
un~UEAS~TY

5C~Er1CE

TOWERS OF HANOI AND GENERALIZED TOWERS OF HANOI

Paul Cull and Earl F. Ecklund, Jr .

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

I
7
l
I
u
fl

I
l

J

l l
11

J

J

J

u

"Towers of Hanoi and Generalized Towers of Hanoi"

Paul Cull and E. F. Ecklund, Jr.

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331

ABSTRACT

We investigate the time and space used by algorithms which solve the

Towers of Hanoi problem. We show that any algorithm which solves the

n problem for n disks must use at least 0(2) time and n + 0(1) bits of space.

We obtain an algorithm which simultaneously attains these lower bounds.

For the generalized problem with t towers and n disks, we show that

the solution is unique (up to re-naming towers) if and only if n<t or

k
n = (t-Z) ,, for some k > t-2.

M.R. Categories: 05-04; 68C25, 68E99.

l
l
l
l
D
n

7

l
j

I
J
J

0. Introduction

The Towers of Hanoi problem is often used as an example of a problem

which can be neatly solved by a recursive algorithm, and as an example of

a problem which requires exponential time for its solution. In the Towers

of Hanoi problem one is given three towers, called usually A, B, C, and

n disks of different sizes. Initially the disks are stacked on tower A in

order of size (disk non the bottom, disk 1 on the top). The problem is to

move the stack of disks to tower C, moving the disks one at a time in such

a way that a disk is never stacked on top of a smaller disk. A solution to

this problem is then a sequence of moves which satisfy these rules. An

extra constraint is that the sequence of moves should be as short as

possible. An algorithm solves the Towers of Hanoi problem, if when the

algorithm is given as input n, the number of disks, ai,d the names of the

towers, then the algorithm produces the shortest sequence of moves which .

conforms to the above rules.

In section 1 of this paper we will investigate a variety of algorithms

which solve the Towers of Hanoi problem and finally produce an algorithm

which, in a certain sense, is the best possible .

The Towers of Hanoi problem can be generalized so that t towers (t:_3)

may be used. When there are three towers the minimal sequence of moves

needed to solve the problem is unique. In section 2 we investigate this

situation for n disks and t towers and show that the solution is unique

(up to relabeling of the towers) if and only if n<t or n = (t~ 2) for some

k > t-2.

- 1 -

l
l
n

0
I
l

ll
I
I
j

I
J

1. Towers of Hanoi Algorithms

For any problem, . there will be an infinity of algorithms which solve

the problem . How do we decide which is the "best" algorithm? There are a

number of possible ways to compare algorithms. We will concentrate on two

measures: time and space. We would like to say that one algorithm is

faster, uses less time, than another algorithm if when we run the two

algorithms on a computer the faster one will finish first . Unfortunately

to make this a fair test we would have to keep a number of conditions

constant. We would have to code the two algorithms in the same programming

language, compile the two programs using the same compiler, and run the two

programs under the same operating system on the same computer, and -have no

interference with either program while it is running. Even if :we could

practically satisfy all these conditions, we might be chagrined to find

that algorithm A is faster under conditions C, but that · algorithm B is

faster under conditions D. To avoid this unhappy situation we will only

calculate time to order. For our -purposes two functions of n, f(n) .and

g(n) , have the same order if lim f(n)/g(n) =constant# 0. We symbolize this
n + oo

relation by f (n) = 0 (g (n)), read f(n) is order g (n). Thus we will consider

two algorithms to take the same time if their running times have the same

order . In particular, we do not distinguish between algorithms whose

running times are constant multiples of one another.

If we find that algorithm A has a time order which is strictly less

than algorithm B, then we can be confident that for any large enough

problem algorithm A will run faster than algorithm B, regardless of the

actual conditions. On the other hand if algorithms A and B have the same

time order , then we will not predict which one will he faste;r under a given

set of; actual conditions.

The space used by an algorithm is the number of bits of storage

(memory) space the algorithm uses. We expect the space to be an increasing

function of the size of the problem. Since we have chosen bits as our unit,

we can be a bit more exact about space than we can be about time. We can

distinguish an algorithm which uses 3n bits from an algorithm which uses

2n bits . But we will not distinguish an algorithm which uses 3n + 7 bits

- 2 -

l
n
l
I
D

l

J

j

)

j

J

J

J

J
j

J

from an algorithm which uses 3n + 1 bits, because we can hide a constant

number of bits in the control structure of the algorithm.

So we will say that we have the "best" algorithm for a problem if.
we can show that the algorithm has minimal time order, and uses minimal

space to within an additive constant.

It is not clear that such a best algorithm must exist. In some

problems there is a time~space trade-off, a faster algorithm requires more

space. We will demonstrate that this sort of trade-off does not exist in

the Towers of Hanoi problem by eventually pres .enting an algorithm which

achieves simultaneously minimal time · and minimal space.

A solution to the Towers of Hanoi problem is given by the following

recursive algorithm, which appears in a number of textbooks:

PROCEDURE HANOI(A,B,C,n)
IF n=l THEN move the top disk from tower A to tower C

ELSE HANOI(A,C,B,n-1) .
-- move the top disk from tower A to tower C

HANOI(B,A,C,n-1).

Is this the best algorithm for the problem? We will show that this algorithm

has minimum time complexity, but does not have minimum space complexity.

