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Abstract

An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and 
progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, 
with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation 
of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple 
chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and 
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discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling 
pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-
1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals 
that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), 
herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and 
bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals 
are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist 
in the environment and appear to have some potential interfere with the host immune response, therefore potentially 
contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and 
progression.

Introduction
Individuals are routinely exposed to various combinations 
of chemicals at low doses; however, the combined, long-term 
effects of such exposures on human health remain unclear. The 
non-governmental and not-for-profit organization known as 
‘Getting to Know Cancer’ (www.gettingtoknowcancer.org) solic-
ited and then selected teams of scientists to review the possi-
bility and consider the hypothesis that chemicals common in 
the anthropogenic environment chemicals may contribute to 
human carcinogenesis, even though they are not considered 
human carcinogens by the International Agency for Research on 
Cancer (IARC). An overarching framework of this analysis was 
a review of environmental chemical carcinogenesis, with spe-
cific points of focus on one of the individual characteristics of 
cancer cells widely recognized by modern cancer scientists as 
one of the ‘hallmarks of cancer’ (1,2). Although each of the indi-
vidual hallmarks is reviewed in companion reviews by scientist 
with expertise in each hallmark, this specific review is focused 
on the more recently recognized emerging hallmark of cancer 
‘immune evasion mechanisms of carcinogenesis’ (2) and the 
potential interactions of these mechanisms with environmental 
chemicals.

The ‘hallmarks of cancer’ originally described in a seminal 
publication by Hanahan et al. (1) included sustained proliferative 
signaling, evasion of suppressed growth, activation of invasion 
and metastasis, enabling replicative immortality, induction of 
angiogenesis, resistance to cell death and underlying genomic 
instability and inflammation. Of note, immune evasion was 
not listed among these original ‘hallmarks’; however, Hanahan 
et al. (2) recognized that tumor evasion from immune system 
recognition and destruction is an emerging hallmark of cancer 
in their most recent update. These changes have occurred as 
observational data from genetically engineered mice to clini-
cal epidemiology studies suggested that the ‘immune system 
operates as a significant barrier to tumor formation and pro-
gression, at least in some forms of non-viral induced cancer’ 
(2). Consequently, multiple chemicals from the anthropogenic 
environment may contribute to carcinogenesis through this 
mechanism.

In part, because this element of carcinogenesis has been only 
recently widely recognized, there is a paucity of data in animal 
models, in human cell model systems and in clinical studies 
that are related to putative associations between the immune 
response to tumor cells and exposures to various chemicals 
from the anthropogenic environment. Nonetheless, the spe-
cific assessment of environmental exposures that might affect 
immunosurveillance faces many challenges, so this is a relatively 
new area of research. For example, we cannot currently list the 
precise chemicals that affect immune evasion mechanisms due 
to an insufficient knowledge base in this relatively novel field. 
Consequently, additional investigations will be needed to dem-
onstrate the impact of environmental chemical exposures on 
the immune system to better understand whether or not it can 
be compromised or dysregulated with a subsequent loss of an 
effective tumor immunosurveillance network. Nonetheless, this 
review is an opportunity to recognize and discuss this knowl-
edge gap. In this review, we discuss a number of environmental 
chemicals of interest based on reports of their potential inter-
actions with the mechanisms involved in immunosurveillance.

Overview of immune evasion as a hallmark 
of cancer: immunologic perspective and 
mechanisms
Since the late 19th century, rare spontaneous tumor regressions 
were noted in patients following episodes of infection, which 
suggested that immune response could inhibit or modify the 
behavior of cancers (3). However, early attempts at treating 
cancer patients by simply giving them bacterial extracts failed 
because the nature and role of host immunity in cancer remis-
sion was not well understood, and a simplistic view that a ‘toxic 
factor’ contained in the bacterial extracts was the one that pre-
vailed (4–10). The more sophisticated concept of tumor immune 
surveillance was introduced in the mid-20th century (11,12) as 
the host immune system was characterized as capable of both 
recognizing and responding to nascent transformed cells in an 
organism and destroying them. Later, molecular mechanisms of 
antigen processing and presentation and the role of the major 
histocompatibility complex in this process were discovered 
(13), with the realization that a variety of tumor-associated 
and tumor-specific antigens contained within membrane and 
intracellular compartments of tumor cells could serve as targets 
of the immune system. More recently, it has been recognized 
that the presence of antigen alone is insufficient to generate a 
potent immune response, and activation by costimulatory mol-
ecules may also be required for effective immune stimulation 
(14). Finally, potent immunomodulatory checkpoints, both at 
the activation phase and the effector phase, have been recog-
nized, and therapeutic blockade of the checkpoints has resulted 
in dramatic antitumor responses in clinical studies, creating a 

Abbreviations 

CCL  chemokine C–C motif ligand
DC dendritic cell
DEHP diethylhexylphthalate 
EPA Environmental Protection Agency 
IARC International Agency for Research on Cancer 
IL  interleukin 
NK  natural killer 
TGF-β  transforming growth factor-beta
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new era of enthusiasm for immune-based therapies targeting 
cancer (15–20).

