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ABSTRACT 

We investigate the time and space used by algorithms which solve the 

Towers of Hanoi problem. We show that any algorithm which solves the 

n problem for n disks must use at least 0(2) time and n + 0(1) bits of space. 

We obtain an algorithm which simultaneously attains these lower bounds. 

For the generalized problem with t towers and n disks, we show that 

the solution is unique (up to re-naming towers) if and only if n<t or 

k 
n = (t-Z) ,, for some k > t-2. 

M.R. Categories: 05-04; 68C25, 68E99. 
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0. Introduction 

The Towers of Hanoi problem is often used as an example of a problem 

which can be neatly solved by a recursive algorithm, and as an example of 

a problem which requires exponential time for its solution. In the Towers 

of Hanoi problem one is given three towers, called usually A, B, C, and 

n disks of different sizes. Initially the disks are stacked on tower A in 

order of size (disk non the bottom, disk 1 on the top). The problem is to 

move the stack of disks to tower C, moving the disks one at a time in such 

a way that a disk is never stacked on top of a smaller disk. A solution to 

this problem is then a sequence of moves which satisfy these rules. An 

extra constraint is that the sequence of moves should be as short as 

possible. An algorithm solves the Towers of Hanoi problem, if when the 

algorithm is given as input n, the number of disks, ai,d the names of the 

towers, then the algorithm produces the shortest sequence of moves which . 

conforms to the above rules. 

In section 1 of this paper we will investigate a variety of algorithms 

which solve the Towers of Hanoi problem and finally produce an algorithm 

which, in a certain sense, is the best possible . 

The Towers of Hanoi problem can be generalized so that t towers (t:_3) 

may be used. When there are three towers the minimal sequence of moves 

needed to solve the problem is unique. In section 2 we investigate this 

situation for n disks and t towers and show that the solution is unique 

(up to relabeling of the towers) if and only if n<t or n = (t~ 2) for some 

k > t-2. 
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1. Towers of Hanoi Algorithms 

For any problem, . there will be an infinity of algorithms which solve 

the problem . How do we decide which is the "best" algorithm? There are a 

number of possible ways to compare algorithms. We will concentrate on two 

measures: time and space. We would like to say that one algorithm is 

faster, uses less time, than another algorithm if when we run the two 

algorithms on a computer the faster one will finish first . Unfortunately 

to make this a fair test we would have to keep a number of conditions 

constant. We would have to code the two algorithms in the same programming 

language, compile the two programs using the same compiler, and run the two 

programs under the same operating system on the same computer, and -have no 

interference with either program while it is running. Even if :we could 

practically satisfy all these conditions, we might be chagrined to find 

that algorithm A is faster under conditions C, but that · algorithm B is 

faster under conditions D. To avoid this unhappy situation we will only 

calculate time to order. For our -purposes two functions of n, f(n) .and 

g(n) , have the same order if lim f(n)/g(n) =constant# 0. We symbolize this 
n + oo 

relation by f (n) = 0 (g (n)), read f(n) is order g (n). Thus we will consider 

two algorithms to take the same time if their running times have the same 

order . In particular, we do not distinguish between algorithms whose 

running times are constant multiples of one another. 

If we find that algorithm A has a time order which is strictly less 

than algorithm B, then we can be confident that for any large enough 

problem algorithm A will run faster than algorithm B, regardless of the 

actual conditions. On the other hand if algorithms A and B have the same 

time order , then we will not predict which one will he faste;r under a given 

set of; actual conditions. 

The space used by an algorithm is the number of bits of storage 

(memory) space the algorithm uses. We expect the space to be an increasing 

function of the size of the problem. Since we have chosen bits as our unit, 

we can be a bit more exact about space than we can be about time. We can 

distinguish an algorithm which uses 3n bits from an algorithm which uses 

2n bits . But we will not distinguish an algorithm which uses 3n + 7 bits 
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from an algorithm which uses 3n + 1 bits, because we can hide a constant 

number of bits in the control structure of the algorithm. 

So we will say that we have the "best" algorithm for a problem if. 
we can show that the algorithm has minimal time order, and uses minimal 

space to within an additive constant. 

It is not clear that such a best algorithm must exist. In some 

problems there is a time~space trade-off, a faster algorithm requires more 

space. We will demonstrate that this sort of trade-off does not exist in 

the Towers of Hanoi problem by eventually pres .enting an algorithm which 

achieves simultaneously minimal time · and minimal space. 

A solution to the Towers of Hanoi problem is given by the following 

recursive algorithm, which appears in a number of textbooks: 

PROCEDURE HANOI(A,B,C,n) 
IF n=l THEN move the top disk from tower A to tower C 

ELSE HANOI(A,C,B,n-1) . 
-- move the top disk from tower A to tower C 

HANOI(B,A,C,n-1). 

Is this the best algorithm for the problem? We will show that this algorithm 

has minimum time complexity, but does not have minimum space complexity. 

Proposition: The Towers of Hanoi problem has time complexity 0(2n). 

