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Mass transfer from single rising gas bubbles is generally studied

by taking motion pictures of the rising bubbles and analyzing the film

for the instantaneous mass transfer coefficient. In this study, a

different approach was taken for the analysis of mass transfer. This

analysis solved the simultaneous differential equations describing mass

transfer by numerical techniques. The computer model developed is

restricted to pure single gas bubbles in water, with diameters in the

size range 0.01 < diameter < 0.30 cm. Given a bubble's initial

diameter and height of water over the bubble, the model predicts the

bubble's position and moles of gas present in the bubble at any other

time.

The bubble rise velocity was calculated by considering a force

balance on a spherical bubble and used theoretical values of drag co-

efficients based on a sphere. Correlations presented by Hamerton and

Garner, Frossling, and Weiner were used to solve for KL, the convective

mass transfer coefficient.

The time dependent behavior of KL, attributed to the accumulation

of surface active agents at the rising bubble's interface, was



accounted for by the development of a bubble age parameter, termed

critical time.

The differential equations were solved by a Runge-Kutta-Merson

routine, and the model applied to a carbon dioxide-water system. The

results were compared to data collected in the investigations of

Deindoerfer, Garbarini, and Datta. The computer predictions, with the

inclusion of the critical time parameter, corresponded closely to data

presented by the three investigators. The model, without the critical

time parameter, predicted mass transfer rates much higher than those

presented in the three investigations.

The model was extended to pure oxygen-water and air-water systems

to aid in the modeling of gas dispersion equipment used in aeration

ponds. Predictions indicate that the initial bubble diameter has a

significant role on the overall mass transfer.
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COMPUTER MODEL: MASS TRANSFER FROM SINGLE RISING
GAS BUBBLES IN WATER

I. INTRODUCTION

Previous research and experimentation in gas absorption has often

centered on the study of single bubbles rising through liquids. The

behavior of single bubbles is studied to determine the fundamental

mechanisms involved in the absorption of gases. The experimental

technique of limiting study to single bubbles permits an analysis

simplified to a few specific variables.

Analysis usually begins by describing mass transfer from the

bubble with appropriate differential equations. Assumptions are then

introduced into the differential equations, converting them to a form

that can be solved by photographic techniques. Motion pictures are

taken of a bubble's ascent and the film is then analyzed. This analysis

generates finite difference terms which are used in the solution of the

converted equations to determine instantaneous mass transfer rates.

The drawback of the photographic method is that bubble history and

instantaneous mass transfer rates must be determined by setting up

laboratory equipment, taking motion pictures, and analyzing the film.

This method also has image resolution limitations which restricts its

application to certain gas-liquid systems.

The presence of surface active agents (surfactants) is known to

retard mass transfer from bubbles and contribute to scattering of

data in gas absorption experiments. The effects of these agents

have not been satisfactorily incorporated into mass transfer theory,

and great care is usually taken to eliminate them from research
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experiments. In contrast, industrial processes will invariably con-

tain trace amounts of surface active agents that will inhibit mass

transfer. As a result, experiments in gas absorption may not be

including an important factor of mass transfer which occurs in real

processes.

Modeling and design of gas dispersion equipment in aeration

ponds usually involves empirical correlations based upon several

equipment variables. The variables used include gas flow rate, type

of sparger, sparger orientation, and depth of sparger. [4] Use of

these parameters in correlations reflects the lack of understanding

of the fundamental mass transfer mechanisms.

The intent of this study is to model rising gas bubbles by sol-

ving the same differential equations using numerical techniques. This

has the advantage of studying single bubble behavior without taking

experimental data, and is capable of modeling some gas-water systems

otherwise awkward for experimental setup. The carbon dioxide-water

system will be modeled and the results compared to data collected in

other investigations. The model will then be extended to include

pure oxygen-water and air-water systems.



3

II. THEORETICAL CONSIDERATIONS

When a gas bubble has a slight solubility in a liquid, the

mass transfer from the rising bubble is limited by the resistance

in the liquid film surrounding the bubble. A material balance,

accounting for the moles of gas present in the bubble at any time

may be written as a differential equation:

do

dt
= -K

L
a (C

AS
C
Aco

) (1)

where n is the moles of gas, t is time, KL, is the convective mass

transfer coefficient, a is the area through which mass transfer

occurs (bubble surface area), CAS is the concentration of gas

in the liquid which is related by equilibrium relations to the

composition of the gas in the bubble, and CA the concentration

of gas in the bulk liquid. The negative sign on equation (1)

implies that gas is transferred from the bubble to the liquid;

accordingly, the amount of gas within the bubble will always decrease.

The instantaneous velocity of the bubble is written as:

dz

dt o
(2)

where V
o

is the bubble's rise velocity, and z is the bubble's position.

Equation (1) may be simplified if the following assumptions

are made:

1. The gas is pure

.2. The gas is ideal

3. Henry's law applies. (Appendix) [11]



4. The bulk concentration of gas, CA is essentially zero.

5. The system is isothermal.

6. Humidification and counterdiffusion effects are negligible.

7. Surface tension effects are negligible. (Appendix)

By the ideal gas law, the moles of gas present are related to the

bubble's pressure, P, temperature, T, and volume, V, by:

PV
n

RT (3)

4

where R is the ideal gas constant. The time derivative of equation

(3) under isothermal conditions is:

do 1 (PdV VdP1

dt RT dt dt)
(4)

The assumption that the gas is pure implies that only one

component material balance equation is required to describe the

mass transfer from the bubble. For a mixture of gases separate

differential equations must be written to describe mass transfer

for each component, and a system of differential equations must be

solved for the total moles of gas present. Negligible humidification

and counterdiffusion effects implies that counterdiffusion of liquid

vapor and dissolved gases into the bubble is negligible and will

not add to the moles of gas present in the bubble. Accounting

for these effects would also generate other differential equations,

resulting in a system of equations to be solved simultaneously.

The pressure within a bubble varies with the depth of liquid

and bubble size. Where surface tension effects are negligible,

the bubble's internal pressure is described by the expression:
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P = P + p gz (5)
ATM L

where P
A

is the atmospheric pressure, p
L'

is the liquid density,
TM

g is the gravitational constant, and z is the height of liquid

over the bubble. In the case of an incompressible liquid, the

time derivative of equation (5) is:

dP dz

dt PLg dt
(6)

Henry's law applies for systems where the concentration of gas

in the liquid is small. Henry's law is written as:

x = HP. = mole fraction of gas (7)

where H, is the Henry's law constant, there are different Henry's

law constants for each gas -water system. P. is the partial pressure

of the gas, and x is the mole fraction of gas in the liquid.

The mole fraction of gas may be written as:

mole fraction gas
moles gas/cm

3

moles gas/cm
3

+ moles liquid/cm
3

But the moles gas/cm
3

is equal to CAS, the concentration of gas

in the liquid, and the moles liquid/cm
3

is equal to pL /molecular

weight of liquid. For water, pL is 0.995 g/cm3 @ 298°K and the

molecular weight of water is 18 g/g mole; accordingly, the moles

3 .

of liquid/cm is 0.055278. Upon substitution of CAS for moles gas/cm
3

in equation (7) yields:

CAS = HP.

C
AS

+ 0.055278



Solving for C
AS

one obtains:

HP. 0.055278
1

AS
1 HP.

1

and when the constant 0.055278 is designated PRO, CAS becomes

HP. PRO
1

(8)
1 HP.

