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Prediction of Forest Attributes with Field Plots, 
Landsat, and a Sample of Lidar Strips: A Case 

Study on the Kenai Peninsula, Alaska 

Jacob L. Strunk, Hallemarlam Temesgen, Hans-Erik Andersen, and ~etterl Packalen 

Abstract 
In this study we demonstrate that sample strips of lidar in 
combination with Landsat can be used to predict forest at­
tributes more precisely than from Landsat alone. While Hdar 
and Landsat can each be used alone in vegetation mapping, 
the cost of wall to wall Jidar may exceed usen;' financial 
resources, and Landsat may not support the desired level of 
prediction precision. Vlle compare fitted linear models and 
k nearest neighbors (kNN) methods to link field measure­
ments, lidar, and Landsat. We also compare 900m2 and 8,100 
m2 resolutions to link lidar to Landsat. An approach with 
Jidar and Landsat together reduced estimates of residual 
variability for biomass by up to 36 percent relative to using 
Landsat alone. Linear models generally performed better 
than kNN approaches, and when linking lidar to Landsat, 
using 8,100 m 2 resolution performed better than 900m2

• 

Introduction 
Studies which demonstrate ways to use lidar in forest in· 
ventory, mapping, and monitoring are now fairly common. 
Investigators have modeled and estimated forest attributes 
(Tonolli et al., 2011; Strunk et al., 2012a) classified forest 
types (Pascual eta]., 2008) species (Kim et al., 2009a; Zhang 
and Qiu, 2012), and condition (Kim et al., 2009b), delineated 
stand boundaries(Sullivan eta!., 2009), and segmented upper 
canopy tree crowns (Hyyppa et al., 2001). These and most 
other studies demonstrate approaches which rely on complete 
lidar coverage for their area of interest (AOI). However, the 
acquisition of lidar for an entire AOI is not always justifiable 
due to high costs, especially for large AOis. 

Recently, interest has increased in approaches to estimate 
forest attributes from a sample of lidar strips (or swaths) (Gre­
goire et al., 2011; Stahl et ol., 2011; Andersen et a!., 2011a). 
Unfortunately, while a sample of lidar strips is less expen­
sive than complete lidar coverage, a sample of lidar strips is 
not directly suited to mapping. To map between the strips 
requires an additional source of auxiliary information. One 
option is to fill in the gaps between lidar strips using lower 
cost reflectance information collected with a passive remote 
sensing technology suc;h as Landsat or aerial photography. 
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The use of lidar with alternate sources of remote sensing 
has also been demonstrated in the literature; although most 
efforts used combined lidar and spectral information when 
both were available for the same areas (Packalen and Mal­
tamo, 2006; Hudak et al., 2006; Popescu et al., 2004). Fit sta­
tistics for models developed in these studies did not appear 
to appreciably improve when spectral information is used in 
addition to lidar. Spectral information can provide improve­
ments in species differentiation over lidar alone (e.g., 0rka 
et al., 2012). There are also examples of studies for which 
lidar was only available for a subset of the AOI, while spectral 
information was available over a broader area. Wulder et al. 
(2007) used Landsat Enhanced Thematic Mapper (ETM+) data 
and successive profiling lidar measurement to study change 
in vertical height over a period of time. Landsat data were 
used to segment the region, and then lidar was used to assign 
height data for the segments in successive lidar acquisitions. 
The authors found this approach to be more effective for de~ 
tecting change than simply differencing the strips. A similar 
approach by Andersen et al. (2011b) used Landsat and polari­
metric SARto classify the landscape with a nearest neighbor 
approach to classify the landscape. Scanning lidar data were 
then used to estimate average biomass for the classes. The 
approach was aimed at estimation (e.g., of the population 
mean or total) rather than prediction (e.g., for mapping). A 
similar approach by Chen and Hay (2011) for a small test area 
compared multiple regression and support vector machines to 
relate characteristics of image segments to lidar data; although 
unlike in Andersen et al. (2011b), the image segments were 
individual tree crowns. 

In a study by Hudak et ol. (2002) simulations were used to 
look at estimation of canopy height from Landsat ETM+ and 
samples of lidar data for different numbers and configurations 
of lidar samples. The authors compared a variety of approach­
es including geo·statistical models and were successful in 
improving the precision of predictions for areas not covered 
with lidar. However, with 2000 m being the greatest distance 
between lidar measurements, it is not clear how well these 
approaches would perform for lower lidar sampling intensities 
(e.g., the sampling intensities used by Andersen (2009), Ander­
sen et ol. (2011a), Gregoire et al. (2011), and Stahl et ol. (2011). 

