
AN ABSTRACT OF THE THESIS OF

Mohammed Rafi for the degree of Master of Science in Electrical and Computer

Engineering presented on March 3, 1994.

Title: Implementation of a High Performance Network Node for a Control Oriented

Local Area Network

Abstract approved:
. Herzog

TASKMASTER is an experimental microcontroller node of a real-time control

oriented network which was proposed by James H. Herzog and Tinggui Zhang to
demonstrate the feasibility of a task oriented control structure in performing distributed

control actions. This study is a continuation of research involving the TASKMASTER

network.

A high performance microcontroller the 32-bit Motorola MC68332 has been

used in this study to implement a node of the TASKMASTER network. Use of the

MC68332 with its powerful peripheral subsystems offers significant scope for
improvement of the overall performance of the network in addition to strengthening its

control processing capabilities. An 8-bit microcontroller the Intel 8052 has also been

used to implement a node of the network.

A high-level language C has been used for coding of the operating system of the

network which previously has been coded in assembly. In addition to being more
readable, use of a high-level language offers other significant advantages such as
portability, smaller code development time and code debugging time and the ability to

compare different microcontrollers on a common basis. A performance analysis and

comparison between the two microcontrollers used and the language used in coding

them was also performed using performance measures designed as part of this study.

Redacted for Privacy

Implementation of a High Performance Network Node
for a

Control Oriented Local Area Network

by

Mohammed Rafi

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed March 3, 1994

Commencement June 1994

APPROVED:

Ass ofessor and Computer Engineering in charge of major

Head of Dep ent of Electrical and Computer Engineering

Dean of Graduate Sch

Date thesis is presented

Typed by

March 3, 1994

Mohammed Rafi

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and gratitude to Prof. James

Herzog for his help, guidance and patience during my graduate studies at Oregon State

University. I am grateful to Prof. Bella Bose for his advice and help. I would like to

thank Prof. Shih-Lien Lu and Prof. Terrence Beaumariage for taking time out of their

busy schedules to be present at my thesis defense.

I thank the faculty and office staff at the Electrical and Computer Science

Departments, especially Ms. Rita Wells who does a wonderful job of keeping
everything running smoothly.

I would like to thank the staff at Canara Bank who were responsible for
granting me an educational loan to help pursue graduate studies.

I am thankful to Arjun, Clay, Aninha, Anju, Varsha, Teresa and Richard Amos

for their friendship and support.

Finally, I will always be grateful to everybody in my family for their support

during my graduate studies and for many other things too numerous to mention here.

TABLE OF CONTENTS

I. INTRODUCTION 1

1.1 Local Area Networks 1

1.1.1 Definition 1

1.1.2 Network Control 2
1.1.3 Network Structure and Topology 2

1.1.3.1 Star Topology 3
1.1.3.2 Bus Topology 4
1.1.3.3 Ring Topology 4

1.2 Distributed Systems 5
1.2.1 Definition 5
1.2.2 Types of Distributed Systems 6

1.2.2.1 Loosely-coupled Systems 6
1.2.2.2 Tightly-coupled Multiprocessor Systems 8
1.2.2.3 Array Processors 9

1.3 Data Communication 9
1.4 Benefits and Pitfalls of LANs 11
1.5 Performance Issues in Computer Networks 11
1.6 The TASKMASTER Operating System 13

1.6.1 Nodes of the TASKMASTER Network 15
1.7 Purpose and Importance of this Study 17

1.7.1 Experimental Procedure 19
1.8 Organization 22

II. LITERATURE REVIEW 23
2.1 Task Oriented Control Structure 23
2.2 High-level Language Architecture 24
2.3 Performance Analysis/Improvement in Embedded Applications 25
2.4 Relevance of this Study to Literature 26

III. DESIGN SPECIFICATIONS AND ASPECTS 28
3.1 The Taskmaster System 28

3.1.1 Organization of TASKMASTER Code 31
3.2 Choice of a High-level Language 31
3.3 Microcontrollers and C Compilers used 33

3.3.1 Motorola MC68332 34
3.3.2 Intel 8052AH 34

3.4 Design Strategy 35

IV. RESULTS AND IMPLICATIONS 38
4.1 Performance and Throughput Improvement 45
4.2 Areas of Further Study 47
4.3 Conclusions 48

V. BIBLIOGRAPHY 50

LIST OF FIGURES

Figure Page

1.1 Star Topology 3

1.2 Bus Topology 3

1.3 Ring Topology 5

1.4 A loosely-coupled distributed system 7

1.5 A tightly-coupled multiprocessor system 7

1.6 An Array Processor 8

1.7 Asynchronous Transmission 9

1.8 Synchronous Transmission 10

1.9 Ideal channel utilization 13

1.10 The TASKMASTER System Configuration 15

3.1 Main and Serial Interrupt Routines of the TASKMASTER 32

Operating System

4.1 Figures of Merit 39

4.2 Tasks/second vs. Baud Rate 42
4.3 Figure of Merit vs. Baud Rate 44
4.4 Object code size vs. Processor 45

IMPLEMENTATION OF A HIGH PERFORMANCE NETWORK NODE

FOR A

CONTROL ORIENTED LOCAL AREA NETWORK

CHAPTER I

INTRODUCTION

1.1 Local Area Networks

1.1.1 Definition

A Local Area Network is a data communication system which allows a

number of independent devices to communicate with each other [TANE 88]. A Local

Area Network (LAN) is different from other types of data networks in that the

communication is usually confined to a small sized geographic area such as a single

office building, an industrial complex or a campus. A classification based on distance

has been used in [TANE 88] to describe the boundaries as follows:

0-10m Computer Peripherals.

10m-10km Local Area Networks.

10km+ Wide Area Networks.

Local Area Networks have a few other distinctive characteristics among which

are high data rates (0.1 to 100 Mbps) and low error rates (10-8 to 10-11). They usually

are owned by a single organization.

LANs have figured prominently in research and development for more than 10

years and commercial exploitation has been increasingly active. They offer ways to

2

provide relatively inexpensive communication between workstations and devices,

distributed processing, rapid access to distributed sources of information and sharing

of expensive devices and resources.

1.1.2 Network Control

A node is a physical device that may be attached to a shared medium local

area network for the purpose of sharing network resources and transmitting and

receiving information on that medium. A network control mechanism needs to be

devised to take care of allocating access to the shared resources between the multiple

nodes. The control mechanism can be centralized or distributed.

In a centralized control system, all network activities are supervised by a

central controller. This approach has the advantage of reducing processing at each of

the other nodes, but network operation becomes vulnerable to controller node failure.

In a distributed control system, distributed algorithms running at each node

control network operations by interacting among themselves. Processing at each node

is greater than in the previous scheme, but network operations are not dependent on

the continued operation of any single node.

1.1.3 Network Structure and Topology

The nodes of a network can be interconnected in a variety of ways. The

particular topology chosen is important because its choice depends on factors like

performance, cost, reliability, flexibility and reconfigurability of the network.

3

Topology and the network control strategy are also closely linked. Some of the

popular topologies are:

1.1.3.1 Star Topology

A star network consists of nodes connected to a central switch via a single bi-

directional link (Figure 1.1). The messages between any two nodes always have to

pass through the central switch. In a star network, network operation is highly

dependent upon the correct operation of the central node. Central node failure results

in failure of the entire network. A dedicated path is established between the source

and destination so that a single node failure does not affect the network performance

or operation. Extra nodes can always be added with the capacity of the central switch

being the only constraint.

