 
co co 12 J5 4 3 63 
co 23 17 J6 3 4 73 
12 5 6 J7 2 3 51 
co 5 co J8 4 7 29 
30 10 24 J9 3 4 66 
28 9 19 J10 3 5 36 
28 12 7 J11 3 4 42 
22 16 23 J121 1 3 49 
29 16 23 J122 1 3 49 
00 15 5 J13 2 2 32 
24 17 24 J141 1 6 51 
27 23 23 J142 1 6 51 
co 8 16 J15 4 8 65 
co 16 00 J161 4 5 35 
w 23 00 J162 4 5 35 
00 10 co J17 1 7 75 
17 4 23 J18 1 6 69 
18 20 15 J19 1 3 73 
co 15 21 J20 1 3 69 
co 22 19 J21 2 3 61 
24 co co J22 2 2 55 
co 9 17 J23 2 7 72 
19 17 8 J24 3 6 70 
28 21 14 J25 1 6 47 
25 18 co J261 1 5 79 
23 20 co J262 1 5 79 
00 16 17 J27 1 2 39 
co 23 5 J28 4 11 73 
co 5 co J29 1 5 79 
co 22 21 J30 3 6 44 
18 23 8 J31 4 2 70 
13 16 9 J32 4 8 46 
00 14 co J33 3 4 47 
28 20 co J34 1 4 58 
21 21 21 J351 1 4 49 
25 22 18 J352 1 4 49 
co 8 22 J36 1 7 37 
27 17 18 J37 3 4 33 
19 18 6 J38 2 5 77 
30 14 23 J391 3 5 64 
28 19 17 J392 3 5 64 
12 22 12 J40 1 7 77 
co 22 co J41 3 5 52 
12 co 23 J42 3 4 33 
co 11 co J43 1 4 46 
co 8 co J44 1 3 56 
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50 Jobs and 11 Machines Block 3 
Machine Type M1 M2 M3 

Units 4 2 5 

Availability 1, 2, 4, 4 1, 3 
6, 5, 7, 

4, 3 

PT on Machine Job 
MI M2 M3 Index Wgt RT DD 
25 15 23 J11 4 4 22 
18 16 28 J12 4 4 22 
22 co 0o J2 2 4 22 
20 20 17 J3 4 6 21 
19 8 9 J4 1 3 28 
23 14 03 J5 1 7 22 
14 co 0o J6 2 4 23 
14 15 00 J7 3 5 28 
23 7 14 J8 3 7 21 
25 21 0o J91 3 5 19 
20 24 0o J92 3 5 19 
19 11 27 J10 3 5 21 
0o co 0o J111 1 6 19 
00 00 03 J112 1 6 19 
0o 00 24 J12 4 9 19 
19 23 13 J13 2 9 20 
20 15 19 J14 1 5 21 
co 9 03 J15 1 4 20 
22 co 14 J16 3 6 33 
26 w 14 J17 4 2 21 
15 18 10 J18 4 5 20 
14 5 13 J19 2 10 26 
10 23 co J20 4 8 19 
26 7 0o J21 4 10 21 
19 10 14 J22 4 2 19 
20 21 00 J231 1 4 26 
24 24 0o J232 1 4 26 
00 21 23 J24 1 11 19 
18 22 0o J251 2 10 21 
21 16 00 J252 2 10 21 
10 0o 14 J26 2 5 28 
17 19 12 J27 3 2 20 
14 10 18 J28 3 1 22 
21 18 0o J29 4 3 19 
10 6 20 J30 3 4 21 
0o 0o 26 J31 1 7 19 
25 16 co J32 2 8 23 
co 6 13 J33 1 4 20 
22 22 26 J341 4 2 40 
22 23 19 J342 4 2 40 
15 21 28 J35 4 4 39 
13 co 14 J36 4 7 23 
24 10 co J37 3 6 20 
12 co co J38 2 2 22 
13 13 0o J39 1 7 21 
7 16 24 J40 4 3 27 

23 15 co J41 1 5 21 
co 19 co J42 3 7 23 
21 13 27 J43 4 6 32 
21 11 23 J44 3 8 20 
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50 Jobs and 11 Machines Block 4 
Machine Type MI M2 M3 

Units 3 5 3 

Availability 2, 1, 6 4'176 ' 11, 10, 5 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 

5 0o 16 Ji 1 6 85 
15 co co J2 4 3 85 
17 12 3 J3 1 5 84 
0o 0o 10 J4 4 5 76 
co co 16 J51 2 10 82 
0o co 20 J52 2 10 82 
7 0o 13 J6 4 3 70 

20 21 ao J7 1 6 84 
0o 00 5 J8 2 3 85 
co co 6 J9 2 8 82 
0o 14 0ó J10 4 5 82 
9 8 0o J11 4 2 82 
15 21 14 J121 3 6 75 
20 26 20 J122 3 6 75 
6 12 12 J13 4 5 84 
co ao 19 J14 3 6 75 
CO CO 5 J15 2 5 84 
15 0o 5 J16 3 7 85 
00 21 4 J17 1 6 82 
18 14 15 318 2 4 82 
16 12 7 J19 1 6 84 
co ao 21 J20 2 6 82 
18 12 19 321 4 5 86 
14 co 0o J22 2 1 82 
19 19 17 J23 4 5 83 
20 co 21 J24 3 3 83 
13 17 3 J25 1 7 84 
co co 15 J261 3 11 84 
co co 19 J262 3 11 84 
co 20 5 J27 1 4 84 
6 co 21 J28 1 3 83 
5 co 4 J29 2 7 84 
co 0o 12 J30 4 1 81 
co 26 5 J31 4 5 84 
17 26 14 J32 4 5 86 
co co 21 J33 1 2 85 
co co 20 J341 3 2 84 
co 0o 14 J342 3 2 84 
9 co 11 J35 4 3 78 
co co 3 J36 1 6 85 
co 19 7 J37 1 4 85 
5 21 20 J38 1 5 84 
5 27 18 J39 4 7 84 
co 25 0o J401 3 1 82 
co 22 co J402 3 1 82 
co 8 12 J41 1 7 84 
co 0o 15 J42 3 9 83 
co co 17 J43 2 1 75 
22 20 17 J441 1 6 82 
15 25 20 J442 1 6 82 
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50 Jobs and 11 Machines Block 5 
Machine Type M1 M2 M3 

