

AN ABSTRACT OF THE THESIS OF

Rajeev K. Pandey for the degree of Doctor of Philosophy in Computer Science

presented on August 28, 1998.

Title: LacEDAemon: A Programming Environment for the

Multiparadigm Language Leda.

Abstract approved:

Timothy A. Budd

Multiparadigm programming languages are a recent development in the realm

of programming languages. A multiparadigm programming language allows the

use of multiple, di�ering programming paradigms without departing from a single,

uni�ed linguistic framework. Multiparadigm programming languages are claimed to

have bene�ts to both pedagogy and complex application creation. The bene�cial

claims of multiparadigm languages have yet to be validated. The availability of a

programming environment would encourage and expedite academic and industrial

validation.

Creating a programming environment is considered an extremely labor-

intensive activity. Further complications arise from the fact that programming

environment creation is an experimental activity: the component mix that best

expedites program development in a new programming language cannot be pre-

dicted in advance. As a result, few new languages are ever veri�ed in the context

of a supportive programming environment. Leda, a unique programming language

that includes the functional, imperative, logic and object-oriented paradigms, is at

this juncture.

This thesis describes the structure of an environment framework that allows

for experimental study of the necessary components of a multiparadigm program-

ming language environment. New tools and techniques, as well as changes to tradi-

tional tools and techniques are required to allow programmers to abstract e�ectively

across paradigms. This research examines the topic by creating LacEDAemon, a

testbed programming environment for the multiparadigm programming language

Leda, within the framework of a variety of integrated, cohesive tools. LacEDAemon

relies on a hypertool-based toolkit integration framework architecture that a�ords

both loose and tight control integration, as well as data integration, using existing,

o�-the-shelf tools written in a variety of programming languages.

Along with demonstrating the viability of hypertool integration as a low-cost

approach for constructing programming environments, LacEDAemon provides a ve-

hicle for: determining an e�ective multiparadigm programming toolset, studying

multiparadigm program design, conducting studies of multiparadigm program visu-

alization, exploring di�erent strategies for software reuse, and examining the merits

of conducting all programming activity within the database-centered environment

approach. This environment also provides support for investigations in the areas

of multiparadigm algorithms, multiparadigm software metrics, and multiparadigm

program comprehension. Various techniques for evaluating integrated environments

are also applied to LacEDAemon.

LacEDAemon: A Programming Environment for the

Multiparadigm Language Leda

by

Rajeev K. Pandey

A THESIS

submitted to

Oregon State University

in partial ful�llment of
the requirements for the

degree of

Doctor of Philosophy

Completed August 28, 1998
Commencement June 1999

Doctor of Philosophy thesis of Rajeev K. Pandey presented on August 28, 1998

APPROVED:

Major Professor, representing Computer Science

Chair of the Department of Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Rajeev K. Pandey, Author

Approved by Committee:

Major Professor (Timothy A. Budd)

Committee Member (Bella Bose)

Committee Member (Curtis R. Cook)

Committee Member (Paul Cull)

Graduate School Representative (Rod A. Harter)

Date thesis presented August 28, 1998

ACKNOWLEDGMENT

Without the contribution of a number of people, this work would have not

have been possible. First and foremost, the members of my Ph.D. committee. I am

very grateful for the support, patience and encouragement of my advisor Timothy

Budd, who taught me much about both languages and life. To Paul Cull, for always

being there for me. To the other members of my committee{Bella Bose, Curtis

Cook, and Rod Harter{for their assistance. Other faculty members whose help

and encouragement was invaluable include Margaret Burnett, Lawrence Crowl and

David Sandberg. Michael Poole at Montana Tech started me out on this journey.

A number of individuals at my various employers over the years pro-

vided much mentoring and opportunity for growth. At Hewlett-Packard: Sankar

Chakrabarti, Dennis Harms, Bob Miller, Jacek Walicki and Ted Wilson. At Intel:

Clark Nelson and Peter Plamondon. At Sun Microsystems: James Kempf, Jim

Mitchell, and John Rose. At Western Oregon University: John Marsaglia.

To Tom Bowler, Timothy Justice, Brian Maillard and Nabil Zamel, for being

the best of friends, colleagues, and participants in long discussions.

Finally, to my family. My wife Sheri has been a constant source of love and

encouragement throughout my graduate career. To the stress-reducing presence of

our feline and canine children Pu�n, Leopold, Sunkist, Opus, Nova and Katie. To

my brother Sunjeev, his wife Arlene, and children Sonya and Sophia, for providing

me with a home away from home. To my mother, for her love and unwavering belief

in me. To my father, for his teachings and example.

May I someday be worthy of such love and support.

TABLE OF CONTENTS

Page

1 INTRODUCTION : 1

1.1 Multiparadigm Programming Languages : 3

1.2 The Multiparadigm Programming Language Leda : : : : : : : : : : : : : : : : : : : 5

1.3 Programming Environments : 8

1.4 The LacEDAemon Programming Environment : 10

1.5 Tcl/Tk, the Hypertool Concept and Software Reuse : : : : : : : : : : : : : : : : : 12

1.6 What's In A Name: LacEDAemon and Leda : 14

1.7 Thesis Outline : 15

2 MULTIPARADIGM PROGRAMMING AND LEDA : 17

2.1 Never Mind the Paradigm: Multiple Paradigms vs Multiparadigm : : : : 17

2.1.1 The Imperative Paradigm : 18

2.1.2 The Object-Oriented Paradigm : 19

2.1.3 The Functional Paradigm : 22

2.1.4 The Logic Paradigm : 24

2.2 Where Should We Teach a Multiparadigm Language?: : : : : : : : : : : : : : : : 26

2.2.1 The Graduate Level : 27

2.2.2 The Compiler Construction Course : 27

2.2.3 The Programming Languages Course : : : : : : : : : : : : : : : : : : : 29

2.2.4 The CS1/CS2 Courses : 30

2.3 Conclusions : 31

TABLE OF CONTENTS (Continued)

Page

3 PROGRAMMING ENVIRONMENTS : 32

3.1 Classi�cation of Environments : 33

3.2 Language-Centered Environments : 34

3.3 Structure-Oriented Environments : 35

3.4 Toolkit Environments : 37

3.5 Method-Based Environments : 39

3.6 AI Programming Environments : 46

3.7 Constructing Programming Environments : 47

3.8 Communication-Based Environments : 47

4 AN OVERVIEW OF LACEDAEMON : 53

4.1 Introduction : 53

4.2 Integration : 53

4.3 Tool Integration Frameworks : 55

4.4 Tasks and Tools : 58

4.5 The Hypertool Architecture Of LacEDAemon : 59

4.5.1 Messaging In Tcl/Tk : 61

4.5.2 Embedding Interpreters in Tools : 63

4.5.3 Combining Message and APIs : 68

4.6 LacEDAemon Messages : 68

4.6.1 Request Messages : 70

4.6.2 Response Messages : 72

TABLE OF CONTENTS (Continued)

Page

4.6.3 Noti�cation Messages : 72

4.7 Extending LacEDAemon : 75

5 THE LACEDAEMON PROGRAM DATABASE : 77

5.1 Introduction: PostgreSQL : 77

5.2 Using Postgres as the LacEDAemon repository : 78

5.2.1 Representing LacEDAemon Participant Information : : : : : : : : 79

5.2.2 Representing Leda Programs : 80

5.3 The Leda Program Information Extractor : 83

5.4 An Example : 85

5.5 A Revision Control System : 86

5.6 Persistant Objects : 87

6 THE PRETTYPRINTER : 89

6.1 Prettyprinting : 89

6.2 First Class Functions in Leda : 90

6.3 The Leda Prettyprinter : 90

6.4 An Example : 92

6.5 Database Directed Prettyprinting : 94

7 THE PROGRAM ANIMATOR : 95

7.1 Leda does the Polka : 95

TABLE OF CONTENTS (Continued)

Page

7.2 Using Polka/Samba to Present Leda Execution : 97

7.3 Mediators: Addressing Impedance Mismatch in Tools : : : : : : : : : : : : : : : : 98

7.4 Algorithm Animation in LacEDAemon : 101

8 THE PROGRAM EDITORS AND BROWSERS : 104

8.1 A Customized Editor for Leda : 105

8.2 A Smalltalk-Like Browser : 107

8.3 Depicting Class Hierarchies : 109

9 LITERATE MULTIPARADIGM PROGRAMMING : 113

9.1 CWEB : 115

9.2 Adapting Literate Programming to LacEDAemon : : : : : : : : : : : : : : : : : : : 115

10 DEBUGGING MULTIPARADIGM PROGRAMS : 117

10.1 Debuggers : 117

10.2 Augmenting The Leda Interpreter : 119

10.2.1 Adding Breakpointing : 120

10.2.2 Single-Stepping Through Programs : 120

10.2.3 Examining Symbol Values : 121

10.2.4 Watchpointing : 121

10.2.5 Fault Detection : 123

10.3 Composing Interactions With LacEDAemon Tools : : : : : : : : : : : : : : : : : : : 123

TABLE OF CONTENTS (Continued)

Page

11 EVALUATION : 125

11.1 Evaluation of LacEDAemon : 125

11.1.1 The SMP Model and IFCS Taxonomy : : : : : : : : : : : : : : : : : : : 125

11.1.2 Tool Integration in LacEDAemon : 127

11.1.3 The EBI Framework : 129

11.1.4 Comparing Inter-Tool Communication : : : : : : : : : : : : : : : : : : 130

11.1.5 The CEARM Model : 131

11.2 Future Directions : 137

12 CONCLUSIONS : 139

12.1 Contribution of This Work : 139

12.2 Assessing Reuse in LacEDAemon : 144

12.3 Conclusions : 146

BIBLIOGRAPHY : 147

APPENDICES : 164

APPENDIX A Leda Grammar : 165

APPENDIX B Leda Program to Simulate a Turing Machine: : : : : : : : : : : : : : :173

LIST OF FIGURES

Figure Page

1.1 The general-purpose multiparadigm language Leda. : : : : : : : : : : : : : : 6

2.1 Imperative Programming In Leda. : 18

2.2 Object-Oriented Programming In Leda. : 21

2.3 Functional Programming In Leda. : 22

2.4 Logic In Leda. : 25

2.5 A Multiparadigm Compiler Model. : 28

3.1 The ECMA/NIST \Toaster" Model. : 43

4.1 The Three Dimensions of Integration. : 55

4.2 Idealized Integrated Tool. : 56

4.3 A Generalized LacEDAemon Hypertool. : 60

4.4 The lc.tcl Script. : 62

4.5 The send msg.tcl Script. : 62

4.6 Embedding a Tcl Interpreter. : 64

4.7 The Spinbox Application. : 65

4.8 Leda Code for the Spinbox. : 66

4.9 Leda Code for Graphics Library. : 67

4.10 Messaging in the LacEDAemon Environment. : : : : : : : : : : : : : : : : : : 69

6.1 Currying In Leda. : 91

6.2 Currying Example, Prettyprinted. : 93

7.1 An Example Leda Program. : 97

7.2 Leda Statement Trace Output. : 99

7.3 Samba/Polka Animation Commands. : 100

7.4 Execution Visualization in LacEDAemon. : 101

LIST OF FIGURES (Continued)

Figure Page

7.5 Execution Visualization using Samba. : 102

8.1 The Leda Major Mode in Emacs. : 106

8.2 The Leda Menu in Emacs. : 107

8.3 Prototype of a Smalltalk-like Browser. : 108

8.4 Storing Class Hierarchy Information. : 110

8.5 Graphical View Of Class Hierarchies. : 111

8.6 Class Hierarchy Browser. : 112

10.1 Single Stepping in Leda. : 122

11.1 Mapping LacEDAemon Tools on the Three Dimensions of Integration. 129

11.2 The Request send event in LacEDAemon. : 132

11.3 The Response send event in LacEDAemon. : 133

11.4 The Response receive event in LacEDAemon. : : : : : : : : : : : : : : : : : : 133

11.5 Conceptual Environment Architecture Reference Model. : : : : : : : : : : 136

11.6 Mapping of LacEDAemon to CEARM. : 136

LIST OF TABLES

Table Page

4.1 LacEDAemon Request Messages : 71

4.2 LacEDAemon Response Messages : 73

4.3 LacEDAemon Noti�cation Messages : 74

5.1 The LacEDAemon Participant Relation : 80

5.2 The Project Relation : 80

5.3 The File Relation : 80

5.4 The Location Relation : 81

5.5 The Includes Relation : 81

5.6 The Source Relation : 81

5.7 The Class Relation : 81

5.8 The Declaration Relation : 81

5.9 The Declaration Category Call : 82

5.10 The Declaration Category Function : 82

5.11 The Declaration Category Member : 82

9.1 The Documented Project Relation : 114

9.2 The Document Relation : 114

9.3 The Commented Source Relation : 114

11.1 LacEDAemon Explicit CEARM Mapping : 135

12.1 Reuse in LacEDAemon: Lines of Code : 145

LACEDAEMON: A PROGRAMMING ENVIRONMENT FOR THE

MULTIPARADIGM LANGUAGE LEDA

1. INTRODUCTION

Since the advent of programming languages, programmers have been cre-

ating tools to expedite the programming process. These tools have evolved into

collections of tools, or programming environments. The next logical step is to gain

ampli�cation in the power of a tool via the presence of other tools, or integration.

Integrated programming environments attempt to provide a cohesive toolset to aid

the programmer in constructing, correcting and comprehending programs. Having

environment support available has become requisite in both academic and industrial

settings, albeit for di�erent reasons.

However, tools are software, and creating software is a di�cult process. \Soft-

ware Engineering Environments are large and complex systems and current experi-

ence dictates that it is unwise to build them from scratch" [141]. Indeed, Knudsen et

al. [102] note that \developments of environments are very large tasks, comparable

more with developing operating systems than compilers..." One viable approach is

to create an integration framework, within which a variety of existing tools can be

integrated. While some instances of these integration frameworks exist, they have

been applied to few languages. In most part, this is due to the large programming ef-

fort required to adapt existing tools to these complex integration frameworks. How

to build integrated software development environments is still an open and very

active area of research [102].

2

In the past decade, a radical new approach in programming languages,

called multiparadigm programming languages, has integrated disparate program-

ming paradigms within a common linguistic framework. No environment for these

languages exists, and the value of multiparadigm languages is still in question. Many

other experimental languages are to be found in the same situation: without a suite

of tools to provide programmer support, their application in either industrial or

academic settings remains a di�cult issue1.

Here we describe and demonstrate a new method of creating a tool inte-

gration framework, as well as integrating existing tools into a framework, for a

programming environment for a multiparadigm programming language called Leda.

The somewhat unique position of the Leda language in the realm of multiparadigm

languages is indicated via a short introduction to Leda also described here.

The primary contribution of this dissertation to the �eld of software engi-

neering is to describe and demonstrate a new approach to creating a tool integra-

tion framework. By embedding scripting language interpreters within existing tools

(which are then called hypertools), we provide a powerful and low-cost approach for

various forms of integration. The primary contribution of this dissertation to the

�eld of programming languages is to demonstrate the hypertool integration frame-

work approach in creating a programming environment for the multiparadigm pro-

gramming language Leda, enabling more detailed investigation of the implications of

multiparadigm programming than would otherwise be possible. LacEDAemon, the

resulting hypertool integration framework-based programming environment for the

multiparadigm programming language Leda, also provides a testbed for the design

1The Language List, version 2.4, January 1995 (http://cuiwww.unige.ch/langlist),

identi�es over 2350 di�erent programming languages.

3

and deployment of new programming tools. The general hypertool approach also

provides a mechanism for other experimental programming languages to more eas-

ily develop an associated programming environment than otherwise possible. The

integration of a wide variety of tools to form a single application via a messaging

framework and common graphical interface is also applicable to domains other than

programming environments.

In the next few sections we brie
y examine some of the key aspects to this

thesis: multiparadigm programming languages, the multiparadigm language Leda,

programming environments, and the hypertool concept. We conclude with an out-

line of the thesis.

1.1. Multiparadigm Programming Languages

The term paradigm was popularized by Thomas Kuhn, whose historical ac-

count on scienti�c progress The Structure of Scienti�c Revolutions [109] employed

the term to describe a prevailing view of the world held by scientists. Peaceful

interludes of scienti�c progress were punctuated by paradigm shifts{revolutions in

scienti�c thought that occurred when the prevailing model could no longer support

new discoveries, and a new paradigm had to be originated to incorporate these new

observations.

The term paradigmwas introduced to computer science via R.W. Floyd's 1978

Turing Award Lecture [61] in which he noted \programming languages typically

encourage use of some paradigms and discourage others." When used in the context

of programming languages, paradigm also refers to a view of the world, but in this

case the world view is imposed on the user of the language due to language features.

In the realm of computing, multiple, di�ering paradigms coexist in the sense that

4

the use of di�erent languages requires the user to view the world di�erently, and in

terms of constructs provided by the language.

A multiparadigm programming language is a system that incorporates two

or more of the conventional programming paradigms [77], or a linguistic framework

which does not force the programmer into thinking or working in only one model

[24]. The January, 1986 issue of IEEE Software was a special issue devoted to

multiparadigm languages, and there is presently considerable research interest in

the area.

Several approaches have been pursued in the creation of multiparadigm lan-

guages:

� augmented languages

Augmented languages add additional paradigms to an existing language to per-

mit users to utilize a new programming style without learning a completely

new language. The additional paradigm usually represents a natural progres-

sion or evolution of the language, based on experience. For example, C++

[179] extends C [100] with support for object-oriented programming.

� hybrid languages

Hybrid languages typically extend an existing functional or logic programming

language by embedding other paradigms. The primary motivation for these

languages is to provide a wide range of standard programming and knowl-

edge representation paradigms for solving complex problems in areas such as

arti�cial intelligence [121]. Loops [176] is an example of this type of language.

� general-purpose languages

General-purpose multiparadigm languages seek to �nd the \ideal" blending of

5

several major paradigms in order to provide a more expressive programming

vehicle for general problem solving. Leda [33] exempli�es this approach.

Most existing multiparadigm programming languages are not general-

purpose, but belong to the augmented or hybrid variety, and are a result of the

lack of very speci�c language features deemed necessary for the solution of a speci�c

problem. Rather than attack the problem with an inelegant solution, the language

is extended in one of a variety of ways. Here there is a close a�nity between hybrid

multiparadigm programming languages and a particular problem, since the language

is essentially designed with the speci�c application in mind. While these languages

have de�nite advantages in the context of a speci�c problem, they may not easily

generalize to solving di�erent problems. Combining the foundational paradigms to

create languages like Leda has been identi�ed as the next step in general-purpose

language evolution [67]:

All the major programming language styles - procedural, functional
and logical - have application domains where they are particularly e�ec-
tive. This suggests that general-purpose programming languages must
embrace a number of these di�erent approaches. Consequently, it seems
likely that the future of the major general-purpose programming lan-
guages will be as multi-paradigm languages.

1.2. The Multiparadigm Programming Language Leda

Leda is a strongly typed, general-purpose multiparadigm programming lan-

guage designed by Budd [33]. Programming paradigms supported by Leda include

the imperative, object-oriented, functional, and logic. The constraint programming

paradigm is also facilitated in recent versions of Leda [182, 200].

6

curry := function(f : binary, n : integer)->unary;
 begin
 return function(m : integer)->integer;
 begin
 return f(n, m);
 end;
 end;

increment := curry(integer.plus, 1);
decrement := curry(integer.minus, 1);

function parent(byRef X, Y : string)->relation;
begin
 return father(X, Y) | mother(X, Y);
end;

function son(byRef X, Y : string)->relation;
begin
 return parent(Y, X) & male(X);
end;

class Circle of Shape;
var
 radius : real;

 function area()->real;
 begin
 return 3.14159 *
 radius * radius;
 end;

 function perimeter()->real;
 begin
 return 2.0 * 3.14159 * radius;
 end;
end;

O
bject-oriented

Functional

function gcd(u, v : integer)->integer;
var
 t : integer;
begin
 while u <> 0 do begin
 if u < v then
 begin
 t := u;
 u := v;
 v := t;
 end;
 u := u - v;
 end;
 return v;
end;

Im
pe

ra
tiv

e

Logic

Im
pe

ra
ti

ve

Functional

O
bject-oriented

Logic

FIGURE 1.1. The general-purpose multiparadigm language Leda.

7

Leda combines all four foundational paradigms enumerated above. Retaining

conciseness while combining the four paradigms was a design goal of Leda. While

Leda adds two more paradigms than C++, the resultant language is actually smaller

than C++2. By emphasizing the essential features{the exemplars{of the constituent

paradigms, Leda facilitates blendings at various levels of granularity, from individual

statements to complete modules. Figure 1.1 illustrates our view of general-purpose

multiparadigm languages. This view permits the programmer to apply any of �f-

teen possible paradigm blendings to a single problem. The �gure further illustrates

Leda'a articulation of this view.

Leda was designed and implemented in order \to provide a vehicle for exper-

iments in multi-paradigm programming" and to \explore the advantages of using

various programming paradigms on assorted problems" [30]. Leda is an evolving

research language. For more information on the programming language aspects

of Leda, see [24] and [32]. Chapter 2 provides more information on Leda, and

Appendix A describes the syntax of Leda.

2For example, Leda has 54% fewer keywords and 67% fewer operators than C++

8

1.3. Programming Environments

Providing tools designed to aid the programmer in constructing programs has

been a topic of research nearly as long as there have been programming languages3.

Collecting these tools into a coherent framework is an idea that is over 30 years old.

These tool collections have been known by many names:

� Programming environment (PE) { a collection of tools that supports only the

coding phase of the software development lifecycle.

� Integrated Development Environment (IDE) { same as PE, a common term

in the realm of personal computers.

� Software Development Environment (SDE) { a collection of tools that aug-

ments or automates all the activities comprising the software development

lifecycle.

� Integrated Project Support Environment (IPSE) { a set of tools covering the

entire software lifecycle.

� Software Engineering Environment (SEE) { same as IPSE.

� Computer-Aided Software Engineering (CASE) { same as IPSE.

3As Floyd wryly observed in his Turing Award lecture [61]: \I would rather write pro-

grams to help me write programs than write programs."

9

There are also \integrated" SEE and CASE environments (ISEE and

ICASE). The terminology is often confusing or misleading. For example, terms

such as tool, workbench, toolset, and environment are given very di�erent mean-

ings and interpretations [64]. Since the main thrust of LacEDAemon is to provide

tools to support the coding of Leda programs, we will use the term \programming

environment" throughout.

Dart et al. [53] proposed a taxonomy of environments (more to clarify trends

rather than categorize):

� Language-centered environments { specially built to support a speci�c lan-

guage

� Structure-oriented environments { arose from syntax-directed editors, now im-

plies manipulation of program structures

� Toolkit environments { collections of small tools

� Method-based environments { support of development methods for certain

phases of the software development cycle, or support for methods of manag-

ing the development process (now called process-centered or process-oriented

environments) enforced by the tools

Language-centered environments tend to get too big for a single person to

comprehend or extend, and their tight coupling inhibits reuse of tools. Structure-

oriented environments are only capable of generating editors (and other tools) for

10

syntactic checking, not semantic checking. Process centered environments require a

well-articulated methodology to be in place.

There are three basic strategies that have been employed to create program-

ming environments:

� build as a single, monolithic system - such as Interlisp [186], Cedar [185], and

CPS [184].

� build as a collection of independent tools - such as Multics [134] and

PWB/UNIX [56].

� build as a set of related tools with a communication mechanism - FIELD [151],

HP SoftBench [44] and DEC FUSE [80]

LacEDAemon provides a variation on the communication mechanism-based

toolkit environment. Programming environments are examined in more detail in

Chapter 3.

1.4. The LacEDAemon Programming Environment

Multiparadigm programming languages have been an active research area

for over a decade. Much of the research e�ort has been devoted to developing

implementation techniques for languages spanning several paradigms, as well as

experimenting with varying the blended paradigms. Recently, attention has turned

to the applicability of these languages to real-world problems. Some problems that

11

have been touted as suitable for multiparadigm solution include a programming

language compiler [24], a stock market exchange [89], and a telephone network

simulation [202]. Use of the language Leda in solving these problems has been

examined as well [95, 36]. The scale of these problems necessitates the availablility

of a programming environment. Pedagogic applications of multiparadigm languages

have also been recently identi�ed [146, 38]. For broad-based penetration of the

computing curricula, an environment supporting multiparadigm languages is also

necessary.

A programming environment provides the user of a language with a collec-

tion of cooperating tools that expedite one or more aspects of program development.