We consider the modeling approach to be of great impor­
tance in evaluating a prediction strategy, both in terms of per­
formance (precision) and utility. Two common approaches to 
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model forest attributes from remote sensing are ordinary least 
squares (OLS) for linear models (Means et al., 2000; Strunk et 
al., 2012b) and kNN imputation (Maltamo et al., 2006; Pack­
alCn and Maltamo, 2007). Linear models can precisely predict 
(low RMSE relative to variability in the response) a variety of 
continuous forest attributes including basal area (Jensen et 
al., 2006; Means et al., 2000), volume (Nresset, 1997; Lim et 
al., 2003), and biomass (Drake et al., 2003; Hallet al., 2005). 
Nearest neighbor approaches also perform well {low RMSE) 
in the prediction of these variables, and we consider them to 
be much more user friendly and operationally useful because 
they can be used to predict a variety of forest attributes, 
including diameter distributions by species (PackalCn and 
Maltamo, 2008), i.e., required information for most operation­
al forest inventories. 

The objective of this study was to evaluate whether using 
lidar in addition to Landsat for prediction of forest attributes 
(biomass, basal area, and number of trees) could improve the 
precision of forest attribute predictions from Landsat and by 
how much. To investigate our research question, we compared 
multiple strategies to link Landsat to field measurements and 
lidar. V!Je compared both linear models fitted with ordinary 
least squares {OLS) and k nearest neighbors {kNN) as approach­
es to link Landsat to field measurements and lidar; kNN was 
examined using multiple distance metrics. We also examined 
t~vo configuratio~s .to link lidar to Landsat including (a) using 
hdar-based predictions of forest attributes to train Landsat 
models, and (b) relating lidar directly to Landsat and using 
predicted lidar variables as explanatory variables in predic­
tions of forest attributes. Finally, to evaluate the effect of reso­
lution, lidar measUiements were linked to Landsat at both 900 
m2 and at 8,100 m 2• The multiple approaches were evaluated 
according to their estimated residual variability. To enable the 
evaluations we developed an estimator of residual variance 
for predictions from a strategy with more than one model. 

Methods 
Study SHe 
Our study was conducted for the boreal forests located in 
the western lowlands, an area of the 8,200 km2 on the Kenai 
Peninsula in Alaska 
(Figure 1). The extent 
of our study area 
was restricted to the 
portion of the west­
ern lowlands that 
falls within a single 
Landsat image, apw 
proximately 7,400 km2• 

Prevalent forest types 
for this area include 
black spruce (Picea 
mariana, 23 percent 
of measured trees) 

0 10 20 

ranged in height above sea level from 0 to 700 m with the ma­
jority (65 percent) of the AOI falling below 150m. Aside from 
a narrow band on the northern border of the study area, areas 
outside of our study area on the peninsula are dominated by 
the mountains. 

Forest Measurement Data 
Data for this study were collected as part of the US Forest 
Service (USFS) Forest Inventory and Analysis (FIA) annual 
inventory program. The FIA field plots area arranged in a ten­
panel design and that each field plot consisted of four circular 
168 m 2 subplots arranged in a fixed manner with respect to 
distance and orientation from plot center (Bechtold and Pat­
te:son, 2005). Unlike other parts of the country, the system­
atic sample of FIA plots on the Kenai Peninsula has a single 
randomization. The field measurements used in this study 
were collected between 2005 and 2009. Measurements were 
obtained for trees greater than 12.7 em in diameter. For our 
analysis, we used a subset of 32 field plots including 89 sub­
plots (Table 1) from the systematic grid of field plots covering 
o~ AOI. A survey-grade GPS receiver was used to obtain prew 
c1se (less than 0.5 m horizontal RMSE) coordinates for this sub­
set ofFIA plots (Andersen et al., 2009). Tree heigbt, diameter, 
speCies, condition class {live or dead), and above ground live 
biomass from the FIA database were used. Response variables 
included biomass per hectare (bio), basal area per hectare (ba), 
and stems per hectare (stems). Response values were calculatw 
ed from individual tree records and then aggregated for plots. 

TABLE 1. SUMMARY OF RESPONSE DATA foR 80 SUBPLOTS UsED IN ANALYSES 

Wnimum Maximum Mean SD 
Total biomass (bio kg/ha) 0 179,002 35,421 45,572 

Basal area {ba m2/ha) 0 32.9 8.3 9.1 

stems lha 0 1,130 227 242 

Total height (m) 1.5 25.3 12.4 4.7 

DBH (em) 12.9 56.9 20.8 7.1 

-t~J' ·150' -1~o· 

/ 
A relic ,Ocean: 

