
AN ABSTRACT OF THE THESIS OF

Lupin Chen for the degree of Master of Science in

Electrical and Computer Engineering presented on September 4, 2007.

Title: Modified VLSI Designs for Error Correction Codes

Abstract approved:

__

Zhongfeng Wang

Nowadays, error correction codes have become an integral part in almost all the

modern digital communication and storage systems. With the continuously increasing

demands for higher speed and lower power communication systems, efficient VLSI

implementations of those error correction codes have great importance for practical

applications. In this thesis, several VLSI design issues for Viterbi decoder and Low-

Density Parity-Check (LDPC) codes decoder will be discussed. We propose a low-power

memory-efficient Viterbi decoder to reduce the memory read operations in the survivor

memory unit (SMU) and the memory size of SMU. We develop a parallel Viterbi decoder

for high throughput applications. We also propose an efficient early stopping scheme to

reduce the number of decoding iterations for LDPC codes decoding.

©Copyright by Lupin Chen

September 4, 2007

All Rights Reserved

Modified VLSI Designs for Error Correction Codes

by

Lupin Chen

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented September 4, 2007

Commencement June 2008

Master of Science thesis of Lupin Chen presented on September 4, 2007.

APPROVED:

__

Major Professor, representing Electrical and Computer Engineering

__

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Lupin Chen, Author

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my major professor, Dr. Zhongfeng

Wang. I feel very honored and privileged to have worked under his supervision. I greatly

benefited from his deep intuition and extensive knowledge of VLSI designs, from his

invaluable teaching and research skills, and from his guidance in writing papers/thesis and

making presentations.

I would like to thank Dr. Huaping Liu, Dr. Thomas K. Plant, and Dr. James A.

Coakley, Jr. for serving on my committee.

I would also like to thank the members of our group, particularly, Zhiqiang Cui,

Qingwei Li, Jinjin He and Somya Rathi for many useful discussions.

I am very grateful to my parents, who demonstrated in so many admirable ways their

unconditional love and support throughout my life.

.

TABLE OF CONTENTS

 Page

1 INTRODUCTION ...1

1.1 OVERVIEW ..1

1.2 SUMMARY OF CONTRIBUTIONS ...1

1.2.1 A Low-Power Memory-Efficient Viterbi Decoder Design..1

1.2.2 A Parallel Viterbi Decoder Architecture for High-Throughput Applications.............2

1.2.3 An Efficient Early Stopping Scheme for LDPC Decoding..2

1.3 OUTLINE OF THE THESIS..3

2 ERROR CORRECTION CODES..4

2.1 DIGITAL COMMUNICATION ...4

2.1.1 Digital Communication System...4

2.1.2 Coding ...6

2.2 CONVOLUTIONAL CODES ..7

2.2.1 Convolutional Code Representation ..7

2.3 THE VITERBI ALGORITHM ...10

2.4 VLSI IMPLEMENTATION OF THE VITERBI ALGORITHM..14

2.4.1 The Branch Metrics Unit ...15

2.4.2 The Add-Compare-Select Unit ..15

2.4.3 The Survivor Memory Unit ...16

2.5 BLOCK CODES...17

2.5.1 Definition of Block Codes ...18

2.5.2 Systematic Form ..18

2.6 LOW-DENSITY PARITY-CHECK (LDPC) CODES ..19

TABLE OF CONTENTS (Continued)

 Page

2.6.1 Definition of LDPC Codes ..19

2.6.2 Tanner Graph ...19

2.6.3 Encoding..20

2.6.4 Decoding..21

3 LOW-POWER MEMORY-EFFICIENT VITERBI DESIGN...23

3.1 INTRODUCTION..23

3.2 TRACE BACK ALGORITHM ..24

3.3 PROPOSED TRACE BACK ALGORITHM AND ARCHITECTURE DESIGN...............................26

3.4 SIMULATION RESULTS AND DISCUSSIONS ...30

3.5 CONCLUSION...32

4 PARALLEL VITERBI DECODER ARCHITECTURE..34

4.1 INTRODUCTION..34

4.2 PARALLEL PROCESSING...35

4.3 THE PROPOSED PARALLEL PROCESSING SCHEME..35

4.4 THE PROPOSED ARCHITECTURE AND SIMULATION RESULTS ..37

4.5 CONCLUSION...39

5 EFFICIENT EARLY STOPPING SCHEME FOR LDPC DECODING.................................40

5.1 INTRODUCTION..40

5.2 DECODING OF LDPC CODES ...42

5.3 EFFICIENT EARLY STOPPING SCHEME ...43

5.4 SIMULATION RESULTS...47

TABLE OF CONTENTS (Continued)

 Page

5.5 CONCLUSION...50

6 CONCLUSION..51

7 PUBLICATIONS...52

8 BIBLIOGRAPH...53

LIST OF FIGURES

Figure Page

2.1 Basic elements of a digital communication system. ...5

2.2 A rate-1/3 convolutional encoder. ..8

2.3 State diagram for encoder in Figure 2.1. ..9

2.4 Trellis diagram for inputs of length three to the encoder in Figure 2.2.10

2.5 The convolutional encoding and decoding system. ..11

2.6 Hard-decision Viterbi decoding example. ..12

2.7 Block diagram of Viterbi Decoder..14

2.8 The branch metric computation block. ...15

2.9 The ACS module. ...15

2.10 The RE architecture for the example code..16

2.11 An example of TB method. ..17

2.12 Tanner graph of a parity check matrix..20

3.1 The 3-point even TB algorithm. ...25

3.2 Memory bank architecture with a buffer. ...27

3.3 The proposed TB algorithm..28

3.4 BER performance in AWGN channel for a convolutional code of K=9.31

3.5 BER performance in AWGN channel for a convolutional code of K=7.32

3.6 Path merging percentage...33

4.1 Proposed parallel Viterbi decoding scheme..36

4.2 Proposed parallel Viterbi decoder architecture...37

4.3 Performance comparison of the conventional RE VD with the parallel RE VD.38

LIST OF FIGURES (Continued)

Figure Page

5.1 The fluctuation of k
SS for ten undecodable blocks . ..44

5.2 The fluctuation of k
SS for 10 decodable blocks ...45

5.3 The 0
SS distribution density at the SNR of 2.5dB and 1.0dB.....................................47

5.4 The average number of iterations needed for decoding the 4000-bit LDPC code......48

5.5 Decoding performance for the 4000-bit LDPC code..49

5.6 The average number of iterations needed for decoding the 1974-bit LDPC code......49

5.7 Decoding performance for the 1974-bit LDPC code..50

LIST OF TABLES

Table Page

3.1 Memory and latency comparison between the proposed TB scheme and the TB

scheme……………………………………………………………………………....... 29

3.2 Path merge percentage for the K=7 case……………………………………………... 32

1

MODIFIED VLSI DESIGNS FOR ERROR CORRECTION

CODES

1 INTRODUCTION

1.1 Overview

This thesis is devoted to the efficient VLSI architecture design for error correction

codes. Nowadays, the error correction codes have become an integral part of almost all

modern digital communication and storage systems. With the continuously increasing

demands for higher speed and lower power communication systems, efficient VLSI

implementations of those error correction codes that are currently used in practical

applications are of great importance. In this thesis, several VLSI design issues for Viterbi

decoder and Low-Density Parity-Check (LDPC) codes decoder are discussed. We propose

a low-power memory-efficient Viterbi decoder to reduce the memory read operations in the

survivor memory unit (SMU) and reduce the memory size of SMU. We develop a parallel

Viterbi decoder for high throughput applications. We also propose an efficient early

stopping scheme to reduce the number of decoding iterations for LDPC codes decoding.

1.2 Summary of Contributions

1.2.1 A Low-Power Memory-Efficient Viterbi Decoder Design

We propose a new low-power memory-efficient trace back (TB) scheme for high

constraint length Viterbi decoders (VD). With the trace back modifications and path

merging techniques, more than 50% memory read operations in the survivor memory unit

(SMU) can be eliminated. The memory size of SMU can be reduced by 33% and the

2

decoding latency can be reduced by 14%. The simulation results show that, compared to

the conventional TB scheme, the performance loss of this scheme is negligible.

1.2.2 A Parallel Viterbi Decoder Architecture for High-Throughput

Applications

High-throughput Viterbi decoders for convolutional codes are very attractive for

high-data-rate applications. Parallel processing is a powerful technique for high-throughput

applications. We present a parallel Viterbi decoder architecture, which breaks the

bottleneck of the add-compare select (ACS) unit. The simulation result shows that,

compared to the conventional RE scheme, no performance degradation is observed for the

parallel RE scheme. The proposed architecture is well suited for high-speed data

applications.

1.2.3 An Efficient Early Stopping Scheme for LDPC Decoding

We propose an efficient early stopping scheme for LDPC codes decoding to detect

undecodable blocks at early stages and hence to save unnecessary power consumption. The

proposed approach thoroughly exploits the convergence of the summation of the sign

products computed in the check-to-variable message passing phase. The new approach can

significantly reduce the average number of decoding iterations in the low to medium signal

to noise ratio (SNR) range while the performance loss is negligible. In the high SNR range,

the proposed scheme can turn off early stopping mechanism to avoid performance loss and

unnecessary computation. The computation overhead of the proposed scheme is very

small.

