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Abstract. Capturing the spatial distribution of high-intensity
rainfall over short-time intervals is critical for accurately as-
sessing the efficacy of urban stormwater drainage systems. In
a stochastic simulation framework, one method of generating
realistic rainfall fields is by multiplicative random cascade
(MRC) models. Estimation of MRC model parameters has
typically relied on radar imagery or, less frequently, rainfall
fields interpolated from dense rain gauge networks. How-
ever, such data are not always available. Furthermore, the
literature is lacking estimation procedures for spatially in-
complete datasets. Therefore, we proposed a simple method
of calibrating an MRC model when only data from a mod-
erately dense network of rain gauges is available, rather than
from the full rainfall field. The number of gauges needs only
be sufficient to adequately estimate the variance in the ra-
tio of the rain rate at the rain gauges to the areal average
rain rate across the entire spatial domain. In our example for
Warsaw, Poland, we used 25 gauges over an area of approx-
imately 1600 km2. MRC models calibrated using the pro-
posed method were used to downscale 15-min rainfall rates
from a 20 by 20 km area to the scale of the rain gauge capture
area. Frequency distributions of observed and simulated 15-
min rainfall at the gauge scale were very similar. Moreover,
the spatial covariance structure of rainfall rates, as charac-
terized by the semivariogram, was reproduced after allow-
ing the probability density function of the random cascade
generator to vary with spatial scale.

1 Introduction

Urban catchments, due to their diminished damping proper-
ties relative to rural and natural catchments, are particularly
responsive to bursts of local, high intensity rainfall. This
makes characterization of the spatial distribution of rainfall at
small time scales critical to evaluating the efficacy of urban
stormwater drainage systems. Traditionally, design storms
have been used to evaluate these systems in conjunction with
rainfall-runoff and hydrodynamic models, but in recent years
there has been a push towards stochastically downscaling
long (e.g., multi-decadal) time series of coarse (e.g., daily)
rainfall to higher resolution (e.g., minutes) with which to
force models of stormwater drainage systems (e.g., Hingray
and Ben Haha, 2005; Molnar and Burlando, 2005; Licznar
et al., 2011a). Advantages of using long time series are that
they allow for a statistical analysis of system performance
and they eliminate the problem of defining the appropriate
initial catchment water storage for a design storm (Hingray
and Ben Haha, 2005). Furthermore, long time series of
daily rainfall are already abundant and readily available, and
time series of high-resolution rainfall with which to develop
downscaling models are becoming more prevalent.

While using long time series station data provides advan-
tages, their remains the issue that the rainfall field is con-
tinuously evolving through time. While one might sim-
plify the problem by using a predefined and static dimen-
sionless rainfall field, this takes away a key strength of the
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stochastic simulation approach. An alternative is to stochas-
tically downscale the rainfall field as well as the time se-
ries. For this purpose, a number of models for stochastically
downscaling rainfall fields have been developed. Following
Ferraris et al. (2003), most can be grouped into three gen-
eral types: autoregressive models, point-process models that
randomly position rainfall “cells”, and fractal and multifrac-
tal cascade models. Additionally, there are hybrid models
that combine features of these different approaches. For an
overview of these various types, see Ferraris et al. (2003)
and references therein. We focus on multifractal cascade
models because, as noted by Veneziano et al. (2006), mul-
tifractal models are simpler and have fewer parameters, and
furthermore, though we do not consider these properties in
this study, one can deduce the frequency distribution of rain-
fall intensities and rainfall extremes from their multi-fractal
structure.

Parameter estimation for spatial downscaling models re-
quires observations of the rainfall field. With multifractal
cascade models, parameter estimation has mostly been done
using radar-derived rainfall fields, though in a small num-
ber of cases rainfall fields were generated by interpolating
rain gauge data (Svensson et al., 1996; Jothityangkoon et al.,
2000; Sharma et al., 2007). However, when the gauge den-
sity is coarse relative to the final spatial resolution of interest,
the interpolation methods will fail because they smooth out
the fine-scale variability.

It is common for large metropolitan areas to have in excess
of twenty rain gauges installed, whereas reliable fine scale
radar-rainfall is less common (e.g., Thames Water, 2010).
Even where radar imagery is available, there is value in es-
timating model parameters directly from rain gauge data,
given that accurate rainfall estimation from radar is complex
and continues to be a focus of research (Krajewski and Smith,
2002; Pepler et al., 2011). Therefore, we propose a simple
method of calibrating a multifractal cascade model for gen-
erating rainfall fields of short-duration rainfall (e.g., 15 min)
when information across the full field is not available, or
specifically, when only data from a network of rain gauges is
available. The number of gauges needs only be sufficient to
adequately estimate the variance in the ratio of the rain rate at
the rain gauges to the areal average rain rate across the entire
spatial domain. We expect the particular number will depend
on the degree of spatial variability across the domain of in-
terest. We apply the calibration method to precipitation over
Warsaw, Poland, and discuss error and bias in the estimation
of the model parameters.

In this study, we do not consider temporal evolution of
the rainfall fields, which is required for a complete space-
time downscaling model. Various cascade-based space-time
models based on cascades have been proposed (e.g., Over
and Gupta, 1996; Venugopal et al., 1999; Deidda, 2000;
Jothityangkoon et al., 2000; Kang and Ramirez, 2010). Pa-
rameterization of a space-time model will be a topic of a
subsequent paper.

  

 

 

Fig. 1. Location of rain gauges used in study in Warsaw, Poland.

