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This research addresses sample process variance estimation on continuous domains and for 

non-probability samples in particular.  The motivation for the research is a scenario in which 

a program has collected non-probability samples for which there is interest in characterizing 

how much an extrapolation to the domain would vary given similarly arranged collections of 

observations.  This research does not address the risk of bias and a key assumption is that the 

observations could represent the response on the domain of interest.  This excludes any hot-

spot monitoring programs. The research is presented as a collection of three manuscripts.  

The first (to be published in Environmetrics (2006)) reviews and compares model- and 

design-based approaches for sampling and estimation in the context of continuous domains 

and promotes a model-assisted sample-process variance estimator.  The next two manuscripts 

are written to be companion papers.  With the objective of quantifying uncertainty of an 

estimator based on a non-probability sample, the proposed approach is to first characterize a 

class of sets of locations that are similarly arranged to the collection of locations in the non-

probability sample, and then to predict variability of an estimate over that class of sets using 

the covariance structure indicated by the non-probability sample (assuming the covariance 

structure is indicative of the covariance structure on the study region).  The first of the 

companion papers discusses characterizing classes of similarly arranged sets with the 

specification of a metric density.  Goodness-of-fit tests are demonstrated on several types of 
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patterns (dispersed, random and clustered) and on a non-probability collection of locations 

surveyed by Oregon Department of Fish & Wildlife on the Alsea River basin in Oregon.  The 

second paper addresses predicting the variability of an estimate over sets in a class of sets 

(using a Monte Carlo process on a simulated response with appropriate covariance structure).   
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DISSERTATION INTRODUCTION 

This research addresses sampling and estimation on responses observed on spatial 

domains.  In this context the response is defined on a continuous domain, as opposed to a 

finite population.  Generally the response observed at two locations in close proximity will 

have covariance, which typically decreases as distance between the locations increases.  Two 

types of approaches have been developed and applied to estimation on continuous-domain 

responses – model-based and design-based.  The model-based approaches treat the response 

as a realization of a random field (see, for example, Cressie (1993)).  These approaches 

obtain minimum mean-square error estimates, conditional on the observations, without 

accounting for a selection process, random or otherwise, for what elements on the domain are 

observed.  The design-based approach focuses on randomization of the sampling process and 

treats the response as fixed.   

The two approaches tend to serve different objectives.  Design-based methods are 

often employed to estimate a status on a population total or mean.  The unobserved response 

on the domain is typically extrapolated from the observed elements by expansion estimators.  

The expansion factors are based on marginal and pairwise inclusion probabilities (or 

densities, on continuous domains) specified by the sampling design - presumably 

extrapolating from the observations by the amount of the domain they are representative of.  

Model-based methods are often employed to predict an average response on the domain or at 

unobserved locations on the domain.  In the latter, a typical precursor step is deciding on an 

appropriate model (form and parameters) of the mean and covariance structure and estimating 

the parameters involved.  The form of the covariance between two locations depends on a 

range and rate of decay of correlation, usually as a function of distance and possibly 

orientation between the two locations. 

The different objectives encompass dual aspects of monitoring programs.  For near-

term policy decisions for harvest, for example, an estimate of status and trend are useful.  The 

estimate is a characterization of the response for a particular window of time.  The design-

based estimates often employed disregard the stochastic behavior of the response over time, 

treating the response as fixed.  For longer-term policies, resource managers may be interested 

in understanding the stochastic behavior of the response, both in terms of variability spatially 

and over time – and any interaction of these components of variability.  The model-based 

approach would typically use a likelihood approach to estimate parameters of candidate 
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models to develop one that usefully describes the mean and covariance structure of the 

response.  In this scenario, there is typically some interest in drawing relationships between 

the mean response and predictors and/or modeling an intrinsic mechanism of the response 

that influences covariance and that might usefully represent propagation of the response in 

space and/or time. 

Two examples of design-based monitoring programs are the Environmental 

Protection Agency's (EPA) Environmental Monitoring and Assessment Program (EMAP) 

(Peterson et. al. (1999)); and the Oregon Monitoring Plan of the Oregon Department of Fish 

and Wildlife (ODFW) (ODFW (2002)), which is an augmented rotating panel sampling 

design (developed by EPA) for monitoring Oregon-Coast-Natural coho salmon.  Examples of 

typical model-based sampling are found in mining geological surveys and soils and 

hydrology surveys (Cressie (1993); Oliver and Webster (1986)). 

Each approach addresses a different component of variation in an estimate or 

prediction.  The design-based approach specifically quantifies the variability of an estimate 

due to which elements are sampled – the sample-process variance.  The model-based 

approach quantifies the variation in a prediction (the mean square prediction error (MSPE)) 

as induced by the variation in increments in response from one location to another as 

influenced by the covariance structure of the response as realized from a stochastic process. 

Key to sample process variance estimation on a spatial domain is the combination of 

the covariance structure that generally exists for responses on a continuous domain and the 

interaction of the covariance structure and the sample structure – the resolution and 

arrangement of sample locations as well as the dimension and size of the region being 

monitored.  At one scale, sparsely spaced observations may not appear to have covariance.  A 

finer resolution of sampling may manifest the covariance within a narrower range than the 

sparsely spaced locations show (Oliver et. al. (1986)).  Also the interaction between sample 

resolution and covariance in the observations may depend on orientation of pairs of sample 

locations and the orientation of a covariance structure in the response. 

The goal of this research is to provide a foundation for assessing the uncertainty of an 

estimate that is an extrapolation from a non-probability sample.  For the purposes of 

characterizing a population status, non-probability samples are to be avoided whenever 

possible, as they have been shown to lack adequate representation of the domain response due 

to selection bias (see for example, Paulsen et. al. (1998) and Peterson et. al. (1999)).  

Nevertheless, due to costs and time constraints, agencies often do have data that has not been 
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collected at locations selected by a formal sampling process involving an explicit random 

mechanism.  Also, it is not uncommon that data collected with a modeling objective in mind 

will be of interest for potential to estimate a summary of the response.  For modeling, the 

choice of locations may have been driven by the goal to optimize the parameter estimation 

and may not have been chosen by a random mechanism.  

Since the non-probability sample is not the result of a randomization of what 

elements to observe, any estimate based on the observed responses has no sample process 

variance.  However, since the estimate is an extrapolation from the observed responses to the 

domain, clearly the extrapolation will not represent the domain's response exactly.  The 

consumers of the estimate might be interested to know how much an extrapolation would 

vary if the response had been observed at other locations – particularly for sets of locations 

with spatial arrangement similar to that of the non-probability sample, i.e. among sets of 

locations with the same number of points and with similar degrees of clustering or dispersion 

or randomness. 

An assessment for this latter question is only reasonably entertained if the agency has 

a reason to believe that the mean and covariance of the sample might adequately represent 

that of the rest of the domain.  Monitoring at hot-spots precludes concluding anything about 

the rest of the domain based directly on the responses observed in the sample.  Supposing that 

the non-probability sample is a collection of observations at locations that would not differ in 

response from the rest of the domain due to systematic causes (potentially related to the 

choice of the locations), the agency might have some not-unreasonable data for ascertaining 

how much the estimate would vary if the observations had been taken at different but 

similarly arranged sets of locations. 

The general approach taken in this research to characterize the variability of such a 

non-probability estimate is to characterize classes of similarly arranged patterns and to 

predict the sample process variance that would be observed over that class of patterns.  The 

classes of patterns are defined by specifying a univariate density on a point pattern metric that 

then imposes a set measure on the universe of sets of n points taken on the domain.  The 

variance prediction relies on the covariance structure observed at the observed locations in 

the non-probability sample. 

The chapters are organized as follows.  There are three chapters in the body of the 

dissertation, before the final Conclusion chapter.  Each chapter is developed as a separate 

manuscript, intended to be self-contained.  The first manuscript, "Sampling and variance 
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estimation on continuous domains" (to be published in Environmetrics in 2006; Chapter 2 of 

the dissertation), discusses idiosyncracies of, and model- vs. design-based approaches to 

sampling and estimation on continuous domains.  The manuscript promotes a model-assisted 

sample process variance estimator, illustrated on a stratified sampling design on a continuous 

domain with a simulated response with exponential covariance structure.   

The second manuscript, "Characterizing classes of similarly arranged point patterns 

as a reference of variability on non-probability samples" (Chapter 3 of the dissertation), 

develops the construction of a measure (joint density, if it exists) on locations in patterns of 

points.  The measures on the sets of n locations are implied by probability densities on point 

pattern metrics, where the metrics are statistics on the distances between locations in the point 

patterns that characterize the degree of clustering or repulsion (manifested as regularity of 

point spacing) in patterns of points.  Empirical metric densities of various classes of point 

patterns are tested for effective assessment of goodness-of-fit (GOF) of arbitrary patterns to 

the classes of patterns.  Three point pattern metrics are tested on spatially regular and random 

patterns on a domain of areal extent; and three point pattern metrics are tested on regular, 

random and clustered patterns on a linear stream-network domain (the Alsea River basin in 

the Coast range in Oregon).  The steps for assessing GOF and suitability of a class as one that 

has patterns similarly arranged to a non-probability sample is illustrated on a non-probability 

sample collected by Oregon Department of Fish and Wildlife (ODFW) on the Alsea basin.  

The ODFW sample is found to have suitable GOF in a class of clustered patterns, suggesting 

the choice of this class for assessing variability of an estimate on sets of locations similarly 

arranged to the ODFW non-probability sample. 

The third and final manuscript "Estimator variance over similarly-arranged random 

or non-random locations on continuous domains" (Chapter 4 in the dissertation) develops an 

approach to predicting sample process variability.  The proposed approach is to simulate a 

response with a covariance structure as suggested by the covariance in the sample, and then 

derive a Monte Carlo estimate of the sample process variance of an estimate taken on samples 

from a prescribed class of patterns.  The approach is demonstrated with reasonable results on 

an areal domain with a simulated response with exponential covariance for stratified and 

random patterns.  The approach is also illustrated on the Alsea stream network for a 

simulated moving-average response, for stratified and random patterns.  However, on the 

stream network, the assessment of variability has poor relative error. 

The last chapter, Chapter 5, is the Conclusion. 
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SUMMARY 

This paper explores fundamental concepts of design- and model-based approaches to 

sampling and estimation for a response defined on a continuous domain.  The paper discusses 

the concepts in design-based methods as applied in a continuous domain, the meaning of 

model-based sampling, and the interpretation of the design-based variance of a model-based 

estimate.  A model-assisted variance estimator is examined for circumstances for which a 

direct design-based estimator may be inadequate or not available.  The alternative model-

assisted variance estimator is demonstrated in simulations on a realization of a response 

generated by a process with exponential covariance structure.  The empirical results 

demonstrate that the model-assisted variance estimator is less biased and more efficient than 

Horvitz-Thompson and Yates-Grundy variance estimators applied to a continuous-domain 

response. 

KEY WORDS: Continuous-domain sampling; design-based variance estimation; sample-process 

variation; kriging; inclusion densities 

1 INTRODUCTION 

A basic job in resource management is to quantify "how much" there is of a response 

(resource) that varies over a continuous domain.  Applications of resource management 

include wildlife, fisheries and forestry management.  Resources may be monitored to assess 

condition, such as soil contamination.  Exploitation of geologic resources requires assessment 

of average response at unobserved sites.  In some applications, model-based methods have 

historically been employed nearly exclusively of design-based approaches.  Design-based 

approaches address the goal of quantifying "how much", with the advantage that there is no 

need to defend a choice of distribution or covariance model. 

Design-based and model-based methodologies of sampling and estimation have 

historically been developed in separate fields of expertise.  There are differences in the bases 

of inference between the two.  The contexts under which the two approaches were developed 

differ.  The objectives of the two approaches differ in emphasis.  A fundamental part of any 

estimation job is quantifying the uncertainty (or, conversely, the precision) of the estimate.  

The interpretation of the uncertainty or variability depends on the approach (design- or 

model-based).  The variability of an estimator is the result of the estimator being a function of 

random variables – thus, an estimator is itself a random variable with a distribution.  In 
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design-based estimation, the random variables in the estimators are the indicator functions of 

whether an element in the domain is or is not included in the sample.  Uncertainty is based on 

variability of the estimator due to the sampling process.  In model-based predictions, the 

response on the domain is regarded as random, and uncertainty of the estimator involves 

some intrinsic covariance structure that characterizes the behavior of the response.  The 

application of the two approaches is compared in the following two examples–one on 

monitoring Coho salmon, the other on assessing bird species diversity. 

The Oregon Department of Fish and Wildlife (ODFW) is following a design-based 

sampling protocol to monitor Oregon-Coast-Natural Coho salmon (Oncorhynchus kisutch) 

population status and trend.  The sampling domain is a network of continuous stream 

segments.  One response observed is the number of spawners in a mile.  The response is 

treated as non-random for determining estimates.  The design strategy incorporates an 

augmented rotating panel design, developed by EPA, such that some sites are visited 

repeatedly at different intervals over time to monitor trends (ODFW (2002)).  A panel is the 

set of sites visited in the same years.  There are 40 panels of varying frequencies of visits. 

Within each panel, the sites are spatially balanced to help make the sample of stream 

segment locations representative of the stream-network domain.  The density of sampled 

stream locations guards against small-sample risk of unusual, non-representative samples.  

Variability of estimates is also controlled by reducing the chances of including pairs of 

elements with closely correlated responses, accomplished in the ODFW sample by spatially 

balanced sampling within panels. 

Resource managers use the estimated totals and trends for setting harvest policies and 

advising policy makers on land-use management.  The absence of model specification 

benefits applications like this one, where policies must withstand stakeholders' possible 

challenges (Hansen, Madow and Tepping (1983)). 

For applications where a resource is to be assessed in an area with little or no direct 

observations, modeling a resource's covariance structure is usefully applied.  There are many 

applications in geosciences.  The model-based process of kriging predicts a response from a 

weighted average of observed responses, giving greater influence to those expected to have 

stronger correlation with the response to be predicted.  Carroll describes an application 

extending mean and spatial covariance structure models to include abiotic factors to predict 

bird species diversity on the Indian subcontinent (Carroll (1998)).  He demonstrates the 

improved predictive capability of the universal kriging model with the extended covariance 
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structure.  The motivation for the study comes from resource assessment needs where 

ecological and environmental status is costly to assess and/or is required in areas difficult to 

access. 

Ver Hoef compares the application of design-based estimators and a modification of 

block kriging where he treats the domain as a finite population of grid cells, for estimating 

population totals (Ver Hoef (2002)).  He observes that the confidence intervals resulting from 

block kriging are between 20-40% narrower than those produced by design-based estimates 

applied to stratified samples on a spatial domain.  This suggests a gain in efficiency from 

exploiting covariance structure of the response's underlying random process, although 

interpretation of the confidence interval depends on the approach.  The uncertainty of the 

model-based approach addresses random variability of the response given its covariance 

structure, whereas the uncertainty of the design-based approach is derived from the sample 

process (the estimator varies because the elements from sample to sample vary). 

The benefit of model-based concepts has not been fully employed to quantify 

sample-process variation of estimates, though there is sometimes good reason to do so.  

Cordy and Thompson (1995) employ the "deterministic" covariance in a design-based 

variance estimator, treating the response as a fixed surface.  This paper promotes a model-

assisted variance estimator for quantifying the variation due to the sampling process that is of 

interest in design-based sampling and estimation.  The alternative estimator models sample 

process variance on a continuous domain, taking into account the covariance of the response.   

The paragraphs below address, in order, design-based methodology, model-based 

methodology, idiosyncrasies of sampling and estimation on continuous domains, variance 

characterized and estimated by design-based methods, and variance characterized and 

estimated in model-based methods.  Following this background material, an alternative 

model-assisted variance estimator is described for grid-based stratified sampling designs.  

The empirical behavior of the alternative model-assisted variance estimator is demonstrated 

in design- and model-based contexts on simulated random fields.  The interpretation of 

sampling process variation for circumstances involving model-based approaches is discussed. 
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2 COMPARING THE APPROACHES 

2.1 Design-based Methodology 

Design-based methodology was developed in survey methodology, where the 

applications are nearly entirely on finite populations.  Typically the objective is to estimate 

the total or average of a population (or subpopulation) response.   

Obtaining an unbiased estimate is desirable.  If an adequate frame exists that 

effectively enumerates the elements of a population, a random sample implemented by 

sampling from the frame ensures that, the expectation of nominally unbiased design-based 

estimates − with respect to the sampling process− is the population total or average.  

Throughout this paper, the term "sample" refers to the collection of elements or units 

observed.  Sources of bias include frame error, non-random sampling and "non-response" or 

unobserved elements that were meant to be included in the random sample.  Non-response, 

frame error, other sources of bias and how to adjust for these are not addressed in this study. 

In the design-based paradigm, the elements' responses are treated as fixed and are 

assumed to be observed without error.  In design-based inference, the variability of an 

estimator is induced by the variability in the elements that get sampled from a population or 

continuous-domain.  Since the practitioner has control over the sampling process (at least in 

terms of design if not in implementation), the properties of the estimators are known exactly.  

That is, estimates are derived without being obliged to assume a distribution or covariance 

structure on the population responses. 

Estimators are based on scaling the responses of sampled elements to extrapolate 

from the sample to the entire population.  The Horvitz-Thompson (HT) estimator (Horvitz 

and Thompson (1952)) is a linear combination of elements, weighted by the inverse of their 

inclusion probabilities.  The inclusion probability of an element for finite populations is the 

sum of the probabilities of all samples that include that element.  On a continuous domain, 

the weight is the inverse of the inclusion density (ID), where the ID is the integral over the 

measures of samples that include the i
th
 element (see Cordy (1993)).   

If every population element has non-zero inclusion probability, the HT estimator is 

unbiased.  The HT estimator provides a design-based estimator that accommodates unequal 

inclusion probabilities, for applications where some subpopulations are to be sampled more 

intensely than others. 
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Because the variability is defined in terms of the sampling-process variance, the 

variance estimators are based on the variance and covariance of the selection of a pair of 

elements into a sample.  In practice, only one sample is taken, yet the variability of the 

estimator is characterized in terms of the variation from sample to sample (referred to here as 

sampling-process variance).  On a finite-population domain, the pair-wise inclusion 

probability is defined as the sum of probabilities, over the sample universe, that a sample 

contains both elements in a pair.  The HT variance estimator weights the sum of squared- and 

cross-product responses by the inverse marginal and pair-wise inclusion probabilities.  

Assuming non-zero pair-wise IDs almost everywhere (a.e.), it is unbiased. 

For most interesting applications, there is some hierarchical structure or ordering to 

the population, and units' responses within a level often are correlated (though not all 

characteristics observed on each unit need be correlated).  The correlation is important to 

quantifying the variability the practitioner would observe over repeated samples.  This is 

visited again in the section on design-based variance estimation.  Knowing something about 

how the responses between elements are correlated can be useful to design optimal sampling 

strategies.  Statisticians have employed models of correlation structures on populations to 

compare efficiency of different sampling strategies.  Cochran (1946) modeled a finite 

population ordered in one dimension to show optimality of systematic sampling.  His results 

were extended by others, among them Bellhouse (1977), for finite populations ordered in two 

dimensions.   

Sampling may also be restricted to effect a representative sample in order to reduce 

bias (Royall and Cumberland (1981) and Royall (1988)) or to achieve a numerically well-

conditioned system of equations to provide stable estimation of parameters or coefficients 

(see for example Rawlings et. al. (1998)).  In these contexts, some underlying models are 

being considered prior to sampling in order to anticipate what sample characteristics will be 

most useful to the parameter estimation process.  The restricted sampling changes the 

distribution of the samples, which would impact inclusion probabilities derived from their 

probabilities (or the inclusion densities derived from their measures, on continuous domains).  

A practitioner would want to consider if the restricted subset of samples is leaving out some 

part of the population that could cause bias in estimators. 

