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Abstract. Capturing the spatial distribution of high-intensity 1 Introduction
rainfall over short-time intervals is critical for accurately as-
sessing the efficacy of urban stormwater drainage systems. Igrban catchments, due to their diminished damping proper-
a stochastic simulation framework, one method of generatingies relative to rural and natural catchments, are particularly
realistic rainfall fields is by multiplicative random cascade responsive to bursts of local, high intensity rainfall. This
(MRC) models. Estimation of MRC model parameters hasmakes characterization of the spatial distribution of rainfall at
typically relied on radar imagery or, less frequently, rainfall small time scales critical to evaluating the efficacy of urban
fields interpolated from dense rain gauge networks. How-stormwater drainage systems. Traditionally, design storms
ever, such data are not always available. Furthermore, thave been used to evaluate these systems in conjunction with
literature is lacking estimation procedures for spatially in- rainfall-runoff and hydrodynamic models, but in recent years
complete datasets. Therefore, we proposed a simple methatiere has been a push towards stochastically downscaling
of calibrating an MRC model when only data from a mod- long (e.g., multi-decadal) time series of coarse (e.g., daily)
erately dense network of rain gauges is available, rather tharainfall to higher resolution (e.g., minutes) with which to
from the full rainfall field. The number of gauges needs only force models of stormwater drainage systems (e.g., Hingray
be sufficient to adequately estimate the variance in the raand Ben Haha, 2005; Molnar and Burlando, 2005; Licznar
tio of the rain rate at the rain gauges to the areal averaget al., 2011a). Advantages of using long time series are that
rain rate across the entire spatial domain. In our example fothey allow for a statistical analysis of system performance
Warsaw, Poland, we used 25 gauges over an area of approxnd they eliminate the problem of defining the appropriate
imately 1600 km. MRC models calibrated using the pro- initial catchment water storage for a design storm (Hingray
posed method were used to downscale 15-min rainfall rateand Ben Haha, 2005). Furthermore, long time series of
from a 20 by 20 km area to the scale of the rain gauge capturéaily rainfall are already abundant and readily available, and
area. Frequency distributions of observed and simulated 15me series of high-resolution rainfall with which to develop
min rainfall at the gauge scale were very similar. Moreover, downscaling models are becoming more prevalent.
the Spatial covariance structure of rainfall rates, as charac- While using |0ng time series station data provides advan-
terized by the semivariogram, was reproduced after allowtages, their remains the issue that the rainfall field is con-
ing the probability density function of the random cascadetinuous|y evolving through time. While one might sim-
generator to vary with spatial scale. plify the problem by using a predefined and static dimen-
sionless rainfall field, this takes away a key strength of the
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672 D. E. Rupp et al.: Parameterization of cascade models of rainfall fields

stochastic simulation approach. An alternative is to stochas N
tically downscale the rainfall field as well as the time se- Warsaw City @
ries. For this purpose, a number of models for stochastically