Programming environments can be structured in a variety of ways. One approach

consists of tightly integrated, custom built tools seamlessly (albeit rigidly) connected

together. Most earlier environments such as Interlisp, developed by Warren Teit-

elman at XEROX [186] employed this technique. Another approach, called the

control integration toolkit model, involves a
exible framework of loosely-coupled,

\o�-the-shelf" tools that request information and services by exchanging messages.

Field [151] originated the control integration model. Industry examples utilizing

this approach include DEC FUSE, HP SoftBench, and Sun SPARCworks.

LacEDAemon is a prototype programming environment for Leda which in-

cludes tools to aid in the creation, correction, and comprehension of Leda programs.

LacEDAemon is also designed to serve as a testbed for experiments in toolset com-

12

position, since development of tools and methodologies for multiparadigm program-

ming is an ongoing activity. The architectural basis for LacEDAemon is the hyper-

tool concept, which allows for the integration and customization of existing tools

along with newly constructed tools in a cohesive framework. The hypertool concept

and the Tcl/Tk scripting language provides control integration (and possibly presen-

tation integration) at low cost, while providing considerable
exibility by embedded

Tcl interpreters within the tools. Construction of LacEDAemon is expedited by the

ability to reuse and customize existing tools, while the
exibility and extensibility

of Tcl/Tk also allows for experiments in toolset composition.

The three primary activities that LacEDAemon supports, namely creation,

correction, and comprehension are intertwined, implying the tools must be inter-

connected and be able to request information and services from one another. An

overview of the architecture of LacEDAemon is provided in chapter 4.

1.5. Tcl/Tk, the Hypertool Concept and Software Reuse

Tcl (\tool command language") [136] is an embeddable scripting language

for controlling and extending applications. Tcl provides generic programming fa-

cilities such as variables, loops, and procedures. The Tcl interpreter is a library

of C procedures that can be incorporated into applications, with each application

extending the core Tcl features by providing additional commands for that applica-

tion.

13

Tk [138] extends Tcl by providing a toolkit for the UNIX XWindow System4.

Together, Tcl and Tk provide a programming system for developing and using graph-

ical user interface (GUI) applications. Tk extends the core Tcl facilities with com-

mands that allow the construction of Motif-like user interfaces within Tcl scripts

instead of C code. Tk, like Tcl, is implemented as a set of C procedures, allowing

extensive application. Base Tk features can also be extended through the creation

of user-interface widgets and geometry managers written in C.

Together, Tcl and Tk provide four major bene�ts, according to Ouster-

hout [137]:

� rapid development

� applications provided a powerful scripting language

� an excellent \glue language"

� user convenience

Scripting languages allow rapid development of gluing-oriented applications.

Recently, Ousterhout [135] provided anecdotal support for the claim that the dif-

ference (in terms of code and development time) between scripting languages and

system programming languages was a factor of �ve to ten. It is this di�erence in

code and development time that allows LacEDAemon to be created by a single tool

4Tcl and Tk have also been ported to other platforms, including Windows 95/NT and

Macintosh.

14

integrator in short order. The hypertools provide the system code to be reused

(the \bricks"), while the Tcl language provides the glue and system substrate (the

\cement").

Ousterhout [137] describes the hypertool concept while describing the Tcl

construct send:

send is intended to encourage the development of small reusable ap-
plications called hypertools. Many of today's windowing applications are
monoliths that bundle several di�erent packages into a single program.
For example, debuggers often contain editors to display the source �les
being debugged...Unfortunately, each of these packages can only be used
from within the monolithic package that contains it.

With send each of these packages can be built as a separate stand-
alone program. Related programs can communicate by sending com-
mands to each other. For example, a debugger can send a command to
an editor to highlight the current line of execution...With send it should
be possible to reuse existing programs in unforeseen ways...The term
\hypertools" re
ects this ability to connect applications in interesting
ways and to reuse them in ways not foreseen by their original designers.

LacEDAemon embodies Ousterhout's [137] advice regarding hypertools:

\When designing Tk applications, I encourage you to focus on doing one or a few

things well; don't try to bundle everything in one program. Instead, provide dif-

ferent functions in di�erent hypertools that can be controlled via send and reused

independently."

1.6. What's In A Name: LacEDAemon and Leda

The name for the language Leda arose from early example programs that

implemented a genealogical database of mythological �gures. Leda was the wife of

15

King Tyndareus, and mother of the famed Helen of Troy. The name Leda was also

thought to be ephoneous and unique5. Some e�ort has been made by other Leda-

related projects to continue the mythological naming style (Electra [199], Argo [93]).

Lacedaemon is actually the second name proposed for the Leda programming

environment. The environment name was originally Sparta, which is the name of the

kingdom where Leda and her husband Tyndareus lived. An unintended implication

of this name was the fact that the environment might be spartan. As a result, the

environment name was changed to Lacedaemon (las-e-d�e�mon), which is another

name for the kingdom of Sparta, with the letters that spell \Leda" capitalized for

emphasis.

1.7. Thesis Outline

Chapter 2 introduces Leda, and collects various thoughts on the uses of mul-

tiparadigm languages in vocational and educational settings. Chapter 3 surveys

programming environments, providing a historical, taxonomic and developmental

context within which to place the LacEDAemon programming environment. Chap-

ter 4 provides a detailed architectural overview of the LacEDAemon programming

environment, describing the hypertool integration framework and messaging mech-

5Other projects that now share the same name include the LEarning Design Assistant

project [83], a visual programming project [126], a C++ data structures project (Library of

E�cient Data structures and Algorithms) [125], and a French electronic design automation

company, LEDA, S.A.

16

anism. Chapter 5 describes the LacEDAemon program database, which serves both

as a repository of program information as well as de�nitions of event-based tool in-

teractions. Chapters 6 through 10 describe some components of the LacEDAemon

framework that comprise both a useful collection of tools and an illustration of the

viability of the integration mechanism. Chapter 6 describes the Leda pretty printer,

which utilizes program database information to enhance presentation. Chapter 7

describes program execution illustration in LacEDAemon. Chapter 8 describes pro-

gram browsers{Smalltalk-style as well as traditional text editor-style, along with

tools for the graphical depiction of class and �le inclusion hierarchies{adapted for

use in LacEDAemon. Chapter 9 describes how the collection of tools cooperate

to provide program debugging support. Chapter 10 explores adapting literate pro-

gramming systems to LacEDAemon, and in doing so illustrates the possibility of

scaling up the hypertool integration approach to create software development envi-

ronments. Chapter 11 provides comparisons of LacEDAemon to other environments

as well as an evaluation of the contributions of this thesis. Chapter 12 concludes

this dissertation.

17

2. MULTIPARADIGM PROGRAMMING AND LEDA

2.1. Never Mind the Paradigm: Multiple Paradigms vs Multiparadigm

The title of this section is inspired by Paul Luker's article \Never Mind the

Language, What About the Paradigm?" [117]. While examining language selection

in introductory Computer Science courses, Luker observed:

If it is too early for our current paradigm to change, we should,
at least, produce students who will be in a position to adapt to any
paradigm shift that occurs....This comes back to a solid theoretical foun-
dation and a broad treatment of programming, which examines the
strengths and weaknesses of di�erent approaches, with practical experi-
ence to reinforce the issues.

Educators are beginning to recognize that selecting and teaching the

paradigm may not be the correct approach, although having the particular paradigm

chosen be one which coincides with present industry trends certainly has vocational,

if not educational, value. It is not clear that one speci�c paradigm can be chosen

as the clear winner. Many newer languages employ a hybrid approach, combining

more than one \traditional" programming paradigm in some fruitful way.

In order to prepare our students for any future paradigm shifts, it is certainly

inadequate to embrace one programming paradigm as the paradigm, and it may

not even be enough to employ a hybrid language that incorporates more than a

single paradigm. What we would like to do is give students exposure to all of the

programming paradigms considered important today. With the current trend of

18

{ Euclid's GCD from Sedgewick }

while u <> 0 do

begin

if u < v then

begin

t := u;

u := v;

v := t;

end;

u := u - v;

end;

return v;

FIGURE 2.1. Imperative Programming In Leda.

languages which include several paradigms, the approach used should emphasize

the complimentary aspects of paradigms, not just their competing aspects.

2.1.1. The Imperative Paradigm

The imperative paradigm is the most common view of the computer. The

emphasis is on variable locations, values, and legal operations that can be performed

on these locations. Locations can be grouped, and execution is structured. The

imperative programming paradigm exhibits the following characteristics:

� \word-at-a-time" processing{computation consists of many individual move-

ments and computations of small items of data.

19

� programming by side-e�ect{computation proceeds by changing the \state" of

the machine via assignment.

� machine-oriented structure{language structures, both data and control, are

very close to the underlying machine architecture.

Examples of the imperative programming paradigm include the languages Pascal [90]

and C [100]. Leda provides the standard imperative constructs, as illustrated in

Figure 2.1. Encoded here is Euclid's algorithm for computing GCD, taken from

Sedgewick [165].

The correspondence between imperative constructs and the underlying ma-

chine is both a strength and a limitation. Petre and Winder [145] observe:

This closeness of language to machine model is re
ected in practi-
cal ways, e.g., the good control a�orded by many imperative languages
over machine aspects such as memory allocation and I/O. However, the
strength of correspondence means that imperative languages embody
hardware-based restrictions, so that pragmatics may intrude upon ex-
pression.

2.1.2. The Object-Oriented Paradigm

Object-oriented programming is a very popular and distinctive approach to

problem solving. The object-oriented metaphor views programming as simulation.

Programs model aspects of the real world: objects with properties. The object-

oriented programming paradigm exhibits the following characteristics:

20

� interacting agents{objects encapsulate state and behavior, interacting viames-

sage passing.

� hierarchical organization{objects are hierarchically classi�ed according to sim-

ilarities in their behavior via a class structure, and can be successively re�ned

via subclassing, inheritance and overriding.

� attribute-based response{objects interpret messages based on their attributes:

both particular properties (instance variables) and general properties (class).

Figure 2.2 illustrates classes, subclassing, inheritance, message passing, and over-

riding in Leda. Here the classes Square and Circle are derived as subclasses of

Shape. Examples of the object-oriented programming paradigm include the lan-

guages Smalltalk [70, 29] and C++ [179, 25].

C++ has become a very popular language in computing curricula, overtaking

Pascal as the introductory language of choice. C++ has also become very popular

in industry, and this enthusiastic embracing of C++ by industry makes teaching it

at some point in the undergraduate curriculum almost imperative. But is C++ the

answer, the paradigm? In the section titled \Living in a Multi-Paradigm Universe"

of the popular book C++ Primer Lippman cautions:

Object-oriented programming is an evolutionary advance in the de-
sign and management of large software systems. It is not, however, the
deus ex machina come forth to resolve the many ills of the software in-
dustry. Good code is di�cult to produce under any paradigm and, once
in production, bugs continue to be uncovered. This is unlikely to change
for quite some time yet.

21

const pi := 3.1415;

class Shape;

function area() -> real;

begin end;

end;

class Square of Shape;

var

side : real;

function area() -> real;

begin

return side * side;

end;

end;

class Circle of Shape;

var

radius : real;

function area() -> real;

begin

return pi * radius * radius;

end;

end;

var

s : array [Shape];

i : integer;

begin

s := newArray[Shape](1,2);

s.atPut(1,Square(2.5));

s.atPut(2,Circle(3.8));

for i := 1 to 2 do

print(s.at(i).area());

end;

FIGURE 2.2. Object-Oriented Programming In Leda.

22

type

binaryFunc : function(integer, integer)->integer;

unaryFunc : function(integer)->integer;

function curry (boundFun : binaryFunc,

boundValue : integer)->unaryFunc;

begin

return function (item : integer)->integer;

begin

return boundFun(item, boundValue);

end;

end;

var

triple : unaryFunc;

begin

triple := curry (integer.times, 3);

print ("triple of 7 " + triple(7) + "\n");

end;

FIGURE 2.3. Functional Programming In Leda.

Clearly the software industry may experience future paradigm shifts. We

must remember Luker's advice on preparing students for such paradigm shifts.

2.1.3. The Functional Paradigm

While object-oriented programming addresses the behavior of objects in time,

functional programming concentrates on timeless mathematical relationships. The

23

essential idea behind functional programming is to treat functions as values. The

functional paradigm has the following characteristics:

� \�rst class" functions{functions are assignable, passable, and returnable val-

ues.

� functional composition{a rich set of functions can be assembled via functionals

or higher-order functions, i.e., functions which take other functions as argu-

ments.

� referential transparency{functions whose values can be determined solely by

the value of their arguments (pure functions).

Figure 2.3 illustrates a higher-order Leda function that binds one argument

of a binary integer operation to some �xed value (in this case the binary function

is integer.times and the value is 3, yielding triple). Examples of functional

languages include Haskell [54] and ML [195]. MacLennan [119] covers functional

programming in general.

In a recent paper on functional programming, Pountain [147] observes: \The

functional paradigm is unlikely to displace C++ anytime soon, but as programmers

become more aware that object orientation is not a perfect panacea, there should

be room for both, or{dare I suggest it?{for some kind of hybrid approach."

Bruce MacLennan [120] notes that \it may very well be the case that

function-oriented programming and object-oriented programming are complemen-

24

tary, rather than competing ... programming language technologies." Leda repre-

sents an example of the hybrid approach that Pountain and MacLennan suggest.

2.1.4. The Logic Paradigm

The logic programming paradigm views computation as a deductive process

dealing with facts, rules, and queries. Queries are resolved based on facts and rules

of inference. The logic paradigm exhibits the following characteristics:

� nonprocedural emphasis{the programmer states what is desired, not how to

accomplish it.

� lack of directionality in relations{bound arguments allow information to
ow

into relations while unbound arguments allow information to
ow out of rela-

tions.

� standard deduction view of execution{programs are propositions that assert the

existence of the desired result, with a theorem-proving mechanism attempting

to construct the desired result to determine the veracity of the proposition.

Leda provides constructs that allow for the de�nition of facts and inference rules,

as well as mechanisms to perform uni�cation and backtracking. The basis for logic

programming in Leda is a boolean procedural abstraction called the relation. In

Figure 2.4 we describe the inference rule for the sibling relationship. Assuming

the existence of facts de�ning the child relationship (and inference rules such as

25

const

names := ["Leda", "Castor", "Helen", "Zeus", "Tyndareus"];

eq := unify[string]; { shorthand notation for unify function }

function child(byRef name, mother, father:string)->relation;

begin

return eq(name, "Helen") & eq(mother, "Leda") & eq(father, "Zeus")

| eq(name, "Castor") & eq(mother, "Leda") & eq(father, "Tyndareus");

end;

:

function fatherOf(byRef dad, kid:string)->relation;

var

mom : string;

begin

return child(kid, mom, dad);

end;

function parentOf(byRef parent, kid:string)->relation;

begin

return fatherOf(parent, kid) | motherOf(parent, kid);

end;

function sibling(byRef left, right: string)->relation;

var

parent: string;

begin

return parentOf(parent, left) &

parentOf(parent, right) & (left <> right);

end;

var x,y : string;

begin

x := NIL; y := NIL;

for sibling(x,y) do

begin

print(x); print(" and "); print(y); print("\n");

end;

end;

FIGURE 2.4. Logic In Leda.

26

parentOf allowing the derivation of other facts), this program allows for a variety

of derivations depending on the bindings of x and y. The function eq determines

the equality of de�ned variables, or provides a binding that can be undone using a

reversible assignment operator if the �rst argument to eq is unbound.

Prolog [49] is one of the most popular logic programming languages. Details

of other logic programming languages can be found in Hogger [86].

Bobrow [15] suggests a multiparadigm approach, instead of just using the

logic programming paradigm:

Logic programming provides a non-procedural representation of
knowledge, combined with a powerful database search facility...although
this combination is very powerful, it is inappropriate for some problems.
By having a number of other programming paradigms as well, one can
build more understandable programs more quickly. No single paradigm
is appropriate to all problems, and powerful systems must allow multiple
styles.

2.2. Where Should We Teach a Multiparadigm Language?

The activity in multiparadigm language research makes it apparent that

many new languages will include multiple programming paradigms. The pedagogic

value of these languages has also started to be recognized. Placer observes [146]

that multiparadigm languages could be used both as a tool to teach programming as

well as creative problem solving. We now examine possible points in the curriculum

where the introduction or use of such a language might be appropriate.

27

2.2.1. The Graduate Level

New ideas are usually studied �rst in the graduate curriculum, where students

are predisposed to be at the cutting edge. Leda has been the subject of graduate

courses and seminars at Oregon State University as well as in Europe for a couple of

years now. Just as many years ago the object-oriented paradigm was examined only

in graduate level courses, perhaps the best approach to introducing multiparadigm

languages into computing curricula is to start at the graduate level and let the ideas

percolate downwards.

2.2.2. The Compiler Construction Course

In a recent paper, Justice, Pandey, and Budd [95] describe the construction of

a compiler for a subset of the C language using Leda and a multiparadigm approach.

In this compiler, parsing is done via logical relations, the symbol table is constructed

from objects, and optimizing transformations on the intermediate form are described

in a functional manner. Control of the compilation process is provided by the

imperative paradigm. This architecture is illustrated in Figure 2.5.

Since the compiler construction course normally follows a course on pro-

gramming languages in the undergraduate curricula, students would be aware of

the various programming paradigms. Hence the compiler construction course could

employ a multiparadigm programming language, and reinforce student understand-

28

- -
hprogrami

'

&

$

%

Scanner

Error

�
�
�@

@
@

�
�
�
�Tuple

�
�
�
�Tuple

@@ ��

Optimize

�� @@�
�
�
�Tuple

Parser

'

&

$

%

-genCode

�
�
�
@

@
@

Target
Assembly
Code

?

- -
token

Error
?

�
�
�@

@
@

Source
Code

parse

token�

'

&

$

%

Symbol Table

Collection-

-

insert

lookup

Intermediate
Representation

� �

'

&

$

%
�
 �	ID�
 �	ID
...

-

-

�
�

�
�Start

�
�

�
�Stop

?

?

?

FIGURE 2.5. A Multiparadigm Compiler Model.

29

ing of the major programming paradigms while also illustrating the synergy provided

by simultaneous access to several paradigms.

2.2.3. The Programming Languages Course

The shift in emphasis from the study of languages to the study of paradigms

is most apparent in the programming language course. Computing Curricula '91 [2]

prescribes the study of programming paradigms (PL11) as part of the programming

languages component. While examining the evolution of the programming languages

course in the curriculum, King [101] observes the shift in emphasis from speci�c

languages to the more general paradigms in programming language texts: \In recent

years, a new breed of books has emerged{books that emphasize language paradigms

instead of individual languages."

Recent texts exhibiting this shift include Appleby [5] and Bal and Grune [10].

Comparative reviews of programming languages texts [4, 139] indicate that almost

all texts suitable for use in the programming languages course include signi�cant

study of the four major paradigms (functional, imperative, logic, object-oriented).

Leda allows coverage of the imperative, functional, logic, and object-oriented

paradigms within one linguistic framework. Two other paradigms that occasionally

are included in programming languages textbooks are the database and the concur-

rent paradigm, which are usually covered in other classes (database and operating

systems/parallel programming courses). The concurrent or parallel programming

30

paradigm is presently not a very \stable" one, with incredible conceptual diversity

among constituent languages. The parallel language utilized is very dependent on

the parallel hardware available, making it bene�cial to examine this locale-speci�c

paradigm in a separate course.

2.2.4. The CS1/CS2 Courses

Although changing the language used at the CS1/CS2 level is very di�cult,

the choice of language is perhaps most critical at this stage. In a recent paper,

Stephen Jay Gould [72] mentions the \messy and personal side of science," remark-

ing that \ways of learning about the world are strongly in
uenced by the social

preconceptions and biased modes of thinking that each scientist must apply to any

problem." While teachers will naturally bias students to some extent, programming

languages play an extensive role as well. Alan Kay observed [98] this same \biased

mode of thinking" caused by the �rst computer language students learn:

Our experience, and that of others who teach programming, is that a
�rst computer language's particular style and its main concepts not only
have a strong in
uence on what a new programmer can accomplish but
also leave an impression about programming and computers that can last
for years. The process of learning to program a computer can impose
such a particular point of view that alternative ways of perceiving and
solving problems can become extremely frustrating for new programmers
to learn.

If a multiparadigm programming language were taught �rst to students, their

formation and curriculum might be more rounded. Later (junior or senior level)

classes could utilize languages prevalent in industry. An advantage of this approach

31

is that the students' \better" foundation might reduce �rst-language bias as well as

in
uence the evaluation and use of the industry languages.

2.3. Conclusions

Multiparadigm languages like Leda seem to have a future in both industry

and academia. In industry, users have identi�ed shortcomings in single paradigm

languages that are motivated by the existence of other useful paradigms, leading to

the hybrid languages. In academia, one of the main motivations of programming

language selection is to provide students with �rm foundations in the paradigms (and

combinations of paradigms) that students may eventually be exposed to during their

careers.

32

3. PROGRAMMING ENVIRONMENTS

An environment is the aggregate of surrounding things, conditions, and in-

uences that a�ect the existence or development of someone or something. It is well

understood that changes in the environment can have signi�cant and potentially

drastic e�ects. It is equally well understood that di�erences in environment can

have major e�ects; individual development, for example, has been shown to have

both genetic and environmental components [190].

In this chapter, we survey the area of programming and software engineering

environments, providing a taxonomic and developmental context within which to

place the LacEDAemon programming environment. The next section describes a

taxonomy of environments. Short descriptions of exemplar environments in each

of the four categories identi�ed by the taxonomy are the subject of the next four

sections. Next, we touch upon research focussed on incorporating Arti�cial Intel-

ligence into environments. Lastly, we describe various approaches to constructing

programming environments-delving into detail on the messaging approach utilized

by LacEDAemon.

33

3.1. Classi�cation of Environments

Dart et al. proposed a widely accepted taxonomy of software development

environments based on the tool, user interface, and architectural trends of environ-

ments [53]. The four categories identi�ed in this study were:

� Language-centered environments - a tightly integrated set of tools built around

a single language. In many cases the tools and the environment together are

identi�ed as the language due to the tight integration.

� Structure-oriented environments - also called syntax-directed environments.

Language structures are directly manipulated, and due to the language-

independent nature of this approach, the notion of generators for these types

of environments arose.

� Toolkit environments - collection of small tools, primarily intended to assist

the user in the coding phase of the software development cycle. Emphasis is

on extensibility of the environment, via a simple underlying data model.

� Method-based environments - also called process-oriented or process-based en-

vironments. These environments provide tools for a broad range of activities

in the software development lifecycle. The tools de�ne and enforce a particular

development methodology.

Dart et al. note that this taxonomy was more for clari�cation of trends than

for categorization of particular environments. Environments can in fact �t more

34

than one of the categories enumerated above. Other classi�cation schemes have

been proposed by ECMA/NIST [129], Perry and Kaiser [142], Pressman [148], and

Sommerville [169]. We describe the ECMA/NIST model below, and use the Perry

and Kaiser model in chapter 12 when evaluating LacEDAemon.

3.2. Language-Centered Environments

� Interlisp

Interlisp [186] is a programming environment based on the LISP [175] lan-

guage. Interlisp provides a variety of user facilities, including syntax exten-

sion, error handling, error correction, an integrated structure-based editor,

debugger, compiler, and �le system.

� Cedar

Cedar [185, 13, 181] is the programming environment for the Cedar program-

ming language. The language Cedar is a strongly-typed, compiler oriented

Pascal-like extension of the Mesa language. The Cedar environment was de-

signed to run on specialized hardware (the XEROX Dorado), and included the

Tioga editor and document preparation system, Watch and Spy performance

tools, electronic mail, resident debugger, compiler and interpreter.

� Smalltalk

The Smalltalk [69] programming environment consists of the object-oriented

language Smalltalk and a collection of tools for interacting with language com-

35

ponents. Tools include a text editor, a tool to examine object instances (called

inspector), project, protocol and class browsers, and a debugger.

3.3. Structure-Oriented Environments

� ALOE

The ALOE syntax-directed editor generator [123] produces general structure

editors. The semantics of the programming language are described procedu-

rally. ALOE is template-based in that it provides templates for all productions

in the tree and does not automatically allow parsing.

� CPS

The Cornell Program Synthesizer [184, 158] is a syntax-directed programming

environment that utilizes a structural perspective throughout program devel-

opment. CPS includes a derivation-tree editor and syntax-directed interpreter

that use prede�ned program fragments called templates. CPS utilizes either

the PL/1 or Pascal programming languages. The Synthesizer Generator [159]

is a tool for generating syntax-directed environments.

� Emily

Emily [78] is an early example of a structure editor. Program fragments are

manipulated in a textual system, where the fragments are analagous to non-

terminal symbols in Backus-Naur Form (BNF).