A number of clinical observations have also supported the 
evidence for intrinsic immunosurveillance of tumors. For exam-
ple, in immunodeficient patients with advanced human immu-
nodeficiency virus infection with low levels of circulating CD4+ 
T cells often developed malignancies known to be associated 
with viral infections (e.g. Kaposi’s sarcoma, non-Hodgkin’s lym-
phoma, invasive cervical carcinoma and anal cancer) (21,22) and 
also with some non-viral etiologies (e.g. increased risk of lung 
cancer after adjusting for smoking status) (23,24). An important 
role of T cells in preventing recurrent leukemia following allo-
geneic bone marrow transplantation was also reported (25,26). 
Other observations have been less profound; nonetheless, a low 
natural killer (NK) cell activity has been reported in patients 
with breast cancer that had a family history of this tumor and 
in their first-degree relatives that were clinically asymptomatic 
(27). Recent clinical studies also supported the existence of an 
antitumoral immune response in cancer patients (28–30) and an 
important role of cytotoxic T cells (CTLs) and NK cells in this 
process (30,31). These findings are complemented by the devel-
opment of cancer vaccines and studies of new combination of 
these with immunological inhibitory checkpoints (17–20). This 
combination of data has resulted in a contemporary view of 
cancer as a disorder of cell growth, survival and movement, with 
a major facilitator of that progression being disruption and dys-
regulation of the immune response (32).

In trying to characterize the immune response to tumors, 
it must be understood that both innate and adaptive immuni-
ties participate in the control of tumor cell death and survival. 
Innate response typically used germ line-encoded receptors to 
respond to highly conserved structural motif found on patho-
gens, whereas adaptive responses rely on specialized under-
going specific somatic mutations to generate highly specific, 
high-affinity immunologic receptors such as T-cell receptors 
and immunoglobulins that can be highly specific to pathogens 
and generate immunologic memory. Highly specialized and pro-
fessional antigen-presenting cells, termed dendritic cells (DCs), 
play a central role in activation of the adaptive immune response 
and the highly efficient eradication of tumor cells. DCs do this 
by taking up foreign antigens, becoming activated by appropri-
ate costimulation and migrating to lymphoid organs to present 
their antigenic payload to adaptive immune cells (33–36).

Although the recognized immunomodulatory elements can 
modify this adaptive response to the tumor, additional meth-
ods of immune escape can occur due to specific behavior of the 
tumor cells. For example, an effective antigen-specific immune 
response may lead to epigenetic changes within the tumor that 
can result in loss of expression of tumor antigens. This process 
represents a form of tumor escape from the host’s immune con-
trol mechanisms (37,38). In addition, the malignant cells are 
advantage if they can create a microenvironment that creates 
poor conditions to stimulate T cells or poor conditions for the 
function of tumor-specific cytotoxic T cells (39).

The molecular mechanisms of evading host immunity have 
become increasingly clear and include a variety of strategies such 
as (i) loss of antigen processing and presentation via downregu-
lation of surface molecule expression (e.g. low-affinity T cells 
recognizing tumor-associated antigens), (ii) modulation of the 
systemic immune response by production of immunosuppres-
sive cytokines and other factors (e.g. tumor-induced immune 
suppression) and (iii) tumor escape and relapse under immune 
pressure by recruiting immunosuppressive cells into the tumor 
microenvironment (39–43). Among the tumor-released soluble 

factors and cytokines that can augment the normal immune 
response are tumor necrosis factor-alpha (44), small molecules 
of prostaglandin E2, histamine and epinephrine (45). In addi-
tion, tumor release of indoleamine 2,3-dioxygenases (46,47), 
arginase I (48), tumor-associated gangliosides (49–51), interleu-
kin (IL)-10 (52–56), transforming growth factor-beta (TGF-β) (57) 
and granulocyte-macrophage colony-stimulating factor (58) are 
also detected. Moreover, tumor microenvironments that favor 
chronic inflammation enable a population of tumor cells to 
escape from antitumor immunity, thus supporting carcinogenic 
progression (33,59,60).

Recent transplantation experiments showed that cancer 
cells that had originated in immunodeficient animals were 
often unable to initiate secondary tumors in syngeneic immu-
nocompetent hosts. In contrast, cancer cells from tumors that 
originated in immunocompetent animals could initiate tumors 
when adoptively transferred in both immunocompetent and 
immunodeficient mice (61,62). These observations suggest the 
existence of tumor ‘immunoediting’, which is a form of tumor 
escape. This means that when highly immunogenic cancer cells 
are eliminated by immunocompetent hosts, weakly immuno-
genic cancer cells can escape host immunity with a capacity 
to form tumors in both immunodeficient and immunocom-
petent hosts, thus conferring immunological protection of the 
tumor cells from immunological detection and destruction 
(2,63). Another broader process, i.e. ‘immunosculpting’, includes 
immune-mediated changes in the tumor including amino acid 
substitutions in key antigenic proteins that can promote func-
tional cellular reprogramming (e.g. epithelial to mesenchymal 
transition) with both mutations and non-permanent cytokine 
production (64).

Environmental exposures to chemicals and 
immune evasion mechanisms
As part of the ‘Halifax Project’ initiative that was instigated 
by the Getting to Know Cancer, we selected chemicals based 
on preestablished criteria that were provided to each team. 
Specifically, we were tasked to identify ‘prototypical’ chemi-
cals with disruptive potential that are common in anthro-
pogenic environment but not known as established human 
carcinogens (i.e. not IARC class 1 carcinogens). We also looked 
for chemicals that may potentially target the genes/pathways 
related to an immune evasion hallmark of cancer (Table  1). 
The objective of this review is to discuss possible pathways 
that could be involved in the modulation of immunosurveil-
lance rather than to provide a full toxicological evaluation of 
the chemicals.

