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Development and Evaluation of X32V

I Introduction and Background

1.1 Introduction

There are many different classes of embedded processors currently available. Some are

single cycle machines, executing one instruction in one cycle, some are pipelined, allowing

faster cycle times and multi-cycle instructions, and finally there are very high performance

superscalar, out-of-order execution embedded processor cores. Choosing an architecture

that provides the best value can be complicated and is critical in creating a product that is

profitable. Companies spend large amounts of money developing products and would like

to spend as little as possible to maintain and upgrade the product. Therefore System-on-a-

Chip (S0C) designers creating products with short lifecycles, ideally would be able to add

functionality and performance using the same base architecture it was developed under.

For most embedded systems a pipelined architecture provides the best price to

performance ratio since pipelined processors provide high performance without large

increases in die size. Adding functionality like floating point and single instruction multiple

data (SIMD) features to a pipelined processor can provide increased performance and a

longer product lifecycle without major increases in costs. Embedded systems are typically

used in portable applications requiring nominal power consumption. Typically a pipelined

processor consumes less power than superscalar processors, providing a good choice for

portable applications. Therefore, a pipelined processor provides the best architecture for

creating an embedded processor.

This thesis discusses a configurable embedded processor called X32V and evaluates its

performance with respect to the Intel StrongARM processor that implements the SA-1 10

core.

1.2 Background

To understand how performance is evaluated between the ARM and X32V instruction sets

an overview of 5-stage pipeline processors is needed since SA-1 10 and X32V are both 5-
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stage RISC pipelines. Also compilers will be discussed along with how performance is

determined without actual hardware.

1.2.1 Processor Architecture: 5-Stage Pipelined Processors

A pipelined processor executes instructions in an overlapped manner with portions of

instructions executing at one time. For example, take the classic analogy of doing laundry,

one stage is the washer, the second the dryer, and third is folding. One way to do the

laundry is to have a load complete all three stages before starting a new load. Using this

method, a load of laundry will have to be washed, dried, and folded before another load will

be able to start. This is highly inefficient, the resources available are not being fuUy utilized.

A load of laundry can be in the washer while another is being dried in the dryer and even

another load can be folded all at the same time. This allows three loads of laundry to be in

the "pipeline" at any one time. Rather than wait for one load to complete all three stages

before starting a new load, three loads can be partially performed at a time. Ideally the

speedup from pipelining equals the number of pipe stages.

Instructions in a pipeline are executed in-order and should always stay in order until the

last stage. This gets complicated when multi-cycle instructions are introduced. Additional

hardware is needed to keep track of in-order execution and is usually implemented through

a reservation shift register (RSR).

In a typical 5-stage pipeline the stages are instruction fetch (IF), instruction decode (ID),

execute (EX), memory accesses (MEM) and write-back to register file (WB). These stages

are described below:

IF I I ID I I EX L I MEM Li WB

Figure 1: A typical 5-stage pipeline

Instruction Fetch (IF)

In a Harvard architected machine, memory is split into two portions one being for

instructions and one being for data. During the instruction fetch stage an instruction is

brought into the pipeline from the address that the current program counter holds.



Instruction Decode (ID)

During the ID stage the instruction is decoded to provide the type of operation going to be

performed and to set the ALU accordingly. Also during this stage the operands are

determined from the decoded instruction and indexed into the register file.

Execute (EX)

In the EX stage the instruction is actually run through the ALU and computed.

Memory Accesses (MEM)

During the MEM stage accesses to memory are performed through loads and stores. This

is where the processor interacts with data memory bringing in values and writing out values.

Write-back (WB)

During the WB stage the register file is updated with the result of the instruction.

1.2.2 Compiler, Assembler, Linker

Performance is not only determined by the architecture of the processor itself, the compiler

plays a crucial role in creating the most efficient instructions for the processor to execute.

Compilers typically take a high level language, such as C, and create assembly code.

Then the assembler is used to make a binary file from the assembly code. The binary files

are linked together to form an executable binary file that executes on your host system.

Compilers implement many advanced techniques to extract Instruction Level Parallelism

(ILP) to create efficient code. ILP is the overlap of executing instructions in a pipelined

processor. [2] explains many of the techniques used in compilers to exploit ILP.

1.2.3 Simulators

Creating actual hardware to test new architectural improvements is a time consuming and

expensive venture. Extracting statistics such as cycle counts and hit-rates are very difficult

to perform in actual hardware. So, to test if concepts operate according to conjecture,

processor simulators are often used to simulate actual hardware. Simulators are typically

written in a high level language such as C or C++. In simulators anything can be assumed,

such as infinite system memory, a perfect branch predictor, a divide unit that performs all



operations in one cycle, and so on. Having this flexibility allows creativity in designing new

architectural improvements.

There are two different types of processor simulators, functional simulation and cycle-

accurate simulation. Functional simulators execute one instruction at a time and are

mainly used to validate the functionality of an ISA. The exact hardware is not modeled

accurately and there are no timing statistics. In a cycle-accurate simulator the actual

hardware is modeled as accurate as possible to achieve precise statistics. Therefore a

cycle-accurate simulator is much more complex than a simple functional simulator. Table

1 shows several simulators available from the SimpleScalar toolset and their complexity

and performance levels, information was obtained from [3].

Compilers play a crucial role in creating a comprehensive simulation tool. They provide the

compilation tools necessary to create benchmarks programs that run on simulators.

Simulator Description
Lines of

code
Simulation

Speed

sim-safe Simple functional simulator 320 6 MIPS

sim-fast Speed optimized functional simulator 780 7 MIPS

sim-outorder Detailed Micro-architectural timing model 3900 0.3 MIPS

Table 1: SimpleScalar baseline simulation models

1.3 SimpleScalar

SimpleScalar is a widely used out-of-order processor simulation toolset developed by Todd

Austin while conducting his doctorial thesis at the University of Madison-Wisconsin. The

ISA simulated in SimpleScalar is called the Portable Instruction Set Architecture (PISA).

This ISA is constructed of 64-bit instructions similar to the MIPS instruction set. There are

three instruction formats: register, immediate, and jump. Figure 2 diagrams the PISA

instruction formats.

There are several simulators available in SimpleScalar including: sim-safe, sim-fast, and

sim-outorder. sim-safe and sim-fast are functional simulators while sim-outorder is a cycle-

accurate simulator. The simulator core is complemented by many necessary modules
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such as cache, memory, statistics, loader, and system call modules. The cache module

instantiates multiple level cache's including LI and L2. Each cache level can be assigned

a certain configuration, hit latency, and size. The memory module holds the program

binary that is loaded by the loader module. Statistics are gathered by the statistics module.

Information such as total number of instruction executed, number of cycles, hits and

misses on cache's, etc. are gathered and printed to the screen when the simulation has

completed. Since there is no operating system running on the simulated processor a

system call handler is needed for programs to write and read to files. The system call

handler intercepts system calls requested by the executing program and makes the

corresponding call to the host systems operating system. Then returns the results of the

system call to the executing program.

Register Format

IA IA A A 8 8

Annote Opcode rs rt rd ru/shamt

Immediate Format

16 16 8 8 16

Annote Opcode rs rt imm

Jump Format

IA IA A 28

Annote Opcode Unused target

Figure 2: SimpleScalar instruction formats

Applications executed on SimpleScalar run on an execution-driven simulation core. An

execution-driven simulation core allows precise modeling of actual computer hardware.

The instruction set is defined separately from the hardware simulation core to make it

portable to other ISA's. Each instruction is interpreted by the instruction set emulator

which in turn directs the operation of the hardware simulator.

To make SimpleScalar as flexible as possible configuration files are used to describe the

internal pipeline, cache, memory, and branch options. Cache options such as size, latency,

and replacement policy are determined in the configuration file. The pipeline has the

option to perform each instruction in-order which later will be important to simulate an in-



order pipelined processor. Using different configuration files will result in different

performance statistic gathered by SimpleScalar, allowing SimpleScalar to be tuned to

perform similarly to an actual hardware processor.