Proof: One can easily show by induction that the above recursive algorithm 

correctly solves the problem . A difference equation for the running time, 

T(n), for this algorithm with n disks is: 

T(n) = 2T(n-l) + C 

since the procedure with n disks makes 2 calls on_ the procedure with n-1 

disks, and the testing and movement of one disk is assumed to take constant 

time C. If we assume the initial condition T(l) = C, then the equation has 

the solution T(n) = C(2n- l), which establishes the required upper bound or 

the time complexity of the problem. 

A lower bound can be established by considering the largest disk. It 

must be moved at least once. But to move the largest disk requires that the 

n-1 smaller disks must all be moved to a single tower, since none can remain 
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on top of the largest disk and one of the three towers must be vacant to 

permit a move of the largest disk. When the largest disk is moved to the 

target tower, the n-1 smaller disks must be sitting on a single tower and 

to complete the solution of the problem these n-1 disks must then be moved 

to the target tower. These two observations lead to the difference 

equation M(n) ~ 2M(n-l) + 1 for the number of moves M(n) needed to solve 

the Towers of Hanoi. Since one move is required to move one disk, we 

obtain M(n) > 2n-l. Since each move requires at least constant time we -
have established the lower bound on time complexity. 

Since the upper bound and lower bound are equal . to order~ we h,we 

established the O (2n) time complexity of the problem. r§I· 

Proposition: Any algorithm which solves the Towers of Hanoi problem must 

use at least n + 0(1) bits of storage. 

Proof: Since the algorithm must produce 2n-l moves to solve the problem, 

the algorithm must be able to distinguish 2n different situations. If the 

algorithm did not distinguish this many situations then the algorithm would · 

halt in the same number of moves after each of the two nondistinguished 

situations, which would result in an error in at least one of the cases. 

The number of situations distinguished by an algorithm is equal to 

the number of storage situations times the number of internal situations 

within the algorithm. Since the algorithm has a fixed finite size it can 

have only a constant number of different internal situations. The number of 

storage situations (states) is 2 to the number of storage bits. Thus 

C·2SPACE ~ 2n, and so SPACE> n - log C = n + 0(1). ~ 

At this stage we know that any algorithm which solves the Towers of 
n . 

Hanoi problem must use at least O (2 ) time and n + 0 (1) space. We know that 

the recursive algorithm uses minimal time, but we do not yet know about its 

space usage. If the recursive algorithm uses more than minimal space, then 

we are faced with several possibilities: one, that the minimal space is 

only a lower bound and is not attainable by any algorithm; two, that 

minimal time can only be achieved by an algorithm which uses more than 

minimal space; three, that there is some other algorithm which attains both 

minimal time and minimal space. 

- 4 -



l 
n 
l 
7 
0 
n 

n 

u 
u 

J 

We would like to say something about the space complexity of the 

recursive algorithm, but the data structure used by the program is not yet 

specified. The towers could each be represented by an array with n 

locations, and each location would need at most log n bits. So an array 

data structure with O(n log n) bits would suffice. Alternately, each 

tower could be represented by a stack. Each stack location would need log n 

bits, so again this is a O(n log n) bit structure. Actually a savings would 

be made. Since only n disks have to be represented,the stack structure needs 

only n locations versus the 3n · locations used by .the array structure. 

Another possible structure is an array in which the i th element holds the 

name of the tower on which the i th disk is located. This structure uses 

only O(n) bits. Yet another possiblity is to not represent the towers, but 

to output the moves in the form FROM TO Thus we could use no storage 

for the towers. But the recursive algorithm still requires space for its 

recursive stack. At most n stack frames will be active at any time and each 

frame will use a constant number of bits for the names of the towers and 

log n bits for the number of disks. So the recursive algorithm w1ll use 

O(n log n) bits whether or not the towers are actually represent~d. We 

summarize these considerations by the following proposition. 

Proposition: The recursive algorithm HANOI correctly solves the Towers of 

Hanoi problem and uses 0(2n) time and O(n log n) space. 
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Let us next consider an iterative algorithm for the Towers of Hanoi 

problem. 

PROCEDURE HANOI ITERATIVE(A,B,C,n) 

IF n mod 2 = 0 THEN MOVE[l]:= A TO B 

ELSE MOVE[l]:= A TO' C • 

K:= 1 

WHILE n > 1 DO 

n:= n-1; K:= 2*K 

IF n mod 2 = 0 THEN MOVE[K]:= A TO B 

Ll:= C; L2:= A; L3:= B 

ELSE MOVE[K]:= A TO C 

Ll:= B; L2:= C; L3:= A 

FOR I:= 1 TO K-1 DO -- -- --
CASE MOVE[I] OF 

A TO B MOVE[K+I]:= L1 ·TO L2 

A TO C MOVE[K+I]:= Ll TO L3 

B TO A MOVE[K+I]:= L2 TO Ll 

B TO C MOVE[K+IJ:= L2 TO L3 

C TO A MOVE[K+I]:= L3 TO Ll 

C TO B MOVE[K+I]:= L3 TO L2 

Proposition: The HANOI ITERATIVE algorithm correctly solves the Towers of 

Hanoi problem and uses 0(2n) time and 0(2n) space. 

