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NOMENC LATURE

Notation Description

Cylinder 1 : refers to cylinder of diameter 0. 590"

Cylinder 2 : refers to cylinder of diameter 1.355"

Cylinder 3 : refers to cylinder of diameter 2. 108"

C : constant

C' : constant

n : exponent of Grashof number

n. : exponent to which variable i appears in C'

E. : error in variable i

j : number of variables involved in summation of errors

g : acceleration of gravity

k : thermal conductivity

kinematic viscosity

f3 : coefficient of thermal expansion; = 000101/°F

q surface heat flux

x : distance from leading edge of heated section

L
: length of heated section
: length over which heat transfer occurs

D : diameter of cylinder

r : radial distance from heated surface

Pr : Prandtl number



f(Pr) : function of Prandtl number

Gr'

+Gr

+Ra

+Ra

hx

hm

+Nu

: all terms in modified Grashof number except length

variable, = (*) q
v k dT: Grashof number dependent on ()dx 'o

: Grashof number = (fif-)
L3

: modified Grashof number = ( g ) q °
v k

at Tr = 0. 7 Tw + o. 3 Too

L4; evaluated

: Rayleigh number= Gr Pr

: modified Rayleigh number = Gr'''' Pr

: local film coefficient

: averaged film coefficient

: Nusselt number = hL
kAT

evaluated at TwqL

T : local fluid temperature

Too : ambient fluid temperature

Tw : temperature of heated surface

AT :T -T
w 00

AT

dT
o

dT
dr

: average of AT over surface; Tw - Too

: slope of surface temperature increase in the
x-direction at x = 0

: slope of radial temperature gradient at surface of
cylinder

+The dimensionless groups may appear in the text with various
subscripts referring to the dimension upon which the group is based,



(i)

0

I

: (T - T00) / (Tw - 0)

dimensionless temperature defined by equation E5. 1;

evaluated at Tr = 0. 7 Tw + 0.3 Too

: dimensionless temperature defined by equation E5.2;

evaluated at T=r 0. 7 Tw + 0.3 Too

f(n) : function of 1



AN EXPERIMENTAL INVESTIGATION OF LAMINAR
NATURAL CONVECTION WITH A UNIFORMLY
HEATED VERTICAL CYLINDER IN MERCURY

I. INTRODUCTION

Motivation for the research described in this report was pro-

vided by the needs of the United States Atomic Energy Commission

involved with reactor research and by the desire to expand current

knowledge of the natural convection phenomenon.

The nuclear power plants of the future will be of the liquid

metal fast breeder reactor (LMFBR) type. The coolant medium in

the reactor core will be a liquid metal and, therefore, will have a

very low Prandtl number. In the event of a pump failure involving

the coolant the only mode of heat transfer from the core will be that

of natural convection. Safe operation under such conditions requires

knowledge of the total heat transfer, flow rates, and temperature

extremes that can be expected to occur.

The problem of natural convection from certain vertical

geometries has been studied analytically and solutions to the govern-

ing equations of momentum and energy are presented in the literature

for a range of Prandtl numbers including those characteristic of the

liquid metals. The validity of applying these results to low Prandtl

number fluids is in question, however, because of the assumptions
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involved in reducing the governing equations to a simplified and

solvable form. To increase the present understanding of the heat

transfer phenomenon in the low Prandtl number range, an experi-

mental effort is certainly necessary and justified.

Until recently there has been very little comprehensive experi-

mental effort given to the problem of natural convection from vertical

surfaces to liquid metals. As a result, of efforts at Oregon State

University and elsewhere, heat transfer from the vertical flat plate

has been studied and documented for the case of uniform wall heat

flux. Studies of the heat transfer from uniformly heated, opposing

walls of an open, vertical channel and studies of transition from

laminar to turbulent flow in a channel have been or are being per-

formed at Oregon State University.

The next logical step towards modeling the geometry of the

reactor was to consider the single vertical cylinder with uniform

surface heat flux. The initial study involved the laminar flow regime

only. The basic goal of this work was to establish relationships

between the pertinent heat transfer variables.

A priori, one would expect to find a relation for the local

Nusselt number as a function of local modified Grashof number and

the diameter of the vertical cylinder. Appearance of the diameter

in the results will indicate the effect of curvature upon the heat

transfer. This information will be useful in its own right but will
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also be a fundamental building block for evaluation of the results

attained from future studies involving more complicated geometries.

It is at first assumed that the heat transfer results for a flat

plate will differ from the results for a cylinder of some finite

diameter due to the effects of curvature,. In the case of the vertical

circular cylinder, heat transferred away from the surface and con-

ducted through the boundary layer encounters an ever increasing

heat transfer area. This is in contrast to the flat plate where the

heat transfer area remains constant at increasing distances from the

surface. Since thermal resistance is inversely proportional to the

heat transfer area through the boundary layer it is apparent that the

thermal resistance from the surface of a cylinder to the ambient

fluid is less than that for a flat plate. As a consequence, a cylinder

of finite radius will experience a smaller temperature difference

between its surface and the ambient fluid than will a flat plate when

subjected to the same surface heat flux. This would imply that the

cylinder Nusselt number should be larger than the Nusselt number

for a flat plate under identical conditions, Also, it would be expected

that the Nusselt number would continue to increase with increasing

curvature.



II. LITERATURE REVIEW

2. 1 Flat Plates

The study of natural convection flows from vertical surfaces

began with the work of Lorenz in 1881. His publication of an analy-

tical investigation of a constant temperature vertical plane wall was

apparently the first of its kind. Lorenz made the assumption that

the fluid temperature and velocity at a prescribed distance from the

surface did not change with axial position. Disregarding this poor

assumption, his results were comparable for moderate Prandtl

number to results achieved later by more complicated analysis.

Lorenz was the first investigator to show that the heat transfer rate

varied as the 5/4 power of the temperature difference between the

surface and the ambient fluid. Also, he was the first to present heat

transfer results that included all the pertinent variables associated

with natural convection.

In 1930 Schmidt and Beckmann (1) applied the boundary layer

approximations to the governing equations of continuity motion,

and energy for the case of a single isothermally heated flat plate in

an effectively infinite pool of ambient fluid. Pohlhausen was able

to perform a similarity transformation to reduce the set of partial

differential equations to a pair of ordinary differential equations
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for which a simultaneous series solution could be achieved, However,

slow convergence of the solution necessitated that Schmidt and

Beckmann provide two of the boundary conditions experimentally.

The result for local Nusselt number, Nux = 0,360 (Gr )
0,25, was

applicable, therefore, only to air (Pr = 0. 73) for which the boundary

conditions were obtained,

In 1939 Saunders (2) achieved an analytical solution for the

heat transfer from a vertical flat plate with an isothermal wall.

