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Statistical inference sometimes involves order restrictions

which are usually due to prior knowledge. Such order restrictions

whenever they occur, will be a major factor in performing a good

and reliable statistical analysis. How to make use of these order

restrictions is one of the most interesting and the most facinating

subjects in statistics nowadays.

Isotonic regression has been formulated and studied for the past

25 years by many statisticians. Their researches are very success-

ful and very fruitful. The theory of such a statistical analysis is

called the conditional expectation given a o--lattice which is an exten-

sion of the conditional expectation. Conditional expectation given a

o--lattice has been analyzed in the same direction as that of the condi-

tional expectation. The understanding of the concept of the latter will

be very helpful for the study of the former. When several



measurements have been made at each given sample and each

measurement has its own restriction, the point estimation of this type

is called the multivariate isotonic regression.

The structures, the properties and the algorithms of isotonic

regression and of multivariate isotonic regression are the major

research in this thesis. Conditional expectation given a o--lattice and

isotonic regression are presented in separate chapters. They shall be

considered as a single unit. The former emphasizes properties and

the latter emphasizes algorithms. Multivariate isotonic regression is

treated in the simplest case. Only bivariate isotonic regression with

linear ordering in each variate will be considered.

The fundamental concept is the generalized projection. Some

necessary and sufficient conditions have been presented. Isotonic

regression and multivariate isotonic regression are discussed in the

finite case. In such a situation, they are generalized projections to

finitely generated cones. However, in such general structures, the

monotonicity and the averaging property will not be preserved.

Although the algorithms are different from each other, they are pre-

sented in the same pattern, i.e. , as successive projections to linear

spaces.
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CONDITIONAL EXPECTATION GIVEN A o--LATTICE.
ISOTONIC REGRESSION, UNIVARIATE

AND MULTIVARIATE.

I. INTRODUCTION

I. 1 Forward

Over the past 25 years, statisticians have formulated and

studied problems of statistical inference in the presence of order con-

ditions arising in various contexts. For the most part, these prob-

lems may be interpreted in terms of isotonic regression over a

quasi-ordered set. Some examples will be presented in the next

section. Because of its theoretical interest and broad applications,

the author devoted himself to research in this field.

The regression function of one random variable X on

another, Y, is the conditional expectation 11(y) = E(XI Y = y), and

furnishes the best fit to the distribution of X by a function of Y

in the sense of least-squares. Isotonic regression is introduced in

Chapter III by means of least-squares, as a generalization of the

regression function. As a generalization of conditional expectation,

this concept is called conditional expectation given a o--lattice. Since

it involves least-squares, isotonic regression is an instance of

quadratic programming. Examining the objective function and the

feasible region of an isotonic regression problem, we shall quickly
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discover that the arithmetical manipulations involved are mainly the

routine calculation of means.

Following the isotonic regression is the multivariate isotonic

regression. The latter is quite complicated as we shall soon find out

in Chapter V. But its nature is essentially the same as that of the

former. Thus its research may take similar directions to that of the

isotonic regression. Generalized projection, isotonic regression,

conditional expectation given a o--lattice, and multivariate isotonic

regression are studied respectively from Chapter II to Chapter V.

The author hopes that these results will provide a general outlook for

the problems of least-squares under order restrictions.

I. 2 Statistical Problems Under Order Restrictions

The (daily maximum) temperatures measured (in Fahrenheit) at

Oregon State University during the two periods, March 16th, 17th,

18th and April 16th, 17th, 18th, 19th, 20th of 1974, were 68°, 58°,

56° and 56°, 59°, 63°, 58°, 55° respectively. The three days' aver-

age temperature in March is x = 60.7° and the five days' average

temperature in April is y = 58. 2 °. One wishes to estimate long run

average (daily maximum) temperature in March p. and that in April

v with these eight observations. If we believe that p. < v , then the

estimates p.
A Aand v for p. and v

Afore satisfy the constraing A < v

respectively should there-
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The statistical hypothesis testing for p. = v against its

alternative < v based on the eight observations will favor the

A A A
p.

Aformer. Therefore, p. = v and = V = 59.1°, the average of the

above eight observations, is the best fit to x and y in the sense

A Athat 3(x-p.) 2 + 5(y -v) 2 has the smallest value among

3(x-p.)2 + 5(y-v) 2 with p. < v . (2. 4) shows that

,N
3(x-p.)

2 + 5(y-v) 2 >[3(x-.)2+5(y-vn )
2 + [3(p.-p,) 2

+5(vA -v)
2

1. It follows

that whenever x and y are consistent estimators for p. and

then so are and fi\ .

The average (daily maximum) temperature measured at Oregon

State University in March 1974 was 54° and that in April 1974 was

57.5° (cf. Appendix I). If we compare a three consecutive days'

average temperature in March x with a five consecutive days'

average in April y of that year, we shall find out that there are

284 pairs such that x > y, 2 pairs such that x = y and 468 pairs

such that x < y. This shows that p. = 54° is less than v = 57. 50

by as much as 3.5°, but there is about 3/8 chance that one may

observe x > y.

Experimental investigations sometimes deal with continuous

variables which can not be measured in practice. For example,

Dixon and Massey (1957) describe a procedure for testing the sensi-

tivity of explosives to shock. A weight is dropped on specimens of

the same explosive mixture from various heights. Suppose that a



4

given specimen, if it is dropped at some chosen height, will explode;

so will it if dropped from any greater height. On the other hand, if it

does not explode at that height, neither will any lesser height cause it

to explode. Therefore, we may assume that there is a critical height

associated with each specimen. The investigator's interest is in the

rates of explosions from a population of such specimens dropped from

various heights.

In such an experiment it is impossible to make more than one

observation on a given specimen. Once a test has been made, and

the specimen does not explode, one may suspect that its critical

height will be altered. Thus a valid result can not be obtained from a

second test. An experimental designer usually divides the sample of

specimens into several groups and tests one group at one height, a

second group at another height, etc. The data gathered are the num-

bers of those exploded and of those not exploded at each height.

Let X be the random variable, critical height, with distribu-

tion function F(h) = P {X < Suppose 50 experiments have beenr

made with ten tests at each height hi, i = 1,2, ... , 5; for conveni-

ence suppose the heights h1,h2, . ,h5 are arranged in increasing

order. The 50 tests may be regarded as a set of 50 independent trials

of events having probabilities F(h.), i = 1,2, . , 5, of success

if success means that the given specimen will explode at the height.

If a large number of trials is made at each height hi, i = 1,2, ... , 5,



the ratios

5

r., number of success divided by number of trials, each

determined for a particular height, will with high probability be in

non-decreasing order. The best estimates of the probability are then

these ratios. Suppose that a small number of trials will be allowed;

these ratios may not be in monotone order. In such a case, the maxi-

mum likelihood estimates of the probabilities pl, p 2, ...,p
5

are

determined under order restrictions. This is a typical example of an

isotonic regression problem over a linearly ordered finite set.

Ayer and coworkers (1955) showed that the maximum likelihood

estimates of pi, p2, ,pn subject to p1 < p2 < < pn are the

same as the least-squares estimates of pi, p2, ...,pn subject to the

same constraints. Suppose that r1 = 0.3, r2 = 0.2, r3 = 0.7,

r4 = 0.8 and r
5

= 0.5. Then the optimal solution is that

A A A A Ap
1

= p
2

= 0.25 and p3 = p4 p5 = 0.67 (cf. Example 3.1). There

are ten tests at the fifth height with five specimens exploded, 20 tests

at the fifth height and the fourth height with 13 specimens exploded,

30 tests at the fifth, fourth and third heights with 20 specimens

exploded, etc. The explosive ratios in such combinations of heights

are respectively .5, .65, .67, . 55 and . 5 with .67 the largest value.

If we drop the 30 specimens at the fifth height which were dropped at

the third, fourth and fifth heights, then the explosive ratio will be at

least . 67. On the other hand, if we drop these 30 specimens at the

third height, then the explosive ratio will be no more than .67.



Similarly for the situation at the first and second heights (cf. Appen-

dix II).

Let qi = (pi+i -pi) Rhin. -hi), i = 1, . . . , 4. The ordering

p1 < p2 < < p5 is equivalent to that q. > 0, i = 1,2,3,4. In

some situations, we require that q. > a., i = 1 , 2 , 3 , 4 for a set of

6

non-negative real numbers al, a
2.

a
3

and a4. Such a considera-

tion was introduced by Reid (1968). The maximum likelihood esti-

mates of pi,p2,... ,p5 subject to p1 + 0.05 < p2, p2 + 0.05 < p3,

p3 + 0.05 < p4, p4 + 0.05 < p5 are //;1 = 0.225, /ii2 = 0.275,

p3 = 0.617, p4 = 0.667, (35 = 0.717.

Estimation of variance components in random models is also an

example with order restrictions. Consider the two-way random

model

Yik + a. + b. + c.. + e..
1 3 13 1.3k

i = 1, ... r; j = 1, , sl k = 1, ,t where {a. }, {b.}, {c..} and
1 j 13

{eijk}
are sets of mutually independent normal variates with means

2 2 2zero and variance 6A, 6B' o-AB and cr
2 respectively. Let

SSA = stZ.
1=1 1

(y. .. -y )2

SS
B

= rtZs (y -y )2i=1 j
r s

SS
AB

= tE1. (y. -y. -y +y )2=1 j=1 1.. .j.



and

SS = Zr Zs Zt 2(y.. y.. )
e i=1 j=1 k=1

7

and let MS
A

= SS
A

/(r-1), MS
B

= SS
B

/(s-1), MSAB = SSAB /(r-1)(s-1)

and MS
e

= SS
e

irs(t -1). Then the expectations of MSA, MS
B ,

2 2 2 2 2
MS

AB
and MS

e
are v2

tcrAB
+ stcr2 ,A

o- + to-AB + rto-B,

2 2

IT

2

+ tcrAB
and o- respectively. Since variances are non-negative,

E(MS
A)

>E(MS
AB

) > E(MSe) and E(MS
B

) > E(MS
AB ) > E(MS

e
).

However, the sample estimates MSA, MSB, MSAB and MS e may

not be in such order. Estimating these variance components subject

to order constraints is a problem of an isotonic regression over a

tree (cf. Appendix III).

Let (X(t), Y(t)) be a random vector having a bivariate normal

distribution with mean vector (11(t), v(t)) for each t and with a

known constant covariance matrix. It has been indicated that the

means p.(t) and v(t) are respectively a monotone increasing

function of t and a monotone decreasing function of t. Suppose a

random sample of size N has been given with N. observations at

each iparameter value t., = 1, ...,n. Multivariate isotonic regres-
i.

sion will yield the maximum likelihood estimates to the sample by a

monotone vector-valued function.

For instance, Bhattacharyya and Kotz (1966) use freezing dates

and thawing dates for Lake Mendota for a period of 111 years to test
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against warming trend. Suppose there is a warming trend in the Lake

Mendota during that period and suppose the covariance matrix is con-

stant for each year and it is given. Then the means p.(t) and v(t)

can be obtained by using the Simplified Projection algorithm.

1.3 Organization

As the title implies, the core of the study is the conditional

expectation given a o--lattice and its applications to the isotonic

regression and to the multivariate isotonic regression. The applica-

tion to the latter is indirect.

The algorithms that appear in this paper, Projection of

Minimum Violators, Projection of Violators, Pool-Adjacent-

Violators, Minimum Violators, Minimum Upper Sets, Maximum

Lower Sets, and Simplified Projection have the similar structures.

Making use of the smoothing property, we obtain the projections of a

given vector X to a strictly decreasing sequence of linear spaces

successively until we have the desired solution. Therefore, the

justification for one algorithm can be applied to that of others. The

only difference is the way we identify those pivotal elements and the

way we obtain the projection to a linear space. Since the Projection

of Minimum Violators algorithm comes first, its justification is given

in more detail.
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Conditional expectation of a square-integrable random variable

given a o--lattice, isotonic regression and multivariate isotonic

regression are generalized projections to closed convex cones. The

generalized projection presented in Chapter II furnishes the back-

ground for these topics. Let H be a Hilbert space, let C be a

closed convex cone in H and let S be a linear space in H such

that S 3 C. The smoothing property shows that

P(X I C) = P(P(X I S) I C) for every X e H. This is the property that

we shall use constantly for various algorithms in this thesis. The

chapter is by itself an extension of results in Brunk (1965).

The aim of Chapter III, isotonic regression, is to develop some

efficient algorithms for various types of isotonic regression problems

through the use of indicators. We introduce a novel approach, accord-

ing to which the isotonic regression can be seen as an orthogonal

projection to a linear space. But which linear space is a proper one

is uncertain. Therefore, we have to use the smoothing property and

pivotal elements successively to obtain a linear space we want. Once

a proper linear space is found, the isotonic regression for a given

function X is the orthogonal projection of X to that linear space.

Similarly for the multivariate isotonic regression. For the problems

of isotonic regression over a linearly ordered set and isotonic regres-

sion over a tree, pivotal elements can be identified easily. For the

isotonic regression over a partially ordered set, Alexander (1970)
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introduced a method which rewrites a partial ordering into a consistent

linear ordering.

The properties of isotonic regression are presented in Chapter

IV, conditional expectation given a o--lattice. Observing the similari-

ties between the isotonic regression and the regression, one can gen-

erate a parallel concept, conditional expectation given a cr-lattice, by

that of conditional expectation. Johansen (1967), and Brunk and

Johansen (1970) introduced that conditional expectation given a

cr- lattice as the Lebesgue- Radon- Nikodym derivative given a cr-lattice.

Conditional expectation appears as a special case of conditional

expectation given a cr-lattice. A special interest attaches to the case

when the cr-lattice is linearly ordered. In such a situation, there are

martingale and submartingale structures.

Although multivariate isotonic regression is the title of Chapter

V, all the work has been done on the case of bivariate isotonic regres-

sion over a linearly ordered finite set. The author hopes that these

results can serve as the "frontier" for the general case. The aver-

aging property and the monotonicity in the bivariate problem have

quite different significance as compared with the univariate case,

which makes the problem a lot more complicated.

The monograph of Barlow and coworkers (1972), which contains

a bibliography listing of 247 published works referred to this subject,
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is a complete reference for this thesis, especially its Chapters 1, 2

and 7.

The sequences of theorems, lemmas, and examples will be

numbered for each chapter individually. Each corollary will be num-

bered according to that of the theorem it follows. Theorems and

formulas which are quoted will be presented without proof.

Terminologies and notations are standard. Terms will be

underlined when they are introduced for the first time in the thesis.

Capital letters X, Y and Z will be used to denote functions,

vectors, matrices or random variables. Small letters a, 13, Y, X/

y, z will be used to denote real numbers. The inequality <

between a pair of functions stands for the same inequality between

corresponding components. The same notation < between a pair

of Greek letters p. and v stands for a quasi-ordering. The meet

a n f3 is the smaller number of a and p . The meet X A Y

between a pair of functions is a function such that

(XnY)(w) = X(w) n Y(w) at each argument o.).



II. GENERALIZED PROJECTION

II. 1 On a Closed Convex Set

Let H be a Hilbert space: a linear space with an inner

product ( , ) such that every Cauchy sequence converges in the

space, where the norm of the element X is defined by

II X II := (X, X)112. Let C be a subset of H. An element Y is

said to be a boundary point of C if for every 5 > 0, there exist

Z E C and X C such that

12

IIZ -YII < 5 and IIX-Yll < 6. C is

said to be closed if it contains all its boundary points. It therefore

follows that the limit of a convergent sequence from a closed set is in

the set. C is said to be convex if Y, Z E C implies

XY + (1-X)Z E C for each real number X between zero and one.

Throughout the rest of the section, the letter C will denot a non-

empty closed convex set in the Hilbert space H. The following

result is well known.

Theorem 2. 1. Let C be a nonempty closed convex set in the

Hilbert space H. For every X E H, there exists a unique X* E C

which minimizes II x-z11 among all Z E C.

The closedness of C yields the existence of X* and the

convexity of C yields the uniqueness of X*. Such an element X*,

denoted by P(XI C), is called a projection of X on C and the
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operator P( I C) is called a generalized projection. The general-

ized projection P( I C) depends on C and also depends on the

inner product ( , ) associated to the Hilbert space H. It is

trivial that

( 2 . 1 ) P(Y+Xl Y+C) = Y + P(XIC) for each Y E H

and

(2. 2) P(GX I aC) = aP(XI C) for each real a,

where Y + C := {Y+Z:Z E C} and aC := {aZ:Z E C}. The sets

Y + C and aC are closed and convex.

If X E C, then P(X I C) = X. A well known result which plays

an important role in the theory of projection is the following theorem.

Theorem 2. 2. Let C be a nonempty closed convex set in the

Hilbert space H. If X 1 C, then P(X I C) is a boundary point

of C.

Therefore, if X C, then the candidates for P(X I C) are

boundary points of C. Let X i C, Z E C and let

B(X, Z) := {Y: II Y-(X+Z) /2 II < II X-Z II /2}. From a geometric point of

view, if Y E B(X, Z) and Y i Z then II Y -X II < II Z-X II . It fol-

lows that if X* is P(X I C) then B(X, X*) rm C is a singleton

{X*}. Since both C and B(X,X*) are convex, there is a separat-

ing hyperplane which separates C from B(X, X*). The hyperplane



supports B(X,X*) at X*, so it can be characterized as

{Y:(X-X*,Y) = (X-X*,X*)}. From the separation by the hyperplane,

we have (X-X *, X*-Z) > 0 for every Z E C. On the other hand,

the inequality II Y-(X+Z)/211 < II)C-ZII /2 is equivalent to

14

(X-Y, Y-Z) > 0. If we replace Y by X*, then II X-X*Il < II X-Z II

We have thus proved the following theorem.

Theorem 2.3. Let C be a closed convex set in the Hilbert

space H and let X E H. An element X* E C is the projection of

X on C if and only if

(2.3) (X-X *, X*-Z) > 0 for every Z E C.

Analytic proofs of the theorem have been given by Brunk (1965)

and by Barlow and coworkers (1972). By the identity

II X--Z112 = II X -X*11 2 + 11x*-Z112 + 2(X -X*, X*-Z),

lowing result.

we have the fol-

Corollary 2.3.1. An element X* E C is the projection of X

on C if and only if

(2.4) II X-Z II
2

> II X-X*Il 2 + II X*-ZII
2 for every Z E C.

It follows that

(2.5) 11P(XIC)-Z11 < IIX-Zil for every Z E C;



and if the equality holds for an element Z E C, then P(X I C) = X.

that

(2. 6)

15

After a simple manipulation, an immediate result from (2.3) is

II P(c, I c) P(x21 c) II < II xrx211

for each pair Xi, X2 E H. This yields the following corollary.

Corollary 2.3.2. The generalized projection P( I C)

reduces distance. Therefore, it is a continuous mapping on H.

Let Cl and C2 be closed convex sets in H with

C
1

C C2. For every X E H, (2.4) showed that

(2.7) P(XI C2)-P(Xl Ci)II 2 < 11X-P(X1 Ci)112

- X-P(XI C2)I12.

Inequalities (2.3), (2.4), (2.6) and (2.7) are given by Brunk (1965).

They are fundamental to the concept of the generalized projection

P( I C).

Let S be a closed linear space. The closed convex set Y + S

is called an affine space. Let A = Y + S. Then A = Y1 + S for

any Y1 E A. Write A = P(X I A) + S. By (2 3), we have that

X* = P(XI A) if and only if X* E A and (X-X*, Z) = 0 for every

Z E S or equivalently, for any Yi E A, (X-X*, Y1 -Z) = 0 for every
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Z E A. If A is also a closed linear space, i.e., 0 E A, then

X* = P(X1A) if and only if (X-X*, Z) = 0 for every Z E A. It is

obvious that P(P(X 1 S
2 ) 1 S

1
) = P(X 1 S 1 ) if S

1
and S2 are closed

linear spaces and S1 C S2. A similar result under a weaker

hypothesis is given below.