36

� Gandalf

Gandalf [76] is an incremental programming environment generator that has

been tested on several algebraic languages. Gandalf includes the ALOE syn-

tax directed editor generator (mentioned earlier), as well as the Incremental

Programming Environment (IPE) [124]. Gandalf provides support for man-

aging a project that involves the interaction of several programmers, and for

the manipulation of system compositions and version control.

� MENTOR

MENTOR [57] is a programming environment for Pascal via the manipulation

of structured data. This data is represented as operator-operand trees, better

known as abstract syntax trees. MENTOR is driven by a tree manipulation

language called MENTOL.

� PECAN

PECAN [152, 154] provides multiple views of the shared data structures. The

internal program representation is abstract syntax trees. The user sees con-

crete representations of the abstract syntax tree through views such as the

syntax-directed editor, Nassi-Shneiderman structured
owchart, and the mod-

ule interconnection diagram.

37

3.4. Toolkit Environments

� Apollo DSEE

The Apollo Domain Software Engineering Environment [111] was a dis-

tributed, production quality software development environment for Apollo

workstations. DSEE provided source code control, con�guration management,

release control, advice management, task management, and user-de�ned de-

pendency tracking with automatic noti�cation.

� Arcadia

Arcadia [183, 96] attempts to provide an extensible, incrementally improvable,

exible, fast and e�cient software development environment as a collection of

capabilities integrated to support developers and managers. Its architecture

allows for interoperable components among multiple users and user classes.

Components include tools for process de�nition and execution, object man-

agement, user interface development, measurement and evaluation, language

processing, analysis and testing, and composition of components.

� CAIS

The Common APSE (Ada Program Support Environment) [127] Interface Set

arose from the STONEMAN report [41] and the recognition of the need for a

common interface for tools that would form the APSE. The implementation

38

is database centered, utilizing an Entity-Relationship model called the CAIS

node model.

� FIELD

The Friendly Integrated Environment for Learning and Development (FIELD)

[156, 150, 153, 151] pioneered the notion of broadcast messaging (loose integra-

tion) as a basis for tool integration. FIELD is built upon the Brown Worksta-

tion Environment (BWE) [157] toolkit. FIELD is the basis of many current

commercial programming environments such as DEC FUSE, HP SoftBench

and SUN SPARCWorks.

� Multics

The Multics [134] project was a cooperative e�ort between Project MAC at

M.I.T., Bell Telephone Laboratories, and the General Electric Company. The

goal of the Multics programming system environment was to allow users to

build \complicated and sophisticated software subsystems." To this end, Mul-

tics provided interprocedure communication, process and �le system services,

signals and exception handling, and interprocess communication. Multics also

provided a dynamic linking mechanism as part of the operating system.

� PCTE

The Portable Common Tool Environment [16, 189] was developed by the ES-

PIRIT (European Strategic Program for Research and Development in Infor-

mation Technology) research program in the European Community. PCTE

39

is the de�nition of a public tool interface for an open standard repository. It

de�nes a set of operations that provide basic integration facilities (including

object management, data, process execution and management) which can be

used by tool and environment builder.

� PWB/UNIX

The Programmers Workbench UNIX [56, 99] system adds various tools to the

UNIX operating system. These tools include a Remote Job Entry (RJE) sub-

system, a Source Code Control System (SCCS), a con�guration tool (make),

tools for text processing and document preparation (PWB/MM), and various

test drivers.

3.5. Method-Based Environments

Method-based environments are environments in which the processes used to

produce and maintain software products are explicitly modeled in the environment.

Method-based environments can be divided into two broad categories: Integrated

Project Support Environments (IPSE), where all the tools relevant to a process

are integrated and provided, and Computer-Aided Software Engineering (CASE)

integration frameworks, where some tools as well as mechanisms for the integration

40

of other tools is provided1. We give some examples of both types of environments

below, as well as identifying some of the standards that are relevant to this area.

� IPSEs

Integrated Project Support Environments [122] arose from the di�culty of

supporting large-scale software engineering projects with just the facilities pro-

vided by conventional operating systems and stand-alone tools. The purpose

of an IPSE is to provide an infrastructure which stores all the information

relevant to a particular project or projects, and which enables tools to be used

in a coherent way. Examples of IPSEs include:

{ Aspect

Aspect [18] is an IPSE centered around a relational database. Aspect

is one of three IPSE projects sponsered by the Alvey Directorate in the

U.K. (Eclipse and IPSE 2.5 are the others).

{ Eclipse

Eclipse [3] was developed using PCTE, as the second generation IPSE in

the Alvey program. Eclipse relies on a central database repository, and

provides a number of tool sets to support di�erent parts of the software

development lifecycle.

1The distinction between IPSEs and CASE environments made here is somewhat arti�-

cial, due to the lack of a prevailing de�nition of what constitutes an IPSE or a CASE.

41

{ IPSE 2.5

The goals of IPSE 2.5 [168] were to raise the level of integration within

IPSEs beyond the \store and tools" world through process modeling sup-

port, and to provide e�ective support for formal methods. IPSE 2.5 cen-

tral unifying concept is a Process Modeling Language (PML) executed

by a Process Control Engine (PCE).

{ Software Through Pictures

Interactive Development Environment's Software Through Pictures [192]

is a collection of graphical editors and associated tools to support a

variety of methods for software analysis and design. Methods sup-

ported include Structured System Analysis, Structured Design, Entity-

Relationship modeling, and User Software Engineering (USE). The edi-

tors are supported by tools for tasks such as checking data
ow diagrams,

RAPID/USE language generation, picture description generation, and

storing graphical information in data dictionaries.

� CASE Integration Frameworks

Computer-Aided Software Engineering (CASE) environments [47] usually pro-

vide an integration mechanism that allows for the extension or customization

of the environment via the addition (or modi�cation) of tools. This feature

also allows for the de�nition of the process that the environment will support.

Some examples of CASE integration frameworks include:

42

{ DEC FUSE

Digital Equipment Corporation's FUSE system [80, 201] is a modi�ed

version of FIELD, which was licensed by DEC. FUSE provides a Motif-

based interface, adds the concept of tool groups, and provides callbacks

for handling message replies. Tools in FUSE include editors, a make

utility builder, code manager, cross-referencer, debugger, call-graph and

class browsers, and a pro�ling tool{all connected via its messaging server,

EnCASE.

{ HP SoftBench

Hewlett Packard's SoftBench [8, 51, 44, 66, 45, 14, 114, 196, 197] is a

CASE integration framework built around the Broadcast Message Server

(BMS). SoftBench includes the Encapsulator task-and-process automa-

tion tool [63], a debugger, program builder, editor, static analyzer, and

development manager.

{ Sun SPARCworks

Sun SPARCWorks [62] is an integration framework based on Tooltalk

[43]. The SPARCworks toolset consists of a debugger, source browser,

FileMerge, make and an analyzer{all integrated via the SPARCworks

Manager, a session manager.

{ SLCSE

The Software Life Cycle Support Environment (SLCSE) [178] is a proto-

43

Message Services

User-Interface
Services

Process-Management
Services

Data-Integration
Services

Repository
Services

Slots for
Vertical &
Horizontal
Tools

Tool
Layer

begin
:
Hello World
:
:
end

File Edit lc

FIGURE 3.1. The ECMA/NIST \Toaster" Model.

type software engineering environment the provides an integration frame-

work and an extensible lifecycle toolset. SLCSE was funded by Rome Air

Development Center, and developed by General Research Corporation.

SLCSE provides complete support for the DoD{STD{2167 life cycle pro-

cess. ProSLCSE, a productized, open standards-based version (SLCSE

was tightly integrated into VAX/VMS) of SLCSE, is currently under de-

velopment.

� Standards and Reference Models

44

{ ANSI X3.138 - The ANSI committee on Data Representation has pro-

duced two standards, X3.138-1988 and X3.138A-1991, that specify a com-

puter software system that provides facilities for recording, storing, and

processing descriptions of an organization's data and data processing re-

sources.

{ IEEE P1175 - is a draft standard for tool interconnection, within which

there are four information sharing methods: direct (tool-to-tool), �le-

based, communication-based, and repository-based. This standard was

created by the Task Force on Professional Computing Tools.

{ EIA CDIF - Electronic Industries Association CASE Data Interchange

Format provides a published set of vendor-independent and method-

independent de�nitions for meta-data concepts in general, and for mod-

elling data and related concepts in particular.

{ ISO/IEC JTC1/SC7/WG11 - Software Engineering Data De�nition and

Representation (ISO/CDIF). This group is promoting a CDIF standard

tailored to Software Engineering for ISO standardization.

{ NIST/ECMA - the National Institute of Standards and Technology in

conjunction with the European Computer Manufacturers Association

have proposed a reference model for CASE integration [129], the structure

of which is depicted in Figure 3.1. This model is a catalog of services

available in environment frameworks, not a description of architecture

45

or a standard. Vertical tools are used in a speci�c phase of software

development2, while horizontal tools are used throughout.

{ OMG OMA/CORBA - The Object Management Group (OMG) is a con-

sortium that creates architectural standards for allowing interoperability

and portability of distributed object-oriented applications. The Object

Management Architecture (OMA) is a high level vision of a complete

distributed environment, consisting of two major parts: system oriented

components (Object Request Brokers and Object Services) and applica-

tion oriented components (Application Objects and Common Facilities).

The Common Object Request Broker Architecture (CORBA) speci�es

a system which provides interoperability between objects in a heteroge-

neous, distributed setting.

{ Microsoft ActiveX, COM, OLE - Component Object Model (COM) and

its variants are examples of Microsoft architecture standards for creating

applications from binary software components, forming the basis of higher

level services, such as Object Linking and Embedding (OLE). ActiveX is

a language-neutral interface to Microsoft component technology.

2Vertical tools are sometimes partitioned further into \upper CASE" tools which support

analysis and design activities, and \lower CASE" tools which support coding and testing.

46

3.6. AI Programming Environments

There has been some research devoted to supporting the software devel-

opment process with arti�cial intelligence techniques [12, 82]. Some development

environments have been created that add AI tools in an attempt to further expedite

the software development process. ASPIS [149], The Programmer's Apprentice, and

KBEmacs [160] are examples of such environments.

ASPIS includes four knowledge-based tools called assistants: Analysis, De-

sign, Prototype and Reuse Assistants. The Analysis and Design assistants embody

knowledge about both the method and application domain, while the Prototype

assistant veri�es system properties, and the Reuse assistant helps developers reuse

speci�cations and designs.

The Programmer's Apprentice is a long-term ongoing project. The goal of

this project is to provide a junior partner and critic for the software engineer, taking

over the simple tasks completely, and assisting with the more complex tasks. Two

principles have been identi�ed (intelligent assistance and inspection methods), a

knowledge representation format developed (the Plan Calculus), and a program

implementation demonstration system created (Knowledge-Based Editor in Emacs,

or KBEmacs).

47

3.7. Constructing Programming Environments

There are three basic strategies that have been employed to create program-

ming environments:

� build as a single, monlithic system

Examples include Emily [78], Interlisp [186], Gandalf [76], Cedar [185], Poe

(Editor Allen Poe) [60], PECAN [152], CPS [184], Magpie [55], and Men-

tor [57].

� build as a collection of independent tools

Examples include Apollo DSEE [111], Arcadia [183], CAIS (Common APSE

Interface Set) [127], Multics [134], UNIX [99] and UNIX/PWB [56].

� build as a set of related tools with a communication mechanism

Examples include FIELD [151], HP SoftBench [44], DEC FUSE [80], and Sun

SPARCworks [62].

3.8. Communication-Based Environments

Controlling and coordinating tool interactions in an environment requires an

approach to tool integration that is
exible, adaptable, simple and e�cient. One

must be able to integrate new tools, but not at the cost of impairing existing tools.

Integration ranges from loose, where the tools being integrated have little or no

knowledge of one another, to tight, where tools possess much knowledge of the other

48

tools. The traditional approach in tool integration has been based on data sharing,

where all the tools deposit their data in a common database. This approach, called

data integration, requires a common data schema, and imposes high overhead and

limitations on the extent on tool integration.

A more recent approach has been communication based, or control integra-

tion. In this approach, a programming environment is viewed as a collection of

services provided by di�erent tools. The tools send and receive control signals, and

decide whether these signals require any action on their part. Variations on the con-

trol integration approach include point-to-point message passing, where tools make

explicit requests and responses via direct messages from tool to tool, and broad-

cast messaging/message passing/messaging server approaches, where messages are

transmitted to all tools (or a select subset decided upon by the message server),

and the tools decide upon a response, if any. Three examples of environments that

rely on control integration as the integrating mechanism of the environment are

FIELD [151], SoftBench [44] and Tooltalk [43].

FIELD is the origin of most of the work in the realm of message passing. The

FIELD message server, Msg, passes messages as text strings of arbitrary length.

Thus there is no prede�ned protocol for messages, ensuring
exibility. This also

allows for tools to form their own collaborations, and de�ne their own message

formats for closer cooperation. Msg can also be amended to allow for the addition

of new messaging capabilities. FIELD de�nes two categories of messages:

49

� Commands - message sent to a particular tool or class of tool requesting some

service be performed. The message includes the name of recipient, command

name, system name, and arguments.

� Information Messages - message broadcast to all interested tools informing

them of some event. The message includes the name of the sender, the event

causing message, system name, and arguments.

Messages can be synchronous (tool sends a message and waits for a response)

or asynchronous (tools sends a message and continues). As expected, command mes-

sages are synchronous, while information messages are asynchronous. The system

name allows the message server to distinguish between di�erent invocations of the

same tool.

SoftBench was the �rst commercial message passing based-environment. The

SoftBench message server, Broadcast Message Server (BMS), is similar in operation

to FIELD's Msg. BMS does provide a more formal and structured interface to

messages than does FIELD, and also o�ers some additional facilities over Msg.

SoftBench standardizes messages through the notion of tool protocols and a standard

message format. A tool protocol de�nes a standard set of operation and information

messages for each grouping of tools. This allows for the substitution of new or

di�erent tools directly for existing tools provided they maintain the protocol for

their tool group. The BMS standard message format consists of seven �elds:

� Originator - tool that sent the message

50

� Request-Id - unique identi�er for the message

� Message Type - indicate whether this message is a request (command) mes-

sage, a success noti�cation, or a failure noti�cation

� Command Class - tool grouping protocol name

� Context - location of the data to be processed

� Command Name - name of command (request message) or type of event (no-

ti�cation message)

� Arguments - arguments accompanying the command or parameters of the

event

Tooltalk, a message system from Sun Microsystems, is similar to FIELD and

SoftBench in many ways. Messages in Tooltalk consist of fourteen �elds:

� Arguments - arguments to a message or the reply value

� Class - indicates whether the message is a notice or a request

� File - the �le for the message

� Operation - the name of the operation to be performed

� Object, Otype - the object and object type involved in the operation

� Scope, Address, Handler, Handler Ptype - these �elds identify to whom the

message should be sent

51

� Disposition - what to do if the message can't be handled by any running

process

� Sender Ptype, Session - these identify the sender of the message

� Status - information about the state of the message

Tooltalk allows the sender much �ner control over the recipient of a message

than FIELD or SoftBench. Tooltalk embraces object-oriented notions, viewing the

world as processes responsible for a given object or object type and messages being

the methods or operations for the object. Note that the status of a message is

maintained as part of the message. Tooltalk also allows for a way to handle messages

that have no handlers. A process can be started to handle a message, or the message

can be queued for later delivery to the appropriate process. Tooltalk notice messages

are sent asynchronously, while request messages are sent synchronously, with the

caller blocking until a reply is received.

Alan Brown of the Software Engineering Institute [17], while evaluating the

messaging-based integrated toolkit approach of FIELD, SoftBench and Tooltalk

declared:

While a number of open issues and shortcomings of the approach have
been identi�ed in this paper, there is clearly evidence to support further
investigation of the message passing approach as the basis for providing
an SDE architecture that is more open to the addition of new tools.
In particular, the simplicity and
exibility that the approach provides
appear to facilitate experimentation with di�erent levels of integration
between tools. As a result, it may well provide the ideal platform for
experimenting in some of the most crucial aspects of SDE technology...

52

LacEDAemon provides an architecture that is more open to the addition of new

tools, and allows for experimentation with di�erent levels of tool integration.

53

4. AN OVERVIEW OF LACEDAEMON

4.1. Introduction

A main goal of LacEDAemon is to provide a tool integration framework. In

order to describe the tool integration framework capabilities a�orded by LacEDAe-

mon, we must �rst examine integration and tool integration in general. We then

examine the tasks and tools we wish to integrate in LacEDAemon. Next we describe

the hypertool architecture1 of LacEDAemon, followed by the message de�nitions

that occur in the framework. Last, we describe how to extend LacEDAemon.

4.2. Integration

Tool integration is about the extent to which tools agree. The subject of these

agreements may include data format, user-interface conventions, use of common

functions, or other aspects of tool construction. While there is much research activity

in this area, few quanti�able integration metrics exist [187].

1Weiser [193] observed the term \landscaping" might be a better term than \architecture"

in the context of environment creation. He felt that landscaping gave a better feel for

the unknown realm of foundations for environments, and also better conveyed how an

environment creator had to make do with the existing lay of the land (i.e. underlying

system and software).

54

Generally speaking, there are �ve forms of integration that are relevant in a

discussion regarding a tool integration framework:

� data integration - the sharing of information between tools in the environment

i.e. the use of data by tools.

� presentation integration - the provision of a common user interface for the

tools in the environment i.e. the details of the user interaction.

� control integration - the management of cooperation, interoperation, and com-

munication between independent tools in the environment.

� platform integration - the platform or platforms on which the framework ser-

vices are provided.

� process integration - the role of tools in the software process.

We will concern ourselves primarily with control, data, and presentation

integration here. While platform integration is an interesting topic, our focus is on

the relationships among tools, and we regard the platform as simply providing the

basic elements on which the agreement policies and usage conventions for tools are

built. As for process integration, a programming environment concerns itself with the

coding aspects of any subsuming process. The �eld of multiparadigm programming

has not yet originated and validated any process2 that requires inclusion at the

2Some progress has been made recently via the study of multiparadigm design patterns

by Knutson [106].

55

User Interface
(presentation)

Data
(information)

Control
(communication)

Files
Data Dictionary

Objectbase System
O-O Database

Shared,Distributed
 information base

Multimedia (audio, picture, etc)

Style guides, standard look & feel

User Interface Management Systems

Motif, XT, Open/Look, etc

X Intrinsics

Xlib
Shell
Scripts

Programmatic
Tool ifs

Std Calls
or RPC

Broadcast Message Server
Process Model
Engine

Cooperation
Support

FIGURE 4.1. The Three Dimensions of Integration.

coding level (beyond the \edit-compile-debug" process that is implicitly supported).

Process integration is of great interest in CASE and IPSE environments, and of little

interest to a programming environment that is independent of any encompassing

CASE or IPSE. The three areas of integration we will concentrate on are depicted

in Figure 4.1.

4.3. Tool Integration Frameworks

Event-based programming is a common solution approach in computing.

User interfaces such as the X-Window system [164] wait for and react to events

such as a \key press" or \mouse button down". Various arti�cial intelligence systems

56

Database
Interface

Communications
Interface

User
Interface

User

Other
Tools

FIGURE 4.2. Idealized Integrated Tool.

(actors, blackboard systems, some rule-based systems) use an event-based approach

as well. Some operating systems (such as the Commodore Amiga) provide event

announcement primitives for application integration. Lastly, software integration

systems consist of multiple software modules reacting to events announced by other

modules. Tool integration frameworks utilizing event-based integration (also called

implicit invocation or control integration) have become a popular approach to con-

structing integrated programming environments.

A tool integration framework consists of:

� a communication mechanism

� a facility for data storage and control

57

� a vehicle for constructing consistent user interfaces

An integrated programming environment consists of tools embedded in a tool

integration framework (Figure 4.2). The toolset provided, along with the level of

cooperation between tools, determines the exact nature of the environment. Flexi-

bility in an environment is achieved via variations in toolset as well as variations in

the interactions between the tools.

Tool integration is largely determined by the approaches taken to �ve issues:

1. method of event communication

2. expressiveness of the tool interaction descriptions

3. intrusiveness of the tool interaction descriptions

4. static vs. dynamic behavior de�nition

5. tool naming and awareness

Tool integration frameworks are either data-centered or tool-centered, de-

pending on how the issues of tool control and data management are dealt with.

Data-centered frameworks embed both data management and tool communication

in a single, central repository. An example of data integration is the ECMA PCTE

shared repository approach [189]. Tool-centered environments view data manage-

ment and tool communication as separate issues.

Environments can also be considered tool-driven or user-driven. Tool-driven

environments (such as FIELD) allow tools to react somewhat autonomously, mak-

58

ing assumptions about the support required by the user, and working in concert

with other tools. User-driven environments (such as SoftBench), expect the user to

drive inter-tool communication explicitly via user interface interactions. A similar

environment-related distinction is in the form of whether tools in an integrated en-

vironment are loosely integrated or tightly integrated. Loosely integrated tools are

not very aware of the presence of other tools, which tightly integrated tools are very

involved in terms of interacting among other tools.

4.4. Tasks and Tools

The three primary programming tasks that the LacEDAemon programming

environment will initially facilitate are:

� creation

� correction

� comprehension

These three tasks are intertwined, and the entire set of LacEDAemon tools

will aid in all three tasks. Ideally, the environment should possess a task focus,

not a tool focus, i.e., several tools provide some functionality that is part of a

larger task. Creation of programs occurs within a text editor. The user might avail

of preexisting Leda programs during this process (requiring comprehension of the

existing code). The correction of programs requires editing as well, along with the

59

need to understand the workings of the programs. Along with a text editor, the

intial toolset includes a program database, debugging \hooks", program execution

visualization, and class and program �le browsers. The integral nature of the tasks

must be re
ected in the tools. The observation regarding tools that \amalgamation

is not equivalent to integration" is certainly true when considering the tasks of

creation, comprehension and correction.

4.5. The Hypertool Architecture Of LacEDAemon

A tool in LacEDAemon is a Tcl/Tk hypertool: a small, reuseable, stand-alone

(usually existing) application that is pressed into service perhaps unforeseen by the

tool originator. This use of the tool is made possible through the embedding of a Tcl

interpreter within the tool (or, embedding of the tool within a Tcl interpreter). The

result is that the tool gains the additional capability of executing Tcl commands, and

from this ability a hypertool is born. As there are Tcl commands to provide inter-

tool communication, hypertools provide a low-cost, versatile integration framework.

LacEDAemon provides framework wrappers for applications written in C,

C++, Java, and Tcl/Tk. These wrappers embed the tool within a Tcl/Tk inter-

preter, and provide messaging stubs for all of the LacEDAemon messages. The tool

integrator can now decide which event messages the tool is interested in responding

to, which requests the tool will honor, and what will comprise the response messages.

60

Tcl
Interpreter

Tcl Library

Built-in Commands

Tk Library

Widget
Data Structures

Widget Commands

Tool

Original

LacEDAemon Tool

Framework Message Interface

FIGURE 4.3. A Generalized LacEDAemon Hypertool.

These parameters are also registered with the LacEDAemon environment database

in the participant infomation repository.

The LacEDAemon integration framework di�ers from prior approaches to

integration (such as FIELD and SoftBench) in providing a much more
exible mes-

saging capability, at lower cost. A LacEDAemon message can cause the execution

of a Tcl command in any hypertool. Tcl commands can be standard commands

as de�ned by the language Tcl, or ones created by the user and embedded in the

hypertools. LacEDAemon messages can be synchronous or asynchronous, point-to-

point or broadcast. Providing the full power of an embedded programming language

for messaging provides more
exibility than a rigidly de�ned set of messages, and

by having messages correspond to language commands and tool application pro-

gramming interfaces, greatly reduces the programmer burden in creation of the

environment.

61

4.5.1. Messaging In Tcl/Tk

Message passing in Tcl/Tk can be illustrated by two very simple Tcl scripts.

The script lc.tcl, illustrated in Figure 4.4, provides two simple services via the two

procedures that are de�ned in the script. LedaVer determines the version of Leda

that is available to the system, and returns the result of determining that information

from the Leda interpreter to the requestor. ExecLeda takes as an argument a �le

name, and invokes the Leda interpreter on that �le.

Figure 4.5 provides two examples of messages requesting services from the

lc.tcl script. Note the application name of the services de�ned by lc.tcl is

Leda Interp. The script send_msg.tcl requests the Leda interpreter version via the

�rst send command. The script (with an application name of Send Msg) blocks

and awaits the results of the request, as the message is sent synchronously. The

second request is to invoke the Leda interpreter on the �le chap3.led. This request

is asynchronous, and the Send Msg application continues executing without waiting

for the results of its request.