Experiments were also performed to substantiate the analytical

results. An expression was given for average Nusselt number as

L
= C(Gr

LPr) O. 25 where C is a function of Prandtl number. For

the case of Pr = 0,73 the local Nusselt number would be Nu = 0.344x

(Gr )0.25 which is slightly less than Schmidt and Beckmann's exact

result.

Saunders' results were obtained starting with two known

boundary conditions and assuming a third order polynomial approxi-

mation for the temperature in the boundary layer. Solving the equa-

tions enabled a third boundary condition to be obtained, This

numerical approximation was continued to a fifth order polynomial.

The solution is of greater value than Schmidt and Bechmann's

because it supposedly applies for a wide range of Prandtl numbers.

For a Prandtl number of 0.023 the local Nusselt number is deter-
O. 25mined to be Nu

x = 0,08 (Gr ) .
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Saunders' experiments were performed in mercury and water.

Two uniformly heated vertical flat plates were used. The plate

heights were 2.80 and 4.65 cm. With a Prandtl number of 0.023,
0. 25e., mercury, his experiments yielded Nu = 0.09 (Gr ) for

the shorter plate and Nu
x = 0. 10 (Grx )0.

25 for the longer plate.

Saunders was the initial experimental investigator of natural convec-

tion heat transfer in a liquid metal.

To solve the governing equations of energy and momentum

Eckert (3), in 1950, used an integral technique. He assumed equa-

tions for the velocity and temperature profiles in the boundary layer

adjacent to an isothermal, plane, vertical surface. These approxi-

mations were introduced into the governing equations. The ensuing

solution for the local Nusselt number yielded

0Pr2 Gr
. 25

x
x = O. 508 .9 52 + Pr

This reduces to Nu = 0.381 (Gr )0. 25 for Pr = 0.73, indicating that
x

this approximate approach yields results which compare favorably

with Schmidt and Beckmann's (1) more detailed and nearly exact

solution.

In 19 53 Ostrach (4) studied the isothermal plane wall for

Prandtl numbers of 0.01, 0.72, 0.733, 1, 2, 10, 100, and 1000.

He detailed the simplification of the governing equations, pointing
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out that a singular perturbation problem exists when considering

large Grashof numbers. Using a basic assumption that the tempera-

ture difference between the heated surface and the ambient fluid was

small and employing the boundary layer approximations Ostrach

reduced the equations to two linear partial differential equations.

This pair of equations was reduced to a pair of simultaneous ordinary

differential equations by the introduction of similarity variables and

subsequent rearrangement. Solution of these equations gave the

average Nusselt number as

4NuL = 4/3 Nux/L 3 L
= f (Pr) Gr O. 25

Table T2. 1 presents values of 4/3f (Pr) vs. Pr. The values indicate

the significant effect of Prandtl number upon the heat transfer.

Table T2. 1. Heat transfer results of Ostrach (4).
Nu L = 4/3 f(Pr) Gr° 25

Pr 4/3 f(Pr)

0.01 0.0765

0.72 0.475

1 0.535

2 0.675

10 1,10

100 2.06

1000 3.74



8

In 1955 Sparrow (5) solved the convection problem

for both variable wall heat flux and variable wall temperature.

Solutions were achieved by series expansion. The first term of the

series results in an expression corresponding to uniform thermal

conditions at the wall. The additional four terms account for the

non-uniform thermal conditions. The solution is based upon the

so-called KL.m:n-Pohlhausen method which involves writing the

velocity and temperature distributions in the boundary layer as

functions of y whose coefficients are functions of x. The wall heat

flux or temperature distribution is expanded as a series in the para-

meter E . Coefficients of identical powers of e are brought together.

It is necessary that each group of coefficients be equal to zero. The

result is a pair of simultaneous differential equations for each

power of E . For the important case of uniform wall heat flux the

result is

Nu = 0.62
2 * 0. 20

(O.8 + Pr

Pr Grx

For the constant temperature wall the results are identical to those

of Eckert (3), i. e,,

(Pr2 Gr
0. 25

x
O. 508 0.952 + PrNu

Solutions were achieved for Prandtl numbers of 0.01, 0. 10, 0.70,

1.00, 10, 100, and 1000.



The authors later extended their work to include the low

Prandtl numbers of 0.03 and 0.003 for the isothermal case (6).

The result for local Nusselt number is Nux 0.565 (Gr Pr2)0.25

In 1956 Sparrow and Gregg (7) used a similarity transforma-

tion to solve the natural convection problem for the case of uniform

wall heat flux. The Prandtl number range was 0.10 to 1000 and

results were extrapolated to include Pr = 0.01. The results were

presented graphically. Of interest is the result for a Prandtl number

in the range of mercury; 0,023, In this case the local Nusselt num-

*ber is Nu = 0.161 (Grx) 0. 20, They also showed that the local

Nusselt number for a uniform flux plate was greater than that for

an isothermal plate by a constant factor that was independent of

position and only slightly dependent on Prandtl number. Gebhart (8)

made a similar comparison but reported results that appear to be

slightly different.

Chang et al.(9), used a zeroth order perturbation solution to

extend the results of Sparrow and Gregg (7) to include Prandtl num-

bers of 0,01 and 0.03 as well as to include the range from 0.10 to

1000. Solution was achieved for the uniform heat flux boundary

condition. The zeroth order perturbation solution is identical to

the similarity solution. Using potential flow theory the first order

perturbation solution was also achieved. The results for this solu-

tion are somewhat more exact than the results for the similarity
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solution due to the presence of an additional term in the series. A

singularity at x = 0 in the zeroth order solution is magnified with

increasing order of perturbation so that additional terms in the series

caused difficulties in achieving a solution, especially near the lead-

ing edge of the plate. Chang's first order perturbation solution is
O. 37 * 0. 20given by. Nu = 0.632 Pr (Grx) . For the case of Pr = 0.023

*the result is Nux = 0.157 (Gr )
.20

Kuiken (10) used a singular perturbation technique to solve the

boundary layer equations for the isothermal vertical plate and the

case of low Prandtl numbers. The method employed is that of

matched asymptotic expansions. The purpose of the work was to

solve the equations and present the results explicitly in terms of

Prandtl number while maintaining the accuracy of an exact solution.

The heat transfer results are given by

Nu = (0.60 - 0.324 Pr1/2) (Grx Pr 2) 1/4

In recent years the interest in experimental investigations for

liquid metals has intensified. Nearly thirty years after Saunders

completed the initial heat transfer investigations for a liquid metal

Julian (11) measured the heat transfer from a uniform flux plate

immersed in a pool of mercury. With a value for Prandtl number

of 0.022 he correlated his data by Nux = 0. 196 (Gr*
x)

0. 188
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A relatively thorough background has been presented here with

regard to the vertical flat plate. It will be of great interest in com-

paring results to those achieved for the vertical cylinder. To get

additional background involving natural convection heat transfer for

other situations and geometries, Gebhart (8), Chang et al. (91, and

White (12) present excellent reviews on the subject.