N 

A 

0 250 500 Kilorl;leters 

in wet lower parts of 
drainages, and mixed 
paper birch (Betula 
papyrifera, 19 percent 
of measured trees), 
white spruce (Picea 
glauco, 47 percent of 
measured trees), and 
quaking aspen (Popu­
lus tremuloides, 10 
percent of measured 
trees) in well drained 
areas. The study area Figure 1. location of study area on the Kenai Peninsula, Alaska 
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lldar 
Airborne discrete-retUin scanning lidar data (lidar) were 
collected in leaf-off condition for the Kenai Peninsula in 
the spring of 2009. Lidar data were collected in a systematic 
sample of strips over the locations of a subset of the grid of 
FIA field plots on the peninsula. The average flying height 
was 1,150 m above ground, the maximum half scan angle 
was 7.5 degrees, the average flying speed was 66 meters/sec, 
and the pulse repetition frequency was approximately 71kHz. 
The flight configuration yielded a nominal pulse density of 4 
pulses I m2

• 

Lidar data consists of a series of records corresponding 
to locations ("returns") where pulses within laser scan lines 
intersected the ground or objects above the ground. We are 
specifically interested in the vertical distribution of lidar 
returns within an area (e.g., a plot) which provide information 
regarding the vertical arrangement of bole wood, branches, and 
foliage. Lidar data were summarized using statistics computed 
on first return lidar heights (these lidar statistics are henceforth 
referred to as "lidar metrics"). Lidar heights are lidar point 
elevations minus ground elevations for the same horizontal 
coordinates. The point data were processed to extract Hdar 
metrics for circles centered on field plot locations \vith 13 m, 
30 m, and 90 m radii. Lidar metrics considered in our analyses 
included height percentiles (e.g., ht

95 
is the 95th percentile lidar 

height computed from all of the first-return lidar heights in the 
plot greater than 1m) and cover ratios (e.g., cover

1 
is the pro­

portion of first returns above 1 m}. Lidar data \Vere processed, 
including identification of ground returns and interpolation 
of a digital terrain model, using the freely-available FUSION 
software (McGaughey, 2012). The extensive list of lidar metrics 
provide by FUSION can be found in the FUSION manual. 

landsat 
Our analyses made use of the historical archive of Landsat TM 
and Landsat ETM+ imagery available from the GLOVIS website 
(http://glovis.usgs.gov/). We selected late spring through early 
fall Landsat images from the years 1984 to 2009. We used only 
images that had cloud-free areas intersecting OUI' AOI. Landsat 
ETM+ images were used from both scan line corrector (SLC) on 
(1999 to 2003), and SLC off (after May 2003) periods. 

Landsat data were used in this study by taking advantage 
of the trajectories of individual pixel values over time. Ide- · 
ally, the value recorded for a Landsat pixel is related to static 
vegetation properties (i.e., properties that are constant over a 
short period, such as a year) for the corresponding location 
on the ground. However, the value recorded for a given pixel 
is influenced by a wide range of factors including phenol-
ogy, atmospheric conditions, solar incidence angle, sensor 
properties, and others. For our purposes, these factors were 
all considered noise. If we assume these souxces of noise are 
random, then for a pixel representing a static ground condi­
tion, we can average values from multiple years to obtain a 
more representative, less noisy pixel value. However, ground 
conditions are rarely static and the average pixel values for 
a given location over time may incorporate temporal noise. 
The LandTrendr process (Kennedy et al., 2010) is an approach 
that empirically accounts for change over time in the predic­
tor variables using piecewise linear regression. This removes 
time as a souxce of variation and makes it possible to aver-
age across pixels in time. We note, however, that modeling 
changes in temporal values in this exercise is just a means to 
an end; our objective is to have a source of expli:J.ilatory infor­
mation with a reduced level of noise. We are·not attempting 
to predict changes in vegetation over time; we are attempt-
ing to eliminate temporal changes as a source of noise in our 
explanatory variables. 

For most parametric modeling strategies, predictions 
near the bounds of the fitting data tend to be less stable than 

PHOTOGRAMMETPJC ENGINEENNG & REMOTE SENSING 

predictions near the center, The same is true of temporal tra­
jectories with Landsat pixels. In our case 1984 and 2009 were 
the bounds of our trajectories. To mitigate this variation we 
used fitted values for 2007 as predictors for our analysis. \rVe 
fitted pixel-based time-series models for Landsat bands 1 to 5, 
and 7, as well as the derivative vegetation indices normalized 
burn ratio (NBR), and normalized difference vegetation index 
(NDVI). Pixel values were interpolated to sample locations 
from surrounding cells by taking the averages of pixels with 
center points within 30 m and 90 m radii. 

A beneficial side-effect of this approach is that we can 
predict cloud-free values for a pixel for any point in the time 
series. This an important benefit given the difficulty in find­
ing cloud-free images in Alaska, the irregularities in ETM+ 
data after May 2003 caused by the failure of an important sen­
sor component, the scan line corrector, for Landsat-7, and the 
failure of the Landsat-5 sensor (November 2011). 