2.2 Model-based Methodology 

Model-based inference applies a model of the response as an outcome (a.k.a. 

realization) of a random process.  The random process is characterized by a distribution of the 
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random component that has some covariance structure.  For example, the covariance between 

two points may decay exponentially with distance, with rate of decay characterized by the 

range parameter.  Typically there is a systematic component to the response, which modulates 

the mean in the distribution of the response and which may also be characterized by a 

parameterized model.  Assuming a particular model, the preliminary objective of model-

based work is to estimate model parameters including those of a covariance function that 

describes the stochastic behavior of the response.  Typically the ultimate objective is to 

predict unobserved elements, based on the model and conditional on the responses of the 

observed elements. 

If the stochastic behavior is well characterized by some distribution or covariance 

structure, model-based estimation can be more efficient than design-based estimation, 

because knowledge of the structure adds information to what can be expected of unobserved 

elements. 

In model-based methodologies, forecasts or predictions are the expected value of the 

response.  The expectation can often be modeled with a linear model.  Conditional on the 

observed data, assuming the covariance structure is known, the predictions based on the 

conditional expectations are Best Linear Unbiased Predictors (BLUPs), which minimize 

mean square prediction error (MSPE) (i.e. – average squared difference between the observed 

and predicted values).  Zimmerman and Cressie (1992) discuss the effect of estimating the 

covariance parameters on the empirical (estimated) BLUP and MSPE. 

Kriging produces a best linear unbiased predictor of the response at a location 

conditioned on the response observed at sample locations.  Its application supposes that the 

response z(s) is a regionalized variable (continuous on the scale of interest).  Kriging models 

a tendency of regression of the response toward the mean (Laslett (1997)).  For the current 

scope, assume the continuous-domain response is the result of an isotropic stationary random 

process (see Cressie (1993)).  An incrementally stationary process is one for which the 

expected squared-difference in response depends only on distance between the locations, not 

on the absolute location.  A stationary process is a special case, for which the variance and 

mean of response does not depend on location.  A process is described as isotropic if the 

covariance (or mean squared-difference) does not depend on orientation of the two elements.   

A prerequisite to kriging is the specification, estimation and validation of a semi-

variogram or covariogram.  The semi-variogram describes the average squared difference of 

two elements' responses as a function of distance.  Kriging coefficients are derived from the 
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system of equations that solve for coefficients which minimize MSPE, subject to the 

constraint that they sum to one (ensuring uniform unbiasedness).  The solution involves the 

covariance matrix.  Refer to Cressie (1993), Thompson (1992), and Journel and Huijbregts 

(1977), among others, for theory and implementation.   

In some cases, the distribution of a response may be modeled to depend on auxiliary 

data – such as for model-assisted estimators.  For the discussion here, model-based estimation 

is with reference to modeling of intrinsic covariance structure and not involving auxiliary 

data.   

3 CONTINUOUS DOMAIN SAMPLING 

The first obvious difference between sampling on a continuous domain versus 

sampling a finite population is that the elements chosen to be in the sample are identified by 

location instead of unit identification.  The notation z(s) will denote the response at location 

indicated by the 2- or 3-D vector "s" defined on the continuous 2- or 3-D domain.  A vector 

of sampled locations will be denoted in bold z(s). 

On a continuous domain, the probability measure of any sample must be defined for a 

continuous domain.  The inclusion density (ID) of the i
th
 element is the integral over the 

measures of samples that include the i
th
 element, and the pair-wise ID of the i

th
 and j

th
 

elements is the integral over the measures of samples that include both elements (see Cordy 

(1993)).  The measures are with respect to a measure of a sample on the spatial domain with 

elements (locations) denoted by vectors si (or just s).  For the scope here, the sampling is non-

informative – i.e. the response z(s) does not influence selection of locations included in the 

sample.  Cordy (1993) extends the HT and Yates-Grundy (YG) estimators to the continuous 

domain.   

The response may be continuously varying, and described as regionalized.  The 

covariance between two elements is often characterized by the proximity of the two elements.  

For simulations described in a later section, the random process that characterizes the 

response is assumed to be incrementally stationary and isotropic. 

Since the response on the continuous domain may follow a trend or have spatial 

covariance, it is often prudent to obtain a spatially balanced design, to maximize efficiency of 

a sample (minimizing redundancy of observations).  This is achieved with either systematic 

or spatially stratified samples (see Stehman and Overton (1994) and Olea (1994)).  A feature 
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of these designs is that variance estimation can be problematic.  In some cases, there may not 

be direct estimators of the variance.  Stevens (1997) explains that congruent tessellation 

stratified designs with constant origin and one observation per stratum have no direct 

variance estimator.  The expectation of the HT estimator does not exist in this case, because 

samples for which pair-wise IDs equal to zero have non-zero measure (are possible) and the 

HT variance estimator involves division by pair-wise IDs.  Stevens (1997) describes a 

procedure developed by Dalenius et. al. (1961) for deriving the pair-wise IDs when the 

tessellation origin is randomly located.  The method is to determine the proportion of a 

congruent stratum that would not contain a stratum center such that two points would be 

contained by the same stratum, because by design (of one observation per stratum) those 

grids so located could not include both points.  For the randomly located tessellation, the pair-

wise IDs are all non-zero and so the HT and YG variance estimators can be shown to be 

unbiased. 

Unlike finite populations, the response between two elements is rarely exchangeable 

on the continuous domain.  Exchangeable means that any permutation of observations is a 

sufficient statistic.  The joint distribution of an ordered response, such as in a spatial context, 

depends on the spatial arrangement.  In particular, the variance of a linear combination of 

ordered responses is a function of pair-wise covariance typically depending on proximities.  

In finite populations, to the extent that the responses are used directly to estimate the sums of 

squares at a particular level in a nested hierarchy, the responses are implicitly being treated as 

exchangeable to estimate variability (Bellhouse, Thompson and Godambe (1977)).  As long 

as the units are exchangeable, the covariance within a particular level is constant and the 

sums of squares from each level in the structure are a sufficient statistic for variance. 

For continuous domains, the sampling process and the response's covariance 

structure can have an interacting effect on variability of the estimator.  If the range of 

covariance is very small relative to the resolution of points sampled, the sums of squares may 

be adequate to approximate variance within a particular stratum.  The locations of a pair of 

sampled sites establish a relationship between the sites' responses as either (effectively) 

independent or correlated.  The joint distribution of the sample's responses is generally not 

adequately handled by treating responses as fixed and exchangeable, as in finite populations.  

Oliver and Webster (1986) describe a study in which they explore whether what appears to be 

pure nugget effect (variability due to measurement) at the original sampling resolution would 
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then manifest spatial auto-correlation at a smaller scale.  Variance estimation on the 

continuous domain should account for possible covariance in the responses.   

It should be clarified that where sample elements are characterized as having 

independence due to the sampling process (Hansen, Madow and Tepping (1983)); Brus and 

de Gruijter (1993; 1997)), that independence is specific to the selection into the sample of one 

unit with respect to another, and it does not imply that the responses observed are 

independent (uncorrelated).  Inference on the response surface would involve the distribution 

of the response surface.  The mean and covariance structure, or sufficient statistics of mean, 

variance and covariance, are called for to reliably quantify estimator variance.   

4 CONVENTIONAL DESIGN-BASED VARIANCE ESTIMATORS 

These estimators quantify variance due to the sampling process.  The Horvitz-

Thompson variance estimator (involving the square and cross-product terms weighted by 

marginal and pair-wise IDs) is shown here for reference (where πi and πij are the marginal 

and pair-wise inclusion densities; and w'z represents the linear combination of the 

observations weighted by the inverse marginal IDs). 
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The HT variance estimator is unbiased with respect to the distribution of samples in the 

sample universe –provided πij > 0 a.e.   

Occasionally, the HT estimates turn out to be negative (Yates and Grundy (1953), 

Stevens and Olsen (2003)).  This is more likely to happen when there are pairs of points for 

which the pair-wise ID is very small, which can occasionally happen, for example, for 

random-origin tessellation-stratified (RTS) samples with one observation per stratum.  For 

fixed-sample-size samples, the Yates-Grundy (YG) form of the theoretical variance of a 

linear estimator is mathematically equivalent to that of the Horvitz-Thompson (Yates and 

Grundy (1953)).  When jiij πππ ≤  (as in RTS design), the YG estimator (below) has the 

advantage that it will not produce negative estimates.   
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In the continuous domain and when a RTS design is employed, the YG estimator can 

still sometimes be destabilized by the occasional sample for which one or more pairs of 

points happen to have points separated by very small distances (Stevens et. al. (2003)), as this 

would put substantial weight on those associated cross-product terms.  Stevens et. al. (2003) 

advise that the hazard of instability is even greater for unequal probability sampling. 

For stratified sampling with multiple elements per stratum, a design-based variance 

can be estimated by combining within- and between- strata mean square errors.  These direct 

estimates combine measures of low and high frequency variation - the within-stratum 

variance measuring the local variation.  This estimation of within- and between-variance 

assumes an exchangeable covariance structure.  Systematic samples or constant-origin 

stratified samples with only one element per stratum do not have a direct estimator of 

variance.  The conventional alternative variance estimators - contrast estimators - typically 

define quasi-strata containing 2 or more elements per stratum.  There is a plethora of varieties 

of contrast estimators, altering directions and sizes of the quasi-strata (see Wolter (1985)).  

The contrast estimators are sometimes interpreted as removing trend (or 1
st
 order correlation 

for finite-population domains). 

5 MODEL-BASED VARIANCE ESTIMATION – MSPE 

MSPE measures the variance of the random variable plus squared bias of the 

estimated mean.  Here, the variance is induced by the stochastic behavior of the response, as 

opposed to sample-process variance.  Often forecasting on time domains or prediction in 

spatial domains involves a covariance structure that is not exchangeable, but depends on lag 

or distance. 

For an incrementally stationary process, the semi-variogram can be characterized by 

a non-increasing function of distance between the two locations.  The best linear unbiased 

predictor for an unobserved location so, conditional on the observed data, is the conditional 

expectation of the response at that location.  If the average square of the increment in 

response is a decreasing function of distance, the average increment must be decreasing also.  

The expected value of one location conditional on another will approach the observed value 
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at that other location as distance diminishes.  This implies that the BLUP will have a 

diminishing range of values for locations so closer to the sampled locations.  In particular, for 

the sample resolution and ranges examined in this study, the MSPE is approximated by a 

linear relationship with the distance from so to the nearest observed location, when nearest 

distances are within the range of the process.   

Given incremental stationarity, the increment in response diminishes as distance 

diminishes, and thus, range of the prediction diminishes - i.e. the variability in the prediction 

due to sample process has some methodical behavior.  Samples from the sample universe can 

be loosely regarded as equivalence classes of samples defined by value and proximity of a 

sample's closest point to so, the value and proximity having important influence on the 

resulting prediction.  

Kriging coefficients can vary substantially from sample to sample (Diamond and 

Armstrong (1984)), but depending on the range, the kriging prediction may not vary much 

from sample to sample.  Since the prediction is a weighted average of the observations in the 

sample, the smoothing operation reduces variability.   

For resource managers and policy makers, the sampling process variance is of 

interest as a measure of precision as provided by the sampling and estimation process.  In a 

model-based approach for forecasts and predictions, this measure is often considered 

irrelevant.  The amount of natural variability about the predicted average is estimated by the 

MSPE, where the natural variability is analogous to the estimated variability about a cell 

mean in a linear model.  An estimate of sampling-process variance would indicate something 

about the precision with which the average value can be predicted, as afforded by the 

sampling process.  Good or poor precision might be foreseeable, depending on how far the 

location to be predicted is from the observed locations, relative to the underlying range of 

covariance.  A comparison of the sampling-process variance and the MSPE for various 

ranges and two sill values is demonstrated in later sections. 

6 PROPOSED MODEL-ASSISTED VARIANCE ESTIMATOR 

As alluded to above, the HT variance estimator sometimes comes out negative.  The 

YG alternative can occasionally be unstable for spatially balanced samples which happen to 

have a pair of points very close together.  Performance of contrast estimators may depend on 

choice of orientation and size of quasi-strata and the covariance structure.  In what follows, 
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an alternative method to sample-process variance estimation is explored.  Spatially balanced 

sampling designs do not always have a configuration of observations that permit direct 

estimates of variance, and model-assisted approaches might be useful and justified, as they 

are in small-area estimation (J.N.K. Rao (2003)). 

The proposed approach of a model-assisted (MA) variance estimator is based on 

some observations about sample designs and estimators.   A constrained sample cannot vary 

as much as a simple random sample.  On a continuous domain, estimates from two systematic 

samples in near proximity, relative to the underlying range of the covariance, may differ very 

little, depending on the smoothness of the process.  Within stratified designs, the variability 

of observations from each stratum will be limited by the variance within each stratum.  Given 

a reasonable model of the covariance structure for which reasonable estimates of parameters 

are obtained, the variance of the linear combination of observations (e.g. HT estimators and 

BLUPs) can be modeled as the sum of squared-coefficients times the average within-stratum 

variance.   

The within-stratum variance is readily modeled as developed in Appendix I, 

following similar computations for error variance in Ripley (1981, Ch. 3).  A general 

expression of within-stratum variance is  
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where b denotes the sill of the semi-variogram (or the variance of the random process); and 

where the covariance structure is denoted as c(h), a function of distance h that results in a 

valid (positive-definite) covariance matrix; and f(h) denotes the density of the distances 

within stratum area A. 

As an example, if the assumed covariance structure is exponential, the average 

covariance (cavg) is approximated by numerical integration, by averaging b*exp(-h/r) (where r 

denotes covariance range) over all point-pair distances on a dense grid overlaying the area of 

the stratum.  The average within-stratum variance is the modeled variance of the process 
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a vector of coefficients, and vwin denotes the average within-stratum variance if all the strata 

are the same dimensions. 

Covariance between strata is not relevant to the sample-process variability for a fixed 

study area completely covered by the stratification grid.  Ordinarily, poorly balanced samples 

from a domain with positive correlation means that, while there is less variability within each 

sample of positively correlated elements, there is more variability from sample to sample.  

For the stratified grid overlaying the fixed study region, all the strata are subsampled (at one 

location) in any sample from the sample universe.  If there is positive correlation between 

strata, that positive correlation will not vary from one sample to the next, on that fixed study 

region, and does not affect the variability of an estimate from one sample to the next. 

Other than within-stratum variance, the only other variability relevant to sample 

process is variability induced by the definition of the strata, due to randomly locating the grid.  

Given a stationary process, the average within-stratum variance will not vary due to location, 

so that a randomized grid origin has no effect on this parameter.  Conditional on the grid 

location, the variance of any element in the sample is the within-stratum variance, as 

described above.  Any effect due to wrapping the boundary strata around the ends of the 

region is ignored, and in the simulations there is little difference between fixed or randomly 

located grid stratification, on within-stratum variance or on the empirical variance of the 

linear estimates. 

In the case of a BLUP produced by kriging, the variance estimate is approximated by 

treating the kriging coefficients as though they are constant, though they are not.  The 

alternative estimator is demonstrated in simulations of both design-based and model-based 

contexts applied to continuous domains, as described in the following. 

7 METHODS 

Basic stratified samples were drawn repeatedly from a random field - a single 

realization of a random process.  The random field was generated with an exponential 

covariance structure using the RandomFields package available in R (Schlather (2001)).  The 

strata are defined by a regular 10 x 10 grid of 20 x 20 square strata overlaid on the 200 x 200 

field.  Each element in the field is (0.1)
2
 distance-units square, so the areal extent of the field 

is 20 x 20 distance-units squared.  Each sample contains 100 observations, with one 

observation per stratum.  For comparison, simulations were repeated for both randomized and 
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constant grid origins.  In the case of randomized origins (randomized on each trial), the grid 

is wrapped around the end of the field to continue on the other side, from left to right and 

bottom to top, so that the strata on the edges straddle the top and bottom or left and right 

boundary of the field.  The boundary effect in these strata is ignored in the estimation process 

in this study and the amount of error thus introduced is not quantified here. 

For the design-based context, the HT estimate of total response on the domain is 

computed for each of 1000 trials of stratified sampling on a fixed realization of a random 

field.  For each trial, a semi-variogram is fitted, assuming exponential covariance structure 

with no nugget, using REML.  The model-assisted variance estimate and HT and YG design-

based variance estimates are computed for each trial.  These are compared to the empirical 

variance of the HT estimates of the total. 

The entire process was repeated for 8 combinations of sill and range values (ranges 

of 0.5, 1, 2 or 4; sill values of 1 or 4).  In all cases, the stratum size is 2x2 distance-units 

squared, one observation per stratum – resulting in an average sampling interval of 2 

distance-units.  At present there is no nugget.  In previous implementations, there was only a 

modest effect of model misspecification if the actual covariance was spherical but an 

exponential form was assumed. 

For the model-based scenario, ordinary kriging is used to predict a location (constant 

over the sampling trials of a particular field).  Kriging is implemented as described in Cressie 

(1993).  Sampling and kriging were repeated for 1000 trials per realization.  The computed 

sampling-process variance (estimated by the model-assisted estimator) and the kriging 

variance (model-based MSPE) were saved for each trial.  Means and histograms are 

compared with the empirical variance of the prediction. 

8   RESULTS 

8.1 Design-based context results 

Histograms of model-assisted (MA), Yates-Grundy (YG) and the Horvitz-Thompson 

(HT) variance estimates of the 1000 trials for each range-sill combination were examined.  In 

all combinations for stratified samples with a randomly located tessellation grid, the HT 

variance estimator has a notable negative tail in its distribution.  There is a greater prevalence 

of negative estimates for those samples for which one or more pairs of points are in close 

proximity.  Usually there is not evidence of bias in the HT variance estimator.  The MA and 

YG histograms were generally similar in range, shape and location for all combinations.  The 
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ranges of the MA and YG histograms are typically smaller than those of the HT estimator, 

even when the negative estimates are ignored.  The ranges of the positive parts of the three 

estimators' histograms are not extraordinarily different.  The YG histograms are slightly 

right-skewed.  Those of the MA are for the most part symmetric.  Occasionally, but less often 

than HT or YG, the MA can also get high estimated values of estimator variance – indicating 

that occasionally the range and sill parameters are poorly estimated.  If the range is estimated 

to be much smaller than the true range, there will be a larger estimate of within-stratum 

variance, which inflates the estimated variance.  The histograms for range of 4 and sill of 2 

are shown in Figure 2-1, for illustration.  Histograms from the other combinations are similar. 

 

Figure 2-1 Histograms of the variance estimates (1000 trials with randomly located grids).  

"Emp. Var." is the empirical variance of the HT estimates of total. 

The variance estimators are compared to the empirical variance of the HT estimate of 

total.  Table 2-1 summarizes the empirical median relative errors of the conventional HT 

(VHT), the MA (VMA), and the YG (VYG) variance estimates, for the stratified samples taken 

with a randomly located grid.  The empirical median relative error is the difference between 

the median estimated variance and the empirical variance, divided by the empirical variance. 
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The median relative errors of the HT variance estimator were all positive.  Those of 

the YG estimator were all negative.  Those of the MA estimator were centered around zero.  

The worst absolute median relative errors were 37.2% (HT for sill of 1 and range of 4); 

22.8% (YG for sill of 1 and range of 2) and 13.8% (MA for sill of 1 and range of 2).  More 

often than not, the MA variance estimator out-performs the YG estimator.  In two of the eight 

combinations, the HT variance estimator has the smallest median relative error.   

A comparison of the efficiency of the MA and YG variance estimators relative to the 

HT variance estimator is given by the ratio of the empirical standard deviations of MA (or 

YG) variance estimates to that of the HT variance estimates.  These are summarized in Table 

2-2. 

 

Table 2-1 Empirical median relative errors (1000 trials with randomly located grids). 

Sill 4    1    

Range 0.5 1 2 4 0.5 1 2 4 

VHT 0.068 0.063 0.189 0.161 
*
0.044 0.185 

*
0.070 0.372 

VYG 
*
-0.045 -0.122 -0.117 -0.176 -0.052 

*
-0.032 -0.228 -0.133 

VMA 0.055 
*
-0.024 

*
-0.001 

*
-0.035 0.049 0.084 -0.138 

*
0.004 

* Indicates the smallest absolute median relative error of the range-sill combination. 