Theorem 2.4. Let C
1

and C2 be two closed convex sets

in H. For every X E H, if either C2 is an affine space and

P(P(X1C2)1C1) E C2, or C
1

is an affine space and C1 C C2,

then P(P(X 1 C2)1 C1) = P(XI C
1
r \ C2).

Proof. The intersection of closed convex sets is also closed and

convex. Therefore, the operator P( 1 Cir C2) is well defined. Let

Y2 = P(X1C2) and let Y
1

= P(Y 21C1). We are going to show that

Y
1

= P(X1C 1r) C2) if either one of the above two hypotheses is true.

Suppose C2 is an affine space and Y1 E C2. Then

(X-Y2, Yi -Z) = 0 for every Z E C2 by the fact that Y2 = P(X 1 C2),

and (Y2-Y1, Y1 -Z) > 0 for every Z E C1 by the fact that

Y1 = P(Y21C1). Hence, (X -Y1, Y1 -Z) > 0 for every Z E C1 (-- C2.

By Theorem 2. 3, Y
1

= P(XI Gin C2).

Suppose C1 is an affine space and C
1

C C2. Then there

exists a closed linear space S in H such that C1 = Y1 + S. If

we can show that (X -Y1, Z) = 0 for every Z E S , then

Y
1

= P(XI C1) = P(XI C
1
r \ C2). We claim that Y2 + S is a subset of
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C2. By the convexity of C2, XY2 + (1-X)(Y1 +aZ) E C2 for each

X E (0, 1), for each real a and for each Z E S. Set a = (1-X) -1.

By letting X. 1 and using the fact that C2 is closed, we find

that Y2 + Z E C2.

Since Y2 = P(XI C2), (X -Y2, Y
2

-Y) > 0 for each Y E C2. It

follows that (X-Y2, Z) = 0 for each Z E S. Since Y1 = P(Y2I C1)

and C1 is affine, (Y2-Y1, Z) = 0 for all Z E S. The last two

equalities yield that (X-Y1, Z) = 0 for each Z E S. This completes

the proof.

Corollary 2.4.1. Let C
1

and C2 be two closed convex

sets with C1 C C2. If either C
1

or C2 is an affine space, then

(2.8) P(P(XIC2)I C1) = P(XIC
1

).

The identity (2. 8) is called the smoothing property. Most of the

algorithms developed in Chapter III and Chapter V make use of this

identity.

The important convergence theorems, Theorem 2.5, Corollary

2.5.1 and Theorem 2.6, are introduced by Brunk (1965) except that

Theorem 2.5 is given here under a weaker hypothesis. Theorem 2.5

and Corollary 2.5.1 given below show that P(X I C) can be obtained

as the limit of {P(X I Cn)}

{Cn} converges to C.

or {P(YnI Cn)} as the monotone sequence



Theorem 2.5. Let {C
n} be a monotone sequence of closed

convex sets in H, let X E H and let Xn = P(XICn). If the

sequence is monotone increasing, then lim Xn
n-00

exists and the
co

limit is P(XI Coo) where Coo is the closure of l..)
n = 1

C. If the
co

sequence is monotone decreasing and r C
n=1 n

lim X
n

exists and the limit is P(XI (--°° C ).
n=1 n

n "00

is nonempty, then

18

A countable union of a monotone increasing sequence of convex

sets is convex and the closure of a convex set is convex. A countable

intersection of closed convex sets is closed and convex. Therefore,
co

Coo and rm
n =1

Cn are closed and convex under their corresponding

assumptions. If {C
n

} is monotone increasing then by (2. 7), the

sequence {II X -Xn II } is monotone decreasing and {X
n

} is Cauchy.
00

If {Cn} is monotone decreasing and n n=1 Cn V c6, then by (2.7),

the sequence {II X-Xn II } is monotone increasing, it is bounded from
oo

above by II X- Z 11 for any Z E ,m
n=1

Cn and {X
n} is Cauchy.

Corollary 2. 5. 1. Additional to the assumptions in Theorem

2.5, let {Yn} be a convergent sequence with X as its limit. Then

the sequence {P(Ynl Cn)} converges to P (X I Coo ) or

oo
P(X I (Thn=1 Cn) according as {Cn} is monotone increasing or mono-

tone decreasing.

A sequence {Xn, C
n}

is called a martingale if for each n,
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Cn is a closed convex set in H, Xn E H, Cn C Cn+1 and

Xn = P(Xn+k Cn) for any non-negative integer k. If for each n,

Cn is a closed linear space in H and Xn = P(X I Cn) for an ele-

ment X E H, then {Xn, Cn} is a martingale provided that {C
n

}

is a monotone increasing sequence. An example of a martingale which

is not composed of closed linear spaces will be given in Corollary

4. 18. 1.

Theorem 2.6. Let {Xn,Cn} be a martingale in H with the

sequence {Xn} being bounded. Then lim Xn = X00 exists and
n-4-co

Xn = P(X I Cn) for each n. Consequently, every bounded martin-

gale is of the form {P(XICn),C
n} for some X E Coo ; where Cod

00
is the closure of L./ C .

n=1 n

A necessary and sufficient condition for the bounded sequence

{Xn, Cn} to be a martingale when the Cn's are cones is given by

Corollary 2. 1 1. 1.

II. 2 On a Closed Convex Cone

A subset C of the Hilbert space H is said to be a cone if

X E C implies 5X E C for each 5 > 0. The family of isotonic

functions described in Chapter III, the family of isotonic functions

described in Chapter V, and the family of square-integrable

E-measurable random variables described in Chapter IV are closed
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convex cones with respect to their corresponding Hilbert spaces.

Throughout this section we shall let C denote a non-empty closed

convex cone in the Hilbert space H. From (2. 2) we have

(2.9) P(6XIC) = 5P(XIC) for each 6 > 0.

An immediate result from Theorem 2.3 is the following theorem.

Theorem 2.7. Let C be a closed convex cone in H and

let X E H. An element X* E C is the projection of X on C if

and only if it satisfies

(X-X*,X*) = 0

(X-X*,Z) < 0 for each Z E C.

The generalized projection P( IC) is positive homogeneous in the

sense of (2. 9) and orthogonal in the sense of (2. 10) provided that C

is a closed convex cone.

Then

(2. 12)

Corollary 2.7. 1. Let X* be the projection of X on C.

II X* II = (X, X *) < 11)(112

and if 11)0'11 = 10(11, then X* = X.
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A geometric interpretation of (2. 10) can be given as below.

Let Bx := {y e H:(X-Y, Y) > 0}. Consider a simple case first. Let

H = R2 and let the inner product ( , ) be defined by

(X, Y) = XtVY for a given positive definite matrix V. Then B
X

is the region bounded by the ellipse YtV(X-Y) = 0 which passes

through X and the origin- Let C be a closed convex cone in R

and set Cx := C ,ThBx. Then for each X E Cx, we have

11Z11 < IIP(XIC)11, 0 < (X, Z) < (X, P(X1C)) and (P(Xl C), Z) > O.

The above results also hold in general; the proof follows.

2

Theorem 2.8. Let C be a closed convex cone in H, let

X E H and let Cx := {Z e C:(X-Z, Z) > 0} Then C
X

is closed and

convex, and for each Z E Cx we have

(2.13) 11Z11
2 < (X, Z) < (P(XIC),Z) < (P(XI C), = ItP(X1C)11

2

and if the last inequality becomes an equality, then Z = P(X I C).

Proof. The set Bx = {y E H:(X-Y, Y) > 0} is a closed ball

with center at X/2 and with radius 11X11 /2. Therefore,

Cx = C r-Th Bx is closed and convex. For each Z E Cx) the first

inequality holds by the definition of Z, the second inequality is

from (2.11) and the identity is from (2. 12). Since

1 1 Z 1 1

2
< (P(X ' C), Z), by the Holder's inequality

(P(X1C), Z) < 11P(X1C)1111Z11, we have 11Z11 < 1P(XIC)11 and hence
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the last inequality follows.

If any one of the identities II Z 112 = (P(X I C), X),

(X, Z) = (P(X1C), X) and (P(XIC),Z) = (P(Xl C), X) holds, then

(P(XIC), Z) = IlP(XIC)1111 ZII = II P(XI C)II2 and hence Z = P(XIC).

The theorem shows that if Z E C satisfies (2 10), then

II Z11 < II P(X I C) II ; and the equality holds if and only if Z is the

projection of X on C. This conclusion can also be made by

observing that 11X112 = X -Z112 + 11Z112.

Let C be a closed convex cone in H and let

C* := {Y1(Y, Z) < 0 for each Z E C}. The set C* is a closed con-

vex cone and C* n C = {0}. Such a set C* is called the dual cone

of C. A simple and obvious result about the projection of X to

C* is given below.

Theorem 2.9. Let C be a closed convex cone in H and let

C* be the dual cone of C. For each X E H, we have

(2. 14) P(X1C) + P(XIC*) = X

Consequently, P(X I C) = 0 if and only if (X, Z) < 0 for each

Z E C.

If Y satisfies (2.11), i.e., (X-Y,Z) < 0 for each Z E C,

then X - Y E C*. Therefore, the collection {Y. E Z) < 0}
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is simply X -

Theorem 2.10. Let C be a closed convex cone in H and

let C* be the dual cone of C. For every X E H, we have

(2.15) II MI C)112 = (P(XI C),X) < (P(XI Y) < 11Y112

for every Y E X - C* and if (P(X1C), Y) =IIYII 2, then

Y = P(X I C). Further, if Y E C rm (X -C*), then (X -Y, Y) < 0.

Proof. If Y E X - C*, then (X-Y, P(X I C)) < 0 and hence

the first inequality in (2.15) follows. By the Holder's inequality

(P(X I Y) < IIP(XIC)IIIIYII, we have IIP(XIC)II < 11141
it II 2second inequality follows. If (P(X I IIY) = Y. II 2, then

and the

IIYII
2

= (P(X I C), Y) < II P(XIC)II 11111. But we have just shown that

IIP(Xic)II 5_ IIYII so (P(XIC), Y) = II P(XI C)IIIIYII and hence

Y = P(X I C). If Y E C r (X -C*) then (X -Y, Y) < 0 since

X - Y E C* and Y E C.

By Theorem 2.8, the closed convex set Cx is contained in the

closed ball with center at origin and with radius II P(XI C) II while

from Theorem 2.10 it follows that the closed convex set X is

contained in the half-space {Y:(P(X I C), Y) > IIP(X I C)112}. The

intersection of Cx and X - C* is a singleton, {P(X I C)}.
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Theorem 2.11. Let C
1

and C2 be closed convex cones in

H PwithC1 C
2

and let X E H. Set Y.
1

= (XI C.), i = 1,2 and
1 1

set Y0 = P(Y 2IC1). Then

(2. 16) II Y111 5_ M Yoll 111(211 5_ II X II

and if any equality holds, then the corresponding two elements in H

are identical.

Proof. Since Y2 = P(X I C2) and Y
0

= P(Y 21 C1), the results

for the sequence 11 Y II < 11 Y II X II , follow from Corollary

2.7.1. Since C1 C C2, by (2. 11), we have (X-Y2, Z) < 0 and

(Y2-Y0,Z) < 0 for each Z E C1. Therefore, (X-Y0, Z) < 0 for

each Z e C
1

and the results follow immediately from Theorem

2.10.

Corollary 2.11.1. Under the same assumptions as in Theorem

2. 11, a necessary and sufficient condition for

P(P(X C2)1 C1) = P(X I C1) is that (P(X1C 2
)-p(x I c

1),
Z) < o for

each Z E C .
1

,Proof.Let Y.
1

= P(X I C.1 ) i = 1,2 and let Yo = P(Y2 C1).

If Y0 = Y1, then by (2. 11) we have (Y2-Y1, Z) < 0 for each

Z E C1. On the other hand, if (Y2 -Yi Z) < 0 for each Z E C1,

then Y1 E Y2 - C
1

and by (2. 15), 111'011 < 11Y111 We may



conclude our result by applying the above theorem. a

By the identity (2.12), the identity

oc-p(X c)ii = 11x112 IIP(XIC)112

obtain that

(2. 17)

25

and the inequality (2.7), we may

II P(O C2)-P(XIC1)112 < P(C' C2)112 C1)112

= (P(XI C2)-P(XI Ci), X)

for each pair of closed convex cones C
1

and C2 with Cl C C2.

Theorem 2.7, Corollary 2.7.1, the identity (2.9) and the inequality

(2. 17) were introduced by Brunk (1965).

II. 3 On a Finitely Generated Cone

Let Z1, Z2, , Zm be a finite sequence of elements in the

Hilbert space H and let C be the set of all non-negative linear

combinations of the sequence. It has been shown that C is a closed

convex cone (cf. Rockafellar (1970)). Such a closed convex cone is

said to be finitely generated. And we denote it by C[Zi, . , Z ].

Let Z E C[Z . . Z Then there exists a set of non-negative

real numbers al, , am such that Z = Z. a.Z.. The repre-

sentation need not be unique and we may even have a representation

which is composed of some non-negative coefficients and some

negative coefficients. An element Y of a closed convex cone C
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is said to be an extreme vector of C if there do not exist linearly

independent elements Y1 and Y2 in C such that Y = Y1 + Y2.

If Y is an extreme vector of the cone C[Z1, , Z 1, then Y

must be a scalar multiple of Z. for an i between 1 and m.
L

If Z1, , Zm are linearly independent, then they form a complete

set of extreme vectors for C[Z1, ,Z ] . Let S be the smallest

linear space in H which contains the finitely generated cone C.

Then S is closed in H. By the smoothing property (2. 8),

P(P(XIS)IC) = P(XIC) for each X E H. Since our interest here is

to obtain P(X I C) and the projection P(XIS) can be obtained very

easily, without loss of generality we may assume that H is the

smallest linear space containing C. The following theorem is an

immediate result of Theorem 2.7.

Theorem 2. 12. Let C be the cone C[Z1' .., Zm] and let

X E H. An element X* E C is the projection of X on C if and

only if X* satisfies (X-X *, X*) = 0 and

( 2 . 18) (X -X*, Z.) < 0 for i = 1, 2, . . . ,m.
1

If X C[Z , Z ], then by Theorem 2.2,

P(X I C[Zi, , Zm]) is a boundary point of C[Z1, Zm].

Boundary points of a finitely generated cone may not be easily identi-

fied. An element in a cone is said to be an interior point if it is not a
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boundary point. Let Y = Ern
1

a.Z
i

with al, a2, , am positive.
1=

We claim that Y is an interior point. Without loss of generality,

we may assume that Z1, Z2, ... , Zn are linearly independent where

n < m and the dimension of H is n. Let Z
0

= E 1=n+1 i
Z . Then

Z
0

E C[Z1, . Zm]. It can be shown that there is an open ball B

containing Y such that if Z E B, then Z can be represented by

Z = Z
0

+ En
i= 1 i

p Z where I3., , 13n are positive. Therefore, the

claim is established. Let S be a linear subspace of H and let

C be a closed convex cone contained in S. Relative boundary point

and relative interior point of C with respect to the linear space S

are defined in the same way except that only elements of S are

cons idered.

Let C = C[Z1, Z ] be a cone in H and let X E H.

Then there is a sequence of non-negative real numbers al, 0.2,

such that P(X I C) = Ern.
1

a
i
Z

i
. Let us define :=

1
a. > 0),

C A := {Z iEA Z : 13 > 0 for each i E A)

SA := {Zi E Pi is

and

real for each i E A). Since P(XI C) E CA,

a

we have P(X I C) = P(X I CA). By the smoothing property,

P(X I CA) = P(P (X I SA) I CA). We claim that P(XISA) E CA and hence

P(XISA) = P(X I C). If it were not true, i. e. , P(XISA) CA, then

by Theorem 2. 2, P(X I CA) would be a relative boundary point of

CA with respect to SA . But on the other hand,
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P(XICA) = P(XIC) =
E 11

E1 A

1
a.Z. with a. > 0 for each i e A, so

1 1

P(X I CA) must be a relative interior point of CA with respect to

SA. Therefore, we have a contradiction, and thus the following

theorem has been proved.

Theorem 2.13. Let C be the cone C[Z1,... , Z ] and let

X E H. Then there exists a linear space S generated by a subset

of {Z1, . . , Zm}, such that P(X1C) = P(XIS).

The linear space S satisfying P(X I C) = P(XIS), is not

unique. Since the representation of X by Z1, , Z is not

unique, the linear space SA described above need not be unique.

If we can identify a subset r of {1,2, ...,m} such that

P(XI C) E Cr,, then P(XIS r,) is the solution we want, provided that

P(X ISr ) E C Such an identification can be achieved for the prob-

lems of isotonic regression over a linearly ordered set, isotonic

regression over a tree, and bivariate isotonic regression with

p > 0. However, in these three cases, the closed convex cones are

each generated by a set of linearly independent vectors.

Corollary 2.13.1. Let C be the cone C[Z1, , Zm] and

let X E H. Let A and SA be defined as above and let r be a

subindex set of {1,2, ...,m}. If Sr 3 sA , then

P(C IS ) = P(XI C) provided that P(X IS ) E C
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Proof. If Sr 3 SA, then by (2. 17) we have

IIP(X15r)11> IIP(XIC)II. Recall that (X-P(X I Sr), P(XISr)) = 0,

so if P(XISr ) E C r then by Theorem 2.8 we have

p(xlsr) = P(XI C)

It is obvious that if P(X IS r ) = P(XIC), then P(XIS) = P(XIC)

for any linear space such that CA C s C Sr,. If Sr 3 SA and

P(XISr) d Cr, then by the smoothing property, we have

P(XICA)C P(P(XISr)I CA). Therefore, we may suppose that our

Hilbert space at this stage is Sr. As the dimension of Sr goes

down, we shall eventually obtain P(XI C) by successive projections

on linear spaces and that is the process employed in Chapter III and

Chapter V.

Suppose that P(XI C) is unknown and there is no way to iden-

tify a subindex set 1- such that either P(XI C) E Cr or

P(X I C) E Sr. Theorem 2. 8 shows that P(X I C) has the largest

norm among those P(XISr)'s such that P(XISr ) E Cr We state

this formally as the following theorem.

Theorem 2.14. Let C be the cone C[Zi, . , Zm], let

X E H and let S
X

:= {P(X I 5 r):r is a subset of {1, ,m} and

P(XISr) E C}. If P(XI Sr) has the largest norm in Sx, then

P(xlsr) = P(XI c).
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There are 2m possible linear spaces of the form Sr,.

P(X I C) = P(XIH) if and only if X C, and P(X I C) = P(XI{0}) if

and only if (X, Zi) < 0 for i = 1, 2, , m. A further reduction of

candidates for P(X I C) of the form P(XIS ) can be described as

follows. P(XIS ) satisfies (2. 10). Let (P1) be the property that

P(XISr ) E C. If (P1) is true, then by Theorem 2.8,

IIP(XISr)11 < 111D(XIC)11 Let (P2) be the property that

(X-P(XISr ), Z
i
) < 0 for i = 1, ,m. If (P2) is true, then by

Theorem 2.10, IIP(XI Sr.) )11 > II I C) II . A program to obtain

P(x1C) can be made through calculation of P(XIS ) by the follow-

ing theorem.

Theorem 2. 15. Let C be the cone C[Z1, ...,Zm], let

X E H and let r be a subindex set. Then we have the following

statements.