Model Development 
In this study we refer to model development as the process 
of linking response and predictor variables via an empirical 
relationship to enable predictions of response values. In this 
study we make use of both kNN imputation and linear mod­
els fitted with OLS to predict response values from predictor 
variables. kNN imputation (where impute means to substitute 
for a missing value) is a well-known non~ parametric approach 
to link response and predictor variables. In a kNN strategy, 
response values from one to many (k) observations with mea­
sured response values (reference observations) are imputed 
to observations for which only the predictor variables are 
measured (target observations). Selection of a specific group 
of k observations from the reference set, or donors, to impute 
response values to a target observation is based upon the 
distance between the observations in predictor space. For 
all practical purposes the words "impute" and "predict" can 
be treated as synonymous, and henceforth we use the word 
"predict" in place of "impute." 

In preliminary investigations for this study, RlviSEs for kNN 
prediction strategies were largely insensitive to the choice of 
k in the range of three to fifteen neighbors. We arbitrarily set 
k to five neighbors and predicted the value of the response 
value as the inverse distance weighted average of the five 
nearest neighbors. The choice of distance metric plays an 
important role in kNN and has a significant role in perfor­
mance. In this study, we examined four measuxes of dis-
tance for nearest neighbor approaches in this study. The first 
distance approach was Euclidean distance based on normal­
ized predictors (kNN-EU). The second was weighted Euclidean 
distance with weights assigned according to the magnitudes 
of the coefficients when canonical correlation was used to 
relate normalized response and predictor variables (kNN-MSN). 
The third approach was based on distances calculated from a 
random forest proximity matrix (kNN-RF). The fourth approach 
was Mahalanobis distance (kNN-MH). 

Linking Field Plots to Landsat 
Direct and indirect approaches were used to link field mea­
suxements to remote sensing data. In the direct approach, 
Landsat was linked to field measurements with a model: 

(1) 

where x is the matrix of Landsat variables for sample, y is the 
response variable for sample,],(.) is a fitted model relating x 
andy, for example, and 8 is a vector of random noise. 

The model ft was then ~sed with wall-to-wall Landsat to 
predict the response variable for the landscape: 

(2) 

February 2014 3 



\yhere X is the matrix of ~andsat variables for landscape, and 
Y is the predictions from f

1 
for landscape. 

Similarly we directly related the response to lidar for the 
field sample: · 

Y =i,(z) +B, (3) 

where z is the matrix of lidar variables for sample, Y is there­
sponse variable for sample, and8:2 is the vector of random noise. 

However, unlike with Landsat, we only had lidar variables 
for a subset of the landscape (the lidar strips) and thus could 
only directly predict our response for a subset of the landscape: 

(4) 

where Z' is the matrix of Landsat variables for strips, and Y· 
is the predictions from /

2 
for strips. 

Our first of two indirect modeling strategies (I.A) to circum­
vent this limitation was to predict the values of lidar metrics 
for the entire landscape from Landsat. To do this we first 
related our Landsat variables to our lidar variables: 

(5) 

where x· is the matrix of Landsat variables for strips, and 8
3 

is 
the matrix of residuals for lidar variables. 

We then used fs to predict our lidar variables for the land­
scape: 

(6) 

where Z is the matrix of predicted lidar variables for land-
scape. " 

With the predicted matrix Z of lidar variables we used / 2 to 
predict our response for the landscape: 

In the second indirect modeling strategy (I.B), predicted 
forest attributes were modeled with Landsat: 

(7) 

(8) 

where~ is the model relating Y· and X', and 8:
4 

is the vector 
of residuals. 

In this case the Landsat and the predicted forest attributes 
are of matched resolutions, which differJrom the resolution 
of the field measurements. After fitting / 4 we then predicted 
our response variable for the landscape using Landsat: 

y =/.(X). (9) 

The resolution used to relate lidar to Landsat was differ­
ent from the resolution used to relate lidar to the field plots. 
·when we related lidar to our forest attributes from the field 
plot, we used the subplot area which was 168m2• When we 
related lidar to Landsat, we could comfortably use any reso­
lution I)Oarser than 900 m2, and in this study we examined 
900 m2 and 8100 m2, 

Variance Estimation 
Theory 
Part of our modeling effort (indirect models LA and I. B) 
included two steps. Here, we use basic statistical principles 
to develop a variance estimator for this case. We began by 
examining generic model /

1 
used to relate a response variable 

to explanatory variables: 

Y = f, (Z) + e, (10) 

February 2014 

where Z is the matrix of predictor values, Y is the response . 
variable, and 8

1 
is a vector of random noise. 

Predictions from [
1 

can be obtained from explanatory infor­
mation: 

Y = f, (Z') (11) 
= predicted response value for some values z• E Z 
~ y- 81. 

A Second model / 2 described the relationship between our 
predicted response and an alternate set of predictor variables: 

(12) 

where X is the matrix of alternate predictor variables, and 8 2 is 
a second vector of random noise. 

We can see that because / 2 was fitted to predictions of the 
response, we now have two sources of error: 

Y = Y- B= /,(X)+ e, (13f 

Y =/,(X) + e, + e,. 