Proposition: The Towers of Hanoi problem has time complexity 0(2n).

Proof: One can easily show by induction that the above recursive algorithm

correctly solves the problem . A difference equation for the running time,

T(n), for this algorithm with n disks is:

T(n) = 2T(n-l) + C

since the procedure with n disks makes 2 calls on_ the procedure with n-1

disks, and the testing and movement of one disk is assumed to take constant

time C. If we assume the initial condition T(l) = C, then the equation has

the solution T(n) = C(2n- l), which establishes the required upper bound or

the time complexity of the problem.

A lower bound can be established by considering the largest disk. It

must be moved at least once. But to move the largest disk requires that the

n-1 smaller disks must all be moved to a single tower, since none can remain

- 3 -

l

l
D
n

1

I J

J

u
I J

u
u

u

on top of the largest disk and one of the three towers must be vacant to

permit a move of the largest disk. When the largest disk is moved to the

target tower, the n-1 smaller disks must be sitting on a single tower and

to complete the solution of the problem these n-1 disks must then be moved

to the target tower. These two observations lead to the difference

equation M(n) ~ 2M(n-l) + 1 for the number of moves M(n) needed to solve

the Towers of Hanoi. Since one move is required to move one disk, we

obtain M(n) > 2n-l. Since each move requires at least constant time we -
have established the lower bound on time complexity.

Since the upper bound and lower bound are equal . to order~ we h,we

established the O (2n) time complexity of the problem. r§I·

Proposition: Any algorithm which solves the Towers of Hanoi problem must

use at least n + 0(1) bits of storage.

Proof: Since the algorithm must produce 2n-l moves to solve the problem,

the algorithm must be able to distinguish 2n different situations. If the

algorithm did not distinguish this many situations then the algorithm would ·

halt in the same number of moves after each of the two nondistinguished

situations, which would result in an error in at least one of the cases.

The number of situations distinguished by an algorithm is equal to

the number of storage situations times the number of internal situations

within the algorithm. Since the algorithm has a fixed finite size it can

have only a constant number of different internal situations. The number of

storage situations (states) is 2 to the number of storage bits. Thus

C·2SPACE ~ 2n, and so SPACE> n - log C = n + 0(1). ~

At this stage we know that any algorithm which solves the Towers of
n .

Hanoi problem must use at least O (2) time and n + 0 (1) space. We know that

the recursive algorithm uses minimal time, but we do not yet know about its

space usage. If the recursive algorithm uses more than minimal space, then

we are faced with several possibilities: one, that the minimal space is

only a lower bound and is not attainable by any algorithm; two, that

minimal time can only be achieved by an algorithm which uses more than

minimal space; three, that there is some other algorithm which attains both

minimal time and minimal space.

- 4 -

l
n
l
7
0
n

n

u
u

J

We would like to say something about the space complexity of the

recursive algorithm, but the data structure used by the program is not yet

specified. The towers could each be represented by an array with n

locations, and each location would need at most log n bits. So an array

data structure with O(n log n) bits would suffice. Alternately, each

tower could be represented by a stack. Each stack location would need log n

bits, so again this is a O(n log n) bit structure. Actually a savings would

be made. Since only n disks have to be represented,the stack structure needs

only n locations versus the 3n · locations used by .the array structure.

Another possible structure is an array in which the i th element holds the

name of the tower on which the i th disk is located. This structure uses

only O(n) bits. Yet another possiblity is to not represent the towers, but

to output the moves in the form FROM TO Thus we could use no storage

for the towers. But the recursive algorithm still requires space for its

recursive stack. At most n stack frames will be active at any time and each

frame will use a constant number of bits for the names of the towers and

log n bits for the number of disks. So the recursive algorithm w1ll use

O(n log n) bits whether or not the towers are actually represent~d. We

summarize these considerations by the following proposition.

Proposition: The recursive algorithm HANOI correctly solves the Towers of

Hanoi problem and uses 0(2n) time and O(n log n) space.

- 5 -

l
l
1
I
u
n

J

I

j

I
J

j

Let us next consider an iterative algorithm for the Towers of Hanoi

problem.

PROCEDURE HANOI ITERATIVE(A,B,C,n)

IF n mod 2 = 0 THEN MOVE[l]:= A TO B

ELSE MOVE[l]:= A TO' C •

K:= 1

WHILE n > 1 DO

n:= n-1; K:= 2*K

IF n mod 2 = 0 THEN MOVE[K]:= A TO B

Ll:= C; L2:= A; L3:= B

ELSE MOVE[K]:= A TO C

Ll:= B; L2:= C; L3:= A

FOR I:= 1 TO K-1 DO -- -- --
CASE MOVE[I] OF

A TO B MOVE[K+I]:= L1 ·TO L2

A TO C MOVE[K+I]:= Ll TO L3

B TO A MOVE[K+I]:= L2 TO Ll

B TO C MOVE[K+IJ:= L2 TO L3

C TO A MOVE[K+I]:= L3 TO Ll

C TO B MOVE[K+I]:= L3 TO L2

Proposition: The HANOI ITERATIVE algorithm correctly solves the Towers of

Hanoi problem and uses 0(2n) time and 0(2n) space.