(1) P(XISr ) = P(X I C) if and only if P(XISr ) satisfies (P1)

and (P2).

(2) If (P1) holds but (P2) fails, then for any A such that

II P (c I s )11 < II P(x I sr ) II we have P(X I S
A

) P(X I C).

In particular, P(XIS
A

) P(X1C) for each A C r.

(3) If (P1) fails but (P2) holds, then for any A such that

II P(X 156)11 > IIP(XISr)II, we have P(XISA) t P(XIC). In

particular, P(XISA) P(SIC) for each A D r.
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Proof. The projection P(X I Sr) satisfies (2. 10), i e

(X-P(XISr), P(XISr)) = 0. Statement (1) follows from Theorem

2.12. If (P1) holds but (P2) fails, then P(X I Sr) E Cx and

P(XISF) P(XIC). Statement (2) follows from Theorem 2.8. If

(P2) holds but (P1) fails, then P(XISF) E X C* and

P(XISr ) P(XI C). Statement (3) follows from Theorem 2.10. 0

Let C be the cone generated by a linearly independent

sequence Z
1
f Zn of elements in H and let the dimension of

H such that

Z(Y., .) < 0 and (Y., Z.) = 0 for each j i. The sequence
1 1 3

Y
1

...,Y is linearly independent and it is unique up to scalar

multiplication. The cone C[Y1, ...,Yn] is the dual cone of C.

Theorem 2.16. Let C be the cone C[Z1,... , Zn] and let

C* = C[Y1, , Yn] be the dual cone of C. For every X E H,

there exists a unique representation X = EL
E A

ai +
Ac

(3j
Yj for

some index set A such that a. > 0 for each i E A and 13. > 01 3

for each j E Ac. Furthermore P(XIC) = E. a..Z. and
E .A I 1

P(XIC*) = E. P.Y..
3 EAc 3 3

Proof. Let P(X I C) be represented by P(XIC) = Eni aiZi,

where a. > 0 for each i. Let A := {i: a. > O. Then

P(XIC) = P(XISA) and hence ( = 0 for each i E A.
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Let P(X I C*) be represented by P(X I C*) = En p.y., where
3=1 J 3

I. > 0 for each j. By Theorem 2.9, P(X I C*) = X P(X I C) andt
hence (P(X1C*), Z.) = En 13.(Y., Z.) = P. (Y., Z.) = 0 for each i E A.

1 3=1 3 3 1 1 1

It follows that Pi = 0 for each i E A and therefore,

X = E a Z. + E c P.Y.
i.EA i 1 E. 3 3

If X has a representation E. A aZ. + E. A ,., P.Y. with
-.1E.a. 1 1 j E ./1. J 3

a.'s and 13.'s non-negative, then it is trivial that
1 J

P(X1C) = Z and P(X I C*) = E. A P.Y.. Since
i E A

a.Z i 3E1V- 3 3

{ Z , . . ) Zn} and {Y1' ...,Yn} are each linearly independent, the

representations of P(XI C) by Z1, . . . , Zn and of P(X1C*) by

Yi, ... , Yn are unique. For each i, the product of the corres-

ponding coefficients a. and Pi must be zero. The uniqueness of

the above representation for X must therefore be satisfied.

Let A be an index set. Theorem 2.9 shows that

P(X I C) = P(X ISA) if and only if P(X I C*) = P(X I SIA), where

S
A

= {Y:(Y,Z) = 0 for each Z E SA} is the orthogonal complement of

SA: Under the hypothesis of Theorem 2.16,
J.

S = { p Y :13 real}. The property that aipi = 0 for each i
A_ j E Ac j j j

reminds us that Pl, ,Pn are Lagrangian multipliers. The

inequalities Pnequalities(Y., (X I C)) < 0 for j = 1, ... , n are the constraints.

Therefore, the theorem is equivalent to the Kuhn-Tucker condition.



III. ISOTONIC REGRESSION

III. 1 Preliminaries
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Isotonic regression problems discussed in this chapter are those

defined on some quasi-ordered finite sets. We shall leave the general

case to the next chapter. The problems are standard mathematical

programming problems. Their objective functions are the weighted

sums of squares described in (3. 1). Their feasible regions are the

intersections of some closed half-spaces which are each determined

by a pair of arguments.

The binary relation < defined on a set C2 is said to be a

partial ordering if

(1) it is reflexive; w < w for each co in S2

(2) it is transitive; Ct.) p., v E S2, w < p. and p, < v imply

< V

and (3) it is antisymmetric; w, p. E S2, w < µ and p. < w imply

p..

A quasi-ordering is reflexive and transitive but not necessarily

antisymmetric. A pair of elements p. and v in C2 is said to be

comparable if either p. < v or v < 11. A linear ordering is a

partial ordering such that each pair of elements is comparable.

Let < be a quasi-ordering on C2 and let r be a subset of

O. An element co E r is maximal in F if p. E and w < p.
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imply p. < w; w e r is minimal in r if p. E r and p. <

imply w < p.. r is said to be bounded from above if there exists

an element p. E C2 such that w < p. for each w in such an

element µ is called an upper bound of r. If the set A of all

upper bounds of r is non-empty and it has a unique minimal ele-

ment, then such an element is said to be the least upper bound of r,
and is denoted by yr. Similarly for the definitions of "bounded from

below", "lower bound" and the "greatest lower bound". The greatest

lower bound of r is denoted by A r.

A partial ordering is said to have a tree structure if every

non-comparable pair has a greatest lower bound but does not have an

upper bound. A set C2 with an ordering < is said to be an

ordered set; such a pair is denoted by (0, <). The pair (0, <t) is

called a tree if < t is a partial ordering having a tree structure.

Some problems involving trees have been given by Thompson (1962)

and Hartigan (1967). A finite tree, by its definition, has a unique

minimal element. A simple tree is a tree such that every element is

either maximal or minimal. A tree with a unique maximal element is

a linearly ordered set. From the definitions, a linearly ordered set

is a tree, a tree is a partially ordered set and a partially ordered set

is a quasi-ordered set.

Let (0, <q) be a quasi-ordered finite set. The finiteness of

12 is our assumption throughout this chapter. Let r
1,

... ,rk be



35

subsets of F. They are unrelated if every pair of elements from

different subsets is not comparable. Let A be a subset of 0 and

let II e A. An element v E A can be reached from p. in A if

there exist w
1

,co in A such that co. <
1+1

or

(A)

i
>

i+1
for i = 0, 1, , k where w0 and wk+1 = v . Let

A(p.) := {v E A: v can be reached from p. in A}. It is obvious that if

V E MO: then A(v) = A(p.); and if V e A and v A(p.),

then A(v) and A(p) are unrelated. A is said to be

connected if A(p.) = A for some p. E A. A is said to be

separable if it is not connected. If A is separable, then there

exist w1, ... ,wk in A such that A= v i=1A(wi) and

A(w1), ... , A(wk) are unrelated. Each subset A(wi) called a

component of A. Linearly ordered sets and trees are connected.

Let <
1 2

and < be two quasi-orderings on 0
1

. < is

said to be the reversal of <
2

provided that for p., V in S-2

<
1 2

v if and only if v < p.. The reversal of a quasi-ordering

< is denoted by < The quasi-ordered set (0, < ) is called ther
reversal of (0, <). When there is no ambiguity, we shall use S2

to denote a quasi-ordered set and Or to denote its reversal. The

quasi-ordered set 0 is connected or separable if and only if its

reversal is connected or separable. The reversal of a tree is called

a reversed tree.



A pair of elements 11 and v in E2 is said to be an

immediately m arable pair if p. < v and there does not exist an

element co other than p. and v such that p. < w and w < v .

We denote such a pair by [p. < v]. If [p, < is an immediately
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comparable pair, then p. is called an immediate predecessor of

v, and v is called an immediate successor of p.. For a partially

ordered set E2, the ordering on each component can be described by

listing all immediately comparable pairs. Let r be a component of

E2 with m elements. If is a linearly ordered set or a tree,

then there are m-1 immediately comparable pairs in r; and

m-1 is the smallest number of immediately comparable pairs that a

connected partially ordered set r may have.

A real-valued function Z defined on a quasi-ordered set is

isotonic if p., V E S2 and p. < v imply Z(p.) < Z(v). Isotonic func-

tions are constant over each equivalence class

[co] := {p.: p, < w, w < p.}. Let M(E2) be the collection of all isotonic

functions defined on E2. It is obvious that M(E2 ) = -M(E2). Whenr
there is no ambiguity, we shall use M instead of M(E2). A weight

function W is a non-negative function defined on E2. The pair

(S2, W), where E2 is a quasi-ordered set and W is a weight

function, will furnish the structure for the isotonic regression prob-

lems described below.
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Let X be a given real-valued function defined on 12. An

isotonic regression of X over (E-2, W) is an element in M which

minimizes

(3.1) f(Z) :=
Eaz

[X(w)-Z(w)]2
W(w)

among all functions Z in M. If E-2 is separable, then the

minimization problem can be studied in each component of E2 inde-

pendently. If in addition, each component is an equivalence class

[A, then it is a regression problem. Let r be a subset of E2

and let XI r and WI r be the restrictions of X and of W to

r. Then r is by itself a quasi-ordered set. An isotonic regres-

sion of XI r over (r, wl r) is called a restricted isotonic

regression of X to r.
Let E2

0
= {µ E SZ: W > 0}. If 120 is an empty set, the

problem is trivial. Suppose E2
0

is non-empty and X
0

is a

restricted isotonic regression of X to TheThe function X

defined by X (w) = min{C (14: E } if
0

11
0

{p, E 520: w > p.} = ci and

X (w) = max{X
0

(1.1):p. < E S20} otherwise, is an isotonic regres-

sion of X over (0,W). Since isotonic functions are constant on

each equivalence class, the objective function can be written as

f(Z) =
E E2Ca)

[X(w)-Z(w)] 2
W(w)

0

[5C(w)-Z(w)121N(w) +
W E

[X(w)-5e(w)]2W(w)
"0 "0
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where X(w) is the weighted average of X over the equivalence

class [co] in
0

and W(w) is the average of W over the

same equivalence class [w]. The second term on the right-hand

side of the above equation is independent of Z and

[X(w) -Z(w)}2W(w) is constant on each equivalence class. Therefore,

without loss of generality, we may assume that S2 is a connected

partially ordered set and W is a positive weight function.

Let H be the linear space of all real-valued functions defined

on the connected partially ordered set S-2, let W be a positive

weight function on S 2 and let ( , ) be a bilinear functional

defined on H x H by

(X, Y) = Ew
E az

,X(w)Y(w)W(w) for each pair X, Y E H.

The bilinear functional ( , ) is an inner product on H, and the

linear space H with the inner product described above is a Hilbert

space. The objective function f(Z)

where II Y = (1,17)1 /2.

2can be represented as II X-Z II

For each immediately comparable pair [p. < v], let us define

a linear functional g on H by
11, v

g
11

(Z) = Z(µ) - Z(v).
,

The set {Y:gli, v(Y) < is a closed half-space containing 0 and

hence is a closed convex cone. Since an element Z E H is isotonic
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if and only if g v(Z) < 0 for each immediately comparable pair,

the family M of all isotonic functions can be characterized as the

intersection of all such closed half-spaces, i.e. ,

M = {Z E v(Z) < 0 for each [p. < v]}. Therefore, the family M

is a closed convex cone and the isotonic regression is the generalized

projection to M. The uniqueness and existence of the isotonic regres-

sion of a given X follows from Theorem 2.1.

Let Z be a non-constant isotonic function and let c be a

constant function. Then c and Z-c are linearly independent and

Z = c + Z - c. Since M contains constant functions, Z is not an

extreme vector of M and hence the only extreme vectors of M

are constant functions, positive or negative. Let M* be the dual

cone of M, i.e. , Y E M* if (Y,Z) < 0 for each Z E M. For

p. < v], let Yeach [ be the function in H defined byp,, v

Yp,,
v(µ) = W(µ) -1,, y (v) = -W(v)

-1
v

and Y GO = 0 elsewhere.
p, , p, ,

Since (Y4, v, Z) = g (Z), Y E M* The dualil , V 11 , V
for each [p, < v].

cone of the closed half-space {Y: gv., v(Y) < 0} is the ray

{5Y :5 > 0}. The convex hull of a given set A is the intersectionµ, v

of all convex sets containing A, and is denoted by conh(A). Let

C1, C2, ... , Ck be a finite sequence of closed convex cones in H.
.,.. .,

.....It is known that (C
1

rm C
2

rm. (---Ck
,,

) = conh(C1
*

v C2v
*

v Ck)

(cf. Rockafeller (1970)). Therefore,

M* = conh v {6Y :N. < v] an immediately comparable pair} . Inp., v
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other words, M* is the cone generated by the Y 's, [µ < v]
p, v

an immediately comparable pair.

If Y is an extreme vector of M*, then Y is a scalar

multiple of Y for some [p. < v]. We shall show that Y is
1,1, , V p, , v

an extreme vector of M* for each [p. < v] . If Z E M*, then

(Z, 10.)) < 0 and (Z, 1 0
w

) < 0 for each (A) E £2 because 1
w

and

1 0 are in M where 1
w

(v) = 1 if w < v and 1 (v) = 0 other-
w _ w

wise; 1 0(v) = 1 if w < v, w v and 1
o (v) = 0 otherwise. It

w w

follows that M* does not contain any line {aZ:a real}. Suppose

that there is an immediately comparable pair [e < such that

Y is not an extreme vector of M*. Then the cone generated by
e,11

other Y 's is M* because M* does not contain a line and it
v

is the cone generated by the Y ts (cf. Rockafeller (1970)). By
p, , v

the identities (C1 C
2

rm . n Ck
- 1

)* = conh(C
1

C v C
k -1)

and M = (M*)*, it will then follow that M can be represented as

an intersection with one less closed half-space {Y:g 1(Y) < 0}.

Therefore,
ge,11

is a redundant constraint. On the other hand, let

Z be defined by Z(w) = 1 if w > ri with zeros elsewhere.

Then Z satisfied all other constraints but Z is not isotonic.

This contradicts that a is redundant. It follows that Y
11, v

is
-e,11

an extreme vector of M* for each [p. < v].

Let S
o

be the linear space {Y:(Y, 1) = 0}. Since (Y , 1) = 0

for each [4 < v], M* is a subset of S0.0
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111.2 Upper Sets and Indicators

A subset U of a quasi-orderes set S2 is said to be an upper

set if p. E U and V > µ imply V E U. A subset L of C2 is said to be

a lower set if V E L and p. < V imply µ E L. It is obvious that if

U is an upper set then Uc is a lower set and if L is a lower set

than Lc is an upper set. A non-empty connected upper set is called

a basic set. If an upper set is separable, then each of its components

is an upper set and hence a basic set. For each co E E2

U(w) > co}

determined by (.4).

, the set

is a basic set. Such a basic set U(co) is said to be

S2 and qf are upper sets and lower sets. S-2 is

separable if and only if there exists a proper subset of S2 which is

both an upper set and a lower set. Further discussion of upper sets

and lower sets will be given in Section IV. 1. In the remainder of the

chapter, we shall let S2 denote a connected partially ordered finite

set. The intersection of an upper set and a lower set is called a level

set. A subset F of S-2 is a level set if and only if e F and

p. < w < v imply that co E r. A component of a level set is a level

set. The intersection of level sets is a level set.

Let F be a subset of S-2. The indicator of F, denoted by

lr, is a real-valued function which assumes the value one at each

element in F and zero elsewhere. Indicators of fl and 4 are

denoted by 1 and 0 respectively. The indicator 1 is isotonic
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if and only if F is an upper set. The indicator of a basic set is

called a basic function. For a basic set U(w) determined by w,

its basic function is denoted by lco. If Z is an isotonic function,

then for each real a, [z > a] := {colZ(c.o) > a} is an upper set. Sup-

pose Z assumes the values a < a2 < ... < a
k

.
1 2

Then

[Z = ai] := {w:Z(c.,.)) = ai} is a level set for each i. Let

k
p. = a - a i = 1, ... ,k where. a = O. Then Z = Z. p. 1 ,

1 i i - 1' o 1.-- 1 1 [z > a j
i

Since an indicator of an upper set is the sum of the indicators of its

components, every non-negative isotonic function is a non-negative

linear combination of basic functions and every isotonic function is a

linear combination of basic functions such that the coefficient associ-

ated with each indicator other than 1 is non-negative. But such a

representation need not be unique.

Let M+ be the family of all non-negative isotonic functions.

Then M+ is the cone generated by the basic functions. Therefore

M+ has finitely many extreme vectors. Let U be a basic set and

let 1 u be it indicator. We claim that 1u is an extreme vector of

M+. Suppose there are Z1 and Z2 in M+ such that

lu = Zi + Z2. Then Z1(w)= Z2(w) =0 for all w U. Let p. and

v be two elements in U with p. < v. Then Z.(p.) < Z.(v),

i = 1,2 and Z
1
(p,) + Z2(µ) = Z

1
(v) + Z2(v) = 1. Therefore

1J.Z.( ) = Z.(v) , i = 1, 2. If w E U can be reached from p. in U,
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then p.enit follows that Z.((,)) = Z.( ), i = 1, 2. Since a basic set is a

non-empty connected upper set, every element (,.) e U can be

reached from 11 and hence Z1 = X1
U

and Z
2

= (1401 for

some X between zero and one. Our claim therefore has been

established and basic functions form a complete set of extreme vec-

tors for M+. If S2 is a tree, then every upper set with more than

one minimal element is separable. It follows that basic functions

must be of the form lw , and M+ has exactly the same number of

extreme vectors as the number of elements in O. Thus we have

proved the following theorem.

Theorem 3.1. Let be a connected partially ordered finite

set, let M be the family of isotonic functions and let M+ be the

family of non-negative isotonic functions. Then M+ is the cone

generated by the basic functions, and basic functions form a complete

set of extreme vectors for M+. The family M is the cone gen-

erated by basic functions and -1.

Following the same procedure, one can show that the above

theorem also holds for general quasi-ordered finite sets connected or

separable.

The isotonic regression of X over 52 is the projection

P(X I M) of X on the closed convex cone M. In the finite case,

L 2(E), introduced in Chapter IV is the same as M and the
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conditional expectation E(XI E), also introduced in Chapter IV, is

the same as P(XIM). Therefore, properties of isotonic regression

can be found in Chapter II in the form of P(XIM) and also can be

found in Chapter IV in the form of either P(X I L2( Z)) or E(XI E).

The main interest in the remaining part of this chapter is in

algorithms for various isotonic regression problems and some results

which lead to these algorithms.

aTheorem 3.2. Let X* = ZU basic U 1 with a
U U

> 0 for

each basic set U different from C2, and let

A = {U: U is basic, au > 0} L) {S2}. Then X* is the isotonic

regression of X if and only if (X-X*, lu) = 0 for each U E A

and (X-X*, 1U) < 0 for each basic set U.

Proof. The function X* given above is obviously an isotonic

function. Let SA= {Z = UEA 13
U

1
U

: RU real}. The condition

(X-X*, 1U) = 0 for each U E A is equivalent to X* = P(XISA).

Therefore, the result follows from Theorem 2.12 and Theorem 2.13.

The only difference is that we have C2 E A no matter what value

a
SZ

is. This gap can be filled by considering (4. 2), which can be

interpreted as (X-X*, 1) = 0 in our present situation. fl

Corollary 3.2.1. Let X* E M. Then X* is the isotonic

regression of X if and only if X* satisfies
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(3.2) E
E

[X*.y]X(ca)W(o.)) = EWE X*=y1
X*(w)W(w) for each y

and

(3.3) (E

WE U
X co)W(o.)) < E

UWE
X*(w)W(o.))

for each upper set U.