The variance of Y given X can then be expressed by recog­
nizing that it is the variance of a sum of error terms: 

VlYjZJ = Vle, + e,J = Vle,J + Vle,J + 2 x cov (e,. e,) (14) 

where V{.) is the variance of, and cov (81, 82) is the covariance 
of 8

1 
and 82• 

A variance estimator can be developed from consistent 
estimators for the various components: 

VlYIZl ~ v[e,J + v[e,] + 2 x cov(e,, e,) (15) 

where v[e1] and v[e,J are estimates of Vle,J and Vle,J. cov(e,, 
82) is the estimated covarianc11 of 8

1 
~nd 8

2
, and 8

1 
and 8

2 
are 

residuals from fitted models !, and f,. 
A modification to the described variance estimation strat­

egy was necessary for our first indirect strategy, Equations 5 
through 7, because in Equation 5 we do not have residuals for 
the response variable due to the fact that we were modeling 
lidar metrics with Landsat. For this step the residuals 8

2 
in 

Equation 15 are estimated <!_S the difference between predic­
tions of the response with / 2 from the originallidar values for 
the lidar strips and from the fitted lidar values: 

e, = /,(Z'l - /,(Z'). (16) 

Estimators 
The components of our variance estimators (v{8:

1
], v{8:

2
] and 

cov ( 8
1
,8:)) were estimated using- a leave-k cross-validation 

strategy (not to be confused with k-folds cross validation) for 
field plots. Residuals ·were estimated by omitting entire plots 
(consisting of multiple subplots) at one time. Residual vari­
ance was estimated as: 

1 kN 

cr·'=-L, (Y -Y)' 
e kN cr-1 o o 

(17) 

where 8-ff is the plot observation omitted from model fitting 
procedure, k is the number of observatiQnS omitted in an iter­
ation, N is the number of simulations, ~is the prediction for 
omitted observation (plot), and ¥0 is the observed response 
for omitted observation (plot). 

We opted for a leave-k-out (k > 1) strategy because we 
found that the estimator was more likely to converge to the 
apparent error rate for a small sample than a leave-1-out 
strategy. A leave-k strategy will be increasingly conservatively 

PHOTOGRAMMITRJC ENGINW\1>/G & REMOTE SENSING 



biased for increasing values of k, but the bias will be small for 
small values of k, and will provide an estimator with consid­
erably reduced variance. This was evident when we tracked 
our standard error values for the leave-k-out estimator with 
k = 3. As can be seen in Figure 2, the estimator was highly 
variable for fewer than 200 simulations. Efron and Tibshi­
rani (1993, pp. 148-149) provide some discussion of failure 
from the related jackknife estimator. For a sample with more 
than 200 observations, we could reasonably have used the 
leave-1-out estimator, but since our sample only had 32 plots, 
the sampling distribution of the estimator would have been 
highly variable. 

0 

0 
0 -

0 ~· 0> 

if: 0 

'1 ro 
<~ - 0 :; ,_ 
<~ 

g-

5I -

0 

"' ' ' ' 
0 100 200 300 400 500 

simulations (n) 

Figure 2. Visual diagnostic of convergence relative to number of sim­
ulations for a teave-3-out estimator of residual standard deviation. 

Direct models relating field plot measurements to remote 
sensing data were fitted using the 80 subplots with field mea­
smements, lidar, and Landsat. A slightly larger proportion 
of the landscape was used to relate lidar to Landsat. Using a 
larger number of observations on average improves the perfor­
mance of these models. While the number of values with both 
lidar and Landsat was quite large, to expedite simulations we 
restricted our analyses to a subset of 1,500 locations on the 
Kenai Peninsula with both lidar and Landsat. Calculations 
for each configuration required extensive processing time, 
particularly for approaches involving kNN. We used 1,500 
points because preliminary tests showed that more than 1,500 
observations did not appreciably affect estimates of residual 
variability. The 1,500 points were obtained by distributing 
a systematic grid within the lidar strips. The 1,500 random 
points were in addition to the 80 subplots that had field 
measurements, lidar, and Landsat. Models relating lidar and 
Landsat were developed from all1,500 random points and 
80 subplots, but the residual variability was estimated us-
ing residuals for the 80 subplots; the models were fitted to 
individual subplots, but residual variability was estimated by 
simultaneously omitting all subplots corresponding to a plot. 

Results 
Modeling strategies were evaluated according to their RMSE 
values. The strategies were designated by the sequential 
order of models included in the strategy. For example for an 
indirect strategy kNN-MH OLS indicates a modeling strategy in 
which kNN-MH was used to link lidar to field plots and OLS 
was used to link lidar to Landsat. 
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RMSE values for models directly linking lidar and field 
plots are provided in Table 2. The results are much better 
than models linking field plots to Landsat directly, shown in 
Table 3, which was the expected result. However, the RMSE 
values for lidar serve only as a benchmark for comparison; 
a direct lidar to field plot modeling approach is not a viable 
mapping strategy when lidar is collected as a sample of strips. 
For both lidar and Landsat, OLS models performed better on 
average than alternate model types. KNN-RF performed only 
slightly worse in most cases, and both kNN·RF and kNN-EU per· 
formed better than OLS for numbers of stems/ha for lidar. 