1

Equation (1) may be rearranged to yield:

do /dt
K
L

=
a(C

AS
0)

If equation (4) is substituted for do /dt, the following equation

results:

1 rPdV VdP
RT dt "4 dtJ

KL = -

a(CAS)

Further simplification is obtained if equation (8) is substituted

for C
AS

:

(1 - HP.)
1 PdV VdP

-K
L

RTa HP. PRO
( dt dt)

1

Finally, with substitution of equation (6) for dP/dt one obtains:

(1 HPi)
rPdV Vpig dziKL =

RTa HP. PRO
L dt 4" dt]

i
(9)

6

The evaluation of K
L
by the photographic method requires the

solution of equation (9) which, in turn, requires the time derivatives
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dV/dt and dz/dt. Motion pictures of the rising bubble are taken,

and the derivatives are approximated as finite differences by

analyzing the motion pictures. The carbon dioxide-water system is

well suited for gas absorption studies with motion pictures.

Its physical properties are well known, carbon dioxide is highly

soluble in water and the system satisfies Henry's law for the

investigated pressures. These characteristics allow the time

derivatives, particularily dV/dt in equation (9) to be readily

solved.
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Another approach which does not involve use of photographic inves-

tigations may be taken for solution of differential equations (1) and

(2):

do
dt =

KLa (C
AS

CAS)

dz

dt
- -Vo

(1)

(2)

these equations may be solved numerically if the functional forms of

the right hand sides of equations (1) and (2) are known. The bubble

surface, a, can be calculated by assuming the bubble to be a perfect

sphere. CAS, the bubble's equilibrium concentration, is calculated

from Henry's law.

The bubble rise velocity Vo may be determined from a force balance

on a spherical bubble as [22]:

4d pa) g

V [

]1/2

3 Gift,

(10)

where d is the bubble's diameter, ot, and p , are the liquid and gas

densities respectively and g is the gravitational constant. CD, the

drag coefficient, may be evaluated using theoretical values of a sphere.

The values of C
D
have been found to deviate from theory for bubble dia-

meters greater than 0.3 cm; these values have been larger than those

predicted by theory. [13]

K
L'

the convective mass transfer coefficient, is a function of

flow conditions (Reynold's number, Re) and relative diffusivities

-(Schmidt's number, Sc). Previous workers [4, 21] have found that the

Frossling equation for a sphere describes mass transfer for bubbles less
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than 0.1 cm in diameter, and that the Higbie equation holds for bubble

diameters greater than 0.3 cm in diameter. Hamerton and Garner, and

Weiner have presented correlations for bubble diameters in the range

of 0.1 < d < 0.3 cm. This bubble size range has been designated as

the transition region by Weiner.

The Frossling equation has been employed to describe mass transfer

in pure liquids when bubbles act as spheres (diameter less than 0.1 cm)

and in cases where the presence of contaminants prevented bubble cir-

culation:

Sh = 2.0 + 0.5SRe
1/2

S
1/3

where Sh, the Sherwood number is a dimensionless parameter containing

KL. The Frossling equation for spheres is a semiempirical relationship

which combines two distinct contributions to the overall mass transfer.

The first teem, 2.0, is the contribution from molecular diffusion and

can be derived by considering counterdiffusion in a stagnant medium.

The second term, 0.55Re
1/2

Sc
1/3

, is the contribution due to convective

transfer into a moving stream; it is the result of a best fit to exper-

imental data and theoretical considerations. Other investigators have

proposed empirical correlations of the form:

Sh = 2.0 + C
1
Re

1/2
Sc

1/3
(12)

where variations of C
1,

a constant, are due to differences of experimen-

tal fit. Table 1 [Appendix] summarizes these experimental correlations

for forced convection from single spheres.

Natural convection may also have a role in the total mass transfer.

-According to Garner and Keey, the effects of natural convection are
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negligible if the Reynolds number satisfies the expression [18]:

Re > 0.4Gr
1/2

Sc
-1/6 (13)

where Gr, the Grashof number, is a dimensionless parameter used in

natural convection correlations. Calculation of Re, Sc, and Gr for the

bubble diameters studied in this investigation shows natural convection

effects to be negligible. [Appendix]

The Higbie equation is based upon penetration theory with an

exposure time equal to the bubble's equivalent diameter divided'by

the bubble's rise velocity. [9] In terms of Sh, the Sherwood number,

the Higbie relation is: [Appendix]

Sh = 1.13 (ReSc)
1/2 (14)

This equation has been successfully used to describe mass transfer

for bubbles of diameter greater than 0.3 cm.

Hamerton and Garner, [8], and Weiner, [21], both present correla-

tions for bubbles where the diameters were in the size range of

0.1 < d < 0.3 cm. Both correlations show excellent agreement and

are based on experimental fit of data. The mass transfer expressions

are:

Sh = 0.8 Re Weiner (15)

Sh = 0.11 ReSc
1/3

Hamerton & Garner (16)

The Sc number for a carbon dioxide-water system is equal to 432; Sc
1/3

is equal to 7.4. The Sc number is constant for the given gas-water

system, and substitution of the Sc1/3 term into Hamerton and Garner's

expression yields:

Sh = 0.814 Rc (17)

The general form of all the presented correlations is:
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Sh = f (Re) (18)

Equation (18) states that the Sherwood number is solely a function of

Reynold's number, or flow conditions. However, several investigators

have found that K
L
also exhibits a time dependent behavior. [3,7,13,14]

This time dependent behavior has been explained by two different

theories.

Leonard [14] has postulated that for a highly soluble gas, the

bulk liquid must migrate to the contracting bubble surface, and this

liquid motion retards mass transfer away from the interface. Mass

transfer is reduced by reducing the concentration gradient in the

liquid film.

Another explanation for the time dependent behavior of K1 is

that trace amounts of surface active agents accumulate on the bubble

surface. These agents retard surface flow and reduce the mass transfer

rate. [7, 13, 14]

Upon bubble formation and ascent, liquid flow around the bubble

will create shear forces at the bubble surface and set up internal

circulation within the bubble. At the bubble surface, liquid elements

will flow around the bubble perimeter, adjacent to the circulating

gas. Prior to substantial accumulation of surfactants, the bubble

surface will be mobile; that is, it is capable of rapid movement and

distortion. Bubble distortion will stem from mass transfer out of the

bubble, and momentum effects of gas and liquid motion (i.e., turbulent

liquid eddies). The microscopic fluctuations of a mobile interface

create a condition of continuous surface renewal. These fluctuations

cause the liquid to flow and yield to the bubble shape and exposes
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fresh liquid elements to the gas.

During bubble ascent, surface active agents will first accumulate

at the frontal zone of the bubble and be swept to the bubble's rear

zone by liquid shear forces. Eventually, agents accumulate over the

entire surface and reduce the shear forces to such an extent as to

stop internal circulation. The agents will act as a buffer layer

between the gas and flowing liquid and add rigidity to the bubble

interface. This results in a larger overall resistance to mass transfer

and reduced concentration gradient in the liquid film. [14, 7] After

surface active agents reach a saturation level, the bubble's interface

is no longer mobile. This state of the interface behaves similar to

that of a sphere. Accordingly, Frossling's equation can be then used

to describe the mass transfer from the bubble.