Proof: This iterative algorithm produces the same moves as the recursive

algorithm. For n=l the iterative algorithm produces the move from A to C

the same as the recursive algorithm. When n=2 in the WHILE loop the iterative

algorithm will have produced the same moves as HANOI(A,C,B,n-1). Next n will

be set equal to 1, the ELSE part of the IF will be executed and the next move

will be A to C. Then the previous- moves will be :recopied with _ A replaced b:r B,

B replaced by C, and C replaced by A, giving the same moves as HANOI(B,A,C,n-1).

So the iterative algorithm produces the same moves as the recursive algorithm.

Since the iterative algorithm takes constant time

there are 2n-l moves, the algorithm takes 0(2n) time.

space since it stores each move. fj

- 6 -

to produce each move and

The algorithm uses 0(2n)

7

0
7
I
I
l
I
J

J

I
I
j

j

Although it is easy to show that the HANOI ITERATIVE algorithm is

correct and has minimal time order, it is clear that this algorithm uses

much too much space since we have seen that the recursive HANOI algorithm

uses only O(n log n) space; To obtain an iterative algorithm which uses

as little space as the recursive algorithm we .should try to design an

iterative algorithm which directly simulates the recursive algorithm. The

next algorithm RECURSIVE SIM is similar to an algorithm given by Tenenbaum

and Augenstein [7], but we have chosen to explicitly keep track of the stack

counter because this will aid us in finding an algorithm using even less

space .

PROCEDURE RECURSIVE SIM (A,B,C,n)

I:= 1

Ll[l]:= A; L2[1]:= C; L3[1]:= B

NUM[l]:= n-1 ; PAR[l]:= 1

WHILE I> 1 DO - -
IF NUM[I] > 1

THEN Ll[I+l]:= Ll[I]

L2 [I+ 1 l: = L3 [I]

L3 [I+ 1] : = L2 [I]

NUM[I+l]:= NUM[I] - 1

PAR[hlJ ;;:; 1

I:= I+l

ELSE MOVE FROM Ll[I] TO L3[IJ

WHILE PAR[I] = 2 DO,

I:= I-1

IF I > 1 THEN MOVE PROM Ll[I] TO L2[I]

PAR[I]:= 2

TEMP:= Ll[I]

Ll[I] : = L3 [I]

L3 [I] : = L2 [I J

L2 [I] : = TEMP

- 7 -

l
l
I
l
0
l

J

J

l I

l J

I
J

The RECURSIVE SIM algorithm simulates the recursive algorithm

HANOI for n > 2 disks. The names of the towers are stored in the three

parameters Ll, L2, L3, the number of disks in a recursive call is stored in

NUM, andthe value of PAR indicates whether a call is the first or second of

a pair of recursive calls.

RECURSIVE SIM sets up the parameters for the call HANOI (A,C,B,n-1).

When the last move for this call is made, the array .will contain the parameters

for calls with 1 through n-2 disks, where each of these calls will have

PAR=2. The array will still contain the parameters for the . (A,C,B,n-1) call

with PAR=l. The inner WHILE loop will pop each of the calls with PAR=2,

leaving the array counter pointing at the , (A,C,B,n-~ call. Since I -will be

1 at this point the IF condition is satisfied and the MOVE FROM Ll[I] TO L2[I]

accomplishes the MOVE FROM A TO C of the recursive algorithm HANOI. The

following assignment statements set up the callQ3,A,C,n-l)_with PAR=2. So

when the moves f0r this call are completed all of the calls in the array

will have PAR=2, and the inner WHILE loop will pop all of · these calls setting

I to O. Then the IF condi tiori will be false, so no operations are carried out.

and the outer WHILE condition will be false so the algorithm will terminate.

Proposition: The RECURSIVE SIM algorithm correctly solves the Towers of

Hanoi problem, and uses 0(2n) time and O(n log n) space.

Proof: Correctness follows since this algorithm simulates the recursive

algorithm which we have proved correct. The major space usage is the array.

Since each time I is incremented the corresponding NUM[I] is decremented and since

NUM[I] never falls below 1, there are at most n-1 locations ever used in the

array. The four parameters Ll, L2, L3, and PAR use only a constant amount of

space, but NUM must store a number as large as n-1 so it uses O(log n) bits.

Thus the array uses O(n log n) bits.

We now have to argue about time usage. Most of the operations deal with

constant sized operands so these operations · will take _ constant time. The

exceptional operations are incrementing, decrementing, assigning, and

comparing numbers which may have O(log n) bits. A difference equation for

the time is:

T(n) = 2T(n-l) +Clog n

- 8 -

l

l
n
7
l
1

I

J

j

J

I

j

u

where T(n) is the time to solve a problem with n disks and Clog n is the

time for manipulating the numbers with O (log n) bi ts. We obtain this

equation because the algorithm does some manipulation of O(log n) then

carries out the algorithm for n-1 disks, then after some more manipulation

of O(log n), the algorithm again carries out the algorithm for n-1 disks.

One can easily verify that this equation has the solution
n-1

T(n) = a2n ~CE 2i log(n-i). The summation in this solution can be put
i=O
n . oo •

into the form E 2n-J log j which is less than 2n E (log jJ/2J. By the ratio
. j=l j=l ..

test this infinite series converges. So T(n) = a2n + 0(2n) = 0(2nJ. f::I

This algorithm behaves as well as we can expect in time since we know

that 0(2n) time is required. Can any space be saved? Notice that storing

the parameter NUM requires O(log n) space. Do we need to save NUM? NUM is

used as a control variable so it seems necessary. But if we look at NUM[l] + 1

we get n . When NUM[I+l] is set, it is set equal to NUM[I] - 1, but then

NUM[I+l] +I+ 1 = NUM[I] 1 + I + 1

= NUM[I] +I= n.