TABLE 2. RMSE VALUES (ANo PERCENT RELATIVE To THE BETWEEN PLOT 

VARIABILITY) FoR DIRECT PREDiCTION STRATEGY WnH ltDAR foR APPROACHES 

UsED To llNK l.JoAR To fiELD PLOTS 

crr.ZP (d~.2p/ dY.SRS x1Q0o/o) 

Models bio kglha (%) ba mz/ha (%} stems/ha (%} 

OLS 21061 (44%) 5.0 (52%} 193 (77%) 

kNN-MSN 23786 (50%) 5.5 (58%) 213 (85%) 

kNN·RF 22395 {47%) 4.9 (52%) 184 (73%) 

kNN·EU 23880 (50%) 5.1 (54%) 177 (70%} 

kNN-MH 28734 (60%) 6.2 (66%) 219 (87%) 

TABLE 3. RMSE VALuEs (AND PERCENT RELATIVE To THE BETWEEN PLOT 

VARIAB!UTY) FoR DIRECT PREDICTION StRATEGY WITH lANDSAT FoR 

APPROACHEs UsED To LINK lANDSAT To F1ao PLOTs 

tJOP (<Jr,zp/ QY,SRS x100o/o} 

Models bio kglha (%) ba m 2/ha (%} stems/ha (%) 

OLS 43115 (92%) 8.4 (90%) 228 (93%) 

kNN-MSN 48344 (104%) 9.3 (100%) 243 (99%) 

kNN-RF 46053 (99%) 8.8 (95%) 233 (94%) 

kNN-EU 48862 (105%) 9.4 (101%) 237 (96%) 

kNN-MH 48663 (104%) 9.2 (100%) 237 (96% 

The performance of the two indirect modeling strategies 
were highly dependent upon whether 900m2 or 8,100 m2 

resolution was used to link lidar and Landsat. For the 900m2 

resolution (Tables 4 and 5) the performance for the first indi­
rect strategy (I.A) was superior to the second (I. B) in terms of 
RMSE for biomass and volume for nearly every modeling con­
figuration. This was especially true for biomass, although the 
poorest performing I.A approaches were exceeded by the best 
I.B approaches. Number of stems/ha at 900m2 resolution was 
the only example in which strategy I.B appears to be generally 
superior. Both I. A and I.B strategies saw improvement from 
using 8,100 m2 resolution data in linking lidar to Landsat, but 
the improvement was minimal for strategy I. B. For strategy I.A, 
improvements were substantial for all three of the response 
variables for several combinations of models. 

Among the RMSE values reported for the various strata· 
gies in Tables 3 through 6, some of the modeling approaches 
consistently performed better than others. KNN-:MH OLS, for 
example, was competitive in nearly every case. The OLS OLS 
approach also generally performed well, and for !.A with 900 
m2 resolution performed the best of any of the strategies ex­
amined. Excluding OLS OLS, it appears that approaches using 
kNN model followed by OLS performed the best for biomass 
{See Table 7). There was no clear difference between these 
two groups for volume, and OLS followed by a kNN approach 
worked best for number of stems!ha. 
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TABLE 4. RMSE VALUES (ANn PERCENT RELATIVE To THE BETWEEN PLOT VARI-

ABILITY) FoR INDIRECT MoDEUNG STRATEGY /.A foR THE APPROACHES USED To LiNK 
FIELD PLOTS To lioAR ANn lANDSAT WHEN lmAR ANo lANDSAT WERE LINKED AT 

900M 2 RESOLUUON 

ae,JP (0c,3PI OY,SRS x10D%) 

1rfode1s bio kg/Ita(%) ba m21ha (%) stcms/ha (%) 

OLSOLS 38288 (80%) 7.8 (82%) 229 (91%) 

OLSkNN-MSN 43630 (91%) 8.6 (91%) 241 (96%) 

OLS kNN-RF 41474 (86%) 8.3 (88%) 238 (94%) 

OLSkNN-EU 42183 (88%) 8.2 (87%) 234 (93%) 

OLSkNN-MH 45084 (94%) 8.9 (94%) 249 (99%) 

kNN-MSNOLS 39587 (82%) 8.8 (93%) 302 (120%) 

kNN-RFOLS 37357 (78%) 8.0 (85%) 268 (106%) 

kNN-EUOLS 33652 (70'h) 7.6 {81%) 258 (103%) 

kNN-MHOLS 33161 (69%) 7.8 (83%) 295 (117%) 