2 Data and methodology

2.1 Data

Rainfall data were collected from a network of 25 rain gauges
distributed throughout Warsaw, Poland. The gauges were
installed by Warsaw Waterworks in the fall of 2008 to bet-
ter characterize storm systems with the specific objective of
modeling combined sewer- stormwater systems. Individual
gauges were located to obtain best representative meteoro-
logical observations in urban settings (Oke, 2006) and to
have approximately constant gauge density over the entire
city (Fig. 1). The gauges were connected to a single data
acquisition system by means of general packet radio service
(GPRS) modems. The data used in this study were recorded
with a temporal resolution of 1 min and cover the period from
the 38th week of year 2008 up to the 49th week of year 2010.
For our analysis, data were included only when 21 or more
gauges were operating.

All gauges were weighing-type instruments suitable for
both liquid and solid precipitation (MPS systém Ltd., model
TRwS 200E). The manufacturer’s claimed accuracy was
0.1 % and the resolution was 0.001 mm. Field tests of the
installed gauges were conducted prior to operational use.
Good agreement between total depth of known and recorded
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precipitation was observed. However, at a 1-min resolution,
the output signal was detectably more damped and broader
than the input signal. As a consequence, rain was at times
still being recorded for up to a few minutes after water was
no longer being added to the gauge funnel. To reduce the
relative error caused by this modulation of the signal, we
aggregated the data to 15-min intervals.

Precipitation occurs in Warsaw as rain and snow and is
generated during both frontal and convective storms. Scaling
statistics may vary by precipitation type and storm type, so
categorizing data by distinct meteorological processes can be
revealing (Lovejoy and Schertzer, 1991; Harris et al., 1997).
In Warsaw, snow is limited mainly to the months of Novem-
ber through April, and averages 61 % of all precipitation in
February (Dȩbski, 1959). Though data on Warsaw storm
types were not available to us, a recent analysis of precip-
itation and circulation patterns at Kraków, Poland, 268 km
south of Warsaw, showed daily precipitation events in the
summer were nearly evenly divided between frontal rain-
fall and non-frontal rainfall (Twardosz et al., 2011). In win-
ter, non-frontal rainfall was half as frequent as frontal rain-
fall, while non-frontal snowfall was 50 % more frequent than
frontal snowfall. The implication is that simply dividing the
dataset by season would not be adequate, and we do not have
sufficient information to categorize the Warsaw data by me-
teorological process nor by precipitation type. Given that the
focus of this paper is not the precise characterization of War-
saw precipitation, grouping all the data does not detract from
our primary purpose. From hereon, we make no distinction
between rain and snow (as rain equivalent) and refer to all
precipitation as “rainfall” to be consistent with the existing
modeling literature.

2.2 Spatial downscaling model

Our downscaling model is based on a discrete multiplica-
tive random cascade (MRC). In the discrete MRC model of
rainfall fields, the small-scale rainfall rate per unit area in a
square cell1 at thenth cascade level is given by

Rn

(
1n,k

)
= R0

n∏
j=1

Wj,k (1)

where the area of1n is given byL2
0b

−n. Here the large-
scale rainfall rateR0 is the rainfall amount over some interval
of time per unit area over the host cell with areaL2

0. The
constantb is the branching number, or number of sub-cells
(in our case, 4) into which rainfall from a cell is partitioned at
the next level in the cascade (Fig. 2). For each level, the index
pair (j , k) represents the cell along the path to thenth level
cell. The cells at then-th cascade level are indexed by1n,k,
k = 1, 2, . . . , 4n (see Over and Gupta, 1996). The cascade
weightW is a random variable with a prescribed distribution
function, of which various types have been proposed in the
context of rainfall (e.g., Schertzer and Lovejoy, 1987; Gupta

  

 

 
 Fig. 2. Schematic of two-dimensional multiplicative cascade with

branching numberb = 4.

and Waymire, 1993; Over and Gupta, 1996; Deidda et al.,
1999; Ahrens, 2003).

The weightW is generated as a random quantity with the
following probability density:

P(W = 0) = 1−p (2)

P(W = p−1W+) = p (3)

whereP denotes probability,p is a parameter andW+ are
the non-zero (positive) weights (Over and Gupta, 1994).
Equations (2) and (3) comprise the cascade generator: Eq. (2)
generates the intermittency in the rainfall field (subareas of
zero rainfall), while Eq. (3) generates the rainfall volumes
greater than zero.

The non-zero weightsW+ have a log-stable density, which
is to say thatX = ln(W+) has a stable distribution with four
parameters: the stability index 0< α ≤ 2, the skewness pa-
rameter−1 ≤ β ≤ 1, the scale parameterσ > 0, and the shift
parameter−∞ < µ < ∞. We denote the stable distribu-
tion by S(α,β,σ,µ). While the shift parameter can be de-
fined in several ways, we follow the definition as given in
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Samorodnitsky and Taqqu (1994). Properties of stable dis-
tributions in the context of multifractal rainfall fields have
been discussed by Schertzer and Lovejoy (1987), Lovejoy
and Schertzer (1990), and Gupta and Waymire (1990, 1993),
for example.

To ensure that the moments ofW+ are finite, we set
β =−1 (Samorodnitsky and Taqqu, 1994). Furthermore, to
conserve mass, on average, throughout the entire cascade
process, we impose the condition thatE[W+

] = 1. This
means that

µ = σα sec(πα/2) (4)

(McCulloch, 1996), which leaves two free parametersα

and σ to describe the distribution. Whenα = 2, distribu-
tion becomes normal with meanµ and varianceσ 2

N , where
σ = σN/

√
2.