Proof: This iterative algorithm produces the same moves as the recursive 

algorithm. For n=l the iterative algorithm produces the move from A to C 

the same as the recursive algorithm. When n=2 in the WHILE loop the iterative 

algorithm will have produced the same moves as HANOI(A,C,B,n-1). Next n will 

be set equal to 1, the ELSE part of the IF will be executed and the next move 

will be A to C. Then the previous- moves will be :recopied with _ A replaced b:r B, 

B replaced by C, and C replaced by A, giving the same moves as HANOI(B,A,C,n-1). 

So the iterative algorithm produces the same moves as the recursive algorithm. 

Since the iterative algorithm takes constant time 

there are 2n-l moves, the algorithm takes 0(2n) time. 

space since it stores each move. fj 
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Although it is easy to show that the HANOI ITERATIVE algorithm is 

correct and has minimal time order, it is clear that this algorithm uses 

much too much space since we have seen that the recursive HANOI algorithm 

uses only O(n log n) space; To obtain an iterative algorithm which uses 

as little space as the recursive algorithm we .should try to design an 

iterative algorithm which directly simulates the recursive algorithm. The 

next algorithm RECURSIVE SIM is similar to an algorithm given by Tenenbaum 

and Augenstein [7], but we have chosen to explicitly keep track of the stack 

counter because this will aid us in finding an algorithm using even less 

space . 

PROCEDURE RECURSIVE SIM (A,B,C,n) 

I:= 1 

Ll[l]:= A; L2[1]:= C; L3[1]:= B 

NUM[l]:= n-1 ; PAR[l]:= 1 

WHILE I> 1 DO - -
IF NUM[I] > 1 

THEN Ll[I+l]:= Ll[I] 

L2 [I+ 1 l: = L3 [ I] 

L3 [I+ 1] : = L2 [I] 

NUM[I+l]:= NUM[I] - 1 

PAR[hlJ ;;:; 1 

I:= I+l 

ELSE MOVE FROM Ll[I] TO L3[IJ 

WHILE PAR[I] = 2 DO, 

I:= I-1 

IF I > 1 THEN MOVE PROM Ll[I] TO L2[I] 

PAR[I]:= 2 

TEMP:= Ll[I] 

Ll[ I] : = L3 [I] 

L3 [ I] : = L2 [ I J 

L2 [ I] : = TEMP 
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The RECURSIVE SIM algorithm simulates the recursive algorithm 

HANOI for n > 2 disks. The names of the towers are stored in the three 

parameters Ll, L2, L3, the number of disks in a recursive call is stored in 

NUM, andthe value of PAR indicates whether a call is the first or second of 

a pair of recursive calls. 

RECURSIVE SIM sets up the parameters for the call HANOI (A,C,B,n-1). 

When the last move for this call is made, the array .will contain the parameters 

for calls with 1 through n-2 disks, where each of these calls will have 

PAR=2. The array will still contain the parameters for the . (A,C,B,n-1) call 

with PAR=l. The inner WHILE loop will pop each of the calls with PAR=2, 

leaving the array counter pointing at the , (A,C,B,n-~ call. Since I -will be 

1 at this point the IF condition is satisfied and the MOVE FROM Ll[I] TO L2[I] 

accomplishes the MOVE FROM A TO C of the recursive algorithm HANOI. The 

following assignment statements set up the callQ3,A,C,n-l)_with PAR=2. So 

when the moves f0r this call are completed all of the calls in the array 

will have PAR=2, and the inner WHILE loop will pop all of · these calls setting 

I to O. Then the IF condi tiori will be false, so no operations are carried out. 

and the outer WHILE condition will be false so the algorithm will terminate. 

Proposition: The RECURSIVE SIM algorithm correctly solves the Towers of 

Hanoi problem, and uses 0(2n) time and O(n log n) space. 

Proof: Correctness follows since this algorithm simulates the recursive 

algorithm which we have proved correct. The major space usage is the array. 

Since each time I is incremented the corresponding NUM[I] is decremented and since 

NUM[I] never falls below 1, there are at most n-1 locations ever used in the 

array. The four parameters Ll, L2, L3, and PAR use only a constant amount of 

space, but NUM must store a number as large as n-1 so it uses O(log n) bits. 

Thus the array uses O(n log n) bits. 

We now have to argue about time usage. Most of the operations deal with 

constant sized operands so these operations · will take _ constant time. The 

exceptional operations are incrementing, decrementing, assigning, and 

comparing numbers which may have O(log n) bits. A difference equation for 

the time is: 

T(n) = 2T(n-l) +Clog n 
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where T(n) is the time to solve a problem with n disks and Clog n is the 

time for manipulating the numbers with O (log n) bi ts. We obtain this 

equation because the algorithm does some manipulation of O(log n) then 

carries out the algorithm for n-1 disks, then after some more manipulation 

of O(log n), the algorithm again carries out the algorithm for n-1 disks. 

One can easily verify that this equation has the solution 
n-1 

T(n) = a2n ~CE 2i log(n-i). The summation in this solution can be put 
i=O 
n . oo • 

into the form E 2n-J log j which is less than 2n E (log jJ/2J. By the ratio 
. j=l j=l .. 

test this infinite series converges. So T(n) = a2n + 0(2n) = 0(2nJ. f::I 

This algorithm behaves as well as we can expect in time since we know 

that 0(2n) time is required. Can any space be saved? Notice that storing 

the parameter NUM requires O(log n) space. Do we need to save NUM? NUM is 

used as a control variable so it seems necessary. But if we look at NUM[l] + 1 

we get n . When NUM[I+l] is set, it is set equal to NUM[I] - 1, but then 

NUM[I+l] +I+ 1 = NUM[I] 1 + I + 1 

= NUM[I] +I= n. 