Units 5 3 3 

Availability 5 
2, 8' 6, 6, 6 0, 3, 5 

PT on Machine Job 
M1 M2 M3 Index Wgt RT DD 
0o 20 17 J11 3 3 5 
co 28 12 J12 3 3 5 
28 21 co J21 2 3 21 
30 19 0o J22 2 3 21 
0o 22 6 J3 3 2 21 
26 17 co J4 2 4 11 
0o 26 co J5 2 4 48 
28 11 15 J6 3 2 18 
24 11 co J7 1 3 58 
29 19 9 J8 2 5 9 
28 17 14 J9 1 7 5 
co 27 19 J10 1 2 11 
co 0o 16 J11 2 6 13 
co w 7 J12 2 5 19 
17 18 19 J13 1 3 9 
19 co co J14 2 4 10 
0o 21 0o J15 1 6 23 
19 0o 14 J16 4 9 18 
22 co 17 J17 3 5 16 
12 21 14 J18 1 6 5 
25 27 13 J191 3 5 61 
30 27 20 J192 3 5 61 
24 co 4 J20 3 2 12 
26 24 12 J21 2 5 12 
18 15 8 J22 3 4 10 
0o 16 20 J23 4 9 13 
0o 25 co J24 3 7 5 
25 21 11 J25 3 8 9 
0o 27 co J26 3 8 6 
29 24 3 J27 3 5 78 
26 25 19 J28 4 5 19 
25 27 6 J29 1 7 14 
16 11 15 J30 1 6 65 
co 23 14 J31 1 5 21 
13 27 co J32 2 5 5 
co 22 14 J331 3 2 44 
co 26 17 3332 3 2 44 
18 10 7 J34 2 4 9 
25 19 12 J351 1 5 11 
21 26 18 J352 1 5 11 
15 15 11 J36 2 5 5 
17 23 21 J37 4 7 12 
co 9 5 J38 4 6 18 
co 10 2 J39 3 4 13 
co 16 co 340 2 9 21 
co co 16 J411 3 7 21 
CO CO 13 J412 3 7 21 
27 co 14 J42 4 5 6 
27 23 10 J43 3 4 12 
co 13 11 J44 3 13 19 
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60 Jobs and 15 Machines Block 1 

Machine Type M1 M2 M3 
Units 5 4 6 

Availability 6, 5, 7, 12, 9 9, 9, 6, 5 1, 3, 3, 6, 2, 7 
PT on Machine Job PT on Machine Job 

M1 M2 M3 Index Wgt RT DD M1 M2 M3 Index Wgt RT DD 
11 4 00 J1 1 1 78 16 13 12 J26 4 2 54 
23 16 co J2 3 2 86 6 9 17 J27 1 2 75 
7 18 J3 4 3 81 00 15 24 J28 4 4 57 
7 21 18 J4 3 7 35 16 18 22 J29 2 4 78 
5 8 00 J5 1 8 86 21 22 co J30 4 8 76 
5 14 0o J6 2 8 88 20 23 26 J31 2 9 83 
5 11 17 J7 4 7 84 21 10 0o J32 4 6 67 
0o 11 28 J8 2 3 49 18 20 J33 2 2 80 
18 22 26 J91 1 6 82 9 4 0o J34 1 5 82 
24 17 26 J92 1 6 82 24 4 J35 3 4 80 
19 16 0o J101 4 3 84 19 15 0o J36 4 4 85 
18 16 Oo J102 4 3 84 24 19 24 J37 3 5 87 

17 19 11 J11 2 4 87 0o 13 13 J38 1 6 79 
10 23 15 J12 4 6 48 0o 17 14 J39 4 6 86 
20 19 24 J131 2 7 88 20 8 14 J40 3 9 66 
17 15 25 J132 2 7 88 0o 22 0o J41 2 2 87 
7 11 co J14 1 4 88 20 19 0o J421 1 4 85 

13 5 co J15 2 4 76 22 22 w J422 1 4 85 
18 14 29 J161 3 7 32 21 5 25 J43 2 4 81 

18 22 29 J162 3 7 32 5 9 co J44 3 5 83 

17 21 CO J171 3 4 77 12 21 co J45 4 3 86 
17 17 co J172 3 4 77 co 4 co J46 3 3 75 
16 17 co J18 4 5 79 co 9 21 J47 3 9 81 

22 9 29 J19 4 2 84 14 9 16 J48 1 5 46 
co 16 co J20 1 5 77 5 14 28 J49 4 5 84 
9 11 co J21 1 9 80 co 14 co J501 3 2 84 
18 18 co J22 2 3 19 co 14 CO J502 3 2 84 
0o 16 co J23 3 2 85 co 14 00 7511 3 3 88 
13 14 co J24 4 7 76 CO 18 co J512 3 3 88 
9 8 00 J25 2 4 77 16 7 co J52 2 5 88 

0o 

00 

03 
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60 Jobs and 15 Machines Block 2 
Machine Type Ml M2 M3 

Units 5 5 5 

Availability 2, 2, 4, 11, 8 6, 2, 3, 1, 9 6, 5, 3, 3, 3 

PT on Machine Job PT on Machine Job 

M1 M2 M3 Index Wgt RT DD M1 M2 M3 Index Wgt RT DD 
18 22 21 J11 3 3 44 CO 23 0o J262 2 4 28 