At the molecular level, these mentioned events have a significant

effect on the diffusion of gas at the gas-liquid interface and will

influence the overall rate of mass transfer from the bubble. Although

the general effects of surface active agents in known, mass transfer

theory has not satisfactorily described or predicted the effects with

accepted concepts. Since all industrial applications involve surface

active agents within the liquid, mass transfer in real liquids must

account for the effects of these agents. The author believes this can

be done by using a time dependent mass transfer coefficient, KL. The

time dependent behavior of K
L
may be explained using the concept of

critical time. The critical time concept relates to the accumulation

of surface active agents on the bubble. This concept can he developed
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if the following assumptions are made:

1. The concentration of the surface active agents in the

liquid is uniform.

2. The rising bubble captures all the surfactant that comes

in contact with the bubble's projected area.

3. The bubble's diameter and rise velocity are constant.

The hypothetical volumetric rate of liquid which comes in contact

with the bubble is given by the expression:

Volumetric rate of liquid contact

= (projected area) (bubble rise velocity)

= cm
2

cm/sec

= cm
3
/sec.

The rate of surfactant captured by the surface is then:

Surfactant
capture
rate

Volumetric rate
of liquid
contact

[Surfactant
concentration

in liquid

Based upon the three assumptions, this surfactant capture rate will

be constant and the total amount of surfactant on the surface will

be directly dependent on time:

Total surfactant
on bubble
surface

Surfactant
capture
rate

Time (19)

moles/sec sec

moles

where the time is measured from the initial release of the bubble

into the liquid pool, or the bubble age.
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If a critical time, tc, is defined as the time required for sur-

factant to accumulate upon the bubble surface, and completely cover

the bubble, or reach a saturation level, the amount of surfactant

at any time can be evaluated by equation (19). The critical time

concept also infers that there will be two different mass transfer

mechanisms at the bubble surface: the mass transfer prior to t
c

when the total surfactant is increasing, and mass transfer at t
c

and

after, when the surfactant level has reached its saturation level and

remains constant.

In modeling real systems, the mass transfer coefficient for time

greater than or equal t o t
c
was evaluated by Frossling's equation.

For any bubble with a diameter in the transition region, the mass

transfer coefficient for time less than t
c
was evaluated using a

combination of Frossling's equation and Hamerton and Garner's transi-

tion equation. During this time period a changing weight factor was

assigned to the contribution by each correlation and the total mass

transfer was taken as the sum of the two contributions. The weight

factors were based upon a relative time, t/t
c

, and were linear with

respect to time as shown by equation (19). The contributions to

mass transfer during this time period are:

Transition contribution = (1 - t/t ) Sh
c transition

Frossling contribution = (t/tc)
Prossling

Sh
total

+ (t/t
c
)Sh

Frossling= (1 t/t
c

) Sh
transition

This assignment of weight factors implies that bubble interface

(20)

without surface active agents is mobile, and that the portion of
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interface covered by agents is immobile. A correlation factor,

a, [12] has been used to account for the effects of surface active

agents on mass transfer but this parameter does not consider the

mechanism which inhibits mass transfer.
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III. INSOLUBLE GAS CASE

The simplest case of a bubble rising in a fluid serves as a start-

ing point for analysis. This case consists of a single spherical

insoluble gas bubble rising in a liquid column. Solution is directed

toward description of a bubble's size and gas concentration. The

applicable assumptions in the derivation of equation (9) are used again.

These assumptions are:

1. The gas is ideal.

2. Humidification and counterdiffusion effects are negligible.

3. Surface tension effects are negligible.

The bubble's initial diameter and position fixes the moles present in

the bubble by:

PV ATM
+ p

L
g z) Tr d

3

n RT 6RT
(21)

The moles of gas, n, are constant and the bubble's volume at any sub-

sequent position is:

V =
nRT nRT
P P

ATM
+ p

L
gz

(22)

The diameter of the bubble is evaluated with the assumption that the

bubble is a perfect sphere:

6V 1/3 6nRT 1/3
d = L = L(p

TAM
+ p

L
gz)10

The surface area of the bubble is

a = 7rd
2

=
6nRT

]

2/3
Tr

1/3

ATM PLgz

(23)

(24)



The gas concentration in the bubble is:

P PATM
+ p gz

CA
RT RT

(25)

18

After stipulating the initial size and position of the bubble, the

volume and gas concentration of the bubble at any other specified

condition can be calculated.

The next level in analysis involves relaxing the insoluble gas

restriction. Analysis becomes more complex when considering the general

case of mass transfer from a single rising spherical bubble and numeri-

cal methods are employed for solution of this case.
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IV. COMPUTER MODEL DISCUSSION

As shown in the theoretical considerations section, the evaluation

of equation (1) requires a mass transfer coefficient value, KL, which is

a function of the bubble rise velocity. In turn, the evaluation of

the bubble rise velocity by equation (10) requires the diameter of the

bubble which can be evaluated only after equation (1) has been solved.

Equation (2) is also a function of the bubble rise velocity. Due to

the interdependency among the equations, the differential equations (1)

and (2) must be solved simultaneously by numerical integration tech-

niques.

Three numerical methods, Euler's, Runge-Kutta, and Regula-Falsi

have been used for solving differential equations (1) and (2). The

Euler's and the Runge-Kutta methods were used to calculate the position

of the bubble and the moles of gas present in the bubble at any time.

These two single step methods provide a solution to a differential

equation if an initial condition is known. The Regula-Falsi method,

an iterative technique used to solve for the root of an equation, was

applied to determine accurate values of a bubble rise velocity at any

diameter and position [Appendix]. The values of the bubble rise

velocity obtained using the Regula-Falsi method were used in the Euler's

and the Rungc-Kutta solutions of equations (1) and (2).

Initially, the Euler's method was selected since it permitted an

easy check of the solution through hand calculations of initial

iterations. A Runge-Kutta-Merson routine, which is a fourth-order

Runge-Kutta alogarithm with logic incorporated to adjust the step size
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in order to maintain desired accuracy, was used exclusively in the

final solution of equations (1) and (2) after the.technique was

validated by comparing its solution to the Euler's solution.

The Regula-Falsi method is used to solve for the root of an

equation. The bubble rise velocity function, equation (10), may be

altered to a new functional form such that the root of this new form

will be the bubble rise velocity [Appendix]:

f(V
o

) = 0, V
o

= rise velocity

This application of the Regula-Falsi method uses four subprograms

in calculation of a bubble rise velocity. A bubble rise velocity will

be a function of the diameter of the bubble, bubble and liquid density

difference, and bubble drag coefficient. When the diameter and position

of the bubble are known, SUBROUTINE END will approximate the bubble rise

velocity by an upper and lower value of rise velocity. These upper

and lower bounds of velocity are used by FUNCTION RISE to initiate the

Regula-Falsi iteration scheme. FUNCTION RISE converts the velocity

values into a functional form that is compatible with the Regula-Falsi

method. FUNCTION DRAG calculates a drag coefficient for any bubble

Reynold's number. These drag coefficients are called and used by

FUNCTION RISE. FUNCTION RE-MLA calls FUNCTION RISE and performs the

Regula-Falsi iteration until the rise velocity function converges to

zero. Upon satisfaction of the convergence criteria, the accurate

value of bubble rise velocity is transferred for use in either the

Euler's or Runge-Kutta methods.
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Figure 3
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The behavior of many physical processes, particularly those

in systems undergoing time-dependent changes, can be described by

ordinary differential equations. This development will be restricted

to first-order ordinary differential equations which are by defini-

tion, of the form [1]:

dY
a- = f(X,Y) (26)

Systems of first-order ordinary differential equations are of the

form:

dY
1

-
dX

f
1
(X"Y1, Y2, Yn)

dY
2

dX
f2(X, Y

1
, Y

2
, Yn)

dY
n

= fn(X, Y1, Y2, ... Yn)
dX

(27)

A solution Y(X) is desired which satisfies equation (26) and an

initial condition. In general, it is impossible to obtain an ana-

lytical solution to equation (26). Instead the interval in the

independent variable X over which the solution is desired, [a,b] is

divided into subinterval or steps. The value of the true solution,

Y(X) is approximated at n + 1 evenly spaced values of X, (X0, X1,

X2 ... Xn), so that the step size h is given by:

b-a
h (28)
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and

X. = X
0

+ ih, 0, 1, 2, n (29)

Thus the solution, Y(X) is given as tabular values for discrete

values of X only.