SimpleScalar has been retargeted for several ISA's which include Alpha, PowerPC, x86

and ARM. ARM is most important in this thesis so it will be discussed in further detail in

the next chapter.
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ARM is a popular embedded processor architecture used widely around the world and

implemented in many different applications. The acronym stands for Advanced RISC

Machine. It features a load-store architecture, a fixed-length 32-bit instruction set, and 3-

address instruction formats. The main concern of the ARM designers was to make ARM

as simple as possible. An in depth look at ARM is taken because X32V is compared

extensively with ARM later in this thesis.

2.2 ARM Architecture and ISA

The ARM architecture is similar to many embedded processors, such as having 16

registers, simple RISC instructions, and exception handling. But there are many unique

features that ARM employs to create higher code density and better performance. The

unique features of the ARM architecture are listed below:

a load-store architecture

3-address instructions

conditional execution of every instruction

load and store multiple registers

ability to perform a shift and ALU operation in a single instruction that executes in a

single clock cycle

Thumb instruction set that compresses instructions into 16-bits

Since ARM implements a load-store architecture all instructions will process data already

in its register file. Memory accesses are completed only through load and store

instructions that read or write values into and out of the register file. Therefore all ARM

instruction fall into three categories: data processing instructions, data transfer instructions,

and control flow instructions.

3-address instructions force the two source operand registers and result register to be

explicitly defined in the instruction format.

All ARM instructions can be conditionally executed depending upon the N, Z, C, and V

flags located in the CPSR. N is negative, Z is zero, C is carry, and V is overflow. These
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condition bits are the results of the last ALU operation and stored in the Current Program

Status Register (CPSR). As seen in Figure 3 the most significant 4-bits of each instruction

determines how the instruction will be conditionally executed. Table 2 shows each

conditional option available to each instruction. Using this method of conditional execution

of each instruction allows simple implementation of if-then-else statements.

4 28

cond ARM Instruction

Figure 3: The ARM condition code field

COND

31 28

Mnemonic
extension

Interpretation Status flag and state of
execution

0000 EQ Equal/equals zero Z set

0001 NE Not equal Z clear

0010 CS/HS Carry set/unsigned higher or same Cset

0011 CC/LO Carry clear/unsigned lower C clear

0100 Ml Minus/negative N set

0101 PL Plus/positive or zero N clear

0110 VS Overflow V set

0111 VC No overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or same C clear or Z set

1010 GE Signed greater than or equal N equals V

1011 LI Signed less than N is not equal to V

1100 GT Signed greater than Z clear and N equals V

1101 LE Signed less than or equal Z set or N is not equal to V

1110 AL Always any

1111 NV Never none

Table 2: ARM condition codes

Loading and storing multiple registers allows any of the 16 registers to be loaded or stored

to memory. These type of instructions are mainly used to store information when entering



a function to save workspace data. They are also useful for high-bandwidth memory block

copies to memory.

Each data processing instruction has the ability to perform a shift and ALU instruction in

one cycle. The shift instruction is performed before it enters the ALU. A common example

utilizing this feature is a shift and add instruction. A data processing instruction example is

seen in Figure 4.

#shift Immediate shift length

ShShifttype
opcode - Determines the ALU operation

4 2 1 4 1 4 4 5 2 1 4

cond 00 1 opcode S Rn Rd #shift Sh 0 Rm

Figure 4: Data processing instruction example

The Thumb instruction set is an add-on to later generation ARM architectures. It is used to

compresses a subset of the ARM instruction set. Thumb is not a compete architecture

because not all ARM operations can be compressed into 16-bits. Implementations

decompress Thumb instructions into ARM instructions and then they are processed

through the pipeline.

ARM does not implement some hardware features found on other processors. The main

ARM pipeline has no support for floating point hardware, so a coprocessor is used when

full floating point support is needed. ARM also has no hardware support for integer

division, so division is performed in software through a series of instructions.

2.3 ARM Implementations and StrongARM SA-IlO CPU

From 1983 to 1995 ARM processors used a 3-stage pipeline, after 1995 5-stage pipelines

were utilized because of significant increases in performance. The ARM7TDMI CPU core

is the current low end ARM processor core. It implements the 3-stage pipeline typically

yielding a clock rate of 66Mhz running on a 3.3V power supply reaching 60 MIPS. The

ARM9TDMI core utilizes the 5-stage pipeline and significantly increases the performance

over the ARM7TDMI core. ARM9TDMI typically runs at 200Mhz with a 2.5V supply voltage

and reaches 220 MIPS. Similar to the ARM9TDMI core is the StrongARM SA-ilO CPU,
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the only major difference is the addition of a dedicated adder to calculate branches in the

SA-1 10 rather than utilizing the ALU to calculate the branch address. This makes the SA-

110 take one less cycle than the ARM9TDMI when calculating a branch. The SA-1 10 CPU

will now be further discussed because the SimpleScalar/ARM implementation provides

very similar performance to the SA-ilO.

The main features of the SA-IlO are:

a 5-stage pipeline with forwarding

16KB 32-way associative instruction cache with 32-byte lines

16KB 32-way associative data cache with 32-byte lines

The SA-ilO processor core employs a 5-stage pipeline with full forwarding. Because ARM

requires a shift operation before the ALU, a barrel shifter was added before the ALU and

does not add to the pipeline depth. The five stages of the SA-1 10 are:

1. Instruction fetch from instruction cache.

2. Instruction decode and register read; branch target calculation and execution.

3. Shift and ALU operation, including data transfer memory address calculation.

4. Data cache access.

5. Result write-back to register file.

These stages are very similar to the ones explained before in the background section. The

forwarding paths are values from the ALU result, data loaded from the data cache, and the

buffered ALU result. Forwarding is needed because of data dependencies that exist

between instructions.

Figure 5 is a diagram of the SA-ilO core pipeline. The light green busses represent

modifications done to the program counter (PC). The light grey represent the forwarding

paths taken to alleviate most data dependencies. Notice the shifter before the ALU, this

allows each data processing instruction to be able to shift then perform an ALU operation

in one cycle. The adder (+4) located in the execute stage allows multiple register stores

and loads. The displacement adder located in the instruction decode allows branch

addresses to be calculated during the decode phase without having to calculate the

address in the ALU. These are the unique aspects of the SAIIO CPU core.
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2.4 SimpleScalar/ARM: An ARM Simulator

SimpleScalar has a retargeted version of its simulator for the ARM ISA. It features the

ARM7 integer instructions with support for FPA floating point emulation. A cross compiler

is also available to compile C code into ARM ELF binaries for simulation. Functional

simulation is done by using sim-uop while detailed performance and power estimation is

performed by sim-outorder. Included with the SimpleScalar/ARM distribution is a

configuration file that configures the SimpleScalar/ARM simulator to perform similarly to a

hardware based SA-ilO CPU. There is about a 4% difference in performance between

SimpleScalar/ARM and a Netwinder SA-1 10 CPU. Table 3 shows several benchmarks run

on the SimpleScalar/ARM simulator and actual Netwinder SA-ilO hardware CPU. Data

was taken from [6]. The performance of the simulator was very similar to the performance

of the hardware CPU.

Benchmark SimpleScalar/ARM

(CPI)

Netwinder SA-ilO

(CPI)

% Duff

smooth.new 1.02 1.01 0.9

trash.new 22.87 33.7 0.5

In 1.04 1.02 1.9

ly 1.97 1.91 3.1

bzip2 10 3.20 3.10 3.2

ccl -o ccl n.j 2.84 2.90 2.1

fft.arm short.pcm 1.45 1.44 0.1

Table 3: SimpleScalar/ARM compared to actual Netwinder SA-IlO
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buffer
D-cache

Idata

write-

back

register write

Figure 5: SA-IlO core pipeline diagram
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X32V is an embedded processor architecture created at Oregon State University. It has

several unique features to create dense binaries and increase performance. The main

purpose of X32V was to create an architecture that is easily extensible. This means that

adding additional functionality or performance enhancements to the processor core would

be simple and cost effective. The addition of these enhancements would not be connected

through a coprocessor interface, but directly attached to the main pipeline to offer the best

performance possible. To make the creation of X32V easier, modules from SimpleScalar

were used to complement the X32V processing core. The cache, memory, loader, syscall,

and others were taken and lightly modified to work with the X32V architecture.