The messages as de�ned here must occur on the same X window display,

however Tcl/Tk has the ability to work in a distributed manner over a TCP/IP

network. This allows for the possibility of maintaining a single, network-based

environment repository (we will examine this issue more in the next chapter).

62

#!/opt/hppd/bin/X11/wish

proc ExecLeda {file_to_exec} {

set output [exec lc $file_to_exec]

puts $output

}

proc LedaVer {requestor} {

set leda_version "[exec lc -v]"

send $requestor EchoInfo $leda_version

}

tk appname Leda_Interp

FIGURE 4.4. The lc.tcl Script.

#!/opt/hppd/bin/X11/wish

tk appname Send_Msg

proc EchoInfo {args} {

puts $args

}

puts [winfo interps]

send Leda_Interp {LedaVer Send_Msg}

send -async Leda_Interp {ExecLeda chap3.led}

exit

FIGURE 4.5. The send msg.tcl Script.

63

4.5.2. Embedding Interpreters in Tools

Figure 4.6 illustrates adding a new command to a Tcl interpreter via the C

programming language. In this case, the command is the trivial equivalent of \hello

world". The Tcl command hi will now result in the output of the string Hello,

World!. As a result of having the Tcl interpreter embedded within a tool, one can

utilize Tcl's strengths in messaging and Tk's facilities for interface construction to

expedite the additional requirements placed on a tool within an integrated toolkit

environment.

Embedding Tcl interpreters within various tools yields other advantages be-

yond providing a messaging mechanism and the basis for a common user interface.

Here we describe one such example extension that is easily a�orded by the presence

of the embedded Tcl/Tk interpreter.

The Leda language as de�ned has no graphics capabilities. Adding graphics

to Leda is not trivial, and most such graphical extensions (X window, Motif, Win-

dows MFC, etc.) greatly increase the complexity of the language. The access to

Tk which is provided by embedding the Leda language within a Tcl/Tk interpreter

allow for access to graphics to the Leda language in a very simple manner, in keeping

with the language design goals.

Figure 4.7 shows a simple spinbox application implemented in Leda utilizing

Tk graphics features. Figure 4.8 illustrates the Leda code that implements this

64

#include <stdio.h>

#include <stdlib.h>

#include <tcl.h>

#include <tk.h>

int HelloWorld (ClientData client_data, Tcl_Interp* interp,

int argc, char *argv[])

{

Tcl_ResetResult(interp); /* reset result data */

Tcl_AppendResult (interp, "Hello, World!", (char*) NULL);

return TCL_OK;

}

int Tcl_AppInit (Tcl_Interp* interp)

{

int status;

status = Tcl_Init(interp);

if (status != TCL_OK) return TCL_ERROR;

status = Tk_Init(interp);

if (status != TCL_OK) return TCL_ERROR;

Tcl_CreateCommand (interp,

"hi", /* command name */

HelloWorld, /* C function */

NULL, /* client data, unused */

NULL); /* delete function, unused */

return TCL_OK;

}

int main (int argc, char *argv[]) {

Tk_Main(argc, argv, Tcl_AppInit);

return (0);

}

FIGURE 4.6. Embedding a Tcl Interpreter.

65

FIGURE 4.7. The Spinbox Application.

application. Figure 4.9 illustrates a portion of the graphics.led de�nition �le

showing how Leda can now \escape" to Tk.

In some sense, this is similar to the style of multiparadigm programming

suggested by Koschmann and Evens [108] in describing their \boolean bridge" ap-

proach to integrating object-oriented and logic programming. Their premise was

that the best solution for combining alternative programming styles was to allow

each style-supporting subsystem to coexist in an application, with some interface

between the various styles. Here we have created a \graphical bridge" that allows us

to use Leda for what it does best, while leaving the graphical programming compo-

nent to Tk. This technique to add graphics to textual programming languages has

been exploited in the realm of functional languages such as Gofer [48] and ML [118],

as well as the scripting language Perl [91]. Note that this subsystem aggregation

technique gives the programmer direct access to the tools of LacEDAemon as well

via the messaging facility. While we do not exploit the direct tool access capability

now present in Leda in integrating tools into LacEDAemon, its presence allows for

re
ective tool integration experiments (changing the de�nitions of tool interactions

from within the language).

66

include "std.led";

include "graphics.led";

var

frm : frame;

but1, but2 : button;

ent : entry;

lbl : label;

begin

frm := frame();

frm.set_name(".frm");

frm.create ("ridge", "5");

frm.pack();

but1 := button();

but1.set_name(".frm.but1");

but1.create ("+");

but1.side_pack("right");

but1.configure("-command {set count [expr $count + 1]; update}");

cfunction TkCommand ("set count 0");

but2 := button();

but2.set_name(".frm.but2");

but2.create ("-");

but2.side_pack("left");

but2.configure("-command {set count [expr $count - 1]; update}");

ent := entry();

ent.set_name(".frm.ent");

ent.create ("3", "sunken", "count");

ent.pack();

lbl := label();

lbl.set_name(".frm.lbl");

lbl.create ("Value");

lbl.set_background("blue");

lbl.set_foreground("yellow");

lbl.side_pack("bottom");

end;

FIGURE 4.8. Leda Code for the Spinbox.

67

class widget;

var

name : string;

function set_name(widget_name : string);

begin

name := widget_name;

end;

function print_name();

begin

print (name);

end;

function create(text : string);

begin end;

function pack();

begin

cfunction TkCommand ("pack " + name);

end;

function configure(args : string);

begin

cfunction TkCommand (name + " configure " + args);

end;

:

end;

class label of widget;

function create(text : string);

begin

cfunction TkCommand ("label " + name + " -text " + text);

end;

end;

:

FIGURE 4.9. Leda Code for Graphics Library.

68

4.5.3. Combining Message and APIs

One subtle but interesting di�erence between the LacEDAemon Tcl/Tk-

based messaging scheme and other integration frameworks is the merging of the

Application Programming Interface (API) of tools and the messaging framework.

The tool API is the set of functions and procedures that applications built upon

a tool framework can call, i.e. the set of exported or public interfaces between a

tool's programming library and the world. As a result of embedding the messaging

facility within the tool itself, LacEDAemon gains access to the entire tool interface.

4.6. LacEDAemon Messages

Messages in LacEDAemon are in general Tcl commands. As part of the

LacEDAemon messaging framework, a set of standard commands are provided for

which the appropriate tools can provide responses. These commands fall into the

following three categories:

� requests - requests from one tool to another for an action

� response - response to a request from a tool

� events - noti�cation of some event that might require action by a tool

A request is an explicit request from one tool to another, i.e. a �le browser

asking an editor to display a �le that the user has selected. A response provides

information from the responding tool to the requestor i.e. the fact the editor was able

69

TclTk

Tool
Original

LacEDAemon Tool 2

Framework Message Interface

TclTk

Tool
Original

LacEDAemon Tool 1

Framework Message Interface

TclTk

LacEDAemon Messaging Server

Framework Message Interface

request

response

eventevent

Message Database

FIGURE 4.10. Messaging in the LacEDAemon Environment.

to display the �le successfully. An event is simply noti�cation to the LacEDAemon

toolset of a happening that may be of interest to other tools, i.e. the Leda interpreter

notifying tools that a speci�c line of a program has been executed, leading to the

execution animator updating its display. Messages in the LacEDAemon environment

are illustrated in Figure 4.10.

A message has the general form of:

send <originator> <destination> <message> <message arguments>

Note that TCP/IP messaging is also available and would allow for a program-

ming environment distributed over multiple machines in a networked environment.

70

4.6.1. Request Messages

Some of the request message de�nitions present in the LacEDAemon message

framework are listed in Table 4.1. Requests are messages from tools that require a

speci�c action from one or more tools present in the LacEDAemon framework. Re-

quests result in response messages. Brief descriptions of the actions that accompany

a tool issuing a request are as follows:

� register - any tool can report its presence (and interest in various events) with

the LacEDAemon Messaging Server with a register request.

� open - any tool with the capability of accessing a Leda program can request

the user-selected item be displayed among the LacEDAemon tools.

� close - any tool with a user-selectable action for closing a Leda program

presently being displayed by the tool can request that other members of the

LacEDAemon framework do the same.

� update - any tool that allows some state of LacEDAemon to be altered can

request other tools also update their state in response to the change.

� parse - the �le browser can request that the Leda interpreter (or possibly a

Leda compiler) parse the �le provided as an argument.

71

message originator destination purpose

register any tool Message Server register presence of tool
open any tool �le browser open �le for display
close any tool �le browser close �le being displayed
update any tool �le browser update �le being displayed
parse �le browser Leda interpreter parse a Leda �le
compile �le browser Leda interpreter compile a Leda �le
class struct class browser LacEDAemon database describe class structure
�le struct �le browser LacEDAemon database describe �le structure
exit any tool Message Server tool is exiting

TABLE 4.1. LacEDAemon Request Messages

� compile - the �le browser can request that a Leda compiler3 compile the �le

provided as an argument.

� class struct - the class structure browser of LacEDAemon needs current class

information in order to display, which is provided by the program database.

� �le struct - the �le structure browser of LacEDAemon needs current �le

structure information in order to display, which is provided by the program

database.

� exit - the fact that a tool has been instructed to exit needs to be registered

with the Messaging Server. This request may also cause other tools (or the

whole environment) to exit.

3While the current Leda implementation is an interpreter, two prior implementations

were compilers.

72

4.6.2. Response Messages

Some of the response message de�nitions present in the LacEDAemon mes-

sage framework are listed in Table 4.2. Responses provide feedback to request mes-

sages issued by tools that expect a speci�c action from one or more tools present in

the LacEDAemon framework. Requests result in response messages. Brief descrip-

tions of the implications of the possible responses are as follows:

� success - the request message from a tool resulted in the desired action being

successfully performed.

� failure - the requested action by the tool resulted in the desired action not

being performed successfully.

� error - the requested action by the tool resulted in an error (as de�ned by the

responding tool).

� unavailable - the service requested by the tool is not a service that the re-

sponding tool can provide.

� data - the requested action resulted in some data that is now being provided.

4.6.3. Noti�cation Messages

Some of the noti�cation message de�nitions present in the LacEDAemon

message framework are listed in Table 4.3. Noti�cations provide status updates to

73

message originator destination purpose

success any tool any tool prior request successful
failure any tool any tool prior request failed
error any tool any tool prior request caused an error
unavailable any tool any tool requested service unavailable
data any tool any tool data generated by requested service

TABLE 4.2. LacEDAemon Response Messages

all tools that have registered an interest in being kept abreast of current status.

Brief descriptions of some of the noti�cation messages are as follows:

� LD Init - the user is requesting the initialization (or reinitialization) of a

LacEDAemon session from a tool that allows this option.

� LD Exit - the user is requesting the exit of a LacEDAemon session.

� FileOpen - a �le is being opened by some tool.

� FileClosed - a �le is being closed by some tool.

� LineAdv - the Leda interpreter/compiler has advanced a line in the current

program being executed.

� FuncCall - the Leda interpreter/compiler is calling a function in the current

program being executed.

� OpCall - the Leda interpreter/compiler is executing an operator in the current

program being executed.

74

message originator destination purpose

LD init messaging server any tool user initializing LacEDAemon
LD exit messaging server any tool user exiting LacEDAemon
FileOpen �le browser any tool a Leda �le has been opened
FileClosed �le browser any tool a Leda �le has been closed
LineAdv Leda interpreter any tool interpreter has advanced a line
FuncCall Leda interpreter any tool interpreter has executed a function
OpCall Leda interpreter any tool interpreter has executed an operator
Breakpoint Leda interpreter any tool interpreter has arrived at a breakpoint
Output Leda interpreter any tool interpreter has emitted some output
success any tool any tool a request was successful
failure any tool any tool a request failed
error any tool any tool a request caused an error
unavailable any tool any tool requested service unavailable

TABLE 4.3. LacEDAemon Noti�cation Messages

� Breakpoint - the Leda interpreter/compiler has arrived at a user-set breakpoint.

� Output - the Leda interpreter/compiler has arrived at a statement requiring

output.

� success - a request message was successfully serviced.

� failure - a request message was unsuccessfully serviced.

� error - servicing a request message resulted in an error.

� unavailable - a request message could not be serviced.

75

4.7. Extending LacEDAemon

In order to facilitate the integration of tools beyond the default LacEDAemon

toolset, a selective broadcast mechanism is also available. This allows tools to

register their interest in events with the broadcast server, and for the broadcast

server to appropriately propogate events generated by the tools as well as requests.

Note that for full integration, the existing tools must be made aware of the addition

of new tools for point-to-point transactions. Also note that all tools register their

presence and the set of requests that they service.

Integrating a tool into LacEDAemon is not an extremely di�cult task. How-

ever, just like any engineering task, the coding required for the integration of a tool

should be preceeded by analysis, speci�cation and design. What functionality of

the tool will the user wish to access? What other tool interactions will the tool be

required to participate in? What new messages need to be originated? What is the

impact of the presence of this tool on existing tools and tool interactions? All of

these questions need to be examined prior to integrating a tool.

Provided the tool's source code is available, and the tools is written in C,

C++, Java, or Tcl/Tk (or some other system scripting language), there are messag-

ing frameworks available in LacEDAemon to provide basic messaging for the tool.

If the tool does not have source code available, limited integration might still be

possible via various Tcl/Tk applications [79] such as TkSteal. If the application

76

for which source code is not available is textual in nature (i.e. no graphical user

interface), limited integration via Expect [113] is still possible.

77

5. THE LACEDAEMON PROGRAM DATABASE

In this chapter, we describe the PostgreSQL database system that comprises

the heart of the LacEDAemon Program Database, as well as the LacEDAemon

tool integration repository. We describe how tool interactions and Leda programs

are represented in the database. The program information extractor, a tool for

populating the program database is brie
y touched upon. Lastly, other implications

of the presence of a central database are examined: the possibility of creating a

con�guration management system and augmenting the Leda language to include

persistent objects are explored.

5.1. Introduction: PostgreSQL

Postgres, Postgres95, and PostgreSQL are all releases of the Postgres project,

an object-oriented database management system (OODBMS) research group at the

University of California at Berkeley, led by Michael Stonebreaker [177].

Postgres extends the traditional database management system (DBMS),

which comprises of a data model consisting of a collection of named relations, con-

taining attributes of a speci�c type. Postgres extends the traditional DBMS model

by adding classes, inheritance, types, functions, and a powerful production rule

system. The query language in Postgres is called PostQuel.

78

PostgreSQL is an Object-Relational DBMS (ORDBMS), derived from the

Berkeley Postgres database management system. While PostgreSQL retains the

powerful object-relational data model, rich data types and easy extensibility of Post-

gres, it replaces the non-standard PostQuel query language with an extended subset

of the standard SQL query language.

A study conducted by Dahanayke and Florijn [52] identi�ed Postgres as one

of the best object-oriented database management systems available with which to

implement a repository for software engineering environments. Several databases,

including Ontos, Obj/db, Itasca, Iris and Postgres were evaluated in the context

of a generic model consisting of orthogonal services. The databases were rated

based on their functionality in the areas of modeling, storage and manipulation,

version, integrity and consistency, views, concurrency control, security, distribution,

interface, and control integration. Postgres was the most highly rated public-domain

database in their study.

5.2. Using Postgres as the LacEDAemon repository

Postgres is used as the environment database in LacEDAemon for two pur-

poses:

� to store and supply information about LacEDAemon participant tools.

� to store and supply information about individual Leda programs.

79

LacEDAemon tools can register with the environment database{their pres-

ence, messages they are interested in, and messages to which the tool will respond.

The LacEDAemon broadcast message server relies on the participant tool informa-

tion to resolve the sending and receiving of all communication that is not point-to-

point.

The environment database also stores a representation of the various Leda

programs. Various tools rely on program structure information, and rather than

gather that information multiple times, the Leda program information extraction

tool stores that information in the environment database when a program is accessed

for consumption by the tools.

5.2.1. Representing LacEDAemon Participant Information

The LacEDAemon participant relation is depicted in Table 5.1. The �elds of

the participant relation are utilized as follows:

� tool name - the particular name of the tool registering its interests.

� tool path - the path to the tool registering its interests.

� interest events - the events that this tool is interested in.

� generate events - the events that this tool might generate.

� response events - the events that this tool will respond to.

80

�eld type description

tool name string name of tool
tool path string �le path to tool
interest events array of Message events the tool is interested in
generate events array of Message events the tool will generate
response events array of Message events the tool will respond to

TABLE 5.1. The LacEDAemon Participant Relation

�eld type description

Files array of File array of �les involved in a project

TABLE 5.2. The Project Relation

5.2.2. Representing Leda Programs

Leda programs are represented by a number of relations, some of which are

brie
y described in Tables 5.2- 5.11. The relations map in a straightforward manner

to the Leda grammar (described in Appedix A). We will examine how these relations

store information about Leda programs in the next section.

�eld type description

File string name of the �le
Path string full path to the �le

TABLE 5.3. The File Relation

81

�eld type description

File relation inherits File relation
Line integer line number of the reference
LineTo integer ending line number of the reference

TABLE 5.4. The Location Relation

�eld type description

Location relation inherits Location relation
IncludeFile relation File included at Location

TABLE 5.5. The Includes Relation

�eld type description

Location relation inherits Location relation
Code array of string array of source lines

TABLE 5.6. The Source Relation

�eld type description

Location relation inherits Location relation
Name string name of class
Parent string name of parent class

TABLE 5.7. The Class Relation

�eld type description

Location relation inherits Location relation
Name string name of class
Function string function containing the declaration
Type string type assigned by the declaration
Category relation category of the declaration

TABLE 5.8. The Declaration Relation

82

�eld type description

Location relation inherits Location relation
Call string name of routine being called
From string name of routine call is being made from

TABLE 5.9. The Declaration Category Call

�eld type description

Location relation inherits Location relation
Name string name of function being de�ned
NumArg integer number of arguments to the function
Args array of string list of arguments to the function

TABLE 5.10. The Declaration Category Function

�eld type description

Location relation inherits Location relation
Member string name of class member being de�ned
Class string name of class in which member resides
IsData boolean data member (versus method)
Const boolean constant data member

TABLE 5.11. The Declaration Category Member

83

5.3. The Leda Program Information Extractor

One must have access to the program information (syntactic and semantic)

in order to populate the database described in the previous sections. The Leda

Program Information Extractor provides the service of extracting the relevant in-

formation from a Leda program in a form the LacEDAemon Program Database can

consume. In this section, we describe the derivation of the Leda Program Informa-

tion Extractor from the lc Leda interpreter.

Populating a database with information extracted via static analysis for the C

and C++ languages was explored by Grass [75]. Using the tools cia (C Information

Abstractor) and cia++ (C++ Information Abstractor), Grass showed how creating

a database of information allows for tools to graphically display various views of pro-

gram structure, tools that answer queries about program symbols and relationships,

and tools that can extract self-contained components from large systems. She later

showed how this information could be used to recover design information (software

archaeology) [74] and provide syntax-directed program di�erencing [73]. Duesing

and Diamant [58] describe how this database of information also allows for creation

of automated error detection tools in SoftBench.

The Leda Program Information Extractor is a static analysis tool that pro-

vides information regarding a Leda program, which the LacEDAemon program

database then stores. Various tools rely on the information stored in the database to

provide services such as a graphical depiction of the class hierarchy or �le inclusion

84

structure, augmented pretty printing, and animated views of program execution.

Since the program analysis tool is static, there are limitations on the knowledge

contained in the program database.

The Program Information Extractor tool was derived from the language def-

inition that is contained in the lexical analysis and grammar de�nition �les of Leda.

As a Leda program is parsed in exactly the same manner that it is prior to program

execution, the LacEDAemon program database is updated with accurate informa-

tion acquired via a modi�ed parser. When syntactic structures of the Leda language

are recognized by the parser, their details are supplied to the relevant program

database relations.

A second version of the Leda Program Information Extractor was written in

Java, using the Java CUP system. The Java Constructor of Useful Parsers (CUP)

program [87] is a system for generating LALR parsers from simple speci�cations.

CUP and its speci�cations are both closely modeled on yacc. CUP, however, is

written in Java, has embedded Java statements in the speci�cations, and produced

parsers implemented in Java. We utilize the Java-based version of the Leda Program

Information Extractor to illustrate the fact that tools implemented in Java will soon

have the capability of integration into the LacEDAemon integration framework. The

mechanism for integrating Java-based tools is TclBlend [171], a mechanism from Sun

Microsystems that allows Tcl programs to use all of the functionality of Java.

85

Regardless of language of implementation, the Program Information Extrac-

tor tool is easily derived from the language de�nition that is contained in the lexical

analysis and grammar de�nition �les of Leda. This process has relevance beyond

Leda. Most research languages provide access to the implementation source code, or

at least provide enough information that the language parser and grammar informa-

tion can be reconstructed. Given the parser and grammar information, constucting

a similar program information extraction system is not di�cult.

5.4. An Example

Appendix B provides an entire Leda example program. The program in Ap-

pendix B simulates a Turing Machine, and provides Turing machine \programs" for

the operations of testing for palindromes and binary addition. The �le turing.led

is the central �le, creating the machine tapes and calling the Turing machine \pro-

grams". All of the other program �les are included into this �le. The standard Leda

library std.led is of course included, along with �ve other Leda source �les.

The �le square.led de�nes the tape Square class and provides class mem-

ber functions or methods to access and print the contents of the tape. The �le

rwhead.led de�nes the Turing machine read/write head, with methods to read,

write, and move the tape head, as well as print the contents of the current square.

The �le tm.led de�nes the Turing machine class and provides a method for exe-

cuting the Turing machine program. The last two �les, tmpal.led and tmadd.led

86

provide Turing machine \program" de�nitions for checking for palindromes and bi-

nary addition, respectively.

Once the Leda Program Information Extractor has processed the �les in

the project, the database re
ects the information gathered. An illustration of a

populated Class relation (Figure 5.7) for std.led is provided in Figure 8.4. Other

relations in the Program Database are similar. Information extraction must also

occur whenever a program update event (extract info, save, update, FileSave, etc.)

occurs.

5.5. A Revision Control System

Postgres supports the notion of historical data. Data in Postgres that is not

part of the \current" state of the database is still maintained. Thus tuples that have

been deleted or modi�ed become part of a \past" state of the database, and these

tuples are never physically overwritten or deleted. Both the old and new versions

of the tuples are retained, with the old tuple invalidated. Postgres allows historical

queries, or time travel, in which the user can specify timespans in which they are

interested. A query that does not specify any time-related parameters will retrieve

the current information. Queries can be made that result in past values of a class

to be retrieved.

Ong has provided a generic description of managing versions within Post-

gres [132]. Here we brie
y describe the aspects of version management pertinent

87

to creating a software con�guration management system. There are two basic ap-

proaches to managing versions: forward deltas and backward deltas (or derivatives).

Forward deltas start from an existing state of a program as a base, tracking addi-

tions to the tuples as well as the deleted/changed tuples in deltas. In order to create

a current snapshot, the base tuples must have all of the modi�cations contained in

the deltas performed upon them. Along with the possible performance penalty of

having to reconstruct all the transactions to arrive at the current state, the forward

delta approach also makes it hard to delete any tuples from the database.

Backward deltas perform changes to the program in place, while old values

are recorded in the deltas. Since changes to the new version are made in place,

no special procedure is required to access the \current" state of the program. De-

riving old versions is somewhat more costly, but is a more infrequent operation.

PostgreSQL utilizes the backward delta approach.

5.6. Persistant Objects

The presence of the LacEDAemon program database also makes it possible

to create and store program values beyond the execution lifetime of a program, i.e.

create persistent objects that can be shared between two or more program executions.

We describe a conceptual framework for adding persistence to Leda here. Persistent

programming languages are related to object-oriented database languages, but di�er

in that they neither allow all of the database services, nor do they necessarily allow

88

object access from multiple di�erent languages. Persistence does allow systematic

sharing of object values and services between program executions. In specifying

persistent objects, three factors are of import: when persistent objects are speci�ed,

how they are speci�ed, and which objects are eligible to be persistent.

Once persistent objects are present in a system, objects must be identi�ed as

either being persistent or transient. If a persistent object cannot become transient,

then it is called permanently persistent, otherwise it is called temporarily persistent.

Once a temporarily persistent object is deemed transient, its lifetime will not extend

beyond the termination of the currently executing program. Also of interest is

when objects are designated persistent: as part of the creation of the object, or

at some time after its creation. The speci�cation of a persistent object may be

type-dependent or type-orthogonal, i.e., only speci�c types may be allowed to be

persistent, or perhaps any object type can be persistent.