2.3 Parameter estimation

Typically, estimation of spatial cascade model parameters
relies on an analysis of the spatial scaling of the statisti-
cal moments of the observed rainfall quantities (e.g., Over
and Gupta, 1996; Deidda, 2000; Jothityangkoon et al., 2000;
Pathirana and Herath, 2002; Sharma et al., 2007; Kang and
Ramirez, 2010). Theq-th momentM at each spatial scaleλ
is calculated as

M(λn,q)=

∑
k

[
Rn

(
1n,k

)]q (5)

where the spatial scaleλn is given byLn/L0. Rainfall rates
Rn

(
1n,k

)
at a particular scaleλn are determined by aggre-

gating observed rainfall into grids with cells of area1n. The
relationship between the moments and scale is made through
log-log plots ofM(λn,q) versusλn for variousq. Linear-
ity of the individual moments versus scale in log-log space
implies either mono- or multifractality. The moment-scaling
behavior of a fractal field has the form

M(λn,q)= (λ)τ(q) (6)

whereτ (q) versusq is either a line (monofractal) or a curve
(multifractal). Finally, the parameters of the cascade gen-
erator are estimated by fitting a distribution-dependent the-
oretical function to the empirical relationshipτ (q). For
examples on how the moment-scaling estimation method
would be applied to the MRC model such as the one de-
scribed in Sect. 2.2, see Pathirana and Herath (2002) and
Serinaldi (2010).

The above estimation method requires observed quanti-
ties of Rn across a range of scalesλn. Unfortunately, we
are hindered by a low gauge density (∼0.25 gauges km−2)

relative to a desirable grid cell density (on the order of 103

cells km−2, or a resolution of 30 by 30 m).
If we imposed fine resolution grids over our gauge net-

work, very few cells would contain enough gauges to ad-
equately estimate the areal-average rain rate for those cells.

Though we could use deterministic spatial interpolation tech-
niques (e.g., Thiessen polygons) to estimate the rainfall ev-
erywhere at every cell in the grid, this would likely result in
a much too smooth rainfall surface.

Because of our inability to carry out a reliable analysis
of moment scaling in space, we assumed a priori that there
is power law scaling of the statistical moments. We based
this assumption on previous observations of multifractality
in rainfall fields for spatial scales under 30 km (e.g., Ku-
mar and Foufoula-Georgiou, 1993a, b; Perica and Foufoula-
Georgiou, 1996; Pathirana and Herath, 2002; Kang and
Ramirez, 2010). Multifractality implies that realistic rain-
fall fields could be reasonably reproduced, in a statistical
sense, by a family of parsimonious multiplicative random
cascade models.

As an alternative to moment-scaling analysis, we parame-
terized our model using only the final product of the weights
W1 throughWn, which we express by the variableY as

Yn

(
1n,k

)
=

n∏
j=1

Wj,k (7)

We consider the cases forY = 0 andY > 0 separately.
From Eq. (3), pj is the probability thatWj > 0 along a

path in anyj of n cascade levels. The probability thatY = 0
(which is to say that at least oneWj equals zero along the
path down alln levels) can be calculated as 1 minus the
probability thatWj is greater than zero in alln levels. From
the binomial distribution function (Ross, 1998) we obtain the
solution for the probability thatY = 0:

P (Y = 0) = 1−

n∏
j=1

pj (8)

To help us determine the distribution ofY whenY > 0, we
defined the variableY+:

Y+
n

(
1n,k

)
=

n∏
j=1

W+

j,k (9)

whereY+ > 0. Noting from Eq. (3) thatW = W+/p, Y can
similarly be defined in terms ofW+ as

Yn

(
1n,k

)
=

n∏
j=1

(
W+

j,k/pj

)
(10)

Combining Eqs. (9) and (10) and using the substitution
P(Y > 0) = 1−P(Y = 0) yields the definition ofY+ in terms
of Y :

Y+
= YP (Y > 0) (11)

For constant stability indexα, the log-stable distribution
parameters forY+ can be easily determined from the log-
stable parameters ofW+ because the product of log-stable
variables is also log-stable. LetY+

= W+

1 W+

2 ...W+
n for

j = 1, . . . , n, whereW+

j are independent random variables
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given by W+

j = exp(Xj ), with Xj ∼ SX(α,−1,σj ,µj ). If
Z = ln(Y+) = X1 +X2 + ...+Xn, thenZ is distributed as
Z ∼ SZ(α,−1,σZ,µZ), where

σα
Z =

n∑
j=1

σα
j (12)

and

µZ =

n∑
j=1

µj (13)

for α 6= 1 (Samorodnitsky and Taqqu, 1994).
We estimated parameters for eight variations of vary-

ing complexity of the MRC model described in Sect. 2.2.
The simplest model used the log-normal distribution for
W+ with parameters that were scale-invariant and rainfall-
independent, whereas the most complex used the stable dis-
tribution with parameters that depended on both scale and
rainfall. Each model is summarized below:

1. SIσ /RIσ /LN: the σ parameter of the cascade genera-
tor was scale invariant (SIσ ) andW+ was log-normally
(LN) distributed and independent of rainfall intensity
(RIσ ).

2. SIσ /RIσ /LS: the σ parameter of the cascade genera-
tor was scale invariant andW+ had a log-stable (LS)
distribution and was independent of rainfall intensity.