3.2 X32V Instruction Set

One of the unique features of X32V are the instruction sizes available from the ISA. The

three instruction sizes are described below:

default (32-bit instructions only)

light (32-bit and 16-bit instructions)

ultra-light. (32-bit, 24-bit, and 16-bit instructions)

Code density is increased when using light or ultra-light mode, creating smaller binaries,

but complexity of the fetch portion of the pipeline is increased. Misalignment of instructions

in memory causes the fetch stage to perform multiple fetches to receive an instruction

resulting in increased overhead. [51 shows a decrease in executable size of 7% for light

mode and 25% for ultra-light for several benchmarks from the MediaBench suite of

programs. The performance overhead from using light and ultra-light modes is about 3%

additional cycles. Ultra-light mode provides the best option in creating small code size with

little overhead.

Table 4 shows the instruction classes and their configuration for 32-bit, 24-bit, and 16-bit

instructions. Immediate values are highly influenced by the instruction size because with

less bits there is a smaller range for immediate values. The compiler chooses the smallest

instruction size possible when creating a binary depending on immediate value ranges.

This helps to reduce code size as seen in [5].
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32-bit Instruction_Format

4 4 4 4 16

Load/Store 0000 opi rd rsl disp

Immediate 0001 op1 rd rsl mm

Branch 0010 op1 rd rsl Label

4 4 4 4 4 4 4 4

Register 0011 op1 rd rsl rs2 op2 op3 op4

4 4 24

Jump/Call 0100 op1 label/imm

24-bit Instruction_Format

4 4 4 4 8

Load/Store 0101 op1 rd rsl disp

SR Load Store 0101 opi op2 rsl disp

Immediate 0110 op1 rd rsl 1mm

Branch 0111 op1 rd rsl label

4 4 4 4 4 4

Register 1000 op1 rd rsl rs2 op2

4 4 16

Jump I Call 1001 op1 label /1mm

16-bit Instruction Format

Load/Store, 1mm, branch none

4 4 4 4

Register R-1 1010 op1 rd rsl

R-2 1011 op1 rd rsl

4 4 8

Jump/Call 1100 op1 Iabel/imm

Table 4: X32V Instrution set classes
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Unique to X32V are several conditional branch instructions described in Table 5. These

branches compress a compare and branch into one instruction allowing one cycle

execution. The drawback is the additional hardware needed to perform the conditional

calculations instead of using the ALU's condition codes. This will likely lead to a longer

critical path in the decode stage, where the conditional branches are performed.

A complete listing of all X32V instructions can be found in [5].

B_EQ Branch if Equal

B_NE Branch if Not Equal

B_EQZ Branch if Equal to Zero

B_NEZ Branch if Not Equal to Zero

B_LTZ Branch if Less Than Zero

B_GTZ Branch if Greater Than Zero

B_LTEZ Branch if Less Than or Equal to Zero

B_GTEZ Branch if Greater Than or Equal to Zero

Table 5: X32V Conditional Branches

3.3 X32V Architecure

X32V utilizes a classic 5-stage pipeline design similar to many other embedded systems.

The stages are listed below:

1. Instruction Fetch

2. Instruction Decode

3. Execute

4. Memory accesses

5. Write back to register file

Figure 6 shows the micro-architectural diagram of the X32V integer pipeline along with an

expandable module called EM3. EM3 is a multimedia module that performs single
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instruction multiple data (SIMD) instructions to significantly increase the performance of

multimedia applications like MPEG decompression. To best utilize the architecture, EM3

uses the floating point registers in the FPU, since floating point operations are rarely done

in multimedia applications.

One of the unique features of X32V are variable instruction sizes. To handle the different

instruction sizes an extra buffer and control logic are needed to correctly fetch instructions

from memory. With different instruction sizes, memory is no longer aligned on word

boundaries so extra hardware is needed to handle fetching an extra word to retrieve the

other portion of an instruction. In default mode, where all instruction are 32-bits, the fetch

is a simple process of getting the next instruction in memory because all instruction fall

onto word boundaries.

To handle conditional branching additional hardware in the decode stage is needed. A

comparator and subtractor are needed to perform the conditional checks before a branch is

taken. The target address is also computed in the decode stage, requiring an adder to

compute the branch addresses.

The integer pipeline also has a dedicated hardware multiply and divide unit to increase the

speed of those operations. Multiply and especially divide operations tend to take more

than one cycle to perform resulting in the need to handle multi-cycle instructions.

3.3.1 Handling Multi-cycle Instructions

With multi-cycle instructions, such as multiply and divide, the execute stage takes more

than one cycle to compute a result. More cycles are needed because multiply and divide

operations, depending on implementation, can take several cycles before a result is

computed. Therefore a reservation shift register (RSR) was used to keep track of when an

instruction will finish the execute stage. The RSR contains bits that show when an

instruction will finish executing and any new instructions will be masked to the RSR to

detect if it has the opportunity to be executed. If it cannot execute then it is queued until

the RSR shows that there is an open window for it to execute. This solves the problem of

out-of-order execution of instructions and keeps everything in-order.
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3.3.2 EM3 Multimedia Module

The EM3 multimedia unit exploits parallel data structures in common multimedia programs

to increase performance. For example, common parallel data structures are RGB values

stored in sets of three 8-bit integers. Since the ALU is capable of processing 32-bit

integers, all three RGB values are able to be computed at the same time. An integer ISA is

commonly extended to perform these SIMD operations to process parallel data. Common

SIMD extensions are MMX and SSE for Intel and VIS for Sun architectures. Figure 6

shows how EM3 is integrated into the main integer pipeline. EM3 uses the floating point

registers to store data. An in depth description of EM3 is seen in [7].

3.3.3 Floating Point Module

The floating point module processes floating point instructions and data. There are two

data types supported by the X32V floating point module: single (32-bit) and double (64-bit).

There are also instructions to convert between single, double, and integers. Many of the

normal floating point operations are supported including multiply, divide, and addition.

Figure 6 shows how the floating point module is integrated into the main pipeline. All of the

floating point instructions are explained in Appendix A: X32V Floating Point Instructions.

3.4 X32V Simulator

The X32V simulator is an event-driven, cycle accurate simulator, written in C and created

for the linux platform. Some of the components from SimpleScalar were used to interface

with the X32V core pipeline. Components such as the system call, memory, loader, cache,

and statistics modules were used to create the simulator. Figure 7 shows the structure of

the X32V simulator. User programs are assembled into binary, conforming to the X32V

ISA. The binary is loaded into memory by the loader. Before the simulation begins a

configuration file is parsed to determine the memory latency and cache configuration for

the simulation. Then the binary is run on the core pipeline and statistics are gathered and

outputted to a file when the simulation has finished. The syscall module is a proxy to the

operating system when system calls are requested by the running program.
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User Program
[

X32V Program Bina (Assembly file)

Program
{ X32V ISA

Interface

Simulator
Stats Memory

Core

Performance
Core

Cache Loader Syscall

Figure 7: X32V simulator structure

The core pipeline of the simulator is run in reverse order to make it easier to forward data

to the different stages. Each function below describes the operation of each stage of the

main simulator.

pipe_update()

During a pipe_update all stages of the pipeline are updated. NOP's are entered into the

pipeline when memory stalls occur and if there was a taken branch, a one cycle memory

stall is needed to fetch the next instruction in instruction memory.

wb_action()

This is where the register file is updated with data from the mem stage.

me rn_a ct ion

As the simulator enters this stage, stalls are detected for memory accesses through calls to

the cache and memory modules. If there are any stalls in the pipeline, the stage waits until

all the stalls are cleared. When all stalls are cleared memory accesses begin only through

loads and stores.



ex_action()

Most of the operations done in this stage are arithmetic and involve the ALU or multiply

and divide unit. Data processing instructions similar to add, multiply, and shift are

executed in this stage.

id_action()

In this stage instruction formats are determined, branch target addresses (BTA) are

calculated, and instructions decoded for the next stage. The instruction formats available

are default, light, and ultra-light.

if_action()

Instruction are fetched from memory in this function. If a full instruction was not fetched,

because of misalignment in memory, then the pipeline is stalled until another memory

access can fetch the second part of the instruction.