Of greater interest to the current research is work involved

with vertical cylinders. There has been significantly less work done

with this geometry than has been done with the flat plate. A review

of what has been accomplished follows.

2. Z Circular Cylinders

Experimental investigations of natural convection heat transfer

from vertical cylinders have been performed for cylinders with

diameters on the order of a thousandth of an inch (13, 14) up to

several inches. A notable conclusion concerning very small dia-

meter wires was presented by Elenbaas (15) who stated that the

influence of the wire diameter upon the heat transfer was extremely

small.

The earliest available study on large diameter vertical cylinders

was presented by Griffiths and Davis (16) in 1922. They examined

the laminar natural convection heat transfer from a constant tempera-

ture cylinder to air. McAdams (17) reported the results for the
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AT 1/4average heat transfer coefficient as he = 0.4 (--) For cylinder

heights less than 1.5 feet a correction factor is available.

Carne (18), in 1937, performed experiments similar to those

of Griffiths and Davis. The heat transfer results were tabulated.

In 1942 Elenbaas (19) derived an analytical expression for the

heat transfer from a vertical cylinder of diameter d, with conditions

based on w, the wall temperature, and m, the mean temperature
T - T

defined as T +
2

. His expression is

d
Nu exp = 0.6 [(Grd, Prw) 1/4

- h-

d, w u
2

d, m

which reduces to Nuh w h
= 0.6 (Cr Pr)1/4 for the flat plate, e.,

, ,

a s d The subscript h represents the plate height, In an

attempt to verify his analysis for cylinders Elenbaas set up experi-

ments in air similar to those of Griffiths and Davis (16), and

Carne (18). The results showed discrepancies of as much as 15%.

In 1948, Touloukian et al. (20), used water and ethylene glycol

as the heat transfer medium to study natural convection from a con-

stant temperature vertical cylinder. They chose to work with this

geometry to study the natural convection phenomenon because of

its advantages over the flat plate. Most important were the hori-

zontal symmetry and elimination of edge effects. The results were

given by Nux = 0.544 (Gr Pr)°. 25. Notice that there is no
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explicit dependence on diameter.

Sparrow and Gregg (21) transformed the equations of the

cylindrical boundary layer using a series expansion of the dependent

variables. Sets of simultaneous ordinary differential equations were

obtained. The first three sets of equations were solved for the case

of constant surface temperature using numerical integration. The

Nusselt number was given as a sum of the three solutions. It was

found that the analytical results for a constant temperature flat plate

was a common factor in each term of the Nusselt number correlation.

Therefore, a ratio of the cylinder Nusselt number to the flat plate

Nusselt number could be easily obtained. Solutions were acquired

for Prandtl numbers of 0.72 and 1.00. The results showed that

the Nusselt number for a cylinder was greater than that for a flat

plate and that the deviation was more extreme for lower Prandtl

numbers. It was determined that for the heat transfer results of

the cylinder to be within five percent of the flat plate results it was

necessary that

35

Gr 1/4
L

Thus, the effect of curvature could be directly inferred.

Millsaps and Pohlhausen (22, 23) showed that, if the tempera-

ture difference between the surface and the fluid increased linearly
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from zero at the leading edge, a similarity transformation of the

governing equations could be accomplished. Solutions of the equa-

tions were obtained for Prandtl numbers of 0.733, 1, 10, and 100.

Gebhart (8) found that the results could be well approximated by the

equation

where

2 1/4
hD 1.058 (Gr') 1/4 Pr

( 4 + 7 P

I3g D4 dTGr' =

v2
(---dx )0

Nagendra et al. (24)., investigated free convection heat transfer

from wires and cylinders in an attempt to support their analytical

results. The cylinder used in their study was 0. 315 inches CI,D. and

twelve inches long. The heat transfer medium was water. The sur-

face approximated the isothermal case. The results are classified

according to the range of Ra
D

The experimental results were
L

within ten percent of values predicted by the following equations:

Cylinder classification Ra range Nu.D

short (i. e., flat plates) 10
4<Ra 0, 57 (Ra

D
D) 0. 25
L

long .05<Ra D <10 4 1 30 (Rap 0. 16

wires Ra < . 05 0. 87 (Ra
D

D
L) 0.05
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In 1970, a year after the above results were published, the

same authors (25) presented results for the boundary condition of

uniform heat flux from a circular cylinder. This was the only paper

to be found that handled this boundary condition completely. The

analysis involved a similarity transformation of the governing equa-

tions. A numerical iteration technique developed by the authors

achieved the following results for the same cylinder classification

scheme as given above:

Cylinder classification

short

long

wires

Nu
D

=

* D 0.20
O. 55 (RaD

1.33 (Ra
D

D
)

0.14

0.90 (RaD L) 0. 048

To determine the category into which a cylinder belongs it is neces

sary to replace qkD in the modified Rayliegh number by T T .
w co

The authors point out that the results for short cylinders are within

eight percent of the flat plate results and for this reason they con-

sider a short cylinder to be essentially a flat plate.
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III, EXPERIMENTAL DESIGN

3. 1. Apparatus

3. 1. 1 Construction of the Heated Cylinders

The basic component of the vertical cylinders are the heaters,

purchased from Electrofilm, Inc., of North Hollywood, California.

The heater design consists of a chemically etched, printed circuit

type element, permanently vulcanized between layers of silicone

rubber reinforced with fiberglass. The lead wires emerge from a

one-half inch by one inch tab that extends from the top of the heater.

Nominal heater thickness is 0. 045 inches while the tab thickness is

0. 090 inches.

Three cylinders were constructed and tested. The outside

diameters were 0. 590, 1. 355, and 2. 108 inches. (In subsequent

discussion of the heaters, these will be referred to as cylinder 1,

cylinder 2, and cylinder 3, respectively. ) The tolerance on the

diameter was measured to be *0, 005 inches. Each heated section

was 3. 85 inches high. The three completed cylinders are shown

in Figure F3. 1.

The heaters were form fit to the proper diameter core to

assist in obtaining a uniform surface. In order to remove the heaters

from the cylindrical mold after manufacturing, allowance was made
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Figure F3, 1. The three completed cylinders.

1
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Figure F3. Z. Heaters before assembly.
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for an axial seam along the side of each heater opposing the tab.

The features of the heaters are shown in Figure F3.2. A sketch

of the circuit and the dimensions of the elements are presented in

Figure F3.3.

Construction of the heated cylinders involved attaching the

heaters to a machined acrylic core. When the heaters were placed

in their required position on the core a two-sided mylar tape was

wrapped tightly around the outer surface. The resulting friction

between the core and heater assisted in securing the heater in the

correct position.

Each heater and core assembly was inserted into a pre-

formed mild steel sleeve having a wall thickness of 0.010 inches.