Figure 1.1 Star Topology Figure 1.2 Bus Topology

4

1.1.3.2 Bus Topology

A bus network consists of a single transmission path for communication

among the nodes (Figure 1.2). Some method must be provided to control the access of

the media by the nodes. The most common techniques for this topology are Carrier

Sense Multiple Access (CSMA) and token bus. A bus network operates with a single

transmission medium and inherent broadcast transmission capability. Arbitration is

required to access the medium. A bus network has the advantage that single node

failure does not affect the network. A bus network is suitable for high-speed burst

traffic.

1.1.3.3 Ring Topology

In this structure, several nodes are linked together to form the equivalent of a

ring (Figure 1.3). This provides for high channel utilization while simultaneously

reducing routing strategies. A message is circulated through all nodes. A ring network

possesses inherent broadcast transmission capability. A disadvantage of this structure

is that it is susceptible to a single link or node failure. Also, addition of new nodes

would require the network to be brought down.

Among the above structures, both bus and ring topologies have some serious

disadvantages. There is a degradation of performance with increased network traffic

due to bottlenecks. Communications cannot be guaranteed to be private or secure. In

general, however, the above presented topologies have many advantages. They offer

structured and modular topologies which may be used as building blocks for more

5

Figure 1.3 Ring Topology

complex networks. Network control is simple in all the structures, with no formal

routing mechanism required. A single transmission medium is adequate.

1.2 Distributed Systems

1.2.1 Definition

A distributed system is one in which the computing functions are dispersed

among several physical computing elements. These elements may be located

physically close together or geographically separated.

Distributed systems usually contain multiple components of a similar nature

and interconnected processing elements with no hierarchic control structure in their

operation. Separation of components is another inherent property of distributed

systems. Its consequences include the need for communication and for explicit system

management and integration techniques. Separation allows the parallel execution of

programs, the containment of faults to the component concerned and recovery from

6

those faults without disruption of the whole system. Transparency is defined as the

concealment of separation from the user and the application programmer, so that the

system is perceived as a whole rather than as a collection of independent components.

The implications of transparency are a major influence on the design of the system

software.

A very important language issue in the area of distributed processing is the

portability of high-level languages and of programs written in high-level languages.

Issues pertaining to portability are the availability and standardization of compilers,

independence from the operating system, and independence of the program from

internal representation of character and numeric data items.

1.2.2 Types of Distributed Systems

1.2.2.1 Loosely- coupled Systems

Figure 1.4 shows a loosely-coupled distributed system. In these types of

systems, the shared resources are provided by some of the computers in the network

and are accessed by system software that runs in all of the computers, using the

network to coordinate their work and to transfer data between them. An example of a

loosely-coupled distributed system is a single-user workstation. A workstation is a

computer with sufficient processing power to run users' application programs.

However some of the additional benefits available by the connection of a single-user

workstation to a distributed system are access to shared data and resources located in

other server computers via high-speed local networks.

local network

memory

program A

I
processor

memory

program B

I
processor

memory

program C

processor

I/O I/O I/O

memory

program D

processor

Figure 1.4 A loosely-coupled distributed system

I/O

program A

shared memory

program B program C program D

cache
memory

processor

cache
memory

processor

cache
memory

processor

I
cache
memory

processor

Figure 1.5 A tightly-coupled multiprocessor system

I L
input/output

7

8

1.2.2.2 Tightly-coupled Multiprocessor Systems

Figure 1.5 shows a tightly-coupled system. This type of system integrates a

number of processors under the control of a single operating system. The operating

system has the responsibility of allocating processors and memory spaces to user

applications and allowing them to run concurrently with the aid of a high speed

connection between several separate processor/memory subsystems and a unified

virtual addressing system. The use of shared memory allows the users' tasks to

communicate with each other and with the operating system.

M: memory

P: processor

Figure 1.6 An Array Processor

9

1.2.2.3 Array Processors

Figure 1.6 shows an array processor. An array processor consists of a large

number of arithmetic and logic units linked in a regular array. These can be used to

perform calculations and other data intensive regular operations in parallel. A unique

characteristic of this kind of system is that the entire array obeys a single stream of

instructions. These Single-Instruction, Multiple-Data (or SIMD) computers are used

to process large, regular sets of data at high speeds.

1.3 Data Communication

Digital data communication can be asynchronous or synchronous. A

requirement of digital communication is that the receiver knows the starting time and

duration of each bit that it receives.

In asynchronous transmission, data is transmitted one character (5 to 8 bits) at

a time. Each character is preceded by a start bit and followed by a stop bit (Figure

1.7). When there is no data to send, the transmitter sends a continuous stop code. The

4

1 1 1 1 1 1 1

Start Bit

Stop
Code

Unpredictable delay between Characters

Figure 1.7 Asynchronous Transmission

10

receiver must have an idea of the duration of each bit in order to recover all the bits of

the character. The term "asynchronous" refers to the fact that characters may be sent

independently of each other at a non-uniform rate.

Synchronous transmission (Figure 1.8) is a more efficient means of

communication. Blocks of characters or bits are transmitted without start and stop

codes, and the exact departure or arrival time of each bit is predictable. The clocks of

transmitter and receiver must be synchronized to prevent timing drift either by

providing a separate clock line between transmitter and receiver or by embedding the

clocking information in the data signal.

One or more SYNC and other
Control Characters

4

Multiple Data Characters Ending Control Characters/ \ \

Figure 1.8 Synchronous Transmission (Character Oriented)

Another level of synchronization is required to allow the receiver to determine

the beginning and end of a block of data and therefore, each block begins with a

preamble bit pattern and ends with a postamble bit pattern. With character-oriented

schemes, each block is preceded by one or more "synchronization characters" which

are the same as the preamble. The synchronization character is chosen such that its bit

pattern is significantly different from any of the regular characters being transmitted.

The data plus preamble and postamble is called a frame.

11

Synchronous schemes can be character oriented or bit oriented, the latter

scheme being more efficient and flexible and gradually replacing the former. Two

common bit-oriented schemes, HDLC and SDLC will be discussed in section 4.1.

1.4 Benefits and Pitfalls of LANs

On the whole, LANs offer benefits as well as pitfalls. Among some of the

benefits are potential for system growth since changes can be made to individual parts

of the network without great impact to the remainder of the system. LANs are

economically efficient since resources like expensive peripherals, data, etc. can be

shared among members of the network. There is flexibility of equipment location and

a user only needs a single terminal to access multiple systems.

Among the pitfalls of LANs are the fact that software and data on a network

are not always compatible. Distributed data raises problems of lower security and

privacy. In a network situation, there is a creeping escalation of cost with a tendency

to procure more equipment than is actually needed.

1.5 Performance Issues in Computer Networks

Three measures of performance are commonly used for LANs . These

measures concern themselves with performance within the local network.

D: the delay that occurs between the time a packet or frame is ready for transmission

from a node, and the completion of successful transmission.

S: the throughput of the local network; the total rate of data being transmitted

between nodes (carried load).

12

U: the utilization of the local network medium; the fraction of total capacity being

used.

The parameter S is often normalized and expressed as a fraction of capacity.

For example, if over a period of 1 s, the sum of the successful data transfers between

nodes is 1 Mb on a 10-Mbps channel, then S = 0.1. Thus S can also be interpreted as

utilization. The analysis is commonly done in terms of the total number of bits

transferred, including overhead (headers, trailers) bits.; the calculations are a bit

easier, and this approach isolates performance effects due to the local network alone.

