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MODIFIED VLSI DESIGNS FOR ERROR CORRECTION 

CODES 

1 INTRODUCTION 

1.1 Overview 

This thesis is devoted to the efficient VLSI architecture design for error correction 

codes. Nowadays, the error correction codes have become an integral part of almost all 

modern digital communication and storage systems. With the continuously increasing 

demands for higher speed and lower power communication systems, efficient VLSI 

implementations of those error correction codes that are currently used in practical 

applications are of great importance. In this thesis, several VLSI design issues for Viterbi 

decoder and Low-Density Parity-Check (LDPC) codes decoder are discussed. We propose 

a low-power memory-efficient Viterbi decoder to reduce the memory read operations in the 

survivor memory unit (SMU) and reduce the memory size of SMU. We develop a parallel 

Viterbi decoder for high throughput applications. We also propose an efficient early 

stopping scheme to reduce the number of decoding iterations for LDPC codes decoding. 

1.2 Summary of Contributions 

1.2.1 A Low-Power Memory-Efficient Viterbi Decoder Design 

We propose a new low-power memory-efficient trace back (TB) scheme for high 

constraint length Viterbi decoders (VD). With the trace back modifications and path 

merging techniques, more than 50% memory read operations in the survivor memory unit 

(SMU) can be eliminated. The memory size of SMU can be reduced by 33% and the 
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decoding latency can be reduced by 14%. The simulation results show that, compared to 

the conventional TB scheme, the performance loss of this scheme is negligible. 

1.2.2 A Parallel Viterbi Decoder Architecture for High-Throughput 

Applications 

High-throughput Viterbi decoders for convolutional codes are very attractive for 

high-data-rate applications. Parallel processing is a powerful technique for high-throughput 

applications. We present a parallel Viterbi decoder architecture, which breaks the 

bottleneck of the add-compare select (ACS) unit. The simulation result shows that, 

compared to the conventional RE scheme, no performance degradation is observed for the 

parallel RE scheme. The proposed architecture is well suited for high-speed data 

applications. 

1.2.3 An Efficient Early Stopping Scheme for LDPC Decoding 

We propose an efficient early stopping scheme for LDPC codes decoding to detect 

undecodable blocks at early stages and hence to save unnecessary power consumption. The 

proposed approach thoroughly exploits the convergence of the summation of the sign 

products computed in the check-to-variable message passing phase. The new approach can 

significantly reduce the average number of decoding iterations in the low to medium signal 

to noise ratio (SNR) range while the performance loss is negligible. In the high SNR range, 

the proposed scheme can turn off early stopping mechanism to avoid performance loss and 

unnecessary computation. The computation overhead of the proposed scheme is very 

small. 
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1.3 Outline of the Thesis 

This thesis is outlined as follows. In Chapter 2, we introduce the basic elements of a 

digital communication system. Then, we explain the basic ideas of coding. We continue 

with an introduction of convolutional codes and their properties, followed by an 

explanation of Viterbi algorithm and VLSI implementations of Viterbi algorithm. After an 

introduction of block codes and their properties, LDPC codes are introduced. We also 

define the Tanner graph, which is a visualization of codes, suited for LDPC codes. Finally, 

we briefly introduce the encoding and decoding for LDPC codes. In Chapter 3, we present 

a low-power memory-efficient Viterbi decoder design. An illustration of conventional TB 

algorithm is included. Then, the proposed TB algorithm and the architecture design are 

presented. Then, the simulation results and discussions are included. A conclusion is given 

at the end of this chapter. In Chapter 4, we propose a parallel RE Viterbi decoder 

architecture. A brief literature survey of high-speed VD design and an introduction of 

parallel processing technique are given at the beginning of this chapter. Then, the proposed 

parallel RE decoding scheme is introduced. Then, the proposed architecture and the 

simulation results are included. A conclusion is given at the end of this chapter. In Chapter 

5, we present an efficient early stopping scheme for LDPC decoding. A brief introduction 

of LDPC codes and LDPC decoding is given at the beginning of this chapter. Then, the 

proposed early stopping scheme is presented. After the simulation results and discussions, 

a conclusion is given at the end of this chapter. In chapter 6, we give a final conclusion of 

this thesis. 
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2 ERROR CORRECTION CODES 

In this chapter the basic concepts of digital communications and error correction 

codes are introduced. This chapter will begin with an overview of digital communication 

and coding. Then, we will talk about convolutional codes and Viterbi algorithm. A brief 

introduction of block codes and linear block codes and their characteristics will be 

followed. After that, we will give a brief introduction of LDPC codes and their 

characteristics. 

2.1 Digital Communication 

2.1.1 Digital Communication System 

A digital communication system is a way of transporting information from an 

endpoint A to an endpoint B. The system is digital, meaning that the information is 

represented by a sequence of symbols from a finite discrete alphabet. The sequence is 

mapped onto analog signals, which is then transmitted through a physical channel. During 

transmission the signal is distorted by noise, so the received signal is not the same as the 

sent one. The receiver selects the most likely sequence of symbols and delivers it to the 

receiving endpoint B.  

The transmitter and receiver functions are always performed by different elements. 

Figure 2.1 shows the basic elements of a digital communication system [1]. First, 

information signal is sampled and quantized to form a digital sequence, then it passes 

through the source encoder to remove any unnecessary redundancy in the data. Then, 

channel encoder codes the information sequence so that it can recover the correct 

information after passing through the channel. The information sequence is protected by 
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error correction codes such as convolutional codes and LDPC codes. The digital modulator 

maps the binary sequence onto analog signal waveforms so that it can be efficiently 

transmitted over the communication channel. The modulator acts as an interface between 

the digital signal and the channel.  

Figure 2.1    Basic elements of a digital communication system. 

The communication channel is the physical medium that is used to send the signal 

from the transmitter to the receiver. The channel attenuates the transmitted signal and 

introduces noise. The attenuation is generally caused by energy absorption and scattering in 

the propagation medium. The noise is generated in a random manner by many possible 

mechanisms such as ambient heat in the transmitter/receiver hardware and the propagation 

medium, hardware-induced transients, co-channel and adjacent-channel interference from 

other communication systems, or climatic phenomena. The most commonly assumed noise 

model is the additive white Gaussian noise (AWGN) model [1].  

At the receiving end of the digital communications system, the digital demodulator 

processes the channel-corrupted transmitted waveform and recovers a sequence of digital 

values from the waveforms, then feeds it into the channel decoder. The decoder 

reconstructs the original information sequence by the knowledge of the code used by 

channel encoder and the redundancy contained in the received data. Channel decoders can 



 

 

6 

 

be Viterbi decoders [2], LDPC decoders [7], etc. Then, source decoder decompresses the 

data and retrieves the original information. The probability of having error in the output 

sequence is a function of the code characteristics, the type of modulation, channel 

characteristics such as noise and interference level, etc. There is a trade-off between the 

power of transmission and the bit error rate. Researchers are trying to minimize the power 

consumption while maintaining a reliable communication. This raises a need for stronger 

codes with more error correction abilities. 