3

1.3 Outline of the Thesis

This thesis is outlined as follows. In Chapter 2, we introduce the basic elements of a

digital communication system. Then, we explain the basic ideas of coding. We continue

with an introduction of convolutional codes and their properties, followed by an

explanation of Viterbi algorithm and VLSI implementations of Viterbi algorithm. After an

introduction of block codes and their properties, LDPC codes are introduced. We also

define the Tanner graph, which is a visualization of codes, suited for LDPC codes. Finally,

we briefly introduce the encoding and decoding for LDPC codes. In Chapter 3, we present

a low-power memory-efficient Viterbi decoder design. An illustration of conventional TB

algorithm is included. Then, the proposed TB algorithm and the architecture design are

presented. Then, the simulation results and discussions are included. A conclusion is given

at the end of this chapter. In Chapter 4, we propose a parallel RE Viterbi decoder

architecture. A brief literature survey of high-speed VD design and an introduction of

parallel processing technique are given at the beginning of this chapter. Then, the proposed

parallel RE decoding scheme is introduced. Then, the proposed architecture and the

simulation results are included. A conclusion is given at the end of this chapter. In Chapter

5, we present an efficient early stopping scheme for LDPC decoding. A brief introduction

of LDPC codes and LDPC decoding is given at the beginning of this chapter. Then, the

proposed early stopping scheme is presented. After the simulation results and discussions,

a conclusion is given at the end of this chapter. In chapter 6, we give a final conclusion of

this thesis.

4

2 ERROR CORRECTION CODES

In this chapter the basic concepts of digital communications and error correction

codes are introduced. This chapter will begin with an overview of digital communication

and coding. Then, we will talk about convolutional codes and Viterbi algorithm. A brief

introduction of block codes and linear block codes and their characteristics will be

followed. After that, we will give a brief introduction of LDPC codes and their

characteristics.

2.1 Digital Communication

2.1.1 Digital Communication System

A digital communication system is a way of transporting information from an

endpoint A to an endpoint B. The system is digital, meaning that the information is

represented by a sequence of symbols from a finite discrete alphabet. The sequence is

mapped onto analog signals, which is then transmitted through a physical channel. During

transmission the signal is distorted by noise, so the received signal is not the same as the

sent one. The receiver selects the most likely sequence of symbols and delivers it to the

receiving endpoint B.

The transmitter and receiver functions are always performed by different elements.

Figure 2.1 shows the basic elements of a digital communication system [1]. First,

information signal is sampled and quantized to form a digital sequence, then it passes

through the source encoder to remove any unnecessary redundancy in the data. Then,

channel encoder codes the information sequence so that it can recover the correct

information after passing through the channel. The information sequence is protected by

5

error correction codes such as convolutional codes and LDPC codes. The digital modulator

maps the binary sequence onto analog signal waveforms so that it can be efficiently

transmitted over the communication channel. The modulator acts as an interface between

the digital signal and the channel.

Figure 2.1 Basic elements of a digital communication system.

The communication channel is the physical medium that is used to send the signal

from the transmitter to the receiver. The channel attenuates the transmitted signal and

introduces noise. The attenuation is generally caused by energy absorption and scattering in

the propagation medium. The noise is generated in a random manner by many possible

mechanisms such as ambient heat in the transmitter/receiver hardware and the propagation

medium, hardware-induced transients, co-channel and adjacent-channel interference from

other communication systems, or climatic phenomena. The most commonly assumed noise

model is the additive white Gaussian noise (AWGN) model [1].

At the receiving end of the digital communications system, the digital demodulator

processes the channel-corrupted transmitted waveform and recovers a sequence of digital

values from the waveforms, then feeds it into the channel decoder. The decoder

reconstructs the original information sequence by the knowledge of the code used by

channel encoder and the redundancy contained in the received data. Channel decoders can

6

be Viterbi decoders [2], LDPC decoders [7], etc. Then, source decoder decompresses the

data and retrieves the original information. The probability of having error in the output

sequence is a function of the code characteristics, the type of modulation, channel

characteristics such as noise and interference level, etc. There is a trade-off between the

power of transmission and the bit error rate. Researchers are trying to minimize the power

consumption while maintaining a reliable communication. This raises a need for stronger

codes with more error correction abilities.

2.1.2 Coding

In 1948 Shannon published a paper regarding basis of the entire field of information

theory [48]. In that work, he introduced a metric by which the information can be

quantified. This metric allows one to determine the minimum possible number of symbols

necessary for the error-free representation of a given message. A longer message

containing the same information is said to have redundant symbols. These can lead to the

definition of three distinct types of codes [3]:

Source codes: These codes are used to remove the uncontrolled redundancy from the

information symbols. Source coding reduces the symbol throughput requirement placed

upon the transmitter.

Secrecy codes: These codes encrypt the information so that it cannot be understood by

anyone else except the intended recipient.

Error control codes (error correction codes or channel codes): These codes are used to

format the transmitted information so that it can increase its immunity to noise. This is

achieved by adding controlled redundant information into the transmitted information

stream, allowing the receiver to detect and possibly correct those errors.

7

As we mentioned before, in a communication system, all three types of these codes

are used to increase the reliability and performance of the system.

2.2 Convolutional Codes

Convolutional codes are widely used in modern digital communication systems

including deep space communications and wireless communications due to their powerful

error correction capabilities and low decoding latency. Convolutional coding can be

applied to a continuous input stream (which cannot be done with block codes), as well as

blocks of data.

2.2.1 Convolutional Code Representation

Convolutional codes are usually described using two parameters: the code rate and

the constraint length. The code rate, k/n, is expressed as a ratio of the number of bits, k, into

the convolutional encoder to the number of channel symbols, n, output by the

convolutional encoder in given encoder cycle. The constraint length, K, denotes the length

of the convolutional encoder, i.e., how many k-bit stages are available to feed the

combinational logic that produces the output symbols. Closely related to K is the parameter

m, which indicated how many encoder cycles an input bit is retained and used for encoding

after it first appears at the input to the convolutional encoder. The m parameter can be

thought of as the memory length of the encoder.

A convolutional encoder can be considered as a finite state machine and represented

by state diagrams, graphs, or trellises. It generates a coded output data stream from an

input data stream. It consists of shift registers and a network of Exclusive-OR (XOR) gates

as shown in Figure 2.2.

8

Figure 2.2 A rate-1/3 convolutional encoder.

The encoder in Figure 2.2 produces three bits of encoded information for each bit of

input information, so it is called a rate 1/3 encoder. A convolutional encoder is generally

characterized in (n, k, m) format. The rate of a (n, k, m) encoder is k/n. The encoder shown

in the Figure 2.2 is a (3, 1, 2) encoder with rate 1/3.

A convolutional encoder is a Mealy type state machine, where the output is a

function of the current state and the current input as well. It consists of one or more shift

registers and multiple XOR gates. The information sequence passes into the linear finite-

state shift registers from one end and then is shifted out at the other end. For the optimal

location of the shift register stages to be connected to XOR gates, it is based on empirical

experience and no theoretical principle. The location of stages as well as the number of

shift registers determines the minimum Hamming distance. The maximal number of

correctable bits is determined by minimum Hamming distance. Detailed information about

the interconnection functions for different rates and different number of memory elements

and their minimum Hamming distances are available in [4].

9

The operation of a convolutional encoder can be easily understood with the aid of a

state diagram. Figure 2.3 represents the state diagram of the encoder shown in Figure 2.2.

Figure 2.3 depicts state transitions and the corresponding encoded outputs. As this rate-1/3

encoder has two memory cells, there are four possible states. These four states are

represented as S0 through S3. The information of each state (i.e., the contents of shift

register for the state) along with one input generates an encoded output code. For each

state, only two outgoing transitions can be observed: one corresponding to a ‘0’ input bit

and the other corresponding to a ‘1’ input bit.

Figure 2.3 State diagram for encoder in Figure 2.1 [3].

A trellis diagram is an extension of a state diagram that explicitly shows the passage

of time. In Figure 2.4, the state diagram is extended in time to form a trellis diagram for the

encoder given in Figure 2.2. In the trellis diagram, nodes correspond to the states of the

encoder. The branches of the trellis diagram are labeled with the output bits corresponding

to the associated state transitions. From an initial state (S0) the trellis records the possible

10

transitions to the next states for each possible input pattern in every stage. At the stage t = 1

there are two states S0 and S1, and each state has two transitions corresponding to input bits

‘0’ and ‘1’. Therefore, the trellis grows up to the maximum number of states or nodes,

which is determined by the number of shift register in the encoder. After all the encoded

symbols of the information bits are transmitted, the encoder is usually forced back into the

initial state by applying a fixed m zeros input sequence called force zero sequence. The

trellis diagram in Figure 2.4 is for an input length of five bits, in which the last two bits

zero represent the force zero sequence. It should be pointed out that, there is a unique path

for every codeword that begins and stops at the initial state.