Results for S and D are generally plotted as a function of the offered load G,

which is the actual load or traffic demand presented to the local network. S is

different from G. S is the normalized rate of data packets successfully transmitted; G

is the total number of packets offered to the network including control packets, such

as tokens, and collisions, which are destroyed packets that must be retransmitted. G,

too, is often expressed as a fraction of capacity. The more traffic competing for

transmission time, the longer the delay for any individual transmission. Thus D grows

without bound as more and more backlog accumulates; there is no steady-state value.

S also increases with G, up to some saturation point, beyond which the network

cannot handle more load.

Figure 1.9 shows the ideal situation: channel utilization increases to

accommodate load up to an offered load equal to the full capacity of the system; then

utilization remains at 100%. Any overhead or inefficiency will cause performance to

fall short of the goal.

A more detailed analysis of network performance and other factors

influencing it can be found in [STAL 90].

13

S, Throughput

1.0

.75

.5

.25

I I I I

.25 .5 .75 1.0

G, Offered Load

Figure 1.9 Ideal channel utilization

1.6 The Taskmaster Operating System

In addition to the classifications of networks already mentioned, most

networks can be broadly classified according to their purpose as either

communication oriented or control oriented networks. As the name suggests,

communication networks have communication in one form or another as their main

purpose. The nodes of a communication network usually follow a rigid protocol when

they need to transmit/receive information in order to keep the usually heavy network

traffic from various nodes organized. For example, the Ethernet network follows a

communication protocol known as Carrier Sense Multiple Access/Collision Detect

(CSMA/CD). The control oriented networks are intended mainly for control purposes

as in industrial control, sampled data control, robotics, etc. These networks are

14

usually used in the real-time domain (in the sense that they have predictable time

delays associated with them) for task and process control. The remainder of this

project report deals with such a real-time control oriented network the

TASKMASTER.

As described by James H. Herzog and Tinggui Zhang in [HERZ 87],

"TASKMASTER is an experimental microcontroller node which has been
designed and constructed at Oregon State University to demonstrate the
feasibility of the concepts previously mentioned (Task Oriented Control
Structure) in performing real-time, distributed control actions."

Figure 1.10 depicts a TASKMASTER system which consists of a host

terminal and one or more microcontroller units. Communication in the

TASKMASTER system follows asynchronous serial protocol and any computer

which supports a serial port can be used. The individual control units are "daisy

chained" to one another and a command originating at the host would be received by

all of them. The host in turn receives all communications from any one of the control

units.

The host communicates with the desired taskmaster unit by issuing a host

command packet (HCP) via its serial port. The exact format of the packet will be

discussed in detail in Chapter 3 which covers the design specifications of the project.

Each unit has a unique address assigned to it and is individually addressable.

However, any transmission by the host computer is received by all the units. After a

node determines that a particular packet is not meant for it, it does not store or

actively process characters but scans for a special character indicating the start of the

next packet. Standard ASCII asynchronous communication at baud rates ranging

from 300 19200 baud can be used.

15

Host computer
Distributed Microcontrollers

Taskmaster

unit

Taskmaster

unit

Taskmaster
unit

i i i
Application Environment

Figure 1.10 The TASKMASTER System Configuration

1.6.1 Nodes of the TASKMASTER Network

The control mechanism for the TASKMASTER system is centralized,

with the host computer being the central controller. Two microcontrollers will be used

individually as nodes for this study - the INTEL 8052AH and the MOTOROLA

68332. The INTEL 8052AH is an 8-bit microcontroller. It is the original member of

the MCS-51 family, and is the core for all MCS-51 devices. The MOTOROLA 68332

is a 32 bit integrated microcontroller. It is based on the MC68020 and combines high

performance data manipulation capabilities with powerful peripheral subsystems.

These two processors represent extremes in microcontrollers with the Intel processor

being more basic, inexpensive and easy to use. It is less suited for use of a high-level

language than the 68332 because of fewer and less powerful addressing modes. The

reason for selecting processors which are so different from each other is that there is

usually no single ideal choice of controller for any control situation. Some situations

require greater processing power with the cost of the processor not being a factor,

16

while others may need a cost efficient processor which need not be capable of

intensive processing. A study involving performance comparisons of microcontrollers

which are significantly different from each other with respect to processing

capabilities, cost, and hardware structure would provide useful information in

selecting a processor and choice of language (low or high-level) for a given control

situation.

In addition to the single board computers used as nodes of the

TASKMASTER network in this study, there exist a wide choice of other

microprocessor and microcontroller boards available for use. The difference between

a microcontroller and microprocessor is that a microcontroller is designed to be

capable of independent operation by the single chip itself. It is equipped with on-chip

ROM that can hold small sized programs and I/O capabilities such as general purpose

ports, etc. It is suitable for control and stand-alone applications. A microprocessor in

contrast usually needs additional peripherals to fully utilize its processing and

hardware capabilities. It is meant mainly for use as the CPU in a larger computing

system. Some of the other microprocessors and microcontrollers available are listed

below according to the width of their data bus.

8-bits: Among the 8-bit microprocessors and microcontrollers available are the

Motorola 6800, the Motorola 68HC11A4 and the Z80 from Zilog. The 68HC11A4 is

a single chip microcomputer that provides sophisticated on chip peripheral functions

that include an 8-channel analog-to-digital converter, a serial communications

interface and a serial peripheral interface subsystem.

16 bits: The Z8000 from Zilog, the Intel 8086, 80186 and 80286 and the Motorola

68000 belong to this category. The Z8000 is a true 16-bit machine since the data and

instruction paths are 16-bits wide. It is rich in registers. In the Intel 8086, an 8-bit

17

instruction path is expanded to a 16-bit external bus. The address space is extended to

24 bits in the 80286.

32-bits: The Motorola 68020 (and 68030), the Intel 80386 (and 80486) and the

National Semiconductor 32032 (and 32332) belong to the category of true 32-bit

microprocessors, with 32-bit internal and external data paths. The Intel 80486 only

added on a few instructions to the 80386 but substantially increased performance.

1.7 Purpose and Importance of this Study

As previously mentioned, the TASKMASTER system is a control-oriented

distributed system designed for a real-time control purpose. This study is a

continuation of previous research which has been done involving the TASKMASTER

system. The purpose of this study is to implement a node of the TASKMASTER

system using two separate microcontrollers the high performance Motorola 68332

and the Intel 8052 and to investigate and analyze the tradeoffs involved in using a

high level language 'C' for coding of the TASKMASTER operating system and the

task routines of the network. In previous research, the operating system and tasks

were coded in the assembly language of the microcontroller used. A detailed

performance study will be done using performance measures defined as a part of this

study to quantify the penalties paid when a high-level language is used in the case of

each of the processors. The analysis will also cover the effects of different baud rates

of operation and packet sizes on performance and efficiency of network operation.

This study is important because the introduction of a high level language is a

valuable step in research involving the TASKMASTER system. A very significant

advantage gained by using a high level language is portability and flexibility of the

code. For the most part, the code is not machine hardware dependent and

18

consequently can be ported over to different microcontrollers, and compiled for use

there after making modifications to the hardware dependent sections of the code

which comprise approximately less than 10% of the overall code .