The sleeve adhered to the outer tape surface. This smooth sleeve

served as the outer surface of the cylinder assembly. To prevent

infusion of mercury into the heater, silicone rubber sealer was

applied along all exposed edges.

The mild steel sleeve, made from 0. 010" cold rolled shim

stock, was pre-formed to approximately the desired diameter by

rolling. A male-female cylindrical die assembly of correct diameter

was machined with an allowance for the sleeve to be inserted between

the two parts. After insertion into the die the sleeve was stress-

relieved by heat treatment; when cooled it retained the exact

cylindrical shape desired,
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.11111.warn

Cylinder 1

A 3.80

B 0.270

C 0.040

D 0.023

E 0,026

1

Cylinder 2 Cylinder 3

3.80 3.80

0.245 0.238

0.040 0.040

0.026 0.027

0.077 0.129

Tolerances: E: ± 0.002; Others: ± 0.010;
Dimensions are in inches.

Figure F3. 3. Circuit pattern of heaters with dimensions.
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Before the construction of the cylinders the heaters were

x-rayed to determine as closely as possible the location of the

resistance elements. All material considered to be non-heating

were trimmed away. Care was taken to machine the acrylic core

to a diameter such that the vertical seam on the back side of the

heater would close when the heater was placed over the core. The

outer metal sleeve was then sized to fit precisely over the heated

area.

The vertical cylinders were supported in the mercury by a

brace extending across the top of the mercury tank. The cylinder

core, made entirely from acrylic rod, extended down into the mer-

cury about ten inches. The leading edge of the core coincided with

the leading edge of the heater. This placed the heated section

approximately in the middle of the mercury pool. Because the heater

was suspended in the mercury in this way, an unheated trailing

section was present and had a diameter essentially equal to that of

the heated section,

3. 1. 2 Basic Test Section

The basic component of the experimental system is shown in the

schematic of Figure F3. 4 and in Figure F3. 5. The heated verti-

cal cylinder [1]1 is shown suspended in the mercury pool [2] from the

1 Numbers in brackets refer to respective items in Figure F3, 5..
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2

Figure F3. 4. Schematic of basic test section.

21
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Figure F3. 5. Basic test section.

Figure F3. 6. Overall view of apparatus.
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brace [3] that is mounted to the mercury tank [4]. A traversing

mechanism [5] is mounted to a horizontal table [6] which can rotate

relative to the brace. A Starrett dial indicator [7], mounted to the

traverse mechanism,assisted in precise location of radial position of

the probe. The center of rotation of the table coincides with the

center axis of the fixed vertical cylinder. A sheathed iron-constantan

thermocouple manufactured by Omega Engineering, Inc., of Stamford,

Connecticut, is attached to a probe shaft [ 8] which is suspended from

the traverse mechanism. The thermocouple was calibrated with a

quartz thermometer. The system allows the thermocouple to be

rotated through 180° about the surface of the cylinder. Within this

circumferential range surface temperatures and radial temperature

profiles can be measured for any axial position.

3.1.3 Additional Equipment

An overall view of the experimental system is shown in Figure

F3. 6.

Ambient temperature in the mercury was maintained constant

by surrounding the mercury tank with a well stirred, temperature

controlled water bath. To remove heat from the water bath, copper

tubes were immersed in the water and cold water was allowed to

circulate through these tubes. To maintain the isothermal condition

a temperature sensitive heater was suspended into the water to create
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a balance with the heat added from the mercury and the heat removed

via the cooling tubes. The water bath is further insulated with

Zonolite vermiculite packed loosely within a rectangular box

surrounding the water tank.

Electrical input was supplied by a D. C. power supply, specifi-

cally a Magnet Supply by Manson Laboratories, Inc., Model M25-702.

The power determination was made from the current-voltage product.

Current was measured by means of a Weston Instrument, Inc.,

ammeter. Voltage was obtained using a Honeywell multicomponent

digital meter, model 333 R.

Thermocouple electrical output was measured using a Leeds and

Northrup K-4 Potentiometer in conjunction with a Leeds and Northrup

D. C. Null Detector, model 9828. Additional related equipment

included a standard cell from the Eppley Laboratory, Inc., and a

constant voltage supply, 2 volts D. C., by Leeds and Northrup.

3.2 Procedure

Heat transfer results were desired in the form of local Nusselt

number, calculated according to the equation

Nu =x ktT
qx

The surface heat flux, q, was determined by dividing the product of

the current and the voltage by the known surface area of the heated

section. The conductivity was assumed to be known exactly. An
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equation for k was taken from a paper by Powell and Tye (26). All

other properties, such as those present in the Grashof number, are

evaluated from information given in the Liquid Metals Handbook (27).

The traverse mechanism enabled the precise location of the

thermocouple probe to be known. The vernier on the mechanism

allowed the probe location to be adjusted to d0. 0005 inches in either

the axial or radial direction. The vernier reading when the probe was

at the leading edge of the cylinder was determined prior to insertion

of the apparatus into the mercury. Using this reading, prescribed

values of x could be readily marked off.

The final term in the Nusselt number, AT, required the

separate determination of ambient and surface temperature. The

traverse mechanism had enough travel such that the thermocouple

probe could be located at least two inches radially outward from the

heated surface and two inches below the leading edge of the cylinder.

Ambient temperature measurements were taken at this position. It

was assumed that the mercury tank was large enough (12" x 12" x

16") that it could be considered an essentially infinite medium. This

was proved by observing temperatures at two inches from the sur-

face for the range of axial positions. Ambient temperature stratifica-

tion did not occur. The surface temperature was taken as the indicated

temperature when the probe tip was in contact with the surface.

Locating the probe at the surface was not a critical procedure
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unless temperature profiles were sought. Obtaining a profile

required taking a temperature reading at the surface and at radial

positions of 0.01, 0.02, 0.03, 0. 04, 0.05, 0. 06, 0.08, 0. 10, 0. 15,

and 0.30 inches from the surface. A Starrett dial indicator, readable

to± 0.00005" was mounted to the traverse mechanism to assist in

accurately placing these radial increments. However, to prevent

all the points from being misaligned, the surface had to be located

correctly. The probe was advanced toward the surface in small

increments and the change in temperature was observed. As the

probe neared the surface the temperature rise would become quite

pronounced. When the probe contacted the surface the temperature

would no longer rise, but, due to the flexibility of the probe shaft,

further travel was possible and usually occurred. To attempt to

get the probe in contact with the surface without deflecting the shaft,

the probe was backed away from the surface until the temperature

was observed to drop. The critical adjustment was completed by

observing temperature changes for very small inward and outward

increments of probe travel. If ideal surface contact was achieved

then the first radial increment of 0.01 inches would, indeed, place

the probe tip a distance of 0.01 inches from the surface.

The reference junction for the thermocouple was positioned

about one inch from the bottom of a small tube filled with mercury.