S3

S2

S1

S0
t=0 t=1 t=2 t=3 t=4 t=5

000 000 000 000 000
11

1
11

1
11

1

110

110

11
1

00
0

110

001

00
0

11
1

000

001

110

11
1

Figure 2.4 Trellis diagram for inputs of length three to the encoder in Figure 2.2.

2.3 The Viterbi Algorithm

The Viterbi algorithm (VA), first introduced in [2], is known to be an optimal

decoding method for convolution codes. The function of the VA is to find a maximum

likelihood sequence in the trellis diagram based on the received symbols. The VA has been

used in many digital communication systems such as magnetic recording systems, satellite

11

communication systems, mobile communication systems and video broadcasting systems.

The Viterbi decoding algorithm is a decoding method for convolutional codes or trellis

codes in a memoryless channel. Figure 2.5 depicts the transmission flow of information

over a noisy channel. An information sequence x is encoded to form a convolutional

codeword y, which is transmitted through a noisy channel. The convolutional decoder

takes the received vector r and tries to extract the transmitted information sequence

through a decoding algorithm and generates an estimate y’ of the transmitted codeword. A

decoding algorithm that maximizes the probability p(r|y’) is a maximum likelihood (ML)

algorithm. An algorithm which maximizes the p(y’|r) through the proper selection of the

estimate y’ is called a maximum a posteriori (MAP) algorithm. The two algorithms have

identical results when the source information x has a uniform distribution.

Figure 2.5 The convolutional encoding and decoding system.

Since the received signal is analog, it can be quantized into several levels. If the

received signal is converted into two levels, either zero or one, it is called hard decision. If

the input signal is quantized and processed for more than two levels, it is called soft

decision. The soft decision captures more information in the input signal consequently

performing better than the hard decision at the cost of a higher complexity.

The Viterbi algorithm based on the ML algorithm and the hard decision is illustrated

in Figure 2.6. The trellis in the Figure 2.6 corresponds to the convolutional encoder given

in Figure 2.2. The received code symbols are shown at the bottom of the trellis. The

12

encoder encodes an input sequence (11010100) and generates the codeword

(111,000,001,001,111,001,111,110). This codeword is transmitted over a noisy channel,

and (101,100,001,011,111,101,111,110) is received at the other end. As we can see, four

errors are introduced during the transmission. As mentioned earlier, the length of the trellis

is equal to the length of the input sequence, which consists of the information bits followed

by the force zero sequence. The force zero sequence, “00”, forces the trellis into the initial

state, so that the trace-back can be started at the initial state.

S3

S2

S1

S0
t=0 t=1 t=2 t=3 t=4 t=5

000 000 000 000 000
11

1
11

1
11

1

110

110

11
1

00
0

110
001

00
0

11
1

001

001

110

11
1

t=6 t=7 t=8
000 000000

110 110

00
0

001
00

0

11
1

001

11
1

11
1

110

00
0

001

11
1

001
001

11
1

110

11
1

001

110

110

2

1

3

4

3

2

4

3

2

5

4

3

4

5

5

4

3

6 6

5

4

5 4

6 4

101 100 001 011 111 101 111 110

Figure 2.6 Hard-decision Viterbi decoding example [46].

An ML path is found with the help of a branch metric and a path metric. A branch

metric is the Hamming distance between the estimated and the received code symbol. The

branch metrics accumulated along a path form a path metric. A partial path metric at a

state, often called as state metric, is the path metric for the path from the initial state to the

given state. The surviving paths are those paths with the minimum partial path metric at

each node. After surviving branches at all nodes in the trellis have been identified, there

exists a unique path starting and ending at the same initial state in the trellis. The decoder

generates an output sequence corresponding to the input sequence for this unique path. The

procedure is explained below using the trellis diagram in Figure 2.6.

13

The path metric for state S0 at time t = 0 is initialized to zero. At time t = 1 there is

only one incoming branch for state S0. This branch metric is two, which is the Hamming

distance between the expected input “000” and the received input “101”. The path metric

of S0 at time t = 1 is the sum of the path metric of S0 and the current branch metric.

Similarly, the path metric of S1 at t = 1 is one. At t = 1 there is only one incoming branch

for each node. The single branch is the survivor branch. The same process repeats for t = 2.

At t = 3 there are two incoming branches for each node. For instance, at state S0, one

incoming branch with the partial path metric six (which is the sum of the path metric 3 of

S2 and the branch metric 3) is from S2. The other incoming branch with the partial path

metric four is from S0. Compared with the two branches, the branch from S0 survives and

the other one is discarded. Surviving branches are described in solid lines and discarded

ones are in dotted lines in Figure 2.6.

Once the trellis is tagged with partial path metrics at each node, we perform a trace

back process to extract the decoded output sequence from the trellis. We start with state S0

at time t = 8 and trace backward in time. The survivor path leads to state S2 at time t = 7.

From state S2 at time t = 7, we trace back to S1 at time t = 6. In this way, a unique path

shown in the bold line is identified. It is pointed out that each branch is associated with

specific source input bit. For example, the branch from state S2 at time t = 7 to node S0 at

time t = 8 corresponds to a bit ‘0’ whose bit position is the seventh in the source input

sequence. So while tracing back through the trellis, the decoded output sequence

corresponding to these branches is generated.

Consider a general (n, k) binary convolutional encoder with the number of memory

elements m, given an input sequence of kL bits, the Viterbi algorithm is described as

follows [3]. First, let the node corresponding to state Sj at time t be denoted Sj, t. Each node

14

in the trellis is to be assigned a value Val(Sj, t). The node values are computed in the

following manner.

1. Set Val(S0, 0) = 0 and t = 1;

2. At time t, compute the partial path metrics for all paths entering each node;

3. Set Val(Sk, t) equal to the best partial path metric entering the node corresponding

to state Sk at time t. The nonsurviving branches are discarded from the trellis;

4. If t < L + m, increment t and return to step 2.

Once all node values have been computed, start at state S0, time t = L + m, and follow the

surviving branches backward through the trellis. The defined path is the maximum

likelihood path.

2.4 VLSI Implementation of the Viterbi Algorithm

A block diagram of the Viterbi decoder is shown in Figure 2.7. It can be seen that the

Viterbi decoder consists of three major units, i.e., (1) a Branch Metric Unit (BMU); (2) an

Add Compare and Select Unit (ACSU); and (3) a Survivor Memory Unit (SMU).

Figure 2.7 Block diagram of Viterbi Decoder.

15

2.4.1 The Branch Metrics Unit

The BMU calculates the branch metrics from the input data. It compares the received

code symbol with the expected code symbol and counts the number of different bits. An

implementation of the block is shown in Figure 2.8.

Figure 2.8 The branch metric computation block.

2.4.2 The Add-Compare-Select Unit

The add-compare-select (ACS) unit recursively accumulates the branch metrics to

path metrics for all the incoming paths of each state and selects the path with minimum

path metric as the survivor path. An ACS module is shown in Figure 2.9. The two adders

compute the partial path metric of each branch, the comparator compares the two partial

metrics, and the selector selects an appropriate branch.

Figure 2.9 The ACS module.

16

2.4.3 The Survivor Memory Unit

The SMU stores the information which can be used to determine the survivor path

and generates the decoded sequence.

In practice, two algorithms are employed for the implementation of SMU [2], i.e.,

register exchanges algorithm (RE) and trace back algorithm (TB). In RE algorithm, SMU

computes the candidate information sequences of the survivor paths corresponding to all

states with the decision bits output from ACSU. The register exchange approach assigns a

register to each state. The register records the decoded output sequence along the path

starting from the initial state to the final state, which is same as the initial state. Consider a

trellis diagram shown in Figure 2.4. This approach eliminates the need to trace back, since

the register of the final state contains the decoded output sequence. Hence, the approach

may offer a high-speed operation, but it is not power efficient due to the need to copy all

the registers in a stage to the next stage. The RE hardware architecture is shown in Figure

2.10.

Figure 2.10 The RE architecture for the example code [6].

17

Figure 2.11 An example of TB method [6].

In the TB algorithm, the information sequence is extracted by the SMU with the

decision bits stored in it. An example of TB method is shown in Figure 2.11. After trace

back for D steps, the path is traced back for M steps further to obtain M symbols that are

associated with the final survivor. There will be trade-offs between performance and

throughput in choosing D and M. It is clear that, with TB algorithm, the decoding latency

will be at least D + M instead of D in RE case. Also a last-in-first-out (LIFO) memory is

required as block of M symbols are output in reverse order. Compared to the RE approach,

the TB method consumes less power when the constraint length is moderately large.

2.5 Block Codes

In general, block codes break the data stream up into k-bit blocks, and (n-k) check

bits are added to these blocks. The coded sequence will have n bits in total. This is referred

to as a (n, k) block code. For each of the 2k-1 combinations of k-bit input block, the encoder

outputs a unique n-bit sequence. The coding rate is k/n.