24 22 21 J12 3 3 44 13 0o 14 J27 1 5 54 

00 0o 9 J2 3 6 59 25 21 co J281 2 9 58 

20 19 CO J31 1 6 41 21 22 co J282 2 9 58 

23 22 co J32 1 6 41 12 8 0o J29 4 6 47 

18 9 16 J4 2 3 30 17 20 26 J30 4 2 70 

9 7 9 J5 2 7 30 24 7 14 J31 4 6 42 

15 14 15 J6 3 6 42 co 16 co J32 3 5 44 

14 15 28 J7 1 7 38 CO 17 co J331 2 3 63 

23 24 co J8 3 6 66 0o 16 CO J332 2 3 63 

13 18 12 J9 3 6 42 19 5 27 J34 3 7 48 

0o 15 00 J10 2 7 66 12 18 0o J35 2 9 68 

11 20 24 J11 2 4 51 7 10 9 J36 4 2 43 

co 21 19 J121 2 7 26 15 13 0o J37 4 8 38 

co 16 27 J122 2 7 26 co 6 co J38 1 5 57 

21 co co J13 4 5 54 25 20 CO J39 2 6 46 

10 13 CO J14 1 7 68 22 co 23 J401 1 4 34 

co 16 co J15 3 3 53 18 co 23 J402 1 4 34 

14 22 w J16 2 2 66 24 10 co J41 3 1 51 

25 19 16 J17 3 5 33 10 22 20 J42 1 7 67 

17 16 15 J18 2 9 34 25 co co J43 2 3 37 

21 11 11 J19 1 2 39 14 8 12 J44 4 7 64 

co 19 co J20 2 4 57 7 18 co J45 4 4 52 

21 23 CO J211 1 6 42 10 9 co J46 3 4 56 

22 16 co J212 1 6 42 16 7 co J47 3 5 31 

12 co co J22 3 4 35 14 17 co J48 2 6 58 

20 7 14 J23 2 1 27 25 15 co J49 2 5 30 

23 24 16 J24 1 10 64 co 18 18 J50 3 4 27 

19 23 co J25 4 6 53 CO 18 22 J51 2 4 31 

CO 20 co J261 2 4 28 9 18 25 J52 2 4 44 
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60 Jobs and 15 Machines Block 3 
Machine Type M1 M2 M3 

Units 7 3 5 
Availability 4, 5, 10, 5, 11, 4, 4 4, 7, 7 8, 5, 5, 5, 6 
PT on Machine Job PT on Machine Job 

M1 M2 M3 Index Wgt RT DD M1 M2 M3 Index Wgt RT DD 
co 11 0o Jl 2 2 19 0o 16 0o J27 2 7 17 
23 15 15 J21 1 3 18 16 23 0o J28 4 6 18 
23 16 19 J22 1 3 18 25 22 20 J291 4 2 19 
15 7 0o J3 2 2 18 24 22 15 J292 4 2 19 
0o 5 15 J4 1 7 26 co 20 5 J30 3 12 16 

27 0o 4 J5 3 7 17 co 18 0o J31 3 5 17 
17 6 J6 3 4 18 24 15 co J32 4 9 18 
24 22 0o J7 1 5 17 14 14 15 J33 3 6 28 
co 10 0o J8 2 8 16 24 0o 9 J34 3 2 19 
0o 23 18 J91 1 5 24 29 15 7 J35 2 7 16 
co 14 18 J92 1 5 24 21 10 23 J36 2 5 31 
14 10 10 J10 2 4 17 co 12 5 J37 1 4 17 
0o co 22 J11 4 2 16 22 6 co J38 2 5 17 
10 20 w J12 4 7 17 22 7 19 J39 3 6 17 
co 9 co J13 4 4 16 co 10 19 J40 2 6 22 
26 4 22 J14 3 5 16 22 14 6 J41 1 7 17 
co co 8 J15 1 5 32 25 co 14 J421 4 6 19 
co 14 co J16 2 4 16 23 co 21 J422 4 6 19 
17 22 10 J17 3 7 18 co 22 co J43 2 4 19 
22 12 co J18 1 3 18 co 16 14 J441 2 5 17 

28 co 17 23 J442 2 5 17 
13 12 5 J20 1 8 16 co 14 9 J45 2 4 19 
co 15 9 J21 2 5 18 25 12 9 J46 4 7 19 
20 23 

11 

co J22 1 3 17 12 10 18 J47 4 5 16 
23 7 J23 3 2 27 10 11 co J48 4 9 16 
co 18 15 J241 4 5 16 co 10 10 J49 4 6 17 
co 15 17 J242 4 5 16 13 4 5 J50 3 10 16 
13 11 21 J25 2 7 18 27 17 17 J511 1 6 16 
29 16 19 J261 3 7 17 20 16 18 J512 1 6 16 
20 22 16 J262 3 7 17 co 13 co J52 2 4 18 

00 

19 co 20 J19 2 10 
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60 Jobs and 15 Machines Block 4 
Machine Type M1 M2 M3 

Units 4 4 7 

Availability 2, 1, 7, 4 6, 3, 9, 4 7, 3, 4, 9, 9, 6, 5 

PT on Machine Job PT on Machine Job 

M1 M2 M3 Index Wgt RT DD M1 M2 M3 Index Wgt RT DD 
21 19 11 J1 3 4 87 co 18 CO J261 3 3 87 

20 18 26 J21 2 3 88 0o 26 0o J262 3 3 87 

22 20 23 J22 2 3 88 11 18 co J27 4 3 88 

0o 14 27 J3 4 7 87 10 11 30 J28 2 9 75 

00 13 0 0 J4 1 5 89 27 co CO J291 4 6 85 

26 13 0o J5 4 5 88 29 co 0o J292 4 6 85 

14 c0 0o J6 4 3 88 co 20 23 J30 2 11 86 

26 15 14 J7 3 5 86 18 24 0o J31 3 3 88 

21 20 co J81 4 1 86 25 co 26 J32 4 5 88 

27 21 CO J82 4 1 86 29 CO 18 J33 2 10 87 

10 23 0o J9 1 6 87 16 19 13 J34 4 7 89 

12 11 25 J10 2 5 85 CO CO 16 J35 2 9 86 

11 21 co J11 1 4 89 0o 11 co J36 4 11 88 

00 24 co J121 4 5 84 27 9 13 J37 3 6 89 

00 21 0o J122 4 5 84 12 26 co J38 3 6 88 

14 15 21 J13 2 5 87 18 17 co J39 2 6 87 

12 20 co J14 2 4 82 23 22 00 J40 3 5 87 

14 25 24 J15 3 9 86 co 21 30 J411 2 3 86 

25 10 29 J16 2 6 86 co 23 27 J412 2 3 86 

co 22 co J17 3 9 88 co co 17 J42 2 5 86 

co 11 17 J18 1 2 88 14 22 25 J43 4 3 89 

27 12 24 J19 1 6 86 21 15 co J44 2 6 88 

25 19 28 J201 3 6 87 16 13 30 J45 2 6 78 

27 18 29 J202 3 6 87 co 8 11 J46 1 6 86 

co 15 co J21 1 6 85 10 co 30 J47 3 3 88 

13 26 23 J22 2 4 87 12 22 21 J48 1 3 77 

19 17 co J23 3 2 89 17 24 co J49 1 3 86 

co 22 26 J241 1 9 86 23 23 co J50 1 2 75 

co 20 22 J242 1 9 86 22 25 27 J51 4 5 86 

co 19 co J25 2 6 87 29 co co J52 2 3 90 
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60 Jobs and 15 Machines Block 5 
Machine Type M1 M2 M3 