This tube was then immersed in a bath of ice and distilled water.
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3. 3 Sources of Error

The heat transfer results of this report are given by the relation

Nu C(Grx )

_92L f3g 4 \
kAT v2k

qx

The properties are assumed to be known exactly and, there-

fore, for any given measurement, the variables of concern become

or

CT
(qx4 n

AT

1-4n
x

AT

1-n

The accuracy of the heat transfer results is seen to be a func-

tion of only three terms, these being x, q, and AT. From the experi-

mental results, n is found to vary with diameter. In terms of this

analysis, however, it should suffice to let n equal 0. 2. Then

0.2 0.8
x 9

AT

Factors that could degrade the accuracy of these terms come
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from three different categories. One would involve systematic errors

which would expose themselves in the same effect for all measure-

ments. Another would be random errors involved with the accuracy

to which a reading can be consistently taken. A third would be the

predictable error involved with the uncertainty of the instrument

readings.

It is reasonable to neglect the last two sources of error. Axial

position is measured on the order of inches while the locating instru-

ment is readable to a thousandth of an inch. The temperature dif-

ference in millivolts is on the order of tenths of a millivolt while

the potentiometer can be read to a value of a ten-thousandth of a milli-

volt. The power input is a product of a voltage and current measure-

ment. The voltage is on the order of hundreds while the voltmeter

is readable to a tenth. Current is possibly the least accurate

measurement involved, with absolute values on the order of unity

and a readability of about two hundredths. On the basis of these

numbers, the predictable error involved with the evaluation of C'

is approximately two percent, certainly a tolerable figure.

The final regression equation for each cylinder was evaluated

from the combination of two independent sets of data, i. e., data

that had been taken on two different days. Each individual group of

data was regressed in order to obtain a quantitative estimate of the

repeatability of the results. These regressions may be referred to
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in the results section as equations E4. 2a through E4. 2f. The pairs

of regression equations for each cylinder were compared for various

Grashof numbers. The results of the comparison are given in Table

T3. 1. The regression equations are included here to substantiate

the comparison.

Table T3. 1. Nux vs. Grx as calculated from regression equations
E4. 2.

Cyl.
Equation

E4. 2

Values of Nux
Regression for Grx of:

equation
for Nux 10

6 1010

1

2

3

a.

b.

c.

d.

e.

f.

Q. 221 Grp 0. 193
x

0. 202 Gr* 0.198
x

0.239 Gr* 0. 184
x

0. 190 GT*
O. 195

X

0.221 Grp O. 186
x

0. 233 Or* O. 185

3. 198

3.119

3. 050

2.814

2. 887

2. 979

12.169

12. 261

10. 896

10. 828

10. 426

10. 655

Most variation is obviously going to occur in the results of

cylinder 2, for it can be readily observed that the two regressions

associated with this cylinder have the greatest variation in slopes

and intercepts. The maximum variation is about eight percent at a

Grashof number of 106. Of course the variation increases with
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decreasing Grashof number but the range of Grashof number from

106 to 10 10 is of primary concern. The variations for the other two

cylinders are seen to be much less.

Assuming that random errors are in part responsible for the

variations of the results it seems justified to neglect such errors

since they seem to be quite small. That is, if the results are

substantially incorrect it is unlikely to be due to randomness. A

further indication that random reading errors are small is the value

of the correlation coefficient, R2. For each of the final regression

equations the value of R2 is greater than 0.995. The correlation

coefficient, R2, is a ratio of the sum of the squares of two terms.

The sum of the squares of the difference between the experimental

value and the mean is divided by the sum of the squares of the dif-

ference between the value predicted by the regression and the mean.

The mean is the mean value of the dependent variable for all the data.

A value of R2 of 1.00 would indicate that all the experimental points

fit exactly on the regression curve.

Random reading errors are probably most prevalent in the

measurement of AT. The measurement of the ambient temperature

and the surface temperature was not instantaneous. The ambient

temperature was measured first, followed immediately by a measure-

ment of a surface temperature. Slight drifts in the ambient tempera-

ture during the surface locating procedure would certainly affect AT.
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It was not until the experimental work was nearly completed that the

procedure was altered to use the ambient fluid as the reference junc-

tion, thereby instantaneously measuring AT.

The third potential source of error in the results is that due to

systematic discrepancies in the experimental technique or in the

apparatus. When considering the validity of the results, the pos-

sibility of such errors is of the greatest interest, Consider individu-

ally the three terms involved in the determination of C', i,e., x,, q

and AT.

The axial position is measured as the distance from the leading

edge of the heater. To establish this point required a judgment of

the location of the leading heater resistance element with respect to

the leading edge of the cylinder. Care was taken to construct the

cylinders so that the leading edge of the outer sleeve would corres-

pond physically to the leading edge of the heated section, but the

potential for this systematic type of error exists. An estimate of

its possible extent would be ±0. 03 inches. At an x position of 0.40

inches this could produce an error of 7. 5%.

The power input as determined by the current and voltage

product should be reasonably precise as the ammeter and voltmeter

were calibrated by comparison to similar meters. The heat flux,

q, however, could be systematically in error due to evaluation of

the heated area. Again, care was taken to trim away any unheated
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material but this does not negate the possibility for error in the

exact evaluation of area, An estimated value of this error is ±3%

for the heat flux.

Another potential problem existed in the ability to know the

heat flux accurately. This involved the possibility that heat could

have been conducted axially within the acrylic core.

The hottest region in the core was beneath the heater at the

trailing edge of the heated section. This created a potential for heat

transfer by conduction in either direction. If the heat was trans-

ferred down the core the result would have been a deviation from the

constant heat flux case towards the constant temperature boundary

condition. If heat transfer had occurred via axial conduction in the

positive x direction the true heat flux measurement would also have

been altered. The outcome of such errors would be to increase the

Nusselt number.

To check that the losses incurred through axial conduction were,

indeed, negligible, a simple analysis can be performed. Assume a

uniform temperature over the trailing edge cross-section, Use the

leading edge of the cylinder as a zero reference. The downward

axial heat rate would be approximately q = kAT where AT is the

difference between the average temperature over the trailing edge

cross-section and the zero reference, and L is the length over which

the temperature difference occurs. The trailing edge cross-sectional
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temperature might be on the order of 60°F above the leading edge for

a surface heat flux of 2500 Btu/hr ft 2 (440 Btu/hr for cylinder 3).

This relatively high temperature is due to the thermal resistance

between the heater elements and the mercury. In this case, L is

approximately one-third foot. Therefore, the axial heat rate would

be on the order of 15 Btu/hr ft2 (1/3 Btu/hr for cylinder 3). This is

certainly a negligible quantity compared to the total surface heat flux.