Coding of the operating system in a high-level language enables a more

accurate comparison of different microcontrollers with respect to their suitability in a

network situation on a common basis. This is because essentially the same high level

code is being run on the different microcontrollers. Hardware differences (like bus

width, etc.) and suitability of each to use of a high level language can be brought out

by examining the differences in performance. High level language coding also helps

make the software more readable and understandable as well as cutting down

significantly on the software design and development time. The compiler library

functions and routines like scanf, printf, etc. can be utilized whenever necessary

instead of having to write the code for those operations. This, of course, would result

in additional system overhead at run time and/or compile time.

A disadvantage of using a high-level language is the efficiency of the resulting

code. The assembly code generated by the compiler is not as efficient as it would

have been if coded in assembly from the start. This is true even if the compiler is

efficient at generating assembly code or if the processor is well suited to use of high-

level languages. Efficiency can be improved by optimizing the high-level code by

coding the time-critical portions in assembly language. Careful combination of the

high-level code with assembly routines and segments by an experienced programmer

can yield significant improvement in performance.

Another important feature of this study is the use of the Motorola MC68332

32 bit microcontroller as a node of the TASKMASTER network. Previously, 8 bit

members of the Intel MCS-51 family have been used in this research. Use of the high

performance MC68332 with its powerful peripheral subsystems offers significant

19

scope for improvement of the control processing areas of the network. The intelligent

peripheral modules include the Time Processor Unit (TPU) which provides 16 micro

coded channels for performing time-related activities and the Queued Serial Module

(QSM) which provides high-speed serial communications with synchronous and

asynchronous protocols. The TPU greatly reduces the need for CPU intervention with

its dedicated execution unit, data storage RAM and micro code ROM. The central

processing unit of the 68332 excels at processing calculation intensive algorithms

and can interface to a co-processor chip for floating point computation support. This

makes it useful for applications such as robot control in which high performance

computation is needed.

1.7.1 Experimental Procedure

Control activities involve reception, interpretation and execution of serial

commands which contain information about the particular task to be performed. The

TASKMASTER network previously described follows a similar procedure. The host

computer transmits serial command packets which can range in size from 8 to 18

characters to the nodes of the network. A serial communication program which runs

on the host computer is used to transmit a continuous stream of packets to the nodes

of the network at baud rates ranging from 300 to 19200. Microsoft Quick Basic is

used for this purpose in this study, although any software which is capable of serial

communication can be used. The exact format and individual fields and structure of

the packet will be discussed in detail in Chapter 3 which covers the design

specifications of the project. A command packet contains information for node

addressing, task execution priority, task number and re-queuing of the task.

20

Each character is received by every node of the network. Upon receipt of a

character, a serial interrupt is generated and the character is stored. An address check

is performed after the address field is received and only the node for which the packet

is intended continues to actively process and store characters; the other nodes scan for

a special character which would indicate the start of the next packet. After receipt of a

complete packet, it is processed and placed on the First In, First Out task queue or

executed immediately according to its priority.

The portion of time spent in the serial communication interrupt routine is of

considerable importance since this part of the code is executed each time a character

is received and is thus a major factor in affecting performance. This time duration will

be referred to as the overhead since it could have been spent performing other useful

control activities. A more detailed description of the exact measures of performance

used in evaluating the network and the basis for selecting these can be found in

section 2.4. The experimental procedure followed in this study can be described as

follows.

The overhead includes the time spent on receiving, storing and processing task

packets as well as the interrupt overhead spent on pushing the return address and

other parameters on the stack, vectoring to the interrupt routine, etc. The time spent

on actual task execution is not relevant in performance analysis and does not figure in

calculations. The microcontrollers used in this study have on-chip timers which are

used for time measurements. A set of three algorithms (which will be referred to as

task 1, task 2 and task 3) which are encoded as task subroutines themselves are used

for the time measurements desired.

The general operation of task 1 and task 2 is similar. Once started, they both

perform the necessary timer initializations and then wait for further packets to be

received by the node. A sequence of a fixed number of packets (set at 30) is sent to

21

the node from the host computer. From the point of view of the node, the time

duration from start to finish of the stream of packets can be looked at as being made

up of the overhead spent processing incoming characters and the rest of the time

which represents "useful" time that could be spent performing control activities. Task

1 measures the overall time duration from receipt of the first character in the stream

of packets to the last. This varies according to the baud rate of incoming packets.

Task 2 measures the time taken by a simple delay subroutine to execute while the

stream of packets is being received and processed. Task 3 measures this same delay

subroutine but when no packets are being received. Upon completion, all three tasks

transmit the time durations measured back to the host computer where they are

displayed. The time durations measured by task 2 and 3 are independent of the baud

rate of incoming packets and they only need to be measured once throughout the

experiment.

The difference between the values returned by task 2 and task 3 yields the

overhead in processing incoming packets. The difference between the value returned

by task 1 and the overhead obtained from the previous step represents the "useful"

time. These values can be analyzed to yield performance measures and figures of

merit for the network.

The entire process is repeated for each of the microcontrollers at different

baud rates ranging from 300 to 19200 baud and for different combinations of code (C

and pure assembly). Two different packet types are used, with one being larger than

the other in order to bring out differences in performance as a function of packet size.

The microcontrollers are both run at a clock frequency of 11.0592 MHz. in order to

compare results on a common basis.

22

1.8 Organization

This chapter has served as an introduction to Local Area Networks and

distributed systems and has also covered the purpose and importance of this study.

The next chapter will be a review of some literature on material more closely related

to this study , and the relevance of this study to the literature. Chapter III deals with

the design specifications of this project. Chapter IV will cover an analysis of the

results and their implications as well as areas of further study and the conclusions of

this study.

23

CHAPTER II

LITERATURE REVIEW

2.1 Task Oriented Control Structure

A suitable strategy of operation in control oriented systems is a "task" oriented

control structure. A task can be thought of as a piece of software (or a subroutine)

used to accomplish a specific action. Complex control activities can be performed by

"the proper sequencing of tasks" [HERZ 87]. The operating system coordinates the

execution of tasks by placing them in a FIFO (First In First Out) queue. The queue

entries are moved up by one as the task at the head of the queue is completed.

There exist a wide range of inexpensive, high performance microcontrollers

which are ideal for use in real-time control systems. In a system consisting of a higher

order host computer and microcontroller(s), a task can be conveyed to the

microcontroller by the host computer in the form of a data packet. The data packet

would contain fields for the task number/name, the methods of initiating and

terminating the task and its parameters (if any). A more detailed description of the

exact format of the packet will be discussed in section 3.1.

A more detailed discussion of a design perspective for real-time task control in

distributed systems can be found in [HERZ 83] and [HERZ 87]. The TASKMASTER

system which is the focus of research in this study uses the task oriented control

structure described above.

24

2.2 High-level Language Architecture

In the past decade, significant research has been performed to reduce a

conceptual gap faced by programmers. This gap is a consequence of the fact that

programmers tend to think at the conceptual level of the high-level language being

used, while the hardware architecture is usually based upon totally different concepts.

In [SILB 86], the authors have presented a classification of major efforts directed

towards reducing the gap between programming language and architecture. In a

traditional architecture, a high-level language program undergoes compilation and

then is executed in the low-level machine language of the processor. The other

extreme is the direct execution architecture in which the program is executed

without any kind of translation (i.e. the high-level language is itself the machine

language). Other architectures fall between these extremes.

Language directed architectures attempt to reduce the conceptual gap by

tailoring the constructs of the machine code to a form that can be used by compilers

for easy synthesis of high-level language constructs. Examples of this are special

addressing modes (Motorola). The designers of the MC68020 made every effort to

make it efficient for execution of compiled high-level code, so it can "conditionally be

treated as a language directed machine" [SILB 86].