2.1.2 Coding 

In 1948 Shannon published a paper regarding basis of the entire field of information 

theory [48]. In that work, he introduced a metric by which the information can be 

quantified. This metric allows one to determine the minimum possible number of symbols 

necessary for the error-free representation of a given message. A longer message 

containing the same information is said to have redundant symbols. These can lead to the 

definition of three distinct types of codes [3]: 

Source codes: These codes are used to remove the uncontrolled redundancy from the 

information symbols. Source coding reduces the symbol throughput requirement placed 

upon the transmitter.  

Secrecy codes: These codes encrypt the information so that it cannot be understood by 

anyone else except the intended recipient. 

Error control codes (error correction codes or channel codes): These codes are used to 

format the transmitted information so that it can increase its immunity to noise. This is 

achieved by adding controlled redundant information into the transmitted information 

stream, allowing the receiver to detect and possibly correct those errors. 
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As we mentioned before, in a communication system, all three types of these codes 

are used to increase the reliability and performance of the system.  

2.2 Convolutional Codes 

Convolutional codes are widely used in modern digital communication systems 

including deep space communications and wireless communications due to their powerful 

error correction capabilities and low decoding latency. Convolutional coding can be 

applied to a continuous input stream (which cannot be done with block codes), as well as 

blocks of data. 

2.2.1 Convolutional Code Representation 

Convolutional codes are usually described using two parameters: the code rate and 

the constraint length. The code rate, k/n, is expressed as a ratio of the number of bits, k, into 

the convolutional encoder to the number of channel symbols, n, output by the 

convolutional encoder in given encoder cycle. The constraint length, K, denotes the length 

of the convolutional encoder, i.e., how many k-bit stages are available to feed the 

combinational logic that produces the output symbols. Closely related to K is the parameter 

m, which indicated how many encoder cycles an input bit is retained and used for encoding 

after it first appears at the input to the convolutional encoder. The m parameter can be 

thought of as the memory length of the encoder. 

A convolutional encoder can be considered as a finite state machine and represented 

by state diagrams, graphs, or trellises. It generates a coded output data stream from an 

input data stream. It consists of shift registers and a network of Exclusive-OR (XOR) gates 

as shown in Figure 2.2. 
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Figure 2.2    A rate-1/3 convolutional encoder. 

The encoder in Figure 2.2 produces three bits of encoded information for each bit of 

input information, so it is called a rate 1/3 encoder. A convolutional encoder is generally 

characterized in (n, k, m) format. The rate of a (n, k, m) encoder is k/n. The encoder shown 

in the Figure 2.2 is a (3, 1, 2) encoder with rate 1/3.  

A convolutional encoder is a Mealy type state machine, where the output is a 

function of the current state and the current input as well. It consists of one or more shift 

registers and multiple XOR gates. The information sequence passes into the linear finite-

state shift registers from one end and then is shifted out at the other end. For the optimal 

location of the shift register stages to be connected to XOR gates, it is based on empirical 

experience and no theoretical principle. The location of stages as well as the number of 

shift registers determines the minimum Hamming distance. The maximal number of 

correctable bits is determined by minimum Hamming distance. Detailed information about 

the interconnection functions for different rates and different number of memory elements 

and their minimum Hamming distances are available in [4]. 
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The operation of a convolutional encoder can be easily understood with the aid of a 

state diagram. Figure 2.3 represents the state diagram of the encoder shown in Figure 2.2. 

Figure 2.3 depicts state transitions and the corresponding encoded outputs. As this rate-1/3 

encoder has two memory cells, there are four possible states. These four states are 

represented as S0 through S3. The information of each state (i.e., the contents of shift 

register for the state) along with one input generates an encoded output code. For each 

state, only two outgoing transitions can be observed: one corresponding to a ‘0’ input bit 

and the other corresponding to a ‘1’ input bit. 

 

Figure 2.3    State diagram for encoder in Figure 2.1 [3]. 

A trellis diagram is an extension of a state diagram that explicitly shows the passage 

of time. In Figure 2.4, the state diagram is extended in time to form a trellis diagram for the 

encoder given in Figure 2.2. In the trellis diagram, nodes correspond to the states of the 

encoder. The branches of the trellis diagram are labeled with the output bits corresponding 

to the associated state transitions. From an initial state (S0) the trellis records the possible 
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transitions to the next states for each possible input pattern in every stage. At the stage t = 1 

there are two states S0 and S1, and each state has two transitions corresponding to input bits 

‘0’ and ‘1’. Therefore, the trellis grows up to the maximum number of states or nodes, 

which is determined by the number of shift register in the encoder. After all the encoded 

symbols of the information bits are transmitted, the encoder is usually forced back into the 

initial state by applying a fixed m zeros input sequence called force zero sequence. The 

trellis diagram in Figure 2.4 is for an input length of five bits, in which the last two bits 

zero represent the force zero sequence. It should be pointed out that, there is a unique path 

for every codeword that begins and stops at the initial state. 

S3

S2
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t=0 t=1 t=2 t=3 t=4 t=5

000 000 000 000 000
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Figure 2.4    Trellis diagram for inputs of length three to the encoder in Figure 2.2. 

2.3 The Viterbi Algorithm 

The Viterbi algorithm (VA), first introduced in [2], is known to be an optimal 

decoding method for convolution codes. The function of the VA is to find a maximum 

likelihood sequence in the trellis diagram based on the received symbols. The VA has been 

used in many digital communication systems such as magnetic recording systems, satellite 
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communication systems, mobile communication systems and video broadcasting systems. 

The Viterbi decoding algorithm is a decoding method for convolutional codes or trellis 

codes in a memoryless channel. Figure 2.5 depicts the transmission flow of information 

over a noisy channel. An information sequence x is encoded to form a convolutional 

codeword y, which is transmitted through a noisy channel. The convolutional decoder 

takes the received vector r and tries to extract the transmitted information sequence 

through a decoding algorithm and generates an estimate y’ of the transmitted codeword. A 

decoding algorithm that maximizes the probability p(r|y’) is a maximum likelihood (ML) 

algorithm. An algorithm which maximizes the p(y’|r) through the proper selection of the 

estimate y’ is called a maximum a posteriori (MAP) algorithm. The two algorithms have 

identical results when the source information x has a uniform distribution. 

Figure 2.5    The convolutional encoding and decoding system. 

Since the received signal is analog, it can be quantized into several levels. If the 

received signal is converted into two levels, either zero or one, it is called hard decision. If 

the input signal is quantized and processed for more than two levels, it is called soft 

decision. The soft decision captures more information in the input signal consequently 

performing better than the hard decision at the cost of a higher complexity. 

The Viterbi algorithm based on the ML algorithm and the hard decision is illustrated 

in Figure 2.6. The trellis in the Figure 2.6 corresponds to the convolutional encoder given 

in Figure 2.2. The received code symbols are shown at the bottom of the trellis. The 
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encoder encodes an input sequence (11010100) and generates the codeword 

(111,000,001,001,111,001,111,110). This codeword is transmitted over a noisy channel, 

and (101,100,001,011,111,101,111,110) is received at the other end. As we can see, four 

errors are introduced during the transmission. As mentioned earlier, the length of the trellis 

is equal to the length of the input sequence, which consists of the information bits followed 

by the force zero sequence. The force zero sequence, “00”, forces the trellis into the initial 

state, so that the trace-back can be started at the initial state. 
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Figure 2.6    Hard-decision Viterbi decoding example [46]. 