TABLE 5. RMSE VALUES (AND PERCENT RELATIVE To THE BETWEEN PLOT VARI­

ABILITY) FoR INDIRECT MoDEUNG STRATEGY /.8 FoR THE APPROACHES USED To LINK 
FIELD PLOTS To LlDAR ANn lANDSAT WHEN LDAR ANn lANDSAT WEllE IJNKED AT 

900 M 2 RESOLlJTION 

<Jc.3P (Q-c,JP/ al'.SRS xlOO%) 

Models bio kg/ha (%) ba m21ha (%) stemslha (%) 

OLSOLS 43159 (90%) 8.3 (88%) 222 (88%) 

OLSkNN-MSN 43742 (91%) 8.7 (92%) 222 (88%) 

OLSkNN-RF 46336 (97%) 9.2 (98%) 227 (90%) 

OLSkNN-EU 46112 (96,o/o) 9.2 (97%) 226 (90%) 

OLSkNN-MH 45582 (95%) 9.1 (96%) 221 (88%) 

kNN-MSNOLS 45264 (94%) 9.3 (98%) 259 (103%) 

kNN-RF OLS 44800 (93%) 8.6 (91%) 216 (86%) 

kNN-EUOLS 44053 (92%) 8.7 (92%) 221 (88%) 

kNN-MHOLS 39764 (83%) 8.3 (87%) 249 (99%) 

TABLE 6. RMSE VALUEs (AND PERCENT RELATJVE To THE BETWEEN PLOT VARI-

ABIUTY) FoR INDIRECT MooEUNG STRATEGY 1.8 WHEN LmAR AND lANDSAT WERE 

LiNKED Ar 8,100 M2 REsoLUTioN 

ae.lP {0:c,3Pf UY,SRS X100%} 

Models bio kg/ha (%) ba m2/ha (%) stems lha (%) 

OLSOLS 28538 (59%) 6.1 (64%) 203 (81%) 

OLS kNN-MSN 35550 (74%) 7.3 (77%) 213 (85%) 

OLSkNN-RF 36543 (76%) 7.5 (79%) 217 (86%) 

OLSkNN-EU 37144 (77%) 7.8 (82%) 222 (88%) 

OLSkNN-MH 37347 (78%) 7.8 (82%) 215 (85%) 

kNN-MSN OLS 30960 (65%) 7.5 (79%) 258 (103%) 

kNN-RFOLS 31044 (65%) 7.1 (75%) 243 (97%) 

kNN-EUOLS 29562 (62%) 6.8 (72%) 244 (97%) 

kNN-MHOLS 29358 (61%) 6.3 (67%) 238 (95%) 
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TABLE 7. RMSE VALuEs (AND PERCENT RELAnvE To THE BETWEEN PLOT VARI· 

ABIUTY) FOR INDIRECT MODELING STRATEGY 1.8 FOR THE APPROACHES USED To LiNK 

FIELD PLOTS To LmAA ANn lANDSAT WHEN LmAR AND lANDSAT WERE LINKED AT 

8,100 M2 REsoLunoN 

0,_3p (0.,.Jp/ 0Y$RS x100%) 

Models bio kglh.a (%) ba m2/ha (%) stemsO/ha (%) 

OLSOLS 35017 (73%) 7,7 (81%) 218 (87%) 

OLSkNN-MSN 39583 (82%) 8.3 (88%) 224 (89%) 

OLSkNN-RF 42257 (88%) 8,8 (93%) 224 (89%) 

OLSkNN-EU 42409 (88%) 8.8 (93%) 224 (89%) 

OLSkNN-MH 41174 (86%) 8.6 (91%) 230 (91%) 

kNN-MSNOLS 38191 (80%) 8.6 (91%) 251 (100%} 

kNN-RFOLS 37894 (79%f 7,9 (84%) 231 (92%) 

kNN-EU OLS 35129 (73%) 7,5 (79%) 209 (83%) 

kNN-MHOLS 36697 (76%) 8.2 (87%) 264 (105%) 

Discussion 
Muitl·ievei Modeling Strategies 
We examined both direct and indirect strategies to link 
Landsat to field measured attributes. The direct strategy with 
plot and Landsat data had the poorest performance; our later 
analyses of 900m2 and 8,100 m2 resolutions suggest that plot 
size played a role. Our findings also suggest that a direct 
Landsat approach would be more successful with a larger 
number of plots. Conceivably, if the area covered by four 
subplots per FIA plot were consolidated into a single larger 
plot, the performance of Landsat models would be improved 
for the forest attributes examined herein. However, such a 
plot design would provide less information about variables 
not effectively modeled with lidar, and in many cases large 
Landsat-optimized plot designs (e.g., 8,100 m2 in area) would 
either not be affordable or compatible with existing designs. 
Lidar provides an opportunity to help bridge the gap between 
field plots and Landsat in such cases; FIA plots are an example 
of a design that will continue to benefit from the use of lidar 
to bridge the gap. This was especially true for our study area 
where a lidar strip can be substantially less expensive than a 
field plot. If performance can be improved for variables asso­
ciated with forest structure by leveraging lidar, then it may be 
possible to devote more energy to measuring variables which 
are more difficult to predict with remote sensing. 