Proof. Let X* be an isotonic function which assumes values

y1 < y2 < < yk and let ai = yi_i, i = 1, . . ,k where

yo = 0. Then X* = Ei=1 il[X* >y} with a. positive for i > 1.
L

Let X* satisfy (3.2) and (3.3). Then

(X-X*, X*) = i=1 "Y .Z
E (X(u)).-X*("W(w)

and (X-X*, -1) = 0. Since M is the cone generated by upper sets

and -1, by Theorem 2.12, X* is the isotonic regression of X.

On the other hand, let X* be the isotonic regression of X.

Since each upper set is the disjoint union of its components, by

Theorem 3.2 we have (X-X*, 1U) < 0 for each upper set U.

Similarly, (X-X*, l[x* _.]) = 0 for i = 1, ,k. For each y
Yi

different from yk, X* satisfies (3.2) automatically. For

each i,

( X - X*, 1 ) = (X - X*, 1 1) - (X-X*, l[x*> 1) = 0.
lij

This completes the proof. I]



46

Corollary 3. 2. 2. Let X* be the isotonic regression of X.

If v is minimal in [a < X* < p], then X*(v) < X(v). If µ is

maximal in [a < X* < 13], then X*(p.) > X(11)

Proof. If v is minimal in [a < X* < 13], then v is mini-

mal in [a < X*]. By the minimality of v in [a < X*],

U = {w:X *(w) > a, co v} is an upper set. From Corollary 3.2.1,

and

(X-X*, 1[a <X4;]) = 0

(X-X*, 1
U

) < 0,

which implies X(v) - X*(v) > 0. Similarly we have the second

statement. I]

Corollary 3. 2.3. Let X* be the isotonic regression of X,

let [p. < v] be an immediately comparable pair and let X(p.) > X(v).

Then either there exists an immediate successor w of p. such that

X*(w) = X*(p) or there exists an immediate predecessor T of V

such that X*(T) = X*(v).

Proof. Suppose on the contrary that neither X *(w) = X*(p.) for

any immediate successor w of p. nor X*(T) = X*(v) for any

immediate predecessor T of v . Then X*(v) > X*(p.), v is

minimal in [X* > X*(v)] and is maximal in [X* < X*(p.)]. By
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Corollary 3.2.2, we have X(v) > X *(v) > X*(p.) > X(p.). This contra-

dicts that X(p.) > X(v).

Theorem 3.3. Let S2 be a partially ordered set, let X*

be the isotonic regression of X and let p. be an immediate pre-

decessor of I/ . If any one of the following three statements is true:

(1) p. is the only immediate predecessor of v is the only

immediate successor of p, and X(p.) > X(v),

(2) p. is the only immediate predecessor of v and

X(v) < X(0.)) for every (.0 > p.,

(3) v is the only immediate successor of p. and X(p.) > X(4.))

for every 0.) < v ,

then X*(p.) = X*(v).

The theorem is an extension of Theorem 2.6 given by Barlow

and coworkers (1972). That X*(1-1.) = X*(v) follows from the first

statement is an immediate result of Corollary 3.2. 3. If S2 is a

linearly ordered set, then each element has at most one immediate

predecessor and at most one immediate successor. Thereofre,

statment (1) is enough to provide an algorithm in such a situation. If

C2 is a tree, then each element has at most one immediate predeces-

sor, and if S2 is a reversed tree, then each element has at most one

immediate successor. Statement (2) and statement (3) will be suffi-

cient for obtaining isotonic regressions in such situations. Statement
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(2) and statement (3) are symmetric with respect to reversal, because

M(0) = -M(S2 ) and P(XIM(S2)) = -P(-XIM(2 )).

Proof. Only the result following from statement (2) will be

considered. Let IA be the only immediate predecessor of v and

X(v) < X(w) for every 0.) > Suppose X*(p.) < X*(v). Then

is minimal in [X *(v) < X*]. By Corollary 3.2.2, X*(v) < X(v).

On the other hand, U(p) = {c.w.o.) >1.} is an upper set and X(w) > X(v)

for each CO E U(p.). By Corollary 4.15.2 which does not depend on

Theorem 3.3, X*(i_t) > X(v) and hence X* (µ) > X(v) > X;',(v). This

contradicts the assumption XNp.) < X*(v).

111.3 On a Linearly Ordered Set

The minimization problem discussed here is to minimize f(Z)

subject to z. < z. for i = 1,2, . , n-1 where Z = (z
1,

.. , z n)

and

f(Z) = Zn (x -z )2w
i =1 i i

with given X = (x1, ,xn) and given w. > 0, i = 1, ...,n.

The problem is known as an isotonic regression over the linearly

ordered set {1, 2, ... ,n}. It can be solved by the Pool-Adjacent-

Violators algorithm which was introduced by Ayer and coworkers

(1955). The algorithm, which is an immediate result of Theorem
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3. 3, will be presented later in this section.

Let M = {Z:zi zi+i, i = 1,2, , n-1} be the feasible region,

let M* be the dual cone of M with respect to the inner product

(X, Y) = E.
1=1 1

x.y.1 w.
1

and let Yi ' Y2' 'Yn-1 be n-component

vectors such that for each k, Yk (Ykl' Ykn)
is defined by

-1
Ykk wk

-1 -w
Yk, k+1 k+1

and yki = 0 if i lc, k+1. The dual

cone M* is the cone generated by the linearly independent vectors

Y
1

2 Yn-1 2 and it is a subset of the linear space

S = {Z:Zin.=1 0}. The inner products of Y.'s among them-

-1 -1selves are (Yi-rYi)=-w-il,(YJ.,YJJ =w.+wj+i,
-1(Yj+i, Yi) -wi+1 and (Y., Y.) = 0 if I i-j I > 1.

J

The isotonic regression of X, P(XIM), is X - P(X1M*) as

given by Theorem 2. 9. By the smoothing propery,

P(X I M*) = P(P(X I SO) I M*). The projection of X on So is

P(XIS ) = X - SZ where 3Z = E1.1 x.w. /En. w.
0 1=1 1 1 1=1 1

Let X
0

= X - )7. Since S
0

is the linear space generated by

y
1

, , Y n-1 , there exists a unique set of real numbers

a , . . . , an-1 such that

n-1XO = Zi=1 ai Yi.

The projection P(X0 I M*) is in M*, so there exists a unique set



of non-negative real numbers

P(X0 1 m*) = zn cts/,
= 1 i i

, . Ct
1 n- such that
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Let A = {it ai > 0} and let NA {y = zi EA PiYi: Pi > o}. Then

P(X0 1 M*) = P(X 01 NA). We shall soon see that P(Xo 1 M*) can be

obtained by successive projections on linear spaces, each of which is

generated by a subset of {Y1' '17n-1}.

Let r be a subindex set of {1, 2, ...,n-1}. The linear space

generated by {Yi:i e r}, is denoted by T. If j E r the pro-

jection of Y. on Tr,P(IT is Y. itself. For fixed

j, k with i < j < k, let ri = {i, i+i, , j-1, j+1, . k}, let

rz = {1,2, , i-2, k+2, .. , n-1} and let r3 = r1 v 1-2. The linear

spaces Tr and Tr, are orthogonal and Y. is orthogonal to
1 2

T . It follows that P(Y. 1 T ) = P(Y. (Tr ).
2 J r3 3

If r is such that Ti C r C r then by the smoothing

property we have P(Y.1Tr) = P(P(Y.1T )1Tr) = P(P(Y.1T )1T )
j r

3
r r

= P(Y. 1 T ). Let
3 ri

(3.4) a = Eq w /Ej w , b = Zk+1 w /E k+1 w
q m=i m m=i m

and let Y= -Ei -1. a Y Zk b Y . Then for each
q=]. q q q=j+1 q q

h = i, i+1, , j -2, we have
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(Y.-Y, Yh) = -(Y, Yh)

= ah_i (Yh_ Yh) + ah(Yh, Yh) + ah+i(Yh+i, Yh)

-1 -1 -1 -1
-ah- lwh ahwh ahwh+1 ah+1wh+1

= w -1(a
h -ah-1 ) - w -1

h+1h
(a

h+1
-ah )

0

and similarly for each h = .j +2, ... , k, we have (Y, -Y, Yh) = 0 by

changing the brs. For h = j-1, we have

(Y.-Y, Y. ) = (Y., Y. ) + a. (Y. , Y. ) + a. (Y. Y. )

3 -1 3 3-1 3-2 3-2 3-1 3-1 3-1, 3-1
- -

= --w.

-1 a. w.-1 + a. (w.
1

1)
33-2 3-1 -1 3-1 3

-1 -1
= w (a. -a. ) - w. (1-a )

3-1 3-1 3-2 3

= 0

and similarly, we have (Y.
3 Y3+1

-Y, ) = 0. Therefore, Y is the

projection P(Y. I T ) and
J r

1

(3. 5) P(Y. I T ) = k br q=i
1 a

q
Y

q
Eq=j+1 qYq

If r1 = {i+i, , k}, r3 = r1 {1, ... ,j-2,k+2, .. n-1} and

r is such that r C r C r then following the same procedure

we have

(3. 6) P(Y, I T ) = -Ekq=j+1 bqYq .
J r
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Similarly, if r
1

= {i, i +l, ...,j-l}, r3 = ri Li {1, pj+2 1.}

and F is such that ri C r C r3, then

(3. 7) P(Y.IT ) = -Ej-1 a Yr q=i

If j -1, j and j+1 are not in r, then P(Y. I TT) = 0.

n-1Let Z = E. P.Y.. The projection of Z on T , for some
3=1 J

subindex set r, is P(Z I T ) = En-1 p.p(y. I T ). If j E r,
jr =i 3 3 r

P(Y. I Tr) = Y.. Let j 4 F. If j-1 E r, let i be the smallest

index such that i, i+1, , j-1 are in r and if j+1 E r, let k

be the largest index such that j+1, j+2, . .,k are in F. If j-1

and j+1 are not in r, we have P(Y.ITr) = 0. We identify r1 as

{1,1+1, ,j-1}, {j+1, .,k} or their union according as only

j-1 E F, only j+1 E r or both i-1 and j+1 in r. Therefore,

the projection of Z on Tr can be calculated by (3. 5), (3. 6) and

(3.7).

Let P(Z I Tr) := Eh ET
phYh . For each h E r, let

p = max{m:m < h, m 4 r} and let q = min{mtm > h, m 4 r}. Suppose

p and q exist. Then for each j h which is less than

greater than q or belonging to r, we have

P(Y. I Tr) = E
3 r m Er YmYm

(3.8)

with yh = 0. It follows that

Ph = ph - (ppbn+pqa h)
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where ah = Zm=p+1 wm /Ern=p+1
wm and

bh = Em =h +1
wm/Em

=p+1
wm. The ah and the bh are the same

as in (3.4); for the ah, we identify i and j as p+1 and q

respectively; for the bh, we identify j and k as p and q-1

respectively. If p does not exist, set p = 0 and i3 = 0, and

if q does not exist, set q = n and Rq = 0. Then ph is still

given by (3. 8).

-1Theorem 3.4. Let XO En_i1 i
and let

P(X
o

) M*) = En=11 ai Y
i

. If an-1}

then ah = 0.

and
<

0,

Proof. Let A = {i: a.k > 0}. Theorem 2.13 shows that

P(X0 I M*) = P(X0 I TA). Suppose h E A . By (3.8),

ah = ah (apbh+aciah). Since ap >ah , bh > 0, aq ah, ah > 0

and bh + ah = 1, we have ah < 0. This contradicts that h E A. 0

The Projection of Minimum Violators is an algorithm to obtain

the isotonic regression of X over the linearly ordered set

{1,2, ...,n} through the dual cone M*. By a violator we mean an

index such that a. < 0.
J

n nStep 1. Set x = Z.
I

x.w. /Z w..
1=1 1. 1=1 1

al wSet= w
1
(x

1 1
a. = a.

1-1
+ .(x.-x--) for i = 2,...,n-1.

1 I

Set r = {1, ... ,n-1}.
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If al, an-1 are non-negative, go to Step 4;

otherwise, choose j Such that a = min{al, an-1}.

Set r = F - {j}.

If j -1 E I-, then find the smallest i such that

i+1, . , j-1 E r and set ym = 0 for m = 1, i-1
and set -ym = Emh=i wh =i

wh for m = i, i+1, , j-1;

otherwise, set ym = 0 for in = 1, . , j-l If j+1 E r,

then find the largest k such that j+1, .. ,k E r and

set y = Zk+1 /zk+1
m h=m+1 wh h=j+1 wh for m = j+1, set

y = 0 for m = k+1, , n-1; otherwise, set yin = 0
m

for m = j+1,...,n-1

Set yj = 1.

Step 3. Set rna m= a gymym for in = 1, , n-1.
J

Go to Step 2.

Step 4.

a.

-1Set y
1

= W1 al, y. = w. (a. -a.
1-1

) for i = 2, , n-1,

-1-wn an-1
Yn

Set xi = x. yi for i = 1, 2, . . . , n.

End.

When we have more than one j such that

= min{al, , an-1}' we may compute y 's simultaneously for

such a set of j's. The algorithm is not efficient as evidenced by

Example 3. 1; yet, it is the method developed through the dual cone.

The justification of the algorithm can be described as follows. Let
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-1
3.

X
0 1

= E. a.Y. , where X
0

= P (X 1 S
o

). If al, . , a
n-1 are

non-negative, then X0 = P(X01M*) = P(X1M*). In any case, let

A := {1: > 0 or a. > a. for some j Theorem 3-4 shows that
0 1 3

n-1A0 3 A, where A = {i: ai > 0} and P(X01 M*) = Zi.i ai Yi . Since

P(X
0

1M*) = P(XOINA), by the smoothing property

P(X
0

1 M*) = P(P(XOITA )1NA). Let X
1

:= P(X
0

1 TA) be repr e -
0 0

sented by and let A := {i E A0 : a 0 or a >Zi aE Ao l /17/ 11 13

=for some j If an > 0 for each i E A0, then Al A0 and

X1 E NA- Since P(X0 1 M*) = P(X0 NA), the smoothing property

shows that P(X IN A ) = P(P(X IT )1N ) = P(X1 IN ) It follows
0 0

TA NA
1

NA
1 1

that X1 = P(X0 1 M*). If an <0 for some i E A0, then

AO Al DA. Since P(X01 M*) = P(X1 1 NA ), the set A stays the
1

same, and P(X01M*) = P(P(X1 1T A )1NA) Therefore, applying the
1

above procedure inductively, we have a strictly decreasing sequence

A
0

D Al 3 A
2

3 ... 3 A. The sequence will terminate at some

index k such that A
k

= Ak+1. At that stage, aki > 0 for each

jEA, Xk EN and X
k

= P(X olM*). The index set AAk,
k

NA Ak need

not be the same as A, and we may reach the situation Ak = A= gs

which indicates X
k

= 0 and NA = T A ={0}. The situation occurs
k k

only when X E M. Once p(xolIVI*) is obtained,

p(xlm)=x- P(X I = X- P(Xo I M*) .

A similar technique can be applied to M also. For each

let li be the vector such that the ith, , nth entries have values
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one with zeros elsewhere. The vectors 11,12, ... ,ln are linearly

independent, and every vector in M is a linear combination of these

indicators such that the coefficients are non-negative except the one

corresponding to 11.

Theorem 3.5. Let X = Z. 0..1, let the isotonic regression
I1=1 I

of X, X*, be represented by X* = En a 1
1=1 i i

where a. > 0 for1
Ji

> 1 and let A = a. > 0 or i = 1}. If a. < 0 for some j > 1,

then j A.

The theorem is essentially the same as Theorem 2.1 of Ayer

and coworkers (1955), and it is a consequence of Theorem 3.2,

Corollary 3.2.2 or Theorem 3.3. Suppose there is an index j > 1

such that a. < 0 and a. > 0. Let X = (x
1,

... ,xn) and let
J 3

* * *
X* = (x, ... ,x* x). Then a. = x. - and a = x. x. for

1 n 3 3

x.
J 3 J-1

* *,
j > 1. Since a. > 0, j is minimal in [X* > x..1 and j-1 is

J 3
* *

maximal in [X* < x. ], by Corollary 3.2.2 we have x. > x. and
3-1 J J

* *
x. > x. . This contradicts that x.

*
> x. and x. < x.

33-1 j-1 3 3-1 J 3-1
For each subindex set r of {1, 2, .. , n}, let S r denote

the linear space generated by {li:i e r} and let Mr = Sr rTh M.

Let Ao a. > 0 or i=

P(P(XISA )IMA) = P(XIM)
0

11. Then A0 3 A,

and P(XIS ) = Z. a.P(1 IS A ). If one
A 1 i

0

computes P(1i1S4 ) for each i and then does a succession of
0
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projections on certain linear spaces S with r D A in a manner

similar to the Projection of Minimum Violators algorithm, one obtains

the Projection of Violators algorithm. However, there is a better

method to compute projections on the linear spaces Sr,.

Let r be a subindex set of {1, 2, . , n}. Suppose p and q

are two consecutive indices in r. If Y = ( y1,... ,yn) is the pro-

jection of Z = (z1, .. , zn) on Sr, then (Z -Y, 1.) = 0 for each

E r and yp = = = y . Therefore, (Z-Y, 1 -1 ) = 0
q

or equivalently

and hence

q- 1E. (z.-y.)w. = 0
i=p 1. 1 1

Y z w c1 w/E1
p i=p i=p i.

This modified version of the Projection of Violators algorithm

is known as the Pool-Adjacent-Violators algorithm, which was intro-

duced by Ayer and coworkers (1955). Let X = (x1, x2, ,xn) be a

vector of n entries.

Step 1. If x
1

< x < < xn , stop; otherwise, divide the

sequence into several monotone decreasing sequences from

left to right such that each subsequence is as long as pos-

sible, i . e . ,
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x1 > x2 > . . . > xi
1

xi
1

xi
1

. xi
2

. , xi _>

x. > > x with x. < x. for each j = 1, ,k.
+1 n 1.-1 1.

3 3k

Set r = {1, iz, , ik,n+1}.

Step 2. Set xh = Eq x.w. /Eq. w for h = 1, ... ,n where
p I. 1=p i r

and q are two consecutive indices in r such that

p < h <q .

Go to Step 1.

The justification of the algorithm is similar to that of the

Projection of Minimum Violators algorithm. Let X, X* and A

be defined as in Theorem 3.5. Let A0 a. > 0 or i = 1}. The

condition a. > 0 is the same as x.
1-1

< x.. Theorem 3.5 shows

that A
0

D A. If x
1

< x
2

< < xn, then X E M and X* = X.

Otherwise, X* = P(X I M) = P (X I MA). By the smoothing property,

we have P(XIMA) = P(P(XIS A
)IMA). Let X1 := P(X1S A ) be

0 0

represented by X1 = ZiEAo aliii
i = 1}. If xii x__ < xln' then X1 E M and X* = X1 as

and let 111 = E A0 an >0 or

indicated by Corollary 2.13.1. Otherwise, AO Al D A. Applying

the above procedure inductively, we have a strictly decreasing

sequence AO 3 Al 3 A2 3 DAkDA. The sequence will

terminate at some index k such that xkl < xk2 < < xkn The

situation that A
k

= {1} is the case when X - 37E M* where
n nx = Z.
1=1 xi w.

w..
1 1=1
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The similarity of the Projection of Minimum Violators algorithm

and the Pool-Adjacent-Violators algorithm can be observed from

Theorem 2. 16 by considering M* and M
0

:= M n S0. The closed

convex cone M
0

is the dual cone of M* with respect to the

linear space S0. There are n-1 extreme vectors in M0 each

of which is determined by P(lilSo) for some i = 2, ...,n. It is

obvious that for each i, (Y., 1.) = (Y., P(1.I S
0

)) = 0 if j i+1 and
1 3 1 3

(Y.,
1

1.
+1

) = (Yi,P(li+11S0)) = -1.
I.