It is now understood that exposure to many naturally occur-
ring and anthropogenic chemicals can influence the initiation 
and/or progression of tumors in animals and humans (97). In 
addition to genotoxic and/or epigenetic mechanisms of this 
process that are now well established, immunotoxic and immu-
nomodulatory effects can be considered (97,98). Immunotoxicity 
can be defined as any modulation (activation, suppression or 
deviation) of immune responses by chemicals that cannot be 
related to the infection with a certain type of the pathogen (99). 
For some chemicals, significant immune effects occur at doses 
that are below those where acute cellular toxicity is observed 
(100–103). Most of in vivo immunological experiments are usu-
ally performed on healthy adult animals. However, immunotoxic 
effects may change when the immune system is compromised 
due to existing disease or when immune system is not yet fully 
developed (i.e. in young individuals) (104–106).
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In fact, the concordance between immunotoxicity and car-
cinogenicity of chemical compounds can be as high as 81% 
(P = 0.019), suggesting that immunotoxic chemicals may also be 
carcinogenic (107–109). Thus, the following can be postulated: 
(i) if a chemical is immunotoxic and it modulates innate and 
adaptive cell-mediated immunity, then that chemical could 
affect immunosurveillance; (ii) if the effect of a chemical on 
the immune system is independent of its genotoxic/epige-
netic effects, that chemical could increase cancer risk alone by 
impacting changes induced by other factors and/or exposures; 
(iii) exposures to chemicals that dramatically increase the num-
ber of tumor cells can overwhelm immune surveillance and (iv) 
a compromised immunity may be inefficient in managing the 
development and progression of tumor cells. This would permit 
greater likelihood of tumor cells escaping host immunity and 
establishing a malignant condition.

A number of chemicals with immunotoxic potential have 
been identified in previous studies and shown to increase the 
risk of cancer for exposed individuals. For example, perfluori-
nated compounds, polychlorinated biphenyls and organochlo-
rine pesticides might increase cancer risk, especially among 
individuals that have genetic polymorphisms associated with 
metabolism of those compounds (110–113). Others have shown 
that maternal and perinatal exposures to pesticides were asso-
ciated with increased risk of lymphoma later in life (114,115). 
Factors other than exposures to chemicals from anthropogenic 
environment can potentially interfere with the relationships 
between chemical compounds and the host immune response 
and might thus modify the risk of tumor development and pro-
gression. An example of such a modifying factor is the immune 
status of the organism at the time of chemical exposure. Animal 
studies showed that an immunocompromised status was asso-
ciated with a higher risk of spontaneous and chemically induced 
tumors (60,116–122). And chemically induced immunosuppres-
sion might impact the ability of an animal to reject cancer cells, 
depending on the severity of immunosuppression (109) and the 
type of defect (e.g. defects in both NK and T-cell functional activ-
ity) (61,62).

However, information on the role of coexisting immunosup-
pression, relative susceptibility to chemical exposures and their 
effects on malignant risk are sparse for human. Clinical observa-
tions of human immunodeficiency virus-infected patients and 
organ transplant recipients that had displayed increased risk of 
malignant development or transformation are consistent with 
the role of immunosurveillance in carcinogenesis (123–130). 
These observations led to the hypothesis that immunodeficient 
or immunosuppressed individuals might have a higher risk 
of tumor development when exposed to chemicals that affect 
immune responsiveness compared with immunocompetent 
individuals.

On an individual level, many disparate factors influence the 
capacity of any particular compound to affect host immunity. 
These include genetic variability in the capacity to metabo-
lize chemicals, coexisting immunosuppressive conditions (e.g. 
human immunodeficiency virus-infected individuals or patients 
receiving immune-suppressive medications), the age of an indi-
vidual on exposure to the chemical (e.g. in utero, in children, in 
adults), differential dose, route and duration of exposure and 
the frequency of exposure (131,132). But if a sufficiently large 
population (i.e. number of people) is exposed to certain environ-
mental chemicals, even the most modest impacts on immuno-
surveillance competence might increase the risk of disease (e.g. 
cancer) at the population level (133). Chemical compounds can 
affect the immune response through different pathways. For 

example, certain endocrine-disrupting chemicals can increase 
breast cancer risk through genes that are involved in estrogen-
dependent induction of immune evasion, including estrogen 
receptor-mediated genes (EGR3) (134).

Polycyclic aromatic hydrocarbons inhibit differentiation and 
maturation of DCs (135). Moreover, phytoestrogens, phthalates, 
bisphenol A, parabens and various pesticides, herbicides and 
fungicides accumulate in human tissues and in wildlife, thus 
increasing the time of exposure. For example, atrazine, which 
is a widely used broad-spectrum chloro-s-triazine herbicide, 
impacts the maturation of DCs (136,137) and decreases expres-
sion levels of major histocompatibility complex class  I  (138). 
Moreover, atrazine persists in the soil and surface water for sev-
eral months (139–142) and its effects on the immune system can 
persist long after initial exposure (143,144).

In addition to the complicating impact of bioaccumulation, 
the non-monotonic dose response to these chemicals makes 
evaluation of the health impacts of such chemicals even more 
challenging (145). Since the effects seen at high doses of expo-
sure cannot be used for extrapolations into the low-dose range, 
direct low-dose testing is required to evaluate the effects. In the 
risk assessment procedure, the low-dose effects are observed 
at the doses near the lower end of the dose–response curve. 
The low-dose estimates for each chemical are based on vari-
ous parameters of dose–response analysis, including the refer-
ence dose, which is an estimate (with uncertainty that can span 
an order of magnitude) of a daily oral exposure to the human 
population, including susceptible populations, which is likely 
to be without an appreciable risk of deleterious effects dur-
ing a lifetime. The reference dose is generally derived from the 
no observed adverse effect level or lowest observed adverse 
effect level. Both the no observed adverse effect level and low-
est observed adverse effect level are two commonly used toxi-
cological endpoints (146) (presented in Table  4). Generally, the 
reference dose is used in the U.S. Environmental Protection 
Agency’s (EPA) non-cancer health assessments. Additionally, the 
no observed adverse effect level is a concentration of a chemi-
cal or compound that is associated with no observed adverse 
effects in tested organisms, and the lowest observed adverse 
effect level is a concentration of a chemical or compound that 
is associated with the lowest observed level of adverse effects in 
test organisms.