Let the true solution of Y(X) be denoted as Y(X1) and computed

approximation of Y(X) at these same points be denoted Yi so that

Yi := Y(Xi) (30)

The true derivative dY/dX at any Xi will be approximated by f(X.,

Y.) so that:

f(Xi, Yi) = f(Xi, Y[X.]) (31)

When the numerical calculations are done exactly, that is

without roundoff error (see below), the difference between the

computed Yi and true value Y(Xi) is termed the discretization or

truncation error, ei:

e. = Y. Y(Xi)
1 1

(32)

The local discretization error encountered in integrating a differen-

tial equation across one step is sometimes called the local trunca-

tion error. The discretization error is determined solely by the

particular numerical solution procedure selection; this type of

error is independent of computing machine characteristics.

Al inherently different kind of error results from computer

design. In practice, computers have a finite memory, and the number

of digits retained for a number by the computer is fixed. Thus any

number with more significant digits than can be retained must be
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approximated by "rounded" values. This error is termed roundoff

and is determined by the computing characteristics of the machine.

Some upper bound can usually be found for truncation error of a

particular numerical method. Roundoff error, on the other hand is

extremely complex and unpredictable.

Common numerical alogarithms used for solving first order

ordinary differential equations with an initial condition are often

based upon direct or indirect use of Taylor's expansion of the

solution function Y(X). A Taylor's series expansion of Y(X) about

some starting point X0 is:

h
2

Y(X0 + h) = Y(X0) + hf(X0, Y(X0)) + f' (X0, Y(X0))

+
3

f"(X
0'

Y(X
0
)) + .

3

(33)

where f'(X, Y(X)) = d/dX [f(X,Y(X))]

and f'(X,Y(X)) = d2/dX2[f(X,Y(X))]

If Y(X0) is specified as the initial condition, f(X0, Y(X0)) can

be computed directly from the differential equation:

dY
= f(X,Y)

dX
(26)

Similiarly,alogarithmsforsteppingfromX.to.X1+1 can be based

upon the Taylor's expansion of Y(X) about Xi:

Y(Xi4.1) = Y(Xi) + hf(Xi,Y(Xi)) + 2, f'(Xi,Y(Xi))
2

+ h
3

h
n

(n-1)
f"(X.,Y(X.)) + . . + 171-i f (X. Y(Xi )) (34)

n+1
h

f
(n)+

( C , Y ( C ) ) where C is in the interval (X.,X. )

(n+1)! 1 1+1
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Unfortunately, in the general case, the differentiation of f(X,Y)

becomes enormously complicated. Except for the simplest case,

Y(Xi4.1) = Y(Xi) + hf(Xi, Y(Xi)) 0(h2) (35)

The direct Taylor's expansion of equation (34) is not often used.

Here "0(h2)" means the maximum local truncation error is of order

2. In general "0( )" means terms of order ( ) and is used to esti-

mate local and overall truncation error.

Euler's method is a single step method that solves first order

differential equations by calculation of one derivative per step.

The general form of a first order differential equation is:

dY
dx- f(X,Y)

and Euler's alogarithm assumes the form:

Y
1
= Y

0
+ hf(X

0'
Y(X

0
))

Y.
1+1 '

= Y. + hf(X. Y(X.))
1 1 1

i>1

where h is the step size used by Euler's method.

(26)

(35a)

(35b)

There is a simple geometric interpretation for equation (35b).

The solution across the interval (X
0
,X

1

) is assumed to follow

the line tangent to Y(X) at X0. (See Figure 5) When Euler's

method is applied repeatly across several intervals in sequence,

the numerical solution traces out a polygon segment with sides

of slopes f., i = 0,1,2,3...n-1. [1]
1

The maximum local truncation error computed from a Taylor

expansion term is:

et

2
h

t
2i

fl(E,,Y(C)) where C is in the interval (X.1'
X. ) (36)
1+1
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where the local truncation error is proportional to h
2

.

A detailed error analysis using Euler's method is given in

numerical methods books [1]. The result presented without deriva-

tion stipulates that the total truncation error is proportional to

h:

e
total

= Y. - Y(X. 1) = 0(h)
I

(37)

Note that the local truncation error is of order h
2

but the total

truncation error is of order h.

Local truncation error, e, may be expressed as absolute

error lel, or as a percent of the current value of the dependent

variable, Y. (i.e., %e = le/Yl x 100, termed percent or relative

error)[5]. Once the truncation error has been specified, it is

used in estimation of the accuracy or the reliability of a numerical

solution.
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A main program, EULER, utilized Euler's method for solution

of equations (1) and (2). Program EULER called subprograms END,

RISE, DRAG, and REGULA in determination of accurate values of rise

velocity. Subprograms CONV and CONC were called to calculate con-

vective mass transfer coefficients, K
L'

and equilibrium concentra-

tions, C
AS'

respectively. Subprograms MAIN and BUBBLE were used

to enter initial bubble conditions and calculate initial bubble

characteristics, respectively.

The system of equations (1) and (2) have dependent variables

with differences in older of magnitude of approximately 10
8

.

(i.e., 10
-7

< n < 10
-9

moles and 0 < z < 450 cm). Thus use of an

absolute truncation error of magnitude e equal to 0.0001 per step

would be appropriate for equation (2) but inappropriate for

equation (1) because e is several orders of magnitude greater than

n. Use of a relative error criteria in the Euler's method program

showed that the relative error in z was always larger than the

relative error in n at a given step size in t. With this relation-

ship between relative error in equations (1) and (2), then an

absolute truncation error in z was specified with assurance that the

absolute truncation error in n was satisfactorily small. Stated

another way, equation (2) was the stiffer of the two equations and

would set the step size necessary to maintain a desired solution

accuracy.

Speece [19] had previously solved equation (1) for the

oxygen-water system by converting the differential equation into
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a finite difference equation. In addition, the bubble rise velocity

was set equal to a constant and the convective mass transfer rela-

tionship was simplified. His numerical solution represents the use

of Euler's method and unfortunately no mention was made of his

truncation error or of the error criteria used. As a result, the

validity of his solution is unknown.
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The solution of a differential equation by direct Taylor's expan-

sion of the object function is generally not practical if derivatives

of higher order than the first are retained. For all but the simplest

equations, the higher-order derivatives become quite complicated.

Fortunately it is possible to develop one step procedures which

involve only first-order derivative evaluations, but which also produce

results equivalent in accuracy to the higher-order Taylor's formulas.