Example 3. 1. Let X = (3, 2, 7, 8, 5) and let

w
1

= w2 = w3 = w4 = w5 = 10. The isotonic regression of X will be

the same if we let w1 = w2 = w3 = w4 = w5 = 1. By the Projection of

Minimum Violators algorithm, we have Tc. = 5 and

X - x = (-2, -3,2,3,0).

Step 1. al -2,
a2 a3 a4

F ={1,2,3,4}

Step 2. j =2, F = {1, 3,4}, i= 1, k = 4

yl = 1/2, y2 = 1, y3 = 2/3, y4 = 1/3

Step 3. al = 1/2, a2 = 0, a3 = 1/3, a4 = 5/3

Now, al, a2, a3 and a4 are non-negative

Step 4. y
1

= 1/2, y2 = -1/2, y3 = 1/3, y4 = 4/3, y5 = -5/3
* * * *

x1 = x2 = 2-22 x3 =63, x4 = x5 =

(Y = P(X I M*), X* = P(X I M))
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By the Pool-Adjacent-Violators algorithm, we have

Step 1. {3, 2}, {7}, {8, 5}

r = {1,3,4,6}

Step 2. X
1

= (21-, 21, 7, 6-I, 64)

Step 1. {21-, 21}, {7,61,61}

r = {1,3,6}

Step 2. X2 = 21, 64, 64, 64)

X2 = P(X I M).

111.4 On a Tree

A partially ordered set is a tree if each non-comparable pair

has a greatest lower bound but does not have an upper bound. A

finite tree has a unique minimal element r, called the root, and

each element other than r has exactly one immediate predecessor.

In a partially ordered set, if p. < v, then there exists a chain

5_ col < < j+1 such that [c,..) <
1+1

] is an immediately corn-

parable pair, i = 0, 1, ,j, where p. = coo and v = coin.. The

chain connecting p. and v need not be unique. The intersection of

chains need not be a chain. Let 0 be a finite tree, let

mi,m2, , mk be its maximal elements and let

Ch(mi),Ch(m2), , Ch(mk) be the chains which connect r and

m., i = 1, ,k. The chain Ch(mi) connecting r and m. is
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connects r and rn A
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m.. The union v Ch(Tri i) is simply E2

itself. The basic sets are upper sets with a unique minimal element;

they are denoted by U(co) with co the minimal element in the set.

The indicator of U(w) is denoted by An example of a tree will

be given below.

Let Y be a function defined on 0, let a(r) = Y(r) and for

each v other than r, let a(v) = Y(v) - Y(p.) where p is the

immediate predecessor of v. Let co be an element other than

and let Ch(w) = ,(4.,col be the chain connecting r and

co a(v) is \TM. Let Z =
(3)

a(w)1(4. Then. The sum Ev
eCh(o.)) E2

Z(w) = Ev coa(v). The set {v1v < co} is the chain Ch(w). There-

fore, we have Y = E
4) E az

,a(w)1 Since every function Y on E2

has a unique linear representation by flu): CO E 12 }, it follows that

{1
co:

(A) E S-2} is linearly independent. If Z is isotonic, then Z is

a linear combination of {1 w:(.4 E E2} such that the coefficients are

non-negative except possibly the one corresponding to lr. The

coefficient of lv

decessor of

is Z(v) - Z(p.) where N. is the immediate pre-

v provided that v differs from r. If E2 has n

elements, then there are n-1 constraints (immediately comparable

pairs) and M+ has n extreme vectors {1w: co E S-2}.

The isotonic regression over a tree can be obtained very easily

as we shall soon see in Example 3.2. Thompson (1962) introduced the
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Minimum Violator algorithm. Let X be a given function defined on

S-2 and let X* be the isotonic regression of X. If v is an

immediate successor of p. and X(v) < X(p.), then v is said to

be a violator. Among all the violators, if X(v)

mum value, then

attains the mini-

v is called a minimum violator. Let v be a

minimum violator and let p. be its immediate predecessor. Then

by Theorem 3. 3 X*(p,) = X*(v). By the smoothing property, we may

group p. and I/ as a single element p. whose X value is the

weighted average of those at p. and v and whose weight is the sum

of the weights at p. and v. Now, we have n-1 elements in

- {v}. The ordering on S2 - {v} is determined by all immediately

comparable pairs in C2 except that we take out the pair [p. <

and change all the pairs [v < co] into [p < . Applying this pro-

cedure inductively, there will eventually be no violator. Let S2
0

be

the set of remaining elements and let X
0

be the function on E-2
0

at

this stage. Define the function X* on C2 by

X*(co) = max{Xo(p.): p. < w, p. E C20}. Then X* is the isotonic regres-

s ion of X.

A modified version of the Minimum Violator algorithm is the

Minimum Upper Set algorithm which involves an improvement in the

method of grouping. Let v be a violator and let p. be its immedi-

ate predecessor. A violator v is said to be pivotal if either

X( v) = min{X(w): > p.} or v is the only immediate successor of p..
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By Theorem 3. 3 a pivotal element and its immediate predecessor will

have the same X* value. Instead of using minimum violators, we

use pivotal elements in the Minimum Upper Set algorithm.

Example 3.2. Let {(1,4), (2, 3),(2,4),(3,1),(3,2),(3,4),

(4, 3), (4,4), (5, 4)} be a tree with its ordering being specified by the

five chains {(3, 1), (3, 2), (2, 3), (1, 4)}, {(3, 1), (3, 2), (2, 3), (2, 4)},

4)}, {(3, 1), (3, 2), (4, 3), (4, 4)} and

4) }, let the weight function W have the value

one at each element in SZ and let X be the function given as

follows.

{(3, 1), (3, 2), (2, 3), (3,

{(3, 1), (3, 2), (4, 3), (5,

4

X 3.

2

1

1 2 3

Let us say the pivotal element v

4 5 i

is type I, if v is the only

immediate successor of its immediate predecessor and is type II

otherwise. The grouping of a pivotal element v and its immediate

predecessor p, into a single element p. is not necessary as long

as we keep the pair [p. < having the same function value. The
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their special relation.

The violators are (1,4), (3,2), (4,3), (4,4) and (5,4). The

element (3,2) is a type I pivotal element and elements (1,4) and

(4, 4) are type II pivotal elements. The first iteration yields the

function X1 given below.

A

X

1 2 3 4 5

The element (4,3) is the only violator. Therefore, the

average is taken over {(3, 1), (3, 2), (4, 3), (4, 4)) and the second

iteration yields the function X2.

X
2
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A new violator occurs at (5, 4). We take the average over the

set {(3, 1), (3, 2), (4, 3), (4, 4), (5, 4)}. We see that the function X3

is isotonic and hence it is the isotonic regression of X.

X

If 0 is a reversed tree, then its reversal Or is a tree.

One may use the reversal technique based on the relation,

P(XIM(0)) = -P(-XIM(Or)), to obtain the isotonic regression. The

procedure is that we change the ordering from less than to greater

than and replace X(co) by -X(co) for each (A) E 0. After we have

the isotonic regression Y of the latter problem, we define

X *(w) = -Y(w) for each u.) E S2 and X* is the isotonic regression

of X over O. For convenience, we may use the Maximum Lower

Set algorithm. The method is the same as the Minimum Upper Set

algorithm except that pivotal elements are ills such that either

X(11) = max{X(w): w < or [i is the only immediate predecessor of

v , where v is the immediate successor of 1.1.. In this situation,

we group [p. < v] into a single element v . Applications of the
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Maximum Lower Set algorithm will be found in Example 3.3 and

Example 3.5.

111.5 On a Partially Ordered Set

The structure of a general connected partially ordered finite set

is very complicated and hence algorithms for isotonic regression of

this type will not be easy to develop. Alexander (1970) introduced a

method which rewrites a partial ordering into a consistent linear

ordering. The method is much more complicated than the Pool-

Adjacent-Violator s algorithm and the Minimum Upper Set algorithm.

In the remainder of this section we will try to reduce the minimization

problem into several small problems, whenever it is possible, such

that the combination of the solutions to the small problems is the

desired solution. In a smaller problem, Alexander's algorithm will

be easier to apply.

Let S2 be a connected partially ordered finite set, let W be

a given positive weight function, let X be a given function and let

r be a subset of S-2. If Z is a function defined on C2,

f(Z;r) :=
OJ

.._,[X(c.o)-Z(co)]W(04.

we denote

Let r1, , r k
be a partition of 0, i.e. , r1, r2, ,rk

are mutually disjoint and v iri = E2, let Yi, Y2, .. , Yk be the
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restricted isotonic regression of X to r1, r2, 7 rk respectively

and let Y be defined by Y(co) = Yi(w) if co E r.. For any isotonic

fu nction Z, f(Z; .) >f(Y;r.) , i = 1,2, ,k and hence

f(Z) > f(Y). Therefore, if Y is isotonic, it is the isotonic regres-

sion of X.

Let X* be the isotonic regression of X, let [a < X* < 13]

be non-empty, let C be a component of [a < X* < 13] and let Y

be the restriction of X* to C, X I C. Let Uc be an upper set

in C, i.e. , [1 E Uc V E C and µ < v imply v E Uc. For any

Uc, define U = Uc Li [X* > p]. Then U is an upper set. By

(3. 2) and (3. 3) we have

_ X(co)W(co) < X*(co)W(co) = _ Y(W)W(W).
E UC (A.) E UC E UC

For any y between a and p , let Vc = {co C: y <X*(w) < 131

and let V = V
c

[X* > 13]. Then V is an upper set and similarly

EV(A)

X(w)W(W) <
WEV

X*(0)W(C0).
C C

The set {<,.> E C: X*(4.) > y} is an upper set in C and

V
c

{co E C: X*(w) > is the level set [y < X* < (3]. Therefore,

by (3. 2) we have
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z
E C , )

>yX(co)W(co) = Ew X*(w)W(co)E C, X*(w) >y

= z YGOW(co)
E C; X*(co) > y

and it follows that Y is the restricted isotonic regression of X

to C. The restriction of X* to any non-empty level set

[a < X* < I3], to one of its component or to the union of some of its

components is the restricted isotonic regression of X to that set.

Therefore, the following theorem has been established.

Theorem 3.6. Let X* be the isotonic regression of X,

let the non-empty level set [a < X* < 13] have components

Cl, ...,Ck and let r = k..)i
i =1

C. where 1 < j < k Then the

restriction of X* to r is the restricted isotonic regression of X

to r.

Theorem 3.7. Let r
2

be a non-empty level set, let

r
1

C F be a lower set such that (A) E r2 and w < 1-1. for some
2

E rz imply that ,-r
1,

let r
3

C F F be an upper set

such that (A) E r
2

and w > p. for some p. E r
2

imply that

CA) E F3 and let Y
1,

Y2 and Y3 be the restricted isotonic regres-

sions of X to r
1,

r
2

and r
3

respectively. If there exist a

and p such that Y1 < a, a < Y2 < p and 13 < Y3, then

X*((.0) < Y
1

(L)) for each (A) E F1, , x*((.0) = Y
2

GY2(w) for each co E r2
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and X*(w) > Y
3

(w) for each CO E r
3

where X* is the isotonic

regression of X.

Proof. Let F4 = SZ - (1'1 r
2

r3),
let Z be an isotonic

function and let Y be defined by Y(w) = Z(w) A Yi(w) on r1,

Y(w) . Y2(co) on r2, Y(0.) = z((.0) v Y3(w) on r3 and

Y(w) = Z(w) on r4. We shall show that Y is isotonic and

f(Y) < f(Z). It will then follow that X* (w) < Yi(w) for each CO E

x*((.0) = Y2(w) for each w E 1'2 and X*(w) > Y3(w) for each

E r
3.

The order-preserving property of Y on each F. is

trivial. The sets r
2

and F4 are unrelated. Since rl is a

lower set, elements in r
1

will be no greater than ay element in

r2 r3 v r4. Since r3 is an upper set, elements in r3 will

be no less than any element in r
1

r
2

L) r4.
Any element greater

than an element in r2 is in r
2

r
3

and any element less than

an element in r2 is in r r . Since Y < a
1 2

on 1'1,

a < y < f3 on r
2

and Y > p on r3, it follows that Y is

isotonic. By (4. 7), we have f(Y;r
1
) < f(Z; r

1)
and

f(Y; r3) < f(Z; r
3

) when we regard r
1

or r3 as our given

partially ordered set. Since f(Y; r2) < f(Z; r
2
), f(Y; r4) = f(Z;r4)

4
1

and f(Z) = E.
i=

f(Z; r. ), we have f(Y) < f(Z). This completes the

proof.
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Corollary 3.7.1. Let U be a non-empty upper set, let

r1 , u c be a lower set such that CO E U
c and w < p. for some

p. E U imply that W E F1 and let Y. and Y1 be the restricted

isotonic regressions of X to U and F
1

respectively. If there

exists an a such that Y
1

< a and a < Y
U

, then

X*(w) = Yu(w) for all W E U and X*(w) < Y1(w) for all W E r1.

Similarly, let L be a non-empty lower set, let r
3

C Lc be an

upper set such that w E Lc and w > p. for some p. E L imply

that w E r
3

and let YL and Y3 be the restricted isotonic

regressions of X to L and r
3

respectively. If there exists

a p such that YL < p and 13 < Y3, then X*(w) = YL(w) for

each w E L and X*(w) > Y
3

(w) for each w E F3.

Proof. For the first statement, let r
z

= U and r
3

= 4.

For the second statement, let r
1

= and r
2

= L. The results

follow from Theorem 3.7. 0

Corollary 3. 7. 2. Let r
2 be a non-empty level set, let

r
1

= {co E rc2 : w < H. for some µE r2} and let

F3 = E r 2: (.4.) > p. for some p. E r
2

}. If there exist a and 13

such that X < a on r1, a<X<P on r
2

and X> p on r
3,

then the isotonic regression of X can be obtained by considering

F2 and r 2 independently, i.e., the restriction of the isotonic



regression of X to r
2

is the restricted isotonic regression of

X to F2.

Proof. rl is a lower set, r
3

is an upper set and

r
1

r3 = 4. Let Y1, Y2, and Y3 be the restricted isotonic

regressions of X to Fr r2 and r
3

respectively. Then by the

monotonicity in Theorem 4.5, we have Y
1

< a, a < Y
2

< p and

Y
3

> R. It follows from Theorem 3.7 that X*(co) = Y
2

(co) for each

W E r2-

ri
Corollary 3.7.3. Let U be a non-empty upper set and let

c
= {co E u w < p. for some
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p. e U}. If there exists an a such that

X > a on U and X < a on r
1,

then the isotonic regression of

X can be obtained by considering U and Uc independently.

Similarly, let L be a non-empty lower set and let

r
3

= {4) E Lc: 0.) > p. for some p. e L}. If there exists a p such that

X < p on L and X > p on r3, then the isotonic regression of

X can be obtained by considering L and Lc independently.

In particular, if a maximal element has a maximum X value

or a minimal element has a minimum X value, then the value of

the isotonic regression of X at that element is the value of X at

that element.

Proof. For the first statement, let rz = U and r
3

= a. For
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the second statement, let r
1

4 and let r
2

= L. The results

follow from Corollary 3.7.2. []

The level set r
2

in Theorem 3.7, if it is connected, will be

a component of the level set [a < X* < 13] where X* is the iso -

tonic regression of X. Such a component may be obtained by

inspection of X values as indicated by Corollary 3.7.2 or

Corollary 3.7. 3. Corollary 3. 2. 3 and Theorem 3. 3 may be able to

take care of violations locally; Theorem 3.7 and its corollaries may

be able to take care of the problem globally. Theoretically, these

results are enough to obtain the isotonic regression of X. The diffi-

culties are how to determine such a component rz and how to find

the restricted isotonic regression of X to r2. Presumably, if

the longest chain in C2 has a small number of elements or upper

sets tend to have larger X values than lower sets, then the diffi-

culties mentioned above will not be serious.

When difficulties arise, the reader may want to refer to

Alexander 's algorithm. But Corollary 3. 2. 3, Theorem 3.3, Theorem

3.7 and its corollaries may be greatly helpful in reducing the problem,

as demonstrated by the following example which appears in Alexander

(1970).

Example 3. 3. Let SZ = {(i,j): i, j = 1,2,3,4} be a partially ordered

set with the ordering (i, j) < (h, k) if i < h and j < k. For each



element (i, j), the function value x.. and the weight w.. are

respectively the fraction and the denominator as given below.

X

4 1/5 2/11 1/2 1/3

3 1/6 1/7 1/8 1/3

2 1/8 1/10 1/7 1/2

1 1/16 1/7 4/39 1/6

1 2 3 4
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By inspection, one may find out that U = {(3, 4), (4, 2), (4, 3),(4,4)}

is an upper set and X > 1/3 on U, X < 1/5 on Uc; (1,1) is the

minimal element with the minimum X value; r
2

= 1(1,4), (2, 4)}

is a level set with r
3

= {(3, 4), (4, 4)} and

r = {(1, 1), (1, 2), (1,3),(2,1), (2,2), (2, 3)} such that X < 2/11 on

ri, 2/11 < x < 1/5 on r
2

and X > 1/5 on andand also

A2 = {(4, l)} is a level set with A3 = {(4, 2), (4,3), (4,4)} and

Al {(1, 1), (1, 2), (1, 3)) such that X < 1/6 on A1, X = 1/6 on

A2 and X >1/6 on A3. From Corollary 3.7.2 and Corollary
J.

3.7.3, x
11

= 1/16 where X* is the isotonic regression of X

and we may consider U, rz and A2 independently. The set U

is a reversed tree and by the Maximum Upper Set algorithm we have
* * *

x34 -
Z x43 x44 2/5. The set r

2
is a linearly ordered set

and by the Pool-Adjacent-Violators algorithm we have

x14 =x24
3/16. The set A2 is a singleton and hence x

41
= 1/6.



Therefore, the remaining problem is the following:

3

X
1

2

1

1/6 1/7 1/8

1/8 1/10 1/6

1/7 4/39

1 2 3

Since (1, 3) and (3, 2) have the largest X value 1/6,

Theorem 3.3. shows that x13 x23 and x
32

= x33. By the
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smoothing property as described in the Maximum Lower Set algorithm,

we may replace 1/7 and 1/8 at (2,3) and (3, 3) by 2/13

and 2/14 respectively and cross out elements (1, 3) and (3, 2).

The weights at (2,3) and (3,3) now are 13 and 14.

3

X2 2

1

2/13 2/14

1/8 1/10

1/7 4/39

1 2 3

At this stage we have six elements. Since X
2

> 1/7 in the

upper set U = {(2, 3), (3, 3)) and X
2

< 1/7 on Uc, by Corollary

3.7.3 we may consider U and Uc independently. The set U is

linearly ordered and by the Pool-Adjacent-Violators algorithm we

have x23 = x33 = 4/27. Recall that x13 = x23 and x32 = x33 , so



x
13

= x
23

= x32 = x33 = 4/27.