Units 4 4 7 
Availability 7, 5, 6, 3 11, 6, 7, 2 3, 6, 2, 6, 3, 13, 1 

PT on Machine Job PT on Machine Job 
MI M2 M3 Index Wgt RT DD MI M2 M3 Index Wgt RT DD 
15 00 03 J1 1 6 13 00 16 19 J291 1 9 18 
22 7 23 J2 4 6 13 0o 20 22 J292 1 9 18 
11 10 15 J3 2 4 15 15 16 24 J30 1 5 7 
7 16 17 J4 4 8 77 25 7 ao J31 4 6 9 
03 20 20 

18 
J51 2 2 15 21 12 co J32 1 6 18 

0o 25 J52 2 2 15 co 21 17 J33 2 3 8 
co 20 12 J6 1 5 16 0o 20 co J341 1 9 13 
10 23 10 J7 1 5 16 0o 21 0o 7342 1 9 13 
12 18 21 J8 4 4 11 0o 11 03 J35 4 4 5 
co 24 0o J9 3 5 34 14 18 CO J36 2 6 16 
10 17 03 J10 3 11 35 26 25 co J37 4 8 6 
14 21 15 J11 1 8 18 17 12 15 J38 4 5 16 
0o 20 21 J12 1 9 14 23 Oo 11 J39 2 3 5 
9 7 25 J13 2 4 41 0o 20 25 J40 4 5 6 
24 6 CO J14 3 4 7 co 25 12 J41 1 3 15 
20 00 17 J15 4 3 61 co co 8 J42 1 6 5 
21 11 14 J16 4 6 8 16 co 10 J43 1 5 16 
21 20 17 J17 2 9 9 co co 19 J44 1 5 18 
co 15 23 J18 1 4 18 8 12 co J45 3 4 7 
co 7 00 J19 4 5 17 co 10 23 J46 1 4 14 
7 20 Co J20 3 7 10 24 17 20 J471 1 4 12 

21 20 co J21 4 6 6 19 25 23 J472 1 4 12 
23 10 22 J22 4 8 14 12 12 17 J48 1 6 11 

co 17 15 J23 2 1 15 26 20 co J491 3 6 17 
17 co 17 J24 4 3 12 23 25 co J492 3 6 17 
17 11 co J25 3 4 24 22 23 22 J501 1 7 6 
co 22 23 J261 3 5 14 22 19 22 J502 1 7 6 
co 17 25 J262 3 5 14 14 17 co J51 3 4 14 
13 10 13 J27 3 2 9 18 22 18 J521 2 4 60 
14 19 26 J28 4 7 20 21 18 27 J522 2 4 60 
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Appendix D.2 Tabu Search Parameters 

TableD.4 Parameters used in tabu- search based heuristics for each problem structure 

Parameters 
Small Problem 

Structures 
Medium Problem 

Structures 
Large Problem 

Structures 
9J *4M 12J *3M 50J*11M 60J*15M 35J *8M 45J *6M 50J*11M 60J*15M 

Fixed 6 23 27 15 16 23 23 27 
Variable 

Tabu List - Initial 6 5 9 15 16 15 23 27 
Size - Decrease 5 4 7 11 12 11 17 21 

- Increase 7 6 11 18 20 18 27 33 

Number of Iterations 
Without Improvement 1 2 3 4 6 7 8 10 

Maximum Entries 
into Index List 2 3 4 6 9 11 13 15 

Number of 
Long Term Restarts 2 2 2 2 2 2 2 2 
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APPENDIX E. EXPERIMENTAL RESULTS 

Table E.1 Experimental results for small problem structure 

9 Jobs, 4 Machines, Block 1 

Initial 
Solution 

TS1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 163+M 44 5.17 44 16.53 44 18.62 44 9.5 44 28.89 44 27.19 
IS2 235 47 6.04 44 17.53 47 15.55 47 11.7 44 34.22 47 23.07 
IS3 384 44 6.43 44 18.18 44 21.64 44 11.97 44 33.56 44 31.42 
IS4 93 44 3.52 44 7.91 44 12.68 44 6.81 44 19.22 44 14.99 

9 Jobs, 4 Machines, Block 2 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 109 74 3.57 74 8.67 74 9.12 74 4.95 74 12.75 74 12.35 
IS2 109 74 3.57 74 8.9 74 9.23 74 5.05 74 13.34 74 12.52 
IS3 216 84 5.49 84 16.98 84 16.32 84 9.01 84 29.11 84 22.68 
IS4 101 74 4.78 74 13.4 74 15.71 74 7.2 74 20.82 74 23.45 

9 Jobs, 4 Machines, Block 3 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 418 333 4.67 333 12.08 333 14.62 333 7.63 333 18.62 333 20.05 
IS2 418 333 4.72 333 11.86 333 14.34 333 8.07 333 18.51 333 20.87 
IS3 1148 333 6.76 333 19.94 333 21.81 333 12.08 333 33.94 333 34.61 
IS4 370 333 3.79 333 7.09 333 11.31 333 6.04 333 17.85 333 16.04 

9 Jobs, 4 Machines, Block 4 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS 1 77+M 0 4.45 0 12.3 0 14.01 0 6.48 0 18.84 0 20.76 
IS2 86 0 4.45 0 12.97 0 15.33 0 6.15 0 19.22 0 20.16 
IS3 63 0 3.73 0 11.09 0 12.97 0 5.22 0 16.53 0 17.74 
IS4 2 0 3.79 0 7.25 0 11.32 0 5.22 0 14.83 0 16.59 

9 Jobs, 4 Machines, Block 5 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 434+M 203 6.7 203 19.67 203 21.81 203 10.49 203 30.26 203 31.53 
IS2 450 203 6.64 203 21.26 203 20.55 203 10.55 203 30.65 203 31.58 
IS3 560 237 8.57 237 19.66 237 20.43 237 10.93 237 29.93 237 31.14 
IS4 255 229 5.88 229 8.95 229 12.63 229 6.1 229 16.7 229 18.18 



