Do hassles mediate between life events and mortality in older men? Longitudinal findings from the VA Normative Aging Study

The Faculty of Oregon State University has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Aldwin, C. M., Jeong, Y., Igarashi, H., Choun, S., & Spiro, A. (2014). Do hassles mediate between life events and mortality in older men?: Longitudinal findings from the VA Normative Aging Study. Experimental Gerontology, 59, 74-80. doi:10.1016/j.exger.2014.06.019</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOI</td>
<td>10.1016/j.exger.2014.06.019</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Version of Record</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>http://cdss.library.oregonstate.edu/sa-termsofuse</td>
</tr>
</tbody>
</table>
Do hassles mediate between life events and mortality in older men?☆
Longitudinal findings from the VA Normative Aging Study

Carolyn M. Aldwin, Yu-Jin Jeong, Heidi Igarashi, Soyoung Choun, Avron Spiro III

Abstract
We investigated whether hassles mediated the effect of life events on mortality in a sample of 1293 men (Mage = 65.58, SD = 7.01), participants in the VA Normative Aging Study. We utilized measures of stressful life events (SLE) and hassles from 1989 to 2004, and men were followed for mortality until 2010. For life events and hassles, previous research identified three and four patterns of change over time, respectively, generally indicating low, moderate, and high trajectories, with one moderate, non-linear pattern for hassles (shallow U curve). Controlling for demographics and health behaviors, we found that those with moderate SLE trajectories (38%) more likely to die than those with low SLE trajectories, HR = 1.42, 95% CI [1.16, 3.45]. Including the hassles classes showed that those with the moderate non-linear hassles trajectory were 63% more likely to die than those with low hassles trajectory, HR = 1.63, 95% CI [1.19, 2.23], while those with consistently high hassles trajectory were over 3 times more likely to die, HR = 3.30, 95% CI [1.58, 6.89]. However, the HR for moderate SLE trajectory decreased only slightly to 1.38, 95% CI [1.13, 1.68], suggesting that the two types of stress have largely independent effects on mortality. Research is needed to determine the physiological and behavioral pathways through which SLE and hassles differentially affect mortality.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction
The adverse effects of stress on health have been accepted for the last few decades (Aldwin, 2011; Almeida et al., 2011; Cohen et al., 2007; Steptoe and Kivimäki, 2013). However, there are different ways of assessing stress, and relatively little work has been done to understand their interrelationships. In general, there are several ways of assessing stress in field settings (Aldwin, 2007). Trauma is generally reserved for events which involve serious threat or experience of death or serious injury, such as combat, natural disasters, and car accidents (Yamashita, 2011). Stressful life events (SLE) are major changes which have primarily adverse effects for individuals and their loved ones, such as deaths, divorces, or being laid off from work (Hatch and Dohrenwend, 2007; Holmes and Rahe, 1967). Hassles or daily stressors are relatively minor, everyday problems which are often linked to social roles and/or the built and natural environment, such as commuting problems, family arguments, or household repairs (DeLongis et al., 1988; Hay and Diehl, 2010). Finally, chronic role strain reflects on-going problems, generally linked to social roles, such as troubled marriages, poverty, or difficult jobs (Pearlin et al., 1996; Turner and Turner, 2005; Wheaton, 1996).

Early research sought to determine the relative strength of the association between various measures of stress and health. Lazarus and his colleagues (DeLongis et al., 1982; Kanner et al., 1981) argued that hassles were the better determinants of health outcomes, as they were more numerous and more likely to have immediate effects on health. Others argued that hassles were “contaminated” by personality factors such as neuroticism, and that life events were more objective (Dohrenwend et al., 1984; Schroeder and Costa, 1984). Aldwin et al. (1989) argued that life events and hassles were related — for example, a life event such as divorce could lead to more hassles with car repair, child care, and household maintenance. They utilized longitudinal...
data from the VA Normative Aging Study (NAS) to test the relationships among neuroticism, life events, hassles, and psychological health, and found that neuroticism was equally predictive of both life events and hassles; life events were predictive of hassles. Nonetheless, life events and hassles were both independently related to mental health, although part of the effect of life events on mental health was mediated through hassles. In this study, we examine the association between life events and hassles and test whether the effect of life events on mortality was mediated through hassles.