Another factor is the interaction between persistent and transient objects:

the semantics of references in persistent objects to transient objects must be de�ned.

The usual approach is to create a permanently persistent root for all persistent

objects, and to perform reachability analysis from this root.

89

6. THE PRETTYPRINTER

6.1. Prettyprinting

Pretty printing is a form of static code program visualization [128]. A pret-

typrinter takes as input a stream of characters and prints them with aesthetically

appropriate indentations and line breaks [7, 6]. Prettyprinters are integral com-

ponents of any programming environment tool [133]. One of the most well-known

prettyprinters is the SEE system, created by Baecker and Marcus [9].

Program formatting has been found to be a factor in program comprehension

studies{Oman and Cook's [131] experiments with a book format indicated statisti-

cally signi�cant improvements in programmer performance on comprehension and

maintenance tasks. This improvement has led to some proposals to typographically

augment programming languages themselves [1, 50].

Here, we describe a prettyprinter for Leda. This prettyprinter provides more

aesthetically pleasing treatment of program text through the use of boldface and

italic type, as well as uniform program indentation. Additionally, a facility for

enhanced presentation of �rst-class functions is provided, called function boxing.

90

6.2. First Class Functions in Leda

First-class functions can be de�ned as functions that have the same status as

any other values. Thus a �rst-class function can be the value of an expression, can

be passed as an argument, and can be put in a data structure [166]. The functional

programming paradigm, which treats functions as �rst-class citizens, permits the

creation of powerful operations on collections of data. Some examples of functional

programming languages include Haskell, ML, and Lisp.

Functions are also �rst-class in Leda, i.e. a function can be passed as an

argument, assigned to a variable, or returned as the result of executing another

function. Figure 6.1 illustrates currying in Leda. The unary function triple is the

result of binding one argument of the nameless multiplication function to 3, using

the curry function, which returns a function.

6.3. The Leda Prettyprinter

The Leda prettyprinter produces either ASCII or LATEX [110] output. The

ASCII text output is simply indented in a standardized manner. This option is of

limited use in the event the Leda programs were created with the language sensitive

editor, as the programs will automatically be indented in a standard manner. How-

ever, as users may have di�erent preferences with respect to the indentation level,

the prettyprinter allows user speci�cation of what a single indentation unit should

be in number of spaces.

91

{ using functionals: the curry operation }

type

binaryFunc : function(integer, integer)->integer;

unaryFunc : function(integer)->integer;

function curry (boundFun : binaryFunc,

boundValue : integer)->unaryFunc;

begin

return function (item : integer)->integer;

begin

return boundFun(item, boundValue);

end;

end;

var

triple : unaryFunc;

begin

triple := curry(function(x: integer, y: integer)->integer;

begin return x*y;end, 3);

print("triple of 7 " + triple(7) + "\n");

end;

FIGURE 6.1. Currying In Leda.

92

The LATEX option produces a much richer output, although using it re-

quires the presence of the LATEX typesetting system and the availability of LATEX or

PostScript viewers and/or printers. The output has italicized comments, bolded key-

words, aesthetically improved program symbols, and graphically highlighted func-

tions.

6.4. An Example

Figure 6.1 is an example of binding one argument of a higher-order function

(or functional). The resulting function is commonly called a curry. There are two

arguments to curry: the binary function and the argument that is to be bound to

a constant. The resulting unary function, triple, triples the value of the passed

argument, as a result of having one argument of a general (unnamed) multiplication

function bound to the constant 3.

Figure 6.2 illustrates the result of passing the curry example from Figure 6.1

through the prettyprinter. Note comments are italicized, keywords are bold, some

characters are aesthetically improved (such as) instead of ->), and functions are

enclosed in a box, allowing them to stand out.

Note the special typographic treatment of �rst-class Leda functions. When

�rst-class functions are explained in a pedagogic setting, they are often circled or

highlighted as to make clear the bounds of the function being manipulated. Func-

93

f using functionals: the curry operation g

type
binaryFunc : function (integer, integer))integer;
unaryFunc : function (integer))integer;

function curry(boundFun : binaryFunc, boundValue : integer))unaryFunc;
begin

return

function (item : integer))integer;
begin

return boundFun(item, boundValue);
end

;

end;

var
triple : unaryFunc;

begin

triple := curry(

function (x : integer, y : integer))integer;
begin

return x � y;
end

, 3);

print(\triple of 7 " + triple(7) + \\n");
end;

FIGURE 6.2. Currying Example, Prettyprinted.

94

tion boxing provides an automated mechanism to highlight the presence of these

functions.

6.5. Database Directed Prettyprinting

The presence of the LacEDAemon program database allows for the pret-

typrinter to take advantage of information gathered during static analysis of the

Leda program. This information can be presented along with the enhanced pro-

gram listing to provide the programmer with additional information that would

require additional e�ort on the part of the programmer to acquire. This informa-

tion includes the class hierarchy and �le inclusion details. Program information in

the form of statements such as \the class boolean inherits from class equality" or

\the �le tm.led is included in the �le turing.led" collected in a readily-accessed

location in the pretty-printer output may be of value to the programmer. The pro-

gram database also facilitates indexing of information to allow for the creation of

book-style program listings [131].

The book program listing can also be adapted to on-line access via Hypertext

Markup Language (HTML) and an HTML browser. Simple queries to the program

database combined with straightforward text processing provide the information

required to create the necessary HTML version of the enhanced program listings.

95

7. THE PROGRAM ANIMATOR

Algorithm animation provides users with dynamic graphical depictions of the

data and operations of an algorithm. The graphical depictions allow users to better

understand programs, evaluate existing programs (for performance or reuse), and

develop new programs. Polka is an algorithm animation system with an interactive

animation interpreter and generator tool called Samba. Algorithm animation sys-

tems can also be used to provide a vehicle for other types of animation applications.

Here we describe how we use Polka to provide animated views of Leda program

execution in the LacEDAemon programming environment.

7.1. Leda does the Polka

A number of algorithm animation systems have been built over the last

decade. These include systems like Balsa [21], Tango [173], and Zeus [22]. For a

good summary of di�erent algorithm animation and software visualization systems,

see [PBS93].

The Polka algorithm animation system and environment [174] is a follow-on

system to Tango and XTango [172]. Animations in Polka consist of C++ programs.

Samba provides an interpreted, interactive animation front end to Polka.

The Samba interactive animation interpreter reads commands from a textual �le to

96

acquire directions for creating an animation. Samba provides nearly 90% of Polka's

base functionality. Stasko's description of students utilizing the Polka/Samba sys-

tem to create animations provides a good summary of how we intended to integrate

this tool into LacEDAemon [174]:

Essentially, a student must annotate the implementation of an algo-
rithmwith \print" statements to generate the commands to drive Samba.
When the program executes, these print statements will be output in an
order corresponding to the execution and will comprise a trace of the
program's operations. The print statements correspond to the interest-
ing events often used in algorithm animation systems. The output trace
is then forwarded to Samba which generates the speci�ed animation.

Animations developed with Samba are carried out in windows with a real-

valued coordinate system that originally runs from 0.0 to 1.0 from left-to-right and

from bottom-to-top (actually, the coordinate system is in�nite, and Samba allows

zooming and panning throughout the system). Graphical objects are created and

placed within the coordinate system. These objects can be moved, change color,

visibility, �ll, etc. in order to depict the operations being depicted.

Polka and Samba were originally implemented for UNIX in C++, on top of

the X11 Window system. A newer version of Polka and Samba are available for

Windows 95/NT. There is also a Java version of Samba called JSamba.

97

1 include "std.led";

2

3 function square (val : integer) -> integer;

4 var

5 tmp : integer;

6 begin

7 tmp := val * val;

8 return tmp;

9 end;

10

11 var

12 i : integer;

13 begin

14 i := 3;

15 i := i + 1;

16 print (i);

17 i := square (i);

18 print (i);

19 end;

20

FIGURE 7.1. An Example Leda Program.

7.2. Using Polka/Samba to Present Leda Execution

Figure 7.1 depicts an example Leda program. The program simply includes

the standard Leda library, std.led, has a function called square that squares the

integer parameter passed to it, and some code to call square and print the results.

Figure 7.2 illustrates how the Leda interpreter lc provides textual clues as to

its progress in program execution. Here, the program being executed is from Figure

7.1. Embedded in the output is the line number of the program being executed, along

98

with much other information that will not be of interest to novice (and possibly

expert) programmers. By modifying the lc interpreter to broadcast a LineAdv

noti�cation, the programmer is provided with more comprehensible information

via the Samba/Polka program animator. Figure 7.3 illustrates the Samba/Polka

animation interpreter commands required to illuminate execution progress of the

Leda interpreter. Note that the Samba animates the execution of the program,

i.e., progress in the program is depicted via motion in the animation view. This

animation provides additional reinforcement as to the progress of program execution.

7.3. Mediators: Addressing Impedance Mismatch in Tools

The di�erence between the output of the Leda interpreter lc and the input

required by Samba are easily discerned. This is a case of impedance mismatch be-

tween tools being integrated. This is one of the key issues facing the tool integrator:

providing the translation required between tools in order for them to interoperate.

Sullivan's PhD thesis, \Mediators: Easing the Design and Evolution of Inte-

grated Systems," proposes the use of mediators (also called adaptors) to accomplish

the task of tightly integrating the behaviors of separate software components [180].

Mediators provide data conversion for interoperability, allowing two or more soft-

ware components to cooperate despite di�erence in language, interface, or execution

platform. Here we use mediators to integrate the behavior of the Leda interpreter's

99

$ lc -ds a.led

parse ok, starting execution

File a.led Line 14: expression statement

File a.led Line 15: expression statement

File std.led Line 347: return statement, yields

1073918240

return from function unknown function(1074374680)

File a.led Line 16: expression statement

File std.led Line 505: conditional statement

File std.led Line 508: expression statement

do function (1074122600) call unknown function

(1074369392), now do call

File std.led Line 300: return statement, yields

1074122512

File std.led Line 456: expression statement

4return from function unknown function(1074387688)

File a.led Line 17: expression statement

File a.led Line 7: expression statement

:

:

:

File a.led Line 18: expression statement

do function (1073918448) call ? (1074393760),

now do call

File std.led Line 505: conditional statement

File std.led Line 508: expression statement

do function (1074122272) call unknown function

(1074369392), now do call

File std.led Line 300: return statement, yields

1074122184

return from function unknown function(1074369392)

File std.led Line 456: expression statement

16return from function unknown function(1074387688)

return from function ? (1074393760)

execution ended normally

FIGURE 7.2. Leda Statement Trace Output.

100

viewdef a.led 600 600

view a.led

bg black

text 1 0.05 0.95 0 white 1: include "std.led" ;

text 2 0.05 0.9 0 white 2:

text 3 0.05 0.85 0 white 3: function square (val : integer) -> int

text 4 0.05 0.8 0 white 4: var

text 5 0.05 0.75 0 white 5: tmp : integer ;

text 6 0.05 0.7 0 white 6: begin

text 7 0.05 0.65 0 white 7: tmp := val * val ;

text 8 0.05 0.6 0 white 8: return tmp ;

text 9 0.05 0.55 0 white 9: end ;

text 10 0.05 0.5 0 white 10:

text 11 0.05 0.45 0 white 11: var

text 12 0.05 0.4 0 white 12: i : integer ;

text 13 0.05 0.35 0 white 13: begin

text 14 0.05 0.3 0 white 14: i := 3 ;

text 15 0.05 0.25 0 white 15: i := i + 1 ;

text 16 0.05 0.2 0 white 16: print (i) ;

text 17 0.05 0.15 0 white 17: i := square (i) ;

text 18 0.05 0.1 0 white 18: print (i) ;

text 19 0.05 0.05 0 white 19: end ;

text 20 0.05 0 0 white 20:

triangle 0 0.01 0.98 0.04 0.965 0.01 0.95 red solid

view a.led

coords 0 -0.2 1 0.8

delay 500

color 14 green

delay 1500

color 14 white

viewdef std.led 600 600

:

:

FIGURE 7.3. Samba/Polka Animation Commands.

101

Leda
Program lc

Leda Interpreter

Visualization Mediator
Sam

ba

Polka
trace

output

animation
commands

FIGURE 7.4. Execution Visualization in LacEDAemon.

textual progress clues and Samba capability to animate the same. This mediator-

based design is illustrated in Figure 7.4.

An impedance mismatch can be addressed via the use of mediators, as the

behaviors requiring modi�cation are accessible to the tool integrator. A di�erent

problem is architectural mismatch, where tools make mismatched assumptions re-

garding the structure of the system it is to be a part of. Garlan et al. [65] describe

the issues associated with architectural mismatch.

7.4. Algorithm Animation in LacEDAemon

While Polka provides an animated view of program execution, as depicted in

Figure 7.5, its presence can be exploited for other program comprehension activi-

ties as well. Algorithm animations might expedite understanding of multiparadigm

102

FIGURE 7.5. Execution Visualization using Samba.

103

algorithms, and with the Polka/Samba system integrated into LacEDAemon, such

animations can be easily constructed.

104

8. THE PROGRAM EDITORS AND BROWSERS

An alternative to structure editing is the addition of language knowl-

edge to standard text editors. Language-knowledgable editors are a compromise

between straight text editors and structure editors. They provide such capa-

bilities as automatic indentation, parenthesis checking, and even simple cross-

referencing [155]. Here we describe the integration of a language-knowledgable editor

into the LacEDAemon environment.

Browsers have been accepted as fundamental, powerful tools for exploratory

program development They also have the potential of being very e�ective during

program maintenance. Maintainers are usually not the original developers of a pro-

gram and often can depend only on the source code as the up-to-date documentation.

Before making changes to a large, unfamiliar program, maintainers usually spend

considerable time understanding the program structure and the interconnection of

its components. Browsers help maintainers determine the scope of a change by

allowing them to interactively examine the program structure and ask which com-

ponents may be a�ected by a change [53]. Here we describe a variety of browsers

available in the LacEDAemon environment.

105

8.1. A Customized Editor for Leda

Programmers have always browsed programs with text editors, such as vi

[84] or emacs [170]. Emacs can be customized to great lengths in order to better

support various programming-related tasks [68]. Emacs is also a very popular editor

among programmers. The FIELD [151] project reports that \the primary lesson we

learned from FIELD about editors is that users want to use the editor they're used

to, no matter what additional features a new editor provide."

Emacs is the highest-function text editor available in the public domain.

Emacs provides assorted functionality viamodes, which allow for variable de�nitions

based on the type of material being edited. Figure 8.1 illustrates XEmacs version

20.4 in the Leda major mode.

The Leda major mode allows for structure-oriented editor functionality such

as:

� Understanding the structure of program constructs, and allowing for structure-

based editing features.

� De�ning and enforcing a speci�c indentation and code appearance standard.

� Providing specialized menus that are language-speci�c (Figure 8.2).

Customization is provided via Emacs Lisp de�nition �les. These �les can be

compiled into byte code to create compact, faster running �les. The Leda mode

de�nition �le consists of approximately 400 lines of Emacs Lisp code.

106

FIGURE 8.1. The Leda Major Mode in Emacs.

107

FIGURE 8.2. The Leda Menu in Emacs.

8.2. A Smalltalk-Like Browser

The Smalltalk language and associated environment [69] advanced program-

ming and programming environments considerably: one such advancement was the

Smalltalk browser. In a concise and straightforward manner, users could explore

and examine program values. We attempted to create a similar browser for the

Leda language.

The �rst attempt we made at creating such a browser was through the

Common Open Software Environment (COSE) Common Desktop Environment

(CDE) dtbuilder graphical user interface builder [42], which provided an graph-

ical, interactive, direct manipulation environment within which to generate X-

window/Motif [198] based user interfaces. Figure 8.3 depicts a prototype generated

108

FIGURE 8.3. Prototype of a Smalltalk-like Browser.

109

via this system. A second, more successful attempt was done by creating the Leda

browser using Tcl/Tk, via the SpecTcl user interface builder.

8.3. Depicting Class Hierarchies

We again use the mediator concept, in conjunction with the program

database, to depict class hierarchies. The program database is populated with

information gathered via the Leda Program Information Extractor. Figure 8.4 il-

lustrates the class information as stored in the LacEDAemon program database,

as well as the de�nition of the class relation and an example of adding program

information to the database. This is shown here in POSTQUEL, although in the

LacEDAemon environment the tasks of de�nition, update and access of data are

performed via the libpgtcl support for Tcl-based clients on the front-end, with

pgtclsh adding Tcl commands for back-end interface.

A mediator is employed to transform the data acquired from the database

into a form that can be consumed by the class hierarchy illustration tool. This

transformation is straightforward{though the concept can be applied in situations

of greater complexity. The integration framework of LacEDAemon coupled with the

scripting power of Tcl allows for tools to be integrated into the environment with

little e�ort: that of encapsulating the tool to allow messaging capabilities and the

creation of appropriate mediators.

110

CREATE TABLE Location (

File text,

Path text,

Line int);

CREATE TABLE Class (

Name text,

Parent text

) INHERITS (Location);

INSERT INTO Class VALUES

('std.led', '/users/rpandey/', 44, 'equality', 'object');

SELECT * FROM Class;

File |Path |Line|Name |Parent

-------+---------------+----+--------+--------

std.led|/users/rpandey/| 12|object |

std.led|/users/rpandey/| 44|equality|object

std.led|/users/rpandey/| 67|boolean |equality

std.led|/users/rpandey/| 100|True |boolean

std.led|/users/rpandey/| 127|False |boolean

std.led|/users/rpandey/| 157|ordered |equality

std.led|/users/rpandey/| 191|Class |ordered

std.led|/users/rpandey/| 236|real |ordered

std.led|/users/rpandey/| 296|integer |ordered

std.led|/users/rpandey/| 429|string |ordered

std.led|/users/rpandey/| 704|array |equality

(11 rows)

FIGURE 8.4. Storing Class Hierarchy Information.

111

Leda
Program

lc

Leda Program
Information Extractor

Program Browsing
Mediator

program
information class

structure

Program Database

FIGURE 8.5. Graphical View Of Class Hierarchies.

Figure 8.5 depicts the architecture of the LacEDAemon class browser. Figure

8.6 provides a more detailed view of the class browser. Note that in order to keep

the size of the window small, a search capability is provided. When a class name is

entered by the user in this window, the hierarchy will highlight the class in the tree

(if found), and the tree will be centered in the window with the desired class visible.

Double clicking on any node of the tree opens a browser window with a listing of

the Leda source code de�ning the class of interest.

112

FIGURE 8.6. Class Hierarchy Browser.

113

9. LITERATE MULTIPARADIGM PROGRAMMING

Literate programming is a system of combining programming and internal

documentation so that they may be co-developed with ease. One hope is that

the very close proximity of code and documentation will help ensure their mutual

correspondence. Literate programming was developed by D. E. Knuth in the late

1970s [103]. One of the best examples of usage of a literate programming system

continues to be Knuth's typesetting system, TEX [104].

LacEDAemon permits the creation of literate programming systems by allow-

ing for relations expressing the connection of documentation to occur in the program

database, while storing the documentation within any database class. The browsers

and editors that populate LacEDAemon can be made sensitive to the documen-

tation �eld of database classes, displaying the documentation when the particular

code fragment is accessed.

In this chapter, we describe the database classes modi�ed to support docu-

mentation in parallel to code fragments, the tools sensitized to this documentation,

and examine adapting an existing literate programming system to LacEDAemon.

We also show how non-textual documentation (i.e. graphical animations) can be

added to the system due to the presence of animation tools.

114

�eld type description

Files array of File array of �les involved in a project

Documents array of Document array of documents involved in a project

TABLE 9.1. The Documented Project Relation

�eld type description

Document string name of the document �le

Path string full path to the document �le

Accessor string full path to the document accessor

TABLE 9.2. The Document Relation

�eld type description

Location relation inherits Location relation

Code array of string array of source lines

Comment array of string array of comment lines

TABLE 9.3. The Commented Source Relation

115

9.1. CWEB

CWEB [105] is a version of Donald Knuth's WEB system, adapted to C and

C++. CWEB consists of two programs, CWEAVE and CTANGLE. When a user writes a

program, the code and documentation is kept in the same �le. The CWEAVE program

creates a TEX �le that is a prettyprinted version of the program and documenta-

tion, with correct handling of typographic details as well as the use of indentation,

italics, boldface, and mathematical symbols. The output when typeset also includes

extensive cross-index information which is gathered automatically. Similarly, the

CTANGLE generates a program �le that can be consumed by the language compiler

to yield executable code.

9.2. Adapting Literate Programming to LacEDAemon

The presence of a program database, prettyprinter, a graphical user inter-

face and the ability to create non-text documentation (e.g. animations) modi�es

the approach to literate programming we take in LacEDAemon. The documented

project relation described in Table 9.1 allows us to provide documentation �les at

a project level. The �les, recorded in the Document relation (Table 9.2), can be

text accessed by a text editor, drawings accessed via a graphics application, or ani-

mations accessed via the Polka/Samba animation engine. This relation records the

accessor to allow for non-text documentation.

116

Each source line can be accompanied by comments, which is illustrated in

Table 9.3, the Commented Source Relation. This relation obviates the need of

programs such as CWEAVE and CTANGLE. The editor and prettyprinter can present

the comments along with source statements for programmer bene�t, while presenting

only source statements for the purposes of parsing, program information gathering,

and compilation.

117

10. DEBUGGING MULTIPARADIGM PROGRAMS

The task of correction, altering a program's behavior to make it the desired

behavior, requires tools for comprehension of the program's behavior. These tools

are most often debuggers and browsers. While browsers provide an overview of the

program structure, debuggers are able to provide �ne-grain resolution of the details

of program behavior. Here we describe debuggers in more detail, followed by our

work in augmenting the behavior of the Leda interpreter to provide debugger-like

facilities. Finally, we illustrate tool interactions when a programmer is engaged

in correction (and hence comprehension) of a Leda program. The motivation in

minimally augmenting the Leda interpreter to provide some debugger facilities is to

show how the presence of other tools integrated into the LacEDAemon environment

magni�es the impact of the debugger tool, and expedites the task.

10.1. Debuggers

Rosenberg [161] de�nes debuggers as \tools to illuminate the dynamic nature

of a program{they are used to understand a program as well as �nd and �x defects."

Along with a source code editor, the debugger is considered a requisite tool for the

development of software.

Major capabilities a debugger should provide include:

118

1. breakpointing

2. single-stepping

3. fault detection

4. watchpointing

Good examples of debuggers include dbx [115], GNU gdb/Dalek [130], and

Hewlett-Packard's DDE [88].

Rosenberg goes on to describe four key debugger principles:

� Heisenberg Principle{the act of debugging an application should not change

the behavior of the application.

� Truthful Debugging{the debugger must never mislead the user (see Zellweger's

1984 PhD thesis on debugging optimized code [203] for more on truthful de-

bugging) .

� Context Information{the debugger must provide context information that il-

luminates program state and execution.

� Debugging Support Trails Systems Developments{debuggers and other pro-

gramming tools always trail the development of new systems.

The multiparadigm programming language Leda is certainly in a state that

supports the last point made by Rosenberg, namely that there is no debugging sup-

119

port in the lc Leda interpreter. Furthermore, Rosenberg's assertion that \debugging

can often be an afterthought of systems design" is borne out by lc as well.

The possibility of adding debugging support to Leda was encouraging, how-

ever, since the lc system is an interpreter, and as Rosenberg identi�es:

Interpretive programming environments, such as those available for
Basic, Smalltalk, and Java as well as other high-level languages, provide
very e�ective debugging solutions because the debugger is well integrated
into the run-time interpreter and has very tight control over the running
application.

Hence, the tantalizing possibility of adding e�ective debugging to the lc

interpreter and the LacEDAemon environment was worth pursuing. No special

interactions with the operating system or underlying hardware need take place, and

the debugger can provide direct, immediate feedback on user changes, as well as

providing a safe, protected environment in which both the target application and

the debugger can run.

10.2. Augmenting The Leda Interpreter

The lc interpreter for Leda provides some debugging infrastructure through

its ability to trace the execution of functions (the -df option), the execution of

functions and program statements (the -ds option), and the execution of functions,

statements and operators (the -do option). Here we describe adding some other

critical abilities to the lc interpreter. We add a new option to the Leda interpreter,

the -db option, to access this new functionality in stand-alone mode. Note that

120

access to this functionality from the LacEDAemon tool integration framework is

trivial, as the Leda API is available to the messaging service, as described in section

4.5.3. Full debugger functionality could be provided in the case of a Leda compiler

via the UNIX ptrace(), ttrace(), or /proc interfaces (and their equivalents in

other operating system environments).