3.4.1 Modifications to X32V Simulator

Several modifications were made to the original X32V simulator written by John Mark

Matson. Instructions were added, the loader was modified, a system call was added, and

modifications were made to the assembler. A RSR was added to allow multi-cycle

executing instructions. Also validation was done correcting several minor bugs within the

simulator.

Multiply and divide instructions were added to the original simulator along with HI and LO

registers to hold the result. To make manipulation of the stack as simple as possible

PUSH and POP instructions were added. PUSH puts a register value onto the stack and

POP takes the last pushed item off the stack. Floating point instruction were added to the

original simulator to provide support for hardware based floating point calculations.

Several instruction were added to move to and from HI and LO registers, stack pointer, link

register, and status register to any general purpose register (GPR).

The loader was modified to accept ELF format binaries. The original simulator only

accepted plain binary files. ELF provides features such as dynamic linking and loading,

runtime control of programs, and an improved method of providing shared libraries.
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There was an additional system call added to create files within an executing program by

issuing a system call to the operating system. 0_GREAT was added to call the open

system call in the UNIX operating system with flags to create a file.

When the X32V simulator was first developed, a compiler had not yet been made. So an

assembler was created that converted assembly instructions into its binary representation.

The assembler was a PERL script that parsed an assembly file and extracted all necessary

information to create the binary equivalent. This is by no means a robust assembler-linker

combination, but it provides a relatively simple and highly configurable way to create

programs to run on the X32V simulator. To add additional functionality to the assembler, a

preprocessor directive was added to preload data memory with values. This simplifies

constant values by not having to add them through immediate values in the assembly. The

assembler was also modified to include all of the new instructions added to the ISA

including the EM3 and floating point instructions.

To allow multi-cycle executing instructions an RSR was added to insure in-order execution.

Complementing the RSR was the utilization of several SimpleScalar resources to buffer

waiting instructions to be executed.

3.5 Compiler Support for X32V

In collaboration with Electronics and Telecommunications Research Institute (ETRI) of

Korea an X32V compiler was developed based on the GNU CC compiler suite. The

compiler developed supports compilation only and not assembly and linking. This makes it

difficult to run very extensive benchmarks, but allows the comparison of GCC generated

programs. Assembly created by GCC for different targets use similar algorithms for code

optimizations.
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4 Performance Comparison X32V vs. SimpleScalar/ARM
(SA-IlO Core)

4.1 Introduction

To evaluate X32V's viability as an embedded processor architecture, a comparison must

be made between current technologies and the one proposed. The most popular

embedded architecture currently is ARM, it is widely used in many applications and a

standard in the industry. With many implementations and robust software support, ARM

provides the best comparison to X32V. The disadvantage X32V encounters is the lack of

an assembler and linker. Without these essential software components intense

benchmarks cannot be run. Since the GNU cross compiler is working and producing viable

assembly, a smaller benchmark written at Oregon State University by Jarrod Nelson can

be used in a comparison. Using the X32V GNU cross-compiler to generate assembly and

then using the PERL assembler to convert it straight to binary will result in an executable

binary. The compiler used in the SimpleScalar/ARM suite is GNU based and produces

similar code to the compiler for X32V. Therefore a comparison between X32V and ARM

will be made using the X32V simulator and SimpleScalar/ARM simulator to determine if

X32V is a viable embedded processor.

4.2 Benchmark: YCbCr to RGB Conversion

In many multimedia applications color conversion from one color space to another is

frequently performed. Especially converting YCbCr to RGB color space in the JPEG and

MPEG algorithms. YCbCr is used because information is compacted into a luminance (Y)

and chrominance (CbCr) components. The human eye is more sensitive to variations in

brightness than color allowing image compression without noticeable changes in image

quality. Luminance, being the brightness of an image, should be preserved while sub-

sampling can be done on the chrominance portion to compress the image while

maintaining good image quality. For example, 8-bits can be used to sample a luminance

component while 4-bits are used to sample the chrominance components causing the

image to be compressed 33% when compared with the 24-bit RGB version of the image.

The benchmark used in this study converts a YCbCr image into RGB color space. Sub-

sampling was done on the chrominance (CbCr) components to compress the image. An

RGB image was chosen and converted into its YCbCr color space equivalent then run



23

through the benchmark on the simulator to convert it back to RGB for visual inspection.

Using this benchmark provides an easily verifiable result through visual inspection of the

final RGB image. The original RGB image converted to YCbCr and the resulting image

from the output of the benchmark program should resemble the image in Figure 8.

Figure 8: Original image used to convert to YCbCr then converted back to RGB.

4.3 Test Configuration

The benchmark was written in C and compiled using gcc with no optimizations.

SimpleScalar/ARM's gcc was able to directly create an executable binary while X32V's gcc

was used to compile into assembly and then hand massaged to use with the PERL

assembler to create an executable binary. X32V's gcc did not handle system calls,

immediate values, or memory mapping correctly. Therefore hand modifications had to be

made to correct the assembly to work with the simulator. Default (32-bit instructions) mode

was used for all X32V simulations. The simulations were run with a 16KB Li data cache

and 16KB Li instruction cache with a hit latency of one cycle. The cache replacement
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policy simulated was a FIFO. Main memory had a 64 cycle latency. Another simulation

was done using X32V with the EM3 module to further increase performance. The

assembly code for this benchmark was written by hand because the X32V gcc compiler

does not support any of the EM3 instructions. The same memory configuration was used

during with the EM3 simulation.

4.4 Results

The results of running the YCbCr to RGB conversion benchmark on each processor

simulator are shown in Figure 9. To compare different architectures only one statistic is

relevant in determining performance and it is how long the processor took to complete a

task. Cycle count is how many cycles the benchmark took to complete on the simulated

processor. Assuming clock cycle times (CCT) are similar, cycle count tells which

architecture provided the best performance (lower numbers are better).

Figure 9: Total cycle count for YCbCr to RGB conversion benchmark

From Figure 9 the best performing architecture between X32V Integer and

SimpleScalar/ARM was X32V, a difference of 12.5 million cycles. There are several
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reasons for this performance increase. In ARM, before a branch is executed a compare is

done to set the condition codes allowing the branch to be determined. In X32V a compare

and branch can be done in one instruction. Also in X32V, Register RO is considered to

have a value of 0 reducing the number of steps needed to assign a value to a register.

C Code:

if (rI <0)

ri = 0;

else if (ri > 255)

ri = 255;

ARM Assembly:

I ldr r3, [fp, #-28}

2 cmp r3,#0

3 bge .L14

4 mov r3,#0

5 str r3, [fp, #-28]

6 b L15

7 L14: ldr r3, [fp, #-28]

8 cmp r3,#255

9 ble L15

10 mov r3,#255

II str r3,[fp,#-28}

12 L15:

X32V Assembly:

I Lw r2, 28(r15)

2 b_gtez r2, L14

3 s_w rO, 28(r15)

4 j_a L15

5 L14: Lw r2, 28(r15)

6 set_Iti r2, r2, 256

7 b_ne r2, rO, L15

8 addi r2, rO, 255

9 s_w r2, 28(r15)

10 L15:

Figure 10: Example code
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Figure 10 shows example code taken from the YCbCr to RGB conversion benchmark.