An ML path is found with the help of a branch metric and a path metric. A branch 

metric is the Hamming distance between the estimated and the received code symbol. The 

branch metrics accumulated along a path form a path metric. A partial path metric at a 

state, often called as state metric, is the path metric for the path from the initial state to the 

given state. The surviving paths are those paths with the minimum partial path metric at 

each node. After surviving branches at all nodes in the trellis have been identified, there 

exists a unique path starting and ending at the same initial state in the trellis. The decoder 

generates an output sequence corresponding to the input sequence for this unique path. The 

procedure is explained below using the trellis diagram in Figure 2.6. 
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The path metric for state S0 at time t = 0 is initialized to zero. At time t = 1 there is 

only one incoming branch for state S0. This branch metric is two, which is the Hamming 

distance between the expected input “000” and the received input “101”. The path metric 

of S0 at time t = 1 is the sum of the path metric of S0 and the current branch metric. 

Similarly, the path metric of S1 at t = 1 is one. At t = 1 there is only one incoming branch 

for each node. The single branch is the survivor branch. The same process repeats for t = 2. 

At t = 3 there are two incoming branches for each node. For instance, at state S0, one 

incoming branch with the partial path metric six (which is the sum of the path metric 3 of 

S2 and the branch metric 3) is from S2. The other incoming branch with the partial path 

metric four is from S0. Compared with the two branches, the branch from S0 survives and 

the other one is discarded. Surviving branches are described in solid lines and discarded 

ones are in dotted lines in Figure 2.6. 

Once the trellis is tagged with partial path metrics at each node, we perform a trace 

back process to extract the decoded output sequence from the trellis. We start with state S0 

at time t = 8 and trace backward in time. The survivor path leads to state S2 at time t = 7. 

From state S2 at time t = 7, we trace back to S1 at time t = 6. In this way, a unique path 

shown in the bold line is identified. It is pointed out that each branch is associated with 

specific source input bit. For example, the branch from state S2 at time t = 7 to node S0 at 

time t = 8 corresponds to a bit ‘0’ whose bit position is the seventh in the source input 

sequence. So while tracing back through the trellis, the decoded output sequence 

corresponding to these branches is generated. 

Consider a general (n, k) binary convolutional encoder with the number of memory 

elements m, given an input sequence of kL bits, the Viterbi algorithm is described as 

follows [3]. First, let the node corresponding to state Sj at time t be denoted Sj, t. Each node 
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in the trellis is to be assigned a value Val(Sj, t). The node values are computed in the 

following manner. 

1. Set Val(S0, 0) = 0 and t = 1; 

2. At time t, compute the partial path metrics for all paths entering each node; 

3. Set Val(Sk, t) equal to the best partial path metric entering the node corresponding 

to state Sk at time t. The nonsurviving branches are discarded from the trellis; 

4. If t < L + m, increment t and return to step 2. 

Once all node values have been computed, start at state S0, time t = L + m, and follow the 

surviving branches backward through the trellis. The defined path is the maximum 

likelihood path. 

2.4 VLSI Implementation of the Viterbi Algorithm 

A block diagram of the Viterbi decoder is shown in Figure 2.7. It can be seen that the 

Viterbi decoder consists of three major units, i.e., (1) a Branch Metric Unit (BMU); (2) an 

Add Compare and Select Unit (ACSU); and (3) a Survivor Memory Unit (SMU). 

 

Figure 2.7    Block diagram of Viterbi Decoder. 
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2.4.1 The Branch Metrics Unit 

The BMU calculates the branch metrics from the input data. It compares the received 

code symbol with the expected code symbol and counts the number of different bits. An 

implementation of the block is shown in Figure 2.8. 

 

Figure 2.8    The branch metric computation block. 

2.4.2 The Add-Compare-Select Unit 

The add-compare-select (ACS) unit recursively accumulates the branch metrics to 

path metrics for all the incoming paths of each state and selects the path with minimum 

path metric as the survivor path. An ACS module is shown in Figure 2.9. The two adders 

compute the partial path metric of each branch, the comparator compares the two partial 

metrics, and the selector selects an appropriate branch. 

Figure 2.9    The ACS module. 
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2.4.3 The Survivor Memory Unit 

The SMU stores the information which can be used to determine the survivor path 

and generates the decoded sequence. 

In practice, two algorithms are employed for the implementation of SMU [2], i.e., 

register exchanges algorithm (RE) and trace back algorithm (TB). In RE algorithm, SMU 

computes the candidate information sequences of the survivor paths corresponding to all 

states with the decision bits output from ACSU. The register exchange approach assigns a 

register to each state. The register records the decoded output sequence along the path 

starting from the initial state to the final state, which is same as the initial state. Consider a 

trellis diagram shown in Figure 2.4. This approach eliminates the need to trace back, since 

the register of the final state contains the decoded output sequence. Hence, the approach 

may offer a high-speed operation, but it is not power efficient due to the need to copy all 

the registers in a stage to the next stage. The RE hardware architecture is shown in Figure 

2.10. 

 

Figure 2.10    The RE architecture for the example code [6]. 
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Figure 2.11    An example of TB method [6]. 

In the TB algorithm, the information sequence is extracted by the SMU with the 

decision bits stored in it. An example of TB method is shown in Figure 2.11. After trace 

back for D steps, the path is traced back for M steps further to obtain M symbols that are 

associated with the final survivor. There will be trade-offs between performance and 

throughput in choosing D and M. It is clear that, with TB algorithm, the decoding latency 

will be at least D + M instead of D in RE case. Also a last-in-first-out (LIFO) memory is 

required as block of M symbols are output in reverse order. Compared to the RE approach, 

the TB method consumes less power when the constraint length is moderately large.   

2.5 Block Codes 

In general, block codes break the data stream up into k-bit blocks, and (n-k) check 

bits are added to these blocks. The coded sequence will have n bits in total. This is referred 

to as a (n, k) block code. For each of the 2k-1 combinations of k-bit input block, the encoder 

outputs a unique n-bit sequence. The coding rate is k/n. 
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2.5.1 Definition of Block Codes 

There are two main ways to define a linear block code, either through a generator 

matrix G or a parity check matrix H. The relation c = GTx (module 2 sum) holds for a 

code defined by a generator matrix. Thus the rows of G (the columns of GT) form a basis 

for the code, and the message x is the coordinates for the codeword c. In this thesis, 

however, we will define codes through parity check matrices. Then the set of codewords is 

given by the relation Hc = 0 (module 2 sum). The rows of H thus define a set of checks on 

the codeword c. The relation implies that the bits involved in each check must have an 

even number of ones for the word to be in the code. This definition of a code does not 

include a mapping between codewords and messages, but often a code is constructed such 

that the message bits are mapped to certain locations in the codeword. These bits are then 

called message bits, and the other bits are called parity bits. 