1.1. Life events and mortality

While life events are now widely accepted to have adverse effects on health (Almeida et al., 2011), the literature on stress and mortality is surprisingly inconsistent. Some studies have found a positive association between stressful life events and mortality (Lantz et al., 2005; Nielsen et al., 2008; Rosengren et al., 1993). Others have found no association (Maunsell et al., 2001), and still others found that stressful life events were inversely related to mortality (Hollis et al., 1990). Phillips et al. (2008) argued that the relationship between life events and mortality was confounded by the presence of health-related events in lists of stressful life events. Thus, omitting health-related items from stress measures when predicting mortality can avoid circularity.

Alternatively, it is possible that long-term patterns of stress may be a better predictor of mortality than single assessments (Kopp and Rethelyi, 2004; Pearl et al., 1996). Aldwin et al. (2011) found four patterns of SLE change across 18 years among men in the NAS using latent class growth analysis. Three of four classes decreased over time, with the major difference among them being in the average level of stress, which were low, moderate, and high. However, one class showed increases in stress which peaked around age 70. When the stressful life events inventory was rescored deleting the two health-related items only three classes emerged (see Fig. 1a). Thus, health-related stressors may peak around age 70, although other types of stressors may decrease, probably as a function of declining social roles (Aldwin, 2011). However, we followed Phillips et al.'s (2008) suggestion that health-related stress items should not be included when predicting health outcomes. Thus, three classes, or patterns, of SLE change were then used to predict mortality. Interestingly, both the moderate and high classes had similar hazard ratios for mortality, compared to the low group, HRs = 1.41 and 1.37, respectively, suggesting that there may be a non-linear relationship between stressful life events and mortality.

1.2. Hassles and mortality

In addition to the work by Lazarus and his colleagues cited earlier, several other groups have shown that hassles have a greater impact on health than do life events (Jandorf et al., 1987; Stanley and Burrows, 2008; Weinberger et al., 1987). Several reviews have demonstrated the adverse effects of hassles and daily stressors on a variety of health outcomes (Almeida et al., 2011; Piazza et al., 2013; Zautra, 2003). However, most of the research on hassles or daily stressors utilizes proximal health outcomes such as biomarkers rather than disease onset or mortality. For example, daily stress was positively associated with inflammatory biomarkers (Gouin et al., 2012), which, in turn, were associated with the development of chronic diseases such as type 2 diabetes (Stringhini et al., 2013). However, there are very few studies of the direct effects of hassles or daily stressors on long-term health outcomes such as mortality.

In prior research with this sample, Aldwin et al. (2014) used latent class growth analysis to identify long-term patterns of hassles intensity ratings across 16 years and found four basic patterns (see Fig. 1b). Three (low, medium, and high) were basically stable over time, differing in their average level, but one large group of participants showed a shallow U-shaped curve, with hassles decreasing until about age 67 and then increasing thereafter. Jeong et al. (2012) examined the association of these patterns with mortality and found that this moderate nonlinear group had about a 30% increased risk of dying, compared to the low stable hassles intensity group.