downscaling rainfall fields have been developed. Following
Ferraris et al. (2003), most can be grouped into three gen
eral types: autoregressive models, point-process models thi
randomly position rainfall “cells”, and fractal and multifrac- ri R19
tal cascade models. Additionally, there are hybrid models
that combine features of these different approaches. For a
overview of these various types, see Ferraris et al. (2003 s -
and references therein. We focus on multifractal cascade © &2 ¢
models because, as noted by Veneziano et al. (2006), mu R23
tifractal models are simpler and have fewer parameters, an RS
furthermore, though we do not consider these properties ir R4 o o
this study, one can deduce the frequency distribution of rain-
fall intensities and rainfall extremes from their multi-fractal . ST e o
structure. o
Parameter estimation for spatial downscaling models re- o o
quires observations of the rainfall field. With multifractal 10
cascade models, parameter estimation has mostly been dol Ris o R16 R25
using radar-derived rainfall fields, though in a small num-
ber of cases rainfall fields were generated by interpolating R17
rain gauge data (Svensson et al., 1996; Jothityangkoon et al
2000; Sharma et al., 2007). However, when the gauge der
sity is coarse relative to the final spatial resolution of interest,
the interpolation methods will fail because they smooth out —— —oters
the fine-scale variability.
Itis common for large metropolitan areas to have in excesig. 1. Location of rain gauges used in study in Warsaw, Poland.
of twenty rain gauges installed, whereas reliable fine scale
radar-rainfall is less common (e.g., Thames Water, 2010).
Even where radar imagery is available, there is value in es2 Data and methodology
timating model parameters directly from rain gauge data,
given that accurate rainfall estimation from radar is complex2.1 Data
and continues to be a focus of research (Krajewski and Smith,
2002; Pepler et al., 2011). Therefore, we propose a simpldrainfall data were collected from a network of 25 rain gauges
method of calibrating a multifractal cascade model for gen-distributed throughout Warsaw, Poland. The gauges were
erating rainfall fields of short-duration rainfall (e.g., 15min) installed by Warsaw Waterworks in the fall of 2008 to bet-
when information across the full field is not available, or ter characterize storm systems with the specific objective of
specifically, when only data from a network of rain gauges ismodeling combined sewer- stormwater systems. Individual
available. The number of gauges needs only be sufficient t@auges were located to obtain best representative meteoro-
adequately estimate the variance in the ratio of the rain rate dbgical observations in urban settings (Oke, 2006) and to
the rain gauges to the areal average rain rate across the entih@ve approximately constant gauge density over the entire
spatial domain. We expect the particular number will dependcity (Fig. 1). The gauges were connected to a single data
on the degree of spatial variability across the domain of in-acquisition system by means of general packet radio service
terest. We apply the calibration method to precipitation over(GPRS) modems. The data used in this study were recorded
Warsaw, Poland, and discuss error and bias in the estimatiowith a temporal resolution of 1 min and cover the period from
of the model parameters. the 38th week of year 2008 up to the 49th week of year 2010.
In this study, we do not consider temporal evolution of For our analysis, data were included only when 21 or more
the rainfall fields, which is required for a complete space-gauges were operating.
time downscaling model. Various cascade-based space-time All gauges were weighing-type instruments suitable for
models based on cascades have been proposed (e.g., Ovmath liquid and solid precipitation (MPS sgsh Ltd., model
and Gupta, 1996; Venugopal et al.,, 1999; Deidda, 2000;TRwS 200E). The manufacturer's claimed accuracy was
Jothityangkoon et al., 2000; Kang and Ramirez, 2010). Pa0.1% and the resolution was 0.001 mm. Field tests of the
rameterization of a space-time model will be a topic of ainstalled gauges were conducted prior to operational use.
subsequent paper. Good agreement between total depth of known and recorded
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precipitation was observed. However, at a 1-min resolution, 3
the output signal was detectably more damped and broade
than the input signal. As a consequence, rain was at times
still being recorded for up to a few minutes after water was 1
no longer being added to the gauge funnel. To reduce the
relative error caused by this modulation of the signal, we | 1
aggregated the data to 15-min intervals.
Precipitation occurs in Warsaw as rain and snow and is
generated during both frontal and convective storms. Scaling n=1
statistics may vary by precipitation type and storm type, so
categorizing data by distinct meteorological processes can be
revealing (Lovejoy and Schertzer, 1991; Harris et al., 1997). 3
In Warsaw, snow is limited mainly to the months of Novem-
ber through April, and averages 61 % of all precipitation in
February (Debski, 1959). Though data on Warsaw storm 1
types were not available to us, a recent analysis of precip-
itation and circulation patterns at Kra, Poland, 268 km 0 1
south of Warsaw, showed daily precipitation events in the 05 05
summer were nearly evenly divided between frontal rain- 170
fall and non-frontal rainfall (Twardosz et al., 2011). In win-
ter, non-frontal rainfall was half as frequent as frontal rain- W-W
fall, while non-frontal snowfall was 50 % more frequent than
frontal snowfall. The implication is that simply dividing the
dataset by season would not be adequate, and we do not hav o
sufficient information to categorize the Warsaw data by me-
teorological process nor by precipitation type. Given that the 1
focus of this paper is not the precise characterization of War-
saw precipitation, grouping all the data does not detract from 0 1
our primary purpose. From hereon, we make no distinction 0.5 0.5
between rain and snow (as rain equivalent) and refer to all 1 0
precipitation as “rainfall” to be consistent with the existing
modeling literature. Fig. 2. Schematic of two-dimensional multiplicative cascade with
branching numbekb = 4.
2.2 Spatial downscaling model

Our downscaling model is based on a discrete multiplica-2nd Waymire, 1993; Over and Gupta, 1996; Deidda et al.,

tive random cascade (MRC). In the discrete MRC model of1999; Ahrens, 2003). o
rainfall fields, the small-scale rainfall rate per unit areain a 1ne weightW is generated as a random quantity with the

square cellA at thenth cascade level is given by following probability density:
) PW=0=1—p (2
Ry(Ani)=Ro[ [Wjx L) pw=ptwh=p 3)
j=1

where P denotes probabilityp is a parameter an#/* are
where the area oA\, is given byL(Z)b‘”. Here the large- the non-zero (positive) weights (Over and Gupta, 1994).
scale rainfall rat&r is the rainfall amount over some interval Equations2) and @) comprise the cascade generator: Bj. (
of time per unit area over the host cell with aréé The  generates the intermittency in the rainfall field (subareas of
constantb is the branching number, or number of sub-cells zero rainfall), while Eq. §) generates the rainfall volumes
(in our case, 4) into which rainfall from a cell is partitioned at greater than zero.
the next level in the cascade (Fig. 2). For each level, the index The non-zero weight#+ have a log-stable density, which

pair (j, k) represents the cell along the path to ke level is to say thatX =In(W) has a stable distribution with four
cell. The cells at the-th cascade level are indexedAy, parameters: the stability index<Ox < 2, the skewness pa-
k=1, 2, ..., 4 (see Over and Gupta, 1996). The cascaderameter—1 < 8 <1, the scale parameter> 0, and the shift