161 

12 Jobs, 3 Machines, Block 1 

Initial 
Solution 

TS1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 0+M 0 6.4 0 15.2 0 16.5 0 10.4 0 25.8 0 29.2 
IS2 20 0 5.1 0 16.9 0 14.1 0 9.6 0 27.5 0 28.3 
IS3 10 0 5.0 0 12.5 0 14.5 0 9.6 0 22.1 0 30.5 
IS4 15 0 5.2 0 15.9 0 15.2 

TS3 

0 10.6 0 25.3 0 26.9 
12 Jobs, 3 Machines, Block 2 

Initial 
Solution 

TS1 TS2 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 455+M 66 11.4 66 39.4 66 35.5 66 19.8 66 72.0 66 56.1 
IS2 489 66 11.7 66 37.5 66 35.1 66 21.5 66 62.5 66 57.0 
IS3 629 79 9.8 66 31.1 79 31.8 79 20.0 64 55.8 79 46.0 
IS4 155 114 6.7 66 18.8 109 19.0 114 13.6 66 34.8 109 33.7 

12 Jobs, 3 Machines, Block 3 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS 1 744+M 679 7.1 543 29.9 549 26.4 679 10.3 543 115.2 549 40.3 
IS2 753 679 5.2 611 20.7 562 37.0 657 12.3 543 38.7 562 49.5 
IS3 951 543 13.4 543 39.8 543 44.9 543 26.0 543 65.4 543 62.3 
IS4 725 543 8.7 543 24.7 543 39.2 543 17.5 543 38.1 543 50.2 

12 Jobs, 3 Machines, Block 4 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 142+M 40 7.4 26 25.8 23 28.2 40 13.0 26 41.6 23 44.5 
IS2 174 40 7.1 40 20.7 23 27.4 40 11.6 40 35.8 23 41.4 
IS3 552 12 11.9 12 37.9 12 36.7 12 17.5 12 139.6 12 54.8 
IS4 194 48 7.8 28 23.6 40 21.5 48 14.7 28 40.4 40 46.6 

12 Jobs, 3 Machines, Block 5 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 926+M 606 10.0 606 28.8 606 40.6 606 21.7 606 59.4 606 50.6 
IS2 947 606 9.9 606 28.7 606 35.3 606 27.7 606 87.9 606 54.0 
IS3 1334 604 9.2 604 34.7 604 39.3 604 21.1 604 100.6 604 53.3 
IS4 762 604 7.2 604 22.2 604 24.9 604 15.3 604 36.5 604 37.5 
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17 
TS2 

Jobs, 5 Machines, Block 1 

Initial 
Solution 

TS1 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 203 5 13.5 5 48.5 5 65.3 5 17.5 5 58.9 5 76.1 
IS2 203 5 13.5 5 47.7 5 67.2 5 17.2 5 59.6 5 79.5 
IS3 594 24 13.7 5 48.0 24 51.6 24 17.4 5 58.6 24 67.6 

5 62.2 IS4 83 5 15.5 5 49.4 5 49.4 5 20.1 5 64.7 
17 Jobs, 5 Machines, Block 2 

Initial 
Solution 

TS1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 842+M 325 27.6 325 83.3 325 80.1 325 32.9 325 93.4 325 91.9 
IS2 850 325 27.1 325 82.2 325 78.6 325 31.6 325 98.9 325 91.8 
IS3 2408 353 24.4 349 80.0 353 82.6 353 31.0 349 103.9 353 103.5 
IS4 628 325 23.8 325 71.4 325 57.9 325 27.0 325 75.6 325 61.2 

17 Jobs, 5 Machines, Block 3 
Initial 

Solution 
TS1 TS2 TS3 

TWT 
TS4 TS5 TS6 

TWT CT TWT CT 
143.5 1160 

CT TWT CT TWT CT TWT CT 
IS1 1673+ 

M 
1170 42.2 1170 136.7 1170 50.8 1170 165.1 1160 161.6 

IS2 1431 1160 33.5 1156 111.5 1160 104.5 1160 35.9 1156 117.2 1160 117.7 
IS3 2075 1195 53.1 1172 144.5 1195 134.8 1195 52.6 1172 158.1 1195 156.5 
IS4 1371 1191 24.2 1191 82.7 1191 76.1 1191 28.5 1191 98.3 1191 88.2 

17 Jobs, 5 Machines, Block 4 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 54+M 2 25.6 0 85.6 0 75.7 2 30.9 0 102.3 0 93.5 
IS2 41 0 19.2 0 60.3 0 56.0 0 22.9 0 77.5 0 66.7 
IS3 178 0 23.0 0 84.5 0 76.0 0 27.1 0 96.4 0 92.8 
IS4 5 0 19.9 0 62.2 0 49.3 0 23.4 0 74.5 0 59.9 

17 Jobs, 5 Machines, Block 5 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TINT CT TWT CT TWT CT 
IS1 856 438 35.1 438 107.2 438 

438 
125.0 438 41.6 438 

438 
129.6 438 141.9 

IS2 856 438 35.2 438 107.5 123.3 438 41.3 126.4 438 138.7 
IS3 1601 435 42.8 432 141.9 435 156.4 435 53.4 432 158.0 435 189.3 
IS4 574 446 29.8 446 100.1 446 72.1 446 34.3 446 102.8 446 85.6 
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Table E.2 Experimental results for medium problem structure 

25 Jobs, 10 Machines, Block 1 

TS4 Initial 
Solution 

TS1 TS2 TS3 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 44 3 74 3 228 
167 
378 

3 218 3 96 3 290 3 282 
IS2 7 3 53 3 2 168 3 74 3 226 2 230 
IS3 1392 2 134 2 2 393 2 161 2 444 2 464 
IS4 46 6 71 5 219 5 235 6 93 5 284 5 295 

25 Jobs, 10 Machines Block 2 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 350+M 140 156 133 538 140 529 140 185 133 598 140 590 
IS2 351 138 158 127 627 138 472 138 184 127 620 138 540 
IS3 957 150 250 148 795 150 672 150 261 148 873 150 720 
IS4 292 129 178 129 620 129 635 129 209 129 740 129 684 