1.3. Present study

The question remains as to whether life events and hassles are independent predictors of mortality, or whether the effect of life events is mediated through hassles. While life events are rare, hassles are ubiquitous, which may explain why the early studies cited above argued that hassles would have a more immediate and thus consequential impact on health. However, it makes sense that life events can have adverse effects of hassles and daily stressors on a variety of health outcomes such as chronic diseases such as type 2 diabetes. However, most of the research on hassles or daily stressors utilizes proximal health outcomes such as biomarkers rather than disease onset or mortality. For example, daily stress was positively associated with inflammatory biomarkers, which, in turn, were associated with the development of chronic diseases such as type 2 diabetes. However, there are very few studies of the direct effects of hassles or daily stressors on long-term health outcomes such as mortality.
health effects in part because they can create more hassles (Aldwin et al., 1989). For example, a divorce is distressing in and of itself, but it can also create difficulties due to changes in economic status and housing, altered relationships with children and friends, and an increase in everyday maintenance tasks once shared by the spouse (see Cherlin et al., 2004). This can be especially true in later life, when resources to cope with problems can be limited. For example, younger individuals can bounce back more quickly from physical injuries such as a broken ankle. However, in older adults, bones heal more slowly. Balance problems can prevent them from effectively using crutches, further impairing mobility and making many activities of daily living, such as shopping or bathing more difficult (cf., Aldwin and Gilmer, 2012). Thus, it may be that life events result in problems that are more likely to spread across domains in later life (cf., Pearl et al., 1981).

In previous work, we have shown that men in classes of moderate and high long-term levels of stressful life events had higher mortality (Aldwin et al., 2011). Similarly, men in classes of moderate and high hassles also had higher mortality (Jeong et al., 2012). Thus, the purpose of the present study was to examine whether the effect of life events on mortality was direct, or was mediated by hassles, after controlling for personality, demographics, and health behaviors. We included neuroticism as the personality measure in this study, given prior work showing that neuroticism predicts both life events and hassles (Aldwin et al., 2011). Similarly, men in classes of moderate and high trajectories had increased (~50%) mortality risk, compared to those in the low trajectory group, covarying neuroticism, demographics, and health behaviors.

2. Methods

2.1. Sample and procedure

The VA Normative Aging Study (NAS) is a longitudinal study whose purpose is to examine normal aging processes in men. Between 1961 and 1970, it screened over 6000 men for good health and strong ties to the Boston area, eventually enrolling 2280 men who had no chronic illness or physical disability and ranging in age from 21 to 81 (Spiro and Bossé, 2001). In general, these men reflect the ethnic make-up of Boston in the 1960s (largely White), although they are slightly more likely to have a high school diploma and were mostly married at entry into the study (Spiro and Bossé, 2001).

In 1985, stressful life events were studied using a mail survey (Bossé et al., 1993). This was re-administered in 1988 and 1991. Response rates to NAS mail surveys typically exceed 80%. In 1989, psychosocial measures were included as part of the in-person examination. The stressful life events inventory was included in a packet of materials mailed shortly before the examination, and the men completed the Hassles and Uplifts Questionnaire (DeLongis et al., 1988) on the day of their examination. Completion rates were high: approximately 96% of the men completed these questionnaires (see Aldwin et al., 2011, 2014). On average, men in the sample had about three assessments on both stressful life events (M = 2.71, SD = 1.52, range = 0 to 6) and the hassles intensity measures (M = 2.82, SD = 1.33, range = 0 to 6).

Information on demographics, health behavior habits, and personality was obtained from other mail surveys or interviews conducted at approximately the same time as the initial hassles measures. Information on marital status, self-rated health, and personality was from the 1988 Social Support Survey (Bossé et al., 1993), while education status and alcohol consumption were from a 1986 mail survey (Butcher et al., 1991). Smoking status was assessed at the medical examination interview at the time the first hassle questionnaire was completed.

The present study includes 1293 men who reported having experienced any hassles at least once in 1989 or later. The mean age at the first hassles observation was 65.58, SD = 7.02, range = 53–85. The majority was European American; about two-thirds (60.76%) had some college education and most (88.48%) were married. Half of them (50.18%) were retired and either not working at all or working part-time.