weightW is a random variable with a prescribed distribution parameter—oco < u < oco. We denote the stable distribu-
function, of which various types have been proposed in thetion by S(«, 8,0,1). While the shift parameter can be de-
context of rainfall (e.g., Schertzer and Lovejoy, 1987; Guptafined in several ways, we follow the definition as given in
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Samorodnitsky and Taqqu (1994). Properties of stable disThough we could use deterministic spatial interpolation tech-
tributions in the context of multifractal rainfall fields have niques (e.g., Thiessen polygons) to estimate the rainfall ev-
been discussed by Schertzer and Lovejoy (1987), Lovejoyerywhere at every cell in the grid, this would likely result in
and Schertzer (1990), and Gupta and Waymire (1990, 1993) much too smooth rainfall surface.
for example. Because of our inability to carry out a reliable analysis
To ensure that the moments ®f * are finite, we set of moment scaling in space, we assumed a priori that there
B=—1 (Samorodnitsky and Taqqu, 1994). Furthermore, tois power law scaling of the statistical moments. We based
conserve mass, on average, throughout the entire cascadais assumption on previous observations of multifractality
process, we impose the condition thlafW*]=1. This in rainfall fields for spatial scales under 30km (e.g., Ku-
means that mar and Foufoula-Georgiou, 1993a, b; Perica and Foufoula-
o Georgiou, 1996; Pathirana and Herath, 2002; Kang and
u=o"sedra/2) @ Ramirez, 2010). Multifractality implies that realistic rain-
(McCulloch, 1996), which leaves two free parametars fall fields could be reasonably reproduced, in a statistical
and o to describe the distribution. Whem=2, distribu- Sense, by a family of parsimonious multiplicative random

tion becomes normal with mean and variancer2, where ~ cascade models. _ _
o= oy /2 As an alternative to moment-scaling analysis, we parame-

terized our model using only the final product of the weights
2.3 Parameter estimation W1 throughW,,, which we express by the variableas

Typically, estimation_ of spatial ca_scade .model paramgters{/,l ( An,k) _ ﬁwj,k 7)
relies on an analysis of the spatial scaling of the statisti- =1

cal moments of the observed rainfall quantities (e.g., Over )

and Gupta, 1996; Deidda, 2000; Jothityangkoon et al., 2000YVe consider the cases fgr= 0 andY > 0 separately.
Pathirana and Herath, 2002; Sharma et al., 2007; Kang and From Eq. @), p; is the probability that; > 0 along a
Ramirez, 2010). The-th momentM at each spatial scale path in any;j of n cascade levels. The probability that 0

is calculated as (which is to say that at least ori&; equals zero along the
path down alln levels) can be calculated as 1 minus the
M(hn,q) = Z[Rn (Ani)]? (5)  probability thatW; is greater than zero in ail levels. From
k the binomial distribution function (Ross, 1998) we obtain the

where the spatial scalg, is given byL,/Lo. Rainfall rates  solution for the probability that =0:

R, (An k) at a particular scalg, are determined by aggre- n

gating observed rainfall into grids with cells of arag. The Py =0)=1— ]—[ pj (8)
relationship between the moments and scale is made through j=1

log-log plots of M (%,,,q) versush, for variousq. Linear-

ity of the individual moments versus scale in log-log space
implies either mono- or multifractality. The moment-scaling
behavior of a fractal field has the form

To help us determine the distribution BfwhenY > 0, we
defined the variabl@*:

Y, (Ank) = Tw+ ©)
M q) = (R)"@ (6) ,1:[1 Ik

wherer(q) versusy is either a line (monofractal) or a curve whereY™ > 0. Noting from Eq. 8) thatW = W™ /p, Y can
(multifractal). Finally, the parameters of the cascade gen-similarly be defined in terms d¥ * as

erator are estimated by fitting a distribution-dependent the- n

oretical function to the empirical re_latlonshlﬂq)_. For vy, (An,k):H(W;,rk/PO (10)
examples on how the moment-scaling estimation method
would be applied to the MRC model such as the one de-

scribed in Sect. 2.2, see Pathirana and Herath (2002) ang®mPining Egs. § and (0) and using the substitution
Serinaldi (2010). P(Y > 0)=1— P (Y =0) yields the definition o’ * in terms

The above estimation method requires observed quanti(-)f Y

ties of R, across a range of scaleg. Unfortunately, we  y+ _ YP(Y >0) (11)

are hindered by a low gauge densityQ.25 gauges km?)

relative to a desirable grid cell density (on the order of 10  For constant stability index, the log-stable distribution

cellskn2, or a resolution of 30 by 30 m). parameters fo’+ can be easily determined from the log-
If we imposed fine resolution grids over our gauge net-stable parameters d¥ * because the product of log-stable

work, very few cells would contain enough gauges to ad-variables is also log-stable. Létt = W W, ...w," for

equately estimate the areal-average rain rate for those cellg.=1, ..., n, where W;“ are independent random variables

j=1
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given by W;r =exp(X;), with X; ~ Sx(a,—1,0;,1;). If When o was scale dependent, varied as the following
Z=In(Y*)= X1+ X2+...+ X, thenZ is distributed as  function of the length scale=L/Lo:
Z~S8z(a,—1,07,uz), where

o) =07 (15)
n
oy = Zg]‘?‘ (12)  wherey is a constant and is the value ol atA=1. For
j=1 y > 0, as the scale decreases the varianceWf" decreases,
which places it in the family of “bounded” cascade models
and (Marshak et al., 1994). Combining Eqd.2f and (5) and
n using the substitution = (1/2)/ 1, o can be solved for in
Uz = Zu,- (13)  terms ofoy:
j=1
. o 1-277 o 16
for o # 1 (Samorodnitsky and Taqqu, 1994). 01 =1 5oy 02 (16)