25 Jobs, 10 Machines Block 3 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 1551+ 

M 
1094 154 1054 471 1043 416 1094 174 1054 514 1043 494 

IS2 1505 1127 143 1085 428 1085 424 1127 166 1093 509 1056 488 
IS3 2007 1021 266 1021 573 1021 576 1021 214 1021 

1020 
643 1021 642 

IS4 1119 1020 140 1020 266 1020 309 1020 110 339 1020 381 
25 Jobs, 10 Machines Block 4 

Initial 
Solution 

TS1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 90+M 20 140 13 402 20 334 20 146 13 446 13 414 
IS2 149 18 134 11 360 18 260 18 158 11 429 18 324 
IS3 447 7 164 7 479 6 407 7 191 7 561 6 475 
IS4 49 23 84 14 340 14 258 23 107 14 392 14 321 

25 Jobs, 10 Machines Block 5 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 1589 1177 145 1177 329 1171 443 1177 188 1177 417 1171 523 
IS2 1589 1177 144 1177 331 1171 434 1177 188 1177 416 1171 526 
IS3 4593 1180 182 1177 571 1180 543 1180 208 1177 628 1180 640 
IS4 1224 1171 74 1171 260 1171 255 1171 96 1171 307 1171 316 
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35 Jobs, 8 Machines, Block 1 

Initial 
Solution 

TS1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 273+M 26 267 26 860 22 948 26 705 26 1277 22 908 
IS2 125 26 245 26 711 26 756 26 251 26 730 26 771 
IS3 4044 22 470 22 1579 22 1433 22 484 22 1566 22 1446 
IS4 93 29 329 25 883 29 921 29 336 25 914 29 934 

35 Jobs, 8 Machines Block 2 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 499+M 226 459 223 1219 155 1357 226 391 223 1082 155 1284 
IS2 475 117 638 117 1475 117 1677 117 576 117 1441 117 1580 
IS3 4689 127 934 127 2227 125 2425 135 795 135 2126 125 2219 
IS4 335 150 300 141 1083 150 1013 150 313 141 1123 150 955 

35 Jobs, 8 Machines Block 3 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 874+M 1428 1778 1428 4107 1428 3555 1432 1033 1429 3248 1432 2725 
IS2 2747 1510 944 1427 3686 1419 4131 1510 907 1427 3054 1430 2870 
IS3 4660 1432 1554 1421 3736 1432 3787 1432 1362 1421 3547 1432 3465 
IS4 1622 1419 1095 1414 2919 1419 3194 1419 620 1415 1701 1419 1663 

35 Jobs, 8 Machines Block 4 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 290+M 60 392 60 1164 60 1194 60 408 60 1150 60 401 
IS2 390 96 461 55 1225 96 1299 96 480 55 1252 96 1306 
IS3 2664 75 578 72 1773 63 1877 75 601 72 1831 63 1893 
IS4 215 53 548 53 1458 53 1326 53 569 53 1494 53 1328 

35 Jobs, 8 Machines Block 5 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 2675+ 

M 
1123 1014 1123 2666 1123 2703 1123 1200 1123 2839 1123 2472 

IS2 2635 1157 801 1129 3134 1148 2591 1157 775 1133 2616 1148 2547 
IS3 4064 1144 831 1116 2675 1144 2463 1144 864 1116 2761 1144 2421 
IS4 1634 1147 577 1139 1762 1138 1677 1147 543 1139 1670 1138 1636 

' 
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45 Jobs, 6 Machines, Block 1 

Initial 
Solution 

TS1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 0+M 0 684 0 1343 0 1682 0 803 0 1618 0 2124 
IS2 0 0 467 0 1583 0 1396 0 607 0 2772 0 2504 
IS3 931 0 944 0 2543 0 2480 0 1010 0 4628 0 4027 
IS4 0 0 496 0 1463 0 1580 0 641 0 1890 0 2033 

45 Jobs, 6 Machines, Block 2 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT I CT TWT CT TWT CT TWT CT TWT CT 
IS1 1161+ 

M 
410 2216 410 5740 410 5290 410 2205 410 9769 410 7657 

IS2 1253 419 2049 405 5617 404 6152 419 2038 405 9184 404 6471 
IS3 11578 468 3439 468 8626 409 8379 501 2597 478 8057 409 10643 
IS4 658 387 1404 383 4080 382 4960 387 1561 383 6909 382 5094 

45 Jobs, 6 Machines, Block 3 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 4784+ 

M 
3260 1539 3239 4508 3260 4202 3221 2155 3221 5846 3221 5083 

IS2 4885 3259 1453 3259 4219 3259 4398 3259 1586 3259 4611 3259 4858 
IS3 18692 3345 2261 3195 7100 3234 6872 3308 2706 3195 7784 3234 7261 
IS4 3921 3275 1159 3235 3260 3257 3663 3275 1274 3235 3590 3257 3819 

45 Jobs, 6 Machines, Block 4 
Initial 

Solution 
TS TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
ISl 12+M 0 537 0 1562 0 1605 0 662 0 1933 0 1972 
IS2 3 0 471 0 1369 0 1427 0 592 0 1730 0 1795 
IS3 1367 0 840 0 2525 0 2680 0 963 0 2901 0 3071 
IS4 50 0 1013 0 2237 0 2645 0 1149 0 2639 0 2584 

45 Jobs, 6 Machines, Block 5 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 4761+ 

M 
2725 2532 2712 7596 2660 6964 2725 2687 2712 7952 2660 7714 

IS2 4778 2725 2537 2712 6365 2660 6970 2725 2677 2712 6820 2660 7656 
IS3 9595 2967 2612 2780 9420 2753 8288 2967 2752 2780 9731 2753 8613 
IS4 2856 2763 1177 2763 3794 2763 3601 2763 1128 2763 3655 2763 3907 
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Table E.3 Experimental results for large problem structure 

50 Jobs, 11 Machines, Block 1 

Initial 
Solution 

TS 1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 333+M 58 1869 34 6889 53 6811 58 1974 34 6749 53 6575 
IS2 484 59 1704 49 6125 46 7855 59 1801 49 6394 46 7430 
IS3 6551 50 3202 50 9842 45 9065 50 3306 50 10153 45 9423 
IS4 208 58 1449 58 4300 53 4397 58 1533 58 4568 53 4701 