3. SIσ /RDσ /LN: the σ parameter of the cascade gen-
erator was scale invariant andW+ was log-normally
distributed and dependent on rainfall intensity (RDσ ).

4. SIσ /RDσ /LS: theσ parameter of the cascade generator
was scale invariant andW+ had a log-stable distribution
that was dependent on rainfall intensity.

5. SDσ /RIσ /LN: theσ parameter of the cascade generator
was scale dependent (SD) andW+ was log-normally
distributed and independent of rainfall intensity.

6. SDσ /RIσ /LS: theσ parameter of the cascade generator
was scale dependent andW+ had a log-stable distribu-
tion and was independent of rainfall intensity.

7. SDσ /RDσ /LN: the σ parameter of the cascade gener-
ator was scale dependent andW+ was log-normally
distributed and dependent on rainfall intensity.

8. SDσ /RDσ /LS: the scale parameterσ of the cascade
generator was scale dependent andW+ had a log-stable
distribution and was dependent on rainfall intensity.

For those models whereσ was scale invariant,σ was solved
for uniquely in terms ofσZ by inverting Eq. (12):

σ = n−1/ασZ (14)

When σ was scale dependent,σ varied as the following
function of the length scaleλ =L/L0:

σα(λ) = σα
1 λγ (15)

whereγ is a constant andσ1 is the value ofσ at λ = 1. For
γ > 0, as the scaleλ decreases the variance ofW+ decreases,
which places it in the family of “bounded” cascade models
(Marshak et al., 1994). Combining Eqs. (12) and (15) and
using the substitutionλ = (1/2)j−1, σα

1 can be solved for in
terms ofσZ:

σα
1 =

1−2−γ

1−2−nγ
σα

Z (16)

for γ>0
In all eight models, the intermittency parameter was

determined fromP (Y > 0):

p = [P (Y > 0)] 1/n (17)

Because it has been observed that spatial cascade parame-
ters, and the intermittency parameter in particular, depend
on large-scale rainfall (Over and Gupta, 1994, 1996; Dei-
dda, 2000; Jothityangkoon et al., 2000; Pathirana and Herath,
2002; Deidda et al., 2004, 2006; Sharma et al., 2007), we al-
lowed some of the parameters of the cascade generator to
vary with the large-scale rainfall depthR0. While it has
been argued that for both space (Veneziano et al., 2006) and
time (Veneziano et al., 2006; Rupp et al., 2009; Serinaldi,
2010) the parameters should vary with rainfall intensity at
each scale (not just the largest scale), our dataset did not
permit us to adequately examine rainfall dependency across
scales, therefore we restricted the dependency to the large-
scale rainfall only.

In all eight models, we allowed the intermittency parame-
ter to depend on large-scale rainfall by varyingP(Y > 0) in
Eq. (17) with R0 as

P (Y > 0) =
1

2

{
1+erf

[
ln(R0)−m

√
2s2

]}
(18)

where erf is the error function with parametersm ands (Rupp
et al., 2009). In four of the models, the scale parameterσ

was varied with rainfall by relatingσZ in Eqs. (14) and (16)
to R0 as

σZ = c+f (R0) (19)

wheref () is an arbitrary function andc is a constant. We
used cubic splines to determinef ().

Observations of rainfall at gauges were used to estimate
values ofY , Y+, andP(Y > 0). Combining Eqs. (1) and
(7) yieldsYn = Rn/R0, from which we see that an estimate
of Y from observations ofR at a given rain gauge can be
calculated as

Ŷi,k =
Ri,k

R0,i

(20)
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whereŶ is the estimate ofY , i = 1, 2, . . . ,Nobs indexes the
i-th observation in time, andk = 1, 2, . . . ,Ngaugesindexes
the rain gauge. The areal average rainfallR0,i at the ref-
erence lengthL0 was approximated by taking the mean of
the rainfall measured over allNgaugesat timei. To estimate
P(Y = 0), we used

P̂i(Y > 0) = (number of gauges with non−zero rain)i/Ngauges (21)

Finally, Y+ was estimated with

Ŷ+

i,k = Ŷi,kP̂i(Y > 0) (22)

BecauseY+ is bounded by zero and positive infinity, whereas
the upper limit toŶ+ isNgauges, the distribution ofŶ+ is only
approximately equal to the distribution ofY+. This limita-
tion, plus instrument error at very low and very high rain-
fall intensities, introduces a bias into the estimation ofσZ.
For now, we simply accept this bias as a shortcoming of the
estimation procedure, though we discuss it further in Sect. 3.

Free software packages for estimating the parameters of
the stable distribution are rare, and we found none that suited
our particular needs. For this reason, we used a simple
procedure to estimateαZ andσZ from the “observed” val-
ues lnŶ+. An optimization algorithm minimized the sum
of squared differences between the following observed and
theoretical quantiles: 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, and
0.95. For the normal distribution, we used the maximum
likelihood method.

Note that except for at the largest spatial scale, we did not
areally average the precipitation data. We also did not con-
sider the particular location in space of the observed rain-
fall. Both of these characteristics distinguish our study from
others. However, we did use the number of cascade lev-
els n that brought us to the scale of the rain gauge itself.
Given that the rain gauges have a diameter of approximately
0.15 m, and that the spatial extent of our rain gauge network
corresponds to approximatelyL0 = 20 000 m, approximately
n = 17 cascade levels are needed.