We estimated parameters for eight variations of vary-
ing complexity of the MRC model described in Sect. 2.2. for y>0 . _ .
The simplest model used the log-normal distribution for In all eight models, the intermittency parameter was
W with parameters that were scale-invariant and rainfall-determined fromP (Y > 0):
independent, whereas the most complex used the stable dis- 1n
tribution with parameters that depended on both scale an(f_[P(Y > 0] (17)

rainfall. Each model is summarized below: Because it has been observed that spatial cascade parame-
ters, and the intermittency parameter in particular, depend
on large-scale rainfall (Over and Gupta, 1994, 1996; Dei-
dda, 2000; Jothityangkoon et al., 2000; Pathirana and Herath,
2002; Deidda et al., 2004, 2006; Sharma et al., 2007), we al-
lowed some of the parameters of the cascade generator to

2. Slo/RIo/LS: the ¢ parameter of the cascade genera-Vary with the large-scale rainfall deptRo. While it has
tor was scale invariant an#* had a log-stable (LS) been argued that for both space (Veneziano et al., 2006) and

distribution and was independent of rainfall intensity.  time (Veneziano et al., 2006; Rupp et al., 2009; Serinaldi,
2010) the parameters should vary with rainfall intensity at
3. Slo/RDo/LN: the o parameter of the cascade gen- each scale (not just the largest scale), our dataset did not
erator was scale invariant arléi™ was log-normally  permit us to adequately examine rainfall dependency across
distributed and dependent on rainfall intensity (RD scales, therefore we restricted the dependency to the large-
scale rainfall only.
4. Slo/RDc/LS: theo parameter of the cascade generator |, 4 eight models, we allowed the intermittency parame-

was scale invariant arit _had a Iog—st_able distribution ter to depend on large-scale rainfall by varyiAgY > 0) in
that was dependent on rainfall intensity. Eq. (L7) with Ro as

1. Slo/Rlo/LN: the o parameter of the cascade genera-
tor was scale invariant (8) andW* was log-normally
(LN) distributed and independent of rainfall intensity
(Rlo).

5. SDo/RIo/LN: theo parameter of the cascade generator 1 In(Rg) —m
was scale dependent (SD) afd™ was log-normally ~P(¥>0)=3 {1+erf[7]} (18)
distributed and independent of rainfall intensity. s
where erfis the error function with parameterands (Rupp
6. SDo/RIo/LS: theo parameter of the cascade generator et al., 2009). In four of the models, the scale parameter
was scale dependent afid” had a log-stable distribu-  was varied with rainfall by relating in Egs. (14) and (L6)

tion and was independent of rainfall intensity. to Rp as

7. SDo/RDo/LN: the o parameter of the cascade gener- 5, — ¢+ f(Rq) (19)
ator was scale dependent akidt was log-normally _ . _ _
distributed and dependent on rainfall intensity. where f() is an arbitrary function and is a constant. We

used cubic splines to determirfe).

8. SDo/RDo/LS: the scale parameter of the cascade Observations of rainfall at gauges were used to estimate
generator was scale dependent &intl had a log-stable  values ofy, Y+, and P(Y > 0). Combining Egs. ) and
distribution and was dependent on rainfall intensity. (7) yields Y, = R,/ Ro, from which we see that an estimate

of Y from observations oR at a given rain gauge can be

calculated as

7. - Rik
‘g (RN

For those models where was scale invarianty was solved
for uniquely in terms ob; by inverting Eq. 12):

o=n"Y (20)

www.hydrol-earth-syst-sci.net/16/671/2012/ Hydrol. Earth Syst. Sci., 16, 67834, 2012



676 D. E. Rupp et al.: Parameterization of cascade models of rainfall fields

whereY is the estimate of ,i=1, 2, ...,Nopsindexes the
i-th observation in time, anél=1, 2, ..., Ngaugesindexes
the rain gauge. The areal average rainfdl; at the ref-
erence lengthLp was approximated by taking the mean of a) Observed
the rainfall measured over aNgaygesat timei. To estimate

P(Y =0), we used 3 7
P;(Y > 0) = (number of gauges with nenzero rain; / Ngauges (21) g |
Finally, Y+ was estimated with
o s S
Y =Yk Pi(Y >0) (229 a1
’ & <
Becaus&' T is bounded by zero and positive infinity, whereas ©
the upper limit tof * is Ngauges the distribution off + is only
approximately equal to the distribution @ft. This limita- S u
tion, plus instrument error at very low and very high rain-
fall intensities, introduces a bias into the estimatioroef o _|
For now, we simply accept this bias as a shortcoming of the e 011 11 R R R R
estimation procedure, though we discuss it further in Sect. 3 00001 0.001 0.01 0.1 1 10
Free software packages for estimating the parameters ¢
the stable distribution are rare, and we found none that suite: Ro mm (15 minutes)™
our particular needs. For this reason, we used a simple
procedure to estimatez andoz from the “observed” val- b) Simulated
ues In’*+. An optimization algorithm minimized the sum o
of squared differences between the following observed anc - ]
theoretical quantiles: 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, anc
0.95. For the normal distribution, we used the maximum © _
likelihood method. ©
Note that except for at the largest spatial scale, we did no ©
areally average the precipitation data. We also did not cong o |

sider the particular location in space of the observed rain-%
fall. Both of these characteristics distinguish our study from g. —
others. However, we did use the number of cascade lev

els n that brought us to the scale of the rain gauge itself. .
Given that the rain gauges have a diameter of approximatel O || — same as panel above
0.15m, and that the spatial extent of our rain gauge networl = = Fitted, 240 gauges
. _ . o - = Fitted, 24 gauges
corresponds to approximately, =20 000 m, approximately S .
n =17 cascade levels are needed. LU 001 1 1 A1