Thus the information we need about NUM is stored in I and n. So if we

replace the test on NUM[I] = 1 with a test on I= n-1, we can dispense with

storing NUM and improve the space complexity from O(n log n) to O(n). This

replacement does not increase the time complexity of any step in the

algorithm, so the time complexity remains 0(2n).

- 9 -

l
l
~

l
0
n

n

I I
I J

J

J

J

u

Our new procedure is

PROCEDURE NEW SIM (A,B,C,n)

I: = 1

Ll[l]:= A; L2[1]:= C ; L3[1]:= B

PAR[l]:= 1

WHILE I> 1 DO

_!£. I -:J n-1

THEN Ll[I+l]:= Ll[I]

L2[I+l] := L3[I]

L3 [I+ 1] : = L2 [I]

PAR[I+l]:= 1

I:= I+l

ELSE MOVE FROM Ll[I] TO L3[I]

WHILE PAR[I] = 2 DO

I:= I-1

IF I> 1 THEN MOVE FROM Ll[I] TO L2[I]

PAR[I] := 2

TEMP:= Ll[I]

Ll[I] := L3[I]

L3[I]:= L2[I]

L2[I]:= TEMP

From the above observation we have:

Proposition: NEW SIM solves the Towers of Hanoi problem and uses 0(2n) time

and O(n) space.

- 10 -

l
l
l
D
n

7

l

l

I J

I
J

J

J

u

Buneman and Levy [2] give the following iterative algorithm for the

Towers of Hanoi problem:

MOVE SMALLEST DISK ONE TOWER CLOCKWISE;

DO A DISK (GIBER THAN THE SMALLEST) CAN BE MOVED+

MOVE THAT DISK;

MOVE THE SMALLEST DISK ONE TOWER CLOCKWISE

OD

Although they can argue that this algorithm does produce the minimal

sequence of moves to solve the Towers of Hanoi, their algorithm is too

incomplete to calculate its time and space complexity. How does their

algorithm determine if a disk can be moved? The specification of some

sort of data structure is obviously necessary to complete the description

of their algorithm.

If one could create a data structure so that the algorithm could

determine in constant time whether a disk can be moved, locate and move

that disk in constant time, a,,d locate and move the smallest disk in

constant time, then one would have an 0(2n) time algorithm, since the

algorithm only makes 2n-1 moves. Such a data structure can be constructed.

Each tower can be represented by a stack which contains,in order, the disks

which are on that tower. No move is possible and the algorithm is

finished, if the smallest disk, 1, is on some stack and the other two stacks

are empty. Otherwise, there are two stacks which do not contain the smallest

disk. If one of these two stacks is empty, then move the top disk from the

other stack onto the empty stack. If both these stacks are nonempty then

take the smaller of the disks on the top of these two stacks and place it

on the other stack. If this comparison and move could be done in constant

time then this algorithm would take 0(2n) time. But since it takes O(log n)

bits to represent a disk, it would seem more reasonable to assume that the

time for the comparison and move is proportional to the number of bits in

the smaller of the two disks.

To analyze the time complexity we make use of the following fact.

Fact: In the minimal sequence of moves for the Towers of Hanoi problem for

n disks the disk i is moved 2n-i times.

- 11 -

l
l
. l
l
D

n

I

ti
I
LI

u

Proof: The recursive algorithm gives the minimal moves. If n=l the disk 1

is moved once. Following the recursive algorithm,the nth disk is moved

once, which is 2n-n_ Any other disk is moved twice the number of times it is

moved in the Towers of Hanoi problem with n-1 disks. Thus the i th disk is

moved 2 · (2n-l-i) = 2n-i times.~

th n-i Since the i disk is moved 2 times and this move takes time

proportional to log i, the algorithm will take time proportional to

n n-i · n 00 i
E 2 log i. This sum is less than 2 E log i/2 . Since by the ratio te st

i=l i=l
the infinite series converges, the time taken by the algorithm is 0(2n).

The data structure which we are using takes 0(n log n) space,...since

there are n disks to be represented and at least half of them must be

represented using log n bits.

We summarize these observations in the following proposition.

Proposition: TheBuneman and Levy Towers of Hanoi algorithm with each tower

represented by a stack Uses 0 (2n) time and 0 (n log n) space.

Instead of representing each tower by a stack we could consider keeping

an array, indexed by the disks, which contains the name of the tower which

contains the disk. More fonnally, let DISK be an n element array, with each

element being able to contain the name ofa tower. DISK[i] will contain the name of

the tower which contains disk i. Initially all array elements will contain the

name of the starting tower. At the end of the algorithm all array elements

will contain the name of the target tower. To move disk i to tower A,

use the assignment statement: DISK[i]:= A. Since there are a fixed finite

number of towers each array element needs only a constant number of bits,

and this data structure will use only 0(n) bits.

How can we detennine using this data structure if a disk can be moved?