The MC68020 is a 32-bit member of the MC680X0 family. Its outstanding

features are an on-chip instruction cache, an execution pipeline, a co-processor

interface and (most relevant to this study) several additional addressing modes useful

for high-level language data structures. Further performance improvement comes

from the ability to interface to special purpose co-processors like the floating point

MC68881 chip. Among the additions made to the addressing modes to provide further

high-level language support are the ability to use:

25

scaled indexes

memory indirection

16-bit and 32-bit displacements

preindex or postindex on memory indirect

suppression of any element of the address calculation [MOYE 84]

2.3 Performance Analysis/Improvement in Embedded Applications

In [DONO 93], the author has listed a few basic rules by which it is possible to

greatly speed up C language programs without having to resort to assembly language.

The data handling procedures should be examined carefully to ensure that they are as

efficient as possible. Code should be written as hardware-specifically as possible to

take advantage of whatever features the hardware offers. Local variables, parameter

passing, nested subroutine calls and stack usage should all be kept to a minimum.

In [MOTT 92], the author describes a technique called Statistical

Performance Analysis which can be used for performance analysis in embedded

systems. This technique utilizes a software program written by the author. Statistical

performance analysis can be used to determine which modules in a program require

the most execution time, which helps improve the performance of time-critical

applications [MOTT 92]. The technique involves periodically sampling the program

counter while a program is executing and sorting the samples according to the address

range of each module after the program or the sampling is completed. The number of

samples within each module is counted, and an approximate value for the relative

execution time in each module is determined and displayed. The number of samples

within each module is proportional to the amount of time spent in the module

26

executing the code, and the final count can be displayed as a percentage of the total

number of samples recorded for the complete program.

2.4 Relevance of this Study to Literature

The MC68332 is based on the MC68020 which, as mentioned in Section 2.2,

is suitable for use of a high-level language as it possesses a language directed

architecture. Its varied and powerful addressing modes result in efficient generated

assembly code. The rules mentioned by the author in [DONO 93] for speeding up C

programs have been followed as much as possible in the coding of this project.

Almost all variables use pointer notation which results in efficient use of memory.

Most of the operating system parameters are accessed frequently and they are stored

in internal RAM for fast access. Local variables and parameter passing have been

kept to a minimum.

The TASKMASTER system is a broadcast type network (one in which a

packet transmitted by the host is received by all nodes in the network). Further, it does

not use a contention protocol when access of the medium is needed by a node.

Consequently, the measures of performance listed in the previous chapter cannot be

applied directly in a performance analysis of the TASKMASTER network. A few

performance measures that apply more directly have been formed as part of this study

and are listed below.

The procedure followed in performance analysis of the code is broadly based

on "Statistical Performance Analysis" described in the previous section. Rather than

actual statistical samples to determine which modules are executed most frequently, a

brief inspection of the TASKMASTER code and its flow of control in a network

situation is sufficient to see that the serial interrupt service routine is executed most

27

frequently. This section of the operating system processes the incoming characters

and packets. A figure of merit is defined as a ratio of "useful" time (i.e. time not spent

receiving or processing incoming characters) to the total time spent from the start to

finish of a stream of packets being received by the node. This total time is the sum of

the useful time and time spent on stack operations (like storing the return address

before servicing the interrupt, etc.) and storing and processing incoming characters.

The figure of merit is therefore a direct indication of the time spent in processing

incoming packets which is the performance measure desired. The greater the value of

this measure, the "better" the performance since it implies that the processor spends

comparatively lesser time receiving and processing incoming characters and can

devote more time to control activities.

28

CHAPTER III

DESIGN SPECIFICATIONS AND ASPECTS

3.1 The TASKMASTER System

As mentioned earlier in Chapter 1, the TASKMASTER system is a control

network used in performing real-time, distributed control actions. A TASKMASTER

system consists of a host terminal and one or more microcontroller units.

Communication in the TASKMASTER system follows asynchronous serial protocol.

The host communicates with the desired taskmaster unit by issuing a short command

packet referred to as a Host Command Packet (HCP) via its serial port.

The general format of a host command packet is

(AA P NN S DD DD DD DD DD) , where

AA: 2 ASCII chars Address of taskmaster

P: 1 ASCII char Prefix

NN: 2 ASCII chars Task Number

S: 1 ASCII char : Suffix

DD: 2 ASCII chars Data

" (" and " } " are used as delimiters for each HCP. A more

detailed description of the individual fields in a packet is given

below.

29

AA: Address of Taskmaster

Since different taskmaster units are simultaneously controlled

by a single host, a command issued by the host must address a

destination taskmaster. Each unit has a unique address associated with

it. Address "00" is treated as a universal address to allow commands to

be simultaneously addressed to all nodes.

P: Prefix

The prefix determines the starting mechanism and the priority

of a task.

" : " - The task is commenced as soon as it reaches the head of the

queue and the previous task in progress is completed.

" ? " - The task can be started as soon as it reaches the head of its

storage queue and the currently running task is completed. However,

the task does not start until the host sends a special synchronization

command.

" ! " - Tasks with a ! prefix are high priority tasks or "immediate"

tasks. If a command packet with a " ! " as prefix is received, the

specified task is not placed in the queue as would be done normally,

but is run immediately. The currently running queue task (if any) is

temporarily suspended and resumed after completion of the immediate

task. The state of the interrupted task at the time of being halted is

preserved while the immediate task is running. An immediate task

cannot be interrupted by another immediate task (with the exception of

30

abort task 02). If an immediate task is issued while another immediate

task is already running, the second immediate task will be ignored.

N: Task Number

The hexadecimal task number refers to the task to be run. User

specific tasks can be written, in addition to the standard utility and

queue-management tasks already provided by the operating system.

S: Suffix

The suffix determines the terminating mechanism associated

with a task.

" . " The task is discarded after execution.

" +" The task is re-queued after execution and run again when it

reaches the head of the queue. Re-queued tasks always remain

in the queue until they are discarded by the host.

"*" - The task is re-queued a certain number of times. The number of

times this will be repeated is given by the first argument. After going

through the queue loop the specified number of times, the task will be

discarded by the local operating system.

DD: Arguments

The argument section of the packet is meant for the purpose of

passing relevant information to the task subroutines, as appropriate.

The number of arguments can vary between zero and five (an even

number ranging from zero to ten characters). Certain tasks may not

require arguments and this field may be omitted in those cases. In the

31

"*" mode, the first argument is used to specify the number of times the

task is to be run.

3.1.1 Organization of TASKMASTER Code

The TASKMASTER software consists of two major parts the main routine

and the serial interrupt service routine. The main routine initializes the individual

taskmaster unit, opens a window for a serial interrupt to process incoming characters

(if any), executes the task at the head of the task queue (if any) and manages the task

queue. The serial interrupt routine receives and processes characters as appropriate.

When a complete packet is received, it is analyzed. The task is placed on the task

queue, or executed right away if it is an immediate task. Figure 3.1 shows the flow

charts of the main and serial interrupt service routines.

3.2 Choice of a High-level Language

As explained in Section 1.3, the use of a high-level language when used to

program microcontroller systems offers the advantages of readability and portability.

The price paid for choosing a high-level language over the assembly language of the

processor in question is the increased code generated by the compiler, and the

resulting loss in efficiency of execution of the program. The choice of high-level

32

I NITIALIZE

WI NDOW FOR
INTERRUPT

QUEUE
EMPTY?

WAIT FOR
SYNC.?