0.0001 0.001 0.01 0.1 1 10
2.4 Model evaluation
Ro mm (15 minutes)'1

Direct comparison of the stochastically downscaled data to
the observed rainfall requires disaggregation down to therig. 3. Probability of zero rain at a rain gauge, or equivalently,
capture area of the rain gauge through17 cascades levels, P(Y =0), against large-scale areal-averaged rainfall #gefor
which would result in a grid with over 1% 10° cells. This ~ Ro> 0. (a): P(¥ =0) as estimated f_rom the obser\{ed rair_lfall (light
would be impractical, especially given that very many suchdray symbols).(b): P(Y =0) as estimated from rainfall simulated
spatial fields would be generated for time increments of asW'th quel Sb/R_IU/LN' Tbe dark“gray symbols show the .Val'

ues estimated using 240 “gauges”, represented by 240 grid cells

little as 15 min. Instead of generating complete rainfall f|eldsin the finest resolution field (approximately €85 cm). The light

at the spatial resolution of a rain gauge, we followed the Cas'gray symbols show the parameter values estimated using 24 such

cade process down a subset of the total number of possiblg, ges. The colored lines show Eggfitted to the observed and
paths down the cascade. Along a path at each subdivision, W@mulated datasets.

randomly chose 1 of the 4 cells (with equal weight given to
each cell), and tracked the position §) of the cell for each
of then =17 cascade levels. In total, we followed 240 paths
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Fig. 4. Empirical density (bars) of N and densities of the fitted stable distribution with as a fitting parameter (thin green line), with

fixed at 1.47 (heavy blue line) and with, fixed at 2 (thin red line). Distributions are shown for various large-scale areal-averaged rainfall
ratesRg (as mm per 15-min) forg > 0. The rainfall value shown in each plot is the midpoint of the range of log-transformed rainfall used
to bin that data in a given rainfall rate class.
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per 15-min increment. We used EQ) ¢o calculate the 15-

min rainfall amounts at each of these 240 locations, which <
served as our representative “gauges”. © ]
To further reduce the computational burden, downscaling =]
was done on a sub-sample of all 18 723 15-min time steps N
where Rg > 0. We selected 2000 time steps such that the 2 . *
cumulative distribution function (CDF) of the sub-sampled 3 = S S .
R, was similar to the CDF of the full record. g * d
The spatial structures of the observed and simulated | °
15-min rainfall were compared using semivariograms of o o
log(R,) for R, > 0.001 mm (15 min)* (the minimum rain- T o °© o
fall amount recorded). The spatial structure of the intermit-

tency was examined with semivariograms of presence (1) and IRRRLUL LU LU R LU
In addition to the spatial structure, we assessed the abil-

ity of the models to reproduce the cumulative distribution

frequency (CDF) of 15-min rainfall for,, > 0. -

To examine the bias in the estimation method, we ran addi- | ® Stable
A Normal

Ro mm (15 minutes)™

tional simulations as described above in which we recorded
the rainfall at 24 locations and used all 18 723 15-min time
steps. From both the 240- and 24-gauge datasets, we esti-
mated the model parameters s, andaz andoz using the
methodology described in Sect. 2.3. o

0.6 0.8

0.4

3 Results and discussion

0.2

The proportion of gauges with zero rain in a 15-min period,

P(Y =0), was found to be strongly dependent on the large- © T T T T TTO T T TOI0m  T T T T T TTm
scale rainfall rateRg (Fig. 3a). Consistent with many other 0.0001  0.001 0.01 0.1 1 10
studies (e.g., Over and Gupta, 1994, 1996; Jothityangkoon et . »

al., 2000; Pathirana and Herath, 2002; Sharma et al., 2007), Ro mm (15 minutes)

the sparseness of the rain field was much greater wien
was low, while at high rainfall rates the tendency was for it
to be raining everywhere. The sigmoidal shape of B) (