X3
2

1

1/8 1/10

1/7 4/39

1 2 3
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For a set with four elements, the problem can always be solved

very easily. If [p. < v] is an immediately comparable pair and

X(1.1.) > X(v), then by Corollary 3.2.3 we shall group p. with at least

one of its immediate successors or group v with at least one of its

immediate predecessors. It follows that xiz = x22, xzi x22 or

x21 = x33. Let us consider U = {(1,2), (2,2)1. This is an upper set

and the restricted isotonic regressions Y and Z of X3 to U

and U
c are v 'v = 2/18 andy12 22 z21 z31 = 5/46. The value

2 /18 is larger than 5/46 and from Corollary 3.7.1 we have

xiz = xzz = 2/18 and x21 = x22 = 5/46. Therefore, the isotonic

regression X* of X has been obtained. Suppose we group (2, 1)

and (2,2) first. Then we have a linearly ordered set with function

values from the smallest element to the largest element being 1/8,

2/17 and 4/39. The Pool-Adjacent -Violator s algorithm shows that

x12 x21 x22 x31
= 7/64. But x12 w12 + x22 w

22
= 2 and

x12 w12 x22w22 63/32 which violates (3. 3) . Therefore, the

proper grouping should be 1(1,2), (2,2)1 or {(2,1), (3,1)1 and either

one will lead to the final solution. The isotonic regression X* of



X is given below. 0

X*

J

4 3/16 3/16 2/5 2/5

3 4/27 4/27 4/27 2/5

2 2/18 2/18 4/27 2/5

1 1/16 5 /46 5/46 1/6

1 2 3 4/
111.6 Some Related Problems

Let 0 be a partially ordered set and let W be a given

weight function. For any X there is an isotonic regression X*

of X. Let {a l' ,. . a.
k

} be the range of X* and let

F. = [X* = a i = 1, ...,k. The sequence
i
l r

1,
, rk is a parti-
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tion of 0. Such a partition may possibly be determined by Theorem

3.3, Corollary 3.7.2 and Corollay 3.7.3 without regarding what the

weight function is. Therefore, we will be able to select another

weight function W
0

of interest such that the function Y defined by

Y(w) = Z X(co)W (w) /Z W (w) for co E r., is isotonic. Ourco e r. o (...) eri o 1
1

interest could be the weight function, the isotonic regression or both.

The problem we are going to study is to minimize

f(Z,W) = E
CJ E

,[Z(co)-X(w)]2
W(c..))

JZ

subject to Z E M and subject to some conditions on the weight
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function W. For each weight function W, there is an isotonic

regression X*(W). Since f(Z, W) > f(X*(W), W), the minimization

problem can be studied as a function of W, i.e. ,

h(W) = f(X*(W), W).

The isotonic regression X *(W) may not heavily depend on W. If

that is the case, the problem can be solved very easily.

Example 3.4. The problem is to minimize

"'W) (z11-1/7)
2
w11 (z21-1/8)

2
w21 (z31-1/3)

2
w31

subject to

and

+ (z 12-2/11)2w
12

+ (z
22

-1/2)2
w22 + (z 32

-1/3)2w
32

z.. < zhk if i < h and j < k

w.. > 1/5 i= 1,2,3; j= 1,2
iJ

w. +w. = 1, i= 1,2,3
11

Let X be given by

2 2/11 1/2 1/3

1 1/7 1/8 1/3



For each W, let X*(W) = (x..

W. Then x11 = x21 = (w
11

/7+w
12

/8) /(w
11

+w12),

and x22 x32 (w22/24-w32/3)/(w22+w23).

with respect to

) be the isotonic regression of X

x31 = 1/3, x
12

= 2/11

Therefore,

h(W) = f(X *(W), W)

* * *
= (1/7-x

11
)
2
w

11
+ (1/8-x

21
2
w

21
+ (1/2-x22)

2
w22

* 2
+ (1/3-x32) w32

wl1w21(w11+w21)
-1/111A

w22w32(w22+w32)
-1 /36

For fixed w21, w22 and
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w32, h is an increasing function of w
11

over the range [1/5,4/5] and hence w
11

= 1/5 where W* is

the optimal solution. Similarly, w32 = 1 /5. Let X = w21. We

have

Since

h(X) = X/3136(1+5X) + (1-X)/36(6-5X) where X. E [1 /5) 4/5].

h is monotone decreasing, X = 4/5. The optimal solution

(X*, W*) has been obtained and it is given below.

X* W*

2 2/11 5/12 5/12 2 4/5 1/5 1/5

1 9/70 9/70 1/3 1 1/5 4/5 4/5

1 2 3 1 2 3J/
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Another problem we are interested in is the situation when the

ordering imposed on the set 0 could be one of k given types.

We want to minimize

f(Z) =
(.4.) E a

[(4.)) -X(4)1 W(0.)

subject to Z E
1.

M(0, < .) where M(C2, < .) is the family of
=1 1 1

isotonic functions with respect to the ordering
1

i = 1, , k.

Let X. be the isotonic regression of X with respect to the

the1 1
:51/4

optimal solution is X. such that f(X.) = min{f(X. i = 1, ...
3

Example 3.5. The problem is to minimize

f(Z) = (z
1

-3)2 + (z 2-2)2 + (z 3-7)
2 + (z 4-8)2 + (z 5-5)2

subject to Z being unimodal, i.e. , z1 < z2 < < z and

z. > z.
J+1

> > z
5

for j from one to five. For each ordering

< ., the pair (2, < .) is a reversed tree where 0 = {1, 2, 3,4, 5 }.

The isotonic regressions of X = (3,2,7,8,5) with respect to these

orderings can be found very easily and the optimal solution is

(2.5,2.5,7,8,5). [I

Bounded isotonic regression is isotonic regression with an

addition constraint:
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Z < Z < Z
1 2

where Z1 and Z2 are two given functions. The problem was

introduced by van Eeden (cf. Barlow and coworkers (1972)). Let X*

and X be the isotonic regression and the bounded isotonic regres-

sion of a given X over a partially ordered finite set and let

{z < Z < z
2

}. Since 1\'\/I is a cosed convex set, if it

is non-empty then the bounded isotonic regression exists and is unique.

By the monotonicity (cf. Theorem 4.5) of the isotonic regres-

sion, if Z
1

< Z < Z
2

and Z E M, then Z
1

< Z < Z
2

where

Z1 andand Z2 are respectively the isotonic regressions of Z1 and

Z2. Without loss of generality, we may assume that Z1 and Z2

are isotonic. If there is an co such that Z
2

(co) < Z1(0.0, then there

is no feasible solution. If Z
1

< Z
2

and Z1 (co) = Z
2

Z2(w) for some

w, then X(co) = Z1 (w). In the remainder of the section, we shall

assume that Z1 and Z2 are isotonic and Z
1

< Z
2

.

Theorem 3.8. If Z1 and Z2 are constant functions with

values a and 13 respectively, then X = (X* v a) A R

Proof. Let U = [X* > p], L = [X* < and r = < X* <

From Theorem 3.6, X*I U, X*I L and X*I r are the restricted

isotonic regressions of X to U, L and F respectively. Let

Z E M, then Z < 13 on U and X* > p, on U. By (4. 8), we
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have f(Z v (3; TJ) < f(Z; U) where f(Z; U) := E
w EU

[X(co)-Z(co)] W(co).

f(Z A a; L) < f(Z; L). Since f(Z; F) > f(X*; F),

ZAa= a and f(Z) = f(Z;U) + f(Z; L) + f(Z; F), it fol-

Similarly,

zvP--

lows that X = X* on F, X = a on L and X = p on U.

Let a= min{X*(co):o.) E S-2}, b= max{X*(c0):(1.) E S-2},

a = min{Z2(u));c,) E C2} and p = max{Zi(w):co E S-2} Let

U = {co: Z = p}, Ub = {0.): z i(w) > b}, L = {u.): Z2(w) = a

La = {co: Z2(w) <a}.

and

Lemma 3. 1. If Ub is non-empty, then 5\C(co) = Z1(w) for
A

each CA) E U. If La is non-empty, then X(co) = Z (co) for each

E L.

Proof. If Ub is non-empty, then p > b. For each co E U,

A
X(w) > 3. We are going to show X(w) = p . Note that X* < b and

A
hence X* < p P. If Z E A, then ZAPE M. By (4.8),

n n
f(Z) >f(Z A p). Therefore X = X A p . Similarly if La

empty then X(w) = Z2(w) for each w E L.

is non-

Lemma 3.2. Let X* be a constant function. If La is

empty, then X > X*. If Ub is empty, then X* > X.

Proof. If La = 4, then Z2 > a = X* and it follows that
/.

Z E M implies Z v X* E M. By (4.7), f(Z) > f(Z v X*). Therefore
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X
A A nX = X v X*. Similarly, if Ub is empty, then X* > X. 11

Theorem 3.9. Let C2 = {w
1'

,con} be a linearly ordered

set with the ordering wi < i = 1, 2, ... , n-1. The bounded

isotonic regression of X can be obtained by considering each level

set [X* = c ] independently, where X* is the isotonic regression

of X.

Proof. Let [X* = a] = , , co.} and
I 1+1

[x* = b] = {coin., . , wk} be two adjacent level sets with a < b and

let Xa and be the bounded restricted isotonic regressions ofb

X to [X* = a] and [X* = b]. If we can show X (w.) < X (4). ),a b 3+1
A

then X(w) = Xa(w) for each w E [X* = a] and X(w) = Xb(w) for

each CO E [X* = b]. By Theorem 3.6, the restricted isotonic regres-

sion of X to each level set [X* = c] is the constant c. There-
Afore, if Z (co ) > a then by Lemma 3. 1 X (w.) = Z (co.); other

1 j a 3 1 3

A
wise, by Lemma 3.2 X (co.) < X*(w.) = a. Similarly, ifa j j

Z
2 3+1

) < b we have X
b 3

(w.
+1

) = Z
2 3

(w.
+1

) and otherwise

(w. ) >b If Z (w.) > a, then X (co.) = Z (w.) < Z )b j+1 1 J a 1 3 1 3+1

< X (w. ). If Z ) < b, thenb 3+1 j+1
A
X (w.) < Z W.) < Z ) = X (w ). Otherwisea 3 3 2 j+1 b j+1

X (co.) < a < b < X (w. ). This completes the proof.a j b 3+1 0

Example 3.6. Let X = (25,13,2,15,14,21,9,33,25,15),
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Z
1

= (10, 11. 5, 13, 14. 5, 16, 17.5, 19,20.5, 22,23.5) and

Z
2

= (13, 14. 5, 16, 17. 5, 19, 20. 5, 22, 23. 5, 25, 26.5). The problem is

to minimize

10 2f(Z) = E1.
=1 1

(x. -z.)
1

subject to z
1

< z
2

< < z
10 1

and Z < Z < Z
2

.

The isotonic regression X* of X is

X* = ( 1 3 . 3 , 1 3 . 3 , 1 3 . 3 , 1 4 . 5 , 14.5, 1 5 , 1 5 , 24. 3, 24. 3,24. 3). Theorem

3. 9 shows that the bounded isotonic regression X of X can be

obtained by considering the set {25, 13, 2}, {15, 14 }, {21, 9} and

{33, 25, 15} of X values independently. For the first partition

{25, 13, 2 }, the average is 13.; and La = {1}. By Lemma 3. 1,

x
1

= z
21

= 13. Therefore, x2 and x3 are the optimal solution to the

following problem. Minimize (13-z2)2 + (2 -z3)2 subject to

13 < z2 < 14.5, 13 < z
3

< 16 and z
2

< z
3

. Hence x2 = 13 and

3 = 13. For the second partition {15, 14 }, the average is 14.5 and

Ub = {4, 5}. By Lemma 3. 1, xs = z1s = 16. Therefore, x4 is the
2optimal solution to the problem: minimize (15-z4) subject to

14.5 < z4 < A16. Hence x4 = 15. Similarly, for the third partition

{21, 9} we have x7 = 19 and it follows that x
A = 19. For the last

partition {33, 25, 15}, we have x8 = 23.5 and it follows that

x9 = x10 = 23.5. The bounded isotonic regression is therefore
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^X = (13,13,13,15,16,19,19,23.5,23.5,23.5). In order to check that
AX has the correct values, one may refer to the Kuhn-Tucker conch-

tion (cf. Appendix IV). J
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IV. CONDITIONAL EXPECTATION GIVEN A o--LATTICE

IV. 1 o--Lattices and E-Measurable Random Variables

Let E be a family of subsets of a given set 7. It is said to

be a lattice if it contains S2 and 9( and it iSualosed under union

and closed under intersection. A field is a lattice which contains

complements of sets in the family. A o--lattice is a lattice which is

closed under countable union and closed under countable intersection.

A cr.-field is a cr-lattice which is also a field. A complete lattice is a

lattice which is closed under arbitrary union and closed under arbi-

trary intersection. The family E is said to be a monotone class if
co

whenever {An} is a monotone sequence in Z, both vn=1 An
co

and rmn=1 An are in E.

The collection of complements of a monotone class is a mono-

tone class and the collection of complements of a o--lattice (lattice,

or complete lattice) E is a cr-lattice (lattice or complete lattice);

such a collection is denoted by ZC. The intersection of an arbitrary

collection of o--lattices is a o--lattice. In particular, the intersection

of a o--lattice E with its complement Ec is a o--field. Let r
be a family of subsets of O. The o--lattice generated by r is the

intersection of all o--lattices which contain F. Similarly for the

definition of 6 -field generated by a family of subsets in 0.
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Let < be a quasi-ordering on S-2 and let E be the family

of all upper sets. Then Z is a complete lattice, such a complete

lattice is said to be induced by <. On the other hand, let r be a

family of subsets of C2 and let < be the binary relation defined

on S-2 so that p. < v if p. E U and U E F imply V E U; if no

set in r contains then p. < v for every V E I2. Then the

binary relation < is a quasi-ordering on C2; such an ordering is

said to be induced by r.
Let A be the collection of all families of subsets of C2 each

of which induces the same quasi-ordering <. Let r E A . For each

E 0, let U(w) = r-{U:0) E U, U E r} and let

L(w) = n IL: Cil E L, Lc E and if there is no set in r which con-

tains w, set U(w) = C2 and if every set in r contains w, set

L(w) = C2 . It is clear from the definitions, for each pair and

in C2, µ < v, V E U(µ) and µ E L(v) are equivalent. Since

U(p.) is the set of all elements I/ such that 11 < v, it follows that

for each p E S2, U(p.) is the same for all families in A.

Let F E A , and let U E r. Then for each w E U, we have

U(w) C U and hence U = u
E u

_U(w). Let Z be the family of

arbitrary unions of U(w)Is. If U E Z, then for each w E U we

have U(w) C U. Since Z contains every U(w), Z E A and if

r E then we have F C E. The family Z is maximal in A in

the sense of set inclusion. By the convention, a void union of sets is

C.) E
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the empty set. The family Z contains S-2 and 9!, and it is

closed under arbitrary union. We shall show that E is also closed

under arbitrary intersection. It will then follow that E is a corn-

plete lattice. Let {U a : a E A} be a subfamily of E and let

A= E .11CL
A U a . If w E A, then W E Ua for each a E A and hence

U(w) C Ua for each a E A. It follows that

A = {(.4 C EAU(w) Cw EA

and hence A E Z. If A = ri, then A E E. If Z' is a complete

lattice in A , then Z' contains {U(w)tw E 1-2}. It follows that

C ZI But we have just shown that r C Z for each r E p .

Therefore, the collection A contains at most one complete lattice.

Let < be a quasi-ordering in 0, let EI be the complete

lattice induced by < and let <' be the quasi-ordering induced by

Z1. Let 1.1. and V be in O. If p. < V3 then every upper set

U E E' which contains p., contains v . It follows that p. <' v .

On the other hand, if p. v then there exists an upper set U E

such that p. E U and v U. It follows that p. v and therefore

< and <1 are identical. The complete lattice V is in A ,

thus we have proved the following theorem.

Theorem 4.1. Let S2 be a given set. Quasi-orderings on S2

and complete lattices of S2 are in one-to-one correspondence such
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that if < corresponds to Z, then < induces Z and Z

induces <.

Let A, be the collection of all families of subsets of C2 each

of which induces the same quasi-ordering <. We have shown that

the maximal element in A is the complete lattice induced by the

quasi-ordering <. However, minimal elements in A need not be

unique.

Let <
1 2

and < be two quasi-orderings on 0
1

. < is

said to be finer than <
2

if for each pair p. and V in S-2,

p. <
1

v implies
2

< v V. Let rl and r
2

be two families of

subsets of C2 and let <
1 2

and < be the quasi-orderings

induced respectively by r1 and r
2.

If r
2

C r
1

and p. <
1

then every U E r
1

which contains contains v ; so does

every U E r2. It follows that <1 is finer than <2. But if <1

is finer than < 2' it need not be true that r
2

C r
1.

On the other

hand, let ZI and Z2 be the complete lattices induced respec-

tively by two quasi-orderings < and < on 0. Let <
1 2 1

be finer than <
2

. For each co e S2, let U.(w) be the set of v's
1

such that c,.; <
1

v , i = 1, 2. If p. E U
2

( co) , then U1(11) C U
2

(w)

the family of
2

arbitrary unions of Ui((.0)'s for i = 1,2, E2 C E1. Thus we have

proved the following theorem.
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Theorem 4.2. Let C2 be a given set, let <1 and <
2

be two quasi-orderings on 0 and let
E1

and E2 be the com-

plete lattices induced respectively by < < . Then <
1 2 <1

is finer than <2 if an only if E2 C zi.

The relation "finer than" on quasi-orderings of C2 is by

itself a partial ordering. The finest quasi-ordering is the one induced

by the power set of C2, and the least fine quasi-ordering is the one

induced by {0, a}. Let {< a: a E A} be a collection of quasi-

orderings on C2, and let A = {< < is finer than < for eacha

a E A}. We claim that A has a unique minimal element < inm
the sense that < E A implies < is finer than < . For each_ m
a E A, let Z a be the complete lattice induced by < Let

= {Z:Z is a complete lattice, E 3 E a for each a E A} and let

Em = Z. Then Em is a complete lattice. The quasi-ordering

< induced by Z is finer than < for each a E A. If <mm a
is finer than < a for each a E A, then E 3 Ea for each a E A

where Z is the complete lattice induced by <. Since Z 9 Zni,

< is finer than <m . Similarly, if A = {< : < a is finer than <

for each a E A}, then t has a unique maximal element < inm
the sense that < E A implies <

m is finer than <. Thus, we

have proved the following theorem.
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Theorem 4. 3. Let C2 be a given set. The relation "finer

than" on quasi-orderings of S-2 is a partial ordering such that every

non-empty collection of quasi-orderings of S-2 has a greatest lower

bound and a least upper bound with respect to the partial ordering

"finer than".

Let <
1 2

and < be two quasi-orderings induced respec-

tively by complete lattices E and Ec. Then p. <
1

v if and only

v< p, for each pair p. and v in O. If U E E n Ec, then

U and Uc are unrelated with respect to <
1

A complete lattice

E is a field if and only if U(co) is an equivalence class for each

e. , V E U(P.) implies µ E U(v) for each pair p. and

where U(w) is the set of all v's such that co < v with the quasi-

ordering < induced by E. A quasi-ordering < is partially

ordered if and only if U(p.) = U(v) implies la= v for each pair p.

and v . A partial ordering has a tree structure if and only if for

each pair p. and v we have U(P.) n U(v) = q, U(N,) C U(v) or

U(v) c U(p.) A tree structured partial ordering is linearly ordered

if and only if U(p.) n U(v) I ci for each pair p. and v .