18

2.5.1 Definition of Block Codes

There are two main ways to define a linear block code, either through a generator

matrix G or a parity check matrix H. The relation c = GTx (module 2 sum) holds for a

code defined by a generator matrix. Thus the rows of G (the columns of GT) form a basis

for the code, and the message x is the coordinates for the codeword c. In this thesis,

however, we will define codes through parity check matrices. Then the set of codewords is

given by the relation Hc = 0 (module 2 sum). The rows of H thus define a set of checks on

the codeword c. The relation implies that the bits involved in each check must have an

even number of ones for the word to be in the code. This definition of a code does not

include a mapping between codewords and messages, but often a code is constructed such

that the message bits are mapped to certain locations in the codeword. These bits are then

called message bits, and the other bits are called parity bits.

2.5.2 Systematic Form

A systematic parity check matrix form can be represented as H = [P I], where I is the

identity matrix. On this form, the parity check matrix is particularly easy to be converted to

a generator matrix. By recognizing which parity bits are changed by changing one message

bit and keeping the other message bits constant, we can determine the rows of the generator

matrix. This leads to the corresponding generator matrix G = [I PT].

19

2.6 Low-Density Parity-Check (LDPC) Codes

2.6.1 Definition of LDPC Codes

Low-Density Parity-Check codes are a class of linear block codes corresponding to

the parity check matrix H. Parity check matrix consists of only zeros and ones and is very

sparse which means that the density of ones in this matrix is very low. Originally Gallager

defined an LDPC matrix as a randomly created matrix with small constant column weights

and row weights [7]. For a (Wc , Wr) regular LDPC code each column of the parity check

matrix H has Wc ones and each row has Wr ones. If degrees per row or column are not

constant, then the code is irregular. Some of the irregular codes have shown better

performance than regular ones. But irregularity results in more complex hardware

implementation.

2.6.2 Tanner Graph

LDPC codes can be represented effectively by a bi-partite graph called a “Tanner”

graph [8], [9]. A bi-partite graph is a graph (nodes or vertices are connected by undirected

edges) whose nodes may be separated into two classes, and where edges may only be

connecting two nodes not residing in the same class. The two classes of nodes in a Tanner

graph are variable nodes and check nodes. Each variable node is associated with a digit of

the codeword. Each check node is associated with a parity-check constraint. Figure 2.12

shows a Tanner graph for a simple parity check matrix H. In this graph each variable node

is connected to two check nodes and each check node has a degree of four.

20

Figure 2.12 Tanner graph of a parity check matrix.

Definition: Degree of a node is the number of branches that is connected to that

node.

Definition: A cycle of length l in a Tanner graph is a loop comprised of l edges. The

Tanner graph in the above figure has a cycle of length four which has been shown by

dashed lines.

Definition: The Girth of a Tanner graph is the minimum cycle length of the graph.

The shortest possible cycle in a bipartite graph is clearly a length-4 cycle.

2.6.3 Encoding

Having the parity check matrix of a set of LDPC code, we can draw the

corresponding Tanner graph. To give a general perspective about encoding of LDPC codes,

we can say that one might first assign each of the information bits to a variable node in the

21

graph, then the values of the remaining variable nodes are determined so that all the parity

check constraints are satisfied.

In order to put encoding process in the matrix notation, to encode a message x of K

bits with LDPC codes, one might compute c = xG in which c is the N bit codeword and

GKxN is the generator matrix of the code in which GHT = 0.

2.6.4 Decoding

In addition to presenting LDPC codes in his seminal work in 1960, Gallager also

provided a decoding algorithm that is effectively optimal. Since then, the decoding

algorithms have been independently discovered by other researchers. The algorithm

iteratively computes the distributions of variables in graph-based models and comes under

different names, such as “Message Passing algorithm”, “Sum-Product (SP) algorithm” or

“Belief Propagation (BP) algorithm”. The SP decoder is a type of iterative decoder. The

algorithm works by passing messages representing bit and check probabilities over the

Tanner graph of the code. For each iteration, the received data is used for calculating the

likelihoods of each sent bit, until the set of bits form a valid codeword or a maximum

number of iterations is reached. The main strength of the SP decoder is its simplicity and

inherent scalability. Every node in the graph can be considered a separate simple

processing entity, receiving and sending messages along its edges. Thus, the calculations

can be made either in parallel by an element for every node. The weaknesses, on the other

hand, are very high memory requirements for storing interim messages, and high wire

routing complexity caused by the random nature of the graph.

22

In the literature, various approximate belief propagation decoding algorithms [45]

were proposed to simplify the decoding complexity. The overall decoding procedure of

those algorithms is similar to the standard BP algorithm.

Bit flipping algorithm [7] has lower complexity than message passing algorithm at

the expense of lower performance. This algorithm works on the hard decision of the

received signal. It has very low decoding complexity since only simple logical operations

are needed. But it has significant performance degradation compared to those soft decoding

algorithms such as the SP algorithm.

23

3 LOW-POWER MEMORY-EFFICIENT VITERBI DESIGN

This chapter presents a new low-power memory-efficient trace back (TB) scheme for

high constraint length Viterbi decoder (VD). With the trace-back modifications and path

merging techniques, up to 50% memory read operations in the survivor memory unit

(SMU) can be eliminated. The memory size of SMU can be reduced by 33% and the

decoding latency can be reduced by 14%. The simulation results show that, compared to

the conventional TB scheme, the performance loss of the proposed scheme is negligible.

3.1 Introduction

Many Viterbi decoders have been implemented in the past for different applications

because of the forward error correction (FEC) capability of the decoders [11]–[14]. The

constraint length of the decoders in [11] and [12] is very small. Their goal is to achieve

very high decode rate through different techniques. In [11], a radix-4 ACS module has

been used to achieve higher throughput by applying one level of lookahead technique. The

unfolding architecture [15] and lookahead-based architecture [16] are applied for high

performance decoder architectures. In [19] and [20], systolic array techniques are applied.

Also in [21] and [22], improved MSB-First ACS is proposed. The decoders in [17] and

[18] are mainly applied for CDMA mobile system where a convolutional code with a

constraint length K = 9 is used.

In the literature, variations of TB algorithms have been proposed [13] [14]. They all

need a large amount of memory accesses which consume significant amount of power. In

[26], a dynamic TB scheme is proposed to reduce the memory access operations based on

path merging and prediction techniques. It is shown that 30% of power dissipation can be

reduced. However, it still has a large memory requirement and long decoding latency. In

24

[29], a pre-traceback architecture which reduces the memory read operations of survivor

memory by 50% is proposed, but significant extra hardware is introduced, which

contributes a large amount of power. In this chapter, we further exploit the existing TB

schemes and propose a new low-power memory-efficient TB scheme. The remainder of

this chapter is organized as follows: Section 3.2 briefly reviews the existing TB algorithms.

The proposed TB scheme and the decoder architecture are presented in Section 3.3. The

simulation results and discussions are presented in Section 3.4. The conclusions are drawn

in Section 3.4.

3.2 Trace Back Algorithm

In the TB algorithm, all survivor paths will merge to the same state if they are

continuously traced back for a sufficient number of stages. Some variations of the

conventional TB architecture are proposed in [11] [25]. In [26], a 3-point even TB

algorithm derived from the k-point TB algorithm [23] is proposed, where k is the number

of read pointers to access the SMU. In the following, we start with the 3-point even

algorithm and a new TB scheme will be discussed in later sections.

In the 3-point even algorithm, the survivor memory is divided into 6 banks, each with

L/2 entries, where L is the TB length. Three operations: 1) decision bit write (WR), 2)

trace-back (TB), and 3) decode-read (DC) are performed in parallel at the same clock

speed. As shown in Figure 3.1, the manipulation of SMU is explained as follows:

1) The WR process continuously writes decision bits into the survivor memory banks in

an increasing order of memory address starting from Bank0.

25

Figure 3.1 The 3-point even TB algorithm.

2) The TB process recursively computes the previous state 1−nS based on the current

state nS and the associated decision bit s
nD obtained from the survivor memory. The

computation for the previous state 1−nS is ()11 >>=− n
s
nn SDS . In other words, the

previous state is obtained by concatenating the decision bit and the current state right

shifted by one bit. This process will be repeated for L consecutive steps.

3) The DC process starts from the state which is the output state of the Lth TB process to

decode the input sequences in the reverse order, thus a last-in-first-out (LIFO) memory

is required for reversing the order before outputting the information.

Therefore, the total decoding latency including the LIFO process is 3.5L. The WR

process performs memory write operations. The DC process and the TB process employ

26

the same memory read operations, but in different time period. Therefore, every decision

bit stored in the survivor memory experiences one write operation, which is in the WR

process, and three read operations, two of which are in the TB process and one of which is

in the DC process, respectively. The large latency and redundant memory read operations

are the main issues to be addressed in our proposed scheme.