2.4 Model evaluation

Direct comparison of the stochastically downscaled data to
the observed rainfall requires disaggregation down to the
capture area of the rain gauge throughn = 17 cascades levels,
which would result in a grid with over 17× 109 cells. This
would be impractical, especially given that very many such
spatial fields would be generated for time increments of as
little as 15 min. Instead of generating complete rainfall fields
at the spatial resolution of a rain gauge, we followed the cas-
cade process down a subset of the total number of possible
paths down the cascade. Along a path at each subdivision, we
randomly chose 1 of the 4 cells (with equal weight given to
each cell), and tracked the position (x, y) of the cell for each
of then = 17 cascade levels. In total, we followed 240 paths

Fig. 3. Probability of zero rain at a rain gauge, or equivalently,
P(Y = 0), against large-scale areal-averaged rainfall rateR0 for
R0 > 0. (a): P(Y = 0) as estimated from the observed rainfall (light
gray symbols).(b): P(Y = 0) as estimated from rainfall simulated
with Model SIσ /RIσ /LN. The dark gray symbols show the val-
ues estimated using 240 “gauges”, represented by 240 grid cells
in the finest resolution field (approximately 15× 15 cm). The light
gray symbols show the parameter values estimated using 24 such
gauges. The colored lines show Eq. (18) fitted to the observed and
simulated datasets.
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 Fig. 4. Empirical density (bars) of lnY+ and densities of the fitted stable distribution withαZ as a fitting parameter (thin green line), withαZ

fixed at 1.47 (heavy blue line) and withαZ fixed at 2 (thin red line). Distributions are shown for various large-scale areal-averaged rainfall
ratesR0 (as mm per 15-min) forR0 > 0. The rainfall value shown in each plot is the midpoint of the range of log-transformed rainfall used
to bin that data in a given rainfall rate class.
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per 15-min increment. We used Eq. (1) to calculate the 15-
min rainfall amounts at each of these 240 locations, which
served as our representative “gauges”.

To further reduce the computational burden, downscaling
was done on a sub-sample of all 18 723 15-min time steps
whereR0 > 0. We selected 2000 time steps such that the
cumulative distribution function (CDF) of the sub-sampled
Rn was similar to the CDF of the full record.

The spatial structures of the observed and simulated
15-min rainfall were compared using semivariograms of
log(Rn) for Rn ≥ 0.001 mm (15 min)−1 (the minimum rain-
fall amount recorded). The spatial structure of the intermit-
tency was examined with semivariograms of presence (1) and
absence (0) of rain.

In addition to the spatial structure, we assessed the abil-
ity of the models to reproduce the cumulative distribution
frequency (CDF) of 15-min rainfall forRn > 0.

To examine the bias in the estimation method, we ran addi-
tional simulations as described above in which we recorded
the rainfall at 24 locations and used all 18 723 15-min time
steps. From both the 240- and 24-gauge datasets, we esti-
mated the model parametersm, s, andαZ andσZ using the
methodology described in Sect. 2.3.

3 Results and discussion

The proportion of gauges with zero rain in a 15-min period,
P(Y = 0), was found to be strongly dependent on the large-
scale rainfall rateR0 (Fig. 3a). Consistent with many other
studies (e.g., Over and Gupta, 1994, 1996; Jothityangkoon et
al., 2000; Pathirana and Herath, 2002; Sharma et al., 2007),
the sparseness of the rain field was much greater whenR0
was low, while at high rainfall rates the tendency was for it
to be raining everywhere. The sigmoidal shape of Eq. (18)
appears suitable for simulating the rainfall intermittency, as
it allows for P(Y = 0) to go to 1 asR0 goes to 0, and to go
to 0 asR0 goes to+∞.

The empirical histograms of lnY+ were rightward skewed,
thus more similar to a log-stable density withβ =−1 than to a
log-normal distribution (Fig. 4). At progressively lower val-
ues ofR0, e.g.,<∼0.01 mm (15 min)−1, the empirical his-
tograms were progressively more dominated by lnY+

= 0,
such that neither the log-stable nor the log-normal densities
matched the observations. It is clear that by fitting theoreti-
cal distributions to lnY+ at low values ofR0, we are merely
fitting to a data artifact and not to true rainfall behavior.

The value of the stable distribution parameterαZ showed
a general increasing trend with increasingR0 (Fig. 5). How-
ever, whenαZ was fixed at a constant value of 1.47, the fits
of the log-stable distributions were only marginally degraded
(Fig. 4). This was fortunate because it allowed us to keep
αZ as a constant parameter and only have to vary the scale
parameterσZ with large-scale rainfall. The particular value
of αZ = 1.47 is the averageαZ using all values of ln̂Y+ for
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Fig. 5. Estimated stable distribution parametersαZ and σZ for
Z = lnY+ against large-scale areal-averaged rainfall ratesR0 for
R0 > 0. The open symbols indicate where estimation was clearly
affected by artifacts arising from data precision. In the upper
panel, the dashed line shows the estimate ofαZ using all data
for R0 ≥ 0.004 mm (15-min)−1 and the dotted line isσZ = 2 (the
normal distribution). In the lower panel, values ofσZ assume
constantαZ = 1.47 andαZ = 2 for the stable and normal distribu-
tions, respectively. The solid curves are fitted cubic spline func-
tions. The dashed and dotted horizontal lines indicate the values
of σZ averaged over allR0 ≥ 0.004 mm for the stable and normal
distribution, respectively.