Thus the information we need about NUM is stored in I and n. So if we 

replace the test on NUM[I] = 1 with a test on I= n-1, we can dispense with 

storing NUM and improve the space complexity from O(n log n) to O(n). This 

replacement does not increase the time complexity of any step in the 

algorithm, so the time complexity remains 0(2n). 
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Our new procedure is 

PROCEDURE NEW SIM (A,B,C,n) 

I: = 1 

Ll[l]:= A; L2[1]:= C ; L3[1]:= B 

PAR[l]:= 1 

WHILE I> 1 DO 

_!£. I -:J n-1 

THEN Ll[I+l]:= Ll[I] 

L2[I+l] := L3[I] 

L3 [I+ 1] : = L2 [I] 

PAR[I+l]:= 1 

I:= I+l 

ELSE MOVE FROM Ll[I] TO L3[I] 

WHILE PAR[I] = 2 DO 

I:= I-1 

IF I> 1 THEN MOVE FROM Ll[I] TO L2[I] 

PAR[I] := 2 

TEMP:= Ll[I] 

Ll[I] := L3[I] 

L3[I]:= L2[I] 

L2[I]:= TEMP 

From the above observation we have: 

Proposition: NEW SIM solves the Towers of Hanoi problem and uses 0(2n) time 

and O(n) space. 
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Buneman and Levy [2] give the following iterative algorithm for the 

Towers of Hanoi problem: 

MOVE SMALLEST DISK ONE TOWER CLOCKWISE; 

DO A DISK (GIBER THAN THE SMALLEST) CAN BE MOVED+ 

MOVE THAT DISK; 

MOVE THE SMALLEST DISK ONE TOWER CLOCKWISE 

OD 

Although they can argue that this algorithm does produce the minimal 

sequence of moves to solve the Towers of Hanoi, their algorithm is too 

incomplete to calculate its time and space complexity. How does their 

algorithm determine if a disk can be moved? The specification of some 

sort of data structure is obviously necessary to complete the description 

of their algorithm. 

If one could create a data structure so that the algorithm could 

determine in constant time whether a disk can be moved, locate and move 

that disk in constant time, a,,d locate and move the smallest disk in 

constant time, then one would have an 0(2n) time algorithm, since the 

algorithm only makes 2n-1 moves. Such a data structure can be constructed. 

Each tower can be represented by a stack which contains,in order, the disks 

which are on that tower. No move is possible and the algorithm is 

finished, if the smallest disk, 1, is on some stack and the other two stacks 

are empty. Otherwise, there are two stacks which do not contain the smallest 

disk. If one of these two stacks is empty, then move the top disk from the 

other stack onto the empty stack. If both these stacks are nonempty then 

take the smaller of the disks on the top of these two stacks and place it 

on the other stack. If this comparison and move could be done in constant 

time then this algorithm would take 0(2n) time. But since it takes O(log n) 

bits to represent a disk, it would seem more reasonable to assume that the 

time for the comparison and move is proportional to the number of bits in 

the smaller of the two disks. 

To analyze the time complexity we make use of the following fact. 

Fact: In the minimal sequence of moves for the Towers of Hanoi problem for 

n disks the disk i is moved 2n-i times. 

- 11 -
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Proof: The recursive algorithm gives the minimal moves. If n=l the disk 1 

is moved once. Following the recursive algorithm,the nth disk is moved 

once, which is 2n-n_ Any other disk is moved twice the number of times it is 

moved in the Towers of Hanoi problem with n-1 disks. Thus the i th disk is 

moved 2 · (2n-l-i) = 2n-i times.~ 

th n-i Since the i disk is moved 2 times and this move takes time 

proportional to log i, the algorithm will take time proportional to 

n n-i · n 00 i 
E 2 log i. This sum is less than 2 E log i/2 . Since by the ratio te st 

i=l i=l 
the infinite series converges, the time taken by the algorithm is 0(2n). 

The data structure which we are using takes 0(n log n) space,...since 

there are n disks to be represented and at least half of them must be 

represented using log n bits. 

We summarize these observations in the following proposition. 

Proposition: TheBuneman and Levy Towers of Hanoi algorithm with each tower 

represented by a stack Uses 0 (2n) time and 0 (n log n) space. 

Instead of representing each tower by a stack we could consider keeping 

an array, indexed by the disks, which contains the name of the tower which 

contains the disk. More fonnally, let DISK be an n element array, with each 

element being able to contain the name ofa tower. DISK[i] will contain the name of 

the tower which contains disk i. Initially all array elements will contain the 

name of the starting tower. At the end of the algorithm all array elements 

will contain the name of the target tower. To move disk i to tower A, 

use the assignment statement: DISK[i]:= A. Since there are a fixed finite 

number of towers each array element needs only a constant number of bits, 

and this data structure will use only 0(n) bits. 