Our analyses also showed that the first indirect modeling 
strategy (LA) appeared to perform better, on average, than the 
second (I. B), but that there was wide variation in performance 
depending on which type of model was used to link the vari­
ous layers of data. Prediction performance for indirect strate­
gies also improved when we used larger areas to relate lidar 
to Landsat; although the degree of improvement also varied 
considerably depending upon the types of models used. The 
best overall performance was seen with modeling strategy I.A 
for 8,100 m2 resolution in which linear models fit with OLS 
were used to link field plots and remote sensing. The pel"' 
formance of this approach may further improve in instances 
where coarser resolutions are used to relate lidar and Landsat 
because the proportion of overlapping areas between lidar 
and Landsat would increase, reducing the impacts of edge ef­
fects, registration errors, and noise. 

limitations 
There \vere a variety of limitations in our study with respect 
to the training dataset which restricted our ability to explore 
different modeling scenarios. As a result, the findings we 
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present here are certainly not the last word on the issues 
explored in this study, even for our study area. For example, 
many of our field measurements were not collected simulta~ 
neously with the lidar data. Field measurements spanned a 
five year period, while lidar data were collected in 2009, the 
fifth year of field data collection. Furthermore, the number 
of training observations was small, and the size of subplots 
was quite small. As a result, we cannot speculate on the 
performance of our approach under ideal conditions. How~ 
ever, given that we were able to explain more variability with· 
indirect approaches than with a direct approach with Land~ 
sat; our results still indicate that using lidar to scale up the 
plot data to the resolution of the Landsat data is a promising 
approach. This is especially the case if a lidar strip sampling 
approach is already in place or under consideration for esti~ 
mation purposes. 

A second limitation which has been suggested is th'at we 
do not attempt to separate the effect of within~plot variabil­
ity from improved model performance when we compare 
models developed at different resolutions. In alternate cases 
this could be problematic because variability between plots 
will decline as variability within plots increases. For single 
circular plots, as the area of the plots increases the variability 
between plots will decrease. However, an advantage of the 
FIA plot design is that while the total area of the subplots is 
approximately 670m2, the subplots sample spatial variabil­
ity for a much larger 6,000 m2 area. Since our validation was 
performed using FIA plots consisting of multiple subplots, the 
resolutions considered are of limited concern. 

Multi-temporal Landsat 
We were able to make use of the freely-available Landsat 
archive to generate atmospherically corrected, cloud-free, and 
temporally normalized Landsat values. The temporal signal 
enabled us to identify and remove variability in the sensed 
values for a particular pixel location for a particular spectral 
band which are not associated with changes in the associ­
ated vegetative structure. However, this could be considered 
an under-utilization of this resource, and we envision greater 
success in the prediction of forest attributes if the trend 
information, such as intercept for the trend, or the slope or 
information about large perturbations are taken into consid­
eration as described in Meigs et al. (2011), Kennedy et al. 
(2007), Powell et al. (2010), and Pflugmacher (2011). At this 
time we have insufficient information to determine whether 
LandTrendr data for image processing improved the perfor­
mance for cloud-free pixels, but since there are no recent 
Landsat images available for the Kenai Peninsula that are 100 
percent cloud free, we can say that we were able to develop 
predictions for all areas on the peninsula which would not be 
possible \vith a single image. In the future we plan to quantify 
any gains made by using this approach for cloud-free pixels, 
as well as the potential gains made using a more sophisticated 
interpretation of Landsat time-series information for indi­
vidual pixels, 

Conclusions 
Using lidar strips as a sample can be an efficient strategy 
to leverage the forest structure information measured by 
lidar, while collecting the data for a reduced cost relative 
to a complete area collection, This strategy is chiefly aimed 
at point estimation (e.g., total biomass for an area), but we 
demonstrate in this study that lidar strips can also be use-
ful in training coarser resolution Landsat data for prediction 
of forest attributes including biomass, volume, and trees per 
hectare. We explored a number of approaches and found that 
linking plot data to lidar and lidar to Landsat in separate steps 
before predicting forest attributes vvith Landsat improved 
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the precision of predictions {lower RlvtSE). We also found that 
using 8,100 m2 resolution to link lidar to Landsat performed 
better than with 900 m2 resolution. Moving to an even larger 
area for linking lidar to Landsat may also prove beneficial. 

While we performed our analyses only for a sample of 
locations on the peninsula in our exploratory investigations, 
the use of Landsat-derived layers enables predictions across 
the entire AOI. 
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