If no disks can be moved then all the disks are on the same tower, so for

all i DISK[i] equals DISK[l]. Otherwise for at least one i, DISK[i] does

not equal DISK[l]. The smallest such i will be a disk which is on the top

of its tower and this disk can be moved to the tower which is neither DISK[l]

nor DISK[i], since this tower does not contain a disk smaller than i. Thus

searching for the disk to move and moving it can be accomplished by the

following loop:

- 12 -

l
n
n
l
0
l
l

J

IJ
l

J

u
u

FOR i = 1 TO n DO

.!!:._ DISK[i] i DISK[l]

TI-IEN DISK[i] := {A,B,C} - {DISK[l]} - {DISK[i]}

REWRN

The loop terminates when it has accomplished the move.

We have to estimate how long this searching takes. Above we demonstrated

the fact that disk i is moved 2n-i times. So this loop should take time pro
n-i portional to i, 2 times. Thus the total time will be proportional to

n
E :t 2n-i which is less than

i=l
2n E i/i.

i=l

series converges the total time is 0(2n).

Since by the ratio test the infinite

We summerize the results about this

algorithm using this data structure in the following proposition.

Proposition: The Buneman and Levy Towers of Hanoi algorithm with the disks

being represented by an array which contains the name of the tower on which

the disk resides, uses 0(2n) time .and O(n) space.

We have given several algorithms for the Towers of Hanoi problem. We

have not yet achieved a minimal space algorithm. To motivate the design of

our minimal space algorithm we will look at the sequence of 31 moves needed

to solve the problem with 5 disks. This sequence is shown in Table 1.

Several patterns emerge from this example: every odd numbered move involves

only disk l; each move 4£ + 2 involves only disk 2; each move 4£ involves

the same towers as the preceding move 4£ - 3, with the orientation occasionally

reversed.

In the following the towers will be named 1, 2, and 3. In the algorithm

we need to refer to the tower we are working on, which we do by using a two

bit variable T which will suffice to hold 3 distinct values. T will be

incremented and decremented with the understanding that 3 + 1 is 1 and

1 - 1 is 3.

- 13 -

l
l

TOWER 1 TOWER 2 TOWER 3 MOVE DISK FROM TO

12345 0 00000 1 1 3
2345 1 1 00001 2 1 2

l 345 2 1 2 00010 1 3 2
345 12 3 00011 3 1 3

l
45 12 3 4 00100 1 2 1

145 2 3 5 00101 2 2 3
145 23 6 00110 1 1 3

D
45 123 7 00111 4 1 2

5 4 123 8 01000 1 3 2

5 14 23 9 01001 2 3 1

n 25 14 3 10 01010 1 2 1

125 4 3 11 01011 3 3 2

125 34 12 01100 1 1 3

25 34 1 13 01101 2 1 2

5 234 1 14 01110 1 3 2

5 1234 15 01111 5 1 3

l 1234 5 16 10000 1 2 1

1 234 5 17 10001 2 2 3

1
1 34 25 18 10010 1 1 3

34 125 19 10011 3 2 1

I
3 4 125 20 10100 1 3 2

3 14 25 21 10101 2 3 1

23 14 5 22 io110 1 2 1

123 4 5 23 10111 4 2 3

I 123 45 24 11000 1 1 3

23 145 25 11001 2 1 2

I 3 2 145 26 11010 · 1 3 2

3 12 45 27 11011 3 1 3

J
12 345 28 11100 1 2 1

1 2 345 29 11101 2 2 3

1 2345 30 11110 1 1 3

12345 31 11111

I I

d
Table 1. Towers of Hanoi Solution for 5 disks.

I
j

I
- 14 -

u

1

1

l
1

0
n
I
I
I
I
I

lJ
j

J

J

In order to exploit these patterns for a minimal space solution, we

find it beneficial to inspect the binary representation of the move counter.

Note that the 8th and 24th moves are reverse orientation moves. This leads

us to note that the reverse moves occur if the increment of the move

counter causes a carry into the 2k position fork odd, and greater than 1.

Hence, we arrive at the following low space iterative algorith,~ for the

Towers of Hanoi problem:

PROCEDURE TOWERS

MOVE COUNTER.- 0

T:= I

(* MOVE COUNTER has n-2 bits*)

(* starting tower*)

P:= n MOD 2

WHILE TRUE DO

(* only the last bit of n is stored~)

_!£. odd (P)

THEN MOVE DISK 1 FROM T TO T-1

MOVE DISK 2 FROM T TO T+l

MOVE DISK 1 FROM T-1 TO T+l

ELSE MOVE DISK 1 FROM T TO T+l

MOVE DISK 2 FROM T TO T-1

MOVE DISK 1 FROM T+l TO T-1

IF ALL BITS OF MOVE COUNTER= 1 THEN RETJRN

IF POSITION OF RIGHTMOST O BIT IN MOVE COUNTER rs ODD, > I

THEN _!£. odd (P)

THEN MOVE TOP DISK FROM T-1 TOT

T:= T+l

ELSE MOVE TOP DISK FROM T+l TOT

T:= T-1

ELSE _!£. odd (P)

THEN MOVE TOP DISK FROM T TO T-1

T:= T+l

ELSE MOVE TOP DISK FROM T TO T+l

T:= T-1

INCREMENT MOVE COUNTER

- 15 -

l
. l
l
[l

n

l
I

I
j

J

1

iJ
j

j

J

Proposition: Algorithm TOWERS correctly solves the Towers of Hanoi problem

for n ~ 2 disks, by giving the sequence of moves to move n disks from tower 1

to tower 3.