These alogarithms are called the Runge-Kutta methods. Approximations

of the second, third and fourth order, (that is, approximations that

have an accuracy equivalent to Taylor's expansions, retaining terms

in h2, h3, and h4, respectively) require the estimation of f(X,Y) at

two, three and four values, respectively, of X on the interval X<X<X.
1 1+1'

All the: Runge-Kutta methods have alogarithms of the form:

Y. = 'Y.
1

+ he (X1 ., Y., h) (39)
1

where e, termed the increment function, is simply a suitably chosen

approximationoff(X,Y)ontheintervalX.1 <X<X.All the fourth-order
1+1'

Runge-Kutta formulas are of the form:

Yi+1 = Yi + h(aK1 + bK2 + cK3 + dK4) + 0(h5)

where a,b,c and d are constants and K1, K2, K3 and K4 are approximate

derivative values calculated on the interval X.1 <X<X.
1+1

Program REST solves equations (1) and (2) by the Runge-Kutta-Merson

alogari.thm which calculates five derivatives values per step. Subpro-

grams REGULA, RISE, END, and DRAG are called by REST in determination

of accurate values of bubble rise velocity. Subprograms CONV and CONC

are called by REST and used to calculate the convective mass transfer



33

coefficient, KL, and the equilibrium concentration, C
AS'

respectively:

Initial bubble conditions, the bubble's position and diameter, and a

critical time value are read into REST. The critical time, -Lc, and

time, t, are transferred into CONV for the calculation of an overall

Sherwood number (Sh
total

).

An absolute value of local truncation error, e, is specified in

REST and the Runge-Kutta-Merson subroUtine (by Dr. Eugene Elzy, Chemical

Engineering Department, OSU) used in this model adjusts the step size

to maintain the desired accuracy in both equations. An accuracy criteria

of e equal to 0.001 was used. The results obtained with this criteria

were found to be adequate.



Figure 6 34

RUNGE-KUTTA-MERSON FLOWSHEET

C Start

Set all initial
bubble conditions,
h, t

c
. Calculate

truncation error &
functional values

Is

truncation
error > tol-

Yes

Error .

small enough
to double

h?

Write out, bubble
position, moles,

mole fraction

No

Yes



35

V. RESULTS

The computer model, with and without the inclusion of the critical

time parameter was applied to the carbon dioxide-water system. Without

the inclusion of the critical time parameter, the computer model yields

results predicting much higher mass transfer rates than those shown in

data of Deindoerfer. Inclusion of the critical time parameter resulted

in predictions corresponding closely to data collected by three differ-

ent investigators. Figures 7a, 7h, 8a, 8b, 9a, and 9b show the

comparison of the computer model to the data of Deindoerfer, Garbarini,

and Datta, respectively. [2,3,6] The plots include the computer

model's prediction of bubble position and volume versus time and compares

it to the data of the three investigations.

In the three comparisons, there is an excellent agreement between

the computer model and experimental volume-time relations. However,

the agreement between Garbarini's and Datta's position-time data and

the computer model prediction of position-time is not as good as the

comparison of volume-time relations. This poor comparison with the

position-time data is undoubtedly due to the fact that both experiments

involved initial bubble sizes greater than 0.5 cm in diameter. The

model used theoretical values of drag coefficients which were lower than

experimentally obtained drag coefficients. Experimental drag coeffi-

cients of bubbles in contaminated liquid deviate from sphere values at

a bubble diameter equal to 0.3 cm, are greater than theoretical values

for bubble diameters greater than 0.3 cm.

This difference in drag coefficients results in predicted rise
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velocities greater than experimental rise velocities; thus this poor

comparison between the predicted bubble position and experimental

position should be expected. The comparison of Deindoerfer's data and

the computer model indicates the adequacy of the model for bubbles

having initial diameters less than 0.3 cm. In this case where the

initial bubble diameter was equal to 0.285 cm the agreement between

the position predicted by the model and the experimental position is

excellent. Since the model uses theoretical values of drag coefficients,

the use of the model to describe mass transfer for bubbles having an

initial diameter greater than 0.3 cm should be done judiciously.

A critical time value of 4.0 seconds for Garbarini's and Datta's

data, and a critical time of 2.0 seconds for Deindoerfer's data was

used. This smaller value o f t
c
used with the data of Deindoerfer

indicates that the water used in the Deindoerfer experiment was probably

contaminated to a higher degree than the water of Garbarini or Datta.

Lochiel and Calderbank also concluded that the results of Deindoerfer

were due to contaminated liquid [6].

Use of a critical time of 4.0 seconds indicates that removal of

all contaminants is difficult even in research situations [IA. The

mass transfer coefficient, KL, has been reported to be time dependent

even in highly purified liquids; this behavior may be due to the re-

searcher's inability to remove all of the contaminants.

The bubble's volume-time relationship or mass transfer history

is a more desirable parameter than the bubble's position and time

relationship, since it has a potential application in real processes.
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Figures 10a and 10b show the behavior of carbon dioxide bubbles

in water when the initial bubble diameter is varied. A large bubble

will rise and burst on the liquid surface, releasing a portion of gas

to the atmosphere. A bubble of a sufficiently small diameter will

virtually disappear before reaching the liquid surface. Bubbles that

are very small and disappear indicate a poor design, since no mass

transfer takes place in the liquid above the disappearance height.

To obtain a certain amount of gas transfer, there exists an optimum

bubble size that will have mass transfer occuring until the instant

the bubble just reaches the liquid surface. Figure 10a also shows

that the bubble surface/volume ratio has a significant role on the

remaining bubble. The bubble surface contracts towards the center

of the bubble at an increasing rate just prior to disappearance.
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Figure 11 plots the moles present in a carbon dioxide bubble in

water for various liquid heights. A constant initial bubble size was

used, and little difference is noticeable from this plot. However,

due to an increased concentration driving force at deeper sparger

depths, the bubble has slightly higher mass transfer rates, and a

slightly smaller diameter at any time relative to a shallower sparger

height.
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Weiner presents a correlation based on liquid physical properties

which predicts the critical Reynolds number, Rec, at which mass trans-

fer description changes from the transition equation to Higbie's

equation. The critical Reynolds number is given by:

Re
c
= 4.02 [

3

4
]
0.214

g p Pv

(38)

where y is liquid surface tension, and v is the liquid kinematic

viscosity. This Reynolds number is also the approximate value at

which the drag coefficient deviates from the coefficient predicted

for a sphere[21]. This correlation is strictly a function of liquid

physical properties; accordingly, the Reynolds number is constant

for any gas-liquid system. Weiner plots the Frossling, the transi-

tion, and the Higbie equations on log-log paper; all three equations

plot as straight lines Figure (12). Hamerton and Garner's transition

equation will yield straight lines having different slopes when

different Schmidt numbers, Sc, are used in the various gas-water

systems. When the slope of the transition equation changes, the

intersection can be calculated knowing the critical Reynolds, num-

ber, Re
c'

and the slope of the transition equation. Mass transfer

correlations based on Reynolds number can then be calculated for a

variety of gas-water systems. This allows systems such as air-water

and oxygen-water systems to be modeled.
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Pure oxygen and air are modeled by the introduction of the

appropriate physical constants: Henry's law constant, Schmidt number,

the gas molecular weight and the mass diffusivity. Program REST will

model pure and two component gases. It treats two component gases as

having one soluble and one insoluble component. Air is modeled as

initially containing 21% oxygen with nitrogen being considered as

insoluble.

Figure 13 plots a pure oxygen bubble's diameter versus time

for an initial bubble diameter of 0.25 cm and liquid height of

6 feet. After 20 seconds, the bubble volume is observed in Figure

13 to be increasing with time, whereas the volume of a carbon dioxide

bubble of an identical initial diameter always decreases with time.

This demonstrates the opposing effects of mass transfer and decreasing

hydrostatic head. Since the solubility of oxygen is approximately

twenty-five times lower than the solubility of carbon dioxide a lower

mass transfer rate for oxygen results. At these lower rates, the

hydrostatic head decrease becomes more apparent and causes the bubble

to expand.