In a recent study, the low-dose effects have been observed 
in chemicals from a number of classes, with the affected health 
endpoints covering a large range of targets (147): for example, 
the low-dose cutoff for atrazine was 200 μg/l (for male sexual 
differentiation/development endpoint), for bisphenol A 400 μg/
kg/day (for immune system, prostate, mammary gland, brain 
development, reproduction and metabolism), for maneb 5 mg/
kg/day (for testosterone release) and for triclosan 12 mg/kg/day 
(for altered uterine responses to ethinyl estradiol). However, it is 
a challenging task to identify the levels of chemicals that could 
be considered ‘low dose’ and have no adverse effects on human 
health because multiple factors and conditions could influence 
such low-dose exposures. Additionally, individuals are exposed 
to many environmental chemicals over the lifetime, along with 
other stressors and anthropogenic exposures in a cumulative 
manner (referred to as the ‘human exposome’), so the evaluation 
of the health effects that result from multiple acute, subacute, 
chronic and subchronic occupational and non-occupational 
exposures remains a significant challenge (148,149).

Another factor that makes chemical exposure studies in car-
cinogenesis challenging is the latency period. This is because 
the moment of exposure that is required for cancer initiation 
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and the development of a tumor (or the latency period) vary 
from ~7 to 35 years, depending on the cancer type, specific organ 
and tissue site and the grade of the tumor. For example, the 
shortest latency is often observed in the settings of pancreatic 
and cervical cancer, and the longest latency is seen in the set-
tings of prostate and grade I breast cancer (150,151). Moreover, 
when multiple chemical compounds act synergistically, the 
effects can occur at much lower doses compared with the dose 
at which a single chemical exposure might exert a detectable 
health effect in human subjects.

The National Report on Human Exposure to Environmental 
Chemicals (152–154) provides some information on population 
heterogeneity by the level of bioaccumulation and excretion of 
various compounds (155). For instance, ~5% of the U.S. popula-
tion have 3–10 times higher concentrations of certain chemicals 
in their blood, serum or urine that might be explained by either 
higher exposures and/or altered individual metabolic capac-
ity. Examples of such compounds that demonstrate a highly 
heterogeneous distribution in a population include benzophe-
none-3 (used as a sunscreen in lotions, conditioners, cosmetics 
and in plastic surface coatings) and triclosan (2,4,4′-trichloro-
2′-hydroxyphenyl ether, which is a preservative and antiseptic 
agent used in soaps, toothpastes, mouthwashes, acne medica-
tions, deodorants, kitchen utensils, toys and medical devices). 
Other examples are pesticide metabolites including 2,4- and 
2,5-dichlorophenols, phytoestrogens (e.g. daidzein, genistein 
and O-desmethylangolensin that are present in soy-based 
foods) and butyl parabens (used as preservative and food and 
pharmaceutical industry flavoring additives as well as in per-
sonal care and cosmetic products). Additional examples include 
ethyl paraben (an antifungal preservative also known as food 
additive E214) and n-propyl paraben (used as a preservative in 
water-based cosmetics and as food additive E216), metabolites 
of pesticides [e.g. the cypermethrin-related chemicals cis-3-(2,2-
dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid and 
3-phenoxybenzoic acid], metabolites of organophosphorus (e.g. 
dimethylphosphate, dimethylthiophosphate and dimethyldithi-
ophosphate) and organochlorine insecticides (e.g. 2,4,5-trichlo-
rophenol, which is also used as a wood preservative and for 
chlorinating drinking water). Other compounds that display a 
highly heterogeneous population distribution include dibromo-
chloromethane (a disinfection by-product in drinking water and 
swimming pools), 2,2′,4,4′,5-pentabromodiphenyl ether (a fire 
retardant), phthalate metabolites like mono-ethylphthalate and 
mono-2-ethylhexyl phthalate (that are used as plasticizers in 
adhesives, detergents, solvents, vinyl tiles and flooring, personal 
care products, plastic bags, intravenous injection medical tub-
ing and children’s toys). Finally, 1-hydroxynaphthalene (1-naph-
thol), which is a metabolite of carbaryl, is used in plasticizers, 
dyes, synthetic leather tanning chemicals and in moth repel-
lents. It also displays heterogeneity in bioaccumulation and 
excretion studies in the U.S. population (155).

Note that compared with currently unrecognized human 
carcinogenic chemicals, bioaccumulation and excretion of com-
pounds that are already recognized as human carcinogens (155) 
appear to be less heterogeneous in the U.S.  population. This 
allows one to hypothesize that known carcinogenic compounds 
may have more unified bioaccumulation and excretion pat-
terns in the population, which also assists in recognizing them 
already as carcinogens.

The U.S. EPA’s ToxCast program (http://www.epa.gov/ncct/
toxcast/) and the Tox21 collaboration (http://www.epa.gov/ncct/
Tox21/) with the National Toxicology Program and National 
Institutes of Health Chemical Genomics Center have reported 

a large number of in vitro high-throughput screening assays and 
high-content screening information for numerous environmen-
tal chemicals (156,157). One important focus of ToxCast is the 
measurement of chemically induced perturbation of critical cel-
lular signaling pathways that may represent potential modes of 
chemical toxicity (158).

In vivo animal model studies have suggested the following 
genes with the highest odds ratios for the potential disruption 
of immunosurveillance: receptor designated opioid receptor-
like 1 (for thyroid tumor), chemokine C–C motif ligand 2 (CCL2; 
for spleen and liver tumors) and IL-1α, interferon-γ-inducible 
9-kd (CXCL9) and 10-kd protein (CXCL10) (for liver and thy-
roid tumors) (159). These genes are associated with effective 
immune response in both animals and humans (160). When 
multiple chemicals impact antitumor immune responses, the 
resultant cumulative effects of these exposures may impart a 
greater relative risk of carcinogenesis and tumor development, 
particularly in the context of multiple exposures affecting the 
same genetic targets (161).