2.2. Measures

2.2.1. Stressful life events

The Elders Life Stress Inventory (ELSI; Aldwin, 1990) is a 30-item dichotomous scale that taps personal and network events which middle-aged and older adults are likely to experience, such as caretaking for a parent or spouse, or divorce of a child. It focuses on events which happened in the past year. The construction of the ELSI utilized a nested strategy — that is, multiple items of increasing severity were organized within a domain (e.g., marital problems, separation from spouse, divorce). The dichotomous version of the ELSI correlates highly (r > 0.90) with an earlier version which included stress ratings (see Aldwin, 1990, for details). The ELSI can be scored in two ways — all 30 items, and a version which omits the two health-related items, which was utilized in this study. Responses have a Poisson distribution (M = 1.59, SD = 1.18), with about 30% reporting no stress at any given assessment (Aldwin et al., 2011).

Aldwin et al. (2011) conducted a semi-parametric mixture-model analysis (Jones et al., 2001; Nagin, 1999) and identified three classes of age-related trajectories in the ELSI, all of which showed decreasing trends and differed primarily in their intercepts (high, medium, and low) and in the rate at which they decreased (see Fig. 1a). The results from this study showed that men in both the medium and high trajectories had increased (~50%) mortality risk, compared to those men in the low trajectory group, covarying neuroticism, demographics, and health behaviors.

2.2.2. Hassles

Hassles intensity scores were derived from the Hassles and Uplifts Scale (HUS; DeLongis et al., 1988). This measure includes 53 items that are rated for the extent to which it has been a hassle in the past month using a 4-point Likert scale (0 = none or not applicable, 1 = somewhat, 2 = quite a bit, and 3 = a great deal). The items are are samples of work, interpersonal, intrapersonal, and environmental stressors. The hassles items can be scored both in terms of exposure (i.e., a simple count of items) and intensity (mean item ratings of items rated over zero). Previous work (Jeong et al., 2012) showed that hassles intensity scores were most likely to be associated with increased mortality risk, so the current study focuses on these. Given that the mean score across all assessments was 1.28 (SD = .27) and the possible maximum value was 3, the sample reported a fairly low level of hassle intensity.

Aldwin et al. (2014) used a semi-parametric mixture-model (Jones et al., 2001) to determine patterns of change of hassles intensity with age. They identified four patterns (see Fig. 1b). Three of the patterns were relatively stable (high, medium, and low), but one pattern showed a shallow U-shaped curve, with hassles intensity decreasing until about age 67 and increasing thereafter. About 70% of the men were in this category. Controlling for personality, demographics, and health behaviors, the men in the non-linear medium and high groups were 1.4 to 2.0 times more likely to die (Jeong et al., 2012).

2.2.3. Mortality

The NAS maintains detailed information on vital status, using several procedures to acquire this information. These include supplemental questionnaires to NAS participants and regular mailings of birthday cards; next of kin and postal authorities typically inform us if the NAS participant is deceased (see Spiro and Bossé, 2001). In addition, the NAS conducts routine checks for death records through the Social Security Administration, as well as the Department of Veterans Affairs, and death certificates are obtained. We examined the vital status of the men between 1990 and 2010.

2.2.4. Covariates

Covariates included education, marital status, self-rated health, and smoking and drinking status. Four categories for education were utilized: 1 = less than high school, 2 = high school or equivalent, 3 =
some college or college degree, and 4 = beyond college. The NAS men are fairly well educated; only 2% did not complete high school, while 37% completed high school. Those who had some college or graduated were the largest group (45%), and 16% had at least some graduate education. In the survival analyses, the reference category was high school education.

Most of the men (88.48%) were married, with very few reporting being divorced, widowed, or never married. Thus, this variable was dichotomized (0 = non-married; 1 = married).

Self-reported health status was assessed using a single Likert scaled item, where 1 = very poor and 5 = excellent. On average, the NAS men rated their health as “good” (M = 4.11; SD = .69).

Health behaviors included alcohol consumption and smoking status. Alcohol consumption status was dichotomized, with 1 = non-drinker (15%), 2 = light/moderate drinker (64%) and 3 = heavy drinker (21%). Because the relationship between alcohol consumption and mortality in the NAS follows an J-shaped curve (DeLabry et al., 1992), light/moderate drinkers were the reference category.