Figure 14 plots the moles present of a pure oxygen bubble versus

time, at various liquid heights. The initial bubble diameter was con-

stant at 0.25 cm and t
c
was equal to 2.0 seconds. For this case, the

overall oxygen transfer was proportional to the ascent time or to the

liquid height. This is a result of a relatively constant bubble

diameter, surface area, and convective mass transfer coefficient. The

majority of oxygen remains in the bubble, and is lost when the bubble

burst at the surface.
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Figure 16 plots the moles of oxygen present in an air bubble

versus time at various liquid heights. The initial bubble diameter

was constant at a diameter equal to 0.25 cm and t equal to 2.0 sec-

onds. Overall oxygen transfer is again roughly proportional to the

time of bubble ascent, and the majority of oxygen remains in the

bubble prior to bursting at the liquid surface.

Figure 17 plots the moles of nitrogen present in a bubble of

air versus time at various liquid heights. The initial bubble diameter

is 0.25 cm and critical time constant is 2.0 seconds. Overall

nitrogen transfer is roughly proportional to bubble ascent time, but

the percentage of nitrogen transferred is only half that of oxygen.

This is related to the solubility of nitrogen, which is roughly one

half the solubility of oxygen.

In aeration, the desired parameter of interest for a constant

sparger or liquid height, is the percent of oxygen transferred during

the bubble ascent. For example, it may be desired to transfer 95

percent of the initial 0
2

present during the ascent. This requires

an evaluation of what the initial diameter of the bubble should be.

The percent oxygen transferred becomes the boundary condition of

differential equation (1) and solution to this boundary value problem

must be solved by guessing an initial bubble diameter and checking

the total mass transfer against the desired value of percent oxygen

transferred. This method of trial and error is called a "shooting

problem." [1]
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Figure 18 plots the percent oxygen transferred of air bubbles

in water versus initial bubble diameter. Various initial bubble

diameters were used to determine the percent oxygen transferred for

a liquid height of 15 feet and tc equal to 2.0 seconds.

Figure 15 plots the percent oxygen transferred of pure oxygen

bubbles in water versus initial bubble diameter. Various initial

bubble diameters were used to determine the percent oxygen trans-

ferred for a liquid height of 15 feet and tc equal to 2.0 seconds.

Figures 15 and 18 both show the significance of initial bubble

diameter upon the percent of oxygen transferred. As the initial

bubble diameter decreases, a greater percentage of oxygen transfer

is realized until virtually all of the oxygen has been transferred.

The significance of the bubble's surface area to volume ratio is

observed since the percent of oxygen transfer increases dramatically

as the initial bubble diameter decreases.
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VI. CONCLUSION

A model which requires a critical time aging correlation has

been developed and this model adequately describes mass transfer

from single rising gas bubbles. The initial bubble diameter has a

significant role in the overall mass transfer of a single bubble.

Future work should include provisions for multicomponent

diffusion, and extension of the critical time concept to include

bubble swarms, and mass transfer during bubble formation.
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Notation Used
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Unit Dimensions

a area through which mass transfer occurs cm
2

L
2

C
AS

concentration of A in equilibrium with mole/cm
3

M/L
3

A in gas bubble

CA
c.

concentration of A in bulk liquid mole/cm
3

M/L
3

C
D

drag coefficient dimensionless

d bubble diameter cm L

D
AB

diffusivity of A in B cm
2
/sec L

2
/t

e truncation error

f function of

g gravitational constant cm/sec
2

L/t
2

gr grams gr M

d3oLgAeL
Gr Grashof number

2
dimen-

P sionless

integration step size

H - Henry's law constant mole frac- Lt
2
/M

tion/ATM

K
L

convective mass transfer coefficient cm/sec L/t

n moles moles

P bubble internal pressure ATM M/Lt2

PATH
atmospheric pressure ATM M/Lt

2

P. partial pressure of component i ATM M/Lt
2
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R ideal gas constant
ATM-cm

3

g-mole-°K

r bubble radius cm

dV
o

Re Reynolds number dimen-

sionless

Sc Schmidt number
v dimen-
D
AB sionless

K d
Sh Sherwood number _L._ dimen-

AB sionless

t time sec t

T absolute temperature °K T

t
c

critical time sec t

V bubble volume cm
3

L3

V
o

bubble rise velocity cm/sec L/t

x mole fraction dimensionless

X independent variable

Y dependent variable

z bubble position cm(ft) L

Greek Symbols

P - average density of static head gr/cm
3

M/L
3

liquid density gr/cm
3

M/L3
3

PL

P bubble density gr/cm3 M/L
3

g
2

Y surface tension dynes/cm M/t

v kinematic viscosity cm
2
/sec L

2
/t

P viscosity gr/cm-sec M/Lt

A difference

_

a correlation factor dimensionless
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APPENDIX B

Surface Tension Effects on a Bubble's Internal Pressure

For a spherical bubble, the internal pressure is [17]:

or

P = (P
A

+ p gz) +
2
r

y
, where y is surface tension r is

,
AP

r

the bubble radius

The surface tension of water is:

y = 71.97 dynes/cm @ 25°C [20]

Conversion from dynes/cm2 x 9.869 x 10-7 = ATM

Letting r = 0.005 cm, d = 0.01 cm

2(71'9AP
3

7) = 2.88 x 10 dynes /cm2

5 x 10

AP = 28.4 x 10
-3

ATM

AP = 0.0284 ATM

This AP will be negligible compared to the total hydrostatic

head, where total head is: 1 1.4 ATM.



APPENDIX C

Bubble Force Balance

For an object where total drag is due to pressure as well as

frictional effects [22].

F
pLVw2

=
A

C
D 2

p

A maximum projected area
P 4

Trd
2

F total buoyant force

(Al)

= (pL pg) g X bubble volume

Trd
3

(PL Pg) g 6

Substituting into the left hand side of Al:

(PL Pg) Trg d3/6

7d2/4

2
V

= CDPL
2

(PL- pg)g d 4 V
2

=
6

CDpL
2

4d
(PL _ p

g
)g

3 CD PL

4d (PL Pg)g

3 d CDPL

= V
co

1/2

= V

2

(10)
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APPENDIX D

Experimental Correlations of Forced Convection Mass Transfer from Single Spheres [18]

Table 1

Equation Range of Variables Reference

Sh = 2 + 0.55 Re
1/2

Sc
1/3

Sh = 2 + 0.6 Re
1/2

Sc
1/3

Sh = 2 + 0.54 Re
1/2

Sc
1/3

Sh = 2 + 0.95 Re
1/2

Sc
1/3

Sh = 2 + 0.575 Re
1/2

Sc
0.35

Sh = 2 + 0.79 Re
1/2

Sc
1/3

2 < Re < 800

0.6 < Sc < 2.7

2 < Re < 200

0.6 < Sc < 2.5

50 < Re < 350

Sc = 1

100 < Re < 700

1200 < Sc < 1525

1 < Re

1 < Sc

20 < Re < 2000

Frossling (1938, 1940)

Maxwell & Storrow (1957)

Ranz & Marshall (1952)

Hsu, Sato, & Sage (1954)

Garner & Suckling (1958)

Griffith (1960)

Rowe, Claxton, & Lewis (1965)



KL= 2

APPENDIX E

Penetration Model for a Bubble

D
AB

eXp

1/2

Higbie Penetration Model [9]

For a bubble t
exp

bubble diNmeter/ bubble velocity

texp

K
L

= 2

d/V0

D
AB

V
o

ird

-1/2

This may be converted to the dimensionless Sherwood Number, Sh

K
L

d

D
AB

Vod

2

2

2

D
AB

V
o

d

V
o

d

D
AB

V d v
0

TT V
DAB

Since = Re and v = Sc,
D
AB

Sh = ReSc)
1/2

Sh = 1.13(ReSc)
1/2

1/2

d

D
AB

1/2

v
1/2

v
1/2

1/2

(14)
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APPENDIX F

Regula-Falsi Technique

68

This method is used to solve for the root of an equation:

ie. f(X) = 0

Solve for X.