Fig. 5. Estimated stable distribution parameters and oz for
Z =Iny* against large-scale areal-averaged rainfall raggor

itable f imulating th infall int it Ro > 0. The open symbols indicate where estimation was clearly
appears suitable for simulating the raintall INtermittency, as g 1o q by artifacts arising from data precision. In the upper

it allows for P(¥ =0) to go to 1 asko goes to 0, and to go panel, the dashed line shows the estimatergfusing all data

to 0 asRo goes tot-co. _ for Rg > 0.004mm (15-miny® and the dotted line isz =2 (the
The empirical histograms of it were rightward skewed, normal distribution). In the lower panel, values @f, assume

thus more similar to a log-stable density witltr —1 thantoa  constantez =1.47 andaz =2 for the stable and normal distribu-

log-normal distribution (Fig. 4). At progressively lower val- tions, respectively. The solid curves are fitted cubic spline func-

ues ofRg, e.g.,<~0.01mm (15 min}1, the empirical his-  tions. The dashed and dotted horizontal lines indicate the values

tograms were progressively more dominated by =0, o_f 0z a\(eraged over alRp > 0.004 mm for the stable and normal

such that neither the log-stable nor the log-normal densitiedlistribution, respectively.

matched the observations. It is clear that by fitting theoreti-

cal distributions to Ity + at low values ofRg, we are merely

fitting to a data artifact and not to true rainfall behavior. Ro > 0.004mm. The threshold of 0.004 mm was selected
The value of the stable distribution parametershowed because below this value the empirical distributions appeared

a general increasing trend with increasiRg(Fig. 5). How-  to be strongly influenced by data precision (Fig. 4).

ever, whenxz was fixed at a constant value of 1.47, the fits The dependency eofz on Rg was complex (Fig. 5), though

of the log-stable distributions were only marginally degradedcubic splines with no more than 6 knots reproduced the em-

(Fig. 4). This was fortunate because it allowed us to keeppirical relationship otz with Rg well. The relationship was

az as a constant parameter and only have to vary the scalsimilar in form for both the log-stablexf =1.47) and log-

parameter z with large-scale rainfall. The particular value normal ¢z = 2) distributions (Fig. 5). The range ef, across

of az =1.47 is the averagez using all values of I+ for Ro was large, though the low values @% at low values of
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Fig. 6. Semivariogram of log-transformed rainfall rat@s- 0.001 mm (15-miny® from rain gauges (gray heavy line and solid circles) and
from simulations (colored lines) using log-normal and log-stable distributions, rainfall independeat (Riffall dependent (RDy, scale
independent (y =0) and scale dependent(y =0.4, 0.8, and 1.2).

Ro are suspect, as we have already determined the empirical The semivariogram of the observed rainfall rates shows
distributions to be unreliable. covariability in rainfall intensity increasing strongly with in-

If we ignoreoz for Rg < 0.01mm (15-min)!, the pat-  creasing separation distance (Fig. 6). In contrast, all the
tern in Fig. 5 (lower panel) implies a smoother field at in- scale-invariant models produced rainfall fields that showed
termediate rainfall rates of about 0.1 mm (15-mihjand a little change in correlation with separation, though proximal
more variable field at lower and higher rates. This trendrain was slightly more similar than distant rain. When the
toward higher variability at the highest rainfall rates could scale parametes as allowed to decrease with decreasing
be the result of localized, high-intensity rainfall generatedscale via Eq. 15), however, the general variogram pattern
from strong convective storm cells. This trend is not evi- of the observed rainfall could be reproduced for separation
dent in the studies of Over and Gupta (1996), Jothityangkoordistances of less than about 10 km by using a valug of
et al. (2000), Pathirana and Herath (2002), Veneziano €0.8 (Fig. 6). At separation distances above 10 km, the semi-
al. (2006), or Sharma et al. (2007), who only observed thevariances of the simulated rainfall become nearly constant,
scale parameter (i.e., variance) to decrease with increasfrespective of the model or the value pf We believe this
ing Ro from intermediate to highRp. The difference be- is an artifact of the discrete nature of the cascade procedure
tween our and previous results may be due to differenceshat was applied, which produces a blocky pattern. Note that
in scales between studies: Jothityangkoon et al. (2000) andt the first cascade level, the rainfall is first separated into
Sharma et al. (2007) analyzed daily rainfall, while Over andfour 10 km by 10 km cells. The rainfall simulated at a point
Gupta (1996), Veneziano et al. (2006) and Pathirana andn one of these first four cells will be equally correlated with
Herath (2002) analyzed radar scans with resolutions ranginghe rainfall simulated at a poimtnywherein one of the other
between 1 to 5km. three cells. Incorporating non-stationarity into the cascade
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Fig. 7. Semivariogram of 15-min rainfall presence/absence from Fig. 8. Cumulative distribution function (CDF) of non-zero rain-
rain gauge data (heavy gray line and solid circles) and from sim-fall rates from all observations, of the subset of 2000 15-min in-
ulations (colored lines) using Models &3RIlo/LN (y =0) and tervals used to initialize the large-scale rainf&D for the simu-
SDo/Rlo /LN with y =0.4, 0.8, and 1.2. lations, and of the simulations. Simulated rainfall was generated
using log-normal Models SIRlo /LN, SDo/Rlo /LN with y =0.8,

. . . . . Slo/RDo /LN, and SO»/RDo /LN with y =0.8.
process might remove this artifact; we return to this point

briefly at the end of this section.