10.2.1. Adding Breakpointing

Adding breakpointing, the functionality of temporarily halting program ex-

ecution at a user-designated location, is relatively easy in the context of having

statement execution information available. The augmented lc interpreter simply

makes a check during execution and determines whether the user has designated

the current statement of execution as a breakpoint. If this is the case, program exe-

cution is halted at the juncture, and the user informed of the fact that a breakpoint

has been reached.

10.2.2. Single-Stepping Through Programs

The ability to stop execution after the execution of every line of a Leda

program is a trivial extension of breakpointing. Every line of the program is simply

considered a breakpoint. The interpreter suspends execution of the program and

reports this fact to the user.

121

Note that both in the case of breakpointing and single-stepping, there are

lines of Leda programs that are not technically \executed". We are not concerned

with the di�erence between logical and physical program statements and their break-

point candidacy here, as this functionality is dependent on the Leda compiler or

interpreter implementation, and is beyond the scope of this work.

10.2.3. Examining Symbol Values

For the sake of simplicity, the symbols de�ned in the current scope are listed

in debugger mode, with the user specifying the particular symbol in which they are

interested. This results in the value of that symbol, if de�ned, being displayed. Most

debuggers provide a elaborate command line interface for accessing and modifying

symbol value. The Leda interpreter lc could be similarly extended, and a graphical

interface within the LacEDAemon environment could also be provided.

10.2.4. Watchpointing

Setting a watchpoint, or instructing the debugger to inform a user that a

speci�c program location has been executed or reached, is again a trivial case of

breakpointing, with the sole di�erence that program execution is not suspended

and user interaction solicited. The reaching of a watchpoint is duly reported to the

user, with execution continuing beyond the watchpoint.

122

$ lc -db a.led

parse ok, starting execution

b - set breakpoint, c - continue, s - step, v - view

debug> s

File a.led Line 5: expression statement

i := 3;

b - set breakpoint, c - continue, s - step, v - view

debug> s

File a.led Line 6: expression statement

print (i);

b - set breakpoint, c - continue, s - step, v - view

debug> v

1: include "std.led";

2: var

3: i : integer;

4: begin

5: i := 3;

6: print (i);

7: end;

8:

b - set breakpoint, c - continue, s - step, v - view

debug> c

File std.led Line 505: conditional statement

File std.led Line 508: expression statement

File std.led Line 300: return statement, yields 1074130176

File std.led Line 456: expression statement

3

execution ended normally

FIGURE 10.1. Single Stepping in Leda.

123

A data watchpoint, where the user instructs the debugger to inform them

of changes in the value of a symbol, is similar to examining a symbol value. The

di�erence is that a data watchpoint simply reports a change in value or access of a

symbol, while the examination of symbol values occurs upon reaching a breakpoint.

10.2.5. Fault Detection

Fault detection support, or detection of events such as divide by zero, im-

proper memory access, and improper I/O, is usually functionality provided by the

underlying hardware or operating system.

Adding detection of divide by zero errors is easy to implement in the lc

interpreter. The implementation of the division operator is accessible in the std.led

library, which is one location for implementing this feature. We choose to implement

it within the lc source code (in the Leda_real_divide function) for simplicity,

however. Detection of other faults is more di�cult, requiring operating system

involvement, and we will not examine this issue further here.

10.3. Composing Interactions With LacEDAemon Tools

When debugging in the context of the LacEDAemon programming environ-

ment, the presence of the other tools allows for greater expression and elaboration

of program state to the user. The augmented lc interpreter broadcasts messages

announcing arrival at breakpoints, the Polka/Samba-based animation tool allows

124

for visualization of that speci�c line, the hypertextual browsing allows a user to

examine implications of arriving at that line, the class browser allows for compre-

hension of class stucture, and so on. The debugger by itself could not provide this

information, but by simply providing the information it possesses to the other tools,

it is able to allow the other tools to provide whatever additional information might

be pertinent to the user.

125

11. EVALUATION

11.1. Evaluation of LacEDAemon

We will attempt to identify how LacEDAemon �ts into various programming

environment models, as well as how LacEDAemon compares in cases where the

model is evaluative in nature. Direct comparisons are always di�cult and prone

to misinterpretation, particularly in some cases where we will be comparing the

experimental prototype LacEDAemon to commercial systems. However, such com-

parisons can be useful, both in showing ways in which LacEDAemon could grow

and by identifying alternative ways of achieving the same objectives.

11.1.1. The SMP Model and IFCS Taxonomy

Perry and Kaiser [142] have proposed the SMP model of software develop-

ment environments consisting of three components: structures, mechanisms and

policies. The structures are the underlying objects and object aggregates on which

the mechanisms operate, while the mechanisms are the visible and underlying tools

and tool fragments, with the policy being the rules, guidelines and strategies im-

posed on the programmer via the environment:

General SDE Model = (fStructuresg, fMechanismsg, fPoliciesg)

126

Perry and Kaiser further outline the IFCS taxonomy, where an environment sup-

ports activity at the individual, family, city, or state class level. This sociological

metaphor attempts to convey the problems of scale. Each category incorporates

the prior classes, i.e. a family is a collection of individuals. The individual class

emphasizes construction, and is dominated by mechanisms. The family class em-

phasizes coordination, and is dominated by structures. The city class emphasizes

cooperation, and is dominated by policies, and the state class emphasizes common-

ality, and it dominated by higher-order policies. Perry and Kaiser �nd few city-class

environments, and none in the state class.

The individual toolkit model is de�ned as follows:

TKE Model =

(

f �le system / object management system1 g,

f assorted construction tools g,

f laissez faire, tool-induced policies g

)

LacEDAemon for the most part quali�es as an individual, toolkit environ-

ment or individual, interpretive model in that it provides a collection of primarily

language-speci�c tools, with few restrictions on tool usage (although LacEDAemon

1
Italics are used for general component descriptions, normal typeface for speci�c

components.

127

imposes more restrictions than most toolkit environments due to its stucture). The

primary structure of LacEDAemon is the program database (which is closer to the

integrated family model), but this database at present is designed to supply the

needs of an individual. LacEDAemon also provides little policy enforcement with

regard to tool usage (though, again, more than most toolkit environments).

Interesting observations include the fact that with little work, LacEDAemon

could transition to the Family class of environments, as well as the fact that the SMP

Model proposed by Perry and Kaiser is not really adequate for classifying LacEDAe-

mon. This indicates some unique combinations of architectural attributes present

in LacEDAemon that have not occurred in other programming environments.

11.1.2. Tool Integration in LacEDAemon

Wasserman [191] proposes viewing presentation, data, and control integration

as de�ning a three-dimensional space, where di�erent points along an axis de�ne

tool support for a particular integration mechanism in that dimension, as depicted

in Figure 11.1. This notion can be formulated for an arbitrary tool Ti by the

mathematical function:

Ti = f(D, P, C)

where D represents the data integration dimension, P represents presentation inte-

gration, and C control integration.

Thus a particular form of integration for tool T1 could be

128

T1 = f(\UNIX �le system", \X11/Motif", 0)

indicating this tool uses the UNIX �le system for data integration, uses X11/Motif

for presentation, and provides no support for control integration. The average tool

in LaCEDAemon, TL could be described as

TL = f(\POSTGRESQL OODBMS/UNIX �le system",

\X11/Motif/Tk Toolkit", LacEDAemon Messaging Server)

indicating that the tool relies on either the UNIX �le system or the LaCEDAemon

database (perhaps via a mediator) for data integration, the Tk toolkit (which on

UNIX is based on X11) for presentation integration, and the LacEDAemon Messag-

ing Server for control integration2.

From this discussion, the issue of integration in a toolkit environment be-

comes apparent: minimal tool integration requires that tools agree on integration in

at least one dimension, and e�ective tool integration requires tools to agree on all

three axes. The obvious and easiest strategy for integration is to support the lesser

integration mechanism along the three axes. The greater the degree of integration,

the further out along the three dimensions a general tool lies.

LacEDAemon employs what Wasserman describes as the \more di�cult ap-

proach" to integration: supporting the more advanced mechanism along each axis,

via harness programs and changes to tools as needed. LacEDAemon tools present

2This is the case if tools are coupled using loose integtation. Note that tight integration,

or tool-to-tool messaging, is also available in LacEDAemon.

129

User Interface
(presentation)

Data
(information)

Control
(communication)

Files
Data Dictionary

Objectbase System
O-O Database

Shared,Distributed
 information base

Multimedia (audio, picture, etc)

Style guides, standard look & feel

User Interface Management Systems

Motif, XT, Open/Look, etc

X Intrinsics

Xlib
Shell
Scripts

Programmatic
Tool ifs

Std Calls
or RPC

Broadcast Message Server
Process Model
Engine

Cooperation
Support

T
L

FIGURE 11.1. Mapping LacEDAemon Tools on the Three Dimensions of Integra-
tion.

a standard look and feel due to use of the same user interface toolkit, the POST-

GRESQL object-oriented database (which has the capability of being shared and

distributed), and a broadcast message server approach to control integration. Un-

fortunately, Wasserman does not identify the level of integration provided by other

toolkit environments.

11.1.3. The EBI Framework

Barrett, Clarke, Tarr and Wise proposed a generic framework for discussing

event-based integration, called the EBI Framework [11]. This model provides a

exible, object-oriented model for discussing and comparing event-based integration

130

approaches. The EBI Framework model attempts to capture the following �ve

aspects of a event-based integration framework:

� methods of communication

� expressiveness of module interaction descriptions

� intrusiveness of module interaction descriptions

� static versus dynamic behavior

� naming issues

While the EBI Framework model is designed mainly for loose integration

frameworks, describing the LacEDAemon integration framework in terms of the EBI

Framework may still provide some basis for comparison. Since the EBI Famework

does not capture tightly integrated frameworks, however, we have not utilized this

model to evaluate LacEDAemon.

11.1.4. Comparing Inter-Tool Communication

Harvey and Marlin proposed an operational model based on information

structures to formally describe tool integration devices, facilitating their compari-

son [81]. The focus of this model is to provide a formal approach to describing the

semantics of the intertool communication features (encompassing control integra-

tion, together with some aspects of data integration) of integration devices.

131

Harvey and Marlin propose formal description via layered operational seman-

tics of the following eight communication events:

� Noti�cation publication

� Request publication

� Noti�cation send

� Request send

� Reply send

� Noti�cation receive

� Request receive

� Reply receive

In [81], Harvey and Marlin examine the Request send, Reply send and Re-

ply receive communication events of FIELD and SoftBench. In Figures 11.2{11.4

we provide descriptions of the similar events for LacEDAemon.

11.1.5. The CEARM Model

Penedo [141] proposed the Conceptual Environment Architecture Reference

Model (CEARM) as a conceptual and functional framework for the discussing, pre-

senting and comparing of software engineering environment architectures. Figure

11.5 illustrates the reference model they propose for comparing environments.

132

Request send !
1 A �nd item in thisTool.outputMsgs where f
2 msg == requestedService g;
3 if A.msgBindings == NULL then
4 if START tool where foperation == requestedServiceg then
5 A �nd item in thisTool.outputMsgs where f
6 msg == requestedService g;
7 end if;
8 end if;
9 if A.msgBindings 6= NULL then
10 MSGID provide msgID;
11 B insert item in thisTool.replyData where f
12 rID MSGID g;
13 for all C in A.msgBindings do
14 B.rCount B.rCount + 1;
15 send message to C.toolID where f
16 messageID MSGID,
17 senderID thistool.toolID,
18 messageType \Request" g;
19 end for all
20 /� synchronous event �/
21 suspend operation except for fA.msgBindingsg;
22 end if.

FIGURE 11.2. The Request send event in LacEDAemon.

133

Response send !
1 [either [A \Success";
2 j A \Fail"]; /� error, unavailable �/
3 send message to lastMsg.senderID where f
4 messageID lastMsg.messageID,
5 messageType \Response",
6 messageData A,
7 senderID thistool.toolID g.

FIGURE 11.3. The Response send event in LacEDAemon.

Response receive !
1 A �nd item in thisTool.replyData where f
2 rID == lastMsg.messageID g;
3 if A not NULL then
4 if lastMessage.messageData == \Fail" then
5 A.rCount A.rCount { 1;
6 if A.rCount == 0 then
7 theReply \Fail";
8 remove item from thisTool.replyData where (A);
9 resume operation; /� synchronous �/
10 end if;
11 else if lastMsg.messageData = \Success" then
12 theReply \Success";
13 remove item from thisTool.replyData where (A);
14 resume operation; /� synchronous �/
15 end if;
16 end if.

FIGURE 11.4. The Response receive event in LacEDAemon.

134

The CEARM focusses on the functionality and properties of services provided

by an environment. The CEARM consists of a set of layers: platform, framework,

common services, tools/capabilities, environment adaptation and interaction. Each

layer contains one or more grouping of services, as depicted in Figure 11.5. This

graphical depiction can be thought of as providing a \may use" relation, in that

each functional grouping in a layer may use the capabilities and services of a lower

layer.

An environment mapped to CEARM results in a graphical depiction of the

mapping, coupled with explicit mappings. While the graphical depictions can be

misleading and subjective (as they provide little indication of how and whether the

components are integrated and interoperate), the explicit mapping provides a better

understanding of the system. In the graphical depiction, the guidelines for �lling

boxes is: no-�ll means those services are not provided, 25% full means a few services

are provided, 50% full means that a good approximation of services are provided,

and 100% full means that almost all needed services are provided.

In [141], Penedo provides graphical depictions of six environments, along

with explicit mappings for three of those systems. Here we provide the graphical

depiction and explicit mapping for LacEDAemon.

135

CEARM Grouping System Components

Platform UNIX-based workstation,
machine with GUI and C compiler

Virtual OS POSIX
Object Management POSTGRESQL Object-Oriented Database

Management System
User Interface Management X11/Motif runtime, Tk Toolkit
Environment Management POSTGRESQL tool integration repository
Common Services Request, response, noti�cation reaction de�nition
Reuseable Components Most tools implemented in C, C++, Java, Tcl
Integration Support Services C, C++, Java, Tcl harnesses;

De�ned reaction to environment messages;
LacEDAemon Messaging Server

Environment-building Services C, C++, Java, Tcl harnesses
Life-cycle Functional capabilities Program development (creation,

correction, comprehension) and documentation,
other UNIX tools

Adaptation Support
Front-end/Desktop graphical activity-driven interaction

TABLE 11.1. LacEDAemon Explicit CEARM Mapping

136

SEE Adaptation SEE Interaction

 Environment Building Life-Cycle Functional
 Capabilities

Integration Common
Services

Object
Management

User-Interface
Management

Environment
Management

Virtual Operating
System Services

Native Operating System

Hardware

SEE Adaptation
and Integration
Layer

Tool/Capability
Layer

Common Services
Layer

Framework
Layer

Hardware and
Native Operating
System Layer

FIGURE 11.5. Conceptual Environment Architecture Reference Model.

SEE Adaptation SEE Interaction

Common
Services

Virtual Operating
System Services

SEE Adaptation
and Integration
Layer

Tool/Capability
Layer

Common Services
Layer

Framework
Layer

Integration

 Life-Cycle Func-
 tional Capabilities

 Environment Building

Object
Management

User-Interface
Management

Environment
Management

FIGURE 11.6. Mapping of LacEDAemon to CEARM.

137

11.2. Future Directions

While the assorted evaluation measures explored in this chapter indicate the

relative uniqueness of LacEDAemon, there are a number of studies that can be

conducted while utilizing the environment:

� Live testing via use in classroom - E�ects of the presence of the environment

can be determined in a controlled setting with a number of subjects with

near-uniform backgrounds. Comprehension and maintenance exercises, such

as those performed by Oman and Cook [131], would provide a good indication

of the leverage provided by LacEDAemon. Student feedback from experience

with the environment could also provide a subjective measure of toolset e�ec-

tiveness.

� Nonintrusive usage/language studies via event recording and database moni-

toring - Since the environment is based on events, recording the events pro-

vides a good indication of the user activities. This event-journaling approach

was used by Goldenson and Wang [71] in studying user behavior in GENIE.

Another aspect of LacEDAemon is the presence of the program database{

monitoring the database contents can also provide a detailed view of pro-

grammer activities. The combined timestamped transcript of environment

events and program information changes allows for a variety of studies.

138

� Record-and-playback based studies - Tools like TkReplay [79] allow for explic-

itly recording the programmer activities for playback at a later time. While

this facility is usually useful for demonstrations and help-related activities,

record-and-playback can be used for programmer activity analysis as well.

� Study of e�ort required to add new tools - As a testbed framework, a major

test of the utility of LacEDAemon will be in the e�ort required to add new

tools. An industrial-strength Leda compiler project, Argo [93], will be the �rst

measure of whether the structure of LacEDAemon meets the goal of allowing

toolset experimentation.

139

12. CONCLUSIONS

12.1. Contribution of This Work

While the design and implementation of a new programming language is

considered a labor-intensive activity, it is an active area of research, resulting in

the creation of over 2350 languages. Constructing a programming environment to

support the use of a language is an even more labor-intensive activity{one whose

pursuit has thus lacked the same vigor as language creation. Knudsen et al. [102]

note that \developments of environments are very large tasks, comparable more with

developing operating systems than compilers..." Widespread use of new languages

is usually envisioned in either industrial or educational settings (or both).

A programming language without tool support will not be given serious con-

sideration by software engineers. A widely held belief is that large software systems

are di�cult to construct without a cohesive set of tools to facilitate the process.

Brown et al. [19] observe that \the support environments which are used for large

software development projects have a profound e�ect on the project's end-product."

A programming language o�ered by itself is very uninviting, unless the language

bears close conceptual resemblence to an existing language, allowing adaptation of

existing tools, or addresses a need so pressing that the absence of tools must be

overlooked or overcome.

140

A newly developed language without a programming environment will also

be dismissed in academic circles, especially if the language is proposed as a peda-

gogic vehicle for novice programmers. Here the environment provides a means of

selective occlusion: the tools put a productive, user-friendly \spin" on the quirks

and limitations of language and underlying machine until users are more prepared

to deal with them, at which point the tools scale to allow more detailed exploration.

K�olling and Rosenberg [107] suggest that the programming environment \may well

have more of an in
uence on the learning experience than the choice of a language."

Almost all new programming languages are thus never applied pedagogically

or in the construction of large-scale software systems, and many never escape the

realm of scholarly discourse at all. The problems that newly-created, possibly in-

novative languages are hence applied to are mainly of the \toy" variety, with little

substantiation regarding suitability of the language for larger problems. This lack of

constructing large software systems to validate new programming languages would

be reprehensible were it not for the rich set of research issues that are addressed

simply in the creation of most new languages. Construction of small programs is

usually su�cient for communicating the essential details of a language, verifying

language implementation, resolving theoretical issues, and constructing arguments

regarding language features.

Unfortunately there are also a whole set of research issues that cannot be

answered without constructing larger programs, where \seat-of-the-pants" program-

141

ming must be replaced by software engineering discipline. The resolution of these

research issues necessitates the construction of tools to support the language, and

requires a much greater research investment. Peyton Jones et al. [92] observed the

same need to engineer \substantial artefacts of software":

Scaling prototypes up into large \real" systems appears to be less
valued in the academic community than small systems that demonstrate
concepts, being sometimes dismissed as \just development work". Nev-
ertheless, we believe that many research problems can only be exposed
during the act of constructing large and complex systems.

Multiparadigm programming languages represent an area of research that is

in such a state. After a
urry of research activity that answered questions regarding

the implementation of multiparadigm languages and explored the various paradigm

combinations, resolution of many of the research issues that remain outstanding

will require the construction of larger software systems, and hence the support of

programming environments. The application of multiparadigm programming lan-

guages in academic settings will similarly require the availability of a programming

environment.

This work has described and demonstrated a new method of creating a tool

integration framework, as well as integrating existing tools into a framework, for a

programming environment for a multiparadigm programming language called Leda.

The somewhat unique position of the Leda language in the realm of multiparadigm

languages has also been described here.

142

The primary contribution of this dissertation to the �eld of software engineer-

ing is to describe and demonstrate a new approach to creating a programming en-

vironment based on tool integration frameworks. By embedding scripting language

interpreters within existing tools (which are then called hypertools), we enable a pow-

erful and low-cost approach for various forms of integration. The primary contribu-

tion of this dissertation to the �eld of programming languages is to demonstrate the

hypertool integration framework approach in creating a programming environment

for the multiparadigm programming language Leda, enabling more detailed inves-

tigation of the implications of multiparadigm programming than would otherwise

be possible. LacEDAemon, the resulting hypertool integration framework-based

programming environment for the multiparadigm programming language Leda, also

provides a testbed for the design and deployment of new programming tools. The

general hypertool approach also provides a mechanism for other experimental pro-

gramming languages to more easily develop an associated programming environment

than otherwise possible. The integration of a wide variety of tools to form a sin-

gle application via a messaging framework and common graphical interface is also

applicable to domains other than programming environments.

Three areas of improvement come to mind when considering how to advance

the state of software development:

� better languages

� better tools

143

� better methods

This research touches upon two of the three topics. Better languages allow

for better cognitive �t between problems and solutions. Better tools allow for these

solutions to be formulated with less e�ort and in less time.

Also important to note here is that this work indicates two signi�cant changes

have occurred with respect to the creation of programming environments:

� the quality and complexity of tools available for reuse and integration has

steadily increased, and

� the complexity of integration mechanisms has greatly decreased, while their

exibility has greatly increased.

These two factors combined have allowed a single tool integrator to create

a non-trivial programming environment. Environments such as LacEDAemon cre-

ated through the hypertool approach exhibit the ability to blend control and data

integration. This ability to blend integration approaches has been identi�ed as the

next step in environment evolution [20]:

CASE repository standards emphasize data integration while broad-
cast models emphasize control integration. Both models are evolving
towards each other through the addition of control-integration services
in repository standards, and the implementation of message broadcast
services on current-generation IPSE frameworks. The resulting frame-
works promise tool integrators
exibility in choosing among integration
mechanisms.

144

12.2. Assessing Reuse in LacEDAemon

Kaiser and Garlan [97] describe three prerequisites to achieving an order of

magnitude improvement in software production through reuse:

1. language independence

2. component reuse through composition

3. reuse of components in ways not anticipated by the original programmer

The hypertool integration framework of LacEDAemon does not allow for lan-

guage independence, however, in this thesis we have shown how components from

many of the most popular current languages (i.e. the ones in which the majority of

candidate components will be available) like C, C++, Java and Tcl/Tk can be inte-

grated, or composed to create a larger environment. The philosophy of hypertools

is to reuse components in ways not anticipated by the original programmer. Hence,

the hypertool integration framework of LacEDAemon allows for signi�cant reuse.

From a lines-of-code point of view. Table 12.1 lists the size in terms of

non-comment source statements of some of the components of LacEDAemon. Ac-

cording to Voas [188], \even the best programmers can churn out only 10 lines of

code per day." Any strategy that advances this number dramatically requires heavy

reliance upon reuse. As apparent from Table 12.1, the constuction of LacEDAe-

mon has required much reuse, as the environment represents many person-years of

programming e�ort based on the 10 lines of code per day measure.

145

Component Language Lines of Code

X11 Library libX11 C 91,837

X11 Library libXt C 31,006

Motif Library libXm C 204,797

Leda Interpreter lc C 5,627

Tcl C 4,757

Tk C 13,615

PostgreSQL C 144,365

Samba/Polka C++ 9,907

Messaging Framework Tcl 4,522

Class Hierarchy Illustrator Tcl 945

Leda Program Information Extractor Java 1,958

TclBlend C 4,845

Java 15,118

Tcl 111

JavaCUP Java 8,398

TABLE 12.1. Reuse in LacEDAemon: Lines of Code

146

12.3. Conclusions

We have shown the viability of integration mechanisms provided by scripting

languages like Tcl. Tools and tool architectures must evolve to take advantage of

the new generation of integration-support mechanisms. Instead of asking how the

integration support mechanisms support tools, we should be asking how to design

and build tools so that they can best take advantage of the mechanisms available.

Constructing programming environments is a di�cult task{one that takes

person-years of e�ort and years of time, and hence rarely gets done. Many interest-

ing languages and problem solving approaches languish as a result of not having an

environment to support serious programming e�ort-based investigations. We have

described and demonstrated a new technique for constructing integrated program-

ming environments in an e�ective and low-cost manner. In doing so, we have also

constructed an environment for Leda, one of the most promising multiparadigm

programming languages. We hope this environment will provide additional leverage

for research in the area of multiparadigm programming, while this method of creat-

ing environments will further applicability-related research with other experimental

languages.