Immune evasion mechanisms: 
opportunities for target genes and 
pathways
The list of chemicals and the targets that they disrupt is 
based on EPA’s 2009 ToxCast data. The EPA-screened chemicals 
included in Table  1 carried the highest scores for the ToxCast 
immune system disruption counts with the respective number 
of activated associated genes. A dose of ~100 μM of each individ-
ual chemical was used in each assay. The potency of an assayed 
chemical that gave a positive (i.e. gene activation) response was 
summarized using the AC50 value (i.e. at a concentration of 50% 
of the maximal activity) or the lowest effective concentration 
values. Note that the use of nominal potency in determining 
hazard identification has been challenged because in vitro assays 
cannot account for in vivo impacts of a compounds bioavailabil-
ity, metabolic clearance and exposure (162). The in vitro to in vivo 
extrapolation using information on human dosimetry and expo-
sure is valuable in assessing the validity of high-throughput in 
vitro screening to provide hazard predictions at the level of the 
organism (163,164).

We referred to the ToxCast database to determine which 
chemicals aligned with immune system evasion mechanisms 
that were relevant in carcinogenesis. Since chronic inflammation 
and immune responsiveness in carcinogenesis are both linked 
to, and initiated at the premalignant stages of tumor develop-
ment (165,166), it is understandable that ToxCast data sets 
describe pathways that are related to both inflammation and 
immune evasion as putative immune disruption mechanisms 
(158,159). We selected the pathways that were related specifi-
cally to immune evasion as a cancer hallmark by comparative 
analysis of existing studies in the settings of both inflammation 
and immunosurveillance with the results on immune disrup-
tion presented by ToxCast. Consequently, several genes from the 
ToxCast immune disruption list were selected since they were 
associated with immune evasion based on an overview of the 
literature: for example, ADORA1 (adenosine A1 receptor); AKT1 
(v-akt murine thymoma viral oncogene homolog 1 or protein 
kinase alpha); CCL2; CCL26; CD40, CD69, COL3A1 (type III col-
lagen of extracellular matrix); CXCL10 (interferon-inducible pro-
tein-10); CXCL9 (monokine induced by interferon-gamma); EGR1 
(early growth response protein 1); HIF-1α (hypoxia-inducible fac-
tor); IGF1R (insulin-like growth factor 1 receptor) and IL-1α and 
IL-6 (Table 1).
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Specifically, ADORA1 was involved in the immune response to 
thyroid cancer (167) by encoding adenosine receptors that inhib-
ited T-cell responses. This was achieved in part by augmenting 
FOXP3 expression in CD4+ helper T cells (65). Another study has 
also shown that tumors grew slower in ADORA (i.e. ADORA2A) 
knockout mice (66). Other examples included the participation 
of CCL2 in immune system evasion by recruiting immune sup-
pressor cells to the tumor microenvironment (67), and CCL26, 
which helped to promote a Th2-dominant tumor microenviron-
ment that was beneficial for tumor cells (69). Similarly, others 
showed that CD69, which is among the earliest cell-surface 
expressed molecules, was induced during lymphocyte activa-
tion (70), and COL3A1, which might be involved in tumor cell 
evasion of immune surveillance (71). Finally, another group 
found that CXCL10, which is the ligand for CXCR3, was a che-
moattractant for activated T cells (72). Moreover, the expression 
of the EGR1 gene participates in immune evasion mechanisms 
of infectious agents (73), although its role in tumor evasion (e.g. 
as a tumor suppressing factor) remains unclear (74). IL-1α par-
ticipates in mechanisms that permit prostate tumor escape, 
and downregulation of dampened expression of MIP-1α might 
be associated with decreased IL-1α and tumor necrosis factor-
alpha during the advanced stages of cancer (75). Finally, IL-6 is 
crucial for both tumor growth and immunosuppression (78). IL-6 
also inhibits maturation of DCs, and NK cell activation, and may 
promote NK cell anergy (79,80).

Additional pathways contribute to immune surveillance that 
is also associated with carcinogenesis and tumor progression. 
These pathways include activation of the PI3K/AKT pathway, 
which represents a new mechanism of immunological tumor 
escape (81). For HIF-1α, the studies have linked hypoxia-induced 
accumulation of D-subunits with expression of ADAM10 and 
decreased surface major histocompatibility complex class I pol-
ypeptide-related sequence A levels that can lead to tumor cell 
resistance to innate immune effector-mediated lysis (68). The 
local immune response of Epstein–Barr virus-associated tumors 
to infiltrating T cells might be suppressed by enhancing cytokine 
and cellular growth factors like IGF1 (76).

The collection of genes involved suggests several candidate-
signaling pathways that are capable of participating in chemi-
cally induced immune evasion. These pathways include PI3K/
Akt, chemokine pathways (e.g. CCL2, CCL26, CXCL9, CXCL10), 
TGF-β1 and FAK (including COL3A1), the IGF-1, the HIF-1α, the 
IL-6 and the IL-1α signaling pathways (summarized in Table 2). 
Indeed, some pathways (e.g. chemokine, TGF-β, FAK and IL-1α 
signaling pathways) are targets of multiple chemicals (Table 2). 
However, some pathways (e.g. PI3K/Akt, IGF-1, HIF-1α and IL-6) 
have greater chemical-specific involvement. In addition, sign-
aling pathway cross talk might play a role in affecting host 
immunity.