R0 ≥ 0.004 mm. The threshold of 0.004 mm was selected
because below this value the empirical distributions appeared
to be strongly influenced by data precision (Fig. 4).

The dependency ofσZ onR0 was complex (Fig. 5), though
cubic splines with no more than 6 knots reproduced the em-
pirical relationship ofσZ with R0 well. The relationship was
similar in form for both the log-stable (αZ = 1.47) and log-
normal (αZ = 2) distributions (Fig. 5). The range ofσZ across
R0 was large, though the low values ofσZ at low values of
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Fig. 6. Semivariogram of log-transformed rainfall ratesR > 0.001 mm (15-min)−1 from rain gauges (gray heavy line and solid circles) and
from simulations (colored lines) using log-normal and log-stable distributions, rainfall independent (RI)σ , rainfall dependent (RD)σ , scale
independentσ (γ = 0) and scale dependentσ (γ = 0.4, 0.8, and 1.2).

R0 are suspect, as we have already determined the empirical
distributions to be unreliable.

If we ignoreσZ for R0 < 0.01 mm (15-min)−1, the pat-
tern in Fig. 5 (lower panel) implies a smoother field at in-
termediate rainfall rates of about 0.1 mm (15-min)−1 and a
more variable field at lower and higher rates. This trend
toward higher variability at the highest rainfall rates could
be the result of localized, high-intensity rainfall generated
from strong convective storm cells. This trend is not evi-
dent in the studies of Over and Gupta (1996), Jothityangkoon
et al. (2000), Pathirana and Herath (2002), Veneziano et
al. (2006), or Sharma et al. (2007), who only observed the
scale parameter (i.e., variance) to decrease with increas-
ing R0 from intermediate to highR0. The difference be-
tween our and previous results may be due to differences
in scales between studies: Jothityangkoon et al. (2000) and
Sharma et al. (2007) analyzed daily rainfall, while Over and
Gupta (1996), Veneziano et al. (2006) and Pathirana and
Herath (2002) analyzed radar scans with resolutions ranging
between 1 to 5 km.

The semivariogram of the observed rainfall rates shows
covariability in rainfall intensity increasing strongly with in-
creasing separation distance (Fig. 6). In contrast, all the
scale-invariant models produced rainfall fields that showed
little change in correlation with separation, though proximal
rain was slightly more similar than distant rain. When the
scale parameterσ as allowed to decrease with decreasing
scale via Eq. (15), however, the general variogram pattern
of the observed rainfall could be reproduced for separation
distances of less than about 10 km by using a value ofγ ∼

0.8 (Fig. 6). At separation distances above 10 km, the semi-
variances of the simulated rainfall become nearly constant,
irrespective of the model or the value ofγ . We believe this
is an artifact of the discrete nature of the cascade procedure
that was applied, which produces a blocky pattern. Note that
at the first cascade level, the rainfall is first separated into
four 10 km by 10 km cells. The rainfall simulated at a point
in one of these first four cells will be equally correlated with
the rainfall simulated at a pointanywherein one of the other
three cells. Incorporating non-stationarity into the cascade
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 Fig. 7. Semivariogram of 15-min rainfall presence/absence from

rain gauge data (heavy gray line and solid circles) and from sim-
ulations (colored lines) using Models SIσ /RIσ /LN (γ = 0) and
SDσ /RIσ /LN with γ = 0.4, 0.8, and 1.2.

process might remove this artifact; we return to this point
briefly at the end of this section.

The semivariogram of the presence/absence observations
shows that if it is raining (or not raining) at one location,
it is more likely to be raining (or not raining) nearby than
it is further away (Fig. 7). The simulated rainfall fields
have this property as well (at least below the 10 km sep-
aration distance), but not to the degree of the observed
rainfall field. Figure 7 gives semivariograms of the simu-
lated presence/absence data using Models SIσ /RIσ /LN and
SDσ /RIσ /LN only: semivariograms from all eight models
were similar because the models are identical in how they
simulate intermittency.

As mentioned above, the discrete cascade process pro-
duces a blocky pattern, which will have some influence of
the semivariogram. To generate patterns that are more re-
alistic, a filter may be applied to the discretely generated
field (Schertzer and Lovejoy, 1987; Menabde et al., 1997;
Watson, R. J. and Hodges, D. D., 2005), or one may opt
for a continuous-in-scale cascade, such as the continuous-
in-scale universal multifractal (UM) model (Schertzer and
Lovejoy, 1987; Lovejoy and Schertzer, 2010a, b). How a
filter would affect the parameter estimation procedure pre-
sented here, and how the parameter estimation would be done
in the framework of the UM model, are topics of future study.

Over most of the range ofR, the log-normal models repro-
duced well the observed CDF of rainfall rates (Fig. 8). How-
ever, the simulated CDFs using the log-normal models di-
verged from the observed CDF below 0.02 mm (15-min)−1.
The rainfall-dependent (RD) models performed slightly bet-
ter than the rainfall-independent (RI) models up to the very
highest rainfall intensities. Above about 15 mm (15-min)−1,

R0   mm (15 minutes)!1

Pr
ob

(R
<r

)

0.001 0.01 0.1 1 10 100

1e−05
1e−04

0.001

0.01

0.1

0.25

0.5

0.75

0.9

0.99

0.999

0.9999
0.99999

Observed, subset
Observed, all
RI & SI
RI & SD (0.8)
RD & SI
RD & SD (0.8)

Fig. 8. Cumulative distribution function (CDF) of non-zero rain-
fall rates from all observations, of the subset of 2000 15-min in-
tervals used to initialize the large-scale rainfallR0 for the simu-
lations, and of the simulations. Simulated rainfall was generated
using log-normal Models SIσ /RIσ /LN, SDσ /RIσ /LN with γ = 0.8,
SIσ /RDσ /LN, and SDσ /RDσ /LN with γ = 0.8.

the rainfall-dependent models overestimated the rainfall in-
tensity at a given probability of occurrence by roughly a
factor of two.