147

BIBLIOGRAPHY

[1] Paul W. Abrahams. Typographical Extensions for Programming Languages:
Breaking out of the ASCII Straightjacket. ACM SIGPlan Notices, 28(2):61{68,
1993.

[2] ACM/IEEE-CS Curriculum Task Force. Computing Curricula 1991. ACM
Press, New York, 1991.

[3] A. Alderson, M.F. Bott, and M.E. Falla. An overview of the ECLIPSE Project.
In John McDermid, editor, Integrated project support environments, pages 100{
113. Peter Peregrinus Ltd., 1985.

[4] D. Appleby. Comparative review of books on programming languages. Com-
puting Reviews, 28(11):569{574, November 1987.

[5] Doris Appleby. Programming Languages: Paradigm and Practice. McGraw-
Hill, New York, 1991.

[6] Mouloud Arab. Enhancing Program Comprehension: FORMATTING and
DOCUMENTING. SIGPLAN Notices, 27(2):37{46, February 1992.

[7] Mouloud Arab. Tool for Making Programs More Readable. SIGCSE Bulletin,
23(3):31{35, September 1991.

[8] Michael Armistead and John Burnham. HP C++/SoftBench: A Development
Environment for C++. Journal of Object-Oriented Programming, 3(4):82{85,
November/December 1990.

[9] Ronald M. Baecker and Aaron Marcus. Human Factors and Typography for
More Readable Programs. ACM Press/Addison Wesley, Reading, MA, 1990.

[10] Henri E. Bal and Dick Grune. Programming Language Essentials. Addison-
Wesley, Wokingham, England, 1994.

[11] Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr, and Alexander E. Wise. A
Framework for Event-Based Software Integration. ACM Transactions on Soft-
ware Engineering and Methodology, 5(4):378{421, October 1996.

[12] David R. Barstow and Howard E. Shrobe. From Interactive to Intelligent Pro-
gramming Environments. In David R. Barstow, Howard E. Shrobe, and Erik
Sandewall, editors, Interactive Programming Environments, pages 558{570.
McGraw Hill Book Company, 1984.

148

[13] Richard J. Beach. Experience with the Cedar Programming Environment for
Computer Graphics Research. Technical Report CSL{84{6, XEROX PARC,
Palo Alto, CA, July 1985.

[14] Robert C. Bethke. The SoftBench Static Analysis Database. Hewlett-Packard
Journal, 48(1):16{18, February 1997.

[15] Daniel G. Bobrow. If PROLOG is the answer, what is the question? In Proceed-
ings of the International Conference on Fifth Generation Computer Systems
1984, pages 138{148, Tokyo, Japan, November 1984.

[16] Gerard Boudier, Ferdinando Gallo, Regis Minot, and Ian Thomas. An
Overview of PCTE and PCTE++. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, pages 248{257, Boston, MA, 1988.

[17] Alan W. Brown. Control Integration Through Message Passing in a Software
Development Environment. Technical Report CMU/SEI{92{TR{35, Software
Engineering Institute, Carnegie-Mellon University, December 1992.

[18] Alan W. Brown, editor. Integrated Project Support Environments: The Aspect
Project. Academic Press, London, 1991.

[19] Alan W. Brown, Anthony N. Earl, and John A. McDermid. Software Engineer-
ing Environments: Automated Support for Software Engineering. McGraw-
Hill, London, 1992.

[20] AlanW. Brown, Peter H. Feiler, and Kurt C. Wallnau. Past and Future Models
of CASE Integration. In Fifth International Workshop on Computer-Aided
Software Engineering, pages 36{45, 1992.

[21] Marc H. Brown. Algorithm Animation. ACM Distinguished Dissertation. MIT
Press, Cambridge, MA, 1988.

[22] Marc H. Brown. Zeus: A System for Algorithm Animation and Multi-view
Editing. Technical Report 75, Digital Systems Research Center, February 1992.

[23] Timothy A. Budd. Avoiding Backtracking by Capturing the Future. Working
document, March 1991.

[24] Timothy A. Budd. Blending Imperative and Relational Programming. IEEE
Software, 8(1):58{65, 1991.

[25] Timothy A. Budd. Classic Data Structures in C++. Addison-Wesley, Reading,
Massachusetts, 1994.

149

[26] Timothy A. Budd. Data Structures in LEDA. Technical Report 89{60{17,
Oregon State University, 1989.

[27] Timothy A. Budd. Functional Programming in an Object-Oriented Language.
Technical Report 89{60{16, Oregon State University, 1989.

[28] Timothy A. Budd. LEDA: A Blending of Imperative and Relational Program-
ming. Technical Report 89{60{7, Oregon State University, 1989.

[29] Timothy Budd. A Little Smalltalk. Addison-Wesley, Reading, Massachusetts,
1987.

[30] Timothy A. Budd. Low Cost First Class Functions. Technical Report 89-60-12,
Oregon State University, June 1989.

[31] Timothy A. Budd. The Multi-Paradigm Programming Language LEDA. Work-
ing document, September 1989.

[32] Timothy A. Budd. Multiparadigm Data Structures in Leda. In Proceedings of
the 1992 International Conference on Computer Languages, pages 165{173,
Oakland, California, April 1992.

[33] Timothy A. Budd. Multiparadigm Programming in Leda. Addison-Wesley,
Reading, MA, 1995.

[34] Timothy A. Budd. Sharing and First Class Functions in Object-Oriented Lan-
guages. Working document, March 1991.

[35] Timothy Budd. Teaching Multiple Paradigms. Working document, March
1994.

[36] Timothy A. Budd, Timothy P. Justice, and Rajeev K. Pandey. General-
Purpose Multiparadigm Programming Languages: An Enabling Technology
for Constructing Complex Systems. Technical Report 95-60-04, Oregon State
University, May 1995.

[37] Timothy A. Budd, Timothy P. Justice, and Rajeev K. Pandey. General-
Purpose Multiparadigm Programming Languages: An Enabling Technology
for Constructing Complex Systems. In Proceedings of the First IEEE Interna-
tional Conference on Engineering of Complex Computer Systems, pages 334{
337, Fort Lauderdale, FL, November 1995.

[38] Timothy A. Budd and Rajeev K. Pandey. Never Mind the Paradigm, What
About Multiparadigm Languages? SIGCSE Bulletin, 27(2):25{30,40, June
1995.

150

[39] Timothy Budd and Jim Shur. Foundations Toward a Multiparadigm Program-
ming Methodology. November 1991.

[40] Timothy A. Budd and Nabil M. Zamel. Integrating Constraints into a Mul-
tiparadigm Language. Technical Report 93-60-22, Oregon State University,
December 1993.

[41] John N. Buxton and Larry E. Dru�el. Rationale for STONEMAN. In David R.
Barstow, Howard E. Shrobe, and Erik Sandewall, editors, Interactive Program-
ming Environments, pages 535{545. McGraw Hill Book Company, 1984.

[42] CDE Documentation Group. Common Desktop Environment 1.0: Application
Builder User's Guide. Addison-Wesley, Reading, MA, 1995.

[43] CDE Documentation Group. Common Desktop Environment 1.0: Tooltalk
Messaging Overview. Addison-Wesley, Reading, MA, 1995.

[44] Martin R. Cagan. The HP SoftBench Environment: An Architecture for a New
Generation of Software Tools. Hewlett-Packard Journal, 41(3):36{47, June
1990.

[45] Cheryl Carmichael. COBOL SoftBench: An Open Integrated CASE Environ-
ment. Hewlett-Packard Journal, 46(3):82{88, June 1995.

[46] Vinoo Cherian. Implementation of First Class Functions and Type Checking
for a Multiparadigm Language. Master's thesis, Oregon State University, May
1991.

[47] Elliot Chikofsky, editor. Computer-Aided Software Engineering. IEEE Com-
puter Society Press, Los Alamitos, CA, second edition, 1993.

[48] Koen Claessen, Ton Vullinghs, and Erik Meijer. Structuring Graphical
Paradigms in TkGofer. In Proceedings of the 1997 ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP '97), pages 251{262,
Amsterdam, The Netherlands, June 1997.

[49] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag,
New York, third, revised and extended edition, 1987.

[50] Michael Cohen. Blush and Zebrackets: Large- and Small-Scale Typographi-
cal Representation of Nested Associativity. In Proceedings of the 1992 IEEE
Workshop on Visual Languages, pages 264{266, Seattle, WA, September 1992.

[51] Joseph J. Courant. SoftBench Message Connector: Customizing Software
Development Tool Interactions. Hewlett-Packard Journal, 45(3):34{39, June
1994.

151

[52] Ajantha Dahanayake and Gert Florijn. Evaluation of Object Oriented
DataBase Support for Software Engineering Environments. In Proceedings of
the 7th Conference on Software Engineering Environments, pages 11{20, No-
ordwijkerhout, The Netherlands, April 1995.

[53] Susan A. Dart, Robert J. Ellison Peter H. Feiler, and A. Nico Habermann.
Software Development Environments. IEEE Computer, 20(11):18{28, Novem-
ber 1987.

[54] Antony J. T. Davie. An Introduction to Functional Programming Systems Us-
ing Haskell. Cambridge University Press, Cambridge, UK, 1992.

[55] Norman M. Delisle, David E. Menicosy, and Mayer D. Schwartz. Viewing a
Programming Environment as a Single Tool. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, pages 49{56, Pittsburgh, PA, 1984.

[56] T.A. Dolotta, R.C. Haight, and J.R. Mashey. UNIX Time-Sharing System:
The Programmer's Workbench. In David R. Barstow, Howard E. Shrobe, and
Erik Sandewall, editors, Interactive Programming Environments, pages 353{
369. McGraw Hill Book Company, 1984.

[57] V�eronique Donzeau-Gouge, G�erard Huet, Gilles Kahn, and Bernard Lang.
Programming Environments Based on Structured Editors: The MENTOR
Experience. In David R. Barstow, Howard E. Shrobe, and Erik Sandewall,
editors, Interactive Programming Environments, pages 128{140. McGraw Hill
Book Company, 1984.

[58] Timothy J. Duesing and John R. Diamant. CodeAdvisor: Rule Based C++
Defect Detection Using a Static Database. Hewlett-Packard Journal, 48(1):19{
21, February 1997.

[59] Carine F�ed�ele, Michael Gautero and Olivier Lecarme. Meta-compilation of the
functional aspects of a multi-paradigm language. November 1992.

[60] C.N. Fischer, Gregory F. Johnson, Jon Mauney, Anil Pal, and Daniel L.
Stock. The poe language-based editor project. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 21{29, Pittsburgh, PA, May 1984.

[61] Robert W. Floyd. The Paradigms of Programming. Communications of the
ACM, 22(8):455{460, 1979.

[62] Mary Jo Foley. Can We Talk? SunExpert Magazine, pages 50{57, January
1992.

152

[63] Brian D. Fromme. HP Encapsulator: Bridging the Generation Gap. Hewlett-
Packard Journal, 41(3):59{68, June 1990.

[64] Alfonso Fuggetta. A Classi�cation of CASE Technology. IEEE Computer,
26(12):25{38, December 1993.

[65] David Garlan, Robert Allen, and John Ockerbloom. Architectural Mismatch:
Why Reuse Is So Hard. IEEE Software, 12(6):17{26, November 1995.

[66] Colin Gerety. A New Generation of Software Development Tools. Hewlett-
Packard Journal, 41(3):48{58, June 1990.

[67] Carlo Ghezzi. Modern non-conventional programming language concepts. In
John A. McDermid, editor, Software Engineer's Reference Book, pages 44/1{
44/16. CRC Press, Inc., Boca Raton, Florida, 1993.

[68] Bob Glickstein.Writing GNU Emacs Extensions. O'Reilly & Associates, Cam-
bridge, MA, 1997.

[69] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley, Reading, MA, 1984.

[70] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Im-
plementation. Addison-Wesley, Reading, Massachusetts, 1983.

[71] Dennis R. Goldenson and Bing Jyun Wang. Use of Structure Editing Tools by
Novice Programmers. In Fourth Workshop on Empirical Studies of Program-
mers, pages 99{120, New Brunswick, NJ, 1991.

[72] Stephen Jay Gould. In the Mind of the Beholder. Natural History, 103(2):14{
23, February 1994.

[73] Judith E. Grass. Cdi�: A Syntax Directed Di�erencer for C++ Programs. In
Proceedings of the 1992 USENIX C++ Technical Conference, pages 181{193,
1992.

[74] Judith E. Grass. Object-Oriented Design Archaeology with CIA++. Comput-
ing Systems, 5(1):5{68, 1992.

[75] Judith E. Grass and Yih-Farn Chen. The C++ Information Abstractor. In
Proceedings of the 1990 USENIX C++ Conference, pages 265{277, 1990.

[76] A. Nico Habermann and David Notkin. Gandalf: Software development envi-
ronments. IEEE Transactions on Software Engineering, SE-12(12):1117{1127,
1986.

153

[77] Brent Hailpern. Multiparadigm Languages and Environments. IEEE Software,
3(1):6{9, January 1986.

[78] Wilfred J. Hansen. User Engineering Principles for Interactive Systems. In
David R. Barstow, Howard E. Shrobe, and Erik Sandewall, editors, Interac-
tive Programming Environments, pages 217{231. McGraw Hill Book Company,
1984.

[79] Mark Harrison. Tcl/Tk Tools. O'Reilly & Associates, Cambridge, MA, 1997.

[80] Richard O. Hart and Glenn Lupton. DEC FUSE: Building a Graphical Soft-
ware Development Environment from UNIX Tools. Digital Technical Journal,
7(2):5{19, 1995.

[81] Jennifer G. Harvey and Chris D. Marlin. Comparing Inter-Tool Communica-
tion in Control-Centered Tool Integration Frameworks. In Proceedings of the
8th Conference on Software Engineering Environments, pages 67{81, Cottbus,
Germany, April 1997.

[82] Robert Hawley, editor. Arti�cial Intelligence Programming Environments. Ellis
Horwood Ltd., West Sussex, England, 1987.

[83] J�urgen Herrman and Markus Witthaut. LEDA - A Learning Apprentice Sys-
tem that Acquires Design Plans for High-Level Synthesis of Integrated Circuits.
In CompEuro 1992 Proceedings, pages 430{435, May 1992.

[84] Hewlett Packard. The Ultimate Guide to the vi and ex Text Editors. Ben-
jamin/Cummings, Redwood City, CA, 1990.

[85] Jurgen Heymann. A 100% Portable Inline Debugger. ACM SIGPLAN Notices,
28(9):39{46, September 1993.

[86] Christopher John Hogger. Introduction to Logic Programming. Academic Press,
Inc., Orlando, Florida, 1984.

[87] Scott Hudson. CUP LALR Parser Generator for Java User's Manual.
http://www.cs.princeton.edu/~appel/modern/java/CUP/manual.html,
March 1998.

[88] Arun K. Iyengar, Thaddeus S. Grzesik, Valerie J. Ho-Gibson, Tracy A. Hoover,
and John R. Vasta. An Event-Based, Retargetable Debugger. Hewlett-Packard
Journal, 45(6):33{43, December 1994.

[89] Michael A. Jenkins, Janice I. Glasgow, and Carl D. McCrosky. Programming
styles in Nial. IEEE Software, 3(1):46{55, January 1986.

154

[90] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report. Springer-
Verlag, New York, third edition, 1985.

[91] Eric F. Johnson. Cross-Platform Perl. M & T Books, New York, 1996.

[92] Simon L. Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Phil
Wadler. The Glasgow Haskell compiler: a technical overview. In Proceedings of
the UK Joint Framework for Information Technology (JFIT) Technical Con-
ference, Keele, 1993.

[93] Timothy P. Justice. Applicability of Multiparadigm Programming to Compiler
Construction Tools. PhD thesis, Oregon State University, May 1995. Accepted
PhD Proposal.

[94] Timothy P. Justice, Rajeev K. Pandey, and Timothy A. Budd. Compiler Im-
plementation in the Multiparadigm Language Leda. Technical Report 93-60-20,
Oregon State University, December 1993.

[95] Timothy P. Justice, Rajeev K. Pandey, and Timothy A. Budd. A Multi-
paradigm Approach to Compiler Construction. SIGPLAN Notices, 29(9):29{
37, September 1994.

[96] R. Kadia. Issues Encountered in Building a Flexible Software Development
Environment: Lessons From the Arcadia Project. In Proceedings of the Fifth
ACM SIGSOFT Symposium on Software Development Environments, pages
169{180, Tyson's Corner, VA, December 1992.

[97] Gail E. Kaiser and David Garlan. Synthesizing Programming Environments
From Reusable Features. In Ted J. Biggersta� and Alan J. Perlis, editors,
Software Reusability Volume II: Applications and Experience, pages 35{55.
Addison-Wesley, Reading, MA, 1989.

[98] Alan Kay. Microelectronics and the Personal Computer. Scienti�c American,
237(3):230{244, September 1977.

[99] Brian W. Kernighan and John R. Mashey. The UNIX Programming Environ-
ment. In David R. Barstow, Howard E. Shrobe, and Erik Sandewall, editors,
Interactive Programming Environments, pages 175{197. McGraw Hill Book
Company, 1984.

[100] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, Englewood Cli�s, New Jersey, second edition, 1988.

[101] K.N. King. The Evolution of the Programming Languages Course. SIGCSE
Bulletin, 24(1):213{219, March 1992.

155

[102] J. Lindskov Knudsen, M. L�ofgren, O. Lehrmann Madsen, and B. Magnusson,
editors. Object-Oriented Environments: The Mj�lner Approach. Prentice-Hall,
New York, 1994.

[103] Donald Knuth. Literate Programming. Center for the Study of Language and
Information Lecture Notes Number 27, Palo Alto, CA, 1992.

[104] Donald Knuth. The TEXbook: A Complete Guide to Computer Typesetting
with TEX. Addison-Wesley, Reading, MA, 1984.

[105] Donald Knuth and Silvio Levy. The CWEB System of Structured Documenta-
tion Version 3.0. Addison-Wesley, Reading, MA, 1994.

[106] Charles D. Knutson. Pattern Systems for Multiparadigm Analysis and Design.
PhD thesis, Oregon State University, 1998.

[107] Michael K�olling and John Rosenberg. An object-oriented program develop-
ment environment for the �rst programming course. In Proceedings of the 27th
SIGCSE Technical Symposium on Computer Science Education, pages 83{87,
Anaheim, CA, March 1996.

[108] Timothy Koschmann and Martha Walton Evens. Bridging the gap between
object-oriented and logic programming. IEEE Software, 5(4):36{42, July 1988.

[109] Thomas S. Kuhn. The Structure of Scienti�c Revolutions. The University of
Chicago Press, Chicago, IL, second edition edition, 1970.

[110] Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley,
Reading, MA, second edition, 1994.

[111] D. B. Leblang and Jr. Chase, R.P. Computer-aided software engineering
in a distributed workstation environment. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, pages 104{112, Pittsburgh, PA, May 1984.

[112] Peter Lempp and Rudolf Lauber. What Productivity to Expect from a CASE
Environment: Results of a User Survey. In Elliot Chikofsky, editor, Computer-
Aided Software Engineering, pages 147{153. IEEE Computer Society Press,
Los Alamitos, CA, 1993.

[113] Don Libes. Exploring Expect: A Tcl-Based Toolkit for Automating Interactive
Programs. O'Reilly & Associates, Cambridge, MA, 1995.

[114] Deborah A. Lienhart. SoftBench 5.0: The Evolution of an Integrated Soft-
ware Development Environment. Hewlett-Packard Journal, 48(1):6{11, Febru-
ary 1997.

156

[115] Mark A. Linton. The Evolution of Dbx. In Proceedings of the Summer 1990
USENIX Conference, pages 211{220, Anaheim, CA, June 1990.

[116] Stanley B. Lippman. C++ Primer. Addison-Wesley, Reading, Massachusetts,
second edition, 1991.

[117] Paul A. Luker. Never Mind the Language, What About the Paradigm? In Pro-
ceedings of the Twentieth SIGCSE Technical Symposium on Computer Science
Education, pages 252{256, Louisville, KY, February 1989.

[118] C. L�uth and S. Westmeier and B. Wol�. sml tk: Functional programming for
graphical user interfaces. Technical Report 8/96, FB3, Universit�at Bremen,
1996.

[119] Bruce J. MacLennan. Functional Programming: Practice and Theory. Addison-
Wesley, Reading, Massachusetts, 1990.

[120] Bruce J. MacLennan. Principles of Programming Languages: Design, Eval-
uation and Implementation. Holt, Rinehart and Winston, New York, second
edition, 1987.

[121] G�erald Masini, Amedeo Napoli, Dominique Colnet, Daniel L�eonard, and Karl
Tombre. Object-Oriented Languages, volume 34 of A.P.I.C. Series. Academic
Press Inc., San Diego, California, United States edition, 1991.

[122] John McDermid, editor. Integrated project support environments. Peter Pere-
grinus Ltd., London, 1985. (Proceedings of the conference on Integrated
Project Support Environments (IPSEs), University of York, April 10{12,
1985).

[123] Raul Medina-Mora. Syntax-Directed Editing: Towards Integrated Programming
Environments. PhD thesis, Carnegie-Mellon University, 1982.

[124] Raul Medina-Mora and Peter H. Feiler. An incremental programming environ-
ment. IEEE Transactions on Software Engineering, SE-7(5):472{482, 1981.

[125] Kurt Mehlhorn and Stefan N�aher. LEDA: A platform for combinatorial and
geometric computing. Communications of the ACM, 38(1):96{102, January
1995.

[126] Yoshiaki Mima. A Visual Programming Environment for Programming by Ex-
ample Abstraction. In Proceedings of the 1991 IEEE Workshop on Visual Lan-
guages, pages 132{137, Kobe, Japan, October 1991.

[127] Robert Munck, Patricia Oberndorf, Erhard Ploedereder, and Richard Thall.
An Overview of DOD-STD-1838A (proposed), A Common APSE Interface Set,

157

Revision A. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, pages
235{247, Boston, MA, 1988.

[128] Brad A. Myers. Taxonomies of visual programming and program visualization.
Journal of Visual Languages and Computing, 1(1):97{123, 1990.

[129] NIST IEEE Working Group and the ECMA TC33 Task Group on the Refer-
ence Model. Reference Model for Frameworks of Software Engineering Envi-
ronments. Technical Report ECMA TR/55 NIST Special Publication 500-211,
European Computer Manufacturers Association (ECMA) and National Insti-
tute of Standards (NIST), August 1993.

[130] Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho. Dalek: A
GNU, Improved Programmable Debugger. In Proceedings of the Summer 1990
USENIX Conference, pages 221{231, Anaheim, CA, June 1990.

[131] Paul W. Oman and Curtis R. Cook. Typographic Style is More than Cosmetic.
Communications of the ACM, 33(5):506{520, May 1990.

[132] Lay-Peng Ong. Version modeling using production rules in the postgres dbms.
Technical Report UCB/ERL M91/51, University of California, Berkeley, CA,
June 1991.

[133] Derek C. Oppen. Prettyprinting. ACM Transcations on Programming Lan-
guages and Systems, 2(4):465{483, October 1980.

[134] Elliott I. Organick. The Multics System: An Examination of Its Structure.
MIT Press, Cambridge, MA, USA, 1972.

[135] John K. Ousterhout. Scripting: Higher-Level Programming for the 21st Cen-
tury. IEEE Computer, pages 23{30, March 1998.

[136] John K. Ousterhout. Tcl: An Embeddable Command Language. In Proceedings
of the Winter 1990 USENIX Conference, pages 133{146, Washington, D.C.,
January 1990.

[137] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA,
1994.

[138] John K. Ousterhout. An X11 Toolkit Based on the Tcl Language. In Pro-
ceedings of the Winter 1991 USENIX Conference, pages 105{115, Dallas, TX,
January 1991.

[139] B.B. Owens. Comparative review of books on programming languages. Com-
puting Reviews, 33(1):49{56, January 1992.

158

[140] Rajeev Pandey, Wolfgang Pesch, Jim Shur, and Masami Takikawa. A Revised
Leda Language De�nition. Technical Report 93-60-02, Oregon State University,
January 1993.

[141] Maria H. Penedo. Towards understanding Software Engineering Environments.
Technical Report IMPSEE{TRW{93{003, TRW, Redondo Beach, CA, August
1993.

[142] Dewayne E. Perry and Gail E. Kaiser. Models of Software Development Envi-
ronments. IEEE Transactions on Software Engineering, 17(3):283{295, March
1991.

[143] Wolfgang Pesch. Implementing Logic In Leda. Technical Report 91-60-10, Ore-
gon State University, May 1991.

[144] Wolfgang Pesch and Jim Shur. A Leda Language De�nition. Technical Report
91-60-09, Oregon State University, September 1991.