There are also intracellular signaling pathways that are 
critical in regulating DC differentiation, survival and activity, 
which could be activated or inhibited through signal-mediated 
cross talk. For example, the MAPK (mitogen-activated protein 
kinase signaling cascade) pathway cross talks with CCL2, Akt, 
IL-6 and IGF-1. The PI3K/Akt (phosphatidylinositol-3-kinase/
protein kinase B) pathway cross talks with IGF-1 and IL-6. Also, 
the JAK/STAT3 (Janus kinase/signal transducer and activator 
of transcription 3)  pathway cross talks with IL-6. Additionally, 
chemicals in the environment affect several candidate immune 
evasion pathways that are involved in antitumor immunity. For 
example, CTLA-4 (cytotoxic T-lymphocyte-associated protein 
4)  and the PD-1/PDL-1 (programmed death-ligand 1)  signaling 
pathways are involved in the immune evasion of tumor cells. 

Monoclonal antibodies inhibiting these pathways have demon-
strated the effectiveness of anticancer effects in certain types 
of tumor (77,168). The α-enolase (ENO1) antigen that is coded by 
the ENO1 gene has been recently detected in pancreatic (169), 
lung and hepatocellular cancers (170,171). ENO1 has also been 
tested as a vaccine target (172–174); it has the cross talks with 
CXCL9, CXCL10 and CD40. Consequently, these pathways rep-
resent excellent candidates for further studies of the effects of 
disruptive or agonistic chemicals of the immune response in 
human carcinogenesis.

Factors other than exposures to chemicals from anthropo-
genic environment can potentially interfere with the relation-
ship between chemical compounds and host immunity, which 
might modify the risk of tumor development and progression. 
One such factor is the immunological status of the organism 
at the time of environmental chemical exposure. Animal stud-
ies showed that an immunocompromised state was associ-
ated with a higher risk of spontaneous and chemically induced 
tumors (60,116–122). Chemically induced immunosuppression 
can impact the ability of an animals to reject cancer cells, and 
this depends on the extent of immunosuppression (109) and 
the type of defect (e.g. defects in one or in both NK and T-cell 
functional behavior) (61,62). However, information on the role of 
coexisting immunosuppression in the human system and their 
susceptibility to chemical exposures is sparse and is currently 
insufficient to suggest the role of immunosuppression in chemi-
cal carcinogenesis.

Environmental chemicals that impact multiple pathways 
associated with immune dysfunction may also increase the risk 
of diseases other than cancer. The dysfunction of the immune 
system caused by some endocrine-disrupting chemicals may 
lead to lower effectiveness of immune response to infection 
or to the allergy and autoimmune diseases due to the hyper-
reactivity of immune response (175). For example, exposures to 
pesticides, solvents and air pollutants have been shown to be 
associated with the immune response dysregulation and inflam-
matory dysfunction and contributed to higher risk of asthma 
and allergies (176). Specifically, human bronchial epithelial cells 
treated with butylbenzyl phthalate, bis(2-ethylhexyl) phthalate, 
dibutyl phthalate and diethyl phthalate increased bronchial 
smooth-muscle cell proliferation and migration, suggesting a 
role of these chemicals in asthma airway remodeling (177,178). 
There are also increasing evidence from the animal studies that 
in utero or neonatal exposures to bisphenol A  are associated 
with higher risk of immune system dysregulation and meta-
bolic syndrome that may develop later in life (179–182). Another 
example can be a pesticide-induced asthma in agriculture work-
ers that may be due to the indirect effects of pesticides on the 
immune system, including interfering with the Th1/Th2 balance 
or pesticide-induced oxidative stress (183). For addition, certain 
environmental chemicals may cause the changes in response 
of immune system to infectious agents, thus increasing risk of 
adverse outcomes of respiratory infections (184). For example, it 
has been shown that higher bisphenol A levels were associated 
with lower levels of anticytomegalovirus antibodies in humans, 
thus suggesting that exposure to this chemical may attenuate 
antiviral immunity (185).

Cross talk between immune evasion and 
other hallmarks of cancer
Based on the number of variables involved in this field and 
the paucity of data in this area of research, we believe that 
future research will need to focus on environmentally relevant 
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low-dose exposures to mixtures of chemicals that are known to 
have a disruptive impact on immune system tumor surveillance 
and elimination. Given that the pathways involved in immune 
evasion might also participate in other hallmarks of cancer, we 
undertook a mapping exercise to identify cross-hallmark rela-
tionships that have been reported for the key mechanisms and 
the disruptive chemicals that we identified. This was done by a 
cross-validation study to show how the target pathways and/or 
chemical disruptors (i.e. those that potentially interact with the 
pathways involved in immune evasion) might also be involved 
in other cancer hallmarks (Tables 3 and 4). In particular, this 
heuristic could be useful for researchers who would like to try 
to predict potential synergies that might emerge when testing 
low-dose exposures to mixtures of chemicals for this purpose.

To conduct this cross-hallmark activity, our team selected 
nine prototypic chemicals drawn from a list of 20 chemicals (as 
listed in Table 1). The prototypic chemicals chosen were maneb, 
pyridaben, pyraclostrobin, fluoxastrobin, azamethiophos, tri-
closan, atrazine, bisphenol A  and diethylhexyl phthalate. 
Several examples of the interrelations of the pathways involved 
in immune evasion and other cancer hallmarks are presented 
in Table  3. This analysis shows that some of the mechanisms 
and pathways that are important for the immune system in 
cancer are also highly relevant for aspects of cancer’s biology. 
For example, chemical exposures that affect chemokine sign-
aling pathways could also deregulate metabolism, the evasion 
of antigrowth signaling, angiogenesis, resistance to cell death, 
sustained proliferative signaling, tissue evasion and metastasis, 
tumor-promoting inflammation and affect the tumor microen-
vironment. Similarly, the disruption of the HIF-1α and of the 
PI3K/Akt pathways can influence most of the other hallmarks 
of cancer. Disruption of the IGF-1 signaling pathway could affect 
metabolism, evade antigrowth signaling, resistance to cell death, 
sustained proliferative signaling, tissue evasion, tumor-promot-
ing inflammation and tumor microenvironment hallmarks.