When S-2 is finite, every lattice is a complete lattice. Let

= R and let < be the natural ordering of real numbers. The

complete lattice corresponding to < is the o--lattice generated by

(a, +x) for all real a. Let 0 = R2, let < be the partial
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ordering defined by (a, (3) < (a, b) if a < a and 13 < b, let Z

be the complete lattice corresponding to <, let U E E with

U and let f be the extended real-valued function defined on R

such that f(x) = inf{y:(x,y) E U}. It is clear by the definition that if

(x, y) E U and (x, y) < (a, p) then (a, 3) E U. Let x1 and x2

be two real numbers such that x
1

< x2. Since y > f(x 1) implies

(x1,y) E U and (x2, y) E U, f(xl) > f(x2) and hence f is mono-

tone decreasing. It follows that {(x, y):y > f(x)} C U C {(x,y):y >f(x) }.

Let E0 be the family of Borel measurable sets in E. Since the

family of Borel measurable sets in R is a cr-lattice, E
0

is a

cr-lattice. It is clear that the partial ordering induced by E
0

is the

same as that induced by Z. It follows that
0

is the o--lattice

generated by U(a, (3) = {(a, b): a > a, b > p} for all (a, (3) E R2.

As far as measurability is concerned, our interest will be in

cr-lattices rather than complete lattices. An element of a o--lattice

E is an upper set with respect to the quasi-ordering indueced by E.

However, an upper set with respect to the quasi-ordering induced by

a o--lattice E need not be in E.

A a-- lattice is a monotone class. By a proof analogous to that of

the Monotone Class Theorem, one cah show that a monotone class

which contains a lattice Z
0

contains the cr-lattice generated by

E0. It follows that a monotone class which is a lattice is a o--lattice.
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Let r be a family of subsets of O. The (-lattice

generated by r can be described as follows. Since 0 and (6

are in Z and the o-- lattice generated by r L.) {0,4} is Z,

without loss of generality we may assume 0 and in r. Let

r
0

= r and for each ordinal number a > 0, let ra be defined

inductively by

00r a = tk) =1 Arn n=1(n B
n

)1 An, , Bm E F }.
m

Let A = v
a< 13

r a where (2. is the first uncountable ordinal num-

ber. Since ra C Z implies r
a+ 1

C Z and since r
o

C Z, by

the transfinite induction A C Z. On the other hand, if {Cd C A,

then for each n there is an < p such that Cn E A a . Let
n

a = sup nan. Then a < p and Cn E Aa for each n. Therefore,

n= 1Cn and nn=1Cn are in r
a+1

and hence they are in A.

It follows that A is a o--lattice containing r and thus Z = A.

A a-- lattice Z is said to be linearly ordered if whenever

U I, U2 E E then either U
1

C U2 or U2 C Ul If Z is a lin-

early ordered a-- lattice, then so is Ec and in such a situation
zc is the trivial o--field {0, d} . If 0 is a linearly ordered

set, then the collection of all upper sets is a linearly ordered

a-- lattice. However, the ordering induced by a linearly ordered

o--lattice need not be linear.



93

Let (0, F, P) be a probability space, i.e. , F is a o--field

of subsets of 0 and P is a probability measure on F. A

random variable is an equivalence class of extended real-valued

F-measurable functions defined on 0 such that each pair of func-

tions in the class differ by a set of P measure zero. Therefore,

the term "almost everywhere" will be omitted from the context.

Whenever we say that a random variable satisfies a property, it

means that one of its representations satisfies that property. It is

implicit that if a random variable is integrable, then it is finite.

Let E be a sub-o--lattice of F. A random variable X is

said to be E-measurable if [X > a] E E for each real number a

or equivalently [X > a] E E for each real number a. The family

of E-measurable random variables is denoted by R(E). Indicators

of upper sets in Z are E-measurable. If X is a random variable,

then the family of all sets [X > a] and [X > a] for all extended

real numbers a is a IT-lattice. Such a o--lattice, denoted by E(X),

is said to be induced by X. The o--lattice Z(X) is linearly ordered.

The family of all sets [X E B] for all Borel measurable sets in the

extended real line is a o--field. Such a o--field, denoted by F(X), is

said to be induced by X. It is obvious that the intersection of all

o--fields containing E(X) is the o--field F(X). Therefore F(X) is

the o--field generated by E(X).
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If X1 and X2 are E-measurable random variables, then so

are X1 + X2, X 1V X2, X1AX2 and 5X
1

for each 5 > 0 (cf.

Barlow and coworkers (1972)). Let {Xn} be a monotone increasing

sequence of E-measurable random variables and let X be defined by

X(co) = lira X (co) for each co. Then X = V X and
n-00 n n=1 n

[X < a] = ,- °° [Xn
< a] for each a. Therefore,

n=1
co

[X > = vn=1 [Xn > E for each a and X is Z-measurable.

Similarly, the limit of a monotone decreasing sequence of

E-measurable random variables is E-measurable. It follows that the

upper limit and the lower limit of any sequence of Z-measurable ran-

dom variables are E-measurable. In particular, the limit of a point-

wise convergent sequence of E-measurable random variables is E-

measurable. Thus, we have shown that R(E) is a convex cone

which is closed under countable meet, closed under countable join

and closed under pointwise convergence.

A random variable is simple if its range is finite. A simple

random variable is E-measurable if and only if it is a finite linear

combination of indicators of upper sets in E such that the coeffi-

cients are non-negative except the one that corresponds to 1. A

non-negative Z-measurable random variable is the limit of a non-

decreasing sequence of simple E-measurable random variables. An

arbitrary E-measurable random variable X is the limit of a

sequence of some E-measurable random variables {X
n}

such that
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IX I < IXI for each n. Let X be a E-measurable randomn

variable and let f be a non-decreasing function defined on the

extended real line. Then the random variable f OX is Z-

measurable.

IV. 2 Conditional Expectation as a Generalized Projection

Let L 1(0, F, P) and L
2
(0, F, P) be the linear spaces of

integrable random variables and of square-integrable random vari-

ables respectively. When there is no ambiguity, we shall use Ll

and L2. The linear space L2 is a subspace of L
1.

Let E be

the operator defined by

(4. 1) EXY =SXYdP

for each pair of random variables X and Y, provided that the

integral on the right-hand side exists. If the random variable Y is

the constant random variable 1, then we shall use EX, the inte-

gral of X, instead of EXY when the latter exists. The operator

E restricted to L
2

x L2 is an inner product. The linear space

L
2

with the inner product E is known to be a Hilbert space. The

norm of X E L2, II X is the square root of EX .

The convex cones L
1

R(E) and L
2

R(E) are denoted
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briefly by L1(Z) and L2(Z) respectively. Let {Zn} be a

sequence in L2(Z) which converges to Z in L2, i.

11Zn-Z II 0 as n C° Then Z E L2 and there exists a sub-

sequence {Z
n

1} which converges to Z pointwise (cf. Ash (1972)).

It follows that Z E R(Z) and hence L2(E) is a closed convex cone

in L2. The uniqueness and existence of the projection P(X I L2(E))

for each X E L2 follows from Theorem 2.1. Theorem 2.7 shows

that a random variable X* E L2(E) is P(XIL
2

(Z)) if and only if

E[(X-X*)X*] = 0 and E[(X-X41Z1 < 0 for each Z E L (Z). Let

X* = P(XIL (Z)). Since constant random variables are in L2(E),

we have

(4.2) EX* = EX.

For each Z E L2(Z), there is a sequence of simple random varia-

ables {Zn} C L2(E) and IZ
n

I < IZI for each n such that Zn

converges to Z pointwise. For each n, I (X-X*)Zni < I X.-X*11Z Ii
Since IX-X*11Z1 is integrable, by the Dominated Convergence

Theorem E [(X.-X*)Z] = lim E[(X-X4)Z ]. It follows that the con-
n Go n

dition E[(X-X*)Z] < 0 for each Z E L2(Z) is equivalent to

E[(X-X*)113.] < 0 for each upper set U E Z. Brunk (1965) showed

that if X* = p(x1L (E)) and g(X*) E L2 for a real-valued function

g, then E[(X-X*)g(X*)] = 0. In particular, E[(X-X*)1B(X*)] = 0

for each Borel set B Therefore, a necessary and sufficient
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condition for P(X I L2(E)) can be stated as follows.

Theorem 4. 4. A random variable X* E L 2(E) is P(X I L2(E))

if and only if X* satisfies

(4. 3)

and

(4.4)

E[(X-X*)1B(X*)] = 0 for each Borel set B

E[(X-X*)1u] < 0 for each U E E.

Theorem 2. 3 shows that E(X-Z) 2 > E(X -X*)2 + E(X* -Z)2 for

each Z E L2(E). By (4. 2), we have E(X-X*) = 0 and hence

E(X-Z) = E(X*-Z). It follows that

Var(Z-Z) > Var(X-X*) + Var(X*-Z) for each Z E L2(E).

In particular , Var X > Var X* + Var(X-X*) where the variance of

a random variable Z is defined by Var Z = E(Z -EZ) 2. Theorem

2.7 and (4.2) show that

(4. 5) Cov(X, X*) = Var X*

and

(4. 6) Cov(X, Z) < Cov(X*, Z) for each Z E L2(E)

where the covariance of a pair of random variables X and Z is

defined by Cov(X, Z) = E(X-EX)(Z-EZ).

If Cov(X, Z) < 0 for each Z E L2(Z), then by Theorem 4. 4
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Let X E L2, let Y E L2(E) and let X* = P(X I L2(Z)). If

E[(X-Y)1B(Y)] = 0 for each Borel set B, then E(X-Y)Y = 0 and

EX = EY. Since E[(X-X* )Y] < 0, we have

EY 2 = EXY < EX' Y < (EX* 2EY2)1/2 and hence EY 2 < EX *2. By

the fact EX* = EY, Var Y < Var X*. Let T E L2. If

E[(X-T)1u] < 0 for each U E Z, then E[(X-T)Z] < 0 for each

Z E L2(Z). In particular, E[(X-T)X*] < 0. By the fact that

2EX* = EXX*, we have EX*2 = EXX* < ETX* < (EX*2ET
2)1/2

and

hence EX*2 < ET 2.

If Z
1

and Z2 are in L 2(Z), then so are Z1 v Z2 and

Zi n Zz. Since X* + Z = X* v Z + X* /\ Z for each Z E Lz, by

(4. 5) we have Cov(X -X *, Z) = Cov(X-X*, X* v Z) + Cov(X-X, X*A Z).

For each Z E L 2(Z), by (4. 6) we have Cov(X-X*, Z) < 0,

Cov(X-X *, X*v Z) < 0 and Cov(X-X*, X* A Z) < 0. It follows that

Cov(X-X*, Z) < Cov(X-X*, X*v Z) and

Cov(X-X*, Z) < Cov(X-X*, X*A Z). It is clear that

1X*-Z v X*I < I X*-ZI and I X*-Z A X*I < By the iden-

tity E(X-Z) 2 = E(X -X*)2 + E(X * -Z)2 - 2E[(X-X*)Z] and the iden-

tities when Z is replaced respectively by Z v X* and Z A X*,

we have

(4. 7) E(X-ZvX*) 2 < E(X-Z) 2 and E(X-Z AX*) < E(X-Z) 2
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for each Z E L2(Z).

By (4. 2) and by an argument similar to that described above,

C(X-X*, Z) < Cov(X-X*, Z v 'y) < 0 and

Cov(X-X*, Z) < Cov(X-X*, Z A y) < 0 for each Z E L 2(E) and for

each real number N. If a < X < p, then by the monotonicity in

Theorem 4.5 we have a <X* < p. Suppose a< x* < p for a pair

of real number a and R. It is obvious that I X*-Z V al ,

Ix *-ZARl are bounded by I X*-Z I . By a proof analogous to that of

(4.7), we have

(4.8) E(X-Z a)
2 < E(X-Z) 2 and E(X-Z 13)2 < E(X-Z)2

for each Z E L2(Z). Consequently, E[X-(Z V a) A P]2 < E(X-Z)2.

(2.6) shows that E(P(X I L
2

(Z)) - P(Y I L
2

(Z))) 2 < E(X-Y) 2
and

hence Var(P(X I Lz(E))-P(Y I L2(E))) < Var (X -Y) for each pair X,

Y E L2. Let Zo be a sub-a--lattice of E. Then L (E
0

) is a

closed convex cone contained in L (E). (2.7) shows that

L2(E0)))2(Z
0

))) < E(X-P(XIL
2

(E
0

)))
2

- E(X-P(XI L
2

(Z))) 2,

(2. 17) shows that Var(P(X I L2(E))-P(X I L2(E0))) < Var(P(X I Lz(Z)))

Var(P(XIL
2

(E
0

))) and (2.16) shows that

Var P(X I L
2

(Z
0
)) < Var P(P(X I L

2
(L)) I L

2
(E

0
)) < Var P(XIL

2
(E)) < Var X.

Some other properties of the generalized projection P(XIL2(Z)) will

be given in Section IV. 4.
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IV. 3 Conditional Expectation Given a cr-Lattice

Conditional expectation given a o--lattice is an extension of

generalized projection on the closed convex cone L 2(E). Let X be

a random variable defined on the probability space (0, F, P) and let

E be a sub-o--lattice of F. A random variable X* E R(E) is said

to be the conditional expectation of X given E if X* satisfies

(4. 3) and (4. 4). The conditional expectation of X given E need

not exist. If it exists, then it is unique (cf. Theorem 4.6); such a

random variable is denoted by E(XIE).

If X E L1, then by Theorem 4.7, E(X I E) exists. Let

X* = E(X I E) for an X E L
1.

The conditions (4. 3) and (4.4) can be

represented as

(4. 9)

and

(4. 10)

X dP = X* dP for each Borel set B
[X*E B] [X*E B]

c X dP < S X* dP for each U E E.

It follows that X* E L
1

and EX = EX*. (4. 9) shows that X* is

the Radon-Nikodym derivative of the measure p. with respect to

P restricted to the o--field F(X":9 where p.(A) = E(X 1A) for

each A E F. (4. 10) implies that EXZ < EX*Z for every Z E R(E)

provided that both integrals exist. If E is by itself a o--field, then
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EXI = EX*1 for each U E Z and hence X* is the Radon-

Nikodym derivative of the measure 11 given above with respect to P

restricted to Z. It follows that conditional expectation given a

cr-field is a special case of conditional expectation given a 6- lattice.

Example 4.1. Let 0 = (-1/2,1/2), let F be the family of

all Borel subsets of 0, let P be the Lebesgue measure on F

and let Z be the o--lattice induced by Z where Z(w) = co for

each w E O. Let X be the random variable defined by

X(w) = 1/1w1 if ci.) 4 0 and X(0) = 0. By the definition, one can

show that the conditional expectation of X given Z does not exist.

Another way to see the non-existence of E(XI Z) is by (4. 13).

Let Zs = inf{(t-s)-1(EX1(s,t)):s < t < 1/20(s,112) and let

Ys = sup{(s-r)-1(EX1(r,o): -1/2 < r < s}1 +001[s,1/2) for

each s E O. For s > 0, Zs = ( -1n2s) -11
(s,1/2) and Ys = + co

For s < 0, Zs = s1-11( s 1 / 2 )
and

Y
s= Is11+0.91

Z0 +00(0,112) and
-11(-1/2,$) (s,112). For s 0, Z

Y
0

= +00. Let Z =V sE0Zs and let Y = As Es.2y.s. Then Y = Z

and Z(w) = X(w) if co < 0 and Z(w) = + 00 if co > 0. If E(X I Z)

exists, then it must be Z. However, E(X-Z) = - X. Therefore

E(X1Z) does not exist .

For each s E (-1 /2, 0), let Ys be the random variable

defined by Ys(w) = X(w) if co < s and Ys (w) = + co if w > s.
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Then Ys E R(Z) and Ys satisfies (4. 9) and (4. 10) for each

s E (-1 /2, 0). Therefore, conditions (4. 3) and (4.4) for E(XI Z) can

not be replaced by (4. 9) and (4. 10).

Let X* be the conditional expectation of X given Z.

For each real number a, we have

(X-X*)dP = 0
[X* > a]

and hence for each L E EC,

(X-X*)dP = (X -X= )dP - (X-X*)dP
Ln[X*> a] [X*> a] Lc n[X*>

(X- X *)dP.
cL [X*>

Since Lc n [X *> a] E Z, by (4.4) we have

(4.11)
4c

XdP > J X *dP
Ln [X*> a] Ln [X*> a]

Similarly, if U E Z then we have

(4. 12) XdP < f X*dP
Un [X*< a] Un [X*<a]

for each real number a. The inequality (4.11) was introduced by
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Brunk (1965).

Theorem 4.5. Let X. = E(X.I i = 1,2 for a pair of

random variables X
1

and X2 such that X
1

< X
2

. Then
* *

X
1

< X
2

.

* *
Proof. We shall show that P(X

1
> X2) = 0. The event

* * ,
[Xi > X2] can be represented by [X1 > X2] = a rationalLX1>a>X 2j.

Therefore, we need only to show that P(X1 > a > X;) = 0 for each

rational number a. By (4. 11) and (4. 12), we have

[x
2

<
* 1

XdP*

n[X1>
S *

[X
2

< a] rm[Xl>

s * *
[x

2
< a] r,[x >

1

[X2< a] r[X1 >

X
1

dP
a]

X dP
a]

,X 2d
P

0-1

for each real number a . Since X2 - X1 < 0 on [X1 > a > ,
2

it follows that P(X
2

< a < X1) = 0. This completes the proof.

The above property is called monotonicity, which appears in

Barlow and coworkers (1972).

Theorem 4.6. Let X be a random variable. The conditional
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expectation of X given E is unique provided that it exists.

Proof. Suppose Y1 and Y
2

are two E-measurable random

variables such that each satisfies (4.3) and (4.4). The inequalities

(4. 11) and (4. 12) hold when we replace X* by Y1 or Y2.

Since X < X, by a similar argument in the proof of Theorem 4.5

we have P(Y
1

> Y2) = 0 and P(Y
2

> Y1) = 0. Therefore,

Y1 = Y

The uniqueness of E(X I E) can also be obtained by (4.13).

The proof of the theorem is through communication with Professor

H.D. Brunk. The following existence theorem is given by Brunk

(1963).

Theorem 4.7. If X E L
1,

then the conditional expectation

of X given E exists.

Let {Z a: a E A} be a collection of random variables. The

random variable Z is said to be the essential supremum of

{Z a: a E if for any random variable Y, Z < Y if and only if

Z a <Y for each a E A. Similarly for the definition of the essential

infimum of {Z a:
a E A}. They are denoted by V AZ

Cl
and

a E I

A A
a E.n.

Z a respectively. It is known that any family of random vari-

ables has an essential supremum and an essential infimum and
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-Z).Aa E AZ a Va /1.(
The following identity derived from (4.11) and

(4. 12) was introduced by Brunk and Johansen (1970).

(4.13) E(X I E) = VuE z{ inf [P(LU) -1EX1Lullu -col }

L E EC U
c

P(LU) > 0

=A LE Zc { sup [P(LU)-1EX1 LU]1L+ool CI
U E Z L
P(LU) > 0

provided that EMI E) exists.

Let a < X < (3, let

and let

Z = Vu EE{ inf [P(LU) 1EX1
LU

]1
U +al c}

L E EC U

P(LU) > 0

Y =A L EEc{
sup [P(LU)-1EX1

LU
]1

L+(31 c} .
U E
P(LU) > 0

Then Z < Y and (4.13) can be represented as E(X) E) = Z = Y.

If Z Y, then E(X I E) does not exist. If Z = Y, E(X I E) need

not exist as shown in Example 4.1.

If C2 if finite, then every upper set with respect to the quasi-

ordering induced by E is in E. Suppose P({co}) > 0 for each

e S-2. (4. 13) may be represented by the following identity.
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(4. 14) X*(w) = max min M(LU)
wEU wEL

= min max M(LU)
wEL wEU

where X* is the isotonic regression of X, U is an upper set,

L is a lower set, M(LU) is the weighted average of X over

L n U and the weight function W is defined by W(w) = P( {wl)

for each CO E

The identity (4. 14) appears in Barlow and coworkers (1972).