[145] Marian Petre and R. Winder. On Languages, Models and Programming Styles.
The Computer Journal, 33(2):173{180, April 1990.

[146] John Placer. The Promise of Multiparadigm Languages as Pedagogical Tools.
In Proceedings of the 1993 ACM Computer Science Conference, pages 81{86,
Indianapolis, IN, February 1993.

[147] Dick Pountain. Functional programming comes of age. Byte, 19(8):183{184,
August 1994.

[148] Roger S. Pressman. Software Engineering: A Practitioner's Approach.
McGraw-Hill, New York, New York, third edition, 1992.

[149] P. Paolo Puncello, Piero Torrigiani, Francesco Pietri, Riccardo Burlon, Bruno
Cardile, and Mirella Conti. ASPIS: A Knowledge-Based CASE Environment.
IEEE Software, 5(2):58{65, April 1988.

[150] Steven P. Reiss. Connecting Tools Using Message Passing in the Field Envi-
ronment. IEEE Software, 7(4):57{66, 1990.

[151] Steven P. Reiss. THE FIELD PROGRAMMING ENVIRONMENT: A
Friendly Integrated Environment for Learning and Development. Kluwer Aca-
demic Publishers, Boston, MA, 1995.

[152] Steven P. Reiss. Graphical Program Development with PECAN Program De-
velopment Systems. In Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments,
pages 30{41, Pittsburgh, PA, 1984.

159

[153] Steven P. Reiss. Interacting with the FIELD Environment. Software{Practice
and Experience, 20(1):89{115, June 1990.

[154] Steven P. Reiss. PECAN: Program Development Systems that Support Mul-
tiple Views. IEEE Transactions on Software Engineering, SE-11(3):276{285,
March 1985.

[155] Steven P. Reiss. Software tools and environments. In Jr. Alan B. Tucker, edi-
tor, The Computer Science and Engineering Handbook, pages 2419{2439. CRC
Press, 1997.

[156] Steven P. Reiss and Scott Meyers. FIELD Support for C++. In Proceedings of
the 1990 USENIX C++ Conference, pages 293{299, 1990.

[157] Steven P. Reiss and John T. Stasko. The Brown Workstation Environment:
A user interface design toolkit. Technical Report CS-89-34, Department of
Computer Science, Brown University, June 1989.

[158] Thomas W. Reps. Generating Language-Based Environments. ACM Doctoral
Dissertation Series. The MIT Press, Cambridge, MA, 1984.

[159] Thomas Reps and Tim Teitelbaum. The synthesizer generator. In Proceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, pages 42{48, Pittsburgh, PA, May
1984.

[160] Charles Rich and Richard C. Waters. The Programmer's Apprentice. Addison-
Wesley/ACM Press, Cambridge, MA, 1990.

[161] Jonathan B. Rosenberg. How Debuggers Work: Algorithms, Data Structures,
and Architecture. Wiley Computer Publishing, New York, 1996.

[162] Martin Ruckert. Conservative Pretty Printing. SIGPLAN Notices, 32(2):39{
44, February 1997.

[163] D. Schefstr�om. System Development Environments: Contemporary Concepts.
In D. Schefstr�om and G. van den Broek, editors, Tool Integration: Environ-
ments and Frameworks, pages 558{570. John Wiley & Sons, Chichester, U.K.,
1993.

[164] Robert W. Schei
er and Jim Gettys. The X Window System. ACM Transac-
tions on Graphics, 5(2):79{109, April 1986.

[165] Robert Sedgewick. Algorithms. Addison-Wesley, Reading, Massachusetts, sec-
ond edition, 1988.

160

[166] Ravi Sethi. Programming Languages: Concepts and Constructs. Addison-
Wesley, Reading, MA, 1989.

[167] Jim Shur. Implementing Leda: Objects And Classes. Technical Report 91-60-
11, Oregon State University, August 1991.

[168] R.A. Snowdon. An Introduction to the IPSE 2.5 Project. In Fred Long, editor,
Proceedings of the International Workshop on Environments, Lecture Notes in
Computer Science, pages 13{24, Chinon, France, September 1989. Springer-
Verlag.

[169] Ian Sommerville. Software Engineering. Addison-Wesley, Wokingham, Eng-
land, third edition edition, 1989.

[170] Richard Stallman. GNU Emacs Manual. Free Software Foundation, Cam-
bridge, MA, 1987.

[171] Scott Stanton. TclBlend: Blending Tcl and Java. Dr. Dobb's Journal, pages
50{54, 100{101, February 1998.

[172] John Stasko. Animating Algorithms with XTANGO. ACM SIGACT News,
23(2):67{71, Spring 1992.

[173] John Stasko. Tango: A Framework and System for Algorithm Animation.
IEEE Computer, 23(9):27{39, September 1990.

[174] John T. Stasko. Using Student-Built Algorithm Animations As Learning Aids.
Technical Report GIT{GVU{96{19, Georgia Institute of Technology, 1996.

[175] Guy L. Steele, Jr. Common LISP: The Language. Digital Press, Bedford, MA,
1984.

[176] Mark J. Ste�k, Daniel G. Bobrow, and Kenneth M. Kahn. Integrating Access-
Oriented Programming into a Multiparadigm Environment. IEEE Software,
3(1):10{18, January 1986.

[177] Michael Stonebraker and Lawrence A. Rowe. The postgres papers. Technical
Report UCB/ERL M86/85, University of California, Berkeley, CA, June 1987.

[178] Tom Strelich. The Software Life Cycle Support Environment (SLCSE): A Com-
puter Based Framework for Developing Software Systems. In Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, pages 35{44, Boston, MA, 1988.

[179] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, second edition, 1991.

161

[180] Kevin J. Sullivan. Mediators: Easing the Design and Evolution of Integrated
Systems. PhD thesis, University of Washington, 1994.

[181] Daniel Swinehart, Polle Zellweger, Richard Beach, and Robert Hagmann. A
Structural View of the Cedar Programming Environment. ACM Transactions
on Programming Language and Systems, 8(4):419{490, October 1986.

[182] Masami Takikawa.Cleda { LedaWith Constraint Logic Programming. Tech-
nical Report 93-60-03, Oregon State University, March 1993.

[183] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W.
Selby, Jack C. Wileden, Alexander L. Wolf, and Michal Young. Foundations
for the Arcadia Environment Architecture. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, pages 1{13, Boston, MA, 1988.

[184] Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer: A
Syntax-Directed Programming Environment. Communications of the ACM,
24(9):563{573, 1981.

[185] Warren Teitelman. A Tour Through Cedar. IEEE Software, 1(2):44{73, April
1984.

[186] Warren Teitelman and Larry Masinter. The Interlisp Programming Environ-
ment. In David R. Barstow, Howard E. Shrobe, and Erik Sandewall, editors,
Interactive Programming Environments, pages 83{96. McGraw Hill Book Com-
pany, 1984.

[187] Ian Thomas and Brian A. Nejmeh. De�nitions of Tool Integration for Envi-
ronments. IEEE Software, 9(2):29{35, 1992.

[188] Je�rey M. Voas. Certifying O�-the-Shelf Software Components. IEEE Com-
puter, 31(6):53{59, June 1998.

[189] Lois Wakeman and Jonathan Jowett. PCTE: The Standard For Open Reposi-
tories. Prentice-Hall, Hertfordshire, UK, 1993.

[190] Anthony I. Wasserman. The Ecology of Software Development Environments.
In Anthony I. Wasserman, editor, Tutorial: Software Development Environ-
ments, pages 47{52. IEEE Computer Society, 1981.

[191] Anthony I. Wasserman. Tool Integration in Software Engineering Environ-
ments. In Software Engineering Environments: Proceedings of the Interna-
tional Workshop on Environments, pages 137{149, Chinon, France, September
1989.

162

[192] Anthony I. Wasserman and Peter A. Pircher. The Open Architecture of the
Software Through Pictures Environment. In Marvin V. Zelkowitz, editor, Pro-
ceedings of the University of Maryland Workshop on Requirements for a Soft-
ware Engineering Environment, pages 143{157, College Park, MD, May 1986.
Ablex.

[193] Mark Weiser, David Notkin, Bertrand Meyer, Mark Green, Glenn Pearson,
David Stotts, Tony Wasserman, Alexander Wolf, and Rick Furuta. Landscap-
ing for Programming Environments. In Marvin V. Zelkowitz, editor, Proceed-
ings of the University of Maryland Workshop on Requirements for a Software
Engineering Environment, pages 27{57, College Park, MD, May 1986. Ablex.

[194] Mark B. Wells and Barry L. Kurtz. Teaching Multiple Programming
Paradigms: A Proposal for a Paradigm-General Pseudocode. In Proceedings of
the Twentieth SIGCSE Technical Symposium on Computer Science Education,
pages 246{251, Louisville, KY, February 1989.

[195] �Ake Wikstr�om. Functional Programming using Standard ML. Prentice-Hall,
Inc., Englewood Cli�s, New Jersey, 1987.

[196] Stephen A. Williams. Using SoftBench to Integrate Heterogeneous Software
Development Environments. Hewlett-Packard Journal, 48(1):22{27, February
1997.

[197] Julie B. Wilson. The C++ SoftBench Class Editor. Hewlett-Packard Journal,
48(1):12{15, February 1997.

[198] Douglas A. Young. The X Window System: Programming and Applications
with Xt. Prentice-Hall, Inc., Englewood Cli�s, New Jersey, second edition,
1994.

[199] Nabil M. Zamel. Electra: Integrating Constraints, Condition-Based Dispatch-
ing, and Feature Exclusion into the Multiparadigm Language Leda. PhD thesis,
Oregon State University, 1995.

[200] Nabil M. Zamel and Timothy A. Budd. Integrating Constraints into a Multi-
paradigm Language. In Proceedings of InfoScience '93, pages 402{409, Seoul,
Korea, October 1993.

[201] Donald A. Zaremba. Adding a Data Visualization Tool to DEC FUSE. Digital
Technical Journal, 7(2):20{33, 1995.

[202] Pamela Zave. A Compositional Approach to Multiparadigm Programming.
IEEE Software, 6(5):6{9, September 1989.

163

[203] Polle Scott Zellweger. Interactive Source-Level Debugging of Optimized Pro-
grams. Technical Report CSL{84{5, XEROX PARC, Palo Alto, CA, May 1984.

164

APPENDICES

165

APPENDIX A. Leda Grammar

A.1. Overall Program Structure

program

declarations body ;

����
declarations

�
�declarations declaration

�
�

body

begin

�� ��statements end

�� ��
A.2. Declarations

declaration

const

�� ��constantDe�nitions�
�var

�� ��variableDe�nitions

�type

�� ��typeDe�nitions

�functionDeclaration

�classDeclaration

�
�
�
�
�

constantDe�nitions

constantDe�nition�
�

�
�

constantDe�nition

identi�er :=

����expression ;

����

166

variableDe�nitions

variableDe�nition�
�

�
�

variableDe�nition

identi�erList :

����type ;

����
identi�erList

identi�er�
�

,

����
�
�

typeDe�nitions

typeDe�nition�
�

�
�

typeDe�nition

identi�er :

����type ;

����
A.3. Types

type

identi�er�
�identi�er [

����typeList]

�����function

�� ��(

����optionalArguments)

�������
�optionalReturnType

�
�

�
typeList

type�
� ,

����
�
�

167

optionalArguments

�
�formalList

�
�

formalList

parameterMode type�
� ,

����
�
�

parameterMode

�
�byRef

�� ���byName

�� ��

�
�
�

optionalReturnType

�
�return type

�
�

A.4. Function Declarations

functionDeclaration

function

�� ��identi�er typeArguments valueArguments �
��

�optionalReturnType ;

����declarations body ;

����
typeArguments

�
�

[

����argumentList]

����
�
�

168

valueArguments

(

����)

�����
�

(

����argumentList)

����
�
�

argumentList

parameterMode identi�erList :

����type�
� ,

����
�
�

A.5. Class Declarations

classDeclaration

classHeading declarations end

�� ��;

����
classHeading

className ;

�����
�className of

����identi�er ;

�����className of

����identi�er [

����typeList]

����;

����

�
�
�

className

class

�� ��identi�er typeArguments

A.6. Statements

statements

�
� ;

����statement

�
�

169

statement

�
�reference :=

����expression

�return

�� ���return

�� ��expression

�begin

�� ��statements end

�� ���if

����expression then

�� ��statement

�if

����expression then

�� ��statement else

�� ��statement

�while

�� ��expression do

����statement

�
for

�� ��expression do

����statement

�for

�� ��expression to

����expression do

����statement

�for

�� ��reference :=

����expression to

����expression �
��

�do

����statement

�procedureCall

�
�
�
�
�
�
�
�
�
�

�
�

procedureCall

functionCall (

����optionalExpressionList)

�����
�cfunction

�� ��identi�er (

����optionalExpressionList)

����
�
�

optionalExpressionList

�
�expressionList

�
�

170

expressionList

expression�
� ,

����
�
�

A.7. Expressions

expression

andExpression�
�expression orSymbol andExpression

�
�

andExpression

notExpression�
�andExpression andSymbol notExpression

�
�

notExpression

relationalExpression�
�not notExpression

�reference is

����type

�reference is

����type (

����identi�erList)

����

�
�
�
�

relationalExpression

plusExpression�
�plusExpression relationalOperator plusExpression

�reference revassign plusExpression

�
�
�

plusExpression

timesExpression�
�plusExpression plusOperator timesExpression

�
�

171

timesExpression

functionCall�
�timesExpression timesOperator functionCall

�plusOperator functionCall

�
�
�

functionCall

basicExpression�
�functionCall (

����optionalExpressionList)

�����cfunction

�� ��identi�er (

����optionalExpressionList �
��

�)

����return type

�
�

�
The or symbol is |. The and symbol is &. The six relational operators are

<, <=, =, <>, >= and >, The two plus operators are + and �. The three times

operators are �, = and %, the latter denoting remainder.

172

A.8. Basic Expression

basicExpression

reference�
�constant

� (

����expression)

�����basicExpression [

����typeList]

����� [

����expressionList]

�����function

�� ��valueArguments optionalReturnType ;

�������
�declarations body

�
�
�
�
�

�
reference

identi�er�
�functionCall .

����identi�er

�
�

173

APPENDIX B. Leda Program to Simulate a Turing Machine

B.1. turing.led

f
File: turing.led
Description: example Turing machine simulator
Source: \Foundations Toward a Multiparadigm Methodology"

by Jim Shur
Version: Leda-95 (converted from Leda-91 by Timothy Justice)
g

include \std.led";
include \square.led";
include \rwhead.led";
include \tm.led";
include \tmpal.led";
include \tmadd.led";

function NL();
begin

print(\\n");
end;

var
t : TM;
tape : Square;

begin

\Test for palindrome:".print();
NL();
tape := (Square(\0", NIL, NIL) + \0" + \1" + \0" + \1" + \0").getFirst();
t := TM(0, RWHead(tape), palindrome);
t.execute(true);
NL();
NL();
NL();

174

\Add two binary numbers:".print();
NL();
tape := (Square(\1", NIL, NIL) + \0" + \1" + \1" +

\+" + \0" + \1" + \0" + \1").getFirst();
t := TM(0, RWHead(tape), add);
NL();

end;

175

B.2. square.led

f
File: square.led
Description: Tape Square class for Turing machine simulator
Source: \Foundations Toward a Multiparadigm Methodology"

by Jim Shur
Version: Leda-95 (converted from Leda-91 by Timothy Justice)
g

class Square;
var

value : string;
left : Square;
right : Square;

function getValue())string;
begin

return value;
end;

function putValue(c : string);
begin

value := c;
end;

function getLeft())Square;
begin

if �de�ned (left) then
left := Square(\-", NIL, self);

return left;
end;

function getRight())Square;
begin

if �de�ned (right) then
right := Square(\-", NIL, self);

return right;
end;

function getFirst())Square;
begin

176

if de�ned (left) then
return left.getFirst()

else
return self;

end;

function getPos())integer;
begin

if �de�ned (left) then
return 1

else
return 1 + left.getPos();

end;

function print();
begin

value.print();
if de�ned (right) then

right.print();
end;

function plus(symbol : string))Square;
var

r : Square;
begin

if de�ned (right) then
return right.plus(symbol)

else
begin

r := getRight();
r.putValue(symbol);
return r;

end;
end;

end;

177

B.3. rwhead.led

f
File: rwhead.led
Description: Read/Write Head class for Turing machine simulator
Source: \Foundations Toward a Multiparadigm Methodology" by Jim Shur
Version: Leda-95 (converted from Leda-91 by Timothy Justice)
g

class RWHead;
var

curSquare : Square;

function read())string;
begin

return curSquare.getValue();
end;

function write(symbol : string);
begin

curSquare.putValue(symbol);
end;

function move(d : string);
begin

if d = \left" then
curSquare := curSquare.getLeft()

else
if d = \right" then

curSquare := curSquare.getRight();
end;

function print();
var

i : integer;
begin

curSquare.getFirst().print();
\\n".print();
for i := 1 to curSquare.getPos() � 1 do \ ".print();
\^".print();

end;
end;

178

B.4. tm.led

f
File: tm.led
Description: Turing Machine class for Turing machine simulator
Source: \Foundations Toward a Multiparadigm Methodology"

by Jim Shur
Version: Leda-95 (converted from Leda-91 by Timothy Justice)
g

class TM;
var

state : integer;
head : RWHead;
rules : function (byRef integer, byRef string, byRef integer,

byRef string, byRef string))relation;

function execute(trace : boolean);
var
newState : integer;
symbol, newSymbol : string;
direction : string;

begin
if trace then

head.print();
direction := \stay";
while direction <> \HALT" do

begin
symbol := head.read();
newState := NIL;
newSymbol := NIL;
direction := NIL;

if rules(state, symbol, newState, newSymbol, direction) then
;

head.write(newSymbol);
head.move(direction);

if trace then
begin

print(\\t");
print(\(");

179

print(state);
print(\, ");
print(symbol);
print(\, ");
print(newState);
print(\, ");
print(newSymbol);
print(\, ");
print(direction);
print(\)");
print(\\n");
head.print();

end;

state := newState;
end;

end;

end;

180

B.5. tmpal.led

f
File: tmpal.led
Description: Palindrome relation for Turing machine simulator
Source: \Foundations Toward a Multiparadigm Methodology"

by Jim Shur
Version: Leda-95 (converted from Leda-91 by Timothy Justice)
g

function palindrome(byRef s1 : integer, byRef q1 : string,
byRef s2 : integer, byRef q2 : string, byRef d : string))relation;

function rule(byRef x1 : integer, byRef y1 : string,
byRef x2 : integer, byRef y2 : string, byRef z : string))relation;

begin
return unify[integer](s1, x1) & unify[string](q1, y1)

& unify[integer](s2, x2) & unify[string](q2, y2)
& unify[string](d, z);

end;

begin
return rule(0, \0", 1, \-", \right")

j rule(0, \1", 4, \-", \right")
j rule(0, \-", � 1, \-", \HALT")
j rule(1, \0", 1, \0", \right")
j rule(1, \1", 1, \1", \right")
j rule(1, \-", 2, \-", \left")
j rule(2, \0", 3, \-", \left")
j rule(2, \1", � 1, \1", \HALT")
j rule(2, \-", � 1, \-", \HALT")
j rule(3, \0", 3, \0", \left")
j rule(3, \1", 3, \1", \left")
j rule(3, \-", 0, \-", \right")
j rule(4, \0", 4, \0", \right")
j rule(4, \1", 4, \1", \right")
j rule(4, \-", 5, \-", \left")
j rule(5, \0", � 1, \0", \HALT")
j rule(5, \1", 3, \-", \left")
j rule(5, \-", � 1, \-", \HALT");

end;

181

B.6. tmadd.led

f
File: tmadd.led
Description: Binary Addition relation for Turing machine simulator
Source: \Foundations Toward a Multiparadigm Methodology"

by Jim Shur
Version: Leda-95 (converted from Leda-91 by Timothy Justice)
g

function add(byRef s1 : integer, byRef q1 : string,
byRef s2 : integer, byRef q2 : string, byRef d : string))relation;

function rule(byRef x1 : integer, byRef y1 : string,
byRef x2 : integer, byRef y2 : string, byRef z : string))relation;

begin
return unify[integer](s1, x1) & unify[string](q1, y1)

& unify[integer](s2, x2) & unify[string](q2, y2)
& unify[string](d, z);

end;

begin
return rule(0, \0", 0, \0", \right") f start, move right until g

j rule(0, \1", 0, \1", \right") f "+" or mark g
j rule(0, \+", 1, \+", \left")
j rule(0, \i", 1, \i", \left")
j rule(0, \o", 1, \o", \left")

j rule(1, \0", 2, \o", \right") f test for 0 or 1 g
j rule(1, \1", 3, \i", \right")

j rule(2, \0", 2, \0", \right") f it was 0, right until g
j rule(2, \1", 2, \1", \right") f blank or mark g
j rule(2, \i", 2, \i", \right")
j rule(2, \o", 2, \o", \right")
j rule(2, \+", 20, \+", \right")

j rule(20, \1", 20, \1", \right")
j rule(20, \0", 20, \0", \right")
j rule(20, \-", 4, \-", \left")
j rule(20, \i", 4, \i", \left")

182

j rule(20, \o", 4, \o", \left")

j rule(3, \0", 3, \0", \right") f it was 1, right until g
j rule(3, \1", 3, \1", \right") f blank or mark g
j rule(3, \i", 3, \i", \right")
j rule(3, \o", 3, \o", \right")
j rule(3, \+", 30, \+", \right")

j rule(30, \1", 30, \1", \right")
j rule(30, \0", 30, \0", \right")
j rule(30, \-", 5, \-", \left")
j rule(30, \i", 5, \i", \left")
j rule(30, \o", 5, \o", \left")

j rule(4, \0", 6, \o", \left") f 0 + 0, no carry g
j rule(4, \1", 6, \i", \left") f 0 + 1, no carry g

j rule(5, \0", 6, \i", \left") f 1 + 0, no carry g
j rule(5, \1", 7, \o", \left") f 1 + 1, no carry g

j rule(6, \0", 6, \0", \left") f left past + g
j rule(6, \1", 6, \1", \left") f left past + g
j rule(6, \+", 8, \+", \left")

j rule(7, \0", 7, \0", \left")
j rule(7, \1", 7, \1", \left")
j rule(7, \+", 9, \+", \left")

j rule(8, \o", 8, \o", \left") f left past marks g
j rule(8, \i", 8, \i", \left") f left past marks g
j rule(8, \0", 2, \o", \right")
j rule(8, \1", 3, \i", \right")
j rule(8, \-", 11, \-", \right")

j rule(9, \i", 9, \i", \left")
j rule(9, \o", 9, \o", \left")
j rule(9, \0", 12, \o", \right")
j rule(9, \1", 13, \i", \right")
j rule(9, \-", 10, \-", \right")

j rule(10, \i", 10, \-", \right") f done except for last carry g

183

j rule(10, \o", 10, \-", \right") f clear left operand g
j rule(10, \+", � 1, \i", \HALT")

j rule(11, \i", 11, \-", \right") f done clear left operand g
j rule(11, \o", 11, \-", \right")
j rule(11, \+", � 1, \-", \HALT")

f Carry is set g
j rule(12, \0", 12, \0", \right") f it was 0, right until g
j rule(12, \1", 12, \1", \right") f blank or mark g
j rule(12, \i", 12, \i", \right")
j rule(12, \o", 12, \o", \right")
j rule(12, \+", 120, \+", \right")

j rule(120, \0", 120, \0", \right")
j rule(120, \1", 120, \1", \right")
j rule(120, \-", 14, \-", \left")
j rule(120, \i", 14, \i", \left")
j rule(120, \o", 14, \o", \left")

j rule(13, \0", 13, \0", \right") f it was 1, right until g
j rule(13, \1", 13, \1", \right") f blank or mark g
j rule(13, \i", 13, \i", \right")
j rule(13, \o", 13, \o", \right")
j rule(13, \+", 130, \+", \right")

j rule(130, \0", 130, \0", \right")
j rule(130, \1", 130, \1", \right")
j rule(130, \-", 15, \-", \left")
j rule(130, \-", 15, \-", \left")
j rule(130, \i", 15, \i", \left")
j rule(130, \o", 15, \o", \left")

j rule(14, \0", 6, \i", \left") f 0 + 0, no carry g
j rule(14, \1", 7, \o", \left") f 0 + 1, no carry g

j rule(15, \0", 7, \o", \left") f 1 + 0, no carry g
j rule(15, \1", 7, \i", \left") f 1 + 1, no carry g

;
end;

184

185