Shown is the ARM assembly representation and the X32V assembly representation of the

C code. The code segment is from a portion of the algorithm where saturation checks are

performed to make sure that each 8-bit RGB value is between 0 and 255. As stated, two

cycles are saved in the X32V implementation because of the integration of conditional

branches into one instruction and the use of RO as a zero register. In the ARM

implementation, line 2 does a compare before a branch and in line 4 a move is used to set

a register to zero before storing it in memory. In the X32V implementation lines 2 and 3 do

what takes ARM four instructions. The compare and branch is done in one instruction

while the clearing of registers does not need to be done because RO is the zero register.

Saving two cycles per RGB value results in 6 cycles saved per pixel. In a 640x480 sized

image there are 307,200 pixels resulting in an overall savings of 1,843,200 cycles (6 X

307,200) for the X32V implementation.

The conditional branches and zero register do not account for all of the 12.5 million cycle

difference. There were minor differences in code between the SimpleScalar/ARM compiler

and the X32V compiler that accounted for most of the 12.5 million cycles. In the ARM

implementation a move and negate and three subtracts were executed before most loads.

This was done to calculate the address of where the load was going to fetch data from

memory. X32V used a more optimized method of using a direct immediate value rather

than calculating an address every time before a load. The gcc version for the

SimpleScalar compiler is 2.95.2 while X32V's compiler version is 3.3. The difference in

these compiler versions accounts for the optimization seen in X32V.

Table 6 shows an instruction profile of the benchmark for each simulator. ARM's

instruction profile shows a large amount of subtracts being performed. This is a result of

the three additional subtracts before a load. Most of the time both processors were

performing integer ALU operations. Having an additional ALU would greatly increase the

performance of this benchmark.

X32V with the addition of the EM3 module significantly increase the performance of the

benchmark program. Figure 9 shows approximately an 8 fold decrease in cycles when

compared with ARM or X32V integer pipelines. EM3 utilizes a SIMD format that is perfect

for RGB calculation. Each RGB value can be processed in once cycle rather than

performing calculations on each R, each C, and each B value as in normal integer
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pipelines. Also the assembly that was generated for EM3 was written by hand and highly

optimized.

instruction Profile: ARM

# Inst
Executed

Percent
of Total

Total 80907317 100.00%

loads
FJ
13225840 16.35%

store 5256233 6.50%
uncond
branch 317921 0.39%
cond branch 3065359 3.79%
mt comp 59041937 72.97%

b 3383037 4.18%
rsb 1229849 1.52%
add 9318027 11.39%
mov 15062814 18.62%
sub 20902411 25.84%
add 2171730 2.68%
mvn 7069967 8.74%
b 319369 0.39%
cmp 3065240 3.79%
str 5254338 6.50%
dr 13222297 16.35%

Instruction Profile: X32V

#lnst
Executed

Percent
of Total

Total 62126024 100.00%
r7,,,,///4y4

loads
VIFfF////A

14453945 23.27%

store 5870177 9.45%
uncond
branch 317592 0.51%

cond branch 3371691 5.43%
nt comp 38112599 61.35%

l_w

.,,.

12610745
.'
20.30%

I_b 1843200 2.97%

sw 4948577 7.97%

sb 921600 1.48%

Ig_ori 1843209 2.97%

addi 308111 0.50%

add_ui 3091684 4.98%
sub_ui 921600 1.48%

sft_lli 7681921 12.37%

sft_rli 1536480 2.47%

sft_rai 3073920 4.95%

set_Iti 1220332 1.96%

mov_upi 1843209 2.97%
tg_xor 2151319 3.46%

add_u 10752967 17.31%

sub_u 1229761 1.98%

mov 2458086 3.96%

b_ne 2141931 3.45%

b_gtez 1229760 1.98%

j_a 317592 0.51%

Table 6: Instruction profile



5 Future Work and Conclusion

5.1 Future Work

The development of X32V is an ongoing process and requires much work to make it an

established processor architecture. The most important work needs to be done on the

integration of an assembler and linker into X32V's compiler. This will allow more advanced

benchmarks to be run on the simulator. Benchmarks such as MediaBench, SPEC, and

DhryStone. Porting the gcc version to a similar version used in SimpleScalar/ARM would

be essential to create a level playing field for architectural comparison.

Integrating the Wattch power simulation tool into X32V would lead to interesting studies on

power consumption of X32V.

Creating HDL code and utilizing it in an FPGA as a soft coded processor would validate the

hardware and provide delay information for the different stages. Using HDL to synthesize

a core would determine the maximum cycle time for a certain process and the amount of

power the processor will consume. With SimpleScalar/ARM using the SA-IlO

configuration, performance of X32V can be extrapolated to perform closely to SA-IlO

performance. Having an HDL description will validate this prediction.

5.2 Conclusion

X32V presents a new and configurable embedded processor architecture. Modules such

as EM3 and floating point integrate with the main X32V pipeline to create a high

performance pipeline with out the overhead of a co-processor interface. When compared

to an established processor such as ARM, X32V shows promise by performing similarly to

ARM. Unique features such as light and ultra-light modes, configurable modules, and

integrated conditional branching help X32V differentiate itself from other architectures.

With unique features and performance similar to ARM, X32V is a viable processor

architecture.
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Introduction

The following pages outline each instruction in the X32V Floating Point ISA. Detailed
information about instruction type, format, usage, and encoding are given.

Symbol Definition

= Substitute left side of operator with right side

+ Addition

Subtraction
* Multiplication

I Division

= = Test equality

Test inequality

> Greater Than

Less Than

& Bit wise Logical AND

I
Bit wise Logical OR

Bit wise Logical XOR

Join or Concatenate

Bit wise Shift Left

Bit wise Shift Right

rsl Source register one

rs2 Source register two

rd Destination register

MEM(Ox2a) Value at main memory address Ox2a

Zero extended 8 places

immi5lb 15 bit of immediate value, sign extended 16 places

Notes on Opcode Implementation

The first opcode field that signifies the mode of the instruction is the same as the EM3

opcode:

32-bit FP = 32-bit EM3 = 13 = 11012
24-bitFP=24-bitEM3= 14=11102
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1 6-bit FP is not support due to the need for a third opcode byte. This is similar to
the EM3 instruction set.

The value in the second opcode field signifies the precision of the floating-point operation:

Single-11112
Double-11102

The third opcode field determines the particular floating point operation to be performed.

There are 16 individual floating operations and 2 different precision formats for a total of 32

floating point operations.
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ADD_S Single Floating Point Addition

Description:

The contents of FPR rsl and FPR rs2 are arithmetically added. The

result of the operation (in single precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

ADDS rd, rsl, rs2
Operation:

32-bit I 24-bit

rd = rsl + rs2

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
1111 rd rsl rs2 0000 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1111 rd rsl rs2 0000

FP

4 4 4 4 4 4



SUB_S Single Floating Point
Subtraction

Description:

The contents of FPR rsl and FPR rs2 are arithmetically subtracted. The

result of the operation (in single precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bit / 24-bit

SUB_S rd, rsl, rs2

Operation:

32-bit I 24-bit

rd = rsl - rs2

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 I rd I rsl rs2 0001 unused unused

FP

4 4 4 4

23 20 19 16 15 12 11

4

87 43 0

24-bit I I I I

1111 rd I rsl rs2 0001
FP j
4 4 4 4 4 4

'1
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Single Floating Point
Multiplication

Description:

The contents of FPR rsl and FPR rs2 are arithmetically mutliplicated.