 

Table 2-2 Ratios of empirical standard deviations of variance estimators. 

  (1000 trials with randomly located grids). 

Sill 4    1    

Range 0.5 1 2 4 0.5 1 2 4 

VMA / VHT 0.56 0.43 0.27 0.24 0.66 0.36 0.20 0.14 

VYG / VHT 0.77 0.62 0.35 0.28 0.84 0.43 0.27 0.17 

 

Table 2-3 Empirical median relative errors (1000 trials with fixed grid locations) . 

Sill 4    1    

Range 0.5 1 2 4 0.5 1 2 4 

VMA -0.050 -0.071 -0.073 0.018 -0.001 -0.019 0.081 0.120 

 

In every case, there is reduction in variability in both the MA and YG variance 

estimates over the HT estimates.  The reduction is greatest for the higher ranges (2 and 4), for 

which the reduction is on the order of 75%.  Reduction at the lowest ranges is on the order of 

50%.  Variability of the MA variance estimator is on the order of an additional 25%  smaller 

than that of the YG estimator. 

In the case that the tessellation grids were not randomly located, the HT variance 

estimator and YG variance estimator are not available.  The empirical median relative error of 
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the MA variance estimator is summarized in Table 2-3.  The largest absolute median relative 

error is 12% for a sill of 1 and range of 4.  Much of the error would be attributed to poor 

range/sill estimates, as the estimated range is usually smaller than true range for the range of 

4. 

 

8.2 Model-based context results 

The empirical variance indicates sample-process variability of the estimated average 

response for the kriged location, for the 1000 trial samples.  While the MA variance estimator 

is only an approximation that does not account for variability of the kriging coefficients, the 

histograms of the estimates produced from 1000 trials for each range-sill combination, with 

or without randomized origin, do not show any systematic patterns of bias.  The 

approximated estimates would be reasonably useful to suggest a rough idea of the sample-

process variability of the estimated expected response. 

Figure 2-2 Histograms of MSPE (upper panels) and approximate sampling-process variance 

(lower panels). 

Figure 2.  Histograms of MSPE (upper panels) and approximate sampling-process variance (lower panels). 
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For the lower ranges, the predicted response tends to be consistent from sample to 

sample.  As the range increases, the amount of variability over the samples starts to have 

more sizeable magnitude relative to the MSPEs.  Figure 2-2 contains histograms of the MSPE 

computed using the estimated and known sill and range (upper panels) and of the 

approximate sampling process variance as estimated by the MA for estimated and known 

parameters (lower panels) for a sill of 1 and range of 1, for stratified samples with 

randomized origin.  The observed variability in the predicted value is indicated by the 

reference line labeled "Emp. Var.".  Histograms for other combinations of range and sill are 

not notably different.  

9 CONCLUSION 

The basis of inference for design- and model-based approaches to sampling and 

estimation were compared, and precautions suggested for their applications.  The 

idiosyncrasies of application in the spatial domain were described.  The interpretation of the 

variability described by design- and model-based paradigms was discussed, addressing what 

source of variation each method quantifies.   

There are many applications of employing models to restrict the sampling process to 

select samples that will optimize parameter or coefficient estimation, to optimize efficiency 

and to reduce bias.  These applications are found in studies of both design- and model-based 

objectives.  Design-based variance estimation development has focused on variability of 

inclusion of elements in a sample, with some discussion emphasizing independence due to 

sampling process.  The paradigm seems to have left out the potential for employing response-

covariance models to estimate sample process variance, though this variance is influenced by 

that covariance structure if the sampling resolution is comparable to the range of covariance. 

Besides being efficient, the model-based paradigm that the response is correlated is 

useful and important for samples taken from the spatial domain.  If the sampling resolution is 

dense relative to the range of the covariance, the exchangeable model of response is less 

defensible for application to estimating variance.  The correlation is not ignored when 

sampling strategies are compared for optimality (as studied by Cochran (1946) and Bellhouse 

(1977)).  The covariance of the response is fortuitous for providing a potential way to 

efficiently estimate variances when direct estimators are lacking due to the sampling design 

structure.  The simulations show that explicitly modeling the covariance of the response, to 
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model the restricted variability of observations within strata and of the linear estimators, can 

provide an efficient and effective approach to estimating sampling process variability.  This is 

consistent with the results in Cordy et. al. (1995). 
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APPENDIX I – WITHIN-STRATUM VARIANCE 

Computations in this section are similar to error variance modeling described in 

Ripley (1981).  z(s) (abbreviated "z") is a realization of a stationary, isotropic random 

process.  The covariance of the response z(s) and z(t) is assumed to be a function of the 

distance "h" between s and t, denoted C[z(s),z(t)] = C[||s-t||] = C(h).  Denote the random 

process mean and variance ( )[ ] µ=sZE  and ( )[ ] 2σ=sZV .  To indicate an expectation or 

variance within a stratum of area A, denote the expectation conditional on the realization Z as 

E[z | Z; A]; similarly for the variance.  The variance of the response within an area A is E[(z – 

zA)
2
], where zA is the mean of the response in area A (denoted |A|=w

–1
).  Note that 

∫==
A

dswwA µµµ .  Within-stratum variance is expressed as follows: 
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The expression in (1) simplifies by combining the 2
nd
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The third term in (1) is expressed as in (2) by noting that 

( ) ( )( )∫ −=−
A

A dttzwz µµ  is constant with respect to ds, and can be taken outside the 

integral.  Bringing the original w into the integral, the expression becomes: 

[ ] ( ) ( )( ) ( )( )∫∫∫ −−−−=
AAA

dsszdttzwdszwAZzV µµµ 22
,|  (3) 

In other words, the within-stratum variance is the process variance reduced by the 

average covariance within the stratum. 
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ABSTRACT 

Design-based variance addresses variance of estimates induced by the sampling 

process of observing a random subset of the response over its domain.  The variance of the 

estimate is the expected squared deviation from its mean over all possible samples taken on 

the domain.  The probability (or "measure" on a continuous domain) need not be uniform 

over all samples.  For non-probability (a.k.a. purposive) samples – such as convenience 

samples or observations taken at haphazardly selected locations, an estimate based on 

purposive elements has no sample-process variance.  Nevertheless, a stakeholder might 

reasonably ask, using information inferred from observations about an assumed-stationary 

response covariance structure, how much would an estimate derived from other sets of 

observations at similarly arranged patterns of locations (elements) vary?  A class of similarly 

arranged elements or a sample process can be characterized by set measures on the universe 

of point patterns.  This study is part of on-going research to derive the variability of an 

estimator over similarly arranged collections of observations of a regionalized response on a 

continuous domain of areal extent or on a linear network domain such as a stream network.  

In this paper, several point pattern statistics are examined for their utility to provide a set 

measure on sets of elements taken from the universe of possible point patterns on each 

domain.  Results in this study show a reversal in tendencies in efficiency between metrics 

incorporating either all or only neighboring point pair distances on areal domains vs. on linear 

network domains.  Three point-pattern statistics are examined for a domain of areal extent – 

an inner product statistic applied to ordered point-pair distances, the "Side-Vertex-Boundary" 

(SVB) Dirichlet tile statistic, which measures regularity of point patterns, and a statistic 

derived from Ripley's K(t) functions.  Three statistics are examined for linear networks – a 

statistic derived from the theoretical exponential distribution of completely random (Poisson 

process) consecutive-location distances; a stochastic rank statistic based on the cumulative 

distribution of the consecutive-location distances at a proportion of the sampling resolution; 

and a 2D version of SVB.  The utility of these metrics to perform goodness-of-fit (GOF) 

assessment of patterns to classes of point patterns is evaluated by Monte Carlo methods for 

spatially regular (stratified), and random (Complete Spatial Randomness (CSR)) patterns on 

areal extents and also for these and clustered patterns on a stream network.  The inner-

product and exponential-fit statistics are fairly good; the K(t)-derived, SVB and stochastic-

rank statistics are very good as discriminators.   
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Keywords:  K(t)-functions, Dirichlet tile, spatial point pattern, linear network sampling, 

Goodness-of-fit 

1 INTRODUCTION 

1.1 Establishing a Foundation for Quantifying Variability on Non-probability Samples 

When one reports a summary statistic of a population, in the field of Statistics, it is 

understood that when the statistic is based on a sample from the population, that there is 

variability of the outcome of the statistic based on the sample process – that is, based on 

which elements in the population were used to compute the statistic.  Considerable theory is 

established to describe sampling distributions.  There are two typical models to derive the 

behavior of a sample statistic – one which supposes an underlying distribution of the response 

being observed; and one which regards the response as fixed and focuses on the 

randomization of sample selection.  In a typical introductory development of the sampling 

distribution as described by the model-based paradigm, if observations are drawn from a 

theoretically infinite domain, supposing the observations are independently identically 

distributed (iid), a sufficient statistic is derived to estimate a distributional parameter - say, 

the mean.  The behavior of the statistic is examined by taking the expected value and variance 

of the estimator, which will be derived with respect to a presumed distribution.  As an 

illustration, suppose the sample mean is used to estimate the population mean, where the 

population is assumed to have random behavior described by a particular distribution.  In the 

following familiar development, xi is an observed value of a random variable X, which it is 

supposed, has some distribution indexed by a (vector) parameter:  ( )βΦ  (e.g. the normal 

distribution).  If the observations are iid, the examination of the theoretical performance of 

the statistic W(X) is simplified.  In these expressions and throughout, the operator E[] 

represents taking expectation and V[] represents taking the expectation of the second central 

moment i.e. – the variance. 
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In the second model, the response X is treated as fixed (there may be a qualifying 

index period for which the response might be regarded as fixed).  To examine the quality of a 

sample statistic (which can be interpreted as an extrapolation from a sample to the 

unobserved response on the fixed domain), a model of the randomization process is useful.  

This is developed extensively in Survey Methodology.  As a simple illustration, consider a 

response X on a fixed domain – which could be a finite population or a bounded surface.  (For 

all practical purposes, the response is always finite).  Indicator variables on the indices of the 

elements in the domain are distributed according to the probabilities (or densities) that the 

elements are included in a sample.   

For example, on a bounded study region sampled uniformly, the density of a point at 

location s is modeled as 
A

sf
1

)( = , where |A| denotes the area of the region (so that the 

probability of including a point from a subset of the domain with area |a| is |a|/|A|).  Then the 

analysis of the sample statistic W(X) used to estimate a summary of the domain involves the 

indicator variables.  For example, for a finite population of size N, the estimator involves the 

indicator variable of the i
th
 unit and the behavior is examined with respect to the distribution 

of the indicator variable:  [ ] [ ][ ]∑∑
==

∈=







∈

N

i

ii

N

i

ii SiIExwSiIxwE
11

.  In theory, since the 

practitioner has control over how units get sampled, the weights in the estimator can be 

chosen to provide an unbiased estimator.  The variance of the estimator is also with respect to 

the behavior of the indicator variable on the domain, and involves the second-order properties 

– the pairwise inclusion probabilities (or densities) on the domain.  Cordy (1993) extends 

some finite population design-based estimators to the continuous domain. 
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Godambe and Thompson (1988) provide an interesting alternative interpretation to 

describe the behavior of a sample statistic.  In this development, supposing the objective is to 

establish the mean of a population, the variation among individuals from the population mean 

is regarded as nuisance parameters.  They use the random effects model to show how the 

randomization of the sampling process is a way to adjust for the nuisance parameter.  They 

conclude that the randomization provides a model-free basis for the long-run frequency 

behavior of a sample statistic.  This property is an important foundation for the preference of 

employing a sample design to produce a probability sample of observations on which 

population statistics are estimated. 

A probability sample is one for which elements in the domain are randomly selected 

to be in a sample, by explicitly employing a random mechanism.  The domain is represented 

by a frame  - a list of units for a finite population or a map for a domain of spatial extent (e.g. 

a list of segments for a domain of linear extent)).  Each element on the frame is assigned a 

probability, or an inclusion density is defined on the domain, such that a random mechanism 

is employed to determine inclusion of domain elements in the sample with the probability or 

inclusion density associated with each element.  The way that the inclusion probabilities or 

inclusion density are defined is formally the sample design.  The sample design may assign 

variable inclusion probabilities, sometimes as a function of auxiliary variables which could be 

continuous or categorical (such as in cluster or stratified sampling).  (There are sampling and 

estimation procedures for cases in which the target population elements are not itemized - 

referred to as distance sampling, which is not covered in this study (see Buckland et. al. 

(1993)). 

An important underlying premise of using a sample to characterize a population is 

that the sample is representative of the population.  A potential disadvantage of the 

randomization paradigm is that the sample may only be guaranteed to be representative on 

average with respect to all possible samples obtained from the prescribed sample design.  

Royall and Cumberland (1985; 1981) illustrate bias (i.e. error, not expected error) of 

unrepresentative samples which occur by chance under least restrictive sampling designs on 

numerous examples involving finite populations (from actual surveys, such as hospital data).  

In their developments, Royall and Cumberland suggest that a robust strategy of any sample 

design is to restrict the sampling process in some way in order to achieve a sample 

cumulative distribution that closely approximates that of the population:  ( ) ( )YFYF ss ≈ , 
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where Y represents the random response in the finite population and Ys represents the random 

response observed in the sample. 

Taking a sample without employing a formal sample design – specifically, without a 

random mechanism is never recommended.  There are examples in abundance of misleading 

extrapolations from convenience samples to a population or domain.  A very famous example 

involves predicting the outcome of the 1936 United States presidential election (Freedman et. 

al. 1991).  Haphazard samples, convenience samples and observations taken on selected 

elements thought to represent the domain are usually afflicted with selection bias.  Peterson 

et. al. (1999) and Paulsen et. al. (1998) discuss examples in natural resource monitoring of 

non-probability samples that do not adequately represent the response over the domains of 

interest.  Other sources of bias include survey non-response (which can include landowner 

denial of access in spatial studies) and measurement error.  Selection bias and other sources 

of bias and adjustments for bias are not addressed in this study.  Simcox et. al. (2004) 

demonstrate an analysis of representativeness of non-probability samples for water quality on 

USGS monitoring stations in a New Hampshire watershed, using techniques similar to post-

stratification. 

Though not recommended, non-probability samples do happen to good agencies, 

frequently.  Doing a proper sample design and survey can be prohibitively expensive.  An 

agency may have some observations from pilot studies, or from index monitoring stations 

that might hopefully represent a carefully specified subset of the domain, or from 

observations from encountered phenomena.  While any extrapolation from the observations 

to a domain would most certainly have to be treated as preliminary without a probability 

sample design, a stakeholder would naturally be inclined to ask how much the extrapolation 

from the observations in the non-probability sample might change if a similar sample of 

elements on the domain had been observed.  This is the question of focus in this research. 

The crux of the question is that there is no sampling distribution model to 

characterize the sample statistic from the methods used in practice today.  Survey design-

based methods require that the inclusion probabilities or densities be specified.  For the non-

probability sample, technically, the inclusion probabilities of the observed elements are one, 

meaning that the event that the observed elements were included in the sample is a sure event, 

providing no information about the long-run frequency behavior of the sample based on those 

observations. 
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While model-based methods conditional on observations do not require the inclusion 

densities, there are the disadvantages of having to defend a prescribed distribution model.  

Hansen, Madow and Tepping (1983) warn that model misspecification can be difficult to 

detect.  They demonstrate that a model-based extrapolation may be asymptotically 

inconsistent when the model is misspecified.  Furthermore, even when a model is correctly 

specified, one almost always needs to estimate the parameters.  The outcome of the estimate 

depends on what elements were observed.  Smith (1984) cites several authors including Kish 

on design effects (the effects of how the elements were selected for observation), customarily 

ignored in conditional inferences, that can result in substantially poor confidence interval 

coverage or bias. 

The other difference between the model-based approach and the design-based 

approach is the interpretation of the variability estimated.  The model-based approach 

explicitly models variability as induced by the underlying random process of the response.  

The design-based approach explicitly addresses the variability induced by the randomization 

of the sampling process.  For the question of focus – how much would the agency's 

extrapolation vary over other sets of observations – the variability of concern is that induced 

by which elements were observed.  As noted, the problem with the non-probability sample is 

that current available methods do not apply, because the specification of the inclusion 

probabilities (density) is pathologic. 

Not a lot of researchers have addressed non-probability samples.  Where non-

probability samples have been employed, the application is essentially using the additional 

information from the non-probability samples as auxiliary data to adjust estimates based on 

observations from an additional subsequent probability sample.  Brus and de Gruijter (2000) 

employ a non-probability sample to do a post-stratification adjustment.  When the response of 

interest is linearly correlated to an auxiliary variable, post-stratification is a process to adjust 

a sample statistic of the response for bias (error), in which the difference between the total or 

mean estimates for the auxiliary and that of the known population total or mean of the 

auxiliary variable is used to estimate a correction to the sample statistic.  In their application, 

Brus et. al. use the kriged value (the best linear unbiased predictor interpolation) conditional 

on the non-probability sample at the probability sample locations as the auxiliary information.  

Overton, et. al. (1993) also use a non-probability sample (described as "found" data) to do 

similar post-stratification adjustments on a probability sample.  They explore using non-
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probability data for augmenting sample size and also for inference on a response not available 

from a probability sample on the same region. 

In the present research, the objective is to provide an assessment of the variability of 

an extrapolation from a non-probability sample to the rest of the domain, perhaps as a 

preliminary data point, accepting that the extrapolation includes risk of selection bias 

nevertheless.  Because the non-probability sample has pathologic inclusion densities, there is 

not a basis for the application of the conventional design-based metrics.  The assessment of 

bias and efficiency (variance) on the extrapolation does not have a long-run frequency basis 

of interpretation as described by Godambe and Thompson (1988).  However, the observations 

and the order of the observations as provided by their arrangement on the domain will impact 

what kind of bias (in the sense described by Royall and Cumberland) an extrapolation would 

have when the observations are taken on a regionalized response – a continuous response 

with a covariance structure such that locations in close proximity are more similar than 

locations beyond the range of covariance.  A question of interest that has useful and natural 

interpretation is how much the extrapolation would vary on other sets of observations that are 

arranged similarly to the given non-probability sample.  From this natural idea, we develop a 

basis for characterizing the stability of the extrapolation (conversely, the variability), by first 

providing a precise, mathematical characterization of a class of patterns of similar 

arrangement.  In a subsequent paper (Dissertation Chapter 4), methods are explored for 

estimating the variability of an estimate over a class of patterns.  

1.2 Developing a method to characterize classes of point patterns 

Many spatial point patterns arise as the result of some stochastic point process.  

Examples abound in ecology – e.g. patterns of locations of trees and nests (Ripley (1981)).  

Examples are found in astronomy (Ripley (1977)).  Studies of disease transmission and extent 

will involve arrangements of locations (Besag and Diggle (1977)).  Quite often, a goal is to 

characterize a point pattern with the ultimate objective of modeling some underlying 

stochastic process (such as dispersion or inhibition or competition).  The metrics that 

characterize a stochastic point process can be applied to specify a class of similarly arranged 

patterns, though the objectives differ.  The goal of this study is to develop a way to 

characterize classes of similarly arranged elements on spatial domains.  (The terms elements 

and points are used interchangeably throughout.)   



 

39

A class of similarly arranged elements or a sample process can be characterized by 

metrics that partition point patterns for useful features such as regularity of spacing or 

clustering of points within the pattern.  Ripley (1981 (Ch. 8)) discusses some popular point 

pattern metrics and provides numerous examples on data such as tree and nest locations.  

Many point-pattern statistics are based on inter-point distances or on nearest neighbor 

distances.  The Clarke-Evans (CE) statistic, the sum of the nearest-neighbor distances, is one 

of the earlier devised metrics Ripley (1981).  Ripley (1981) also describes two functions that 

characterize the second-moment properties manifested by inter-point distances and distances 

from arbitrary points to points in the point pattern.  These are P(t) – the cumulative 

distribution of the distance t to the nearest event from any arbitrary point; and the popular 

K(t) – the average number of events within a distance t of a point, normalized by the intensity 

λ  (expected rate of events per unit area) of the process, so that λ K(t) is the expected 

number of events within a distance t.  For a 2D spatial Poisson process, ( ) 2ttK πλ = .  