50 Jobs, 11 Machines, Block 2 
Initial 

Solution 
TS 1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT i TWT CT TWT CT TWT CT TWT CT 
ISI 702 153 3378 125 9856 76 10507 153 3222 125 9988 76 10179 
IS2 751 93 3870 92 12172 93 14417 93 3971 92 12189 93 12519 
IS3 4372 130 5131 87 20336 103 13330 84 6655 84 17585 84 14617 
IS4 346 189 2926 125 8532 122 10057 189 3049 124 9169 122 10469 

50 Jobs, 11 Machines, Block 3 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
ISI 3919+ 

M 
2135 3323 1907 14746 1993 11169 1979 4748 1926 12907 1975 15143 

IS2 4094 1877 6293 1877 15220 1877 6244 1877 6056 1877 15122 1877 14860 
IS3 8677 1931 7771 1931 17985 1931 18404 1932 6901 1932 17099 1932 17807 
IS4 2245 1944 4129 1941 7029 1944 7984 1947 1789 1941 4882 1947 5796 

50 Jobs, 11 Machines, Block 4 
Initial 

Solution 
TSI TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 106+M 65 1162 31 3723 17 4037 65 1243 31 3968 17 4309 
IS2 270 28 2094 15 4826 25 5211 28 2182 15 5086 25 5472 
IS3 2244 14 2292 14 6670 14 5906 14 2380 14 6975 14 6203 
IS4 141 41 1038 17 4349 25 4305 41 1135 17 4653 25 4527 

50 Jobs, 11 Machines, Block 5 
Initial 

Solution 
TS 1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 4557+ 

M 
2549 6957 2546 20739 2484 21063 2560 5220 2547 18130 2490 16590 

IS2 4683 2574 11438 2551 24325 2494 27334 2574 6789 2567 17489 2510 19113 
IS3 6192 2641 5143 2519 15473 2480 16913 2641 4986 2519 16116 2480 16553 
IS4 3042 2493 8972 2473 18205 2493 17877 2507 3077 2474 11534 2507 9681 

, 

. 
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60 Jobs, 15 Machines, Block 1 

Initial 
Solution 

TS1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 20+M 8 2557 8 7478 8 7737 8 2989 8 8767 8 9080 
IS2 8 8 2164 8 6293 8 6548 8 2596 8 7563 8 7855 
IS3 1706 32 4800 32 13905 8 15146 32 5271 32 15059 8 

8 
16439 

IS4 39 8 2656 8 7773 8 8102 8 3110 8 9454 9253 
60 Jobs, 15 Machines, Block 2 

Initial 
Solution 

TS 1 TS2 TS3 TS4 TS5 TS6 
TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 815+M 202 21175 202 41161 155 40376 225 11188 206 35379 155 
171 

31148 
IS2 771 155 16678 150 45608 155 32693 171 11979 171 30789 27998 
IS3 2907 140 21987 140 51410 140 45912 144 15316 144 42920 144 40207 
IS4 600 186 11076 186 34465 185 36031 180 12524 180 31880 180 32501 

60 Jobs, 15 Machines, Block 3 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 4113+ 

M 
2194 18728 2181 50755 2194 46789 2207 15020 2181 45017 2195 42765 

IS2 4060 2191 21229 2145 47959 2176 51554 2232 15338 2145 42878 2177 39602 
IS3 8741 2164 20155 2120 51117 2137 44950 2164 14898 2164 42073 2135 42322 
IS4 2671 2128 14381 2128 34945 2128 29707 2136 9564 2136 30197 2136 25826 

60 Jobs, 15 Machines, Block 4 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 141+M 0 3538 0 10945 0 11866 0 3911 0 12084 0 12999 
IS2 199 0 4042 0 11782 0 15154 0 4434 0 12918 0 14893 
IS3 2054 0 5574 0 15883 0 16014 0 5908 0 16892 0 17338 
IS4 33 0 2899 0 8281 0 10552 0 3292 0 9393 0 11930 

60 Jobs, 15 Machines, Block 5 
Initial 

Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 
IS1 4479+ 

M 
2441 16372 2417 48415 2404 41958 2441 15355 2430 41650 2403 43783 

IS2 4434 2467 16852 2394 47604 2447 43447 2469 15406 2400 45299 2447 41353 
IS3 5494 2434 12195 2417 39247 2405 40190 2434 12652 2417 39725 2405 40502 
IS4 2519 2392 5425 2376 32784 2385 17061 2392 5883 2380 18812 2385 18659 
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APPENDIX F. ANALYSIS OF EXPERIMENTAL RESULTS (TOTAL 
WEIGHTED TARDINESS) 
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Figure F.1 Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS 
for small problem structures 
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Figure F.2 Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS 
for medium problem structures 
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Figure F.3 Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS 
for large problem structures 
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Table F.1 Results of Wilcoxon signed -rank test on total weighted tardiness 

Comparisons Significant Difference at a = 0.05 
Small Problem Medium Problem Large Problem 

TS1 & TS2 Yes Yes Yes 
TS1 & TS3 No Yes Yes 
TS1 & TS4 No No No 
TS1 & TS5 Yes Yes Yes 
TS1 & TS6 No Yes Yes 
TS2 & TS3 No No No 
TS2 & TS4 Yes Yes Yes 
TS2 & TS5 No No No 
TS2 & TS6 No No No 
TS3 & TS4 No Yes Yes 
TS3 & TS5 Yes No No 
TS3 & TS6 No No No 
TS4 & TS5 Yes Yes Yes 
TS4 & TS6 No Yes Yes 
TS5 & TS6 Yes No No 
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APPENDIX G. ANALYSIS OF EXPERIMENTAL RESULTS (COMPUTATION 
TIME) 
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Figure G.1 Box Plots of computation time between (a) levels of IS; (b) levels of TS for 
small problem structure 
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Figure G.2 Box Plots of computation time between (a) levels of IS; (b) levels of TS for 
medium problem structure 
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Figure G.3 Box Plots of computation time between (a) levels of IS; (b) levels of TS for 
large problem structure 
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Figure G.4 Box Plots of Log(computation time) between (a) levels of IS; (b) levels of TS 
for small problem structure 
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Figure G.5 Box Plots of Log(computation time) between (a) levels of IS; (b) levels of TS 
for medium problem structure 
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Figure G.6 Box Plots of Log(computation time) between (a) levels of IS; (b) levels of TS 
for large problem structure 
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Table G.1 ANOVA on Log(computation time) for small problem structure 