For the terminal velocity of a bubble, a function may be defined as:

4d(pcp)g
0 [

3CD
]

pL

(10)

Trial and error involves guessing a value of V0, determine CD,

the drag coefficient and solving for a subsequent V0. If the

guessed V
0
is equal to the calculated V0, then that V

0
is correct.

Defining:

4c1(p -p
g
)g 1/2f(V

o)
=

[
L - v

0
(assumed)

3C p

f(V0 ) = 0, when the correct value of V
0

is inserted.

Two values of VL and Vr are set such that the

Sign f(VL) / Sign f(Vr)

or Sign f(VL) < 0

Sign f(Vr) > 0

(A2)

Two similiar triangles are formed, and the points [VL, f(VL)



[Vr, f(Vr)] forming a straight line, with f(V
2

) = 0. The straight

line equation for [VL, f(VL)], [V2, f(V2)], [Vr, f(Vr)] is:

f(V2) f(VL) f(Vr ) f(VI)

(A3)

V
2

V
L

Vr VL

But f(V2) = 0 for straight line.

Solving for V2 at that point:

0 f(V,) f(Vr ) f ( V
L )

V
2

V
L

Vr VL

Vr- VL
f(VL) [ ] = V

2
V
L

f(Vr) f(VL)

V
r
f(V

L
) + V

L
f(V

L
)

+ V
L

= V
2

f(Vr) f(VL)

Vrf(VL) + VLf(VL) + VLf(Vr) VLf(V,u )

= V2

f(Vr) - f(VL)

V
L
f(V

r
) V

r
f(V

L
)

V
2

f(Vr) f(VL)

(A4)
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Values for VL and V
r

are determined by comparing the desired bubble

diameter to values of diameter established in SUBROUTINIi END (D,VL,VR).

Previous hand calculations show how bubble velocity varies with

diameter. Using these hand calculations as a rough estimate,

values of VL and V
r

are determined by picking bubble diameters, less

than and greater than the desired bubble diameter from figure 2.



V
2

is calculated by the derived equation. From the velocity

function value of V2, logic is employed to reassign the value

of V
2

as either V or. V. The subsequent straight lines have

V0 intercepts closer to the correct value of V0. This iteration

is repeated until the velocity function is close to zero. See the

flowsheet for Regula-Falsi on the following page.

70



Flowsheet 71

REGULA-FALSI LOGIC

_ 1/2

4cig (PL Pg)

f(V0) = 0 =
3 CDpi,

pick V
L
such that f(VL) < 0

pick V
r
such that f(Vr) > 0

Yes

- V
o guess

V
L

f(V
r)

V
r

f(V1)
V
2

=
f(Vr) f(V )

(A2)

Yes

V
2

Return

No

V
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Error Criteria Euler's Method [5]

For a function Y(X), the definition of Taylor's series expansion

Y(X) about Xi is

h
2

Y(Xi4.1) = Y(Xi) + hf(Xi, Y(Xi)) + f'(Xi, Y(Xi)) + .

h

n!

n
f
(n-1)

h

(n+1)n+1

f

!

(n)

(X., Y(X.)) + ( Y(0)
1

where in the interval (X.
1+1'

Xi) (34)

Euler's approximation of Y(Xi4.1) is:

Y(Xi4.1) = Y(Xi) + hf(Xi, Y(Xi)) (35b)

and the sum of the remaining terms of the Taylor's expansion of

Y(X) represents the error of the approximation. Since Taylor's series

converge fairly rapidly, the bulk of the error can be represented by

the first term of the neglected series or:

e = 112-
2!

(AS)

expanding the function f' by Taylor's series (approximation of a

derivative):

f(Xi+1, Y(Xi+1)) f(Xi, Y(Xi))

fi =

.

+1 1
f.

f'

f1

h

substitution of (AG) into (A5) yields:

(AG)
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h2
fi+1

h

fi

e
2!

h
[f.e

2! 1+1 fib (A7)

The absolute truncation error, lel, is simply the absolute value of

the right hand side of equation (A7) and functional values of fi+1

and f. are evaluated by program EULER and equation (A7) estimates
1

the local truncation error. For equations (1) and (2) this

truncation error is then compared to a desired accuracy, and the

step size, h, is adjusted accordingly to maintain the desired

accuracy.



APPENDIX H 74

Natural Convection Effects

Natural convection effects are negligible compared to forced convection

if the expression holds: [18]

Re > 0.4 Gr
1/2

Sc 1/6

where Gr is the Grashof number and:

Gr =
u2

d
3
poApi,

At 25°C, the density of pure water is:

p = 0.9964 gr/cm
3

(A8)

and the density of carbon dioxide-water solution at a partial

pressure of one-two ATM is: [15]

= 0.997
PL

or ppL is equal to:

AP
L

= 0.997 0.9964 = 6.0 x 10
-4

gr/cm
3

The remaining physical constants are:

u = 8.93 x 10-3 gr/cm sec

g = 980. cm/sect

Solving for Gr yields:

Gr =
d
3
(0.9964)(980)(6 x 10

-4
) (cm

3
)(gr/cm

3
)(cm/sec

2
)(gr/cm

3
)

(8.93 x 10
-3

)

2
(gr/cm - sec)

2

or: Gr = 7346 d
3
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The approximate range of d is:

0.05 4 d 5 0.35 cm

Checking the Gr number at the extremes of the range:

d = 0.35 Sc = 432 d = 0.05

Gr = 7346 (0.35)
3

Gr = 7346 (0.05)
3

Gr = 315 Gr = 0.918

A bubble rise velocity yields the corresponding Re:

d = 0.35

Re = 1112

From the relationship of A8:

d = 0.05

Re = 19.75

1112 > 0.4(315)
1/2

(432)
-1/6

19.75 > 0.4(0.918)
1/2

(432)
- 1 /6

1112 > 2.57 19.75 > 0.139

Then natural convection effects are negligible compared to forced

convection.