3.3 Proposed Trace Back Algorithm and Architecture Design

In the TB algorithm, all the survivor paths will merge to the same state with a high

probability after continuously tracing back a number of time instances. During this process,

the SMU tends to trace the same path which has been traced recently, which implies that

the SMU can reuse the data which have been used in previous TB operations. We proposed

a new low-power memory-efficient TB approach with path merging technique. The key

ideas of the improved TB approach are as follows.

When the WR operations are completed for a memory bank in the SMU, the

generated decision can be immediately exploited to compute a local TB merged path. The

starting state of the local merged path is the state with the best path metric. We found that

the local merged paths coincide with the global merged paths (i.e., the TB path computed

using the traditional approach) in a very high probability (i.e., over 85% based on our

simulation experience).

During the local trace back operation, the tentative decoding result can also be

stored. If the local TB state is coincident with a global trace-back state, the tentative

decoding result can be taken as the final decoding result.

27

In order to apply the path merging technique for the proposed TB approach, a buffer-

based memory bank architecture is proposed as shown in Fig. 3.2. Based on the buffer-

based memory bank, the path merging technique can be described as follows [26]:

Figure 3.2 Memory bank architecture with a buffer [26].

1. Initialization

• Survivor paths have been written to survivor memory.

• Buffer contains the previously traced path.

• State-X is the state with the optimal path metric.

• t = 0.

2. The TB process

Repeat {

state-X = TB(t, state-X);

state-Y = BUF(t, state-Y);

t = t + 1;

28

 } until (t = M) or (state-X = state-Y);

3. Done.

In the above, TB(t, state-X) denotes the TB operations performed in memory, BUF(t,

state-Y) denotes the TB operations performed in buffer, M stands for the TB length.

Figure 3.3 The proposed TB algorithm.

The proposed TB algorithm is shown in Figure 3.3. And the algorithm is described

as follows. Compared to the 3-point even algorithm which has 6 memory banks, each with

L/2 entries, the proposed TB algorithm has 4 memory banks, each with L/2 entries.

1. 0=t : The WR process continuously writes decision bits from ACSU into survivor

memory banks in an increasing order of memory address.

2. LtL ≤≤2 : The TB process traces Bank0 in a decreasing order of memory address, the

29

traced path will be recorded into the buffer associated with Bank0.

3. 23LtL ≤≤ : The TB process traces Bank1 and records the traced path into the buffer

associated with Bank1.

4. LtL 223 ≤≤ : The TB process traces Bank0 again to modify the traced path recorded

in the buffer associated with Bank0 in a decreasing order of memory address, where

the path merging technique is applied. These TB operations with data modifications are

denoted by TB modifications (TB Modi).

5. 2 5 2L t L≤ ≤ : The DC process decodes the input sequence directly in the buffer

associated with Bank0, thus all the memory read operations associated with the DC

process (i.e., 50% of the total memory read operations in the TB process) are replaced

by buffer read operations, which consume much less power. The WR process

simultaneously writes the new decision bits into Bank0.

A last-in-first-out (LIFO) memory is still required for reversing the order before

outputting the information sequence in this algorithm. Therefore, the total decoding latency

including the LIFO process is 3L. The overall comparisons of the memory size and the

decoding latency between the proposed scheme and the scheme in [26] are shown in Table

3.1.

 TABLE 3.1 MEMORY AND LATENCY COMPARISON BETWEEN THE PROPOSED TB
SCHEME AND THE TB SCHEME IN [26].

 Proposed scheme The scheme in [26]
Memory Depth 2L 3L

Decoding Latency 3L 3.5L

30

3.4 Simulation Results and Discussions

In this work, two rate-1/2 convolutional codes are simulated. One has the constraint

length of 7 (i.e., K = 7, where K represents the constraint length) with the generator

polynomial (133,171), which is used in the WLAN systems. The other has the constraint

length of 9 with the generator polynomial (561, 735). For the convenience of discussion,

they are labeled as code-I and code-II. In all simulations, AWGN channel is applied and

each data is presented in floating-point precision. Three decoders are compared: 1) the

optimal Viterbi decoder [2]; 2) the conventional TB scheme [29], and 3) the proposed

cache-based TB scheme. For the optimal Viterbi decoder, the TB process starts after the

whole signal sequence is received. For the conventional TB decoder, a TB length of 6K is

used. Therefore, L = 54 when K = 9, and L = 42 when K = 7. It should be mentioned that

the scheme presented in [26] has the same decoding performance as the conventional TB

scheme.

Figure 3.4 shows the bit error rate (BER) performance of the code-I. The

conventional TB scheme and the optimal decoder can achieve almost identical decoding

performance in the simulated signal to noise ratio (SNR) range. Compared to the optimal

decoder, the maximum performance loss of the proposed scheme is only 0.11dB. Thus the

performance loss is negligible.

Figure 3.5 shows the BER performance of code-II. Still taking the conventional TB

as the base, the performance loss introduced by the proposed cache-based TB is 0.17dB at

BER of 10-3 and 0.13dB at BER of 10-4. They are slightly larger than code-I shown in

Figure 3.5, but can still be negligible.

31

The performance loss of the proposed scheme is mainly caused by the

incomprehensive path merging trace process. Although most of the paths will merge in L/2

steps, a small amount of paths will not. Figure 3.6 shows the path merging percentage of

the rate-½ convolution code with K of 7. The path merging percentages are examined at

SNR = -0.7dB, 0.3dB and 1.3db, respectively. According to Table 3.2, overall, more than

85% of the paths merge naturally if the trace back is started from the state with the optimal

path metric. In other words, over 85% of the data recorded in the buffer can be used

directly without any modification. Furthermore, more than 98% of the paths can merge in

L/2 steps.

-6 -5 -4 -3 -2 -1 0 1
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR Es/No (dB)

B
E

R

k = 9, Generator = (561, 753), R = 1/2

optimal Viterbi Decoding
conventional TB
cache based TB on 2L memory banks

Figure 3.4 BER performance in AWGN channel for a convolutional code of K=9.

32

-5 -4 -3 -2 -1 0 1 2
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR Es/No (dB)

B
E

R

k = 7, Generator = (133, 171), R = 1/2

optimal Viterbi Decoding
conventional TB
cache based TB on 2L memory banks

Figure 3.5 BER performance in AWGN channel for a convolutional code of K=7.

 TABLE 3.2 PATH MERGE PERCENTAGE FOR THE K=7 CASE.

SNR (dB) -0.7 0.3 1.3
Merge without adjusting 85.86% 93.80% 97.83%

Merge with adjusting
in L/2 steps 13.02% 6.06% 2.16%

Merge with adjusting in
more than L/2 steps 1.12% 0.14% 0.01%

3.5 Conclusion

In this chapter, a new low-power memory-efficient TB approach is proposed for

high constraint length VD. In the proposed scheme, more than 50% memory read

operations in the SMU can be reduced. The memory size of the SMU can be reduced by

33% and the decoding latency can be reduced by 14%. The simulation results show that the

33

path can successfully merge in L/2 steps with a very high probability (more than 98%), and

the performance loss due to the incomprehensive path merging is negligible (less than

0.2dB).

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

The number of steps needed for paths trace-back merging

pe
rc

en
ta

ge
(%

)

Path merge percentage: K = 7, Generator = (133,171)

snr=-0.7dB
snr=0.3dB
snr=1.3dB

Figure 3.6 Path merging percentage.

34

4 PARALLEL VITERBI DECODER ARCHITECTURE

4.1 Introduction

High-speed Viterbi decoders for convolutional codes are of great interest for high-data-

rate applications such as ultra-wideband communication systems [22] and data storage

systems [30]. Since the add-compare-select (ACS) recursion in the Viterbi decoding

algorithm contains feedback loops, the achievable throughput is limited. Several structures

have been proposed to speed up the computation of ACS unit [11] [21] [33].

In [11], the lookahead technique was utilized. The throughput of an ACS unit with the

M-step lookahead can be increased by M times. However, as M increases, the number of

the branches in computing a state metric increases exponentially. Hence, the

implementation complexity and power consumption are significantly increased if M is

large.

The throughput of an ACS unit can be also improved with the optimization in bit level.

Usually, least significant bit (LSB) first is used in accumulation operation. But most

significant bit (MSB) first computation is more suitable for compare operation. An ACS

structure combining MSB-first compare-select with carry-propagation-free addition was

proposed in [33]. An improved MSB first bit-level pipelined ACS unit structure was

presented in [21], by balancing the settling time of different paths in the ACS unit, the

length of the critical path was reduced.

On the other hand, it is possible to implement the high-speed Viterbi decoder with

parallel processing techniques. A variety of block based parallel implementations of the

Viterbi algorithms have been proposed [32] [34] [35]. In [34] and [35], the extra bit

stuffing at the transmitter results in the reduction of the rate at which information is

35

transmitted and received. In [32], an overlap-add decoding scheme which does not place

constraints on the transmitted signal is more attractive. Because the conventional trace

back method is used in [32], the overall performance of the proposed parallel Viterbi

decoder is downgraded. In this chapter, a parallel processing Viterbi decoder architecture

with register exchange algorithm is proposed for ultra high-throughput application.