The semivariogram of the presence/absence observatiorige rainfall-dependent models overestimated the rainfall in-
shows that if it is raining (or not raining) at one location, tensity at a given probability of occurrence by roughly a
it is more likely to be raining (or not raining) nearby than factor of two.
it is further away (Fig. 7). The simulated rainfall fields  The log-stable models did better than the log-normal mod-
have this property as well (at least below the 10km sep-els at reproducing the overall shape of the observed CDF
aration distance), but not to the degree of the observedFig. 9), including matching the curvature f@& < 0.02mm
rainfall field. Figure 7 gives semivariograms of the simu- (15-min)™*. The log-stable models also mimicked the up-
lated presence/absence data using Model$f8b/LN and ward curvature of the observed CDF for the highest val-
SDo/RIo/LN only: semivariograms from all eight models ues ofR, though they did under-predict the probabilities of
were similar because the models are identical in how theythese extreme events. Making the scale parameter rainfall-
simulate intermittency. dependent resulted in an improved CDF, though at the high-

As mentioned above, the discrete cascade process pr&st intensities these models still underestimated the rainfall
duces a blocky pattern, which will have some influence ofintensity at a given probability of occurrence by as much as
the semivariogram. To generate patterns that are more rea factor of two.
alistic, a filter may be applied to the discretely generated As mentioned previously, the estimation method is biased
field (Schertzer and Lovejoy, 1987; Menabde et al., 1997;due to artifacts of the data. For one, the measurement in-
Watson, R. J. and Hodges, D. D., 2005), or one may opttrument has a detection threshold, which results in sparser
for a continuous-in-scale cascade, such as the continuougneasured than true rainfall, and hence an underestimation
in-scale universal multifractal (UM) model (Schertzer and of p, particularly when the larger-scale rainfaty is low
Lovejoy, 1987; Lovejoy and Schertzer, 2010a, b). How a(Veneziano, et al., 2006). A second factor is the recording
filter would affect the parameter estimation procedure pre-precision of the rainfall observations, which particularly af-
sented here, and how the parameter estimation would be dorfects parameter estimation at low rainfall intensities. The ef-
in the framework of the UM model, are topics of future study. fect of precision can be seen in the preponderance of values

Over most of the range &, the log-normal models repro- 0f Y™ =1 at low values ofRo (Fig. 4) which, in turn, re-
duced well the observed CDF of rainfall rates (Fig. 8). How- sults in an underestimation ef. Similar observations were
ever, the simulated CDFs using the log-normal models di-made by Rupp et al. (2009) and Licznar et al. (2011a, b)
verged from the observed CDF below 0.02mm (15-min) ~ regarding the empirical weight&’* when analyzing rain-
The rainfall-dependent (RD) models performed slightly bet-fall time series. A third factor is the underreporting of high
ter than the rainfall-independent (R1) models up to the veryrainfall intensities due to instrument error, which reduces the
highest rainfall intensities. Above about 15 mm (15-mi;) ~ variance ofy *.
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lations, and of the simulations. Simulated rainfall was generated < A - o o
using log-stable Models 8IRIo/LS, SDs/RIo/LS with y =0.8, °c] * eSO e,
Slo/RDo /LS, and SB/RDo/LS with y =0.8. e R
o 8 fe)
o

Additional bias, as already introduced in Sect. 2.3, arises o ——

from sampling the full rainfall field with a limited num- 0.0001  0.001 0.01 0.1 1 10

ber of gauges. In the case of rain intermittency, sampling

introduced error into the estimation @¢f(Y = 0), as seen Ry mm (15 minutes)”’

from the deviations of the estimated from the assumed val-

ues of P(Y =0) in Fig. 3b. However, bias in the estima- Fig..lo. Stable distribution parametess andoz for Z=Iny+
tion of the intermittency parameters ands in Eq. (L8) a_lgalnst Iarge-s_cale areal-gverage_d ralnfall_rﬂtefs)_r Ro>0ases-
was very small (Fig. 3b). From the observations, we esti_tlmated from simulated rainfall using the rainfall-independent mod-
mated the pair, 5) to equal (3.170, 1.804), while from els Sb/RIo/LS (log-stable) and Sl/RIo/LN (log-normal). The

he simulati . Il th lei . dols blue and red horizontal lines show the assumed valuea ,0f
the simulations using all the scale invariant mo » £) (upper panel) and 7 (lower panel) for models S/RIlo/ST and

averaged £3.177, 1.793) and (3.211, 1.809) with 240 and g,/R|s/LN, respectively. The solid symbols show the parameter

24 gauges, respectively. values estimated using 240 “gauges”, represented by 240 grid cells
The bias effect of sample size was more prominent forin finest resolution field (approximately 15 cmi5cm). The open

the stable distribution parameters. The simulations using theymbols show the parameter values estimated using 24 such gauges.

scale-independent and rainfall-independent models provide

a good illustration of this effect because the model paramyyoyid hardly be justified. Again, when using 24 gauges,

eters never varied. In general, when the sample consisteghere was a slight underestimationdry, and it would ap-

of 240 gauges, the estimation procedure accurately retrievegear that this bias would increase with decreasing sample

the assumed values ofz ando 7z (Fig. 10). However, at  gjze \We obtained similar results using the rainfall-dependent
progressively lowerRo, the parameter values were increas- models (Fig. 11).