APPENDIX I

Gas-Water Physical Properties

Gas-water diffusivities @ 25°C [16]

Carbon dioxide

@ 27°C

Oxygen

Nitrogen

1.96 x 10
-5

cm
2
/sec

(1.987 x 10
-5)*

cm
2
/sec

2.50 x 10
5

cm
2
/sec

1.90 x 10
-5

cm
2
/sec

Kinematic viscosity water [22]

@ 25°C 8.668 x 10
3

cm
2
/sec

@ 27°C (8.593 x 10
-3

)* cm
2
/sec

Schmidt numbers v/D
AB

Sc Sc
1/3

8.593 x 10
-3

cm
2
/sec

Carbon dioxide = 432* 7.559

1.987 x 10
-5

cm /sec

8.668 x 10
-3

cm
2
/sec

Oxygen = 346 7.020

2.50 x 10
-5

cm /sec

8.668 x 10
5 2

-3
cm

2
/sec

Nitrogen 456 7.698

1.90 x 10 cm /sec

Henry's law constants: 25°C (mole frac/ATM) Reference

Carbon dioxide 6.08 x 10
-4

[11]

Oxygen 2.30 x 10
-5

[10]

Nitrogen 1.14 x 10
-5

[10]

*
These values were used in the computer model instead of the

values listed @ 25°C.
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FUNClION CONV(VFP( -E)
rATA (SC=3).)/(rIFF=2.5E-5)
EAT() (MU=8.593-3)
HEAL. MU

C

'C THIS FUNGI ION Cf.LCULP.1FS 1,1S.(3 IIIPNSFPF COFF
C RASED UPON EI1ME+ FHOSSLIN(- FIN OH Th1'NSI1I0N YON
C AVE' USES A FUJIT FACTOR rPSEr UPON IHE ChI1ICAL
C TIME CONS1ANI
C

C TRANSITION EON
C

sm=sc**.33333
FE = VEL*r/MU
IFCHE.LE.(41.)C0 10 20
SHERI = 0.11*SV*HE

C

C FROSSLINO EON CALCULATION
C

SHEFF = 2. + 0.55 iSM*S0h1(PF)
IY0'.(-1.P( -F)1 -0 TO 22
CON\ =«1.-Y/P(-F)*SHEH1+X/A(E*SHFIAF)*IIFF/I

22 CONki = SHF1,F*PIFY/P
hFlUEN

20 ShFh=2. + 0.55*!:,,rvi*sGhl(hF)
CONY = SHFh*FIFF/P
HFTUhN
ENT

FUNCTION CONC(Z,PAhT)
!Wit, (PhOP=0.05527(5),(HENHY=2.3E-5)

C

C

C TIS FUNCTION CALCULATFS THE FOILIPhIUM CONC. OF
C CO2 IN 1,ATEh FOE A (=IifFN 1-1,ESSUHE. USES HENRYS

PNI) CONC UNITS IN MOL/CM*3
C

PHESS = CZ + 34.)/34.*PART
FRAC = HENP(*PhESS/(1.-HENPI*PhESS)
CONC = FhPC*PHOP
HETUHN
ENE
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UNCTION PISF(P,UEL)F
REAL moL,Mv,mm
COMMON PRESS
DATA((RAV=9.81.),(MI,=3P..),(MU=8.593E-3),(TEMH=299.).
1,(cAs=R2.05),(PI=3.14159),(ROL=.995)
VO1=PI*F**3/6.
MOL=PhESS*VOL/(-AS/TEMP
HOCAS=MOL*M/VOL

C

C THIS FUNCTION CALCULATES THE TERMINAL VFLOC11Y FUNCTION
THF FORM SUITAPLF FOh THE. )F( -ULA FALSI THFCHNICUE

C soLvii\T THE SOLUIION OF AN FGUATION
C

C

REN=D*VEL/MU
1'ho1 =L1.*(- RAV/(3.*ROL)

HISF=SGRT(PROP*P*CROL-ROCAS)/ERAC-CREN))-VEL
hETURN
END

FUNCTION Fl7PC-(P)
DIMENSION hF(12),CE'(12)
rP1P(hF=-0.301V3C,C.0/0.30103010.69W-)W,1.0,
11.3111030,1.693)70,2.0,2.31030,2.69897t,3.0,3.301030)
FA1A(CY=1.698970,1.3i12423,1.14(31219,0.5125t3,
10.6283W),O.L8h3) 0,0.136721,0.0,-0.151811,-0..3016 030,
1-0.371611,-0.4067 1L0

C
C CPLCLP,TF FhP-C COFFF. F LINFAh INTERELPTION YO OF [RAC VS
'C HEYNOLPS NO. OF FA1A FOR A SOLIL SI -HERE
C

IF(A.LT.0.5)C0 10 30
1iL=P,LOCIM(A)
DO 20 F=1,12
IF(RL.LT.RE(H))(-0 TO 15

20 CONTINUE
IFCRA.(=T.2000.)(0 TO 25

15 FRACr--(RL-RE(R-1))/(RF(E)-RE(E-1))
FOC-=CF(E-1)-FRAC*(CD(E-1)-CL(K))
mipc.10.**pm.
HFTUhN

30 PRAC,:=2/1./HA
RE1UhN

25 PRA(-=0.392'
1iFlURN
END
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SUIMOUTINE ENP(1),VL,Vh)
v(10),J-Ir.(10)

rAlt,mp=0.0,.01,.(125,.(ftb.1).2,.3,.h,.!=.6)
C

C THIS FUNCTION CALCULA1ES AN IN111(1. U.TOCUPI SUITABLE F011:

C THE L1VITS OF THE HE( -ULA FALSI iECHNIOUE

C
IF(D.LE.0.025)E0 TO 3C)
DO 15 d1=3,10
IF(T.LF.TIACUI))C0 TO 25

15 CONTINUE
I.HI1F(61,95)D

95 FOI.c.MA1(10X.,'LIAVElEli OUTSIDE OF DATA HAIL; -( -F LIA=1..FH.4)

IIKTUhN
25 VL=V(01+1)

IF(LIA(JI)D(T.0.03)VL=V(dI)
VH=V(JI-1)
IF(PDIA(LII-1).LT..02)V1c=V(j1-2)
EFIU/iN

30 Vh=0.001
VL=3.
HETUHN
END

FUNCTION liECULA(D)
DATACTOL=.00001)

C

C THIS FUNCTION CALCULATES A BUBBLES TEHMINAL. VELOCITY
C BY THE HECULA FALSI TECHNIOUE
C

C

CALL ENNEJVL,V10
16 VEL2=CVL*PASE(D,V1)VH*IASE(D,VL))/(HISE(P/VH)

1HISECP,VL))

IF(HISE(F,VEL2).LT.(1..AND.IIISYCL,VL).LT.0..01i.
1HISE(D,VEL2).C1.0..AND.MSECD,VL).(-T.0.)C0 TO 10
VH=VFLP
CO TO 15

10 VL=VEL2
15 IF(ABS(hISE(1T,VEL2)).LT.0.00001)C0 I020

CO TO 1(
20 hECULA = VFL2

14..TUliN

END



H= .1
D= .285
Z= 4.92
AGE=2.
PART1.

TIME DIAMETER HEIGHT VOLUME MOLS MOL FRAC

0 .28500 4.9200 1.212E-02 5.675E-07

.1000 .27579 4.8232 1.098E-02 5.129E-07 1.00000

.3000 .25835 4.6339 9.029E-03 4.196E-07 1.00000

.7000 .22774 4.2723 6.184E-03 2.847E-07 1.00000

1.0000 .21119 4.0240 4.932E-03 2.256E-07 1.00000

1.5000 .19063 3.6314 3.627E-03 1.642E-07 1.00000

2.0000 .17896 3.2663 3.001E-03 1.345E-07 1.00000

3.0000 .16193 2.5742 2.223E-03 9.760E-08 1.00000

4.0000 .14430 1.9381 1.573E-03 6.801E-08 1.00000

5.0000 .12595 1.3612 1.046E-03 4.449E-081 1.00000

6.0000 .10664 .8469 6.349E-04 2.661E-08 1.00000

7.0000 .08613 .4067 3.345E-04 1.385E-08 1.00000

8.0000 .06375 .0515 1.356E-04 5.555E-09 1.00000

9.0000 .03558 -0.2153 2.358E-05 9.564E-10 1.00000

FN17, OF FORTRAN EXECUTION
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