QUEUED TASK
EXECUTION

QUEUE
MANAGEMENT

INT

RET

INT

RET

(INT)
71

RECEIVE
CHARACTER

no

PLACE TASK
ON QUEUE

RET

IMMED. TASK
EXECUTION

(RET)

INT

RET

Fig. 3.1 Main and Serial Interrupt Routines of the TASKMASTER Operating

System [HERZ 87]

33

language is therefore important. A language which has a high degree of readability,

which can access the features of the processor to a greater extent and which yields

comparatively efficient generated assembly code would be a good choice. Some high-

level languages are "higher" than others - "it depends on the extent to which the

programmer is insulated from the workings of the processor."[PETZ 88]. The high-

level language chosen for this project is C, for the reasons explained below.

C is a powerful and structured language which allows programmers to

construct complicated operations with a minimum of commands. C has the unique

quality of combining different levels of programming abstraction from the machine

code level to the highest level of applications processing. C can be thought of as one

of the "lowest" of the high-level languages; the flexibility of the language makes it

easy to duplicate many assembly language functions which was an important

consideration in this project since the original TASKMASTER operating system was

written in assembly. C is rich in data types, supporting long and short, signed or

unsigned integers, floating point variables, etc. It supports pointers to all of its

variable types, and pointers to variables are efficient users of memory.

3.3 Microcontrollers and C Compilers used

A brief description of the microcontrollers used as TASKMASTER units and

the C compilers used in compiling their code is given below.

34

3.3.1 Motorola MC68332

The MC68332 is a 32-bit integrated microcontroller, combining high-

performance data manipulation capabilities with powerful peripheral subsystems. The

intelligent peripheral modules include the Time Processor Unit (TPU) which

provides 16 micro coded channels for performing time-related activities and the

Queued Serial Module (QSM) which provides high-speed serial communications

with synchronous and asynchronous protocols. The TPU greatly reduces the need for

CPU intervention with its dedicated execution unit, data storage RAM and micro code

ROM. Two kilobytes of fully static standby RAM allow fast two-cycle access for

system and data stacks and variable storage. The Central Processing Unit (CPU32) is

upward compatible with the M68000 family that excels at processing calculation-

intensive algorithms and supporting high-level languages.

The Compiler/Assembler system used in compiling code for the MC68332 is

Release 3.0 of the TaskTools 68000 Family from Boston Systems Office/Tasking

(BSO). Among the features supported in this release of the compiler are In-line

assembly code capability, support for PC-relative calls, and several code quality

improvements. Support for some features of ANSI C that were not supported in

earlier versions has been provided.

3.3.2 Intel 8052AH

The Intel 8052AH is an 8-bit microcontroller which belongs to the MCS-51

family. It has 256 bytes of on-chip data RAM, 16 of which are bit-addressable. It uses

a full duplex UART for serial communications and 3 16-bit timer/counters for time

35

and counting related activities. The MCS-51 instruction set is optimized for control

applications. It provides a variety of fast addressing modes for accessing the internal

RAM to facilitate byte operations on small data structures. The instruction set

provides extensive support for one-bit variables as a separate data type, allowing

direct bit manipulation in control and logic systems that require Boolean processing.

The Compiler/Assembler system used in this case is Vs. 2.0, also from BSO. It

is dedicated to the microcontroller architecture of the 8052AH family which means

that all special features of the 8052 can be accessed in C; multiple address spaces

(with full pointer support), special function registers, interrupt functions using bank

switching and a number of in-line functions to access special 8052AH instructions.

Microsoft Quick Basic is the software which runs on the host computer for

serial communication with the TASKMASTER units.

3.4 Design Strategy

Coding of the TASKMASTER operating system in C to run on the Intel 8052

and Motorola 68332 processors was an important part of this study. This included the

operating system task subroutines and the algorithms to measure the desired time

intervals for performance analysis. Portability of the high-level code was one of the

most important design aspects of this project since essentially the same program is run

on the two different microcontrollers (after their individual compilations). Since the

code runs on different processors, it was written in as non-processor specific a manner

as possible so as to minimize the changes that need to be made when porting over to

the other processor. Most of the changes were restricted to the header files since the

two processors have their own distinct memory maps. All operating system variables

which are accessed on a regular basis are stored in internal RAM for fast access. The

36

task queue in which received packets are stored after processing and the scratch

memory queue are too large (400 bytes each) to be stored in internal RAM; they are

stored in external RAM. The program code itself is burned into EPROM.

The C compiler used in the case of the 8052 the CC51 offers two ways of

dealing with the separate address spaces of the 8052. One is to specify a storage type

or the target memory of a pointer with the declaration of a C variable. Different

storage types exist for the separate memory types e.g. "data" for direct addressable on

chip RAM, "idat" for indirect addressable on chip RAM, etc. The other way is to

select a memory model that specifies which memory type must be used (as default)

for all C variables which do not have an explicit storage specifier. This option is

especially useful since it allows the user the option of choosing the memory model

which fits best to the requirements of the system (code density, amount of external

RAM, etc.). The memory model chosen for this project is the large model in which

all function parameters and other C variables are allocated in external RAM.

The C compiler for the 68332 - the C68332 has a different way of allocating

data and variables to memory. A switch option on the command line directs the linker

to read locator commands from the file loc.cmd. By default, code and data segments

are allocated in memory one after another, beginning at address 0. With the aid of

locator commands, code and data can be assigned to desired locations and regions of

memory can be marked "reserved" if they are not to be used for code or data.

In addition to the above changes, a few more modifications need to be made to

the C source files when changing processors. These are necessary because of the

differences in hardware features between the processors. Accurate measurements of

the execution time of certain parts of the program are a part of the project. In the case

of the 8052AH, one of the on-chip 16 bit timers is used for this purpose, while the

Time Processing Unit (TPU) is used in the case of the MC68332. Serial

37

communications are handled by the full duplex UART for the 8052AH and by the

Queued Serial Module (QSM) for the MC68332. Both the above sections of the

project require unique initializations and procedures for the two microcontrollers.

38

CHAPTER IV

RESULTS AND IMPLICATIONS

Figure 4.1 is a table which denotes the calculated figures of merit for

combinations of processor, language used and baud rates. As mentioned earlier, the

figure of merit is an indication of the time spent in processing incoming packets.

More precisely, it is an indication of the time that could be spent performing activities

other than processing incoming packets i.e. the "useful" time. It is calculated by the

formula:

Figure of merit = Useful time
Total time from start to finish of receiving a

string of packets

= Useful time
Useful time + Time spent in I/O for receiving
and processing packets + time spent on stack
operations (storing return addresses, etc.)

The figure of merit is expressed as a percentage and the higher its value, the

"better" the performance as this implies a longer period of time that can be spent on

useful control activities.

The following implications can be drawn from the tabulated data:

The 8052 coded in assembly has the best performance figures. The reason

for this is obvious - the entire operating system is hand-coded in assembly and hence

is much more efficient than compiler generated C code. The differences are especially

obvious at higher baud rates. At 9600 baud, the figure of merit is greater than the

corresponding value for the 68332 coded in C by a factor of20% and greater than the

case when the 8052 is coded in C by a factor of 40%.