Table 4 shows where there have been reports of cross-hall-
mark effects by the chemicals that we selected. For example, 
maneb displays the widest spectrum of potential effects on 
multiple pathways among fungicides, i.e. it has complemen-
tary effects on dysregulated metabolism, sustained proliferative 
signaling, genetic instability and tumor promoting inflamma-
tion. Two other fungicides (pyraclostrobin and fluoxastrobin) 
affected only the hallmarks of genetic instability and tumor-pro-
moting inflammation. Among fungicides, currently only maneb 
is reported to exhibit limited carcinogenicity in humans as 
determined by the U.S. EPA (250), but it remains ‘not classifiable 
as to its carcinogenicity to humans’ by the IARC (155). Maneb is 
also a cortisol disruptor that inhibits 11β-HSD2 (251). Maneb was 

registered in the USA in 1962 for use on food (including potatoes 
and tomatoes) and ornamental crops to prevent their damage in 
the field and to protect the harvested crops from deterioration 
during storage and transportation (252,253). Pyraclostrobin and 
fluoxastrobin (the chemical class of strobins) have been used 
since the early 2000s; therefore, there are less data available on 
these fungicides compared with longer periods of observation 
for maneb. Pyraclostrobin is a broad-spectrum fungicide that is 
used in both agricultural (cereal grains, fruits and vegetables) 
and non-agricultural settings (e.g. flowers and grass, includ-
ing golf courses). Pyraclostrobin is one of the most frequently 
applied fungicides for grapes, apricots, tomatoes, sweet cherries 
and plums. Fluoxastrobin is used to prevent diseases in crops 
such as wheat, barley, corn, soybean, potato, tomato, pepper, 
strawberry and turf plots (i.e. in the context of landscaping). It is 
likely that both fluoxastrobin and pyroclostrobin are also endo-
crine-disrupting fungicides (254).

In addition to immune system evasion, atrazine (a triazine 
herbicide that is used primarily in corn production) may also 
interfere with other hallmarks including dysregulated metabo-
lism, genetic instability, sustained proliferative signaling and 
tumor-promoting inflammation. Similar to the classification 
ascribed to maneb, atrazine is listed by IARC as ‘not classifiable 
as to its carcinogenicity to humans’ (155). Atrazine is the most 
common pesticide contaminant of ground and surface water in 
the USA (255,256). Since 2000, atrazine has been reported as an 
endocrine disruptor for both androgen- and estrogen-mediated 
processes (257,258).

Additionally, two insecticides, pyridaben and azamethip-
hos, have broader potential effects related to cancer hallmark 
pathways, in addition to their effects on immunosurveillance, 
i.e. pyridaben exposure can dysregulate metabolism and tumor-
promoting inflammation. Moreover, exposure to azamethiphos 
impacts genetic instability. Pyridaben is a pyridazinone derivate 
that is widely used as an acaricide and insecticide to control 
mites, white flies and aphids. Azamethiphos is a widely used 
organophosphate pesticide in the control of cockroaches and 
flies in buildings and warehouses. This compound was also 
used in fish farming to control external parasites in Atlantic 
salmon. Neither pyridaben nor azamethiphos are listed by the 
IARC as carcinogens (155). However, the majority of insecticides 
are designed to be disruptors of various physiological functions 
in insects; therefore, these compounds are likely disruptive for 
humans, too. Recent studies showed that pyridaben can activate 
the estrogen receptor alpha in experimental rodents (259).

Triclosan and bisphenol A are commonly found in personal 
care products. Bisphenol A  is a monomer that is also used in 
the production of polycarbonates and epoxy resins for coating 

Table 2. Candidate-signaling pathways potentially involved in chemically induced tumorigenesis and related to immune evasion hallmark: 
three chemicals from different groups are selected as examples

Chemical

PI3K/Akt 
signaling 
pathway

Chemokine 
signaling 
pathway (CCL2, 
CCL26, CXCL9, 
CXCL10)

TGF-β 
signaling 
pathway 
(COL3A1)

FAK 
pathway 
(COL3A1)

IGF-1 
signaling 
pathway

HIF-1α 
pathway

IL-6 signaling 
pathway IL-1α pathway

Maneb (fungicide) +a (85,87) + (85) + (83,85,86) + (85) + (84) − + (82,83) + (83)
Pyridaben (insecticide) − + (83,92) + (83) + (83) − + (91,92) − + (92)
Triclosan (preservative 

and antiseptic agent)
− + (93) + (94) + (95) − − − + (93)

‘+’, the pathway is likely involved when the organism is exposed to respective chemical; ‘−’, the pathway is unlikely involved when the organism is exposed to 

respective chemical.
aThe involvement of the candidate pathways that are constructed from the data on every single gene is described in the ToxCast data (90) (as shown in Table 1).
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beverage and food packages, baby milk bottle and optical lenses 
(260). It is ‘not classifiable as to its carcinogenicity to humans’ 
by the IARC (155). Triclosan is a broad-spectrum antimicro-
bial agent. In addition to its use in personal care products, tri-
closan is also used in carpets and sportswear production. These 
chemicals are among the most frequently detected compounds 
in waters downstream of densely urbanized areas (261,262). 
Compounds like triclosan and bisphenol A act as endocrine dis-
ruptors, e.g. bisphenol A has antiandrogenic (263) and triclosan 
has androgenic and antiestrogenic activities (264,265). As shown 
in Table  4, bisphenol A  affects nearly all hallmarks of cancer, 
except of the tumor microenvironment hallmark for which the 
data are still currently unknown. The effect of triclosan might 
dysregulate metabolism, genetic instability, sustained prolifera-
tive signaling and tumor-promoting inflammation.