Heat may also be conducted in the upward direction. The

heated mercury flowed along the surface of the cylinder beyond the

trailing edge of the heater. Assuming that the core temperature

approaches the temperature of the adjacent mercury at a distance,

L, of two inches above the trailing edge then the positive axial

conduction would be about 30 Btu/hr ft2 (2/3 Btu/hr for cylinder 3),

again a negligible amount relative to the surface flux.

The third term involved with the evaluation of C' is AT. The

only apparent source for error exists with the measured value of

surface temperature. Such error is experienced because when the

thermocouple probe is in contact with the surface the thermocouple

junction, being buried in a bead of stainless steel, remains approxi-

mately 0.003 inches from the surface. The conductance from the

mercury to the stainless steel probe wire is high and therefore it is

logical to assume that the fluid temperature at 0.003 inches from the

surface manifests itself upon the thermocouple junction at that point.
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To evaluate the error, consider a particular situation which repre-

sents a probable worst case; x = 0.40", q = 1250 Btu/hr ft2, AT =

0.0868 M. V. and ( dT
)
o

= 0.643 M. V. /in. The true surfacedr
temperature should be increased by an additional (0. 003 in) x

M. V. O. 0019(0.643 ) 0.0019 M.V. The error is 2.2%.
in 0.0868

To summarize the total effect of the major sources of syste-

matic error, the square root of the sum of the squares of the indi-

vidual errors is evaluated. Each squared term is multiplied by its

respective exponent prior to summation. In this way, the combination

of errors in C' are 4.8%, calculated as follows:

Error
1/2

C,E 2

1/2
)2= (. 2 (E + .8 (E )2 + (E )2

AT

( 2 (7. 5)2 2)2.8 (3)2 + (2.2)
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IV. HEAT TRANSFER RESULTS

Prior to any experimental investigation it was anticipated that

the effect of a finite curvature upon the natural convection heat trans-

fer from a vertical surface would be manifested in a cylinder Nusselt

number that would be larger than that for a flat plate, The heat

transfer results show this to be correct. For the three cylinders

that were employed in the investigation, local Nusselt numbers

increased with increased curvature (i, e., decreased diameter) for

a given Grashof number. The trend was apparent over the entire

range of Grashof number which was 105 to 1010. It is of significant

interest to note that at Grashof numbers as high as 2 x 1010 there

was no pronounced evidence of the onset of transition from laminar

to turbulent flow, For the flat plate, transition Grashof numbers are

reported to be on the order of 5 x 109 (28).

For each cylinder approximately two hundred data points were

obtained. This is certainly enough to be assured that no discrepancies

exist in the results due to an inadequate sampling of data. The

regression equations for the data were obtained by computer analysis.

The heat transfer correlations are as follows:

a. Cyl. 1 : Nux 0. 216 (Gr ) 0, 95

b. Cyl. 2 Nu = 0.217 (Gr) 0.189
x

c. Cyl. 3 : Nu 0.224 (Gr * )0 186

(E4. 1)
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The correlation coefficient, R2, for the three regressions were

0.997, 0.995, and 0.998, respectively. Plots of the data are given

in Figures F4. 1, F4, 2, and F4. 3. The data points R, F, and L

refer to the right, front, and left circumferential positions about the

cylinder surface. It is apparent from the random appearance of the

three marks that heating was axisymmetric.

Data were taken for each cylinder on two different days and the

two groups of data were combined in order to obtain the regression

equations given above. Each individual group of data was regressed

in order to observe any changes. The results of these regressions

are as follows:

a. Nux = 0. 221 (Grx 0. 193

Cyl. 1 * O. 198
b. Nux = O. 208 (Grx)

c.
Cyl. 2

d.

e.
Cyl. 3

f.

* O. 184
Nux = O. 239 (Grx)

*
Nux = O. 190 (Grx)

O. 195

Nux = O. 221 (Grx* )
O. 186

*
Nux

= 0.233 (Grx) O. 185

(E4. 2)

By a simple trial and error procedure it was found that the

data could be made to fit one generalized equation, specifically

D O. 032 * 0. 183 (D )
-0. 032

Nux L= 0. 226 () (Grx) (E4. 3)
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This equation predicts the results of the individual regressions to

within ±2%. The utility of this equation is that it can be applied

with some confidence over a range of fromfrom 0, 15 to 0. 55. Extra-

polation of equation E4. 3 beyond these limits is not advised, however.

Preceding a closer examination of the generalized equation,

one might conclude from the very small powers on the terms

that effects of curvature are all but negligible over the range of

observed data. For some purposes this may be true. Therefore, it

may be acceptable to use a simpler expression for local Nusselt

number which was achieved by combining the 592 total data points

for the three cylinders and regressing the entire group. The result

of the regression was

*
Nux = 0.216 (Gr )

0, 191 (E4. 4)

In the worst case, at Gr = 1010, deviations from the individual

regressions are +9. 2% and -7. 5%. The plot of the combined data is

shown in Figure F4. 4. The numerals 1, 2, and 3 represent the

contributions from cylinders 1, 2, and 3, respectively.

Extrapolation of the data to determine the limit at large dia-

meter, i, e., flat plates, may not be valid but will at least provide

a basis for comparison of the results for a cylinder to those of a flat

plate. The extrapolation was accomplished by plotting local Nusselt

numbers vs. at a given Grashof number. A smooth curve was
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made to fit through the three available points and was continued to

the intercept. This was done for four Grashof numbers. The inter-

cepts were determined for each and these values of Nux
= 0

were plotted against Grashof number.

The graphical extrapolations are shown in Figure F4. 5. The

data for the intercepts is presented in Table T4. 1, These points

are plotted in Figure F4. 6. Since the intercept values obtained via

extrapolation are questionable, it is sufficient to determine graphic-

ally the equation for the resultant line. The result is

Nu = 0. 232 (Gr *) 0. 181 (E4. 5)

Table T4. 1. Values of Nux at = 0 for values of Grx.

J.

Gr Nux

106 2.84

107 4.32

108 6.58

109 9.92

The regressions for the cylinders show that for decreasing

curvature the exponent of Gr decreases while the coefficientx

increases. As can be observed, equation E4. 5 has the smallest

exponent and largest coefficient of either of the cylinder regressions.

The fact that this equation fits the trend is not surprising, however,
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since it is formulated by extrapolation of the cylinder data.

Equation E4. 5 represents the result that may, have been achieved

for a flat plate had the same design considerations, techniques, and

procedures been used as were done with the cylinders. With a

similar heater design as incorporated for the cylinders, Colwell (28)

measured the heat transfer from a flat plate using the same instru-

mentation as was employed in this work. His plate was five inches

by five inches. More than fifty data points were regressed to obtain

the following correlation for local Nusselt number:

Nu --- 0.230 (Gr 4)
0.180 (E4. 6)

Comparing equation E4. 5 to E4. 6 it is evident that a significant level

of consistency exists in the heat transfer results for the cylinders.