How can we detennine using this data structure if a disk can be moved? 

If no disks can be moved then all the disks are on the same tower, so for 

all i DISK[i] equals DISK[l]. Otherwise for at least one i, DISK[i] does 

not equal DISK[l]. The smallest such i will be a disk which is on the top 

of its tower and this disk can be moved to the tower which is neither DISK[l] 

nor DISK[i], since this tower does not contain a disk smaller than i. Thus 

searching for the disk to move and moving it can be accomplished by the 

following loop: 

- 12 -
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FOR i = 1 TO n DO 

.!!:._ DISK[i] i DISK[l] 

TI-IEN DISK[i] := {A,B,C} - {DISK[l]} - {DISK[i]} 

REWRN 

The loop terminates when it has accomplished the move. 

We have to estimate how long this searching takes. Above we demonstrated 

the fact that disk i is moved 2n-i times. So this loop should take time pro­
n-i portional to i, 2 times. Thus the total time will be proportional to 

n 
E :t 2n-i which is less than 

i=l 
2n E i/i. 

i=l 

series converges the total time is 0(2n). 

Since by the ratio test the infinite 

We summerize the results about this 

algorithm using this data structure in the following proposition. 

Proposition: The Buneman and Levy Towers of Hanoi algorithm with the disks 

being represented by an array which contains the name of the tower on which 

the disk resides, uses 0(2n) time .and O(n) space. 

We have given several algorithms for the Towers of Hanoi problem. We 

have not yet achieved a minimal space algorithm. To motivate the design of 

our minimal space algorithm we will look at the sequence of 31 moves needed 

to solve the problem with 5 disks. This sequence is shown in Table 1. 

Several patterns emerge from this example: every odd numbered move involves 

only disk l; each move 4£ + 2 involves only disk 2; each move 4£ involves 

the same towers as the preceding move 4£ - 3, with the orientation occasionally 

reversed. 

In the following the towers will be named 1, 2, and 3. In the algorithm 

we need to refer to the tower we are working on, which we do by using a two 

bit variable T which will suffice to hold 3 distinct values. T will be 

incremented and decremented with the understanding that 3 + 1 is 1 and 

1 - 1 is 3. 
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TOWER 1 TOWER 2 TOWER 3 MOVE DISK FROM TO 

12345 0 00000 1 1 3 
2345 1 1 00001 2 1 2 

l 345 2 1 2 00010 1 3 2 
345 12 3 00011 3 1 3 

l 
45 12 3 4 00100 1 2 1 

145 2 3 5 00101 2 2 3 
145 23 6 00110 1 1 3 

D 
45 123 7 00111 4 1 2 

5 4 123 8 01000 1 3 2 

5 14 23 9 01001 2 3 1 

n 25 14 3 10 01010 1 2 1 

125 4 3 11 01011 3 3 2 

125 34 12 01100 1 1 3 

25 34 1 13 01101 2 1 2 

5 234 1 14 01110 1 3 2 

5 1234 15 01111 5 1 3 

l 1234 5 16 10000 1 2 1 

1 234 5 17 10001 2 2 3 

1 
1 34 25 18 10010 1 1 3 

34 125 19 10011 3 2 1 

I 
3 4 125 20 10100 1 3 2 

3 14 25 21 10101 2 3 1 

23 14 5 22 io110 1 2 1 

123 4 5 23 10111 4 2 3 

I 123 45 24 11000 1 1 3 

23 145 25 11001 2 1 2 

I 3 2 145 26 11010 · 1 3 2 

3 12 45 27 11011 3 1 3 

J 
12 345 28 11100 1 2 1 

1 2 345 29 11101 2 2 3 

1 2345 30 11110 1 1 3 

12345 31 11111 

I I 

d 
Table 1. Towers of Hanoi Solution for 5 disks. 

I 
j 

I 
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In order to exploit these patterns for a minimal space solution, we 

find it beneficial to inspect the binary representation of the move counter. 

Note that the 8th and 24th moves are reverse orientation moves. This leads 

us to note that the reverse moves occur if the increment of the move 

counter causes a carry into the 2k position fork odd, and greater than 1. 

Hence, we arrive at the following low space iterative algorith,~ for the 

Towers of Hanoi problem: 

PROCEDURE TOWERS 

MOVE COUNTER.- 0 

T:= I 

(* MOVE COUNTER has n-2 bits*) 

(* starting tower*) 

P:= n MOD 2 

WHILE TRUE DO 

(* only the last bit of n is stored~) 

_!£. odd (P) 

THEN MOVE DISK 1 FROM T TO T-1 

MOVE DISK 2 FROM T TO T+l 

MOVE DISK 1 FROM T-1 TO T+l 

ELSE MOVE DISK 1 FROM T TO T+l 

MOVE DISK 2 FROM T TO T-1 

MOVE DISK 1 FROM T+l TO T-1 

IF ALL BITS OF MOVE COUNTER= 1 THEN RETJRN 

IF POSITION OF RIGHTMOST O BIT IN MOVE COUNTER rs ODD, > I 

THEN _!£. odd (P) 

THEN MOVE TOP DISK FROM T-1 TOT 

T:= T+l 

ELSE MOVE TOP DISK FROM T+l TOT 

T:= T-1 

ELSE _!£. odd (P) 

THEN MOVE TOP DISK FROM T TO T-1 

T:= T+l 

ELSE MOVE TOP DISK FROM T TO T+l 

T:= T-1 

INCREMENT MOVE COUNTER 

- 15 -
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Proposition: Algorithm TOWERS correctly solves the Towers of Hanoi problem 

for n ~ 2 disks, by giving the sequence of moves to move n disks from tower 1 

to tower 3. 