Smoking status was assessed at the first medical exam at which it was assessed. It was dichotomized into: 0 = not currently smoking and 1 = currently smoking (32%).

Neuroticism was measured using the Eysenck Personality Inventory (EPI-Q; Floderus, 1974). The neuroticism subscale consists of nine dichotomous items; if a participant completed 7 or 8 items we multiplied the mean of the valid items by 9. The mean neuroticism score in this sample was 2.95 (SD = 2.22). The reliability of the neuroticism measure with nine dichotomously-scored items was .71, estimated using the Kuder–Richardson Formula 20 (KR20) (Carmines and Zeller, 1979).

2.2.5. Analyses
We used Baron and Kenny’s (1986) procedure to assess mediation effects. First, we established bivariate relations among the predictor variable (i.e. SLE trajectory class) and mortality, the mediating variable (i.e., hassles intensity trajectory class) and mortality, and then between the predictor and mediator variables. We then calculated two Cox proportional hazards models in Stata 13 (StataCorp, 2013). The first model contained the covariates and the life event classes, while the second model added the hassles classes. Note that age was not included in these analyses as a covariate, because the trajectories for both life events and hassles utilized age as the denominator, that is, they measured change in stress by age, effectively including it in the analysis. For the Cox proportional hazard model, we used multiple imputations for handling nonresponse bias (Vinnard et al., 2013). This method imputes missing values with non-missing values in covariates and auxiliary variables and then generates multiple completed datasets. Afterwards, the estimates of a model are pooled from the multiple datasets. In this study, we generated completed datasets. In generating imputed datasets, we added mortality status (0 = alive; 1 = dead) and employment status in 1988 (1 = retired; 2 = retired but worked part-time; 3 = retired but worked full-time; 4 = part-time worker; 5 = full-time worker) as auxiliary variables.

3. Results
Of the 1293 men alive in 1989, 553 (43%) were deceased by 2010. We first present the unadjusted bivariate relationships between these variables, and then the Cox proportional hazards models.

3.1. Bivariate analyses
Mortality varied by both stressful life events (SLE) trajectory classes and hassles intensity trajectory classes. The first half of Table 1 presents the relations among the SLE trajectory classes and mortality. As can be seen, only about a third (36.3%) of those in the low SLE trajectory class had died, while the numbers for the moderate and high SLE trajectory classes were closer to half: 47.9% and 44.9%, respectively. This difference was highly significant, χ²(2, N = 1199) = 13.75, p < .001.

Similar patterns were seen for the hassles intensity trajectory classes. As shown in the bottom half of Table 1, the low hassles class had the lowest mortality rate (28.7%). In the two medium classes, slightly less than half had died, while in the high hassles intensity class, 64.3% had died, χ²(3, N = 1293) = 16.86, p < .001.

We also found a significant relationship between the SLE and hassles intensity trajectory classes, χ²(6, N = 1199) = 56.87, p < .001. As can be seen in Table 2, the majority of the men were in the medium nonlinear class, a confirmed age-related pattern (see Aldwin et al., 2014). However, examining relative differences among the classes was instructive. For example, those in the low SLE class were more likely to be in the low hassles intensity group (20.65%), but only 2% were in the high hassles trajectory group. These two cells contributed the most to the overall chi-square, 18.9 and 12.0, respectively, ps < .001. Similarly, those in the middle stable class were also diversely distributed, with only 4% of the men in this class also in the low SLE trajectory class, while 16% were in the high stable SLE trajectory class. The chi-square contributions for these cells were also relatively high, 8.6 and 10.3, respectively, ps < .01, indicating that they also differed significantly from chance.

Thus, the predictor, mediator, and outcome variables were all correlated with each other, satisfying Baron and Kenny’s (1986) requirements for examining mediation effects.