Ripley (1981) cites several studies that suggest Besag's linearized version of K(t) 

( )( )λπttB =  is more sensitive to departures from Poisson behavior than CE or P(t) 

(Ripley (1981)).  The distribution of quadrat counts is also sometimes employed (Ripley 

(1981)).  Quadrat counts record the number of events occurring within a fixed-dimension 

fixed-area frame (usually circular or square), for random placements of the quadrats (as 

described in Ripley (1981)).  Statistics on the Dirichlet tiles can also be useful summaries.  

The Dirichlet tile on a point is the enclosed area defining the part of the domain closer to that 

point than any other point in the point pattern.   

A useful point-pattern metric partitions the universe of point patterns in some way 

meaningful to the application – in this case, by separating similar arrangements from those 

not similar enough to that of the purposive sample. The metric is a measurable mapping from 

an n-vector of locations s to a finite or non-negative subset of the Real numbers.  Refer to 

Figure 3-1.   
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Figure 3-1 Schematic of dual mappings from set space A
3
 to metric mapping ( )sγ  (arrow (1)) 

and from metric mapping to pre-images in set space A
3
 (arrow (2)).  The conceptual wedge W in 

the set space represents the pre-image of the event that the metric falls within the interval 

labeled W.  A formulation of metric density ( )( )sf γ  defines a class of point patterns in A
3
 

(arrow (2)), providing a unique (a.e.) reference on which to characterize variability of an 

extrapolation from a non-probability sample.  Specificity of GOF of various metrics is examined 

by realizing point patterns from representative types of processes (arrow (1)) and examining 

separation of the empirical metric densities that result. 

 

Consider size-n realizations of some stochastic process, where 2≥n .  Let 
nζ  

denote the n-fold product space of the domain A – where A is some bounded spatial domain.  

Let s denote a member of 
nζ , where the components si of s are each an ordered pair (x,y) 

denoting a location on A.  Note that this notation of a member of 
nζ  treats the components 

as ordered, although in application, inference on the domain should be invariant to the sample 

index order of the locations in the sample.  The notation simplifies the development that 

follows, without limiting generality, as long as permutations of sample index are accounted 

for.  That is, in this notation, there are n! ways to represent a specific point process outcome 
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{s1, s2, … , sn} (excluding any multiple occurrences at a location).  The members of 
nζ  will 

have some probability measure, denoted ( )sf sp , depending on the stochastic process from 

which the point patterns are realized. 

Let ( )sγ  denote a bounded or non-negative metric of the pattern of locations, i.e. a 

measurable mapping from 
nζ  to the Real numbers.  Let a default stochastic process be the 

Complete Spatial Randomness (CSR) process, for which the density ( )sf sp  is constant.  Let 

oΓ  denote the range of ( )sγ  for the point pattern domain 
nζ .  For the default process let 

( )( )sff o γγγ =  denote a measure on the range of ( )sγ  induced by the measure on s for a 

CSR process ( ( )sfCSR ).  This measure is guaranteed by requiring that the metric ( )sγ  is 

measurable.  The measure ( )( )sff o γγγ =  is a probability measure and so is non-negative 

everywhere on its support (the range 
oΓ  of ( )sγ ).  Also in general and for 

ofγ , 

( )( ) 1=∫
Γ∈γ

γ γ sf . 

Define G to be a subset of 
oΓ  that is a member of a family of sets that are finite 

unions of M intervals {Ii} covering 
oΓ .  If the M intervals of {Ii} are overlapping, represent 

G by a finite union of M
*
 disjoint intervals {Jj}.  The set G is a member of the Borel sets 

generated on 
oΓ , so G is measurable with respect to the density 

ofγ  on 
oΓ .  Let the measure 

of G be denoted as ( )G∆ . 

The evaluation of the measure ( )G∆  is expressed as follows: 

( ) ( )( ) ( )[ ] ( )( ) ( )( )∑ ∫∑ ∫∫
= ∈= ∈∈

=∈==∆
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Because ( )sγ  is a measurable functions mapping from 
nζ  to the Real numbers, the 

measure that characterizes the point pattern realizations of a stochastic process ( )sf sp  

induces a measure ( )( )sf γ  on the metric range.  For the CSR process, 

( ) ( ) ( )( )sfsf oss

CSR γγ
γ → →

. 

The goal, for providing a basis for describing variability of an extrapolation over 

similarly arranged locations of observations, is to characterize classes of point patterns 
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similar to the purposive sample.  A distribution of a class similar to the purposive sample 

should include outcomes where the range of ( )sγ  of the class is similar to the metric of the 

purposive sample's:  ( )pp sγγ ≡ .  That is, the interest is for the description of the metric to 

define a class on the universe of (size-n) point patterns, so that a subset of the metric range 

would imply certain arrangements of points (the pre-image of the subset) (as indicated by 

arrow (2)).  ( )( ) ( ) { } ( )sfsf n

ss

ζ
γγ  → →

 where { }s  denotes some set of point patterns. 

To this end, suppose a measure ( )( )sf γ  is to be specified on the metric range, such 

that the support Γ  of the new measure is a subset of the range 
oΓ  and such that 

( )( ) osf Γ⊆ΓΓ∈∀≥ ,0 γγ  and ( )( ) 1=∫
Γ

sdsf γ .  Let 
*ζ  denote the inverse image of Γ  

under ( )sγ  - i.e.- ( ){ }Γ∈= ss γζ :*
.  Since 

oΓ⊆Γ , 
nζζ ⊆*
.  The Appendix is intended 

to show that there is a unique (a.e.) measure on 
nζ  induced by a measure ( )( )sf γ  defined as 

above.  Thus specifying a certain density ( )( )sf γ  on the metric ( )sγ  defines a class of point 

pattern arrangements on the universe of point patterns.  Specifying the class of point patterns 

provides a reference against which the variability of an extrapolation from a non-probability 

sample can be measured. 

The joint density ( )sf  may not have a closed-form expression.  The Strauss model 

(Strauss (1975)) characterizes the joint density of point patterns realized from inhibiting or 

clustering stochastic processes as a probability density on the number of nearest neighbors 

(y), where two points are neighbors if they are within a fixed distance r.  In this model, f(sn| 

s1, …, sn-1) is characterized by addition of tn nearest neighbors by the addition of sn, or tn = yn 

– yn-1.  Strauss (1975) shows that the unconditional form of the joint density is 

( ) ( )
( )vM

e
vsfvsf

Y

vy

0;; == , where v is expected number of neighbors and MY(v) is a 

normalizing function.  Kelly and Ripley (1976) derive a recursive formulation of Strauss' 

model ( ) nyncabcbasf =,,;  which they then use to propose a birth and death process to 

realize a Strauss model.  Geyer (1999) shows that, conditional on the number of points n, in 

the limit on a parameter of expected number of neighbors v, the Strauss process is either 

completely regular or a one-ball cluster.   



 

43

In these developments, there is typically interest in describing a stochastic 

mechanism.  In the present application, there is not a stochastic mechanism associated with 

the non-probability sample.  The goal is to develop a set measure in order to give explicit 

definition to classes of similarly arranged patterns.  Class definition is accomplished by 

partitioning the universe of sets of spatially-arranged points with suitable metrics. 

In application, going from some subset G of the support of ( )( )sf γ  to the pre-image 

{ }Gs  in 
nζ  that maps to G (Figure 3-1 arrow (2)) can be achieved by various search 

algorithms with varying degrees of efficiency.  One strategy is doing an Accept/Reject 

method of trying out patterns at random, accepting or rejecting them with a probability 

proportional to the density ( )( )sf γ  evaluated at the metric ( )sγ  produced by each.  Van 

Groenigen et. al. (1999) use spatial simulated annealing (SSA) to search for patterns with 

particular properties, by iteratively perturbing an initial (size-n) set (one element at a time), 

allowing a new sample either when an optimizing fitting function improves or with some 

(decreasing) probability.  The fitting function for effecting the class of point patterns might 

involve the metric density ( )( )sf γ  and the observed metric ( )sγ  resulting after each 

perturbation.  Warrick and Myers (1987) have a search algorithm for achieving particular 

distributions of point pair distances, by which they take sums of squares of discrepancies in 

the realized and desired distributions and select an outcome with a minimum sum of squares. 

A question of interest in this research involves evaluating various metrics for 

effectiveness in partitioning the space of size-n sets of points into meaningful classes that 

would be of interest for comparison with a purposive sample's pattern.  To this purpose, it is 

convenient to start with sets of various representative types – e.g. regular, random, clustered 

and highly clustered, on which to examine empirical distributions of each candidate metric 

resulting from the representative types (in the direction of arrow (1) in Figure 3-1).  The best 

metrics will have densities ( )( )sf γ  with very little overlap from one type to the next.  For 

this study, the representative types of patterns are produced by stochastic processes 

(described in the Methods section) to generate repeated realizations of each type of pattern to 

get empirical densities ( )( )sf γ .  Thus, Monte-Carlo methods are used to evaluate specificity 

of goodness-of-fit (GOF) of arbitrary patterns to classes of various types of patterns.  A good 

GOF means the pattern is typical of those in that type and excludes outcomes more extreme 

than the 20
th
 and 80

th
 quantiles of the empirical densities of the patterns. 
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In the process of evaluating metrics, the stochastic processes implemented produce 

sets of points in the point pattern space, from which the locations are mapped into a one-

dimensional metric range (arrow (1)).  This is an expedient way to study effectiveness of 

candidate metrics on the representative types of patterns to evaluate performance for 

assessing GOF.  For the objective of defining a class of point patterns on which to reference 

the variability of an extrapolation, specifying a density on the metric range provides a most 

general class formulation that is interpretable and manageable, without relying on stipulating 

a process to realize that class of points.  That is, specifying a density and its support on a 

metric is a tractable way to explicitly define a class of similarly arranged patterns (where the 

coercion is in the direction of Figure 3-1 arrow (2)). 

The domain is fundamental to what point patterns are possible to observe.  The usual 

domain of point patterns is one of areal extent.  For this study, the domain is a square area 

with no holes.  The other domain examined in this study is a linear network – the actual 

example used is a network of stream segments on the Alsea basin, in Oregon.  The frame 

provided is an ARC shapefile provided by Oregon Department of Fish & Wildlife (ODFW).  

The Alsea network section is illustrated in Figure 3-2 overlaid with the locations of a non-

probability survey taken by ODFW. 

On the domain with areal extent, a measure on point patterns can be characterized by 

densities on point-pattern statistics such as the point-pair distances, or on features of the 

Dirichlet tiles, or on characteristics of Ripley's K(t) functions, or functions related to these 

metrics.  In the case of the linear network domain, the consecutive-point distances are a 

useful statistic to derive more concise point-pattern statistics (this point is revisited in the 

Discussion).  The empirical densities of candidate statistics considered (described in more 

detail in the next section) are produced using Monte Carlo methods.  The measure induced on 

the universe of point patterns characterizes point patterns similarly arranged to a (non-

random) point pattern for which there are observations.  The characterization of the 

arrangement of points and estimated response covariance structure are to be applied in a 

subsequent paper (Dissertation Chapter 4) to characterize the variation in an estimate 

produced from a class of similarly arranged patterns of elements.   
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Figure 3-2 A linear-network domain – a section of Alsea basin, Oregon.  Points overlaying the 

network represent a non-probability sample surveyed by ODFW. 

 

2 ASSESSING METRIC SPECIFICITY FOR GOODNESS-OF-FIT TESTS 

The goal is to characterize point patterns with arrangements similar to the purposive 

sample's arrangement.  If the arrangements are similar, for isotropic point processes, the 

distribution of functions and metrics characterizing arrangements should also be similar.  For 

example, the distribution of inter-point distances, the SVB statistic, K(t) functions and 
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derived metrics should be similar.  In the following, a sample or set refers to the collection of 

elements observed.   

A density of a point pattern metric imposes a measure on point patterns, as developed 

in the Introduction.  To get a class of point patterns that is useful in the sense of being 

similarly arranged to the purposive pattern, the density of the metric should be centered on 

the metric value of the purposive pattern and vanishing for patterns that are considerably 

different from the purposive pattern.  In general terms, similarity means that the patterns 

match in degree of regularity or clustering or randomness, which can be characterized 

specifically by the differences in their metric values. 

It is possible to construct a density on a metric such that the values of the metric 

closest to that of the purposive pattern are assigned the greatest density values.  Let sP denote 

the vector of the non-probability sample locations.  Suppose ( )sγ  is some metric (a 

measurable mapping from 
nζ  to the real numbers) that would be useful to partition the 

universe of samples and ( )( )
psh γγ ,  some function of the discrepancy between the metric of 

sample s and that of the purposive sample ( )pp sγγ ≡ .  In a general form, a density based on 

the discrepancy between the metric on the non-probability sample and on some candidate 

pattern s can be expressed by the form ( )( )
( )( )

( )( )

( )
∫

∈

−

−

∂
=

Ags

sh

sh

se

e
sf

p

p

γγ

γγ

γ
,

,

, where the denominator is 

the normalizing constant that makes the measure on the point pattern s integrate to one (so 

that integrating a function with the constructed measure gives the weighted average of that 

function).  The form is expressed as the exponential of a discrepancy function ( )( )
psh γγ ,  so 

that the density is always non-negative. 

For example, one way to construct such a measure is to make the density decrease 

linearly with the increase in absolute deviation from the purposive pattern's statistic.  This 

penalizes deviations proportionately to the size of the deviation.  To make the density a 

proper probability density, divide each absolute deviation by the integral of the absolute 

deviations of the metric over the range of metrics on the class, so that the probability density 

function (PDF) integrates to one.  In the notation above, ( )( )
psh γγ ,  would be a function of 

the natural log of the absolute value of the deviation:  ( )( ) ( )( )pp scsh γγγγ −−−= ln, , 

where c is the maximum absolute difference for the range of the constructed density.  An 
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alternative is to impose a bell-shaped density centered on the purposive pattern's statistic, so 

that smaller deviations are not penalized as much as greater ones.  This can be achieved by 

making the log density proportional to the negative squared deviation.  In the notation above, 

( )( )
psh γγ ,  is proportional to the square of the deviation:  

( )( ) ( )( ) 0
1

,
2 >−= cs

c
sh pp γγγγ .  As for all probability densities, the values would be 

divided by a normalizing constant so that the density integrates to one. 

For this study, goodness-of-fit specificity is analyzed on empirical densities of 

metrics on classes of patterns realized by various point processes.  That is, instead of using a 

closed form density as described above, the goodness-of-fit is examined by comparing a 

metric of a pattern to the empirical quantiles of metrics from the representative types of 

patterns realized by simulated point processes.  As will be illustrated on the ODFW non-

probability sample, these empirical metric densities can be applied as the working 

specifications of classes of patterns.  That is , similarly arranged classes of patterns can be 

defined by the empirical metric densities of processes of which metrics close to that of the 

purposive's happen more frequently and metrics relatively different happen least frequently. 

For defining a class of similarly-arranged patterns, any critical value can be set to 

exclude patterns with statistics in the tails of the density.  Tolerance or intolerance to more 

dissimilar patterns may be field-specific, much the way an acceptable Type I error rate (i.e. 

what p-value is considered significant) varies between fields, from fairly liberal (for 

ecological applications) to fairly strict (for medical applications) depending on the objectives 

of the field.  For an assessment of goodness-of-fit (GOF), typically the Type I error rate is 

relatively large – i.e. the tails are made large so that a candidate is considered consistent with 

the definition of the class only if the probability of an outcome as or more extreme than the 

statistic (the discrepancy between a metric and the purposive metric) is relatively large – say, 

20% for example. 

In this paper, several point pattern metrics are examined for their utility to provide a 

set measure on sets of elements taken from the universe of possible point patterns on each 

domain.  The point-pattern metrics examined for a continuous domain include an inner 

product metric applied to the ordered point-pair distances, the Side-Vertex-Boundary (SVB) 

Dirichlet tile metric, which measures regularity of point patterns, and a metric derived from  

K(t) functions.  On the linear network domain, three metrics are examined:  a metric derived 

from the exponential joint density of consecutive-location distances; the cumulative 
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distribution ("stochastic rank") of distances at a proportion of the sample resolution; and a 2D 

version of the SVB metric.   

Each metric is tested to determine its specificity to point patterns generated by two 

processes on the areal domain and three processes on the stream network domain – a 

Complete Spatial Randomness (CSR) process generating uniformly distributed arrangements 

of points; a simple grid-tessellation stratified (GTS) process (on the continuous domain) or a 

simple stratified process (on the linear network) generating relatively regularly-spaced 

collections of points; and a clustering process (on the stream network only) generating 

clusters of points from a hierarchical distribution of parent and child point element processes.  

The three processes provide a range of characteristics of point patterns that are considered 

here as representative examples of classes of similarly arranged sets of elements.   

For each of the metrics considered, the empirical density of the metric over one 

process is used to assess goodness-of-fit of patterns generated by the other processes.  That is, 

the distribution is evaluated by Monte Carlo methods for specificity for assessing GOF to a 

class of sets meant to be similarly arranged to some realization from the former process.  

Besag et. al. (1977) use Monte Carlo methods to generate confidence bands on various 

statistics characterizing spatial randomness of point patterns.  They use the confidence bands 

to detect changes in point patterns over time – for example, examining association between 

occurrences happening close in time vs. close in proximity to test for contagion.  They apply 

the Monte Carlo method for numerous examples, noting that closed-form models of point 

patterns may be intractable, and that the method is conveniently applied for a study region 

with any arbitrary ragged outline.  They cite Hope (1968), who shows that an MC test for 

significance would have only a little less power than that of a UMP test. 

The six metrics are described in more detail in the subsequent paragraphs. 

2.1 Inner-product metric 

One approach to measuring similarity is to examine the inner product of ordered 

distances of an arbitrary set of locations and that of the purposive sample.  The idea is similar 

to looking for registration in sinusoidal signals.  For simplicity, assume that an arbitrary set 

and the purposive set have the same number of points so that the inner product is defined.  

The normalized inner product of the ordered distances provides a statistic that should be 

closer to one when two point arrangements match closely (the normalizing constant is the 

squared norm of the distance vector of the purposive collection).  The inner product statistic 
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is produced as follows.  Let s and t denote the dx1 vector of d inter-point distances of the 

size-n purposive sample and a 2
nd
 size-n sample, respectively.  Let s(i) and t(i) denote the i

th
 

largest distances of the purposive and 2
nd
 samples.  The inner product statistic is 

∑∑
==

n

i

ii

n

i

ii ssts
1

)()(

1

)()( . 

For this study, the purposive samples used are in fact simulated from stochastic point 

processes, although the concepts would be applied where observations had been taken on a 

non-probability sample. 

2.2 Side-Vertex-Boundary (SVB) metric 

The "Side-Vertex-Boundary" (SVB) metric measures regularity of the Dirichlet tiles.  

With perfect regularity, the boundary of a Dirichlet tile would be as close to that of a circle 

centered on the point as possible.  On a unit square study area, the area of each tile centered 

on each point of the most regularly spaced size-n point pattern would be 1/n.  The radius of a 

circle with this area is πn1 .  The SVB is the mean squared deviation between distances to 

points along the boundary of a Dirichlet tile and the radius of a circle of area 1/n (see Figure 

3-3).  In other words, if B(Di) denotes the boundary of the Dirichlet tile of the i
th
  point, the 

SVB is computed by 

( )
∑ ∫
= 



















−

n

i DB

ds
n

s
n

i
1

2
11

π
.  This is approximated in implementation 

as the mean squared deviation between {the distances from the points to the Dirichlet tile 

vertices, sides, and boundary} and {the nominal distance corresponding to maximal 

regularity πn1 }.  That is, if vij denotes the distance between the i
th
 point and the j

th
 vertex 

of the i
th
 tile, and if nij denotes the perpendicular distance between the i

th
 point and the j

th
 side 
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 tile, the SVB is approximated as ∑ ∑
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Figure 3-3 The SVB metric measures deviation of the 

Dirichlet tile boundary from a circumference of a circle of 

area 1/n for an arrangement of n points on a unit-square 

area.  Dashed lines indicate the boundaries of Dirichlet tile 

for 10 points.  A circle of area 1/n is centered on one of the 

points.  The statistic approximates the average of the 

squared distance between the tile boundary and the circle 

boundary as the average distance between the tile vertices 

and sides and the circle circumference.  Examples of the 

distances are indicated by the segments with arrows for 

two of the six sides and two of the six vertices. 