39

Baud Rate 8052 (assembly) 68332 (C) 8052 (C)
Packet 1 Packet 2 Packet 1 Packet 2 Packet 1 Packet 2

300 99.41% 99.46% 99.01% 99.15% 98.50% 98.60%
1200 97.63% 97.83% 96.02% 96.61% 94.19% 94.77%
2400 95.27% 95.66% 91.97% 93.23% 88.17% 89.48%
4800 90.53% 91.31% 84.06% 86.40% 75.41% 78.87%
9600 81.05% 82.61% 66.80% 72.53% 41.52% 55.45%

._
19200 62.06% 65.22% - -

Packet 1 = { XX:XX. }
Packet 2 = {XX:XX.DDDDDDDDDD}
'-' denotes saturation of node i.e. the software
cannot keep up with incoming packets

Figure 4.1 Figures of Merit

The 68332 coded in C exhibits better performance figures than the

8052 coded in C. One reason for this is the 68332's more powerful addressing modes

and instruction set which are better suited to high-level language code generation than

in the case of the 8052. Consider the short segments of code shown below. They show

the compiler generated assembly code for a high-level "if' statement in the case of the

8052 and the 68332 respectively.

40

if ((*LTQCNT == Ox0000) /* C statement for the 8052 *1

78AC MOV R0,#OACH 1 ; Generated assembly code
8602 MOV R2,@R0 1

08 INC RO 1

8603 MOV R3,@R0 1

EB MOV A,R3 1

4A ORL A,R2 1

6014 JZ _5 2

8 x 12 = 96 clock cycles (1 machine

cycle = 12 clock cycles in the 8052)

if ((*LTQCNT == Ox0000) /* C statement for the 68332

286EPH-C MOVEA.L -4(A6),A4 6 ; Generated assembly code
4A94 TST.L (A4) 2

67000014 BEQ L10000 4
12 clock cycles

*1

The first column contains the object code and the numbers in the last column

are the execution times of the instruction in clock cycles. These figures are a better

indication of the difference between the two processors rather than simply the number

of instructions generated (7 for the 8052 vs. 3 for the 68332) since instruction

execution times differ. The clock cycle figure for the 8052 is multiplied by 12 since a

machine cycle takes 12 oscillator periods to execute for the 8052. The final figures

arrived at are 96 clock cycles for the 8052 vs. 12 clock cycles for the 68332.

Generalizations or predictions based only on figures obtained from a short segment of

code should be made with caution since not all code segments would yield the same

differences. The code segment just examined is biased in favor of the 32-bit Motorola

processor since the "if' statement tests a value which is greater than 8 bits (the data

width of the 8052's bus). The Motorola processor has an orthogonal instruction set

41

in the sense that most of its instructions can handle byte, word or long-word data

operands while the 8052 can only handle byte operations. The TASKMASTER code

contains some parameters which are larger than a byte and the 68332 is at an

advantage when performing operations involving these parameters.

From inspection of the generated assembly code, it can be seen that the

68332's instructions are more powerful since the instruction set design allows greater

flexibility and choice in addressing modes for data operands. They take longer to

execute per instruction on average since an effective address calculation from the

complex addressing modes takes time. The 8052's instructions are correspondingly

less powerful since the instruction set only supports simple addressing modes and

take fewer clock cycles to execute on average. Almost all two-operand instructions

need to have a register as one of the operands while the 68332 does not have this

limitation and can perform most operations on memory directly without needing to

fetch the data into a register and store it back into memory. The result is an instruction

set that is well suited for compiling the complex structures of high-level languages.

Performance figures are more or less independent of packet size as can be

seen by comparing the figures of merit for packet 1 and packet 2. Packet 2 contains

data arguments meant for the purpose of passing relevant information to the task

subroutines, as appropriate. Not all tasks require arguments and this field may be

omitted in those cases. Although a larger packet implies more time to be spent on I/O,

etc. there is a corresponding increase in "useful" time as on the whole a greater time is

available between characters being received to do other activities. The ratio of these

two quantities thus yields a figure of merit which is equal to that obtained when a

smaller packet size was used.

The figure of merit does not reflect a penalty that is paid for the case when a

larger command packet is used. Since it takes longer to transmit and process the larger

42

sized packet, lesser number of tasks would be executed on average than if a smaller

sized packet (with no data arguments) had been used. This is shown graphically in

Figure 4.2. which shows the tasks received by a node per second as a function of the

baud rate of incoming packets.

30

20 i 8052 (assembly) packet l

68332,8052 (C) packet 1

10
8052 (assembly) packet 2

68332,8052 (C) - packet 2

10000 20000

Baud Rate

Packet 1 = MX:30C.)

Packet 2 = {XX:XX.DDDDDDDDDD)

Figure 4.2 Tasks/second vs. Baud Rate

The exact number of tasks received is independent of the processor or

language used which is the reason that the curves coincide for a given packet size for

baud rates till 9600 baud. After this point, the nodes coded in the high-level language

are saturated since the processors cannot keep up with the incoming characters and

43

the tasks received level off to a constant figure. The case for when the 8052 is coded

in assembly is more efficient and can keep up with the characters.

The number of tasks received by the node per second are significantly less

when a larger sized packet is received and this implies a loss in efficiency. However,

it is not always possible to control the size of the command packet at will since

certain control tasks require the information in the data arguments section of the

command packet and cannot be executed without this field.

Figure 4.2 also yields some important information which is useful in

selecting a suitable baud rate of operation. A high baud rate would result in a greater

number of packets being received by the node per unit time and therefore improved

efficiency. However, as can be seen from the earlier tabulated results, higher baud

rates result in a lower figure of merit since a greater amount of time is spent

processing incoming packets rather than on executing tasks which might already be in

the task queue. A factor that would help resolve this contradiction is the status of the

task queue. If the task queue is empty or only partially full, a higher baud rate would

be more suitable since this would allow the queue to fill up. If, on the other hand, the

queue is operating close to its capacity, a lower baud rate or lower rate of packet

transmission should be chosen to allow more time to be spent by the node on

processing the tasks already in the queue.

Figure 4.3 is a graphical representation of the results tabulated earlier in

Figure 4.1. It can be observed that the 8052 coded in assembly has a comparatively

steadier figure of merit with increase in baud rates than the other two cases. This is

because as baud rate increases, the large number of characters coming in cause any

differences in performance at lower baud rates to be magnified correspondingly since

greater time needs to be spent to process characters.

0 I0000

Baud Rate

Figure 4.3 Figure of Merit vs. Baud Rate

20000

44

0 8052 (assembly)
--*--- 68332(C)

8052 (C)

The interrupt overhead associated with each processor is a significant factor

in performance analysis. Upon occurrence of an interrupt, the 8052 pushes only the

Program Counter onto the stack, while the Motorola processor pushes the status

register in addition to the PC. In contrast, the actual interrupt service routine for the

8052 needs a few more instructions than the 68332 in order to test if the interrupt is a

transmit or receive interrupt and to clear the interrupt flag.

Figure 4.4 is a representation of generated object code sizes. The 68332 and

8052 when coded in C result in almost equal sizes of object code. There is a tradeoff

here between fewer resulting assembly instructions being generated for the 68332 vs.

greater encoding for these instructions resulting in an almost equal object code size.

The 8052 when coded in assembly results in the lowest object code size, as expected.