4.2 Parallel Processing

The parallel processing technique exploits the concurrency available in the

computation. By replicating hardware, parallel processing increases the sampling rate so

that multiple inputs can be processed in parallel and multiple outputs are produced in

parallel in a clock period. Therefore, the effective sampling speed is increased by the level

of parallelism. Parallel processing systems are also referred to as block processing systems

and the number of inputs processed in a clock cycle is referred to as the block size [31].

As mentioned above, it has already been shown that parallel processing can increase

the throughput. Now, we consider using parallel processing for reducing the power

dissipation. Assuming that N processors are used, to maintain the same processing

throughput, the clock speed can be reduced by a factor of N. As a result, the power

dissipation can be reduced.

4.3 The Proposed Parallel Processing Scheme

Typically, it has been demonstrated for convolutional codes that the survivor paths

merge into the final survivor path with very high probability after tracing back more than

5K stages back into the trellis [36], where K denotes the constraint length. Similarly, when

36

starting from unknown initial state metrics, it is found that the state metrics are

independent of the starting state after tracing back more than 5K stages.

Data
Stream

VD #1

VD #2

Data Blcok Processing Interval Warm-up Stage Tail Stage

Figure 4.1 Proposed parallel Viterbi decoding scheme.

The proposed parallel Viterbi decoder (VD) scheme is shown in Figure 4.1. Two

register exchange (RE) VD units are employed in this scheme. The high speed incoming

data stream is divided into data blocks. In order to decode each independent block of N

symbols, a block of length L + N + D is required for processing, where L is the length of

warm-up stage, N is the block length to be decoded, and D is the survivor path merge depth

(i.e., the tail stage in Figure 4.1). As we mentioned above, survivor paths merge into the

final survivor path with very high probability if the survivor path merge depth is more than

5K. Therefore, the selected value of D is more than 5K. In this scheme, each block is

processed efficiently through each RE VD unit. The processing interval is the period for

single RE VD unit to process one block. The speedup factor S is a ratio between throughput

37

of the proposed parallel VD and that of the single RE VD. Given 2 VD units, the speedup

factor S is as follows.

⎟
⎠
⎞

⎜
⎝
⎛

++
=

DNL
NS 2 (4.1)

As the block length increases, this approach can ideally achieve a speedup factor

equal to the number of VD units in the parallel scheme. In this example, as the number of

VD units is 2, the ideal speedup factor is 2. The throughput increase is proportional to the

increase in hardware complexity at the expense of longer latency.

4.4 The Proposed Architecture and Simulation Results

Figure 4.2 Proposed parallel Viterbi decoder architecture.

The proposed architecture for the parallel Viterbi decoding scheme in Figure 4.1 is

shown in Figure 4.2. The incoming data stream is first divided into data blocks through the

block demultiplexer. Based on the decoding scheme, each block is fed into the

corresponding front buffer, which is a first-in-first-out (FIFO) buffer. Each VD unit then

receives the data out from the corresponding front buffer for decoding processing. The

decoded data popped out from the VD is fed into the rear buffer, which is also a FIFO

buffer. Finally, all the decoded data out from the rear buffers are collected by block

multiplexer to recover the decoded data into single decoded stream as the same order as

input data.

38

Figure 4.3 Performance comparison of the conventional RE VD with the parallel RE VD.

In this work, a rate-1/2 convolutional code is simulated, which has a constraint

length of 7 with the generator polynomial (133,171) and is used in the WLAN systems. An

AWGN channel is applied and each data is presented in floating-point precision. Two

decoders are compared: 1) the conventional RE VD; 2) the proposed parallel RE VD. For

the conventional RE decoder, an RE length of 6K is used. In this case, 6×K = 42 when K =

7. The parallel RE decoder uses the same RE length with the conventional one, therefore

the tail stage is also D = 42. Figure 4.3 shows the bit error rate (BER) performance of the

code. The conventional RE decoder and the parallel RE decoder can achieve identical

decoding performance in the simulated signal to noise ratio (SNR) range from 0 to 2 dB.

No performance loss can be observed.

39

4.5 Conclusion

A parallel RE Viterbi decoder architecture is proposed, which breaks the bottleneck

of the ACS unit. The simulation results show that, compared to the conventional RE

scheme, no performance degradation is observed for the parallel RE scheme. The proposed

architecture is well suited for ultra high-throughput data applications.

40

5 EFFICIENT EARLY STOPPING SCHEME FOR LDPC

DECODING

In this chapter, an early stopping scheme for low-density parity-check (LDPC) codes

decoding is presented to detect undecodable blocks at early stages and hence to save

unnecessary power dissipation. The proposed approach thoroughly exploits the

convergence of the summation of the sign products computed in the check-to-variable

message passing phase. The new approach can significantly reduce the average number of

decoding iterations in the low to medium signal-to-noise ratio (SNR) range while the

performance loss is negligible. In the high SNR range, the proposed scheme can turn off

early stopping mechanism to avoid performance loss and unnecessary computation. The

computation overhead of the proposed scheme is very small.

5.1 Introduction

LDPC codes [37] are a class of linear block codes which provide near Shannon limit

performance on a large collection of data transmission and storage channels while

simultaneously admitting inherently parallelizable decoding scheme. Recently, LDPC

codes are considered for many industrial standards of next generation communication

systems such as DVB-S2, WLAN (802.11.n), and 10GBaseT (802.3an). With iterative

decoding LDPC codes can obtain near capacity performance. If a valid codeword is found

by parity checking, the decoder will stop the iterating. Otherwise, it will continue the

decoding process until a prescribed maximum iteration number is reached. At low to

medium signal-to-noise ratios (SNRs), a phenomenon is frequently observed that a valid

codeword cannot be found even though many decoding iterations are processed. Therefore,

it is desired in real applications to detect such undecodable cases as early as possible, then

41

terminate the decoding process in order to avoid unnecessary decoding iterations. Various

early stopping criteria [39]-[41] for turbo codes decoding have been proposed in the

literature. In [42], a comprehensive overview of the early stopping criteria for turbo codes

decoding is presented. Because of the similarity between the turbo decoding and LDPC

decoding, some existing early stopping criteria for turbo decoding can be used for LDPC

decoding. However, considerable performance loss may be caused at high SNRs. A

convergence of mean magnitude (CMM) early stopping criterion specially for LDPC

decoding was recently presented in [43]. This criterion is based on the evolution of the

average magnitude of the log-likelihood ratio (LLR) messages in the decoding process.

This approach can effectively detect undecodable cases to avoid unnecessary decoding

iterations. However, because it needs the accumulation of the absolute values of all LLR

messages and a large bit-width multiplication operation, its computation overhead is very

high.

In this chapter, we investigate the convergence and distribution of the summation of

sign products computed in the check-to-variable message passing phase. Then, an efficient

early stopping scheme is presented based on the investigation. Simulation results show that

the proposed scheme can significantly reduce the average number of decoding iterations at

low to medium SNRs. The performance loss is very small at all SNRs. In this work, the

standard two-phase message passing (TPMP) Sum-Product algorithm (SPA) [38] [44] is

used. It can be observed that the proposed approach is also suited for various

approximations of SPA [45]. The rest of this chapter is organized as follows. In Section

5.2, the TPMP SPA is introduced. The proposed early stopping scheme and its

implementation complexity are discussed in Section 5.3. The simulation results are

provided in Section 5.4. Finally, Section 5.5 concludes the chapter.

42

5.2 Decoding of LDPC Codes

Commonly, the conventional TPMP SPA has been considered as the standard LDPC

decoding algorithm and is usually implemented in log domain. The check-to-variable

messages cvR are computed as (5.1)-(5.2).

{ },)()()()(cvcNn cncvccv LLLsignSR Ψ−ΨΨ××= ∑ ∈ (5.1)

,)()(∏ ∈= cNn cnc LsignS
 (5.2)

where N(c) denotes the set of variable nodes connected to the check node c, and

))/|log(tanh(|)(2xx −=Ψ is a nonlinear function. The variable-to-check message cvL is

computed as (5.3)-(5.4).

,cvvcv RLL −= (5.3)

,)(vvMm mvv IRL +=∑ ∈ (5.4)

where vL is the LLR message of variable node v and M(v) denotes the set of check nodes

connected to the variable node v. The intrinsic message corresponding to variable node v

is 2
vv r2I σ= / , for binary input, AWGN channel, mapping 0 to +1 and 1 to -1, where vr is

the received soft value. The sign of vL is taken as the estimated codeword bit vc (mapping

+1 to 0 and -1 to 1). The check-sum cP of parity equation corresponding to check node c is

computed by (5.5).

,)(vcNvc cP ∈⊕= (5.5)

where ⊕ represents binary addition. If 0Pc = for any check node c, a valid code is found

and the decoding process can be terminated. In VLSI design, (5.2) is implemented in the

same way as (5.5).