 

2.3 K(t) Deviations metric 

Ripley's K(t) functions and variants describe the expected number of events (points) 

within a distance t of some arbitrary location, normalized for the overall intensity of a 

process.  For complete spatial randomness (CSR) as produced by a Poisson process, the 

expected number of points is directly proportional to the area – i.e. ( ) 2ttK π∝ .  Clustered 

processes would have higher K(t) values at distances within the range of the clustering 

influence ( ( ) 2ttK π> ) and inhibition processes (processes with more regularity) would have 

lower K(t) values within the range of the inhibiting or repulsive force ( ( ) 2ttK π< ).  The 

functions are essentially variously estimated by method-of-moment estimators (binning inter-

point distances and taking the observed average number of points within ti of auxiliary 
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points), with corrections applied for boundary effects.  See Ripley (1981) and Baddeley and 

Turner (2005).  To apply the information in the K(t) functions for partitioning the point 

pattern universe, it is useful to summarize a key statistic derived from them. 

On the continuous domain for the CSR and GTS processes being examined here, it is 

useful that the GTS process tends to depart from the theoretical value of K(t) almost 

immediately starting from very small distances, since there are typically few events within a 

fraction of the average sampling increment of a spatially grid-stratified design.  The CSR 

process on the other hand should not depart much.  Figure 3-4 shows typical profiles of the 

deviation from the theoretical K(t), plotted vs. distance for each process (shown here is one 

example from many that looked much the same).  On examining such plots, it is apparent that 

the GTS discrepancies have notable magnitude within the range of the average sampling 

increment.  The CSR discrepancies of notable magnitude (random in nature) may not 

manifest until some distance greater than the average sampling increment.  On this basis, a 

useful metric to separate the CSR and GTS processes is the minimum distance t at which the 

magnitude of the discrepancy exceeds some threshold value.  For this study the threshold is 

set to two.   

The K(t) discrepancy statistic is computed as ( ) ( ){ }2: ≥− theoobs tKtKtmin , where t 

is distance; K(t)obs is the fitted K(t) function and K(t)theo is the theoretical K(t) function of a 

Poisson (CSR) process. 
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Figure 3-4 Distance of first occurrence of "excessive" deviation from theoretical 

K(t) function of a GTS and CSR point process. 
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Figure 3-5 Examining deviation from exponential consecutive-point 

distances along a section of a stream network.  The theoretical 

distribution of the CSR consecutive-point distances is an 

exponential distribution with rate equal to number of sample 

points per unit stream length. 
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2.4 Exponential consecutive-point distance metric 

In the case of point processes examined on segments from linear networks, it is more 

useful to examine distance between two consecutive locations on the network (vs. all inter-

point distances).  The consecutive point distances include both the up- and down-stream 

distances from each point to the next points up- and down-stream on the network.  The 

theoretical consecutive-point distance for locations distributed independently uniformly along 

a linear domain (a Poisson process) is exponentially distributed with mean equal to the 

sample resolution (the average number of points per unit length).  The CSR process should 

follow an exponential cumulative distribution function (CDF) with only random deviations, 

while a stratified process will not.  This is illustrated in Figure 3-5.  That is, the joint density 

of CSR-point-pattern consecutive distances should be greater than (i.e. more likely to have 

been produced by a process with exponential inter-occurrence behavior than) that of a more 

regular pattern.  The joint density of the consecutive-point distances is the product of the 

univariate exponential density of each distance, where the mean is estimated to be the total 

stream length (as represented by the sampling frame) divided by the sample size:  

∏
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1
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d j

e θ

θ
, where θ  denotes the mean (estimated as the sample resolution) and dj 

denotes the j
th
 consecutive-point distance. 

One metric examined derived from the log likelihood of a pattern is the ratio of 

average consecutive distance to average intensity, a multiple of the random variable term 
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.  For the CSR 

process, this should be centered around 1. 

2.5 Stochastic rank metric 

Another metric on the point patterns on linear networks comes from two observations 

about the empirical CDFs of the consecutive-point distances (referring again to Figure 3-5).  

(1) The empirical CDF of the CSR-process consecutive distances is less than that of the 

stratified process at the higher range of the support (i.e.- the CSR process is stochastically 

greater than the stratified at this part of the support).  (2) In contrast, at the lower ranges on 
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the support (the lower consecutive-point distances), the CDF of the CSR-process consecutive 

distances is greater than that of the stratified process.  The threshold defining the switch in 

stochastic rank will depend on the sampling resolution.  For the stratified process on the 

linear stream-network domain, the resolution is characterized by the length of the strata, or in 

other words, the average consecutive-point distance.  A straight-forward metric is the value of 

the empirical CDF F̂  at which a point pattern's distances (dj) exceed some proportion or 

multiple of the sample resolution – here, for example, the value is the proportion of the 

consecutive distances less than or equal to 1/5
th
 the sample resolution (θ ), i.e. - ( )5ˆ θF . 

2.6 2D SVB metric 

On linear networks, the locations of a collection of points with the highest degree of 

regularity would be equidistant (where distance is along the stream).  On a network of unit 

total length, the locations in a perfectly regular size-n collection would all be 1/n units apart.  

The 2D analog of the Dirichlet tile is a line segment (or a bent segment represented by several 

subsegments) with endpoints at the midpoints between consecutive sample points.  The 2D 

analog of the SVB is the average squared distance between the midpoints (endpoints of a 2D 

Dirichlet tile) between consecutive locations and the endpoints of nominal tiles of length 1/n 

centered on each point in the sample. 

Let θ  denote the sample resolution (stream network total length divided by number 

of points n).  Let ti denote the stream location of the i
th
 point.  Let mij denote the down- and 

up-stream midpoints between the i
th
 point and the down- and up-stream sample points 

consecutive to the i
th
 point.  Let ( )λ  denote the stream-flow distance between two stream 

locations.  The 2D SVB metric is computed as 

( ) ( )( )( ) θ
θ
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the operator ( ) ( )( )( ) 112 ±=≡=−≡= downstreamjIupstreamjI  centers the nominal tile 

of length θ  at the i
th
 location. 

3 METHODS 

For each combination of process and point-process metric, an empirical distribution 

of the metric is obtained from simulated realizations of the processes.  For each point process, 
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each point pattern metric is observed for 1000 realizations of the point process.  On the 

stream-network, five pairs of point processes are examined to evaluate the effectiveness of 

each metric to provide a meaningful assessment of GOF – see Table 3-1.  For each pair of 

processes, the proportion of realizations of the designated arbitrary process patterns that 

would not exceed the 20
th
 and 80

th
 quantiles of the designated purposive process is reported.  

These quantiles would be the threshold for which the metric of a realization from the process 

used to produce the hypothetical purposive sample would result in incorrectly rejecting the 

null that a realization is consistent with the process (Type I error rate).  The relatively large 

Type I error rate is accepted here because a GOF test should provide confidence that a sample 

is easily consistent with a process – specified by the metric's distribution – which produces 

the class of similarly arranged samples.   

The samples are realized as follows. 

3.1 Areal-extent spatial domain 

Basic stratified samples were drawn repeatedly from a square area.  The strata are 

defined by a regular 10 x 10 grid of 20 x 20 square strata overlaid on the 200 x 200 area.  

Each sample contains 100 observations, with one observation per stratum, giving an average 

sample resolution of 2 distance units.  On each trial, the grid is offset by a random amount 

and wrapped around the end of the area to continue on the other side, from left to right and 

bottom to top, so that the strata on the edges straddle the top and bottom or left and right 

boundary of the field.  Samples with complete spatial randomness (CSR) are realized for each 

trial by selecting 100 (x,y) coordinate pairs, each coordinate selected independently and 

uniformly along the 20-unit x and y dimensions. 

3.2 Linear-network spatial domain 

A single set of realizations of the five sample processes (stratified, random, clustered, 

highly-clustered and non-probability-translated), taken on a section of the Alsea basin in 

Oregon are illustrated in Figure 3-6.  Stratified samples were effected by drawing uniform 

numbers repeatedly and independently from a length equal to the specified sample resolution 

(27,344 meters (the average intensity of the ODFW non-probability sample)).  The number of 

points depends on the sample resolution.  In the results reported, for 1,667,989 meters of 

stream length in the section of the Alsea basin, there were 61 points in every sample.  To 

determine the location of each point, the stream network is mapped to one line segment, 

stringing together the various branches, and the strata are then super-imposed on this 
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auxiliary mapping of the stream network.  This mapping may introduce an artifact wherever a 

stratum overlaps a position on the mapping where two disjoint stream reaches are strung 

together.  No attempt has been made to evaluate the influence of this artifact on the results.  

The location on the stream network then involves looking up the appropriate segment 

corresponding to the position along the mapping, and determining the position along the 

segment, from the segment's up-stream node, corresponding to the portion of the random 

offset within the stratum overlapping the segment within which a stratum location falls on the 

mapping. 

 

Figure 3-6 Examples of patterns of points realized on a section of the Alsea basin in Oregon.  The 

clustered and highly clustered patterns are generated with 20% and 15% parent points and 

average child point dispersions of 1% and 1/3 % of total stream length, respectively.  See text for 

details. 
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A similar logic is used to effect CSR samples on the linear network.  In this case, 

sample size is again determined by dividing the total stream length by the sample resolution 

and rounding the number.  This number of independent uniform random numbers are drawn 

from an interval with length equal to the total stream network length.  As above, there is a 

mapping of the branches in the stream network to one line segment.  The locations are 

determined by looking up the segment corresponding to the distance along the mapping 

determined by each random number, and then determining the offset within the segment from 

its upstream node as the remaining distance from the segment node to the random location 

within that stream segment's interval on the mapping. 

The clustered process is produced by a hierarchical model.  A specified proportion of 

the size-n locations are assigned to be parent locations.  The locations are determined as for 

the CSR process.  For each parent location a Poisson distribution is used to choose a random 

number of child locations to be dispersed near the parent location.  In order to keep the 

sample size constant, more children are added, randomly choosing the number of additional 

children by the Poisson distribution, until the total of the parent and child locations makes a 

size-n sample.  The last parent to get additional child points when the number of total 

locations would exceed n is assigned a reduced number of child points to limit the sample to 

n locations.  The child locations are dispersed by random offsets that follow an exponential 

distribution with a mean that controls the degree to which the child locations cluster around 

the parent.  The offsets are alternately added to or subtracted from the parent location to 

disperse the child points in both directions (up- and down-stream) from the parent.  The 

clustered and highly clustered patterns are generated with 20% and 15% parent points and 

average child point dispersions of 1% and 1/3 % of total stream length, respectively. 

The non-probability-translated samples are obtained by translating the linear mapping 

of the ODFW non-probability locations a random amount and mapping back to the stream 

segments, as for the other processes. 

The various statistics that characterize the two processes on the areal and linear-

network domains are computed as follows. 

3.3 Areal extent domain metrics 

The inner-product metric is the inner-product of the point pattern's ordered distances 

with that of the purposive point pattern (for this study, generated with one of the point 
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processes), normalized by the square norm (the square length) of the ordered distances of the 

purposive pattern (the inner product of that vector with itself). 

The SVB metric is obtained from an R routine provided by Don L. Stevens, using the 

R-package "deldir" to generate the Dirichlet tiles for the point pattern (with (x,y) point 

coordinates scaled to a unit-square area).  The routine extracts the distances to the tile vertices 

and boundaries, and computes the mean squared deviation from the nominal distance of a 

most regular pattern ( πn1  on a unit square). 

The K(t) deviations metric is obtained by first getting the estimated K(t) functions 

using the R-package "spatstat" (Baddeley et. al. (2005)), and then observing the minimum 

distance at which the average of the estimated K(t) functions deviates from the theoretical 

K(t) function by 2 or more units. 

3.4 Linear-network domain metrics 

The log-exponential-fit metric is the ratio of the average of the consecutive-point 

distances to the average sample resolution.  This is the critical part of the log-likelihood, 

computed as ( ) ∑
=

−
m

i

idm
1

*log γγ , where m is the number of consecutive-point distances, di 

is the i
th
 consecutive-point distance, and γ  is the rate of the exponential density – estimated 

to be the sample size divided by the total stream length of the frame. 

The stochastic rank metric is produced using the empirical CDFs of the consecutive-

point distances (each distance's rank divided by the total number of distances).  The metric is 

the value of the empirical CDF at which the consecutive-point distance exceeds 1/5
th
 the 

average sampling resolution. 

The 2D SVB is computed as the ratio of the square-root of average deviations 

relative to the sample resolution.  The numerator inside the square root is the average of the 

squared differences of the along-stream locations of midpoints between sample locations and 

of the locations corresponding to the nominal tile boundaries – the locations half the sampling 

resolution distance up- and down-stream from the sample point locations. 
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4 RESULTS 

4.1 Metrics on point patterns on a continuous domain of areal extent 

In the best cases, the range of the metric of patterns from one process contains barely 

any support for the density of the same metric resulting from the other process.  Figure 3-7 

shows the histograms of the inner-product metric for a situation in which the purposive 

sample is a spread-out collection of locations (simulated by a GTS point process) for 10000 

realizations each of the GTS and CSR processes.  The metric is the normalized inner product 

of the sorted distances with that of the GTS purposive sample.  A metric equal to one 

indicates an exact match of the sorted distances with those of the GTS purposive sample.   

Tested for goodness-of-fit where a pattern is considered not atypical when its metric 

is within the range between the 20
th
 and 80

th
 quantiles of the metric of the class of patterns to 

be matched, CSR realizations would have an acceptable GOF for a regular class of patterns 

(where the points are spread out – as in the GTS process) about 14% of the time when the 

inner product metric is used.  In fact, some of the time a CSR process will produce a pattern 

that appears spread out just by chance.  On the other hand, GTS realizations never fail the 

GOF test by the inner product metric when the class of patterns is completely random (CSR).  

This is revisited in the Discussion. 

The SVB metric for CSR realizations is less than the observed maximum of the GTS 

process only 49 out of 10000 times (about 0.5 % of the time).  The distributions of the SVB 

metric for each process are summarized in the histograms in Figure 3-8.  Neither process's 

realizations pass a GOF test based on the SVB empirical density from the other process's 

realizations.  The SVB metric is an excellent discriminator between patterns from the GTS 

process vs. those from the CSR. 

Figure 3-9 shows the histograms of the K(t)-derived "discrepancy-distance" metric – 

the minimum distance t at which the magnitude of discrepancy between the theoretical and 

observed values of normalized expected number of events exceeded a threshold (set to two).  

The CSR discrepancy-distance metric was less than the maximum GTS only 0.77% of the 

time.  This discrepancy distance is an excellent GOF metric to eliminate CSR realizations 

from a class of GTS-produced patterns (or vice versa to reject GTS realizations if the 

purposive sample has a CSR-like arrangement). 
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Figure 3-7 Histograms of the inner product score from 10000 GTS and CSR point patterns; the 

narrower bin intervals on the GTS histogram and wider bin intervals on the CSR histogram 

represent approximately 1/20 of each of their respective ranges (both areas are 10000 units). 
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Figure 3-8 Side-Vertex-Boundary (SVB) histograms show very little overlap, making this an 

excellent GOF metric to discriminate more regular (GTS) patterns from more random (CSR) 

patterns. 
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Figure 3-9 Histograms of K discrepancy distance score (the minimum distance at which the 

observed K(t) deviates by 2 or more units from the theoretical K(t)) show little overlap between 

outcomes for spatially regular (GTS) and more random (CSR) point patterns. 
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Figure 3-10 Boxplots of the linear stream network metrics examined.  S= Stratified; CSR= 

Random; C= Clustered; HC= Highly clustered; NPd= derived from ODFW non-probability 

sample. 
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Figure 3-11 Histograms of the exponential-fit metric for point processes realized on the linear 

network domain.  S= Stratified; CSR= Random; C= Clustered; HC= Highly clustered; NPd= 

derived from ODFW non-probability sample. 
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Figure 3-12 Histograms of the stochastic rank metric for point processes realized on the linear 

network domain.  S= Stratified; CSR= Random; C= Clustered; HC= Highly clustered; NPd= 

derived from ODFW non-probability sample. 
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Figure 3-13 Histograms of the 2D Side-Vertex-Boundary SVB metric for point processes realized 

on the linear network domain.  S= Stratified; CSR= Random; C= Clustered; HC= Highly 

clustered; NPd= derived from ODFW non-probability sample. 

 

4.2 Metrics on point patterns on a linear network 

Figure 3-10 shows boxplots of metrics computed on 1000 realizations for each the 

five point processes produced on the Alsea stream network.  Figures 3-11 to 3-13 show the 

histograms for the three metrics for each of the point process patterns.  Table 3-1 reports the 

proportion of time that a pattern from one process (the arbitrary pattern) would be considered 

consistent with the class of patterns designated as similar to a purposive pattern.  A pattern is 
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judged not atypical if its metric does not exceed either the 20
th
 or 80

th
 quantiles of the 

purposive class' metrics. 

Table 3-1 Assessment of metrics for effectiveness in evaluating goodness-of-fit (GOF) of point 

patterns realized from various processes.  S= Stratified; CSR= Random; C= Clustered; HC= 

Highly clustered; NPd= derived from ODFW non-probability sample. 

     

Metric Arbitrary Purposive GOF Conclusion 

Log-

exponential 

S CSR 0.003 A pattern with regularity is not 

typical of a class of more random 

patterns. 

 CSR S 0.004 A typical random pattern is not 

consistent with a class of patterns 

with regularity. 

 C CSR 0.007 A clustered pattern is not typical 

of a class of more random 

patterns. 

 C NPd 0.568 A clustered pattern is similar to 

patterns derived by translating the 

ODFW non-probability sample. 

 HC NPd 0.072 A highly clustered pattern is not 

consistent with a class of patterns 

derived by translating the ODFW 

non-probability sample. 

Stoch. Rank S CSR 0.002 (same as Log-exponential) 

 CSR S 0.004 " 

 C CSR 0.013 " 

 C NPd 0.524 " 

 HC NPd 0.002 " 

SVB 2D S CSR 1.000 Random patterns include patterns 

with regularity by chance (but 

only about 1-2% of the time – see 

next entry) 

 CSR S 0.015 A typical random pattern is not 

consistent with a class of patterns 

with regularity. 

 C CSR 0.289 A clustered pattern is not typical 

of a class of more random 

patterns. 

 C NPd 0.804 A clustered pattern is similar to 

patterns derived by translating the 

ODFW non-probability sample. 

 HC NPd 0.726 A highly clustered pattern is 

similar to patterns derived by 

translating the ODFW non-

probability sample. 
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5 DISCUSSION 

Assessing GOF of point patterns to classes of point patterns allows us to consider the 

amount of information or precision an extrapolation from a particular arrangement of 

observations might afford us.  Table 3-2 shows the empirical sample-process variances of an 

estimate of the total response, produced on the realizations from each class of patterns, for a 

moving-average response simulated along the Alsea network.  The estimate is the scaled sum 

of the observations, where the scale is the inverse of the sampling intensity.  Not surprisingly, 

the more clustered patterns have higher variance than the more spatially balanced patterns.  

Estimating the variance for a class of patterns is developed in a companion paper 

(Dissertation Chapter 4).   