The log-stable models did better than the log-normal mod-
els at reproducing the overall shape of the observed CDF
(Fig. 9), including matching the curvature forR < 0.02 mm
(15-min)−1. The log-stable models also mimicked the up-
ward curvature of the observed CDF for the highest val-
ues ofR, though they did under-predict the probabilities of
these extreme events. Making the scale parameter rainfall-
dependent resulted in an improved CDF, though at the high-
est intensities these models still underestimated the rainfall
intensity at a given probability of occurrence by as much as
a factor of two.

As mentioned previously, the estimation method is biased
due to artifacts of the data. For one, the measurement in-
strument has a detection threshold, which results in sparser
measured than true rainfall, and hence an underestimation
of p, particularly when the larger-scale rainfallR0 is low
(Veneziano, et al., 2006). A second factor is the recording
precision of the rainfall observations, which particularly af-
fects parameter estimation at low rainfall intensities. The ef-
fect of precision can be seen in the preponderance of values
of Y+ = 1 at low values ofR0 (Fig. 4) which, in turn, re-
sults in an underestimation ofσ . Similar observations were
made by Rupp et al. (2009) and Licznar et al. (2011a, b)
regarding the empirical weightsW+ when analyzing rain-
fall time series. A third factor is the underreporting of high
rainfall intensities due to instrument error, which reduces the
variance ofY+.
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Fig. 9. Cumulative distribution function (CDF) of non-zero rain-
fall rates from all observations, of the subset of 2000 15-min in-
tervals used to initialize the large-scale rainfallR0 for the simu-
lations, and of the simulations. Simulated rainfall was generated
using log-stable Models SIσ /RIσ /LS, SDσ /RIσ /LS with γ = 0.8,
SIσ /RDσ /LS, and SDσ /RDσ /LS with γ = 0.8.

Additional bias, as already introduced in Sect. 2.3, arises
from sampling the full rainfall field with a limited num-
ber of gauges. In the case of rain intermittency, sampling
introduced error into the estimation ofP(Y = 0), as seen
from the deviations of the estimated from the assumed val-
ues ofP(Y = 0) in Fig. 3b. However, bias in the estima-
tion of the intermittency parametersm and s in Eq. (18)
was very small (Fig. 3b). From the observations, we esti-
mated the pair (m, s) to equal (−3.170, 1.804), while from
the simulations using all the scale invariant models, (m, s)

averaged (−3.177, 1.793) and (3.211, 1.809) with 240 and
24 gauges, respectively.

The bias effect of sample size was more prominent for
the stable distribution parameters. The simulations using the
scale-independent and rainfall-independent models provide
a good illustration of this effect because the model param-
eters never varied. In general, when the sample consisted
of 240 gauges, the estimation procedure accurately retrieved
the assumed values ofαZ and σZ (Fig. 10). However, at
progressively lowerR0, the parameter values were increas-
ingly underestimated, and at the lowest values ofR0, there
were simply to few observations to reliably fit the theoretical
distributions to the data. Excluding lowR0, when the sample
consisted of 24 gauges, there was no notable bias inαZ when
the rainfall came from a log-stable model, but there was a
slight underestimationαZ when the rainfall came from a log-
normal model. On consequence is that one might choose a
log-stable model when in fact the simpler log-normal is more
appropriate. Even so, given the high values ofαZ (>1.9) es-
timated here, use of the more complicated log-stable model
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Fig. 10. Stable distribution parametersαZ andσZ for Z = lnY+

against large-scale areal-averaged rainfall ratesR0 for R0 > 0 as es-
timated from simulated rainfall using the rainfall-independent mod-
els SIσ /RIσ /LS (log-stable) and SIσ /RIσ /LN (log-normal). The
blue and red horizontal lines show the assumed values ofαZ

(upper panel) andσZ (lower panel) for models SIσ /RIσ /ST and
SIσ /RIσ /LN, respectively. The solid symbols show the parameter
values estimated using 240 “gauges”, represented by 240 grid cells
in finest resolution field (approximately 15 cm× 15 cm). The open
symbols show the parameter values estimated using 24 such gauges.

would hardly be justified. Again, when using 24 gauges,
there was a slight underestimation inσZ and it would ap-
pear that this bias would increase with decreasing sample
size. We obtained similar results using the rainfall-dependent
models (Fig. 11).

It is clear from Figs. 10 and 11 that estimation accu-
racy deteriorates at rainfall rates below about 0.01 mm (15-
min)−1 with 24 gauges and below about 0.001 mm (15-
min)−1 for 240 gauges. The decrease inσZ with decreasing
R0 below 0.01 mm (15-min)−1 estimated from the rainfall-
independent (RI) simulations means it is possible that the
similar decrease inσZ with decreasingR0 below 0.01 mm
(15-min)−1 from the observations is merely an artifact of the
estimation procedure.
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Fig. 11. Stable distribution parametersαZ andσZ for Z = lnY+

against large-scale areal-averaged rainfall ratesR0 for R0 > 0 as es-
timated from simulated rainfall using the rainfall-dependent mod-
els SIσ /RDσ /LS (log-stable) and SIσ /RDσ /LN (log-normal). The
blue and red horizontal lines show the assumed values ofαZ (up-
per panel) andσZ (lower panel) for models SIσ /RDσ /ST and
SIσ /RDσ /LN, respectively. The solid symbols show the parame-
ter values estimated using 240 “gauges”, represented by 240 grid
cells in finest resolution field (approximately 15 cm× 15 cm). The
open symbols show the parameter values estimated using 24 such
gauges.