Diethylhexylphthalate (DEHP), which is one of the most 
extensively used phthalates worldwide in the plastic, coating 
and cosmetics industries, is another class of compounds that 
might promote hallmarks of cancer (266). DEHP influences 
resistance to cell death, evasion of antiproliferative signaling, 
sustained proliferative signaling and tumor-promoting inflam-
mation as hallmarks of cancer. Since the mid-1990s, DEHP was 
reported as an endocrine disruptor (267). Perinatal exposure to 
DEHP might also be associated with an increased incidence of 
obesity due to its endocrine disrupting impact during the devel-
opmental ‘window of susceptibility’ that affects adipogenesis 
(268). In 2000, the designation of DEHP as ‘possibly carcinogenic 
to humans’ (based on animal studies) has been changed to ‘can-
not be classified as to its carcinogenicity in humans’ (269,270).

Overall, this heuristic shows that a number of chemicals that 
we considered also have the potential to interact with several 
other cancer hallmark pathways. Therefore, researchers who 
plan to consider these chemicals for exposure research on mix-
tures should carefully evaluate these potential synergies.

Further studies
Cancer has a complex and multifactorial etiology impacted by 
both inherited factors and environmental exposures over the 
life course of an individual. Although genetic risks have been 
identified, most studies suggest that substantial contributions 
to cancer risk are derived from the environment. This viewpoint 
remains consistent with the recent observations that cancer risk 
is associated with the potential number of stem cells divisions 
needed to maintain a tissue integrity (271). Coupled with the 
importance of evaluating an already extensive (and expanding) 
number of chemicals of unknown cancer-promoting potential, 
there is a clear need for more efficient in vitro screening tools 
that should be complemented with in silico virtual ligand screen-
ing approaches to help construct a target and pathway-based 
understanding of specific chemicals or groups of chemicals 
(159,272). Specific genes and pathways could be further meas-
ured by experiments that are designed to arrive at quantified 
information for each chemical studied.

Due in part to low relative risks attributed to low-dose expo-
sures and the knowledge that multiple chemicals have the 
potential to contribute to these exposures over sustained and 
durable periods of time, it remains challenging to evaluate the 
effects of such exposures on human health by classical epide-
miological approaches. Dose–response analyses could provide 
information on quantitative ‘sensitivity’ of each ‘barrier’ (e.g. 
apoptosis and DNA repair system) following exposure to specific 
chemicals or to complex mixtures of chemicals, both in the con-
text of immune system evasion mechanisms, and other cancer Ta
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hallmarks. Attempts at quantifying these measured ‘barriers’ 
can be incorporated into models of carcinogenesis (273).

Future studies should focus on linking population data 
on cancer-specific incidence and mortality (e.g. for cancers of 
breast, prostate, testicular, ovarian and thyroid, wherein the risk 
of developing that cancer is affected by endocrine-disrupting 
chemicals). Studies should also focus on information of the 
measured characteristics of immune system evasion, and other 
established hallmarks of cancer, which collectively could be fur-
ther incorporated into biologically motivated models of carcino-
genesis, in a manner similar to those developed by Moolgavkar 
et  al. (274) and Tan (275). Further extensions of these models 
were developed over the past decade including the two-stage 
clonal expansion model, the multistage clonal expansion model 
and other biologically motivated models of human carcinogen-
esis (150,276–278). These models are capable of providing valu-
able insight into the relative risks of environmental exposures.

In this article, we have reviewed some common chemicals 
that are known or suspected to be present in anthropogenic 
environment. We have also discussed their potential effects on 
host immunity and proposed mechanisms by which they poten-
tially interact with specific hallmark pathways. Based on a com-
prehensive review of the literature on environment and health, 
we recognized that immune evasion has only been recently 
widely accepted as an emerging cancer hallmark, and we sug-
gest that it may be among the least studied of the hallmarks. 
The literature describing the potential effects of chemical expo-
sures on the immune evasion, in particular the impact in the 
context of low-dose exposures from ubiquitous anthropogenic 
environmental chemicals, is sparse.

The causal relationship between chemical exposures from 
compounds that are not currently recognized as human carcin-
ogens and the increased risk of cancer development (including 
the potential impacts of such chemicals on the pathways that 
are related to immune evasion mechanisms) cannot be formally 
established at this time. However, based on available studies, 
several candidate-signaling pathways that are related to the 
host immune response can be identified for further study, e.g. 
the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-
1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1. At least several 
groups of environmentally ubiquitous chemical contaminants—
including fungicides (maneb, fluoxastrobin, pyroclostrobin), 
herbicides (atrazine), insecticides (pyridaben and azamethip-
hos), personal care products (triclosan and bisphenol A) and the 
extensively used industrial compound DEHP—are among those 
that might potentially interrelate with mechanisms of tumor 
immunosurveillance.

Although none of these chemicals are currently recognized 
as human carcinogens, as ubiquitous in anthropogenic environ-
ment and as eliciting a long-term and low-dose exposure, the 
research of these chemicals may be valuable. Ultimately, we 
should know whether or not these exposures interfere with the 
host immune response and thus augment the risk of tumor cell 
survival. Further detailed studies, including screening of lesions 
at the premalignant stage of development, will help shed more 
light on this topic. This will be made possible by determining 
the role of such exposures and their influence on host immunity 
and in the evaluation of their potential to increase the risk of 
carcinogenesis and tumor development.
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