Table 3-2 Empirical sample process variances 

Process Empirical sample process variance 
Stratified (S)  

(more regular patterns) 

1,113,010 

Random (CSR) 

(typically neither clustered nor regular) 

1,221,466 

Clustered (C) 2,376,003 

Highly Clustered (HC) 4,012,697 

ODFW Non-probability-derived (NPd) 1,673,838 

 

The table illustrates that describing the variability of an extrapolation for similarly 

arranged patterns depends on how the class of similarly arranged patterns is defined.  For 

example, any pattern could have come from a CSR class, although the more highly clustered 

and more spatially balanced patterns in that class are less typical of that class.  This is 

indicated by the metrics of these realizations relative to the range in the CSR class, or in the 

case of the 2D SVB for the stratified process, as indicated by the narrow range of the metric 

for these realizations relative to the range overall (this is addressed again below).  The 

variability of clustered or highly clustered patterns is more extreme than the CSR class, on a 

regionalized response such as the moving-average simulated response.  This happens because 

if a cluster of locations happens to fall in a part of the domain with an extreme high or 

extreme low response, that range of the response is over-represented.  The resulting estimate 

over- or under-estimates the overall response and both extremes are not infrequent outcomes 

in the class of clustered patterns. 
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The ODFW non-probability sample (with locations arranged as shown in Figure 3-2) 

is clearly clustered, but not as clustered as the class of patterns produced with tight dispersion 

around the parent points (the HC class).  The metrics computed on the actual ODFW set of 

locations observed on Alsea are:  log exponential metric 0.27; stochastic rank  0.64; and 2D 

SVB 1090.6.  The first two metrics are most consistent with the clustered pattern and (not 

surprisingly) the class derived from translating the mapping of the non-probability sample.  In 

assessing the range of values that an extrapolation could have over similarly arranged patterns 

of points, the most useful assessment would consider the variability over a class of patterns 

with a clustered characteristic. 

The purposive metrics of the ODFW Alsea non-probability sample can be used 

directly to define classes of point patterns, using constructed densities as described at the 

beginning of Section 2.  The exponential form of a constructed density is applied here for the 

squared- and absolute- relative-deviation.  The relative deviation is the difference between a 

metric of an arbitrary pattern and that of the Alsea sample, divided by the Alsea sample 

metric.  Metrics with a relative error exceeding 50% are assigned zero density.  The two 

constructed densities are shown in Figure 3-14, plotted against the relative deviation.  The 

corresponding ranges of metrics in the support of the constructed densities (the ranges 

assigned non-zero measure) would be from 0.136 to 0.407 for the exponential-fit metric; from 

0.311 to 0.933 for the stochastic rank metric; and from 545.3 to 1635.9 for the 2D SVB 

metric. 

The probability of a metric being as or more extreme – as determined by each of 

these two densities – is determined for three arbitrary point patterns – one realization each 

from the CSR, clustered and highly clustered processes (the same processes as for GOF 

specificity tests above).  The measures (p-values) produced from the constructed metric 

densities are summarized in the Table 3-3. 

There is little difference in the probability outcomes between the densities based on 

the squared- or absolute-relative deviations.  As assessed by the constructed densities, the 

clustered or highly clustered process realizations would be considered consistent with the 

class of point patterns for two of the three metric densities.  The highly clustered is nearly 

within the 20% cut-off for its worst case (the stochastic rank measure). 

 

 



 

70

Table 3-3 Assessment of goodness-of-fit (GOF) of three arbitrary point patterns using two 

constructed metric densities derived from ODFW non-probability sample metrics.  Values are 

the probabilities of a metric as or more extreme than that observed on each arbitrary pattern, as 

measured by the constructed densities.  The densities are centered on the metric values of the 

ODFW non-probability sample (values in the last row). 

 Metric Value p-values 

Squared (Absolute) Rel. Dev. 

 Log-exp. Stoch. Rank SVB 2D Log-exp. Stoch. Rank SVB 2D 

CSR 0.80 0.20 1148.5 0.0 (0.0) 0.0 (0.0) 0.44 (0.43) 

Clustered 0.53 0.54 1157.0 0.0 (0.0) 0.36 (0.34) 0.43 (0.42) 

Highly 

Clustered 

0.24 0.81 1118.5 0.37 (0.35) 0.18 (0.17) 0.47 (0.47) 

ODFW 0.27 0.62 1090.6    

 

 

Figure 3-14 Two constructed densities centered on the metric 

values of the ODFW non-probability sample metrics.  The 

relative deviation corresponds to metric values from 0.136 to 

0.407 for the exponential-fit metric; from 0.311 to 0.933 for the 

stochastic rank metric; and from 545.3 to 1635.9 for the 2D SVB 

metric 

 

The following subsections discuss some details of the specific performance of some 

of the metrics. 
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5.1 Metrics on point patterns on a continuous domain of areal extent 

The inner-product density seems to perform acceptably for the GTS null (comparing 

a pattern with a GTS-simulated purposive arrangement).  If the purposive arrangement is 

simulated from a CSR process, only the SVB and K(t)-derived metrics are useful to eliminate 

a GTS pattern from a class of CSR patterns.  The SVB and K(t)-derived metrics both show 

excellent power for discriminating the two classes of patterns. 

In the case that the metric is based on the inner product statistic, for the case that the 

purposive arrangement comes from a GTS process, the purposive vector of sorted distances is 

relatively more uniform than a vector of distances from a CSR process.  The inner product for 

comparing a CSR arrangement to the GTS in this case does the desirable thing – it's either too 

small or too large, compared to the inner product of two GTS distance vectors, since a CSR 

pattern is likely to have substantially more closer points than the more spatially regular GTS 

process.  However, for the inner product of a GTS vector on the purposive pattern produced 

by a CSR process, the inner product operation behaves like averaging of the distances, with 

little difference in weighting compared to the averaging effect of a CSR vector on the 

purposive CSR vector.  Thus, when all the metrics are compared, the most extreme ones will 

virtually always be from a pair of CSR vectors (as evident in Figure 3-7). 

Alternatively, for the processes simulated in this study, the SVB and K(t)-derived 

metrics bifurcate patterns from the GTS and CSR process very effectively.  The supports of 

the empirical densities are nearly non-overlapping (Figure 3-8 and Figure 3-9).  A GOF test 

of a realization of one process for consistency with patterns from the other process fails in all 

cases, using either the SVB or K(t) metric.  Either metric is a useful discriminator to separate 

patterns with regularity from those that are random (Poisson-process) spatially distributed 

events.   

5.2 Linear network point patterns– consecutive-point distances vs. all inter-point distances 

On a domain restricted to a linear network, metrics used to characterize point patterns 

should be relevant to the universe of samples of points taken on the linear network.  

Restricting the focus to up- and down- stream distances constrains the metrics the way the 

possible point patterns are constrained to be on the domain.   

It would seem natural to examine all inter-point up-/down-stream distances, since on 

the continuous domain there is sometimes more power to be gained with a function of all 

point-pair distances.  Such a statistic would contain more information about an arrangement 
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of points than merely the nearest-neighbor distances.  Ripley (1981 (Ch. 8)) cites several 

studies that report that Besag's linearized–K(t) statistic is more powerful than the Clarke-

Evans nearest-neighbor statistic and other statistics based on the expected cumulative 

distribution of nearest-neighbor distances, for rejecting a CSR process in favor of clustered or 

more regular (inhibiting) processes.  Diggle (1979) compares several point pattern statistics 

including the Clarke-Evans, a quadrat-count statistic and maximum-departure from 

untransformed and linearized versions of K(t).  The quadrat-count statistic is an excellent 

metric for clustering, but overall, Besag's linearized-K(t) maximum discrepancy provides the 

best power for detecting departures from complete spatial randomness (Diggle (1979)). 

Intuitively, the inter-point distances of a point pattern provide essential information 

about its arrangement.  For example, a cluster of points and a set of points in a line might 

have the same nearest-neighbor distances, but would have different inter-point distance 

distributions, with the cluster of points having only smaller distances and the line of points 

have distances ranging from the smallest of the nearest-neighbor distances to the length 

between the first and last point in a line.  As a simple example, consider the two arrangements 

of three points each in Figure 3-15.   

Figure 3-15 Two point patterns with the same nearest-

neighbor distances but different distributions of inter-

point distances. 

The nearest neighbor distances in each pattern are the same, but the inter-point 

distances of the x's are (0.4293318, 0.2415141, 0.3863482), while those of the circles are 
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(0.3863482, 0.6278622, 0.2415141).  In contrast, distance as measured by up-/down-stream 

(stream-flow) distance will not indicate information about angles between points, and on the 

linear network, orientation between two locations would be interpreted only as either up-

stream or down-stream.   

Distributions of inner-products on sorted inter-point stream distances examined for 

CSR and stratified stream network samples showed the (empirical) support for the CSR 

containing that of the stratified sample population (data not shown).  In contrast to continuous 

domains of areal extent, for the linear network domains, metrics derived on all pairwise 

stream distances do not appear to partition the sample universe usefully for discriminating 

randomness from regularity among point patterns.  Consecutive-point distances, similar to but 

not exactly the same as the nearest-neighbor distances of areal-extent point processes, seem 

to contain the more relevant information.  It would seem that the information contained in the 

consecutive-location distances is diluted when all the pairwise distances are incorporated into 

a metric.  It is an interesting reversal of the performance of the derived metrics between 

including all pairwise distances in producing metrics on areal domains or restricting metrics 

to local consecutive-point distances on linear network domains. 

5.3 Point patterns on a linear network – 2D SVB 

The 2D SVB histogram of the CSR process completely contains that of the stratified 

process.  It is not impossible for a Poisson process to produce a pattern that manifests 

regularity, just by chance.  Depending on the interested parties, this may or may not be 

regarded as a limitation for defining a class of similarly arranged points.  If a stakeholder 

wants to be conservative about the potential variability of an estimate over the class of 

patterns, the specification of a class to be "more random than regular" might be important to 

avoid diluting the effect of the more extreme estimates that a non-regular sample could have 

on a domain with a regionalized (covarying) response.  In this case, the 2D SVB is less 

desirable to define a class of CSR-like patterns because it allows more regularly spaced 

patterns (these have adequate frequency of occurring on the support of the CSR 2D SVB).  If 

a conservative quantification of variability is important, the stochastic rank metric would be 

the preferred choice.  If the goal is to define the class of patterns with regularity in the 

spacing of points, either the stochastic rank metric or the 2D SVB metric will serve well to 

reject CSR patterns from the more regular patterns. 
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In this study, the utility of several point process metrics is examined to assess GOF 

empirically evaluated for discriminating regular (GTS or stratified) vs. random (CSR) 

spacing of points in samples taken on domains of areal extent and for stratified, CSR and 

clustered patterns on a linear network.  The GOF process is illustrated for a non-probability 

sample collected by ODFW.  On the areal-extent domain, the metrics incorporate all inter-

point distances.  On the linear network, the metrics are based on consecutive-point distances.  

For the areal-extent domain, the SVB and K(t)-deviation metrics perform best.  The inner-

product metric is demonstrated to be inferior for detecting that a CSR process is "not similar 

to" a GTS process, and this metric is of no use to detect that a GTS process is "not similar to" 

a CSR pattern.  For the linear-domain network, illustrated on a section of the Alsea River 

basin in Oregon, the stochastic rank metric and log-exponential-fit metric perform well.  The 

non-probability sample is most similar to a class of clustered samples, which would be a 

more useful reference class for considering the variability of an estimate.  The 2D SVB is an 

excellent indicator of non-regularity, but cannot be used to reject a stratified pattern as "not 

similar to" a CSR pattern. 
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APPENDIX 

A METRIC MEASURE INDUCES A SET MEASURE ON THE POINT PATTERN SPACE 

Let 
nζ  denote the n-fold product space of the domain A – where A is some bounded 

spatial domain.  Let s denote a member of 
nζ , where the components si of s are each an 

ordered pair (x,y).  Let ( )sγ  denote a measurable mapping from 
nζ  to the Real numbers.  

Let the range of ( )sγ  be denoted by 
oΓ .  Let G denote a member of the Borel sets generated 

on 
oΓ ., with probability measure of G denoted ( )G∆ .  Suppose a measure ( )( )sf γ  is to be 

specified on the metric range, such that the support Γ  of the measure is a subset of the range 

oΓ  and such that ( )( ) osf Γ⊆ΓΓ∈∀≥ ,0 γγ  and ( )( ) 1=∫
Γ

sdsf γ .  Let 
*ζ  denote the 

inverse image of Γ  under ( )sγ  - i.e.- ( ){ }Γ∈= ss γζ :*
.  Since 

oΓ⊆Γ , 
nζζ ⊆*
.  The 

following paragraphs are intended to show that there is a unique (a.e.) measure on 
nζ  

induced by a measure ( )( )sf γ  as defined. 

For the discussion, let G now denote a member of the Borel sets on Γ .  Define a 

class of sets of pre-images of G ( )






 ∈∀∈ HsGsH γ: .  Since the sets G are a member of 

Borel sets on a subset of 
oΓ , every such G has a pre-image H in 

*ζ .  Consider a field Ψ  

generated by the class of pre-images (Ψ  includes the null set and is closed to complements 

and finite unions of sets in the class of pre-images).  Later in the development, the 

Carathéodory Theorem will be applied to extend a measure on the field Ψ  to a unique a.e. 

measure on a σ -field generated by Ψ . 

Assign a function to a set H in Ψ  as ( ) [ ]GH ∆=µ .  This function has the properties 

that ( ) 0=φµ  and ( ) 1=ΓHµ , where ΓH  denotes the pre-image of the entire support Γ  of 

( )( )sf γ .  The function ( )µ  is now to be applied to members of Ψ  that include finite 

disjoint unions.  Let HU be shorthand notation for a disjoint union:  

jinjijiHHHH ji

n

i
iU ≠∈∀=∩=

=

,...1,:,:
1

φU .  The function on the disjoint union is 

shown to be well-defined by first completing a few steps:  first the existence of an inverse of 
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HU is verified; then the individual inverses of the disjoint pair of sets Hi, Hj are shown to be 

disjoint. 

(Claim) The pre-image of HU (denoted HU
-1
) exists.  Consider any arbitrary element h 

UHh∈ .  Since HU is the union of n disjoint sets, h is an element of one and only one of the 

sets Hi involved in the union.  By definition of our field, each Hi is a pre-image of some Borel 

set G on Γ .  This is true for any UHh∈ , so HU
-1
 exists. 

Next, if two pre-images H1 and H2 are disjoint, then so are the corresponding inverses 

G1 and G2.  To verify this, suppose there is an element g that is an element of both G1 and G2.  

There is at least one element s in 
nζ  that maps to g, since it is an element of sets G1 and G2 

from the Borel field on Γ .  Then s is an element of H1 and also H2, as these are the pre-

images of G1 and G2.  Then H1 and H2 are not disjoint.  Therefore, H1 and H2 are disjoint only 

if G1 and G2 are.  This is true for all pairs of disjoint sets from the field Ψ . 

Using (a) the definition ( )µ  on Ψ  and (b) the definition of a set H and (c) finite 

additivity of the measure ( )G∆ , the measure defined for the finite disjoint union HU then, is 

( ) ( ) ( ) ( )∑∑
==

•

∈

•

∈

− =∆=






∆=






=∆=
n

i

i

n

i

a

i

c

ni
i

b

ni
iU

a

U HGGHHH
11

)()(

..1

)(

..1

1
)(

µµµ UU .  This shows the finite 

additivity of the function ( )µ  on Ψ . 

The finite additivity extends to countable additivity by induction.  This is true 

because the function ( )µ  is defined for the finite disjoint union of the set HU and any set Hk 

such that Hk and HU are disjoint.  Since the function ( )µ  is a non-negative function on sets 

in Ψ , with countable additivity, it is a measure.  Since it integrates to one, it is a probability 

measure.  For a field with ( ) 0=φµ  and ( ) 1=ΓHµ  and for which the measure ( )µ  has 

countable additivity, by the Carathéodary Theorem (see Chung (2001)), the measure on the 

field extends uniquely to a measure on a σ -field generated on the field (or on a σ -field 

generated on domain that generates the field). 

Now let the specified measure ( )( )sf γ  be defined on all of the range 
oΓ  by setting 

it to zero anywhere in 
oΓ  outside of Γ .  Then for the set Hc of all elements u in 

nζ  that map 

to 
co Γ∩Γ , ( ) ( ) ( ) 0==Γ∩Γ∆= ∫

Γ∩Γ∈

γγµ
γ

γ dfH
co

co

c . 



 

78

Finally, it is shown that the spaces 
nζ  and ( )Ψσ  are the same.  The metric ( )sγ  

was defined to map from 
nζ  to 

oΓ .  Since the class of sets H are pre-images of the Borel 

sets on 
oΓ  (the range of the mapping from 

nζ  to the Real numbers), the field Ψ  is 

contained in 
nζ .  Since any element in any set H or union of sets Hi is a an element of a pre-

image of a value in the range of ( )sγ  defined on 
nζ , ( ) nζψσ ⊂ .  For any element 

{ }nss ζ∈: , the mapping ( ) ( )oos ΓΒ⊂Γ∈γ , where ( )oΓΒ  denotes the Borel field 

generated on 
oΓ .  For such an element s this implies there exists a set G in ( )oΓΒ  such that 

( )sγ  is an element of G.  This in turn implies that there is a pre-image H of G for which s is 

an element.  This implies that ( )ψσζ ⊂n
. 
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ABSTRACT 

Design-based variance addresses variance of estimates induced by the sampling 

process of observing a random subset of the response over its domain.  The variance of the 

estimate is the expected squared deviation from its mean over all possible samples taken on 

the domain.  The probability (or "measure" on a continuous domain) need not be uniform 

over all samples.  For non-probability (purposive) samples – such as convenience samples or 

observations taken at haphazardly selected locations, technically, purposive elements do not 

contribute anything to the sample-process variance (as they would be in every sample, with 

probability one).  Nevertheless, a stakeholder might reasonably ask, using information 

inferred from observations about an assumed-stationary response covariance structure, how 

much would an estimate derived from other "similarly arranged" patterns of elements vary?  

A class of similarly arranged elements or a sample process can be characterized by set 

measures on the universe of point patterns.  This study is part of on-going research to derive 

the variability of an estimator over similarly arranged collections of observations of a 

regionalized response on a continuous domain of areal extent or on a linear network domain 

such as a stream network.  In this paper, a process to quantify the variability of estimators 

over a class of similarly arranged patterns is proposed and demonstrated.  The process is 

designed to be general and avoids imposing any stochastic point-pattern process to 

accomplish the objective of describing variability over similarly arranged sets of locations. 

Keywords:  Non-probability sample, Semi-parametric variogram, Monte Carlo 

1 INTRODUCTION 

When a population is characterized by estimates based on observations from a 

sample of the population, the estimate will depend on what elements of the population were 

in the sample.  This is variability due to sample process.  Variability in the sample also 

depends on variability of the response in the population or on a domain.  If the population 

response were uniform, the estimate would not change from one sample to the next (assuming 

the estimator function executed on the data stays the same).  On the other hand, for responses 

that are patchy, meaning there are some contiguous areas of higher values and some of lower 

values, the arrangement of locations at which observations are collected can have a lot of 

impact on the estimate and therefore on the variance of the estimate.  Spreading the points out 

improves the chances of observing a range of values representative of the range and 
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distribution of the response overall.  Taking observations at clusters of points might result in 

higher values or lower values being over-represented in the sample, causing the outcome of 

the estimator to have a greater occurrence of over- and under-estimating, and having greater 

variance over the implemented sample space. 

Royall and Cumberland (1985; 1981) refer to the degree to which the observations 

are representative of the distribution of the response on the whole population or domain as 

sample balance.  They discuss bias that may exist in any particular sample due to sample 

imbalance.  The bias among samples that Royall and Cumberland refer to is the component of 

variance due to sampling process.   

Model-based sampling, or restricted sampling, controls for bias from imbalance (or, 

directly related, for sample process variance).  In particular, if there is covariance in the 

response among population elements or over a continuous domain, some configurations of 

sample units or elements will provide more information than others about the domain's 

overall response.  The observed variability in a sample might be misleading for assessing the 

variability of the population overall if a sample is taken that includes covarying units.  For 

example, there may be a natural hierarchy in the population or block-effects on a domain 

such that clusters of elements have more similar response than elements observed throughout 

the domain.  Additionally some samples may be less efficient than others, because elements 

with co-varying response provide partly redundant information about the response overall. 