Source of Variation Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F -Ratio p -value 

Whole plot: 
Blocks 145.387 14 10.3848 
IS 6.060 3 2.0198 12.62 < 0.0001 
Blocks *IS (whole plot error) 6.720 42 0.1600 

Subplot: 
TS 127.221 5 25.4443 204.70 < 0.0001 
Blocks *TS 8.699 70 0.1243 
IS *TS 0.296 15 0.0197 2.10 0.0113 
Blocks *IS *TS (subplot error) 1.975 210 0.0094 

Total (corrected) 296.358 359 
Note: F- Ratios are based on the following mean squares: 

IS whole plot error 
TS Blocks *TS 
IS *TS subplot error 

Table G.2 ANOVA on Log(computation time) for medium problem structure 

Source of Variation Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F -Ratio p -value 

Whole plot: 
Blocks 370.001 14 26.4286 
IS 13.089 3 4.3631 21.55 < 0.0001 
Blocks *IS (whole plot error) 8.505 42 0.2025 

Subplot: 
TS 91.821 5 18.3641 412.11 < 0.0001 
Blocks *TS 3.119 70 0.0446 
IS *TS 0.288 15 0.0192 1.32 0.1912 
Blocks *IS *TS (subplot error) 3.051 210 0.0145 

Total (corrected) 489.874 359 
Note: F- Ratios are based on the following mean squares: 

IS whole plot error 
TS Blocks *TS 
IS *TS subplot error 
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Table G.3 ANOVA on Log(computation time) for large problem structure 

Source of Variation Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square F -Ratio p -value 

Whole plot: 
Blocks 122.785 9 13.6428 
IS 9.367 3 3.1222 14.33 < 0.0001 
Blocks *IS (whole plot error) 5.881 27 0.2178 

Subplot: 
TS 60.648 5 12.1295 238.21 < 0.0001 
Blocks *TS 2.291 45 0.0509 
IS *TS 0.211 15 0.0141 0.69 0.7867 
Blocks *IS *TS (subplot error) 2.738 135 0.0203 

Total (corrected) 203.92 239 
Note: F- Ratios are based on the following mean squares: 

IS whole plot error 
TS Blocks *TS 
IS *TS subplot error 

Table G.4 Results of Duncan's analysis on Log(computation time) for small problem 
structure 

TS fixed at Comparisons Significant at 
a = 0.05 

TS fixed at Comparisons Significant at a 
= 0.05 

TS1 IS1 & IS2 Yes TS4 IS1 & IS2 No 
IS1 & IS3 Yes IS1 & IS3 Yes 
IS1 & IS4 Yes IS1 & IS4 Yes 
IS2 & IS3 Yes IS2 & IS3 Yes 
IS2 & IS4 Yes IS2 & IS4 Yes 
IS3 & IS4 Yes IS3 & IS4 Yes 

TS2 IS1 & IS2 Yes TS5 IS1 & IS2 Yes 
IS1 & IS3 Yes IS1 & IS3 Yes 
IS1 & IS4 Yes IS1 & IS4 Yes 
IS2 & IS3 Yes IS2 & IS3 Yes 
IS2 & IS4 Yes IS2 & IS4 Yes 
IS3 & IS4 Yes IS3 & IS4 Yes 

TS3 IS1 & IS2 Yes TS6 IS1 & IS2 No 
IS1 & IS3 Yes IS1 & IS3 Yes 
IS1 & IS4 Yes IS1 & IS4 Yes 
IS2 & IS3 Yes IS2 & IS3 Yes 
IS2 & IS4 Yes IS2 & IS4 Yes 
IS3 & IS4 Yes IS3 & IS4 Yes 
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Table G.5 Results of Duncan's analysis on Log(computation time) for medium and large 
problem structures 

Comparisons Significant at a = 0.05 
Medium Problem Large Problem 

IS1 & IS2 Yes Yes 
IS1 & IS3 Yes Yes 
ISI & IS4 Yes Yes 
IS2 & IS3 Yes Yes 
IS2 & IS4 Yes Yes 
IS3 & IS4 Yes Yes 
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APPENDIX H. PSEUDO -CODE FOR TABU - SEARCH BASED ALGORITHM 

Generate the initial solution 
Determine the tabu search parameters 
Admit the initial solution to the Candidate List (CL) and the Index List (IL) 
Initialize the Long Term Memory matrix (LTM) 
Do 
{ 

Initialize the Tabu List (TL) 
Initialize the Iteration without improvement (IT) 
Evaluate the total weighted tardiness of the initial solution 
Set the Aspiration Level (AL) to the total weighted tardiness of the initial solution 
Set the initial solution as the current seed 
Do 
{ 

Generate the neighborhood solutions by applying swap moves and insert moves to the 
current seed 
For each neighborhood solution generated from the current seed 
{ 

Evaluate the total weighted tardiness 
If (move E TL and AL is not satisfied) 

Exclude the solution that results from the move 
} 

The best solution F- 0 
Do 
{ 

Identify the neighborhood solution that has the minimum total weighted tardiness 
If (the neighborhood solution e CL) 
{ 

The best solution F the neighborhood solution 
The best move F the move that results in the neighborhood solution 

) 
} while (the best solution = 0) 
The next seed F the best solution 
TL F- the best move 
If (the total weighted tardiness of the best solution < AL), Update AL 
CL F- the best solution 
If (the current seed = local optima) 
{ 

IL 4- the current seed 
Entries into IL is increased by 1 

} 

If (the next seed < the current seed) 
Iteration without improvement (IT) 4- 0 

Else 
Iteration without improvement (IT) is increased by 1 
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Update LTM matrix 
The current seed E the next seed 

} while (both IT and entries into IL have not reached the specified numbers) 
Identify the new restart by using the LTM matrix 
Check the new restart against the previous restarts 
Next initial solution E- new restart solution 

} while (the number of restart has not reached the specified number) 
Terminate the search 
Return the solution with the minimum total weighted tardiness in IL as the best solution found so 
far 