43

5.3 Efficient Early Stopping Scheme

At low to medium signal-to-noise ratios (SNRs), a phenomenon is frequently

observed that a valid codeword cannot be found even though many decoding iterations are

processed. It is highly desired in real applications that an efficient scheme needs to be

proposed to detect such undecodable cases as early as possible and hence to avoid

unnecessary computations. After thoroughly studying the statistic characteristics of

extrinsic and reliability messages computed during the decoding process, we observed that

the sign of extrinsic messages and reliability messages can be used to predict whether the

received block is decodable or not. For the convenience of the following discussion, let us

denote SS as the summation of the binary mapping of every sign product computed in

(5.2) (i.e., ∑ −
== 1M

0c cS SS) and PS as the summation of the check-sum of every parity

equation computed in (5.5) (i.e., ∑ −
== 1M

0c cP PS). In LDPC decoding, the value of PS in

the thk iteration, k
PS , decreases as k increases (even though a certain range of fluctuation

may occur) if the decoded block is decodable. PS converges to zero when a valid code is

found. It can be observed that the convergence of k
SS is very similar to that of k

PS during

the decoding process. Both k
PS and k

SS can be utilized to detect undecodable blocks. In

this design, k
SS is exploited for the simple hardware implementation purpose. In this

section, the convergence of k
SS is shown in detail to illustrate the proposed early stopping

scheme. A received block is most likely decodable if the value of k
SS monotonically

decreases as k increase during the LDPC decoding. In various cases, if k
SS fluctuates

during the decoding, the received block is possibly undecodable.

44

Figure 5.1 shows the trend of variation of k
SS at SNR of 1.2 dB for ten randomly

picked undecodable blocks. A (4000, 2000) (3, 6) LDPC code is used in the experiment. It

can be observed that k
SS fluctuates in a small range of magnitudes in most cases. Figure

5.2 shows the variation of k
SS at SNR of 1.2 dB for ten randomly picked decodable blocks.

Compared to the cases in Figure 5.1, it is clearly shown that the fluctuation of the cases in

Figure 5.2 is short and k
SS converges to zero along a steep slope in most cases. Even if in

the cases that k
SS keeps fluctuating with a long period, the fluctuant magnitude is much

larger than that shown in Figure 5.1. It implies that the convergence of k
SS can be utilized

to predict the decoding convergence before the maximum number of iterations is reached

or a valid codeword is found.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

Iteration

Th
e

flu
nc

tu
at

io
n

of
 S

 Sk
.

Figure 5.1 The fluctuation of k
SS for ten undecodable blocks .

45

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

Iteration

Th
e

flu
nc

tu
at

io
n

of
 S

 Sk
.

Figure 5.2 The fluctuation of k
SS for 10 decodable blocks .

It should be pointed out that any individual detection trial may have three possible

outcomes, i.e., hit, miss detection, and false alarm. In LDPC decoding, a false alarm causes

the performance loss. Thus, early stopping schemes should be optimized to minimize the

false alarm rate at all SNRs. However, the block error rate is very small at high SNRs and

thus the portion of computation power specifically for undecodable blocks at high SNRs is

negligible. The early stopping scheme should be disenabled at high SNRs to avoid

performance loss and save computation overhead. Based on the above observation, an early

stopping scheme for detecting the undecodable blocks is proposed as follows:

1) Check the value SNR to decide the SNR range in the first iteration. Step 2 is

performed if in low to medium range, otherwise directly go to step 3.

2) cnt:=0;

 k
S

1k
S SS −=Δ −: ;

46

 flag = 1 if 0<Δ once (fluctuation occurred)

while (flag = = 1) do

{

 if (0>Δ) then

 if (THΔ<Δ) then

 cnt:=cnt+1;

 else

 cnt:=0;

 end

 end

 if (cnt >T) then

 stop decoding

 else

 go to step 3

 end

 }

3) Continue to the next iteration.

In step 2, THΔ and T are two predetermined thresholds by simulation. k
SS converges

if 0>Δ is satisfied. The condition of THΔ<Δ indicates that a slow convergence speed

occurs. T is for recording the duration of slow convergence. The proposed early stopping

scheme can be implemented with a M2log -bit accumulator for counting the number of 1s

from the binary mapping of cS and a small number of additional logic gates. Therefore, the

hardware overhead is very small.

The value of 0
SS (the k

SS obtained in the first iteration) can be utilized to roughly

check the SNR region when the channel SNR is unknown. Figure 5.3 shows the

distribution density of the value of 0
SS at the SNR of 2.5 dB and 1.0 dB. Totally 510 blocks

were simulated in this experiment. From Figure 5.3 we can see that if 0
SS is greater than

47

780, the probability of SNR > 2.5dB is very small. Thus the detection scheme can be

enabled. Otherwise, it should be disenabled to avoid performance loss and save

computation overhead.

550 600 650 700 750 800 850 900 950
0

0.005

0.01

0.015

0.02

D
en

si
ty

SS
0

SNR=2.5dB

550 600 650 700 750 800 850 900 950
0

0.005

0.01

0.015

0.02

D
en

si
ty

SS
0

SNR=1.0dB

Figure 5.3 The 0
SS distribution density at the SNR of 2.5dB and 1.0dB.

5.4 Simulation Results

In this work, two LDPC codes are simulated for the proposed early stopping scheme.

One is a 4000-bit (3, 6) rate-0.5 LDPC code and the other is a 1974-bit (5, 10) rate-0.5

LDPC code. TPMP SPA is used for decoding. For practical purpose, we assume that SNR

information is not available for the proposed early stopping scheme and 0
SS is utilized to

roughly determine the SNR region. In addition, based on our simulation, 780 and 440 are

used as thresholds of 0
SS for the decoding of the 4000-bit LDPC code and the 1974-bit

code, respectively. The maximum iteration number is set to be 100 in this experiment.

During this experiment, the standard approach means that the decoding is stopped only if

48

the maximum iteration number is reached or a valid codeword is found. CMM means the

early stopping scheme proposed in [43]. In Figure 5.4, the average number of iterations

needed for decoding the 4000-bit LDPC code is shown. It can be observed that the

proposed approach can significantly reduce the average iteration number at low to medium

SNRs. The decoding performance for the same code is demonstrated in Figure 5.5. The

proposed scheme has better decoding performance than CMM criterion at high SNRs.

Figure 5.6 and Figure 5.7 show the needed average number of iterations and decoding

performance for the 1974-bit code. It demonstrates again that the new early stopping

scheme can significantly reduce the average number of iteration at low to medium SNRs.

The performance loss is very small at all SNRs.

Figure 5.4 The average number of iterations needed for decoding the 4000-bit LDPC
code.

49

Figure 5.5 Decoding performance for the 4000-bit LDPC code.

Figure 5.6 The average number of iterations needed for decoding the 1974-bit LDPC
code.

50

Figure 5.7 Decoding performance for the 1974-bit LDPC code.

5.5 Conclusion

In this chapter, an efficient early stopping scheme has been proposed, which exploits

the convergence and distribution of the summation of the sign products computed in the

check-to-variable message phasing phase. The overhead of hardware implementation is

very small. Simulation results have shown that the proposed scheme can significantly

reduce the average number of decoding iterations at low to medium SNRs. The

performance loss is very small at all SNRs.

51

6 CONCLUSION

This thesis investigates efficient decoding approaches for Viterbi decoders and

LDPC decoder. We propose a new low-power memory-efficient trace-back (TB) scheme

for high constraint length Viterbi decoder (VD). With the trace back modifications and

path merging techniques, more than 50% memory read operations in the survivor memory

unit (SMU) can be eliminated. The memory size of SMU can be reduced by 33% and the

decoding latency can be reduced by 14%. The simulation results show that, compared to

the conventional TB scheme, the performance loss of this scheme is negligible.

A parallel RE Viterbi decoder architecture is proposed, which breaks the bottleneck

of the add-compare select (ACS) unit. The simulation results show that, compared to the

conventional RE scheme, no performance degradation is observed for the parallel RE. The

proposed architecture is well suited for high-throughput data applications.

We also propose an early stopping scheme for LDPC codes decoding to detect

undecodable blocks at early stages and hence to save unnecessary power dissipation. The

proposed approach thoroughly exploits the convergence of the summation of the sign

products computed in the check-to-variable message passing phase. The new approach can

significantly reduce the average number of decoding iterations in the low to medium signal

to noise ratio (SNR) range while the performance loss is negligible. In the high SNR range,

the proposed scheme can turn off early stopping mechanism to avoid performance loss and

useless computation. The computation overhead of the proposed scheme is very small.

52

7 PUBLICATIONS

Lupin Chen, Jinjin He, and Zhongfeng Wang, “Design of Low-Power emory- efficient
Viterbi Decoder, ” in Proc of IEEE 2007 Workshop on Signal Processing Systems (SiPS),
Oct. 2007.

Zhiqiang Cui, Lupin Chen, and Zhongfeng Wang, “An Efficient Early Stopping Scheme
for LDPC Decoding, ” in Proc of 13th NASA Symposium on VLSI Design 2007, June, 2007

53

8 BIBLIOGRAPH

[1] J. G. Proakis. Digital Communications, volume 3. McGRAW Hill, 1995.