The result of the operation (in single precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bitt 24-bit

MUL_S rd,rsl,rs2
Operation:

32-bit I 24-bit

rd = rsl * rs2

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rd rsl rs2 0010 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1111 rd rsl rs2 0010

FP

4 4 4 4 4 4
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DIV_S Single Floating Point Division

Description:

The contents of FPR rsl and FPR rs2 are arithmetically divided. The

result of the operation (in single precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

DIV_S rd, rsl, rs2

Operation:

32-bit I 24-bit

rd = rsl I rs2

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rd rsl rs2 0011 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1111 rd rsl rs2 0011

FP

4 4 4 4 4 4
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Single Compare Equal

Description:

Compares the contents of FPR rsl and FPR rs2 as single precision

floating-point numbers. If rsl equals rs2 then GPR rd is set to 1, otherwise

it is set to 0. Pay careful attention to this instruction and note that rd is an

integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit I 24-bit

CP_EQ_S rd, rsl, rs2

Operation:

32-bit I 24-bit

if( rsl == rs2)

rd 1

else

rd = 0

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rd rsl rs2 0100 unused unused

FP

4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

4 4

24-bit
1111 rd rs I rs2 0100

FP

4 4 4 4 4 4



CP_LES Single Compare Less Than

Equal

Description:

Compares the contents of FPR rsl and FPR rs2 as single precision

floating-point numbers. If rsl is less than or equal to rs2 then GPR rd is

set to 1, otherwise it is set to 0. Pay careful attention to this instruction

and note that rd is an integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit I 24-bit

CP_LE_S rd, rsl, rs2

Operation:

32-bit I 24-bit

if( rsl <= rs2)

rd = 1

else

rd = 0

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rd rsl rs2 0101 unused unused

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1111 rd rsl rs2 0101

FP

4 4 4 4 4 4
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CP_L T_S Single Compare Less Than

Description:

Compares the contents of FPR rsl and FPR rs2 as single precision

floating-point numbers. If rsl is less than rs2 then GPR rd is set to 1,

otherwise it is set to 0. Pay careful attention to this instruction and note

that rd is an integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit I 24-bit

CP_LT_S rd, rsl, rs2

Operation:

32-bit I 24-bit

if( rsl <rs2)

rd = 1

else

rd = 0

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rd rsl rs2 0110 unused unused

FP

4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

4 4

24-bit
1111 rd rsl rs2 0110

FP

4 4 4 4 4 4
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Convert Single To Double

Description:

Converts the contents of FPR rsl (as single precision floating-point

numbers) to a double precision floating-point number. The resulting

double precision element will be placed in FPR rd. FPR rd must be an

even number element to prevent double misalignment in the register file.

Type:

Floating Point

Format:

32-bit I 24-bit

CVLS_D rd, rsl
Operation:

32-bit I 24-bit

rdD = CVT( rsls, double)

Encoding:

312827242320191615 1211 87 43 0

32-bit
1111 rd rsl unused 0111 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1111 rd rsl unused 0111

FP

4 4 4 4 4 4
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Convert Single To Integer
Word

Description:

Converts the contents of FPR rsl (as single precision floating-point

numbers) to an integer word. The resulting integer word will be placed in

GPR rd. Pay careful attention to this instruction and note that rd is an

integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit I 24-bit

CVT_S_W rd, rsl

Operation:

32-bit I 24-bit

rdw = CVT( rsl5, word)

Encoding:

31282724232019 1815 1211 87 43 0

32-bit I I I I I

1111 I rd rsl I unused 1000 I unused
I

unused
FP

I

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
1111 rd rsl unused 1000

FP

4 4 4 4 4 4
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Convert Integer Word To
Single

Description:

Converts the contents of GPR rsl (as an integer word) to a single

precision floating-point number. The resulting single floating-point number

will be placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

CVLW_S rd, rsl
Operation:

32-bit I 24-bit

rd3 CVT( rslw, single)

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rd rsl unused 1001 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1111 rd rsl unused 1001

FP

4 4 4 4 4 4
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LS Load Single

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

single floating-point number in memory at this address is copied into FPR

rd.

Type:

Floating Point Load I Store

Format:

32-bit / 24-bit

LS rd, disp(rsl)
Operation:

32-bit 24-bit

rd = MEM (rsl + ('disp11'2° disp)) rd = MEM (rsl + ('disp3'28 J disp))

Encoding:

31 28 27 24 23 20 19 16 15 12 11 0

32-bit
1111 rd rsl 1011 thsplacement

FP

4 4 4 4 4 12

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1111 rd rsl 1011 disp

FP

4 4 4 4 4 4



ss Store Single

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

single floating-point number in FPR rd is stored in memory at this address.

Type:

Floating Point Load I Store

Format:

32-bit I 24-bit

S_S rd, disp(rsl)

Operation:

32-bit 24-bit

MEM (rsl + ('dispii'2° disp)) = rd MEM (rsl + ('disp3'28 disp)) = rd

Encoding:

31 28 27 24 23 20 19 16 15 12 11 0

32-bit
1111 rd rsl 1100 displacement

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1111 rd rsl 1100 disp

FP

4 4 4 4 4 4
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Move Single Floating Point

Description:

The contents of FPR rsl are moved to FPR rd. The move is done as

interpreting the results as a single precision floating-point number.

Type:

Floating Point

Format:

32-bit I 24-bit

MOV_S rd, rsl

Operation:

32-bit I 24-bit

rd rsl

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
1111 rd rsl unused 1101 unused unused

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1111 rd rsl unused 1101

FP

4 4 4 4 4 4



ABS_S Single Floating Point Absolute

Value

Description:

Computes the absolute value of the floating-point single in FPR rsl. The

result is stored in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

ABSS rd, rsl
Operation:

32-bit / 24-bit

rd = J rsl

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
1111 rd rsl unused 1110 unused unused

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1111 rd rsl unused 1110

FP

4 4 4 4 4 4



NEG_ S

47

Negate Single

Description:

Negate the floating-point single in register FPR rsl and put it in register

FPR rd.

Type:

Floating Point

Format:

32-bit / 24-bit

NEG_S rd, rsl

Operation:

32-bit / 24-bit

rd = -rsl

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rd rsl unused 1111 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
1111 rd rsl unused 1111

FP

4 4 4 4 4 4



ADD_D Double Floating Point Addition

Description:

The contents of FPR rsl and FPR rs2 are arithmetically added. The

result of the operation (in double precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

ADD_D rd,rsl,rs2
Operation:

32-bit I 24-bit

rd = rsl + rs2

Encoding:

3128272423201916151211 87 43 0

32-bit
1110

I
rd rsl rs2 0000 I unused I

unused I

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

1110 I rd I rsl rs2 I 0000
FP

I

4 4 4 4 4 4



SUB_D

49

Double Floating Point

Subtraction

Description:

The contents of FPR rsl and FPR rs2 are arithmetically subtracted. The

result of the operation (in double precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

SUB_D rd, rsl, rs2

Operation:

32-bit / 24-bit

rd = rsl - rs2

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd rsl rs2 0001 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit I

I 1110 rd rsl rs2 0001
FP

4 4 4 4 4 4



MUL_D

50

Single Floating Point

Multiplication

Description:

The contents of FPR rsl and FPR rs2 are arithmetically multiplied. The

result of the operation (in double precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

MUL_D rd, rsl, rs2

Operation:

32-bit / 24-bit

rd = rsl * rs2

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd rsl rs2 0010 unused unused

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1110 rd rsl rs2 0010

FP

4 4 4 4 4 4



51

DIV_D
Double Floating Point Division

Description:

The contents of FPR rsl and FPR rs2 are arithmetically divided. The

result of the operation (in double precision format) is placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

DIV_D rd, rsl, rs2

Operation:

32-bit / 24-bit

rd = rsl I rs2

Encoding:

3128272423201916151211 87 43 0

32-bit I I I I I

1110 rd I rsl rs2 0011 unused unused
FP

I I I

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4

24-bit I

I 1110 rd rsl rs2 I 0011
FPI
4 4 4 4 4 4



CP_ EQ_ D

52

Double Compare Equal

Description:

Compares the contents of FPR rsl and FPR rs2 as double precision

floating-point numbers. If rsl equals rs2 then GPR rd is set to 1, otherwise

it is set to 0. Pay careful attention to this instruction and note that rd is an

integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit I 24-bit

CPEQ_D rd, rsl, rs2

Operation:

32-bit / 24-bit

if( rsl == rs2)

rd = I

else

rd = 0

Encoding:

3128272423201916151211 87 43 0

32-bit I I I I I I I

1110 rd i-si rs2 0100 unused I unused
FP

I

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
1110 rd rsi rs2 0100

FP

4 4 4 4 4 4



53

CP_LED Double Compare Less Than
Equal

Description:

Compares the contents of FPR rsl and FPR rs2 as double precision

floating-point numbers. If rsl is less than or equal to rs2 then GPR rd is

set to 1, otherwise it is set to 0. Pay careful attention to this instruction

and note that rd is an integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit / 24-bit

CP_LE_D rd, rsl, rs2

Operation:

32-bit I 24-bit

if( rsl < rs2)

rd = 1

else

rd = 0

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
1110 j rd rsl I rs2 I 0101 I unused

I
unused I

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1110 rd rsl rs2 0101

FP

4 4 4 4 4 4



54

CP_L T_D Double Compare Less Than

Description:

Compares the contents of FPR rsl and FPR rs2 as double precision

floating-point numbers. If rsl is less than rs2 then GPR rd is set to 1,

otherwise it is set to 0. Pay careful attention to this instruction and note

that rd is an integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit I 24-bit

CP_LT_D rd, rsl, rs2

Operation:

32-bit I 24-bit

if( rsl <rs2)

rd = I

else

rd = 0

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd i-si rs2 0110 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
1110 rd rsl rs2 0110

FP

4 4 4 4 4 4



CVT_D_S

55

Convert Double To Single

Description:

Converts the contents of FPR rsl (as double precision floating-point

numbers) to a single precision floating-point number. The resulting double

precision element will be placed in FPR rd. FPR rd must be an even

number element to prevent double misalignment in the register file.

Type:

Floating Point

Format:

32-bit / 24-bit

CVT_D_S rd, rsl

Operation:

32-bit I 24-bit

rd5 = CVT( rslD, single)

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd rsl unused 0111 unused unused

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1110 rd rsl unused 0111

FP

4 4 4 4 4 4



CVT_D_W Convert Double To Integer
Word

Description:

Converts the contents of FPR rsl (as double precision floating-point

numbers) to an integer word. The resulting integer word will be placed in

GPR rd. Pay careful attention to this instruction and note that rd is an

integer register and not a floating-point register.

Type:

Floating Point

Format:

32-bit I 24-bit

CVT_D_W rd, rsl

Operation:

32-bit I 24-bit

rd = CVT( rsl0, word)

Encoding:

3128272423201916151211 87 43 0

32-bit I I I

1110 rd rsl unused 1000 unused unused
FP

I
I

4 4 4 4

23 20 19 16 15 12 11

4 4 4 4

87 43 0

24-bit I

1110 I rd I rsl unused I 1000
FP

4 4 4 4 4 4



CVT_W_D

57

Convert Integer Word To
Double

Description:

Converts the contents of GPR rsl (as an integer word) to a double

precision floating-point number. The resulting single floating-point number

will be placed in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

CVT.W_D rd, rsl

Operation:

32-bit I 24-bit

rd0 = CVT( rsl, double)

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd rsl unused 1001 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1110 rd rsl unused 1001

FP

4 4 4 4 4 4



LD Load Double

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

double floating-point number in memory at this address is copied into FPR

rd.

Type:

Floating Point Load I Store

Format:

32-bit I 24-bit

L_D rd, disp(rsl)

Operation:

32-bit 24-bit

rd = MEM (rsl + ('disp11'2°
11

disp)) rd = MEM (rsl + ('disp3'28 disp))

Encoding:

31 28 27 24 23 20 19 16 15 12 11 0

32-bit
1110 rd rsl 1011 displacement

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1110 rd rsl 1011 disp

FP

4 4 4 4 4 4



SD

59

Store Double

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. The

double floating-point number in FPR rd is stored in memory at this address.

Type:

Floating Point Load I Store

Format:

32-bit I 24-bit

SD rd, disp(rsl)
Operation:

32-bit 24-bit

MEM (rsl + ('disp11' 20 disp)) = rd MEM (rsl + ('disp3' 28
j disp)) = rd

Encoding:

31 28 27 24 23 20 19 16 15 12 11 0

32-bit
1110 rd rsl 1100 displacement

FP

4 4 4 4 4 12

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1110 rd rsl 1100 disp

FP

4 4 4 4 4 4



MOV_D Move Double Floating Point

Description:

The contents of FPR rsl are moved to FPR rd. The move is done as

interpreting the results as a double precision floating-point number.

Type:

Floating Point

Format:

32-bit I 24-bit

MOV_D rd, rsl

Operation:

32-bit / 24-bit

rd = rsl

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd rsl unused 1101 unused unused

FP

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
1110 rd rsl unused 1101

FP

4 4 4 4 4 4



ABS_D

61

Double Floating Point

Absolute Value

Description:

Computes the absolute value of the floating-point double in FPR rsl. The

result is stored in FPR rd.

Type:

Floating Point

Format:

32-bit I 24-bit

ABS_D rd, rsl

Operation:

32-bit I 24-bit

rd = rsl

Encoding:

3128272423201916151211 87 43 0

32-bit I I
I

1110 rd rsl I unused 1110 unused I unused
FP

I

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit I

1110 rd rsl unused 1110

FPI
4 4 4 4 4 4



NEG_ D

62

Negate Double

Description:

Negate the floating-point double in register FPR rsl and put it in register

FPR rd.

Type:

Floating Point

Format:

32-bit! 24-bit

NEG_D rd, rsl

Operation:

32-bit / 24-bit

rd = -rsl

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd i-si unused 1111 unused unused

FP

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1110 rd rsi unused 1111

FP

4 4 4 4 4 4



63

Appendix B: Additional X32V Integer Instructions added to
original specification



MOV_FHI

64

Move from HI Register

Description:

The contents of HI are copied to GPR rd. The content of HI does not

change.

Type:

Register

Format:

32-bit! 24-bit! 16-bit

MOVFHI rd

Operation:

32-bit! 24-bit! 16-bit

rd = hi

Encoding:

3128272423201916151211 87 43 0

32-bit
1010 rd unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1010 rd unused unused 0001

R

4 4 4 4

15 12 11 8 7 4 3 0

T 16-bit
1010 rd unused

R-2

4 4 4 4

4 4



MOVFLO

65

Move from LO Register

Description:

The contents of LO are copied to GPR rd. The content of LO does not

change.

Type:

Register

Format:

32-bit I 24-bit / 16-bit

MOV_FLO rd

Operation:

32-bit! 24-bit I 16-bit

rd

Encoding:

3128272423201916151211 87 43 0

32-bit
1011 rd unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1011 rd unused unused 0001

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1011 rd unused

R-2

4 4 4 4



MOV_ THI Move to HI Register

Description:

The contents of GPR rs are copied to HI. The content of GPR rs does not

change.

Type:

Register

Format:

32-bitt 24-bit! 16-bit

MOV_THI rs

Operation:

32-bit! 24-bit! 16-bit

hi = rs

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
1100 rs unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit 1 F
1100 rs unused unused 0001

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit 1

1100 is unused
R2

4 4 4 4



MOV TLO

67

Move to LO Register

Description:

The contents of GPR rs are copied to LO. The content of GPR rs does not

change.

Type:

Register

Format:

32-bit I 24-bit I 16-bit

MOV_TLO rs

Operation:

32-bit I 24-bit / 16-bit

lo = rs

Encoding:

3128272423201916151211 87 43 0

32-bit
1101 rs unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1101 rs unused unused 0001

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1101 Is unused

R-2

4 4 4 4



MOV_FSR Move from Status Register

Description:

The contents of SR are copied to GPR rd. The content of SR does not

change.

Type:

Register

Format:

32-bit I 24-bit / 16-bit

MOV_FSR rd

Operation:

32-bit! 24-bitt 16-bit

rd = sr

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
1000 rd unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1000 rd unused I unused 0001R__ __L____

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit F
1000 rd unused

R-2

4 4 4 4



MOV_ TSR Move to Status Register

Description:

The contents of GPR rs are copied to SR. The content of GPR rs does not

change.