A variety of procedures could be used to partly account
for the bias. One is to iteratively adjust the model pa-
rameters until the estimated parameters from the simulated
dataset are nearly the same as those from the observed dataset
(Veneziano et al., 2006). Another procedure is to exclude
some data while estimating parameters. For example, in
our study we left out data whereR0 < 0.004 mm (15-min)−1

when estimatingαZ and when estimatingσZ for the case
where σZ was assumed to be independent ofR0. How-
ever, this excluded only a relatively small amount of data and
thus did not greatly affect the values ofαZ and ofσZ inde-
pendent ofR0. Furthermore, if the objective were to have
rainfall-dependent parameters, excluding the low intensity

data would provide no guidance as to which parameter values
to actually apply at these low rainfall intensities. In another
example of censuring data, Licznar et al. (2011a) simply
eliminated what would be analogous in our study to all val-
ues ofY+ = 1 from the empirical frequency distribution, un-
der the assumption that most of these values were artifactual.
A third procedure to deal specifically with recording preci-
sion is to add random noise to the rainfall observations, with
the intent of replacing the information lost by round-off error
and thus removing the discretization that leads to an excess
of certain values ofW+ (or Y+) (Licznar et al., 2011b).

Bias-correcting procedures such as those above should be
explored, and we expect that they would improve the fits of
frequency distributions. We know, for example, that both
data precision and the finite number of gauges serve to de-
crease the estimated value of the scale parameterσZ , in the
former case by generating an overabundance ofŶ+ = 1 and
in the latter case by imposing a maximum value toŶ+ of
Ngauges. A bias-correcting procedure that led to an increase in
the value of the log-stable parameterσZ would produce more
extreme events, resulting in a CDF more like the observed
one in Fig. 9. It would also increase the semivariance overall,
which was generally underpredicted by the log-stable models
(Fig. 6, lower panel).

Lastly, we have assumed stationarity in the rainfall field,
though there may be long-term spatial patterns across the
Warsaw metropolitan area. With our short record length (less
than 3 yr) it would be difficult detect any but very clear and
strong large-scale patterns, which we did not see. Should
continuing observations reveal deterministic patterns in the
spatial distribution of rainfall, we could account for these
within the MRC framework. Examples of how this might
be done using a deterministic field of weights that are ap-
plied to the cascade generator are given by Jothityangkoon et
al. (2000) and Pathirana and Herath (2002).

4 Conclusions

We have presented and evaluated a method for estimating
the parameters of a multiplicative random cascade model
for downscaling rainfall fields when observations of the full
fields are not available either from radar imagery or from
interpolation of very dense rain gauge network data. The
estimation procedure still relies on rain gauge data, but the
density of the network need only be such that (1) the rain-
fall rate over a given time interval averaged over the entire
spatial domain can be reasonably approximated by averag-
ing the rainfall rate from all the gauges, (2) the number and
the spatial coverage of the gauges are adequate for generating
a semivariogram of rainfall intensity.

When the cascade generator is independent and identically
distributed (iid) throughout the cascade, the parameters can
be estimated solely from the frequency distribution of the ra-
tios of the rain rate at each gauge to the large-scale average
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rain rate. We found, however, that an iid cascade genera-
tor failed to reproduce the spatial covariance structure of the
rainfall over Warsaw, Poland: proximal rainfall was too dis-
similar using an iid parameterization, and the simulated rain-
fall only showed a weak relationship between distance and
covariability (or semivariance), whereas this relationship was
strong in the observed data.

To better reproduce the spatial structure of actual rainfall
fields (as summarized by the semivariogram), we added scale
dependence to the cascade generator. The scale-dependent
generator introduced an additional model parameter (γ ) that
could not be estimated directly from the rain rate ratios. We
therefore treatedγ as a tuning parameter that was estimated
by matching the observed and simulated semivariograms. To
keep the model simple (i.e., to one tuning parameter) for this
study, we considered only scale dependence in the gener-
ation of positive rainfall amounts, not in the generation of
rainfall intermittency. A similar strategy, however, could be
used for the intermittency parameter along with the semivar-
iogram of rainfall presence/absence, though it would require
the introduction of at least one additional parameter.

Overall, the scale-dependent MRC models generated the
correct frequency distribution of short-duration rainfall in-
tensities. We recommend, however, further research into
bias in parameter estimation; we expect that through bias-
correction procedures, improvements could be made at both
the extreme lower and upper ends of the distribution.

We evaluated the model by using statistical properties of
the rain gauge data as performance targets. This meant
it was necessary to downscale to the approximate capture
area of the rain gauge (15× 15 cm). For most stormwater
drainage system studies, generating fields at such a fine res-
olution would be impractical. However, an expedient prop-
erty of the MRC model is that it lends itself nicely to down-
scaling to any spatial scaleλn, which can conveniently be
used to generate gridded rainfall fields for use as input to
hydrologic/hydrodynamic models.
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