Proof: We prove this proposition by induction using the following inductive

hypothesis.

Inductive Hypothesis: If MOVE COUNTER is initialized as an array

of n~2 bits, and each bit is set to O, then the WHILE loop

correctly moves n > 2 disks from tower T to the correct target
0

tower, and at the conclusion of the loop Twill contain the correct

value. We distinguish four cases where the values of the target

tower and final value of Tare as follows:

Target Tower Final Value of T

a) p even n odd T + 1 ,
l - J..

0 0

b) p odd n even T + 1 T
0 0

c) p even n even T - 1 T
0 0

d) p odd n odd T - 1 T + 1
0 0

For the base case, n=2, the behavior of the algorithm will depend on

whether or not Pis odd. If Pis odd the THEN part of the first IF is

executed and two disks are correctly moved from T to T + 1. If Pis even
0 0

the ELSE part is executed and two disks are correctly moved from T.
0

The condition of the next IF is true since MOVE COUNTER has no bits

all its bits are l's, so the loop terminates.

to T - 1.
0

and hence

For this base case we are in case (b) or (c) of the hypothesis and we

have verified that the algorithm moves the required number of disks to the

proper target tower. In these cases we want the final value of T to be the

same as its initial value, but no instruction has changed Tso it still

contains its initial value.

If n > 2 then at some point in the algorithm the MOVE COUNTER will have

only its high order bit equal to O; all of its other bits will equal 1. We

use the inductive hypothesis to calculate the state of the process when this

condition occurs, since the loop would terminate at this point if it had

been started with n-1. The various situations are displayed in the following

table:

- 16 -

l
n
l

D
1

n

I
lJ
I J

J

p even n odd P odd n even p even n even P odd n odd

n-1 even n-1 odd n-1 odd n-1 even

n-1 RINGS
HAVE BEEN T - 1 T - 1 T + 1 T + 1
MOVED TO 0 0 0 0

T contains T T + 1 T - 1 T
0 0 0 0

NEXT T + T + 1 T - 1 + T T + 1 + T T + T - 1

MOVE T + T + 1 T + T + 1 T + T - 1 T + T - 1
0 0 0 0 0 0 0 0

--

NEXT VALUE T 1 T - 1 T + 1 T + 1 -
OFT 0 0 0 0

Since only one bit in MOVE COUNTER is O and the position of this zero

has the same parity as n, we can calculate the next move which we record in

in the third row of the table, and we can calculate the new value of T which

we record in the fourth row of the table.

Next MOVE COUNTER will be incremented so that it contains a single 1

as its leftmost bit and all of its remaining bits will be 0. Now the

algorithm will behave as if the leftmost bit did not exist, that is, as if it

were dealing with only n - 1 disks.

So in case (a),n - 1 rings will be moved from the current value of T,

i . e., T ~ 1, to (T - 1) - 1 which is T + 1 as required by the inductive
0 0 0

hypothesis, and the value of Twill be unchanged resulting in T contining

T - 1 as required.
0

In case (b),n - 1 rings will be moved from T -
0

is T + 1 as required, and Twill contain (T
0 0

- 1)

required.

1 to (T - 1) - 1 which
0

+ 1 which is T as
0

In case (c), n-1 rings will be moved from T + 1 to (T + 1) + 1 which
0 0

is T0 - 1 as required, and Twill contain (T + 1) - 1 which is T as
0 0

required.

- 17 -

r

l
n
l
l
0
l

l J

l
j

In case (d), n-1 rings will be moved from T + 1 to (T + 1) + 1 which
0 0

is T - 1 as required and Twill contain T + 1 as required.
0 0

So all conditions are verified and the algorithm performs correctly.~

Proposition: The algorithm TOWERS uses 0(2n) time and n+l bits space.

Proof: For space, MOVE COUNTER has n-2 bits, T has 2 bits and P has 1 bit,

and since these are the only variables the algorithm uses n+l bits of storage.

n-2 For time, the algorithm goes through the WHILE loop 2 - 1 times.

On all except the last repeat, 4 moves are made. On the last repeat, only

3 moves are made. This correctly totals to 2n - 1 moves. The only

nonconstant time operations are those that interrogate or change the move

counter. Since the move counter has n-2 bits these operations could take

O(n) time, giving a O(n2n) algorithm. But the operations on move counter

only have to progress until the rightmost O is encountered. The move
n-2 counter takes on each of the values O through 2 - 1 exactly once during

the course of the algorithm. For half these numbers the rightmost O will

be in the first posit~on. For one quarter of these numbers the right-
1

most O will be in the second position. For-:- of these numbers the right-
2l.

most O will be in position i, i ~ n-2. One number will contain no 0. Thus
n-2 .

the running time of the algorithm will be c12n-Z(E i/2 1) + c2n which is
i=l

C 2n-2
00

iii less than r + c2n and since the series converges this is
1 . 0

C32n-2 +
l. .=

0(2n) claimed.~ c2n which is as

We summarize the results of this section in the following theorem.

Theorem: Any algorithm which solves the Towers of Hanoi problem for n disks

must use at least 0(2n) time and n + 0(1) bits of storage. The algorithm

TOWERS solves the problem and simultaneously uses minimum time and minimum

space.