45

8000

7000 -

6000-

5000-

4000

MC68332 (C)

8052 (assembly)

Processor

Figure 4.4 Object code size vs. Processor

4.1 Performance and Throughput Improvement

The serial interfaces of both processors used in this study can only receive a

character at a time without the ability to buffer or store multiple characters received

without CPU intervention. This is a limiting factor of performance since the ability to

receive multiple characters would allow the processor to perform other "useful" tasks

until an entire packet or multiple packets were received, rather than having to be

interrupted each time a character was received. The 68332 processor possesses a

Queued Serial Peripheral Interface with a memory queue for transmit and receive data

which would allow multiple characters and packets to be stored before servicing. The

8052 does not possess such a feature, but the Intel 8044 microcontroller has a data

RAM for multiple character reception capability. These processors will be discussed

46

more in detail below. They offer solutions to the above mentioned limiting factor on

performance.

The asynchronous RS-232 form of communication used in this study is also a

significant limiting factor of performance since the maximum data rates that can be

achieved are limited to 19200 baud. An alternative form of communication which

offers higher data rates is the synchronous High Level Data Link Control (HDLC) or

Synchronous Data Link Control (SDLC) which is a subset of HDLC. The major

advantages of SDLC/HDLC over the asynchronous communications protocol are

simplicity, efficiency (higher data throughput) and reliability which is achieved by a

Frame check sequence and Frame numbering. A typical HDLC/SDLC frame consists

of an opening flag, an address field, a control field, the data field, a frame check

sequence and a closing flag.

Most processors which support synchronous communication capabilities also

have serial buffering capacity to store multiple data fields. As previously mentioned,

the 68332 possesses the Queued Serial Peripheral Interface (QSPI) which is a full-

duplex synchronous serial interface with a queue for transmit and receive data. The

QSPI also has other useful features like a programmable queue for up to 16 pre-

programmed transfers without CPU intervention and a continuous transfer mode of up

to 256 bits.

The Intel 8044 microcontroller integrates onto a single chip the 8051-core

with an intelligent and high performance Serial Interface Unit (SIU) which is

designed to perform serial communications with little or no CPU involvement. The

SIU supports data rates up to 2.4 Mbps and the HDLC/SDLC protocol and has a data

RAM.

HDLC's efficiency is questionable when used in control applications [GRAU

80] if the network bandwidth is a limiting factor and needs to be conserved. Process

47

control messages usually tend to be relatively short and the HDLC overhead becomes

a problem with regards to efficiency.

4.2 Areas of Further Study

As discussed above, use of synchronous protocols would yield advantages

like improved data rates, etc. HDLC and SDLC, in particular, are options for

synchronous communication protocols worth investigating. The MC68332 would be

well suited for this since it possesses the QSPI which has capabilities for CPU

independent synchronous communication and also a queue for transmit and receive

data.

A hybrid mixed control network made up of MC68332's and 8052's could

be investigated. Each of these two processors' have advantages and disadvantages

when used as nodes of the TASKMASTER network. It is not necessary to use the

more expensive MC68332 if the control activities to be performed are simple and do

not call for intensive calculation or powerful, independent peripherals. In this case,

the less expensive and simpler 8052 will suffice. Through judicious sequencing of

tasks divided selectively between the processors, it should be possible to achieve

efficient system performance, throughput and cost.

Hand optimization of the compiler generated code, and/or rewriting of time

critical portions of the operating system in pure assembly would yield better

performance. Both the C compilers used allow the use of in-line assembly code mixed

with the high-level code as well as calls of assembly routines from within the C code.
'

The serial interrupt routine should be concentrated on since any optimization here

would increase performance significantly since this part of the code is executed the

most frequently.

48

The MC68332 is a high-performance, integrated microcontroller with

powerful peripheral subsystems which can be used to advantage in an industrial

control environment. The sophisticated Time Processor Unit (TPU) provides optimum

performance in controlling time related activity. It has a dedicated execution unit

which greatly reduces the need for CPU intervention. It would be worthwhile to

exploit these and the other high-performance peripheral subsystems according to

individual control needs.

4.3 Conclusions

As part of this study, two different microcontrollers the Motorola MC68332

and the Intel 8052 were used to implement nodes of the TASKMASTER network.

The operating system of the network that runs on each of the nodes was coded using a

high-level language - C. The task routines and algorithms for the network were also

coded in C, resulting in an overall code size of approximately 700 lines. A

performance analysis was done using measures formulated as part of this study to

determine suitability of each of the processors to use of a high-level language and the

penalty paid when a high-level language is used instead of the assembly language of

the processor. The analysis also included performance measures of the processors at

different baud rates and for different packet sizes.

The MC68332 is a more powerful microcontroller with better performance

figures than the 8052 when they are both coded in C. Pure assembly coding of the

68332 processor was not performed as part of this study, but it can be expected to

yield better performance than the 8052 coded in its assembly language. The 68332 is

ideal for use in a control network on account of its many independent peripherals.

This allows the CPU to continue with control. activities while the peripherals handle

49

operating system activities such as receiving incoming characters and time

measurements on their own without CPU intervention. The choice of processor is

ultimately application dependent. The Intel 8052 microcontroller is less expensive and

simpler to use and it may suffice for applications which do not require great

processing power or intensive data manipulation and for which high performance is

not critical.

Regarding the choice of language, for time-critical applications, assembly

language coding would yield the best results in exchange for greater software

development time required. However, the use of a high-level language is strongly

recommended if the application is not performance-critical or if the slight

performance penalty paid is not a significant factor. Frequently executed portions of

the software can be coded in assembly for improvement of performance. Both the

compilers used in this study support in-line assembly inter-mixed with the high-level

code. The software development time for a high-level language can be very much

lesser than for an assembly language, particularly in the hands of an experienced

programmer well acquainted with the processor architecture and compiler used. A

high-level language is very readable in general and easier to debug and revise at a

later time, should the need arise.

50

CHAPTER V

BIBLIOGRAPHY

COUL 88 George F. Coulouris and Jean Dollimore, Distributed Systems -
Concepts and Design. Addison-Wesley Publishing Company, Inc.,
1988.

DONO 93 John Donovan, "Careful programming lets C replace assembler in fast
embedded applications," EDN Journal, vol. 38, no. 8, pp. 81-88, April
1993.

GRAU 80 Mans Graube, "Proway -- A Local Network for Process Control,"
IEEE Corporate Interface Engineer, pp. 313-316, 1980.

HERZ 83 James H. Herzog, "A design perspective for real-time task control
in distributed systems," IEEE transactions on Industrial Electronics,
vol. 1E-30, No. 1, pp. 46-51, February 1983.

HERZ 87 James H. Herzog and Tinggui Zhang, "A design methodology for
distributed microprocessors in real-time control applications," Paper
presented at Second International Conference on Computers and
Applications, Beijing, People's Republic of China, June 24-26,1987.

MOTT 91 Fred Motteler, "Statistical Performance Analysis: looking for quality
time," Dr. Dobb's Journal, vol. 16, no. 12, pp. 68-79, December 1991.

MOYE 84 Doug MacGregor, Dave Mothersole and Bill Moyer, "The Motorola
MC68020," IEEE Micro, pp. 101-118, August 1984.

PETZ 88 Charles Petzold, "The C Mystique," PC Magazine, vol. 7, No. 15,
pp. 92-108, September 13, 1988.

SILB 86 A. Silbey, V. Milutinovic and V. Mendoza-Grado, "A survey of
advanced microprocessors and high-level language computer
architecture," IEEE tutorial on advanced microprocessors and high-
level language computer architectures, pp. 118-141, 1986.

STAL 90 William Stallings, Local Networks. New York: MacMillan
Publishing Company; London: Collier Macmillan Publishers, 1990.

51

TANE 88 A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall Inc., 1988.

68332 MC68332 User's Manual - Motorola. Motorola Literature
Distrubution, Arizona.