Proof: We prove this proposition by induction using the following inductive 

hypothesis. 

Inductive Hypothesis: If MOVE COUNTER is initialized as an array 

of n~2 bits, and each bit is set to O, then the WHILE loop 

correctly moves n > 2 disks from tower T to the correct target 
0 

tower, and at the conclusion of the loop Twill contain the correct 

value. We distinguish four cases where the values of the target 

tower and final value of Tare as follows: 

Target Tower Final Value of T 

a) p even n odd T + 1 .... , 
l - J.. 

0 0 

b) p odd n even T + 1 T 
0 0 

c) p even n even T - 1 T 
0 0 

d) p odd n odd T - 1 T + 1 
0 0 

For the base case, n=2, the behavior of the algorithm will depend on 

whether or not Pis odd. If Pis odd the THEN part of the first IF is 

executed and two disks are correctly moved from T to T + 1. If Pis even 
0 0 

the ELSE part is executed and two disks are correctly moved from T. 
0 

The condition of the next IF is true since MOVE COUNTER has no bits 

all its bits are l's, so the loop terminates. 

to T - 1. 
0 

and hence 

For this base case we are in case (b) or (c) of the hypothesis and we 

have verified that the algorithm moves the required number of disks to the 

proper target tower. In these cases we want the final value of T to be the 

same as its initial value, but no instruction has changed Tso it still 

contains its initial value. 

If n > 2 then at some point in the algorithm the MOVE COUNTER will have 

only its high order bit equal to O; all of its other bits will equal 1. We 

use the inductive hypothesis to calculate the state of the process when this 

condition occurs, since the loop would terminate at this point if it had 

been started with n-1. The various situations are displayed in the following 

table: 

- 16 -
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p even n odd P odd n even p even n even P odd n odd 

n-1 even n-1 odd n-1 odd n-1 even 

n-1 RINGS 
HAVE BEEN T - 1 T - 1 T + 1 T + 1 
MOVED TO 0 0 0 0 

T contains T T + 1 T - 1 T 
0 0 0 0 

NEXT T + T + 1 T - 1 + T T + 1 + T T + T - 1 

MOVE T + T + 1 T + T + 1 T + T - 1 T + T - 1 
0 0 0 0 0 0 0 0 

--

NEXT VALUE T 1 T - 1 T + 1 T + 1 -
OFT 0 0 0 0 

Since only one bit in MOVE COUNTER is O and the position of this zero 

has the same parity as n, we can calculate the next move which we record in 

in the third row of the table, and we can calculate the new value of T which 

we record in the fourth row of the table. 

Next MOVE COUNTER will be incremented so that it contains a single 1 

as its leftmost bit and all of its remaining bits will be 0. Now the 

algorithm will behave as if the leftmost bit did not exist, that is, as if it 

were dealing with only n - 1 disks. 

So in case (a),n - 1 rings will be moved from the current value of T, 

i . e., T ~ 1, to (T - 1) - 1 which is T + 1 as required by the inductive 
0 0 0 

hypothesis, and the value of Twill be unchanged resulting in T contining 

T - 1 as required. 
0 

In case (b),n - 1 rings will be moved from T -
0 

is T + 1 as required, and Twill contain (T 
0 0 

- 1) 

required. 

1 to (T - 1) - 1 which 
0 

+ 1 which is T as 
0 

In case (c), n-1 rings will be moved from T + 1 to (T + 1) + 1 which 
0 0 

is T0 - 1 as required, and Twill contain (T + 1) - 1 which is T as 
0 0 

required. 
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In case (d), n-1 rings will be moved from T + 1 to (T + 1) + 1 which 
0 0 

is T - 1 as required and Twill contain T + 1 as required. 
0 0 

So all conditions are verified and the algorithm performs correctly.~ 

Proposition: The algorithm TOWERS uses 0(2n) time and n+l bits space. 

Proof: For space, MOVE COUNTER has n-2 bits, T has 2 bits and P has 1 bit, 

and since these are the only variables the algorithm uses n+l bits of storage. 

n-2 For time, the algorithm goes through the WHILE loop 2 - 1 times. 

On all except the last repeat, 4 moves are made. On the last repeat, only 

3 moves are made. This correctly totals to 2n - 1 moves. The only 

nonconstant time operations are those that interrogate or change the move 

counter. Since the move counter has n-2 bits these operations could take 

O(n) time, giving a O(n2n) algorithm. But the operations on move counter 

only have to progress until the rightmost O is encountered. The move 
n-2 counter takes on each of the values O through 2 - 1 exactly once during 

the course of the algorithm. For half these numbers the rightmost O will 

be in the first posit~on. For one quarter of these numbers the right-
1 

most O will be in the second position. For-:- of these numbers the right-
2l. 

most O will be in position i, i ~ n-2. One number will contain no 0. Thus 
n-2 . 

the running time of the algorithm will be c12n-Z( E i/2 1 ) + c2n which is 
i=l 

C 2n-2 
00 

iii less than r + c2n and since the series converges this is 
1 . 0 

C32n-2 + 
l. .= 

0(2n) claimed.~ c2n which is as 

We summarize the results of this section in the following theorem. 