- 18 -

l
n
l
l
D
n

1

11

I J

I
j

J

J

2. Generalized Towers of Hanoi

In the generalized Towers of Hanoi problem, one is given t towers

(t ..:. 3) and n disks. Initially then diSks are stacked on tower 1,

one is to move them to tower t moving one disk at a time between any

towers in such a way that a disk is never stacked on top of a smaller

disk.

and

two

Finding the minimum number of moves for n disks on t towers, M(n,t)

appeared as problem 353 in The American Mathematical Monthly (1939).

J. S. Frame [1] and B. M. Stewart [2] published solutions in which each

derived the following formula:
s-1

M(n,t) = {t:
n-0

where ·s is such that ct-3+s)
t-2 < n < (t-2+s)

t-2 . Table 2 enumerates some

of the values for M(n, t) for small n and t.

Each disk is moved some power of 2 times - this can be deduced from

the recursive nature of the problem. One interpretation of the co

efficient of 2i is that it counts the number of disks which are moved

exactly 2i times.

Considering table 2, we see that there is another interpretation

for the coefficients of 2i. Inspection of M(n,t) for fixed t (starting

at the assumed boundary of M(O,t) = 0) indicates that there is 1 = (t- 3) o · t-3
increment of size 1 = 2 to arrive at the value of M(l,t); t-2= (t- 2)

t-3
increment of size 2 = 21 provide the values of M(2,t), M(3,t) •.. M(t-1,t);

and so forth. t-3+i . i
That is, there are (t- 3) inc:ements of size 2 in the

t-3+1 steps through the (t- 3) length interval from

We will consider moving n disks by partitioning the stack of n

disks into two sub-stacks of n1 and n2 disks (n 1+n2 = n), then move n 1
disks · from tower 1 to tower 2 using all t towers, followed by moving the

n2 remaining disks from tower 1 to tower t using the t-1 towers other

than tower 2, and concluding by moving the n 1 disks from tower 2 to

tower t. For a correctly chosen partitioning, M(n,t) = M(n1,t) +

M(n2,t-1) + M(n1,t).

..--19 -

l
7 Three Towers:

jl
Disks 1 2 3 4 5 6 7 8 9 10

Moves 1 3 7 15 31 63 127 255 511 1023

l Four Towers:

fJ
Disks 1 2 3 4 5 6 7 8 9 10

Moves 1 3 5 9 13 17 25 33 41 49

n Disks 11 12 13 14 15 16 17 18 19 20

Moves 65 81 97 113 129 161 193 225 257 289

I Five Towers:

n Disks 1 2 3 4 5 6 7 8 9 10

Moves 1 3 5 7 11 15 19 23 27 31

I
Disks 11 12 13 14 15 16 17 18 19 20

Moves 39 47 55 63 71 79 87 95 103 111

I Six Towers:

j
Disks 1 2 3 4 5 6 7 8 9 10

Moves 1 3 5 7 9 13 17 21 25 29

I
Disks 11 12 13 14 15 16 17 18 19 20

Moves 33 37 41 45 49 57 65 73 81 89

I Table 2 . Certain values of M(n,t).

lJ
J

I
J

J
- 20 ,..

J

l
l
l
u
n

d
I

I

j

u
j

u

We can change the partition from n=n +n to n=n'+n' where · 1 2 1 2
where n' = n +1 and n' = n2-1.

1 1 2

M(n,t) = 2~M(n1,t) + M(n2,t) = 2.M(ni,t) + M(n~,t) only if the n1
is in the i-th increment interval fort towers and n2 is in the (i+l)-st

increment interval for t-1 towers, i.e. only if M(ni,t) = M(n1,t) + 2i

and

Note that n .:_ (t~~;s) = (t-4+s) + (t-4+s)· that the increment interval t-2 t-3 '

for between (t-4+s) and (t-3+s) disks has increment size s-1 t towers 2 .
t-2 t-2 ,

and that the increment interval for t-1 towers between (t-4+s)
t-3 and

t-3+s .
(t- 3) has increment . 2s. size Therefore, we must partition n such

> t-4+s that n 1 _ (t- 2) and > (t-4+s)
n2 - t-3 •

then each of the partitions of n:

nl = (t-4+s) + i, n2 =
t-2

nl = (t-4+s) + i-1, n2 = t.,.2

=. ct-4+s)
nl t-2 ,

(t-4+s)
t-3

(t-4+s)
t-3

+ 1

yields a strategy involving the minimum number of moves, M(n,t).

Considering the end points of this interval of partitions, we obtain

M(n:, t) t-4+s t-4+s
= 2.M((t- 2),t) + M(n-(t- 2),t-1) (1)

t-4+s t-4+s
= 2.M(n-(t- 3),t) + ·M((t- 3),t-1), (2)

Theorem: The strategy to accomplish a partitioning solution to the

generalized Towers of Hanoi problem in M(_n, t) moves is unique if and only if

1) n = (t- 2+s) for some s > 1
t-2

or 2) n < t-1.

-. 21 -

7

l
0
l
l

l J

J

u
J

j

Proof: The proof is by double induction, we induct on t, and for fixed t

we induct on n.

If t=3, we are in the Towers of Hanoi problem for which it is well

known that the solution is unique.