ingly underestimated, and at the lowest valuesef there It is clear from Figs. 10 and 11 that estimation accu-
were simply to few observations to reliably fit the theoretical racy deteriorates at rainfall rates below about 0.01 mm (15-
distributions to the data. Excluding loRs, when the sample min)~1 with 24 gauges and below about 0.001mm (15-
consisted of 24 gauges, there was no notable biag iwhen min)~1 for 240 gauges. The decreasesip with decreasing
the rainfall came from a log-stable model, but there was ag, pejow 0.01 mm (15-min)* estimated from the rainfall-
slight underestimatioaz when the rainfall came fromalog-  jndependent (RI) simulations means it is possible that the
normal model. On consequence is that one might choose gmjjar decrease i, with decreasingRo below 0.01 mm

log-stable model when in fact the simpler log-normal is more (15-miny-2 from the observations is merely an artifact of the
appropriate. Even so, given the high values@f(>1.9) es-  agtimation procedure.

timated here, use of the more complicated log-stable model
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~ o —a — N data would provide no guidance as to which parameter values
_ N to actually apply at these low rainfall intensities. In another
@ |, a N example of censuring data, Licznar et al. (2011a) simply
N eliminated what would be analogous in our study to all val-
o | A ues ofY* =1 from the empirical frequency distribution, un-
LI . o . der the assumption that most of these values were artifactual.
< |, g & T v v e A third procedure to deal specifically with recording preci-
T . . . sion is to add random noise to the rainfall observations, with
o | °© the intent of replacing the information lost by round-off error
N and thus removing the discretization that leads to an excess
_ of certain values of¥ ™ (or Y ™) (Licznar et al., 2011b).
P T LT Bias-correcting procedures such as those above should be
0.0001  0.001 0.01 0.1 1 10 . .
explored, and we expect that they would improve the fits of
Ro mm (15 minutes) ™’ frequency distributions. We know, for example, that both
_ data precision and the finite number of gauges serve to de-
4 g;zg:z gjoggﬁgggs crease the estimated value of the scale parameterin the
© | & Normal, 240 gauges former case by generating an overabundanciof 1 and
S 7| & Normal, 24 gauges in the latter case by imposing a maximum valuettd of
© _ Ngauges A bias-correcting procedure that led to an increase in
N ° ] the value of the log-stable parameter would produce more
o < | extreme events, resulting in a CDF more like the observed
o ] one in Fig. 9. It would also increase the semivariance overall,
7 which was generally underpredicted by the log-stable models
S (Fig. 6, lower panel).
7 Lastly, we have assumed stationarity in the rainfall field,
°© T T T T T T T T T T T T though there may be long-term spatial patterns across the
0.0001  0.001 0.01 0.1 1 10 Warsaw metropolitan area. With our short record length (less

than 3yr) it would be difficult detect any but very clear and
strong large-scale patterns, which we did not see. Should
Fig. 11. Stable distribution parametess: ando for Z = Iny+ cont@nuin_g qbse_:rvations_reveal deterministic patterns in the
against large-scale areal-averaged rainfall r&gfor R > 0 as es- spat_|al distribution of rainfall, we could account f_or these
timated from simulated rainfall using the rainfall-dependent mod- Within the MRC framework. Examples of how this might
els Sb/RDo/LS (log-stable) and SURDo/LN (log-normal). The ~ be done using a deterministic field of weights that are ap-
blue and red horizontal lines show the assumed values;ofup- plied to the cascade generator are given by Jothityangkoon et
per panel) andrz (lower panel) for models $/RDo/ST and  al. (2000) and Pathirana and Herath (2002).
Slo/RDo /LN, respectively. The solid symbols show the parame-
ter values estimated using 240 “gauges”, represented by 240 grid
cells in finest resolution field (approximately 15gr5cm). The 4 Conclusions
open symbols show the parameter values estimated using 24 such
gauges. We have presented and evaluated a method for estimating
the parameters of a multiplicative random cascade model
for downscaling rainfall fields when observations of the full
A variety of procedures could be used to partly accountfields are not available either from radar imagery or from
for the bias. One is to iteratively adjust the model pa- interpolation of very dense rain gauge network data. The
rameters until the estimated parameters from the simulategstimation procedure still relies on rain gauge data, but the
dataset are nearly the same as those from the observed datagensity of the network need only be such that (1) the rain-
(Veneziano et al., 2006). Another procedure is to excludefall rate over a given time interval averaged over the entire
some data while estimating parameters. For example, irspatial domain can be reasonably approximated by averag-
our study we left out data wher < 0.004 mm (15-minj?! ing the rainfall rate from all the gauges, (2) the number and
when estimatingrz and when estimating , for the case the spatial coverage of the gauges are adequate for generating

Ry mm (15 minutes)™

where oz was assumed to be independentRy. How- a semivariogram of rainfall intensity.
ever, this excluded only a relatively small amount of data and When the cascade generator is independent and identically
thus did not greatly affect the values®@§ and ofo 7 inde- distributed (iid) throughout the cascade, the parameters can

pendent ofRg. Furthermore, if the objective were to have be estimated solely from the frequency distribution of the ra-
rainfall-dependent parameters, excluding the low intensitytios of the rain rate at each gauge to the large-scale average
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similar using an iid parameterization, and the simulated rain-P€idda, R., Badas, M. G, and Piga. E.: Space-time scaling in high
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T S : . . Atmosphere Response Experiment (TOGA-COARE) storms,
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2004.
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