On a continuous domain with covariance diminishing as distance increases, as 

sampling resolution (average number of points per unit length or area, a.k.a. intensity) 

increases, the magnitude of covariance within sample response increases.  The resulting 

effective covariance within the sample impacts the estimator variance over the sample 

process.  This interaction of sample arrangement and covariance structure of response is 

exploited to design optimal samples, and to predict the sample process variance of various 

sample designs.  This latter application can be particularly useful where there is not an 

adequate configuration of observations to get direct estimates of variance within clusters or 

strata.  For example, design-based methods employ sums of squares to estimate variance for 

responses with exchangeable covariance (where the covariance within a cluster is constant); a 

single observation within a stratum or cluster does not permit direct estimation of the within-

stratum (-cluster) variance.  (See Cordy and Thompson (1995); Cooper (2006)) 

The conventional design-based methodology quantifies variability of an estimate due 

to the sampling process.  That is, the response on the domain is treated as fixed (interpreted as 
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a snapshot in time for many applications), and the random variable in the equation that 

computes the estimate is the indicator variable for whether the element is or is not included in 

the sample.  The variance of the estimate is the expected squared deviation from its mean 

over all possible samples taken on the domain.  The probability (or measure, on a continuous 

domain) of any sample outcome need not be uniform over all samples.  In design-based 

methodology, the form of the variance is most often derived in closed form (or approximated) 

as some function of the square and cross-product terms of the response, the terms of which 

are often estimated by scaling up by weights inversely proportional to marginal and pairwise 

inclusion probabilities (or inclusion densities on continuous domains).   

For a non-probability (a.k.a. purposive) sample, such as convenience samples or 

observations taken at haphazardly selected locations, technically, an estimate based on the 

observations from a purposive sample has no sample-process variance.  In the scenario of this 

study, some pattern of locations (represented as points) is presumed to be the result of a study 

in which some observations have been collected on some spatial domain, where the locations 

visited were not selected by a sample design and the sample is not a probability sample.   

A probability sample is one for which elements in the domain are randomly selected 

to be in a sample, by explicitly employing a random mechanism.  The domain is represented 

by a frame  - a list of units for a finite population or a map for a domain of spatial extent (e.g. 

a list of segments for a domain of linear extent)).  Each element on the frame is assigned a 

probability, or an inclusion density is defined on the domain, such that a random mechanism 

is employed to determine inclusion of domain elements in the sample with the probability or 

inclusion density associated with each element.  The way that the inclusion probabilities or 

inclusion density are defined is formally the sample design.  The sample design may assign 

variable inclusion probabilities, sometimes as a function of auxiliary variables which could be 

continuous or categorical (such as in cluster or stratified sampling).  (There are sampling and 

estimation procedures for cases in which the target population elements are not itemized - 

referred to as distance sampling, which is not covered in this study (see Buckland et. al. 

(1993)). 

Peterson et. al. (1999) and Paulsen et. al. (1998) discuss selection bias in examples of 

non-probability samples that do not adequately represent the response over the domains of 

interest.  Simcox et. al. (2004) demonstrate an analysis of representativeness of non-

probability samples for water quality on USGS monitoring stations in a New Hampshire 

watershed, using techniques similar to post-stratification.  Though not recommended, non-
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probability samples do happen to good agencies, frequently.  Doing a proper sample design 

and survey can be prohibitively expensive.  An agency may have some observations from 

pilot studies, or from monitoring stations that might hopefully represent a carefully specified 

subset of the domain, or from observations from encountered phenomena.  Data may have 

been collected in a particular configuration that optimizes fitting a model, and then 

subsequently there is interest in using the non-probability data for extrapolating a 

characteristic of the response across the study area.   

While any extrapolation from the observations to a domain would most certainly 

have to be treated as preliminary without a probability sample design, a stakeholder would 

naturally be inclined to ask how much the extrapolation from the observations in the non-

probability sample might change if a similar sample of elements on the domain had been 

observed.  This is the question of focus in this research.  The problem with the non-

probability sample is that current available design-based methods do not apply, because the 

specification of the inclusion probabilities (density) is pathologic. 

In the present research, the objective is to provide an assessment of the variability of 

an extrapolation from a non-probability sample to the rest of the domain, perhaps as a 

preliminary data point, accepting that the extrapolation includes risk of selection bias 

nevertheless.  Because the non-probability sample has pathologic inclusion densities, there is 

not a basis for the application of the conventional design-based metrics.  The assessment of 

bias and efficiency (variance) on the extrapolation does not have a long-run frequency basis 

of interpretation as described by Godambe and Thompson (1988).  However, the observations 

and the order of the observations as provided by their arrangement on the domain will impact 

the degree of potential bias (in the sense described by Royall and Cumberland) an 

extrapolation would have when the observations are taken on a regionalized response – a 

continuous response with a covariance structure such that locations in close proximity are 

more similar than locations beyond the range of covariance.  A question of interest that has 

useful and natural interpretation is how much the extrapolation would vary on other sets of 

observations that are arranged similarly to the given non-probability sample.  From this 

natural idea, a basis is proposed for characterizing the stability of the extrapolation 

(conversely, the variability).  In a previous paper, a mathematical characterization of a class 

of patterns of similar arrangement is developed ("Characterizing classes of similarly arranged 

point patterns as a reference of variability on non-probability samples"; Dissertation Chapter 
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3).  In this paper, methods are explored for estimating the variability of an estimate over a 

class of patterns.  

2 BACKGROUND 

A sample can be characterized by how representative it is of the domain response.  

Response covariance within the sample impacts how well the distribution of the response 

within the sample matches the distribution of the response throughout the domain  (i.e. 

described as "balance" by Royall & Cumberland (1985; 1981)).  Covariance within the 

sample depends on the range of covariance structure of response and sample resolution 

(relative to range) as well as the size/dimension of study area (relative to range).  Oliver & 

Webster (1986) explore how pure nugget (sometimes referred to as variance due to 

measurement error) on a coarse scale may manifest covariance at a finer scale.  A pattern 

with complete spatial randomness (CSR) would have relatively more covariance in the 

observed responses than a more regular (i.e.-spatially balanced) pattern (see, for example, 

Cochran (1946)).   

A formal model of the characteristics of observations from a collection of locations 

or elements on a domain has three parts:  a component representing the domain ("A"), a 

component representing all finite sets of points on the domain, denoted 
nζ , and a set 

measure on members of 
nζ  (which could be probabilities or densities (when they exist) for 

sets generated by a stochastic process, though this is not meant to suggest that a collection of 

locations be treated like a random sample if it is not).  As an example, the universe of size-n 

sets for complete spatial randomness (CSR) is the n-product (Cartesian product) space of 

domain A.  The model indicates that a covariance structure in the response on domain A will 

be relevant to the characteristics of a sample, as well as to the variance over estimators that 

are functions of the responses at the samples' observed elements.  This is true regardless of 

properties of a sample process (e.g. inclusion being independent from one point to the next).  

For the context of this study, for a class of point patterns characterized by a measure on the 

set universe 
nζ , the covariance structure of the response on domain A impacts the variability 

of the estimator function applied to sets within that class of point patterns. 

In this development the collection of observations is assumed to be taken from a 

stationary regionalized response structure on a continuous domain – that is, the mean and 
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covariance structure of the response is assumed to be independent of location.  For this study, 

the covariance structure is assumed to be isotropic (not dependent on the orientation of any 

two points).  An important qualification of any application of the process described here is 

that a sample must be defensibly representative of the domain.  A sample which includes 

observations collected at "hot spots" is not representative of the response overall.  Such a 

sample would violate the assumption of response stationarity: at "hot spots", the mean of the 

response is not independent of location.  (Refer to Simcox et. al. (2004)) A sample that 

avoids hot spots might be defensibly representative.  Sources of bias due to frame error or 

non-response (in the context of continuous domain studies, due to accessibility problems that 

may or may not be related to the response) are not addressed here. 

3 APPROACH 

The process to quantify variability should be general to any collection of points 

without requiring, suggesting or imposing a stochastic generating process.  For example, the 

collection of points may resemble an outcome of a random process with complete spatial 

randomness, or it may be more regular or more clustered, resembling the outcome of a 

random process with inhibition or clustering.  Since the collection of points in the scenario of 

interest here is not a random sample, conclusions drawn from the observations should be 

reviewed with careful consideration to any (inadvertent) bias due to the selection of locations 

without a random mechanism.  Avoiding application of a model of any stochastic point 

process serves to keep the process general to any collection of points at the same time that it 

does not encourage one to forget the non-random origin of the data. 

The first part of the process is constructing measures on point sets to characterize 

classes of similarly arranged points, since variability of any estimate based on the non-

probability sample is with respect to how the estimate could vary over samples from that 

class.  Methods of constructing measures are based on metrics that partition the point-set 

universe 
nζ  in some useful manner that distinguishes point sets based on characteristics of 

the point patterns such as regularity and clustering.  This is addressed in the first paper 

(Dissertation Chapter 3). 

Once a measure is defined on the set universe 
nζ , the process exploits the 

covariance structure of the domain's response to predict variability over sets of points 

observed on that domain.  The proposed procedure is to model the response's covariance 
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structure given the collection of observations, and then to use the Monte Carlo (MC) method 

to estimate variability over the specified class of point patterns.  The MC step is done by 

simulating a response with the fitted covariance structure and observing the estimate obtained 

from many sets of observations taken from the class of sets arranged similarly to the non-

probability set of observations.  Webster and Oliver (1992) use a similar approach to 

demonstrate the variability of fitted variogram models at each lag, in which they simulate 

many realizations of the response to obtain Monte Carlo confidence bands (in this case the 

variability is over realizations of the response's generating random process, not due to sample 

process variability). 

Besag and Diggle (1977) demonstrate the Monte Carlo (MC) approach in several 

examples of point pattern analysis.  They cite Hope (1968), who finds an MC test for 

significance would have only a little less power than that of a UMP test.  The joint densities 

of the point patterns and of observations taken on these points would be complicated or 

possibly intractable.  Monte Carlo methods in the analysis of point samples on continuous 

domains provide a way to examine the probability law of estimators and statistics on the point 

patterns, possibly on domains with irregular boundaries and/or including holes.  Besides all 

the practicality of the MC method, the application is general to any collection of observations 

and without consideration of any stochastic point process that the non-probability collection 

of points might resemble. 

The process of simulating a response using a modeled covariance structure is 

analogous to the concept of reproducing equivalent sets of data from a sufficient statistic.  An 

interpretation of a sufficient statistic is that it provides all the information to partition the data 

space into "equivalence classes" that would result in equivalent inferences.  The original data 

is not necessary given sufficient statistics.  The sufficient statistic could be used to generate 

data equivalent to the original data.  For the context of this study, the data on the entire 

domain is not observed (or there would be no need for estimating the desired summary 

characteristic).  A response simulated from the modeled covariance structure is "equivalent" 

data in terms of the behavior of the covariance structure.  The newly produced response is 

sufficient to analyze the variability of the estimator on the specified class of point patterns.  

Strictly speaking, whether the modeled covariance structure adequately captures the behavior 

of the underlying response depends on how much the sample observations represent that 

behavior of the response on the domain.  Assuming this is a viable assertion, the modeled 
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covariance structure is used to produce a data set equivalent to the one for which there is not 

complete information. 

4 METHODS 

The procedure is applied in two scenarios.  In the first, the response is a simulated 

regionalized response with an exponential covariance structure on a continuous domain of 

areal extent.  In the second, the procedure is applied to a simulated response on a stream 

network, for which the covariance structure is modeled using a semi-parametric covariance 

structure derived as the covariance of a moving-average process (see Barry and Ver Hoef 

(1996)).  The response on the stream network mimics summer parr per KM as modeled by 

personnel at Oregon Department of Fish and Wildlife (ODFW).  For the exponential-

covariance response on the areal-extent domain, the parameters of the exponential structure 

are estimated using REML.  For the stream-network response, the moving average 

coefficients are estimated using a non-linear least squares fit.   

The covariance structure is used to simulate a realization of a response on the domain 

represented by the frame.  On the simulated realization, the MC process is used to examine 

variability of an estimator over many sets drawn from the class of sets defined as similarly 

arranged to the purposive sample.  The GaussRF() function in the RandomFields package of 

R (Schlather (2001)) was used to simulate the response on the domain of areal extent.  To 

simulate a response on a stream network, sequences of innovations (i.e. independent Gaussian 

random variables with suitable variance to mimic the observed response's variance) were 

produced and a moving-average filter with the estimated coefficients was applied to each of 

the network's segments.  In the case of segments downstream of multiple confluences, the 

contribution of each of the upstream segments was averaged, with equal weighting for 

simplicity. 

Specific details on the methods to test the proposed process are described for each 

domain in the next two sections. 

4.1 Variability on a continuous domain of areal extent 

To test the process, a "true" response of exponential structure on a 200 x 200 unit-

square study region is simulated.  The exponential structure is simulated for a zero-mean 

process with range of 2 and sill of 4.  This response is sampled with two configurations of 

100 points – one with complete spatial randomness (CSR) and one with a more regular 
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interval between points – a grid tessellation stratified (GTS) point pattern.  The point patterns 

are used as the non-probability samples even though they are produced with stochastic 

processes.  For each configuration, an exponential covariance structure is fit using REML and 

this modeled structure is used to simulate another realization of the domain response, as 

though the true response were not known.  For 1000 simulations, similarly-arranged patterns 

of size-100 samples are generated by translating and rotating the original pattern, wrapping 

the pattern around the edges of the study region from bottom to top and right to left when the 

rotated, translated pattern goes outside the boundary.  For the original and each newly 

generated pattern, a Horvitz-Thompson estimate (Horvitz and Thompson (1952); or see S. 

Thompson (1992)) of total is produced assuming constant weights proportional to the sample 

intensity (which averages 1 point per 4 unit-square area).  For the study, this is done with 

response observed both on the original response and also on the equivalent response.  The 

empirical variance from the generated response and the true response are compared.  This 

process is done for each of the two generated purposive patterns. 

4.2 Variability on a simulated stream network 

The approach to estimate variability of an estimate over a class of similarly arranged 

locations for a stream network is the same as the approach for that on an areal extent.  The 

method in application requires some modification, but the overall steps are the same – model 

the covariance, simulate a response on the domain and use the Monte-Carlo method to 

estimate the variability on a class of sets of locations arranged similarly to the (non-

probability) collection of locations. 

There are two main specific differences from the areal-extent example – (1) the 

method chosen to model the covariance and (2) a modification to average over a number of 

simulated realizations in order to guard against inadequate representation of the original 

response's covariance structure.  The method to model the variogram with a moving-average 

process variogram is described in Barry and Ver Hoef (1996).  The modification to average 

over a number of simulated response realizations was determined to be necessary from 

preliminary results (discussed in subsequent sections).   

The moving-average variogram is a piece-wise linear variogram that would model 

the average squared differences of a moving-average process response as a function of 

stream-flow distance between any point pair in the domain.  The number k of piece-wise 

linear nodes are specified such that there are some average number (e.g. 30) of observed 

squared-differences in each stream-flow distance bin between 0 and range c.  The range c in 
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this context refers to the lower endpoint of the bin interval containing the largest distances.  

The bins are defined to be even intervals of c/k up to distance c, with one additional bin 

between c and the maximum inter-point distance.  Coefficients of the moving average 

producing the observed variogram are estimated using non-linear least squares.  A more 

extensive description of fitting a moving average variogram is described by Barry et. al. 

(1996). 

The stream network response is simulated as a moving average process that will be 

realized with a covariance structure similar to that of the response observed.  The simulated 

response is produced by a moving average process, where the fitted coefficients are applied to 

a sequence of independent, identically distributed (iid), zero-mean, finite-variance 

innovations.  Although the response on the stream network is continuous, it is modeled here 

as the result of a moving average process on discretely spaced innovations.  Any artifact 

introduced by the quantization is ignored.  The Appendix describes how to determine the 

variance of the innovations and how a suitable resolution of the simulated response can be 

achieved by interpolating additional coefficients in between the fitted MA coefficients.  

The performance of the suggested process to quantify variability of the estimator is 

evaluated by examining relative error.  To analyze the performance, the procedure is applied 

to a stream network simulated response that is treated as the true response.  The steps are 

summarized as follows: 
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1. Produce a true simulated moving-average process response. 

2. Fit a moving-average variogram to the true response. 

3. Repeat the analysis (above) for MC (=100) trials: 

a. For each of J (=20) trials 

i. Simulate a moving average response (using coefficients estimated in (2)) to 

mimic the covariance of the true response. 

ii. For each of I (=10) trials, generate a collection of locations from the class of 

arrangements similar to the (non-probability) arrangement of locations. 

iii. Save the variance of the I realized estimates on both the true response and on the 

mimic response. 

b. Save the observed average (over J trials) variance (over I trials) for both estimates 

from the true and mimic responses. 

c. Calculate the relative error from each MC trial as  

{difference between average observed variances}/{true response average observed 

variance} 

Values for I (number of replicate samples per mimic realization (10)) and J (number 

of replicate mimic realizations (20)) were chosen after comparing panels of point plots of the 

realized estimates from each sample within each realization and on the true response.  

Qualitatively, the ranges of estimates seemed to show more consistency within the samples 

than between realizations.  Differences in characteristics of the realizations are described in 

more detail in the Discussion. 

The performance of the variance estimator is examined on one segment of stream in 

the Alsea basin in Oregon.  Figure 4-1 and Figure 4-2 show examples of samples on the 

segment.  The purposive sample is produced here as the result of a process with complete 

spatial randomness (CSR)), by mapping the stream network to one line segment of 

appropriate length, choosing the intervals between locations along the linear map by a 

Poisson process, and then transforming the locations on the mapped line segment back to the 

stream network.  The class of similarly arranged sets of locations is effected with a process 



 

92

similar to that used for the areal-extent example, except without applying rotation.  That is, a 

random offset is added to the locations in the mapped line segment and the new locations are 

transformed back to the stream network by the appropriate mapping. 

Figure 4-1 A CSR sample taken on a segment of stream in the Alsea basin of Oregon.  This is 

treated as the non-probability collection of locations and translated random amounts to achieve 

a class of similarly arranged locations of points. 
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Figure 4-2 A sample taken on the studied stream segment in the Alsea basin stream network in 

Oregon.  This sample is from a class of similarly arranged sets of locations generated from a 

"non-probability" sample (produced by a Poisson process for this study). 

 

 

5 RESULTS 

The following subsections contain a brief summary of the results of the process 

applied on the areal and stream-network domains.  Discussion of results of the process as 

applied to each domain follows in Section 6. 
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5.1 Variability on a continuous domain of areal extent 

For the regularly spaced (GTS) collection of points, the observed empirical variance 

on the true surface was 4244.7 vs. that on the "equivalent generated" response, which was 

4639.8.  For the more random (CSR) collection of points, the observed empirical variance on 

the original true response was 10240.3, vs. that on the equivalent generated surface, which 

was 10059.9. 

5.2 Variability on a simulated stream network 

Table 4-1 below summarizes the results of observed relative error for 100 trials each 

of three ranges c specified to be either the thirtieth, fortieth or fiftieth percentiles (cq = .3, .4, 

.5) of the purposive inter-point distances in the sample along the segment of Alsea (as in 

Figure 4-2, for example).  The range c in this context refers to the lower endpoint of the bin 

interval containing the largest distances.   

Table 4-1 Stream network relative error statistics for "range" set to the 30
th
, 40

th
 and 50

th
 

percentiles of observed inter-point stream-flow distances (where "range" is the lower endpoint of 

the upper-most stream-flow distance bin): 

cq Relative Error Summary Statistics 

 Min 1st Qu. Median Mean 3rd Qu. Max 

0.3 -0.16 0.05 0.14 0.17 0.31 0.62 

0.4 -0.27 -0.10 0.01 0.02 0.09 0.44 

0.5 -0.39 -0.24 -0.14 -0.11 -0.01 0.31 

6 DISCUSSION 

6.1 Variability on a continuous domain of areal extent 

The empirical variance of the equivalent generated response is about 10% greater 

than that of the original data for the regularly spaced (GTS) pattern of observations.  The 

equivalent generated empirical variance of the CSR pattern was about 2% less than that of the 

original data.  These results are one outcome of a Monte Carlo study on 1000 trials for each 

point pattern.  They suggest that the approach would provide a stakeholder with a useful 

approximation of how much an estimate would vary on a domain had the data been collected 

at different but similarly arranged locations. 