Assume that t 0 > 3 and that the theorem is true for 3 < t < t 0 •

Base Step: n ~ t 0-l; In this case, M(n,t 0) = 2 t 0-l and the

sequence of moves is accomplished by spreading the top n-1 disks on the

t 0-2 towers from 2 to t 0~1, one disk per tower, then moving disk n to

tower . t, concluding by collecting the top n-1 disks (in reverse order)

on to tower t. This is clearly unique up tore-labelling of the towers.

Assume the theorem is true for t 0 towers with 1 < n < n0 disks.

If

then equations (1) -and (2) give non-unique partitions which solve the

problem in an optimal number of moves, hence, n = (t0- 3+s) is a
O t -2

necessary condition for a unique solution. 0

If n0 = (t0- 3+s) then since n0 > t 0 one must partition n0 to achieve
t 0-2

Mc) F h . . . h h nl -- (t0-4+s), n0,t 0 moves. urt ermore any partitioning ot er tan
t 0-2

(t0- 4+s) · h M() . B h . d . n2 = requires more tan :n0,t 0 moves. y t e in uct1on
t 0-3

hypothesis on n0 , there is a unique strategy to accomplish M(n1,t 0) moves

to place disks 1 through ·n1 on tower t 2 and by the induction hypothesis

n2 disks, n1+1 through n on t 0 there is a unique strategy to move the

from tower 1 to tower t using to-1 towers. . . t -3+s) . Hence, no~ (0 lS a
t 0-2

sufficient condition for a .unique solution in M(n0 ,t 0) moves. By

induction; on n the theorem is true for all non t 0 towers, and by

induction on t the theorem is true for all t.

proven.~

Hence, the theorem is

In closing we would like to mention two problems which remain for

the generalized Towers of Hanoi problem. First, when there is not a

unique solution to the problem, one may wish to enumerate the number of

inequivalent solutions. This seems to require a well-thought-out

- 22 -

n

D
n

l

j

1

I
l I
u
1

J

J

definition of the equivalency of various move patterns. For example,

if n=4 and t=4, one might ask if (1,4) (1,2) (4,2) (1,3) •.. is equivalent

to (1,4), (1,2), (1,3), (4,2), ... In either case, we have the disks

distributed on the towers 1.n the pattern-A 12

moved to tower 4.

3 - when disk 4 is

The second, and more serious concern, is to prove that the

partitioning solution to the problem is the minimal solution to the

problem. In the Monthly, following Frame's and Stewart's solutions,

the editor [1] noted that they each had assumed a lemma, to wit: If

the smallest nt-l disks are placed on tower t-1, the next nt_ 2 disks are

placed on tower t-2, and so on until the largest disk is placed with one

move on tower t; then for a suitable partition of n = l+n 2+n3+ ••• !nt_ 1.

This strategy requires as small a number of moves as any other. It is

clear that this is equivalent to partitioning ri = n1+n2 where n 1=nt-l

and n2=1+n2+ ... +nt_ 2 and then applying the minimal solutions to the

(n 1,t) case and the (n2, t-1) case appropriately. In the cases where

the partitioned strategy is not unique, there also may be non-partitioned

strategies which are not unique, for example, if n.=7, t=5, and M(7,5)=19.

Then s1 = (1,5) (1,4) (1,3) (1,2) (3,2) (4,2) (5,2),(1,3),(1,4),(1,5)

(4,5) (3,5) (2,1) (2~:~) (2,4) (2,5) (4,5) (3,5) (1,5); and

s2 = (1,5) (1,4) (1,3) (1,2) (5,3) (4,2) (1,5) (1,4) (5,4) (1,5)

(4,1) (4,5),(1,5),(3,1),(2,4),(2,5),(3,5),(4,5) (1,5)

are 19 move solutions. Solution s1 is a partitioning solution and has

the disk distributed as

7 1234 5 6

When disk 7 is moved to tower 5, while solution s2 _is not a partitioning

solution in any sense, and has the disks distributed as

7 24 13 -56

when disk 7 is moved to tower 5.

Wood [6] cites·further derivations for M(n,t) yet acknowledges

that the proofs "while mathematically precise are incomplete". We

would very much like to see the Lemma proven.

- 23 -

n
n
l
n
I

lJ
lJ
I
J

J

References:

[l] , Editorial Note, The American Mathematical Monthly, -----
V48 (1941), p. 219.

[2] Peter Buneman and Leon Levy, The Towers of Hanoi Problem,

Information Processing Letters, Vl0 (1980), pp. 243-244.

[3] J. S. Frame, Solution to Problem 3918, The American Mathematical

Monthly, V48 (1941), pp. 216-217.

[4] B. M. Stewart, Problem 3918, The American Mathematical Monthly,

V46 (1939), p. 363.

[SJ B. M. Stewart, Solution to Problem 3918, The American Mathematical

Monthly, V48 (1941) pp. 217-219.

[6] Derick Wood, The Towers of Brahma and Hanoi Revisited, Computer

Science Technical Report No. 80-CS-23, McMaster University,

1980.

[7] Aaron Tenenbaum and Moshe Augenstein, . Data Structures Using PASCAL,

Prentice-Hall, Englewood Cliffs; NJ (1981) pp. 149-154.

- 24 --

r

	Cull_Ecklund_A
	Cull_Ecklund_B