Theorem: Any algorithm which solves the Towers of Hanoi problem for n disks 

must use at least 0(2n) time and n + 0(1) bits of storage. The algorithm 

TOWERS solves the problem and simultaneously uses minimum time and minimum 

space. 
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2. Generalized Towers of Hanoi 

In the generalized Towers of Hanoi problem, one is given t towers 

( t ..:. 3) and n disks. Initially then diSks are stacked on tower 1, 

one is to move them to tower t moving one disk at a time between any 

towers in such a way that a disk is never stacked on top of a smaller 

disk. 

and 

two 

Finding the minimum number of moves for n disks on t towers, M(n,t) 

appeared as problem 353 in The American Mathematical Monthly (1939). 

J. S. Frame [1] and B. M. Stewart [2] published solutions in which each 

derived the following formula: 
s-1 

M(n,t) = {t: 
n-0 

where ·s is such that ct-3+s) 
t-2 < n < (t-2+s) 

t-2 . Table 2 enumerates some 

of the values for M(n, t) for small n and t. 

Each disk is moved some power of 2 times - this can be deduced from 

the recursive nature of the problem. One interpretation of the co­

efficient of 2i is that it counts the number of disks which are moved 

exactly 2i times. 

Considering table 2, we see that there is another interpretation 

for the coefficients of 2i. Inspection of M(n,t) for fixed t (starting 

at the assumed boundary of M(O,t) = 0) indicates that there is 1 = (t- 3) o · t-3 
increment of size 1 = 2 to arrive at the value of M(l,t); t-2= (t- 2) 

t-3 
increment of size 2 = 21 provide the values of M(2,t), M(3,t) •.. M(t-1,t); 

and so forth. t-3+i . i 
That is, there are ( t- 3 ) inc:ements of size 2 in the 

t-3+1 steps through the ( t- 3 ) length interval from 

We will consider moving n disks by partitioning the stack of n 

disks into two sub-stacks of n1 and n2 disks (n 1+n2 = n), then move n 1 
disks · from tower 1 to tower 2 using all t towers, followed by moving the 

n2 remaining disks from tower 1 to tower t using the t-1 towers other 

than tower 2, and concluding by moving the n 1 disks from tower 2 to 

tower t. For a correctly chosen partitioning, M(n,t) = M(n1,t) + 

M(n2,t-1) + M(n1,t). 
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7 Three Towers: 

jl 
Disks 1 2 3 4 5 6 7 8 9 10 

Moves 1 3 7 15 31 63 127 255 511 1023 

l Four Towers: 

fJ 
Disks 1 2 3 4 5 6 7 8 9 10 

Moves 1 3 5 9 13 17 25 33 41 49 

n Disks 11 12 13 14 15 16 17 18 19 20 

Moves 65 81 97 113 129 161 193 225 257 289 

I Five Towers: 

n Disks 1 2 3 4 5 6 7 8 9 10 

Moves 1 3 5 7 11 15 19 23 27 31 

I 
Disks 11 12 13 14 15 16 17 18 19 20 

Moves 39 47 55 63 71 79 87 95 103 111 

I Six Towers: 

j 
Disks 1 2 3 4 5 6 7 8 9 10 

Moves 1 3 5 7 9 13 17 21 25 29 

I 
Disks 11 12 13 14 15 16 17 18 19 20 

Moves 33 37 41 45 49 57 65 73 81 89 

I Table 2 . Certain values of M(n,t). 

lJ 
J 

I 
J 

J 
- 20 ,.. 

J 



l 
l 
l 
u 
n 

d 
I 

I 

j 

u 
j 

u 

We can change the partition from n=n +n to n=n'+n' where · 1 2 1 2 
where n' = n +1 and n' = n2-1. 

1 1 2 

M(n,t) = 2~M(n1,t) + M(n2,t) = 2.M(ni,t) + M(n~,t) only if the n1 
is in the i-th increment interval fort towers and n2 is in the (i+l)-st 

increment interval for t-1 towers, i.e. only if M(ni,t) = M(n1,t) + 2i 

and 

Note that n .:_ (t~~;s) = (t-4+s) + (t-4+s)· that the increment interval t-2 t-3 ' 

for between (t-4+s) and (t-3+s) disks has increment size s-1 t towers 2 . 
t-2 t-2 , 

and that the increment interval for t-1 towers between (t-4+s) 
t-3 and 

t-3+s . 
( t- 3 ) has increment . 2s. size Therefore, we must partition n such 

> t-4+s that n 1 _ ( t- 2 ) and > (t-4+s) 
n2 - t-3 • 

then each of the partitions of n: 

nl = (t-4+s) + i, n2 = 
t-2 

nl = (t-4+s) + i-1, n2 = t.,.2 

=. ct-4+s) 
nl t-2 , 

( t-4+s) 
t-3 

(t-4+s) 
t-3 

+ 1 

yields a strategy involving the minimum number of moves, M(n,t). 