Type:

Register

Format:

32-bit! 24-bit / 16-bit

MOVTSR rs

Operation:

32-bit I 24-bit / 16-bit

sr = rs

Encoding:

3128272423201916151211 87 43 0

32-bit
1001 rs unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit 1

1001 rs unused unused 0001
R

L
4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit 1

1001 j
rs unused

R-2
L

4 4 4 4



MOV_FSP

70

Move from Stack Pointer

Description:

The contents of GPR rs are copied from SP. The content of GPR rs does

not change.

Type:

Register

Format:

32-bitt 24-bit I 16-bit

MOV_FSP rs

Operation:

32-bit I 24-bit I 16-bit

sp = rs

Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rs unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1110 is unused unused 0001

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1110 15 unused

R-2

4 4 4 4



MO V_ TSP

71

Move to Stack Pointer

Description:

The contents of GPR rs are copied to SP. The content of GPR rs does not

change.

Type:

Register

Format:

32-bit I 24-bit I 16-bit

MOV_TSP rs

Operation:

32-bit I 24-bit I 16-bit

sp = rs

Encoding:

3128272423201916151211 87 43 0

32-bit
1111 rs unused unused 0001 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1111 rs unused unused 0001

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1111 rs unused

R-2

4 4 4 4



72

MO V_FLR Move from Link Register

Description:

The contents of GPR rs are copied from LR. The content of GPR rs does

not change.

Type:

Register

Format:

32-bit I 24-bit I 16-bit

MOV_FLR is

Operation:

32-bit I 24-bit I 16-bit

Ir = rs

Encoding:

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

32-bit
0000 rs unused unused 0010 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4 4

43 0

24-bit
0000 rs unused unused 0010

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
0000 rs unused

R-2

4 4 4 4



MOV TLR

73

Move to Link Register

Description:

The contents of GPR rs are copied to LR. The content of GPR rs does not

change.

Type:

Register

Format:

32-bit I 24-bit I 16-bit

MOV_TLR rs

Operation:

32-bit I 24-bit I 16-bit

Ir = rs

Encoding:

3128272423201916151211 87 43 0

32-bit
0001 rs unused unused 0010 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
0001 rs unused unused 0010

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
0001 rs unused

R-2

4 4 4 4
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L_SR Load Status Register

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. Then

the contents at the calculated address are loaded into the Status Register.

Type:

Load/Store

Format:

32-bit I 24-bit

L_SR disp(rsl)

Operation:

32-bit

sr = MEM (rsl + ('disp15' 16 disp))

Encoding:

31 28 27 24 23 20 19 16 15

24-bit

sr = MEM (rsl + ('disp7'24 disp))

32-bit
1000 unused rsl displacement

L/S

4 4 4 4

23 20 19 16 15 12 11 8 7 [0]

24-bit
1000 unused rsl displacement

L/S

4 4 4 4



75

S_SR Store Status Register

Description:

The contents of GPR rsl are added to the sign extended immediate

displacement value to generate a 32-bit unsigned effective address. Then

the contents of the Status Register are loaded into the calculated address.

Type:

Load I Store

Format:

32-bit I 24-bit

S_SR disp(rsl)

Operation:

32-bit

MEM (rsl + ('dispi5' 16 disp)) = sr

Encoding:

31 28 27 24 23 20 19 16 15

24-bit

MEM (rsl + ('disp7' 24 disp)) = sr

32-bit
1001 unused rsl displacement

L/S

4 4 4 4

23 20 19 16 15 12 11 8 7

IL

24-bit
1001 unused rsl displacement

US

4 4 4 4 8



76

Push onto Stack

Description:

The register value rd is placed onto the next open position in the stack.

Then the stack pointer is decremented by 4. The stack pointer initially

begins at OxFFFFFFF8.

Type:

Register

Format:

32-bit I 24-bit I 16-bit

PUSH rd

Operation:

32-bit! 24-bit I 16-bit

MEM[SP] = rd

SP=SP-4
Encoding:

3128272423201916151211 87 43 0

32-bit
1100 unused rs unused 0001 unused unused

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1100 unused rs unused 0001

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1100 unused rs

R-2

4 4 4 4



0

77

Pop from Stack

Description:

First the stack pointer is incremented by 4. Then register value rd is placed

onto the next open position in the stack. The stack pointer initially begins

atOxFFFFFFF8.

Type:

Register

Format:

32-bit / 24-bit / 16-bit

PUSH rd

Operation:

32-bit / 24-bit / 16-bit

rd = MEM[SP]

SP = SP +4

Encoding:

3128272423201916151211 87 43 0

32-bit
1101 unused rd unused 0001 unused unused

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1101 unused rd unused 0001

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1101 unused rd

R-2

4 4 4 4



MUL Signed Integer Multiplication

Description:

The contents of GPR rsl are multiplied by the contents of GPR rs2 using

two's complement format. The least significant word of the result is placed

in GPR rd. When using a 16-bit format, the contents of GPR rd are used

as the first source register.

Type:

Register

Format:

32-bit I 24-bit 16-bit

MUL rd, rsl, rs2 MUL rd, rs

Operation:

32-bit / 24-bit 16-bit

rd = (rsl * rs2)310 rd = (rsl * rs2)310

Encoding:

3128272423201916151211 87 43 0

32-bit
1100 rd rsl rs2 0000 unused unused

R

4 4 4 4 4 4 4 4

23 20 19 16 15 12 11 8 7 4 3 0

24-bit
1100 rd rsl rs2 0000

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1100 rd rs

R-1

4 4 4 4



MUL_ U

79

Unsigned Integer
Multiplication

Description:

The contents of GPR rsl are multiplied by the contents of GPR rs2.

Register contents are all positive values. The least significant word of the

result is placed in GPR rd. When using a 16-bit format, the contents of

GPR rd are used as the first source register.

Type:

Register

Format:

32-bit I 24-bit 16-bit

MUL_U rd, rsl, rs2 MUL_U rd, rs

Operation:

32-bit I 24-bit 16-bit

rd=rsl*rs2 rd=rd*rs

Encoding:

3128272423201916151211 87 43 0

32-bit
1101 rd rsl rs2 0000 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1101 rd rsl rs2 0000

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1101 rd rs

R-1

4 4 4 4



DIV Signed Integer Division

Description:

The contents of GPR rsl are divided by the contents of GPR rs2 using

two's complement format. The quotient is rounded toward zero and

placed in GPR rd. When using a 16-bit format, the contents of GPR rd are

used as the first source register.

Type:

Register

Format:

32-bit I 24-bit 16-bit

DIV rd, rsl, rs2 DIV rd, is

Operation:

32-bit I 24-bit 16-bit

rd=rsl/rs2 rd=rd/rs
Encoding:

3128272423201916151211 87 43 0

32-bit
1110 rd rsl rs2 0000 unused unused

R

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4 4

43 0

24-bit
1110 rd rsl rs2 0000

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1110 rd rs

R-1

4 4 4 4



DIV_U Unsigned Integer Division

Description:

The contents of GPR rsl are divided by the contents of GPR rs2. Register

contents are all treated as positive integers. The quotient is rounded

toward zero and placed in GPR rd. When using a 16-bit format, the

contents of GPR rd are used as the first source register.

Type:

Register

Format:

32-bit I 24-bit 16-bit

DIV_U rd, rsl, rs2 DIV_U rd, rs

Operation:

32-bit / 24-bit 16-bit

rd=rsl/rs2 rd=rd/rs
Encoding:

3128272423201916151211 87 43 0

flbit
1111 rd rsl rs2 0000 unused unused

4 4 4 4 4

23 20 19 16 15 12 11 8 7

4

43 0

4 4

24-bit
1111 rd rsl rs2 0000

R

4 4 4 4 4 4

15 12 11 8 7 4 3 0

16-bit
1111 rd rs

R-1

4 4 4 4