3.2. Mediation analyses
We computed two Cox proportional hazards models to examine our hypothesis that hassles mediated the effects of SLE on mortality. The first examined the effects of the SLE trajectory classes on mortality, controlling for demographics, health behaviors, and neuroticism. The second model added the hassles trajectory classes. As can be seen in Table 3, most of the covariates were significant predictors of mortality. Having at least some college education, being married, and better self-rated health were protective for mortality, HRs = 0.74

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality by stress trajectory category.</td>
</tr>
<tr>
<td>SLE Trajectory Class</td>
</tr>
<tr>
<td>Low stress</td>
</tr>
<tr>
<td>Moderate stress</td>
</tr>
<tr>
<td>High stress</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>χ²(2, N = 1,199)</td>
</tr>
</tbody>
</table>

Hassles Intensity Class	Yes (%)	Total
Low stable	45 (28.7)	157
Medium stable	47 (46.1)	102
Medium nonlinear	452 (44.3)	1,020
High stable	9 (64.3)	14
Total	553 (42.8)	1,293
χ²(3, N = 1,293)	16.86, p = .001	

Note: SLE = Stressful Life Event.
education, while marriage conferred a 33% mortality benefit. For every increase in self-reported health rating, a 28% decrease in mortality was seen. In contrast, being a non-drinker was associated with a 30% increase in mortality risk, compared to those with consistently heavy drinking. There are some interesting aspects of the data which need to be addressed. First, it is interesting that the SLE and hassles intensity trajectory classes showed similar but nonetheless divergent patterns. As can be seen in Table 2, the percentage of men with low hassles intensity trajectories decreased with the increase in the number of life events, from 21% for the “low–low” to 2% for the “high–low” group. In contrast, the percent of men with moderate hassles intensity quadrupled with increasing life events, from 4% from the “low–medium” group to 16% from the “high–medium.” This supports Pearlin et al.’s (1981) observation of stressors spreading across domains. At higher levels of hassles stress, however, the effect was surprisingly less pronounced. For example, the moderate non-linear hassles intensity class did increase with stress levels, but only from 74% to 82%, while the chronically high hassles showed little relationship with life events. In part, the number of men in this group was too low (n = 14) to draw firm conclusions. Nonetheless, it was interesting that there were no men who had both high levels of life events and high levels of hassles. Perhaps that was because men who have very high levels of stress from multiple sources do not survive into later life. Or perhaps the very high levels of hassles intensity scores reflect ongoing chronic strain, and for men who are overwhelmed, the demands of daily living may be less likely to make major changes in their lives.

The second interesting finding was the nonlinear relation between stress level and mortality. For hassles intensity, the HR doubled from 1.61 to 3.3 going from the medium to the high hassles intensity group. However, this should be interpreted with caution, given the small sample size in the highest group. For the SLE trajectory classes, those in the moderate class were 41% more likely to die than those in the low SLE class, but those in the high class were not significantly different from the low class, contrary to Aldwin et al.’s (2011) findings. This may be due to a couple of possibilities. First, the sample size in this study was smaller, due to the focus on hassles trajectories, dropping from 210 men in the high SLE group in the earlier paper to 136 men in this study, and so we may not have had the power to accurately assess hazard ratios in this group. Further, the HR was reduced to 1.23 while in the earlier study it was 1.49. In the earlier study we examined mortality from 1986 onward, while in this study we tracked mortality from 1990 onward, as hassles were not measured until 1989. Thus, those who had experienced earlier mortality in the high SLE trajectory groups were not included in this study.

There are a number of limitations to this study. First, the sample included only men, most of European-American descent, and results may differ in samples with women and greater ethnic diversity. There is evidence to suggest that there are complex patterns of gender differences in vulnerability to and responses to stress, which may vary by pre- or post-menopausal status in women (Almeida et al., 2011; Prather et al., 2009). Similarly, there are also complex patterns of stress vulnerability and resilience in different ethnic groups, including differences in exposure and reactivity (Jackson et al., 2010; Kean et al., 1996). Thus, it is likely that we have underestimated the effects of stress on mortality that might be seen in a more diverse sample.