2.5.2 Systematic Form 

A systematic parity check matrix form can be represented as H = [P I], where I is the 

identity matrix. On this form, the parity check matrix is particularly easy to be converted to 

a generator matrix. By recognizing which parity bits are changed by changing one message 

bit and keeping the other message bits constant, we can determine the rows of the generator 

matrix. This leads to the corresponding generator matrix G = [I PT]. 
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2.6 Low-Density Parity-Check (LDPC) Codes 

2.6.1 Definition of LDPC Codes 

Low-Density Parity-Check codes are a class of linear block codes corresponding to 

the parity check matrix H. Parity check matrix consists of only zeros and ones and is very 

sparse which means that the density of ones in this matrix is very low. Originally Gallager 

defined an LDPC matrix as a randomly created matrix with small constant column weights 

and row weights [7]. For a (Wc , Wr) regular LDPC code each column of the parity check 

matrix H has Wc ones and each row has Wr ones. If degrees per row or column are not 

constant, then the code is irregular. Some of the irregular codes have shown better 

performance than regular ones. But irregularity results in more complex hardware 

implementation. 

2.6.2 Tanner Graph 

LDPC codes can be represented effectively by a bi-partite graph called a “Tanner” 

graph [8], [9]. A bi-partite graph is a graph (nodes or vertices are connected by undirected 

edges) whose nodes may be separated into two classes, and where edges may only be 

connecting two nodes not residing in the same class. The two classes of nodes in a Tanner 

graph are variable nodes and check nodes. Each variable node is associated with a digit of 

the codeword. Each check node is associated with a parity-check constraint.  Figure 2.12 

shows a Tanner graph for a simple parity check matrix H. In this graph each variable node 

is connected to two check nodes and each check node has a degree of four. 
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Figure 2.12    Tanner graph of a parity check matrix. 

 

Definition: Degree of a node is the number of branches that is connected to that 

node. 

Definition: A cycle of length l in a Tanner graph is a loop comprised of l edges. The 

Tanner graph in the above figure has a cycle of length four which has been shown by 

dashed lines. 

Definition: The Girth of a Tanner graph is the minimum cycle length of the graph. 

The shortest possible cycle in a bipartite graph is clearly a length-4 cycle. 

2.6.3 Encoding 

Having the parity check matrix of a set of LDPC code, we can draw the 

corresponding Tanner graph. To give a general perspective about encoding of LDPC codes, 

we can say that one might first assign each of the information bits to a variable node in the 
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graph, then the values of the remaining variable nodes are determined so that all the parity 

check constraints are satisfied. 

In order to put encoding process in the matrix notation, to encode a message x of K 

bits with LDPC codes, one might compute c = xG in which c is the N bit codeword and 

GKxN is the generator matrix of the code in which GHT = 0. 

2.6.4 Decoding 

In addition to presenting LDPC codes in his seminal work in 1960, Gallager also 

provided a decoding algorithm that is effectively optimal. Since then, the decoding 

algorithms have been independently discovered by other researchers. The algorithm 

iteratively computes the distributions of variables in graph-based models and comes under 

different names, such as “Message Passing algorithm”, “Sum-Product (SP) algorithm” or 

“Belief Propagation (BP) algorithm”.  The SP decoder is a type of iterative decoder. The 

algorithm works by passing messages representing bit and check probabilities over the 

Tanner graph of the code. For each iteration, the received data is used for calculating the 

likelihoods of each sent bit, until the set of bits form a valid codeword or a maximum 

number of iterations is reached. The main strength of the SP decoder is its simplicity and 

inherent scalability. Every node in the graph can be considered a separate simple 

processing entity, receiving and sending messages along its edges. Thus, the calculations 

can be made either in parallel by an element for every node. The weaknesses, on the other 

hand, are very high memory requirements for storing interim messages, and high wire 

routing complexity caused by the random nature of the graph.  
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In the literature, various approximate belief propagation decoding algorithms [45] 

were proposed to simplify the decoding complexity. The overall decoding procedure of 

those algorithms is similar to the standard BP algorithm. 

Bit flipping algorithm [7] has lower complexity than message passing algorithm at 

the expense of lower performance. This algorithm works on the hard decision of the 

received signal. It has very low decoding complexity since only simple logical operations 

are needed. But it has significant performance degradation compared to those soft decoding 

algorithms such as the SP algorithm. 
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3 LOW-POWER MEMORY-EFFICIENT VITERBI DESIGN 

This chapter presents a new low-power memory-efficient trace back (TB) scheme for 

high constraint length Viterbi decoder (VD). With the trace-back modifications and path 

merging techniques, up to 50% memory read operations in the survivor memory unit 

(SMU) can be eliminated. The memory size of SMU can be reduced by 33% and the 

decoding latency can be reduced by 14%. The simulation results show that, compared to 

the conventional TB scheme, the performance loss of the proposed scheme is negligible.  

3.1 Introduction 

Many Viterbi decoders have been implemented in the past for different applications 

because of the forward error correction (FEC) capability of the decoders [11]–[14]. The 

constraint length of the decoders in [11] and [12] is very small. Their goal is to achieve 

very high decode rate through different techniques. In [11], a radix-4 ACS module has 

been used to achieve higher throughput by applying one level of lookahead technique. The 

unfolding architecture [15] and lookahead-based architecture [16] are applied for high 

performance decoder architectures. In [19] and [20], systolic array techniques are applied. 

Also in [21] and [22], improved MSB-First ACS is proposed. The decoders in [17] and 

[18] are mainly applied for CDMA mobile system where a convolutional code with a 

constraint length K = 9 is used. 

In the literature, variations of TB algorithms have been proposed [13] [14]. They all 

need a large amount of memory accesses which consume significant amount of power. In 

[26], a dynamic TB scheme is proposed to reduce the memory access operations based on 

path merging and prediction techniques. It is shown that 30% of power dissipation can be 

reduced. However, it still has a large memory requirement and long decoding latency. In 
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[29], a pre-traceback architecture which reduces the memory read operations of survivor 

memory by 50% is proposed, but significant extra hardware is introduced, which 

contributes a large amount of power. In this chapter, we further exploit the existing TB 

schemes and propose a new low-power memory-efficient TB scheme. The remainder of 

this chapter is organized as follows: Section 3.2 briefly reviews the existing TB algorithms. 

The proposed TB scheme and the decoder architecture are presented in Section 3.3. The 

simulation results and discussions are presented in Section 3.4. The conclusions are drawn 

in Section 3.4. 

3.2 Trace Back Algorithm 

In the TB algorithm, all survivor paths will merge to the same state if they are 

continuously traced back for a sufficient number of stages. Some variations of the 

conventional TB architecture are proposed in [11] [25]. In [26], a 3-point even TB 

algorithm derived from the k-point TB algorithm [23] is proposed, where k is the number 

of read pointers to access the SMU. In the following, we start with the 3-point even 

algorithm and a new TB scheme will be discussed in later sections. 