[2] Viterbi. Orthogonal tree codes for communication in the presence of white gaussian
noise. IEEE Transactions on Communications, Apr. 1967.

[3] Joy A. Thomas Thomas M. Cover. Elements of Information theory. John Wiley and
Sons, 1991.

[4] S.B. Wicker. Error Control Systems for Digital Communication and Storage. Prentice
Hall, New Jersey, 1995.

[5] E. Yeo, S. Augsburger, Wm. R. Davis, and B. Nikolic, “Implementation of high
throughput soft output viterbi decoders,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2000, ICASSP’00, pp. 3378-3381, June
2000.

[6] Zhongfeng Wang. High performance, low complexity VLSI design of turbo decoders,
Ph.D. thesis, University of Minnesota, Sept. 2000.

[7] Robert Gallager. Low-density parity-check codes. PhD thesis, Massachusetts Institute
of Technology, 1963.

[8] David MacKay. Good error-correcting codes based on very sparse matrices. IEEE
Transactions on Information Theory, vol. 45(2):399–431, March 1999.

[9] R.M. Tanner. A recursive approach to low complexity codes. IEEE Transactions on
Information Theory, 27(5):533{547, Sep 1981.

[10] B.J. Frey F.R. Kschischang and H.A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498{419, Feb. 2001.

[11] Black and T. H. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi decoder,” IEEE J.
Solid-State Circuits, vol. 27, pp. 1877–1885, Dec. 1992.

[12] A. K. Yeung and J. Rabaey, “A 210-Mb/s, radix-4 bit-level pipelined Viterbi
decoder,” ISSCC Dig. Tech. Papers, pp. 88–89, Feb. 1995.

[13] J. K. Hinderling et al., “CDMA mobile station modem ASIC,” IEEE J. Solid-State
Circuits, vol. 28, pp. 253–260, Mar. 1993.

[14] I. Kang and A. N. Willson, Jr., “Low-power Viterbi decoder for CDMA mobile
terminals,” IEEE J. Solid-State Circuits, vol. 33, pp. 473–482, Mar. 1998.

[15] K. K. Parhi, “High-speed VLSI architectures for Huffman and Viterbi decoders,”
IEEE Trans. Circuits Syst. II, vol. 39, pp. 385–391, June 1992.

54

[16] H. D. Lin and D. G. Messerschmitt, “Algorithm and architectures for concurrent
Viterbi decoding, ” IEEE International Conference on Communications, vol. 2, pp.
836 – 840, June 1989.

[17] J. K. Hinderling et al., “CDMA mobile station modem ASIC,” IEEE J. Solid-State
Circuits, vol. 28, pp. 253–260, Mar. 1993.

[18] I. Kang and A. N. Willson, Jr., “Low-power Viterbi decoder for CDMA mobile
terminals,” IEEE J. Solid-State Circuits, vol. 33, pp. 473–482, Mar. 1998.

[19] C.-Y. Chang, K. Yao, “Systolic Array Processing of the Viterbi Algorithm,” IEEE
Transaction on Information Theory, Vol. 35, No. 1, Jan. 1989.

[20] M. Gao, C. Wang, “FPGA Design and Implementation of a Low-Power Systolic
Array-Based Adaptive Viterbi Decoder,” IEEE Transaction on Circuits and System –
1: Regular papers, Vol. 52, No. 2, Feb 2005.

[21] K. K. Parhi, “An Improved Pipelined MSB-First Add-Compare Select Unit Structure
for Viterbi Decoders,” IEEE Transaction on Circuits and System – 1: Regular papers,
Vol. 51, No. 3, pp. 504 - 511 March 2004.

[22] J. Tang, K. K. Parhi, “Viterbi Decoder for High-Speed Ultra-Wideband
Communication Systems,” ICASSP 2005, Vol. 5, pp. v/37 - v/40, March 2005.

[23] G. Feygin and G. Gulak, “Architectural Tradeoffs for Survivor Sequence Memory
Management in Viterbi Decodes,” IEEE Trans. on Commun, Vol. 42, No. 3, pp. 425-
429, March 1994.

[24] E. Yeo, S. Augsburger, Wm. R. Davis, and B. Nikolic, “Implementation of high
throughput soft output viterbi decoders,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2000, ICASSP’00, pp. 3378-3381, June
2000.

[25] R. Cypher and C. Shung, “Generalized Trace Back Techniques for Survivor Memory
Management in the Vitrbi Algorithm,” in Proceedings of the IEEE Global
Telecommunications Conference GLOBECOM, (San Diego, California), pp.
707A.1.1-707A.1.5, IEEE, Dec. 1990.

[26] C. C. Lin, Y. H. Shih, H. C. Chang, and C. Y. Lee, “Design of a Power-Reduction
Viterbi Decoder for WLAN Applications,” IEEE Transaction on Circuits and System
– 1: Regular papers, Vol. 52, No. 6, June 2005.

[27] R. Cypher and C. Shung, “Generalized trace back techniques for survivor memory
management in the viterbi algorithm,” IEEE Global Telecommunications Conference,
GLOBECOM, p. 1318 to 1322, Dec. 1990.

55

[28] R. Henning and C. Chakrabarti, “An approach for adaptively approximating the
Viterbi to rduce power consumption while decoding convolutional codes,” IEEE
Trans. on Signal Processing, Vol. 52, No. 5, pp. 1443-1451, May 2004.

[29] Y. Gang, A. T. Erdogan, and T. Arslan, “An efficient pre-traceback architecture for
the Viterbi decoder targeting wireless communication application,” IEEE Trans. On
Circuits and Systems – 1: Regular Papers, Vol. 53, No. 9, pp. 1918-1927, Sept. 2006

[30] F. Sun and T. Zhang, “Quasi-reduced-state soft-output viterbi detector for magnetic
recording read channel, ” IEEE Transactions on Magnetics, accepted, 2007

[31] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.
New York: Wiley, 1999, ch. 2.

[32] P. J. Black and T. H.-Y. Meng, “A hardware effcient parallel viterbi algorithm,”
Acoustics, Speech, and Signal Processing, 1990. ICASSP-90., 1990 International
Conference on 3-6 April 1990 Page(s):893 - 896 vol.2

[33] G. Fettweis and H. Meyr, “High rate Viterbi processor: A systolic array solution,”
IEEE J. Select. Areas Commun., vol. 8, pp. 1520–1534, Oct. 1990.

[34] G. Fettweis and H. Meyr. “Parallel Viterbi algorithm implementation: breaking the
ACS-bottleneck,” IEEE Trans. Commun., Vol COM-37, No. 8, August 1989, pp 785-
790.

[35] K. A. Wen and J. Y. Lee. “Parallel processing for Viterbi algorithm,” Electronics
Letters, Vol. 24, No. 17, Aug 1988,

[36] J. A. Heller and LM. Jacbos. “Viterbi decoding for satellite and space
communication,” IEEE Trans. Commun. Technol., 61, March 1973, pp. 268-278. Vol.
COM-19, NO. 5

[37] J. B. Anderson, “Limited search trellis decoding of convolutional codes,” IEEE Trans.
Inf. Theory, vol. 35, pp. 944–955, Sep. 1989.

[38] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information
Theory, vol. IT-8, pp. 21-28, Jan. 1962.

[39] R. Y. Shao, S. Lin, and M.P.C.Fossorier, “Two simple stopping criteria for turbo
decoding,” IEEE Trans. Comm., vol. 47, no. 8, pp. 1117 – 1120, Aug. 1999.

[40] A. Matache, S. Dolinar, and F. Pollara, “Stopping rules for turbo decoders,” Tech.
Rep., Jet Propulsion Laboratory, Pasadena, California, Aug. 2000.

[41] Z.Wang and K. K. Parhi, “Decoding metrics and their applications in VLSI turbo
decoders,” in Proc. ICASSP, 2000, pp. 3370– 3373.

56

[42] Z. Wang, Y. Zhang, and K. K. Parhi, “Study of early stopping criteria for Turbo
decoding and their applications in WCDMA systems,” in Proc of ICASSP’06, pp. III-
1016-1019, May 2006.

[43] J. Li, X. H. You and J. Li, “Early stopping for LDPC decoding: convergence of mean
magnitude (CMM),” IEEE Comm. Letters, vol. 10, no. 9, pp. 667 - 669 Sept. 2006.

[44] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE
Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

[45] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, X. Hu, “Reduced-complexity
decoding of LDPC codes,” IEEE Trans. on Commun., vol 53, pp. 1288-1299, Aug.
2005.

[46] E. Sharon, S. Litsyn, and J. Goldberger, “An efficient message-passing schedule for
LDPC decoding,” The 23rd IEEE Convention of Electrical and Electronics Engineers
in Israel, pp. 223-226, Sept., 2004.

[47] Samirkumar Ranpara, “On a Viterbi decoder design for low power dissipation,”
Master of Science thesis, the Virginia Polytechnic Institute and State University,
1999.

[48] Claude E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, 27, 1948.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