Deviation of equation E4. 5 from Julian's (11) result for a vertical

uniformly heated flat plate are less than ten percent over the Grashof

number range of interest. This indicates that the results for the

cylinders are probably not disturbed by any gross systematic errors

inherent in the equipment or elsewhere. Agreement with the analy-

tical solution of Chang et al. (9), is also quite good, especially at

large Grashof numbers.

The only available information in the literature dealing with

constant heat flux vertical cylinders was that of Nagendra et al. (25).

His equations for Nusselt number based on diameter can be converted



to express local Nusselt number, This conversion is presented in

the appendix, section A. 1. The results of the conversion are (for

Pr = 0. 023)

and

Nux = 0.21 (Gr *
)

0.20 short cylinders

Nu 0.44 (Gr *) 0' 14 (LL) 0.30 : long cylinders
x x

46

Note that the result for short cylinders shows no curvature depend-

ence. This result is meant to be satisfactory for flat plates. For

short cylinders, characterized by Ra
D

> 104, this equation
L

should be accurate to within eight percent; i. e., such cylinders very

nearly represent flat plates. It must be recognized that RaD is based

on (T -T ) and not on 4- as is the modified Rayleigh number,w oo

Ra
D

.

The local Nusselt number for long cylinders, characterized

by 0.05 < Ra
D

< 104, is observed to be curvature dependent,L

i.e., as diameter decreased Nusselt number increased as expected.

However, in comparing values of Nux
from this equation to experi-

mental values, it is apparent that the results of Nagendra tend to

over-predict the effect of curvature. The consequence of this is

that Nusselt numbers predicted by the analytical results are much

higher than experimental values.
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A summary of the heat transfer results reported by other

authors is presented in Table T4. 2. The extrapolation of this work

to the flat plate result is also presented for comparison, In ColwelPs

(28) work, Ar is the aspect ratio associated with a channel. It is the

height of the channel divided by the spacing between the opposed

plates. The result is for the case of one wall heated and the other

wall insulated while the plates are at a fairly wide spacing. All

other results are for a single vertical plate. In Figure F4.7 some

of these correlations are plotted for comparison. In Figure F4. 8

plots of the regressions for the three cylinders (equation E4. 1) are

drawn and compared to other results.
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Table T4. 2. Summary of heat transfer correlations for uniform
flux flat plates.

Sparrow and Gregg (7) : Nux = 0. 161 (Gr*
)
0, 20 Pr = 0. 023

Analytical

Chang et al.(9) Nu
x

= 0, 157 (Gr'x)
O. 20 Pr = 0. 023

Analytical

* O. 20Nagendra et al. (25) Nu = 0, 208 (Gr) Pr = 0. 023
Analytical

Julian (11) Nu = 0, 196 (Gr *
)0, 188 Pr = 0.022

Experimental

O. 181Colwell (28) Nu = 0. 203 (Grx) Pr = O. 023
Ar = 2
Experimental

Colwell (28)

This work

Nu = 0. 230 (Gr
*

)0.
180

Nu = 0. 232 (Grx) O. 181

Pr = 0. 023
Experimental

Pr = 0. 023
Experimental
Extrapolation
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Figure F4. 7. Plot of results for uniformly heated vertical
flat plates.
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Figure F4. 8. Plot of regression equations for cylinders 1, 2,
and 3 compared to equation E4. 5 and the results
of Julian (11).
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V. DIMENSIONLESS TEMPERATURE

In order to apply the results of this study to the design of heat

transfer elements it is of major importance to be able to determine

the temperature of the fluid as a function of axial and radial position.

Knowledge of the Nusselt number as a function of Grashof number

will provide the surface temperature if the ambient fluid temperature

is known. However, to obtain temperatures at positions away from

the surface one requires more information. This can be acquired

from the dimensionless temperature profiles.

The dimensionless temperature profiles are presented here in

terms of 0 as a function of r , these being the similarity parameters

suggested by Sparrow and Gregg (7). The defining equations for these

variables are

and

= k (Tqx

Gr 0.20
- Too) ( 5x)

Gr * 0.20
x

x 5

(E5. 1)

(E5. 2)

Many of the results presented in the literature are given as 4 vs. T

where (1) is defined by (T Too) / (Tw - Too). Without knowledge of the

Nusselt number it would not be possible to calculate absolute values

of AT from such results. This calculation is possible with the results

presented in terms of 0 as defined by equation ES. 1. Comparison of
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the present results to results of others has required the conversion

of (I) to the 0 coordinate. The method of the conversion is presented

in the appendix, section A. 2,

The dimensionless profiles are presented in Figures F5. 1,

F5. 2, and F5. 3 for cylinders 1, 2, and 3, respectively. It may be

observed that all but a few points fall below the experimental results

of Colwell (28) for a single heated vertical plate. The analytical

results of Chang et al. (9), also lies above the experimental results

of the cylinders except for the larger values of Grashof numbers

corresponding to cylinders -2 and 3. Such behavior would be expected

because the effect of curvature is to transfer a given heat flux with a

smaller temperature difference than would exist for a flat plate.

According to the results of Sparrow and Gregg (2) the dimen-

sionless profiles should approach that of a flat plate as Grashof num-

ber increases. This is certainly a well established trend with

cylinders 2 and 3. The profiles for larger Grashof numbers lie

closer to the solution for the flat plate. The data for cylinder 1 do

not show any such trend, however. After four profiles had been

computed for cylinder 1 (for various Grashof numbers) and the plots

were observed to be virtually independent of Grashof number, three

more profiles were computed to determine if the original results were

particular to the sampling of the data. As can be seen on the graph,

all seven profiles are nearly coincident. Therefore, this behavior
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is apparently characteristic of the small cylinder.

The particular behavior observed on the dimensionless

temperature profiles is not explainable without a significant amount

of conjecture. One may suppose at first glance that the data from the

two larger cylinders includes significant random scatter. A closer

observation reveals, however, that the individual profiles are,

indeed, quite smooth. For cylinder 2, two profiles were obtained

for the two lower Grashof numbers, While the pairs of profiles are

seen to differ, the total variation at the intercept (ri--= 0) is four per-
*cent for Grx = 3.41 x 106.

Step errors in the profiles could result from taking apparent

surface temperature readings with the probe shaft either too close or

too far from the surface. If the probe shaft is too close to the

surface a true surface temperature is obtained, but the probe shaft

is deflected. When the probe is moved away from the surface the

first radial increment is in error by the amount of deflection. While

all the succeeding intervals are evenly spaced, the entire profile

becomes displaced to the right, i. e., to larger values of il. For

cylinder 2 and Gr 1.55 x 105 the profile originating from the

lower intercept seems to be influenced by this problem.