In addition, we only tested one potential mediator, hassles, and it is possible that there may be bidirectional relationships. For example, it is possible that high levels of hassles may lead to life events, as when chronic marital role strain results in divorce. However, the relative independence of life events and hassles in predicting mortality suggests that

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Model 1</th>
<th></th>
<th></th>
<th>Model 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
<td>p</td>
<td>HR</td>
<td>95% CI</td>
<td>p</td>
</tr>
<tr>
<td>Below high school</td>
<td>0.89</td>
<td>0.72–1.68</td>
<td>0.163</td>
<td>0.93</td>
<td>0.83–1.09</td>
<td>0.49</td>
</tr>
<tr>
<td>College</td>
<td>0.74</td>
<td>0.60–0.91</td>
<td>0.021</td>
<td>0.74</td>
<td>0.61–0.91</td>
<td>0.59</td>
</tr>
<tr>
<td>Postgrad</td>
<td>0.84</td>
<td>0.64–1.24</td>
<td>0.115</td>
<td>0.83</td>
<td>0.69–1.11</td>
<td>0.09</td>
</tr>
<tr>
<td>Married</td>
<td>0.67</td>
<td>0.50–0.87</td>
<td>0.000</td>
<td>0.68</td>
<td>0.52–0.87</td>
<td>0.086</td>
</tr>
<tr>
<td>Smoking status</td>
<td>0.95</td>
<td>0.79–1.14</td>
<td>0.071</td>
<td>0.97</td>
<td>0.75–1.00</td>
<td>0.017</td>
</tr>
<tr>
<td>Nondrinker</td>
<td>1.30</td>
<td>1.01–1.67</td>
<td>0.065</td>
<td>1.28</td>
<td>0.96–1.72</td>
<td>0.156</td>
</tr>
<tr>
<td>Heavy drinker</td>
<td>1.23</td>
<td>0.99–1.55</td>
<td>0.138</td>
<td>1.23</td>
<td>0.97–1.57</td>
<td>0.155</td>
</tr>
<tr>
<td>Self-rated health</td>
<td>0.72</td>
<td>0.64–0.88</td>
<td>0.000</td>
<td>0.71</td>
<td>0.63–0.87</td>
<td>0.096</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>1.00</td>
<td>0.95–1.04</td>
<td>0.001</td>
<td>0.99</td>
<td>0.79–1.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table 3 Cox regression models predicting mortality (N = 1293).
this may not be of central importance relative to the question we are addressing. The same cannot be said, however, for the issue of causal directionality between stress and mortality. While we did eliminate the health items from the life events scale, the hassles scale did not have any items which were specifically health related. It is possible that those in poor health had more problems with activities of everyday living, resulting in more hassles and higher mortality. However, the fact that we controlled for self-rated health mitigates this possibility.

Further, in any analysis of longitudinal data, there is always a dialectic between including every possible covariate and sample size. While we judiciously used multiple imputation to maintain our sample size, it is possible that different sets of covariates might have altered the results. Understanding the relationships among stress, biomarkers, morbidity and mortality is of particular importance, especially considering biomarkers that are affected by stress, such as cholesterol levels, blood pressure, and inflammatory processes (cf., Juster et al., 2010; Steptoe and Kivimäki, 2013). Rather than covarying out biomarkers, however, we feel it is more important to understand how stress-linked biomarker and changes in these biomarkers may mediate the relationship between stress and mortality, and we are currently exploring this approach.

Nonetheless, we believe that this study is important in that it is the first study to show that stressful life events and hassles have independent effects on mortality. Understanding the long-term patterns of stress over time provides better predictive value than studies which have a single assessment of stress. Future research should address the issue of why these effects are largely independent, perhaps by contrasting their effects on different biomarker pathways.

References