In the 3-point even algorithm, the survivor memory is divided into 6 banks, each with 

L/2 entries, where L is the TB length. Three operations: 1) decision bit write (WR), 2) 

trace-back (TB), and 3) decode-read (DC) are performed in parallel at the same clock 

speed. As shown in Figure 3.1, the manipulation of SMU is explained as follows: 

1) The WR process continuously writes decision bits into the survivor memory banks in 

an increasing order of memory address starting from Bank0. 
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Figure 3.1    The 3-point even TB algorithm. 

2) The TB process recursively computes the previous state 1−nS  based on the current 

state nS and the associated decision bit s
nD obtained from the survivor memory. The 

computation for the previous state 1−nS  is ( )11 >>=− n
s
nn SDS . In other words, the 

previous state is obtained by concatenating the decision bit and the current state right 

shifted by one bit. This process will be repeated for L consecutive steps. 

3) The DC process starts from the state which is the output state of the Lth TB process to 

decode the input sequences in the reverse order, thus a last-in-first-out (LIFO) memory 

is required for reversing the order before outputting the information.  

Therefore, the total decoding latency including the LIFO process is 3.5L. The WR 

process performs memory write operations. The DC process and the TB process employ 
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the same memory read operations, but in different time period. Therefore, every decision 

bit stored in the survivor memory experiences one write operation, which is in the WR 

process, and three read operations, two of which are in the TB process and one of which is 

in the DC process, respectively. The large latency and redundant memory read operations 

are the main issues to be addressed in our proposed scheme. 

3.3 Proposed Trace Back Algorithm and Architecture Design 

In the TB algorithm, all the survivor paths will merge to the same state with a high 

probability after continuously tracing back a number of time instances. During this process, 

the SMU tends to trace the same path which has been traced recently, which implies that 

the SMU can reuse the data which have been used in previous TB operations. We proposed 

a new low-power memory-efficient TB approach with path merging technique. The key 

ideas of the improved TB approach are as follows.  

When the WR operations are completed for a memory bank in the SMU, the 

generated decision can be immediately exploited to compute a local TB merged path. The 

starting state of the local merged path is the state with the best path metric. We found that 

the local merged paths coincide with the global merged paths (i.e., the TB path computed 

using the traditional approach) in a very high probability (i.e., over 85% based on our 

simulation experience). 

During the local trace back operation, the tentative decoding result can also be 

stored. If the local TB state is coincident with a global trace-back state, the tentative 

decoding result can be taken as the final decoding result. 
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In order to apply the path merging technique for the proposed TB approach, a buffer-

based memory bank architecture is proposed as shown in Fig. 3.2. Based on the buffer-

based memory bank, the path merging technique can be described as follows [26]: 

 

Figure 3.2    Memory bank architecture with a buffer [26]. 

1. Initialization 

• Survivor paths have been written to survivor memory. 

• Buffer contains the previously traced path. 

• State-X is the state with the optimal path metric. 

• t = 0. 

2. The TB process 

Repeat { 

state-X = TB(t, state-X);     

state-Y = BUF(t, state-Y); 

t = t + 1; 
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             } until (t = M) or (state-X = state-Y); 

3. Done. 

In the above, TB(t, state-X)  denotes the TB operations performed in memory, BUF(t, 

state-Y) denotes the TB operations performed in buffer, M stands for the TB length. 

 

Figure 3.3    The proposed TB algorithm. 

The proposed TB algorithm is shown in Figure 3.3.  And the algorithm is described 

as follows. Compared to the 3-point even algorithm which has 6 memory banks, each with 

L/2 entries, the proposed TB algorithm has 4 memory banks, each with L/2 entries. 

1. 0=t : The WR process continuously writes decision bits from ACSU into survivor 

memory banks in an increasing order of memory address. 

2. LtL ≤≤2 : The TB process traces Bank0 in a decreasing order of memory address, the 
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traced path will be recorded into the buffer associated with Bank0.  

3. 23LtL ≤≤ : The TB process traces Bank1 and records the traced path into the buffer 

associated with Bank1. 

4. LtL 223 ≤≤ : The TB process traces Bank0 again to modify the traced path recorded 

in the buffer associated with Bank0 in a decreasing order of memory address, where 

the path merging technique is applied. These TB operations with data modifications are 

denoted by TB modifications (TB Modi). 

5. 2 5 2L t L≤ ≤ : The DC process decodes the input sequence directly in the buffer 

associated with Bank0, thus all the memory read operations associated with the DC 

process (i.e., 50% of the total memory read operations in the TB process) are replaced 

by buffer read operations, which consume much less power. The WR process 

simultaneously writes the new decision bits into Bank0. 

A last-in-first-out (LIFO) memory is still required for reversing the order before 

outputting the information sequence in this algorithm. Therefore, the total decoding latency 

including the LIFO process is 3L. The overall comparisons of the memory size and the 

decoding latency between the proposed scheme and the scheme in [26] are shown in Table 

3.1. 

                          TABLE 3.1  MEMORY  AND LATENCY COMPARISON BETWEEN THE PROPOSED TB 
SCHEME AND THE TB SCHEME IN [26]. 

 Proposed scheme The scheme in [26]  
Memory Depth 2L 3L 

Decoding Latency 3L 3.5L 
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3.4 Simulation Results and Discussions 

In this work, two rate-1/2 convolutional codes are simulated. One has the constraint 

length of 7 (i.e., K = 7, where K represents the constraint length) with the generator 

polynomial (133,171), which is used in the WLAN systems. The other has the constraint 

length of 9 with the generator polynomial (561, 735). For the convenience of discussion, 

they are labeled as code-I and code-II. In all simulations, AWGN channel is applied and 

each data is presented in floating-point precision. Three decoders are compared: 1) the 

optimal Viterbi decoder [2]; 2) the conventional TB scheme [29], and 3) the proposed 

cache-based TB scheme. For the optimal Viterbi decoder, the TB process starts after the 

whole signal sequence is received. For the conventional TB decoder, a TB length of 6K is 

used. Therefore, L = 54 when K = 9, and L = 42 when K = 7. It should be mentioned that 

the scheme presented in [26] has the same decoding performance as the conventional TB 

scheme. 

Figure 3.4 shows the bit error rate (BER) performance of the code-I. The 

conventional TB scheme and the optimal decoder can achieve almost identical decoding 

performance in the simulated signal to noise ratio (SNR) range. Compared to the optimal 

decoder, the maximum performance loss of the proposed scheme is only 0.11dB. Thus the 

performance loss is negligible.   

Figure 3.5 shows the BER performance of code-II. Still taking the conventional TB 

as the base, the performance loss introduced by the proposed cache-based TB is 0.17dB at 

BER of 10-3 and 0.13dB at BER of 10-4. They are slightly larger than code-I shown in 

Figure 3.5, but can still be negligible. 
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The performance loss of the proposed scheme is mainly caused by the 

incomprehensive path merging trace process. Although most of the paths will merge in L/2 

steps, a small amount of paths will not.  Figure 3.6 shows the path merging percentage of 

the rate-½ convolution code with K of 7. The path merging percentages are examined at 

SNR = -0.7dB, 0.3dB and 1.3db, respectively. According to Table 3.2, overall, more than 

85% of the paths merge naturally if the trace back is started from the state with the optimal 

path metric. In other words, over 85% of the data recorded in the buffer can be used 

directly without any modification. Furthermore, more than 98% of the paths can merge in 

L/2 steps. 
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Figure 3.4    BER performance in AWGN channel for a convolutional code of K=9. 
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Figure 3.5    BER performance in AWGN channel for a convolutional code of K=7. 