6.2 Variability on a simulated stream network 

There are deficiencies in the performance of this methodology as applied to stream 

networks, regarding bias and efficiency.  Bias is discussed first, followed by efficiency. 
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To achieve unbiasedness, it is critical that the variogram be fit with an appropriately 

selected range c that results in a moving-average fitted variogram that most closely matches 

the empirical variogram generated on the same intervals.  The empirical variogram is 

produced as the observed averages within the same bins defined by the nodes of the moving 

average variogram, with the observed average plotted at the average distance within the bin.  

In the example, the observed relative error indicates positive bias for mimic responses 

generated as the result of a variogram fit with the range set to the 30
th
 percentile of the 

distances (with the highest bin including the top 70
th
 (100-30) percentile distances).  It 

indicates negative bias for the mimic responses generated from a variogram fit with the range 

at the 50
th
 percentile (the highest bin defined to include the top 50

th
 (100-50) percentile of the 

distances).  When the range c is specified to be the 40
th
 percentile, although there is 

substantial variability in the outcomes of the relative error, on average the relative error 

indicates that the variability as observed on the mimic response is approximately unbiased for 

estimating the variability of the estimator as observed for the same samples on the true 

response.  The moving average variogram fitted for c set to the 40
th
 percentile of the distances 

achieved the closest match to the empirical variogram in terms of being most parallel to and 

having least vertical deviation from the empirical variogram. 

The same process repeated on another ODFW modeled response showed the 

direction of bias being the reverse of how it occurred in the above example – that is, as the 

percentile defining c increased, the bias went from being negative to being positive (data not 

shown).  As with the example above, the amount of bias as indicated by the relative error is 

least severe for the fitted moving average variogram that most closely matches the empirical 

variogram fit on the bins specified by c and k. 

The efficiency of the method to indicate variability on the true response by the 

empirical variability observed on a mimic response is probably not adequate for any but the 

most preliminary studies, even when the moving-average fitted variogram aligns closely with 

the empirical variogram. To improve efficiency, it is critical to average the empirical Monte 

Carlo variance over multiple realizations of the mimic response.  A review of various 

realizations of the moving average process on the segment shows that, between realizations, 

there is enough variability due to naturally occurring longer and shorter periods of persistence 

that it is risky to take the empirical variability over similarly arranged locations on any one 

realization as being "representative enough" of the true response's characteristic.  As an 

example, consider the two realizations shown in Figure 4-3 from the same 5
th
 -order moving 
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average process, with coefficients fit by non-linear estimation of a moving average variogram 

to one derived response on the Alsea basin survey data.  The ranges in response on the two 

realizations are approximately the same (about 7500 units or so), but there is longer 

persistence in the gradually increasing trend in the realization to the left, and more incidents 

of cycling to extremes in the one on the right.  Thus samples taken on the left could indicate 

less variability over all compared with those taken on the right.  Averaging over numerous 

realizations helps to mitigate the effect of this phenomenon. 

 

Figure 4-3 These two realizations of a particular 5th-order moving average process illustrate the 

variability in persistence of outcomes of a moving average process. 

 

7 CONCLUSION 

In this study, a method to characterize the variability of an estimate over a class of 

sets of locations similarly arranged to a non-probability sample is proposed and illustrated.  

The method addresses an interest to characterize the information in non-probability samples 

that might defensibly be representative of a response on an underlying domain.  The method 

avoids any suggestion that a non-probability sample is the result of a stochastic point process 

and is general to any configuration of domain or arrangement of points.  The paper gives a 

basis of describing the variability of estimates taken on sets of locations similarly arranged to 
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a non-probability sample by noting the relationship between the spatial order of elements in 

the samples and the covariance of the sample responses as impacted by that ordering. 

The covariance structure in the response on the domain influences variability over an 

estimator on samples taken from that domain.  The proposed method to quantify variability 

over a class of sets of locations determined to be similar to a non-probability sample uses a 

modeled covariance structure to produce an "equivalent" response on which to obtain a 

Monte Carlo estimate of variability on the class of sets of locations.  This is similar to an 

approach used by Webster and Oliver (1992) to simulate realizations of a stochastic process 

(of a continuous response with covariance) to generate confidence intervals on fitted 

variograms.  The method proposed here is illustrated for examples on an areal domain with a 

simulated response with exponential covariance, and on a stream-network domain with a 

simulated moving-average response. 

The results suggest that the proposed method is viable for the response on the areal 

domain, but only marginally useful for the response on the stream network.  On the areal 

domain, the variability on the equivalent and original response over 1000 trials differed by 

2% for spatially random arrangements and by 10% for more regular arrangements of 

locations.  On the stream network, using the coefficients from the fitted moving-average 

variogram to produce an equivalent moving average response on the stream network had the 

limiting feature that the moving average response for the segment studied had substantially 

varying degrees of persistence among the realizations of the moving average process, which 

resulted in differing indications of variability over the class of similarly arranged locations.  

Averaging over numerous realizations helped to mitigate but did not overcome the effect of 

the varying nature of the moving average response.  Additionally, without a carefully chosen 

combination of range and number of nodes to define the piece-wise moving average 

variogram, the stream-network results showed substantial risk of bias. 
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APPENDIX – SIMULATING A MOVING AVERAGE STREAM NETWORK RESPONSE 

The goal of the analysis is to simulate a response with a covariance structure that 

closely mimics that of the response being sampled.  For the stream networks, the covariance 

is modeled by fitting a moving-average covariance structure, using nonlinear estimation to fit 

the moving average coefficients that achieve a fitted variogram matching the empirical 

variogram.  The simulated response is produced by a moving average process, where the 

fitted coefficients are applied to a sequence of independent, identically distributed (iid), zero-

mean, finite-variance innovations.  Although the response on the stream network is 

continuous, it is modeled here as the result of a moving average process on discretely spaced 

innovations.  Any artifact introduced by the quantization is ignored.  The first subsection 

describes how to determine the variance of the innovations.  The second discusses how a 

suitable resolution of the simulated response can be achieved by interpolating additional 

coefficients in between the fitted MA coefficients. 

A.1 - Determining variance of the innovations 

The variance of the innovations depends on the order k and range c of the moving 

average (MA) process (or in application, on the order and range we choose to apply to fit the 

semi-variogram).  The relationship is determined as follows.  Let zi denote iid innovations 

with zero mean and variance 
2
zσ .  Let E[] and V[] denote the expectation and variance 

operators.  Let the vector a be the vector of moving average coefficients and let m denote the 

discrete lag for which we are evaluating the variogram.  The responses this lag distance apart 

are each the result of the moving average on the innovations, so that one response is a sum of 

innovations a lag of m away from the innovations of the other response (i.e. ∑
=

r

i

ii za
1

 and 

∑
=

−

r

i

mii za
1

).  The expectation of the squared increment between the two responses with lag m 

is equated to the fitted variogram at that lag distance to arrive at the relationship between the 

variance of the innovations and the modeled order k and range c. 
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Setting this equal to the fitted variogram value for lag m, referring to Barry and Ver 

Hoef (1996), the variogram at lag m is equal to  
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the variance of the innovations should be set to the lag interval – i.e. the range c divided by 

the number of nodes k in the fitted variogram. 

A.2 – Manipulating the resolution of the simulated response 

In the original study, Oregon Department of Fish and Wildlife collected "basin 

survey" data on certain segments of the Alsea basin (Figure 4-4).  The range c of the process 

for which the variogram was fit to the observed variogram data of the original response was 

set to include some proportion (either 30%, 40% or 50%) of the observed inter-point stream-

flow distances.  (Locations on disconnected segments are modeled as having infinite inter-

point distances).  The nodes are specified such that there are an average number (30) of 
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observed squared-differences in each bin between 0 and range c.  The bins are defined to be 

even intervals of c/k up to distance c, with one additional bin between c and the maximum of 

the inter-point distances observed.   

The 30
th
, 40

th
 and 50

th
 percentiles of the original ODFW survey on Alsea were about 

5400, 7600 and 10900 meters respectively.  (Total stream length included in the Alsea basin 

frame is 1,666,234 meters.)  This may be beyond a scale of local covariance, though the scale 

could be reasonable for response associated with land-use (though an effect at this scale could 

more conveniently be modeled as a main effect).  To understand how a covariance structure 

might be exploited to examine variability over a class of similarly arranged sets of locations, 

simulations were done on one long segment with a finer sample resolution to examine a more 

local-scale covariance. 

The studied stream segment covers a length of close to 86,000 meters (the segment in 

Figure 4-2 with the overlaid points depicting one sample).  The sample resolution was set to 

have an average point spacing at about one-fourth the distance equal to the interval distance 

between nodes of the variogram fit to the original basin survey data.  If the observed data is 

binned to have approximately 30 observations per bin, for the original data set, this allows for 

2- or 3-node variograms to be fit to the observed data, where the first and last nodes are at 

distance 0 and maximum distance observed, and the second-to-last node is set at the one of 

30
th
/40

th 
/ or 50

th
 percentile of the distances.  This produces a lag interval on the original data 

of about 5400, 7600 and 5400 meters respectively (where the lag interval is c/k and k depends 

on the specified average number of observations per bin).  By design, the average point 

spacing in the purposive sample is approximately equal to this distance, so that for a CSR 

arrangement there are an adequate number of smaller distances to provide information about 

the covariance structure at close distances, where the gradient of the variogram is steepest. 
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Figure 4-4 Open circles indicate the locations of the Oregon 

Department of Fish & Wildlife Alsea basin-wide survey on the 

stream network in the Alsea basin in Oregon. 

 

On the local scale (on the segment studied), the sample resolution was about four 

times finer than the average sample resolution in the original data provided on the Alsea 

basin.  To make the sample process on the simulated response behave as reasonably 

representative of an actual response, the response is simulated at intervals about 5% of the 

inter-node distance of the fit variogram – giving a simulated response resolution of about 270 

to 380 or so meters.  Since the variogram on the original data had 2-3 nodes, the moving 

average process is modeled as a 2
nd
 or 3

rd
 order process with lag interval about 20 times the 

distance of the desired interval of the simulated response.  To achieve a simulated response at 

a finer resolution, a higher-order process is derived by interpolating between the original 

coefficients and applying the higher order process to innovations spaced at the desired 

interval. 

The immediate consequence of this procedure is that the variance of the innovations 

must be adjusted to behave as though the lag scale c/k is appropriate for the innovations at 

this higher-resolution spacing.  For simplicity, the variance is set to the original lag scale 

divided by 20 – the number of points to be simulated on each inter-node distance interval.  
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Although this introduces some error not quantified here, if the number of nodes of the fitted 

variogram had been chosen such that the lag scale would be the same distance apart as the 

desired interval, this would be the theoretical variance used for the innovations.  A 

comparison of realized samples from each of the true and mimic simulated responses 

suggests that the adjusted variance of the innovations is reasonable.  That is, the approximate 

ranges and low, medium and high frequency fluctuations in the samples of each of the 

responses are similar for many trials (an example is shown in Figure 4-5). 

 

Figure 4-5 A typical pair of sample profiles taken on the true and 

mimic moving-average response on the studied segment of the Alsea 

stream network.  The general agreement of ranges and degree of 

fluctuations validates the variogram fitting and response simulation 

methods. 

 



 

104

DISSERTATION CONCLUSION 

This research provides basis and justification for describing the uncertainty in an 

extrapolation from a non-probability sample collected on a continuous domain, where the 

uncertainty is characterized as the sample process variability that would occur if the 

extrapolation from observed elements to the domain were made with observations collected 

at different but similarly arranged locations in the domain.  Very little has been done to 

address the application of non-probability sample data to estimating population 

characteristics.  Where there has been application, the data were used typically by employing 

post-stratification or similar analyses to adjust or augment a probability sample. 

The basis for describing the uncertainty of an estimate based on a non-probability 

sample exploits the covariance structure in the regionalized response typical of a continuous 

domain, and the interaction between the sample intensity and arrangement and the range of 

the covariance of the response.  Unlike finite population unit identifiers, the locations of the 

elements observed on a continuous domain – the element-identifying information, are not 

ancillary to estimating the sample process variance.  This is explored in the first manuscript 

(Chapter 2).   

In this manuscript, the model- and design-based approaches to sampling and 

estimation are compared.  The models of stochasticity, emphases of applications, estimation 

methodologies (method-of-moments vs. likelihood approaches) and the component of 

variation addressed by each approach are discussed and compared.  Since design-based 

survey methodologies have traditionally been developed and applied on finite populations, 

the paper describes the idiosyncrasies of sampling and estimation on continuous domains, 

including a change from finite inclusion probabilities to continuous inclusion densities.  The 

non-exchangeable covariance structure typical of continuous domains is introduced, 

emphasizing that information provided by locations being observed is relevant to 

characterizing variance, which is in contrast to the irrelevance of unit IDs of finite 

populations (except where the unit ID indicates group membership).  The Horvitz-Thompson 

and Yates-Grundy design-based variance estimators are compared with a model-assisted 

variance estimation approach that exploits the response's covariance structure, for 

tessellation-stratified samples taken on a continuous domain with a simulated exponential 

covariance structure.  The model-assisted variance estimator is demonstrated to be more 

efficient than the two purely design-based variance estimators. 
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The interaction between the sample process and the underlying response is made 

explicit by a model of the probability space of the domain, the universe of finite sets 

generated on that domain and a set measure on the universe of finite sets.  The fact that the 

set locations are taken from a domain for which the observations within a range of covariance 

are correlated is essential to establishing that the arrangements of the locations and the 

underlying covariance of the response on the domain are interacting.  This suggests that for a 

certain class of patterns of locations, there would be a predictable covariance structure and 

therefore a predictable sample process variance with respect to that class of locations. 

If an agency has a non-probability sample from which a preliminary extrapolation is 

made to the domain, a reasonable concept of uncertainty would be the amount of variability 

such an extrapolation would have from observations collected over similarly arranged sets of 

locations.  A critical premise of entertaining this characterization of the uncertainty is that the 

response's covariance structure is stationary – the mean and the covariance must not depend 

on the location in the domain.  If a practitioner has data collected at locations that are known 

to be contaminated or distinguished from the baseline response in some other way, this 

immediately violates this assumption, for the expected response at a hotspot depends on the 

location.  Supposing that, at least for a preliminary study, the response has been observed at 

locations not specified by a probability sample but neither specifically different from the rest 

of the region being explored, the responses and the covariance observed between them might 

be representative of the region.  Then the arrangement of the locations on the region and the 

covariance structure on the response on the region would provide useful information to 

describe what kind of variability the interested parties might see for extrapolations on 

similarly arranged locations of observations. 

From this setup, an approach is proposed that the uncertainty be characterized by 

explicitly defining the class of similarly arranged locations and then predicting variability 

with respect to that class.  In Chapter 3, a process of characterizing classes of sets of locations 

is developed from point pattern metrics.  Point pattern metrics are selected based on their 

potential to differentiate patterns of points that are clustered, dispersed or random.  The 

relationship between a probability density on a point pattern metric and a set measure on sets 

of locations on the domain is established.  Examining the model of the domain and the finite 

sets of elements on the domain, an argument is presented that by restricting the frequency of 

measurable sets of outcomes of a metric, this imposes a (unique) measure on the sets of 

locations and so precisely characterizes a class of patterns of locations. 
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Chapter 3 examines the utility of various point pattern metrics to assess goodness-of-

fit (GOF) of patterns to classes of patterns with regularity, clustering or complete spatial 

randomness.  Three metrics are compared on a domain of areal extent on regular and random 

classes of patterns – an inner-product metric, a Side-Vertex-Boundary (SVB) Dirichlet-tile 

metric and a metric based on Ripley's K(t) functions (Ripley (1977)).  The SVB and K(t)-

derived metrics are demonstrated to have very good utility for assessing GOF to exclude 

regular patterns from random patterns and vice versa. 

The manuscript in Chapter 3 introduces an interesting reversal in tendencies in 

efficiency between metrics incorporating either all or only neighboring point pair distances 

on areal domains vs. on linear network domains.  The chapter discusses how on areal 

domains, those metrics that incorporate all inter-point distances are usually more powerful 

than those based on only the nearest-neighbor distances.  On a stream network, the reverse is 

true – metrics incorporating consecutive distances are more useful than metrics incorporating 

all inter-point stream-flow distances. 

Three other metrics are compared on a stream network domain for regular, random 

and clustered patterns of locations, based on consecutive stream-flow distances:  a metric 

derived from an exponential distribution of consecutive point distances, a metric based on 

stochastic rank of consecutive point distances and a 2D version of the SVB metric.  The first 

two of these are demonstrated to have very good specificity for assessing GOF.  The 2D SVB 

is demonstrated to be excellent for excluding non-regular patterns from a class of regular 

(stratified) patterns.  The process of examining the GOF is illustrated on a non-probability 

sample collected on the Alsea River basin by Oregon Department of Fish and Wildlife 

(ODFW).  The non-probability sample is shown to be consistent with a class of sets of 

clustered locations. 

Having specified a class of sets that are similarly arranged to that of the non-

probability sample, a consumer of the data analysis will have a specific reference for which to 

describe the variability in the extrapolation from the non-probability sample observations and 

similarly arranged samples.  Chapter 4 establishes a basis for describing variability of 

estimates taken on sets of locations similarly arranged to a non-probability sample by noting 

the relationship between the spatial order of elements in the samples and the covariance of the 

sample responses as impacted by that ordering.  A Monte Carlo (MC) approach is proposed 

and examined for efficacy to quantify the sample process variability of an estimate for a 

particular class of sets of locations and on a response with a particular covariance structure.  
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The process in application is to model the response covariance structure conditional on the 

observed data, with which a response is simulated on the entire domain with the appropriate 

covariance structure.  On the domain, sample process variance over the class of point patterns 

is estimated by MC sampling from the specified class of sets of locations. 

The proposed approach is evaluated by examining the relative error between 

estimates of sample process variance and the empirical sample process variance on a 

simulated response treated as the true response.  The process is tested on a square domain 

with a simulated response with exponential covariance structure.  The empirical variance is 

observed for 1000 samples realized from each of a grid tessellation stratified (GTS) and 

Complete Spatial Randomness (CSR) sample process on both the true and mimicking 

simulated responses.  The process is illustrated to work reasonably well on the domain of 

areal extent, with relative error being 10% and 2% for the two processes, respectively. 

On the stream network domain, a moving average process was simulated for the 

section of the Alsea River basin.  For this response and domain, it was necessary to extend 

the above process to average over multiple moving-average realizations produced to mimic 

the initial moving average response covariance structure.  The relative errors observed were 

not adequate to recommend this approach for a stream network domain. 

 

Ideally no population characteristic estimates would be based on non-probability 

samples, given the multitudes of reports that show selection bias introduces a serious risk that 

the data in the non-probability samples is not representative of the response on the rest of the 

domain.  Estimates are likely to be biased.  Due to time and cost constraints, agencies will 

hope to glean as much useful information as can be mined from data that has been collected 

by whatever means.  The data may have been intended for an objective other than 

characterizing the response over the rest of the domain, and subsequently there might be 

interest in attempting to characterize the response if only for preliminary information.  The 

preliminary information may be applied to improve the design of subsequent data collection. 

This research develops the opportunity – for studies on continuous domains with 

regionalized responses – to exploit the interaction between the sample design (resolution and 

order) and the covariance structure of the response on the domain that influence the sample 

process variance.  The interaction is formalized by stating the probability model for the 

domain, the universe of finite sets generated on the domain and the set measure on the 

generated sets.  By developing a precise characterization of classes of point patterns, a 
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reference for characterizing uncertainty of an extrapolation from a non-probability sample is 

established.  Characterizing the variability of an extrapolation requires the specification of the 

class of similarly arranged sets over which the variability in the extrapolation would occur. 
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