If the probe tip were not in contact with the surface the measure-

ment of surface temperature would certainly be in error. The effect

of this on the temperature profile is to displace it to the left, i. e., to
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smaller values of nand 0. (If AT is small by error, 0 will be small

by the same error.) This may have been the case for cylinder 2

and Grx = 3. 41 x 106. If the lower profile were set to the right by an

amount An= 0. 20 then the two profiles would nearly coincide.

Another source of step error would be careless axial location

of the probe tip.

Even though many sources of potential error do exist, it would

be unreasonable to assume that the apparent Grashof number trend

observable for cylinders 2 and 3 would be a result of random errors

to which these step errors are included. Instead, one must assume

that the data are sound and from that point speculate about the pos-

sible cause of the behavior,

Comparing the profiles of cylinder 2 to those of cylinder 3, one

observes that for large Grashof number the profiles are nearly

coincident. As Grashof number decreases the deviation between the

profiles increases with the profiles of cylinder 2 falling increasingly

lower than those of cylinder 3. This comparison might be expected

because of the difference in curvature of the two cylinders. It may

be anticipated that this trend would continue to include cylinder 1,

but this is obviously not the case. While all the profiles of cylinder 1

are relatively low they exhibit no Grashof number trend. In other

words, there is apparent similarity at the larger curvature. The

only logical explanation for this is that cylinder 1 exists within a
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separate heat transfer regime. Nagendra et al. (25), expressed a

dividing line between short and long cylinders at RaD L = 104,

where

13gRaD = D
3 (T

w 00
- T Pr

2

This parameter was calculated for cylinders 1, 2, and 3 and found

to be 9. x 10 2 AT, 2. 5 x 104 AT, and 1.5 x 10 5 AT, respectively.

Values of AT were on the order of 5°F to 15°F for cylinders 2 and 3

and 3.5°F to 12°F for cylinder 1. Even at the highest heat rate,

clyinder 1 could still be considered to be in the category of long

cylinders while under no conditions do cylinders 2 and 3 fall into this

category. Perhaps, in the regime of short cylinders (considered to

be equivalent to flat plates by Nagendra) curvature has a disrupting

effect on similarity while in the regime of long cylinders similarity

tends to be more characteristic of the heat transfer. Although the

subject of similarity of temperature profiles is not discussed by

Nagendra, the present results do lend some credence to the classifi-

cation scheme established by those authors. Certainly, a greater

variety of cylinder diameters would have to be considered before

any valid conclusions could be established that would characterize

the results.
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VI. CONCLUSIONS

As a result of the experimental investigation it has been deter-

mined that there is a definite influence of curvature upon the natural

convection heat transfer from a vertical surface to mercury, If all

parameters are held constant, the effect of increasing the curvature

is to increase the Nusselt number, i. e. , the heat transfer. For the

range of curvatures examined the influence is small but certainly

not negligible. A literature search provided only one paper con-

cerned with a constant heat flux vertical cylinder. The analytical

solution indicates a much greater effect of curvature upon the heat

transfer than is observed experimentally.

The results that have been presented here should be repeatable

if the same apparatus, procedures and techniques are employed.

Errors were evidently within acceptable experimental limits. However

it is apparent from comparison of the present results to results of other

authors that the outcome of the experimental or analytical efforts

can differ by significant amounts. Such discrepancies can most

likely be attributed to the peculiar characteristics of the experimental

system or the approach to the problem.

In retrospect, the final results would benefit by the inclusion

of data from more than three cylinders. Interpolation of the data

using the generalized equation explicit in should provide
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satisfactory heat transfer information. However, the variation of

results with diameter is not well defined and extrapolation of the

data should be avoided. The range of for which the results are

applicable is 0. 15 to 0. 55.

An experimental investigation involving a greater number of

cylinders with a wider variety of diameters would increase the

range. Also, the effect of curvature would be better defined, thus

allowing some extrapolation.
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APPENDIX A. 1

The Conversion of the Averaged Heat Transfer Correlations
Developed by Nagendra et al. (25), to Local Correlations

Short Cylinders

Nagendrar s result for short cylinders is

D 0.20
Nu

D = 0. 55 (GrD Pr )

where short cylinders are characterized by Ra
D

> 104 A

local correlation must be determined that will satisfy this result

when integrated over the length, L, of the surface. Assume that

such a correlation is

hxx
- C (Grx Pr)O. 20

4Allow the Grashof number to be written as the product S- x`; where

S (3"
v2k

Substituting and solving for hx gives

h = Ck ( S Pr) O. 20 x -O. 20
x
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Define the average film coefficient by

(L
hm 1 hx dx

)o

Substituting for hx and integrating yields

.h = C'k (S Pr)° 20 1,.20/m 0

where C' = 1. 25 C.

Multiplying both sides by 11(2 results in

hmD
C' (S D4

k

Noting that S D4 is GrD this reduces to

0. 20

NuD C' (GrD Pr D
)

O. 20

where C' is given by Nagendra as 0.55.

The assumed local correlation, when integrated over the length

of the surface, yields the form of Nagendra's result. Therefore, the

local correlation representative of Nagendra's averaged results can

be interpreted to be

x = 0.44 (Gr 4 P 0. 20
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Long Cylinders

Nagendra's results for long cylinders is

Nu
D

= 1.33 (GrD Pr D) 0.14

where long cylinders are classified by 0.05 < RaD < 104.

To find a local correlation that will yield this result when integrated

over L, the same approach is used as for short cylinders. After some

trial, the following local correlation is assumed;

h x
C (Gr pr)0.14 (5)

L 0.30

Solving for hx gives

hx Ck (S Pr 0.14 L 0.30 x-0.44
(-5)

Integrating to obtain h results inm

0.14 L 0,30 -0.44
h C' k (S Pr) () L

where C' = 1.786 C.

After multiplying both sides by k and rearranging it can be shown

that the equation for h reduces tom

NuD (GrD Pr 0.14
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which is precisely Nagendra's result. Therefore, it can be inter-

preted that the local correlation associated with Nagendra's averaged

result is

Nux --- 0.745 (Grx Pr) 0.14
(D)

0.30
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The Conversion of ck t
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Graphical and tabulated results for dimensionless temperature

are typically given in the literature as 4 vs, 7-1 where 4 =

(T - T )/(T - T . The variables could be related byT) /(T
co

or

(I) = f rI)

T To0

Tw - T00 = f .

The variable 0 is defined by

G 0. 20
0 = q (T Tod (rx--5

Substituting for (T T00 ) from above gives

* 0. 20

Noting that

then

Gr
=

q x w
(T -Tom) f(4 (-5---- )

k (Tw - To 0)

qx
1

Nux

0. 20
Gr

0 --
Nux 5
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For natural convection about a uniformly heated vertical plate, Nu

is typically given by

Nux = C (Gr *
)

O. 20

Substituting into the expression for 0 gives

0 f(i)
1. 380' C

Therefore, to convert from 4 to 0 all that is necessary is to

have a value of C and to have values of f(ri) vs.