             TABLE 3.2  PATH MERGE PERCENTAGE FOR THE K=7 CASE. 

SNR (dB) -0.7 0.3 1.3 
Merge without adjusting 85.86% 93.80% 97.83% 

Merge with adjusting 
in L/2 steps 13.02% 6.06% 2.16% 

Merge with adjusting in  
more than L/2 steps 1.12% 0.14% 0.01% 

 

3.5 Conclusion 

In this chapter, a new low-power memory-efficient TB approach is proposed for 

high constraint length VD. In the proposed scheme, more than 50% memory read 

operations in the SMU can be reduced.  The memory size of the SMU can be reduced by 

33% and the decoding latency can be reduced by 14%. The simulation results show that the 
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path can successfully merge in L/2 steps with a very high probability (more than 98%), and 

the performance loss due to the incomprehensive path merging is negligible (less than 

0.2dB). 
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Figure 3.6    Path merging percentage. 

 

 

 

 

 

 

 



 

 

34 

 

4 PARALLEL VITERBI DECODER ARCHITECTURE 

4.1 Introduction 

High-speed Viterbi decoders for convolutional codes are of great interest for high-data-

rate applications such as ultra-wideband communication systems [22] and data storage 

systems [30]. Since the add-compare-select (ACS) recursion in the Viterbi decoding 

algorithm contains feedback loops, the achievable throughput is limited. Several structures 

have been proposed to speed up the computation of ACS unit [11] [21] [33].  

In [11], the lookahead technique was utilized. The throughput of an ACS unit with the 

M-step lookahead can be increased by M times. However, as M increases, the number of 

the branches in computing a state metric increases exponentially. Hence, the 

implementation complexity and power consumption are significantly increased if M is 

large. 

The throughput of an ACS unit can be also improved with the optimization in bit level. 

Usually, least significant bit (LSB) first is used in accumulation operation. But most 

significant bit (MSB) first computation is more suitable for compare operation. An ACS 

structure combining MSB-first compare-select with carry-propagation-free addition was 

proposed in [33]. An improved MSB first bit-level pipelined ACS unit structure was 

presented in [21], by balancing the settling time of different paths in the ACS unit, the 

length of the critical path was reduced.  

On the other hand, it is possible to implement the high-speed Viterbi decoder with 

parallel processing techniques. A variety of block based parallel implementations of the 

Viterbi algorithms have been proposed [32] [34] [35]. In [34] and [35], the extra bit 

stuffing at the transmitter results in the reduction of the rate at which information is 
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transmitted and received. In [32], an overlap-add decoding scheme which does not place 

constraints on the transmitted signal is more attractive. Because the conventional trace 

back method is used in [32], the overall performance of the proposed parallel Viterbi 

decoder is downgraded. In this chapter, a parallel processing Viterbi decoder architecture 

with register exchange algorithm is proposed for ultra high-throughput application. 

4.2 Parallel Processing 

The parallel processing technique exploits the concurrency available in the 

computation. By replicating hardware, parallel processing increases the sampling rate so 

that multiple inputs can be processed in parallel and multiple outputs are produced in 

parallel in a clock period. Therefore, the effective sampling speed is increased by the level 

of parallelism. Parallel processing systems are also referred to as block processing systems 

and the number of inputs processed in a clock cycle is referred to as the block size [31]. 

As mentioned above, it has already been shown that parallel processing can increase 

the throughput. Now, we consider using parallel processing for reducing the power 

dissipation. Assuming that N processors are used, to maintain the same processing 

throughput, the clock speed can be reduced by a factor of N. As a result, the power 

dissipation can be reduced. 

4.3 The Proposed Parallel Processing Scheme 

Typically, it has been demonstrated for convolutional codes that the survivor paths 

merge into the final survivor path with very high probability after tracing back more than 

5K stages back into the trellis [36], where K denotes the constraint length. Similarly, when 
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starting from unknown initial state metrics, it is found that the state metrics are 

independent of the starting state after tracing back more than 5K stages. 

Data 
Stream

VD #1

VD #2

Data Blcok Processing Interval Warm-up Stage Tail Stage
 

Figure 4.1    Proposed parallel Viterbi decoding scheme. 

The proposed parallel Viterbi decoder (VD) scheme is shown in Figure 4.1. Two 

register exchange (RE) VD units are employed in this scheme. The high speed incoming 

data stream is divided into data blocks. In order to decode each independent block of N 

symbols, a block of length L + N + D is required for processing, where L is the length of 

warm-up stage, N is the block length to be decoded, and D is the survivor path merge depth 

(i.e., the tail stage in Figure 4.1). As we mentioned above, survivor paths merge into the 

final survivor path with very high probability if the survivor path merge depth is more than 

5K. Therefore, the selected value of D is more than 5K. In this scheme, each block is 

processed efficiently through each RE VD unit. The processing interval is the period for 

single RE VD unit to process one block. The speedup factor S is a ratio between throughput 
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of the proposed parallel VD and that of the single RE VD. Given 2 VD units, the speedup 

factor S is as follows. 

⎟
⎠
⎞

⎜
⎝
⎛

++
=

DNL
NS 2                                                 (4.1) 

As the block length increases, this approach can ideally achieve a speedup factor 

equal to the number of VD units in the parallel scheme. In this example, as the number of 

VD units is 2, the ideal speedup factor is 2. The throughput increase is proportional to the 

increase in hardware complexity at the expense of longer latency. 

4.4 The Proposed Architecture and Simulation Results 

 

Figure 4.2    Proposed parallel Viterbi decoder architecture. 

The proposed architecture for the parallel Viterbi decoding scheme in Figure 4.1 is 

shown in Figure 4.2. The incoming data stream is first divided into data blocks through the 

block demultiplexer. Based on the decoding scheme, each block is fed into the 

corresponding front buffer, which is a first-in-first-out (FIFO) buffer. Each VD unit then 

receives the data out from the corresponding front buffer for decoding processing. The 

decoded data popped out from the VD is fed into the rear buffer, which is also a FIFO 

buffer. Finally, all the decoded data out from the rear buffers are collected by block 

multiplexer to recover the decoded data into single decoded stream as the same order as 

input data.  
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Figure 4.3    Performance comparison of the conventional RE VD with the parallel RE VD. 