Considering the end points of this interval of partitions, we obtain 

M(n:, t) t-4+s t-4+s 
= 2.M(( t- 2 ),t) + M(n-( t- 2 ),t-1) (1) 

t-4+s t-4+s 
= 2.M(n-( t- 3 ),t) + ·M(( t- 3 ),t-1), (2) 

Theorem: The strategy to accomplish a partitioning solution to the 

generalized Towers of Hanoi problem in M(_n, t) moves is unique if and only if 

1) n = (t- 2+s) for some s > 1 
t-2 

or 2) n < t-1. 
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Proof: The proof is by double induction, we induct on t, and for fixed t 

we induct on n. 

If t=3, we are in the Towers of Hanoi problem for which it is well 

known that the solution is unique. 

Assume that t 0 > 3 and that the theorem is true for 3 < t < t 0 • 

Base Step: n ~ t 0-l; In this case, M(n,t 0) = 2 t 0-l and the 

sequence of moves is accomplished by spreading the top n-1 disks on the 

t 0-2 towers from 2 to t 0~1, one disk per tower, then moving disk n to 

tower . t, concluding by collecting the top n-1 disks (in reverse order) 

on to tower t. This is clearly unique up tore-labelling of the towers. 

Assume the theorem is true for t 0 towers with 1 < n < n0 disks. 

If 

then equations (1) -and (2) give non-unique partitions which solve the 

problem in an optimal number of moves, hence, n = (t0- 3+s) is a 
O t -2 

necessary condition for a unique solution. 0 

If n0 = (t0- 3+s) then since n0 > t 0 one must partition n0 to achieve 
t 0-2 

Mc ) F h . . . h h nl -- (t0-4+s), n0,t 0 moves. urt ermore any partitioning ot er tan 
t 0-2 

( t0- 4+s) · h M( ) . B h . d . n2 = requires more tan :n0,t 0 moves. y t e in uct1on 
t 0-3 

hypothesis on n0 , there is a unique strategy to accomplish M(n1,t 0) moves 

to place disks 1 through ·n1 on tower t 2 and by the induction hypothesis 

n2 disks, n1+1 through n on t 0 there is a unique strategy to move the 

from tower 1 to tower t using to-1 towers. . . t -3+s) . Hence, no~ ( 0 lS a 
t 0-2 

sufficient condition for a .unique solution in M(n0 ,t 0) moves. By 

induction; on n the theorem is true for all non t 0 towers, and by 

induction on t the theorem is true for all t. 

proven.~ 

Hence, the theorem is 

In closing we would like to mention two problems which remain for 

the generalized Towers of Hanoi problem. First, when there is not a 

unique solution to the problem, one may wish to enumerate the number of 

inequivalent solutions. This seems to require a well-thought-out 
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definition of the equivalency of various move patterns. For example, 

if n=4 and t=4, one might ask if (1,4) (1,2) (4,2) (1,3) •.. is equivalent 

to (1,4), (1,2), (1,3), (4,2), ... In either case, we have the disks 

distributed on the towers 1.n the pattern-A 12 

moved to tower 4. 

3 - when disk 4 is 

The second, and more serious concern, is to prove that the 

partitioning solution to the problem is the minimal solution to the 

problem. In the Monthly, following Frame's and Stewart's solutions, 

the editor [1] noted that they each had assumed a lemma, to wit: If 

the smallest nt-l disks are placed on tower t-1, the next nt_ 2 disks are 

placed on tower t-2, and so on until the largest disk is placed with one 

move on tower t; then for a suitable partition of n = l+n 2+n3+ ••• !nt_ 1. 

This strategy requires as small a number of moves as any other. It is 

clear that this is equivalent to partitioning ri = n1+n2 where n 1=nt-l 

and n2=1+n2+ ... +nt_ 2 and then applying the minimal solutions to the 

(n 1,t) case and the (n2, t-1) case appropriately. In the cases where 

the partitioned strategy is not unique, there also may be non-partitioned 

strategies which are not unique, for example, if n.=7, t=5, and M(7,5)=19. 

Then s1 = (1,5) (1,4) (1,3) (1,2) (3,2) (4,2) (5,2),(1,3),(1,4),(1,5) 

(4,5) (3,5) (2,1) (2~:~) (2,4) (2,5) (4,5) (3,5) (1,5); and 

s2 = (1,5) (1,4) (1,3) (1,2) (5,3) (4,2) (1,5) (1,4) (5,4) (1,5) 

(4,1) (4,5),(1,5),(3,1),(2,4),(2,5),(3,5),(4,5) (1,5) 

are 19 move solutions. Solution s1 is a partitioning solution and has 

the disk distributed as 

7 1234 5 6 

When disk 7 is moved to tower 5, while solution s2 _is not a partitioning 

solution in any sense, and has the disks distributed as 

7 24 13 -56 

when disk 7 is moved to tower 5. 

Wood [6] cites·further derivations for M(n,t) yet acknowledges 

that the proofs "while mathematically precise are incomplete". We 

would very much like to see the Lemma proven. 
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