In this work, a rate-1/2 convolutional code is simulated, which has a constraint 

length of 7 with the generator polynomial (133,171) and is used in the WLAN systems. An 

AWGN channel is applied and each data is presented in floating-point precision. Two 

decoders are compared: 1) the conventional RE VD; 2) the proposed parallel RE VD. For 

the conventional RE decoder, an RE length of 6K is used. In this case, 6×K = 42 when K = 

7. The parallel RE decoder uses the same RE length with the conventional one, therefore 

the tail stage is also D = 42. Figure 4.3 shows the bit error rate (BER) performance of the 

code. The conventional RE decoder and the parallel RE decoder can achieve identical 

decoding performance in the simulated signal to noise ratio (SNR) range from 0 to 2 dB. 

No performance loss can be observed.  
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4.5 Conclusion 

A parallel RE Viterbi decoder architecture is proposed, which breaks the bottleneck 

of the ACS unit. The simulation results show that, compared to the conventional RE 

scheme, no performance degradation is observed for the parallel RE scheme. The proposed 

architecture is well suited for ultra high-throughput data applications. 
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5 EFFICIENT EARLY STOPPING SCHEME FOR LDPC 

DECODING 

In this chapter, an early stopping scheme for low-density parity-check (LDPC) codes 

decoding is presented to detect undecodable blocks at early stages and hence to save 

unnecessary power dissipation. The proposed approach thoroughly exploits the 

convergence of the summation of the sign products computed in the check-to-variable 

message passing phase. The new approach can significantly reduce the average number of 

decoding iterations in the low to medium signal-to-noise ratio (SNR) range while the 

performance loss is negligible. In the high SNR range, the proposed scheme can turn off 

early stopping mechanism to avoid performance loss and unnecessary computation. The 

computation overhead of the proposed scheme is very small. 

5.1 Introduction 

LDPC codes [37] are a class of linear block codes which provide near Shannon limit 

performance on a large collection of data transmission and storage channels while 

simultaneously admitting inherently parallelizable decoding scheme. Recently, LDPC 

codes are considered for many industrial standards of next generation communication 

systems such as DVB-S2, WLAN (802.11.n), and 10GBaseT (802.3an). With iterative 

decoding LDPC codes can obtain near capacity performance. If a valid codeword is found 

by parity checking, the decoder will stop the iterating. Otherwise, it will continue the 

decoding process until a prescribed maximum iteration number is reached. At low to 

medium signal-to-noise ratios (SNRs), a phenomenon is frequently observed that a valid 

codeword cannot be found even though many decoding iterations are processed. Therefore, 

it is desired in real applications to detect such undecodable cases as early as possible, then 
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terminate the decoding process in order to avoid unnecessary decoding iterations. Various 

early stopping criteria [39]-[41] for turbo codes decoding have been proposed in the 

literature. In [42], a comprehensive overview of the early stopping criteria for turbo codes 

decoding is presented. Because of the similarity between the turbo decoding and LDPC 

decoding, some existing early stopping criteria for turbo decoding can be used for LDPC 

decoding. However, considerable performance loss may be caused at high SNRs. A 

convergence of mean magnitude (CMM) early stopping criterion specially for LDPC 

decoding was recently presented in [43]. This criterion is based on the evolution of the 

average magnitude of the log-likelihood ratio (LLR) messages in the decoding process. 

This approach can effectively detect undecodable cases to avoid unnecessary decoding 

iterations. However, because it needs the accumulation of the absolute values of all LLR 

messages and a large bit-width multiplication operation, its computation overhead is very 

high.  

In this chapter, we investigate the convergence and distribution of the summation of 

sign products computed in the check-to-variable message passing phase. Then, an efficient 

early stopping scheme is presented based on the investigation. Simulation results show that 

the proposed scheme can significantly reduce the average number of decoding iterations at 

low to medium SNRs. The performance loss is very small at all SNRs. In this work, the 

standard two-phase message passing (TPMP) Sum-Product algorithm (SPA) [38] [44] is 

used. It can be observed that the proposed approach is also suited for various 

approximations of SPA [45]. The rest of this chapter is organized as follows. In Section 

5.2, the TPMP SPA is introduced. The proposed early stopping scheme and its 

implementation complexity are discussed in Section 5.3. The simulation results are 

provided in Section 5.4. Finally, Section 5.5 concludes the chapter. 
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5.2 Decoding of LDPC Codes 

Commonly, the conventional TPMP SPA has been considered as the standard LDPC 

decoding algorithm and is usually implemented in log domain. The check-to-variable 

messages cvR  are computed as (5.1)-(5.2). 

{ },)()()( )( cvcNn cncvccv LLLsignSR Ψ−ΨΨ××= ∑ ∈                       (5.1) 

,)()(∏ ∈= cNn cnc LsignS
                                      (5.2) 

where N(c) denotes the set of variable nodes connected to the check node c, and 

))/|log(tanh(|)( 2xx −=Ψ is a nonlinear function. The variable-to-check message cvL  is 

computed as (5.3)-(5.4). 

,cvvcv RLL −=                                                (5.3) 

,)( vvMm mvv IRL +=∑ ∈                                        (5.4) 

where vL  is the LLR message of variable node v and  M(v) denotes the set of check nodes 

connected to the variable node v. The intrinsic message corresponding to variable node v 

is 2
vv r2I σ= / , for binary input, AWGN channel, mapping 0 to +1 and 1 to -1, where vr  is 

the received soft value. The sign of vL  is taken as the estimated codeword bit vc  (mapping 

+1 to 0 and -1 to 1). The check-sum cP of parity equation corresponding to check node c is 

computed by (5.5).  

,)( vcNvc cP ∈⊕=                                                (5.5) 

where ⊕  represents binary addition. If 0Pc = for any check node c, a valid code is found 

and the decoding process can be terminated. In VLSI design, (5.2) is implemented in the 

same way as (5.5). 
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5.3 Efficient Early Stopping Scheme 

At low to medium signal-to-noise ratios (SNRs), a phenomenon is frequently 

observed that a valid codeword cannot be found even though many decoding iterations are 

processed. It is highly desired in real applications that an efficient scheme needs to be 

proposed to detect such undecodable cases as early as possible and hence to avoid 

unnecessary computations. After thoroughly studying the statistic characteristics of 

extrinsic and reliability messages computed during the decoding process, we observed that 

the sign of extrinsic messages and reliability messages can be used to predict whether the 

received block is decodable or not. For the convenience of the following discussion, let us 

denote SS  as the summation of the binary mapping of every sign product computed in 

(5.2) (i.e., ∑ −
== 1M

0c cS SS ) and PS  as the summation of the check-sum of every parity 

equation computed in (5.5) (i.e., ∑ −
== 1M

0c cP PS ). In LDPC decoding, the value of PS  in 

the thk  iteration, k
PS , decreases as k increases (even though a certain range of fluctuation 

may occur) if the decoded block is decodable. PS  converges to zero when a valid code is 

found. It can be observed that the convergence of k
SS  is very similar to that of k

PS  during 

the decoding process. Both k
PS  and k

SS  can be utilized to detect undecodable blocks. In 

this design, k
SS  is exploited for the simple hardware implementation purpose. In this 

section, the convergence of k
SS  is shown in detail to illustrate the proposed early stopping 

scheme. A received block is most likely decodable if the value of k
SS  monotonically 

decreases as k increase during the LDPC decoding. In various cases, if k
SS  fluctuates 

during the decoding, the received block is possibly undecodable.  
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Figure 5.1 shows the trend of variation of k
SS  at SNR of 1.2 dB for ten randomly 

picked undecodable blocks. A (4000, 2000) (3, 6) LDPC code is used in the experiment. It 

can be observed that k
SS  fluctuates in a small range of magnitudes in most cases. Figure 

5.2 shows the variation of k
SS  at SNR of 1.2 dB for ten randomly picked decodable blocks. 

Compared to the cases in Figure 5.1, it is clearly shown that the fluctuation of the cases in 

Figure 5.2 is short and k
SS  converges to zero along a steep slope in most cases. Even if in 

the cases that k
SS  keeps fluctuating with a long period, the fluctuant magnitude is much 

larger than that shown in Figure 5.1. It implies that the convergence of k
SS  can be utilized 

to predict the decoding convergence before the maximum number of iterations is reached 

or a valid codeword is found. 
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Figure 5.1    The fluctuation of  k
SS  for ten undecodable blocks . 
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Figure 5.2    The fluctuation of k
SS  for 10 decodable blocks . 

It should be pointed out that any individual detection trial may have three possible 

outcomes, i.e., hit, miss detection, and false alarm. In LDPC decoding, a false alarm causes 

the performance loss. Thus, early stopping schemes should be optimized to minimize the 

false alarm rate at all SNRs. However, the block error rate is very small at high SNRs and 

thus the portion of computation power specifically for undecodable blocks at high SNRs is 

negligible. The early stopping scheme should be disenabled at high SNRs to avoid 

performance loss and save computation overhead. Based on the above observation, an early 

stopping scheme for detecting the undecodable blocks is proposed as follows: 

1) Check the value SNR to decide the SNR range in the first iteration. Step 2 is 

performed if in low to medium range, otherwise directly go to step 3. 

2) cnt:=0; 

          k
S

1k
S SS −=Δ −: ;   
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          flag = 1 if 0<Δ once (fluctuation occurred) 

while (flag = = 1) do 

{ 

  if ( 0>Δ ) then  

              if ( THΔ<Δ ) then  

                cnt:=cnt+1; 

              else 

                  cnt:=0; 

                    end 

         end 

         if (cnt >T) then  

                     stop decoding 

         else  

                    go to step 3 

         end 

            } 

3) Continue to the next iteration.  

In step 2, THΔ  and T are two predetermined thresholds by simulation. k
SS  converges 

if 0>Δ  is satisfied. The condition of THΔ<Δ  indicates that a slow convergence speed 

occurs. T is for recording the duration of slow convergence. The proposed early stopping 

scheme can be implemented with a M2log -bit accumulator for counting the number of 1s 

from the binary mapping of cS  and a small number of additional logic gates. Therefore, the 

hardware overhead is very small.  

The value of 0
SS  (the k

SS  obtained in the first iteration) can be utilized to roughly 

check the SNR region when the channel SNR is unknown.  Figure 5.3 shows the 

distribution density of the value of 0
SS  at the SNR of 2.5 dB and 1.0 dB. Totally 510  blocks 

were simulated in this experiment. From Figure 5.3 we can see that if 0
SS  is greater than 
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780, the probability of SNR > 2.5dB is very small. Thus the detection scheme can be 

enabled. Otherwise, it should be disenabled to avoid performance loss and save 

computation overhead. 
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Figure 5.3    The 0
SS  distribution density at the SNR of 2.5dB and 1.0dB. 

5.4 Simulation Results 

In this work, two LDPC codes are simulated for the proposed early stopping scheme. 

One is a 4000-bit (3, 6) rate-0.5 LDPC code and the other is a 1974-bit (5, 10) rate-0.5 

LDPC code. TPMP SPA is used for decoding. For practical purpose, we assume that SNR 

information is not available for the proposed early stopping scheme and 0
SS  is utilized to 

roughly determine the SNR region. In addition, based on our simulation, 780 and 440 are 

used as thresholds of 0
SS  for the decoding of the 4000-bit LDPC code and the 1974-bit 

code, respectively. The maximum iteration number is set to be 100 in this experiment. 

During this experiment, the standard approach means that the decoding is stopped only if 
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the maximum iteration number is reached or a valid codeword is found. CMM means the 

early stopping scheme proposed in [43]. In Figure 5.4, the average number of iterations 

needed for decoding the 4000-bit LDPC code is shown. It can be observed that the 

proposed approach can significantly reduce the average iteration number at low to medium 

SNRs. The decoding performance for the same code is demonstrated in Figure 5.5. The 

proposed scheme has better decoding performance than CMM criterion at high SNRs. 

Figure 5.6 and Figure 5.7 show the needed average number of iterations and decoding 

performance for the 1974-bit code. It demonstrates again that the new early stopping 

scheme can significantly reduce the average number of iteration at low to medium SNRs. 

The performance loss is very small at all SNRs. 

 

Figure 5.4    The average number of iterations needed for decoding the 4000-bit LDPC 
code. 
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Figure 5.5    Decoding performance for the 4000-bit LDPC code. 

 

Figure 5.6    The average number of iterations needed for decoding the 1974-bit LDPC 
code. 
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Figure 5.7    Decoding performance for the 1974-bit LDPC code. 

5.5 Conclusion 

In this chapter, an efficient early stopping scheme has been proposed, which exploits 

the convergence and distribution of the summation of the sign products computed in the 

check-to-variable message phasing phase. The overhead of hardware implementation is 

very small. Simulation results have shown that the proposed scheme can significantly 

reduce the average number of decoding iterations at low to medium SNRs. The 

performance loss is very small at all SNRs. 
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6 CONCLUSION 

This thesis investigates efficient decoding approaches for Viterbi decoders and 

LDPC decoder. We propose a new low-power memory-efficient trace-back (TB) scheme 

for high constraint length Viterbi decoder (VD). With the trace back modifications and 

path merging techniques, more than 50% memory read operations in the survivor memory 

unit (SMU) can be eliminated.  The memory size of SMU can be reduced by 33% and the 

decoding latency can be reduced by 14%. The simulation results show that, compared to 

the conventional TB scheme, the performance loss of this scheme is negligible. 

A parallel RE Viterbi decoder architecture is proposed, which breaks the bottleneck 

of the add-compare select (ACS) unit. The simulation results show that, compared to the 

conventional RE scheme, no performance degradation is observed for the parallel RE. The 

proposed architecture is well suited for high-throughput data applications. 

We also propose an early stopping scheme for LDPC codes decoding to detect 

undecodable blocks at early stages and hence to save unnecessary power dissipation. The 

proposed approach thoroughly exploits the convergence of the summation of the sign 

products computed in the check-to-variable message passing phase. The new approach can 

significantly reduce the average number of decoding iterations in the low to medium signal 

to noise ratio (SNR) range while the performance loss is negligible. In the high SNR range, 

the proposed scheme can turn off early stopping mechanism to avoid performance loss and 

useless computation. The computation overhead of the proposed scheme is very small. 
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