Ayer and coworkers (1955) introduced (4. 14) for the case that S-2 is

a linearly ordered set.

IV. 4 Properties of Conditional Expectation

Our interest in this section and the following section is the case

when random variables are integrable, although most of the proper-

ties hold in general. If X E L1, then X is finite and E(XI Z)

exists.

It is trivial that E(X+0.1E) = E(XI E) + a for each real a,

E(OXIE) = 6E(XIE) for each real 6 > 0, and E(XlEc) = -E(XI E).

The monotonicity shows that if X1 < X2, then

E(X
1

I E) < E(X
2

Z). It follows that

E(X Y I E) < EXI E) < E(X v Y I E) for each pair X, Y E L1. By a

proof analogous to Theorem 4.5, if X1 < X2 then E(X
1
1E) < E(X 1E).
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The following three convergence theorems which appear in

Barlow and coworkers (1972) are given below without proof.

Theorem 4. 8. Let X, X
n

E Ll and let {X
n}

be a mono-

tone sequence such that it converges to X. Then {E(Xn I Z)} con-

verges to E(X I E).

Thecrem 4. 9. If IX
n I <Y for each n with Y E L

1
and

{Xn} converging to X, then {E(Xn I E)} converges to E(X I E).

Theorem 4. 10. Let {En} be a monotone sequence of sub -

r-lattices of F and let X E L
1. Then {E(X I En)} converges to

00
E(XIE) where E is the o--lattice generated by v E if {En=1 n

cois monotone increasing and E = r-Nn=lEn if {En} is montone

decreasing.

A similar result to Corollary 2. 11. 1 can be applied to the

operator of conditional expectation.

Theorem 4. 11. Let X E L
1

and let E
1

and E
2

be two

sub-o--lattices of F with E
1

C Zz Then
E(E(X1E2)1E1) = E(X I El) if and only if

S E(XI E
2 1
)dP < E(X I E )dP for each U E

1



E(XILet Y. = (XI E.), i = 1,2. If Y
1

= E(Y Z1),
1

then by (4.4) we have

,S; Y2dP < Y dP for each U E
1

Conversely, if the above inequality holds for each U E Zi, then

S Y dP <
2

Y
1
dP for each real a.

[Y1 > al [Y1> al

By (4. 3) and (4.4) we have

Y
1

XdP <dP = Y2dP for each real a
[y >I 1 1

a]
1

since [Y1> a] E Zi C Zz. Combining the last two inequalities, we

have

It follows that

Y
2
dP = J Y

1
dP for each real a.

[Yi> [y > al

Y2dP = YldP for each Borel set B.

[Y1E13] [YiEB]

Since Y
1

satisfies (4.3) and (4.4) when we replace X and Z

by Y2 and E1 respectively,

proof.
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Y1 = E(Y 21 Z). This completes the
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Theorem 4.12. Let X E L
1

and let E1 and Z
z

be two

sub -a-- lattices of F with E1 C . If either E1 or E2 is a

o -field , then E(E (X I E2) I El) = E (X I El).

Proof. Let Yi = E(X1 s.), i = 1,2. If E1 is a o--field, then

Uc E Z1 if U E. Z. Therefore, if we apply both U and Uc to

(4. 4) then we have

Y 1dP = XdP = Y dP

for each U E Zi because Zi C E2. It follows from Theorem 4.11

that Y1 = E(Y 2IZ1). If Z is a o--field, then by a similar argu-

ment applying to E2 we have

Y
z
dP = XdP < Y dP for each U E

1 1

By Theorem 4.11, Y1 = E(Y2I E1). 0

The theorem which appears in Robertson (1968), is called the

smoothing property. It is parallel to Corollary 2.4.1. If F0 is

the trivial cr-field {0, vs}, then E(X I FO) = EX. Therefore, the

operator E can be regarded as conditional expectation given F0.

By the smoothing property with El replaced by F0, we have

(4.2), i.e. , E (E(X I Z)) = EX.
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Let I be an open interval in the real line. The monotonicity

implies that if P(X E I) = 1 then P(E(XI Z) E I) = 1. Let

X* = E(X I Z). Then by (4.3), X* = E(X I F(X*)). Therefore the fol-

lowing version of the Jensen's inequality follows (cf. Ash (1972)).

Theorem 4.13. Let X E L
1

and let I be an open interval

in the real line such that P(X e I) = 1. If g is a real-valued con-

vex function defined on I, then

E(g(X) I F(X *)) > g(X*)

where X* = E(XI Z).

By the smoothing property, we have Eg(X) >Eg(X*), and

hence EIX1 > El X*I and EX2 EX*2 where X* = E(X1Z),

provided X E L1.

The following version of the Jensen's inequality appears in

Barlow and coworkers (1972).

Theorem 4.14. Under the same assumption as in Theorem

4.13, if Xg I(X*), X *g'(X *) and g(X*) are in L1, then

where g'

E(g(X) 1 Z) > g(X*)

is a determination of the derivative of g
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Immediate results of the theorem are

IE(XIE)I <E(IXIIZ) and (E(X I Z))2 < E(X2IZ).

Let r E F such that P(r) > o, let Fir := A E F}

and let Pr, be defined by Pr (A) := P(Armr)/P(r) for each A E F.

Then (r, F I r, Pr ) is a probability space. Let

Z I r := {ur, r: u E Z}. Then E I r is a sub lattice of Fi r.

Let R(E I r) be the family of Z I r-measurable random variables

defined on (r, Fi r, Pr ). The restricted conditional expectation of

X given E to r is the cond itional expectation of Xi r given

EI r with respect to (r, Fl r, Pr) Such a random variable is

denoted by E(Xl Z, r) if it exists.

Let X* = E(Xi E) and let r = [x* > a] for some real a

such that P(r) > 0. It is obvious that

and

XdP = X*dP for each Borel set B.
[X*E B] ,Thr [x*EB],Thr

XdP <
ur, r ur, r

X*dP for each U E

provided that X E L1. It follows that X*IF = E(XI E, r)

Suppose r E Z n Ec such that P(r)P(rc) >0. By (4.11)

and (4.4), we have
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and hence

XdP = J X*dP for each real
[x *> nr [x *> r

XdP = J X*dP
LX*E Bin r [x*EB]r,r

for each Borel set B.

It is trivial that

XdP < J X*dP for each U E E.
Ur) r unr

Therefore X*I r = E (X1E, r) and similarly X*1 Tc = E(X1E, rc).

It follows that for each X E L
1

we have

(4.15) E(X1E) = E(X1E,r)ir + E(Xiz,re)].
rc

where E(X1E,r)ir and E(X1E,Tc)1 are extensions of
rc

E(X1E, r) and E(X1E,rc) to

Theorem 4. 15. Let U E Z and let L E Zc. Then

E(X1E,U) < E(X1E)1U and E(X1E,L) >E(XIL)IL

provided that P(U)P(Uc)P(L)P(Lc) > 0. If any equality holds, then

E(X1E) can be represented by (4. 15) with r replaced by U or

L according as E(X1E,U) = E(X1E)1U or E(X1E,L) = E(X1E)1L.
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Proof. This is a similar proof to that of Theorem 4.5. Let

X* = E(XI E), Y
1

= E(XIE,U) and Y2 = X*I U. We are going to

show PU(Y1>a>Y2) = 0 for each real a.. The first inequality will

then follow. Similarly for the second inequality. The relation

between P and P is that dPu = P(U) -1
1 udP.

By (4.11) and (4.12), we have

Y dP <
1 U

XdP,
{Y

1
>a>Y 2] 1

>a>y 2] u

= P(U)

= P(U)

< P(U)

1S1 XdP
[Y >a>y

1 2

XdP
[Yi > a] n[X*< a]

X*dP
[Yi>a] rm[X*< a]

Y,dP
[Yi>a>y 2

U
'

for each real a, because {co: Y
1
(w) > a} E E and

[Yi> a] n [X*< a] = [Yi> a >Y2] Since Y2 - Y1 < 0 on

[Y
1
>a.>Y

2
], P

U
(Y

1
>a>Y2) = O.

Suppose Y1 = Y2. Then

E(XI E) = X*1u + X*1 < E(XI + E(XI E,Uc)1 .

Uc Uc
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Applying E to both sides of the inequality, by the monotonicity of

E we have

EX < E{E(X1E, U)1 u} + E{E(X1E, Uc)1 }

Uc

= E(X1u) + E(X1 )

Uc

= EX.

It follows that E(X1E) = E(XI E, U )1u + E(X1Z, Uc )1

Corollary 4. 15. 1. Let U E E, L E Ec such that

P(U)P(Uc)P(L)P(Lc) > 0 and let X > O. Then

and

E(X1 1E) = E(X1E,U)1
U

< E(X1E)1u

E(X1L1 Z) = E(X1E,L)1L > E(X1E)1L.

Proof. It is trivial that E(X1u1E, Uc) = 0. Let

Y = E(XlulE). Then

EX1 = XdP < YdP < YdP = EY

Since E(X1u) = EY and Y > 0, Y1Uc = 0, i.e. , E(X1 1E)1Uc= 0.

By Theorem 4. 15,

E(X1 u 1E) = E(X1E, U)1u
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The monotonicity implies that E(Xlu I E) < E(X I E). The first

statement will then follow. Similarly we have the second statement.

Corollary 4.15.2. If X > a on U for a set U E E, then

E(X I E) > a on U. If X < L E Ec,on L for a set then

E(XIE) < 13 on L.

Proof. If X I U > a, then by the monotonicity we have

E(X I E, U) > a . From Corollary 4.15.1, we have

E(X I Z)IU > E(X Z, U). Therefore, E(X I E) I U > a. Similarly for

the second statement.

IV. 5 On a Linearly Ordered o--Lattice

Let Y be a random variable. The o-- lattice E(Y) induced

by Y is linearly ordered. Let X be a random variable and let

X* = E(X E(Y)). Since X* is E(Y)-measurable, X* if F(Y)-

measurable. It has been shown that an F(Y)-measurable random

variable is a function of Y, i.e. , there is an extended real-valued

function f defined on the extended real line such that X* = f 0Y

(cf. Ash (1972)).

Theorem 4.16. Let E(XI E (Y)) = f °Y. Then f is monotone

increasing on the range of Y.
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Proof. Let cal and co2 in S2 such that Y(col) < Y(w2).

Since X* E R(E(Y)), [X* > X*Gilin E E(Y). Upper sets in E(Y) are

either [si > a] or [Y > a] for each a. It follows that

[y > Y(coi)] is the smallest element in E(Y) which contains wl.

Since wl E [X* > X*(CO
1

)]; [X* > X*((a)
1
)] 3 [y > y((,)

1
)]. The element

w2
is in [y > Y(w1)], so wz E [X* > X*(co

1
)] and hence

X*(co
2

) > X*(co
1

). In other words, f(Y(w
2

)) >f(Y(co
1

)) whenever

Y((.4)
2)

> Y(o) l). This completes the proof. 0

Let E be a sub-cr-lattice of F. Let a binary relation <

be defined on the linear space of random variables by X < E
Y if

XdP < YdP for each U E E.

The binary relation < E is a quasi-ordering. For each X we

have X <
E

E(XI E) provided that X E L
1

. If the o--field generated

by E is F, then <
Z

is a partial ordering.

Theorem 4.17. Let E be a linearly ordered sub-o--lattice

of F and let El and E2 be two sub-o--lattices of E such

that El C E2. For each X E L
1,

we have

E(XIZ
1 E) < E(E(XIE

2
)IZ

1
) < E E(XIZ

2
)
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,Proof.Let Y. = E(XI Z.) i = 1, 2, and let Y
0

= E(Y 2IZ1).

Suppose it is not true that Y1 < zY0. Then there exists a U such

that

Y
1
dP > Y odP

Let a = inf{Yi(w):co E U} and let A = [X1 > a] and B = [Y1 > a].

By the linear ordering property of E, we have A 3 U 3 B. For

each C E
1

F(Y
1

),

Y dP = XdP < Y dP < Y dP
Cl 2 0

In particular for C is A or B. Therefore,

Y dP = aP(U-B) >
1

YOdP
U-B U-B

and hence P(U (--[Y0 < a]) > 0. By the linear property of Z again,

[Y0 > C U. It follows that

YodP = Y odP + J YodP
A U A-U

< J Y
1
dP + aP(A- U)
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This contradicts that J Y
1
dP < J Y

0
dP. Thus Y

1
< Y

0
. By a

A A

similar argument, we have Y0 < Y .

o 2

A sequence {Xn, En} is said to be a submartingale with

respect to < if {En} is a monotone increasing sequence of o-

lattices, Xn is En-measurable for each n and

Xn E< E(Xn+k I

n ) for each non-negative integer k. The following

corollary is an immediate result of Theorem 4. 17.

Corollary 4. 17.1. Let E be linearly ordered and let {En}

be a monotone increasing sequence of sub-o--lattices of E. For each

X E L1, the sequence {Xn, En} is a submartingale with respect to

E where X
n = E(XI En) for each n.

By a similar argument in the proof of Theorem 4.17, one may

obtain the following result.

Corollary 4. 17.2. If E is linearly ordered and X E L
1,

is a minimal element in the class {Z E L 1(E): X <
E Z}then E(X I E)

with respect to < E.E

Corollary 4. 17.3. Under the same assumptions as in Corollary

4. 17. 1, if X <
E Xn for some n, then Xn+k = E(X I E) for each

positive integer k.
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Proof. Apply Corollary 4. 17.2 and Theorem 4. 17. 0

Theorem 4. 18. Let Z be a linearly ordered sub-o--lattice of

F, let E1 be a sub-o--lattice of Z and let X E L
1

(Z). Then

E(X I Zi) = E(XI F1) where F1 is the cr-field generated by Zi.

Proof. Let X* = E(XI Z1). Then X < X*. But on the
1

other hand X = E(XI Z) and Z D z By By Theorem 4.17,

X* < X. Therefore E(X-X*)1u = 0 for each U E E1 and henceZ1

X* = E(XIF
1
) 0

Corollary 4. 18. 1. Let E be a linearly ordered sub-cr-lattice

of F and let {En} be a monotone increasing sequence of sub-cr-

lattices of Z. For each X E Ll(Z), the sequence {Xn,
En} is

a martingale where X
n

= E(X 1 Zn).

Proof. It is obvious that {E(X I Fn), Fn} is a martingale

where Fn is the o--field generated by En for each n. By

Theorem 4. 18, E(X I Fn) = E(X1Z
n)

for each n. It follows that

E(Xn+k I En) = E(E(X I Zn+k)IZn) = E(E(X I Fn+k)IZn) = E(XI En) = Xn.

This completes the proof. 0
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V. MULTIVARIATE ISOTONIC REGRESSION

V.1 Introduction

Let S-2 be a finite set and let H be the linear space of

vector-valued functions Y:0 Rm for a fixed positive integer m.

For convenience, let S2 = {1,2, ,n} and for each j E 0 let

Y(j) be the function value of Y at j which is an m-component

column vector. The function Y in this case is an m x n matrix

(y..). For each

(Yir Yi2' yin)

we denote the n-component row vector

by Y.. Therefore, Y. is a function from 0
1 1

to R, ,m. For each i, let <
1

be a quasi-ordering defined

on 0 and let M. be the family of real-valued isotonic functions

with respect to the ordering < .. Let M be defined by Y E M1
if Y. E M. for each i = 1, ,m. The minimization problem we

are interested in is to minimize

(5. 1) f(Z) = Zn.
1
w.(X(j)-Z(j))tV(X(j)-Z(j))

J=

subject to Z E M where X is a given m x n matrix, V is a

given m x m positive definite matrix and w1, w2, ,wn are

positive real numbers.

Let us define a bilinear functional ( , ) on H by
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(Y,Z) = Z. w.Y(j)tVZ(j)
3=1 3

for each Y and Z in H. Then the bilinear functional ( , )

is an inner product and the linear space H with ( , ) is a

Hilbert space. Since M. is finitely generated as described in

Chapter III for i = 1, so is M and hence M is a closed

convex cone in H. Existence and uniqueness of the optimal solution

to (5. 1) follow from Theorem 2.1. Such an optimal solution is called

the multivariate isotonic regression of X and is denoted by P(XIM).

For convenience, we denote P(Xil Mi) as the isotonic regression of
nX., i = 1, . , m, i.e. , P(X.1M. ) minimizes Z. (x..-z..)2w.

1 1 j=1 13 13

subject to Z. E M..
1 1

A necessary and sufficient condition for an m x n matrix X*

to be the multivariate isotonic regression of X is given by Theorem

2.7. Let Ji be an m x n matrix such that each entry at the ith

row has value one with zeros elsewhere, i = 1, ,m. Then Ji

and -Ji are in M, i = 1, ... ,m. If X* = P(X1M), then by (2. 11)

we have

Z.
1
w.(X(j)-X*(j))tVJi(j) = 0 i = 1, . . . , m.

The matrix V is positive definite. Solving the above equations,

we shall obtain
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(5.2) E. w.x.. = w.x.. i = 1,...,m
3=1 3 13 3=1 3 13

If V is a diagonal matrix, i.e. v.. = 0 if i I j, then

(5. 1) can be written as

Therefore,

f(Z) = Z.
3=1 j

v..(x. -z..)
3 1=1 ti i

= Zrn. v {En (x -z )2w .
1=1

.
j=1 ij j

PP(XI 1\4). = (X. I M.) for i = 1, ,m. If V is not a

diagonal matrix, the minimization problem could be very complicated.

In this thesis, we shall treat m = 2 and w
1=

w2= ...=wn= 1.
2

A 2 x 2 positive matrix V can be represented by vii = vi,
2

v22 = v2 and v12, = v21 = -pviv2 where v
1

and v2 are posi-

tive and -1 < p < 1. The objective function is

n 2 2 ,2
(x )(x -z )}f(Z) = _ -Pv1v2` lj -z )(x

2j 2ij= 1 i- 1 1 13 13

Let Y be the 2 x n matrix such that Y. = v .X., i = 1,2 and
1 1 1

let Y* be the multivariate isotonic regression of Y with respect

to the positive definite matrix T such that t
11

= t22 = 1 and

it
12

= t
21

= -p. Let X* be defined by X. = v. Y. , = 1,2. Then

X* is the multivariate isotonic regression of X with respect to

the positive definite matrix V. Without loss of generality, we may
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assume that v
1

= v2 = 1.

Let X* be the multivariate isotonic regression of X. If

M..) is the family of constant functions, i.e. , the quasi-ordering <
2

is such that j < k and k <2 j for each and k between one

and n, then by (5.2) we have X2 = x2 where x
2

= En. x ./n.3=1 23

For each Z such that Z2 = 72' we have

f(Z) = En. {[x .-p(x )] -z . in12 + (1-p
2)E_(x.37-2) 2

3=1 13 23 2 13

It follows that X
1

= P(X1-p(X2-12)IM1)

Let M
2

be the family of all functions, i. e. , the quasi-

ordering < is such that neither j <2 k nor k <2 j for each

j and k between one and n with j k. Let Uj be a 2 x n

matrix such that the (2, j) entry has value one with zeros elsewhere.

Then I.Jj and -T.Jj are in M for i = 1, ,n. By (2. 11), we

have p(xii-xii) =
x2j

x2j, j = 1, ,n. For each Z such that

= x2j z2j, j = 1, ,n, we have

f(Z) = (1-p 2 )En. .)
2

3=1 13 13

It follows that X
1

= P(X 11 M1) and X2 = X2 - p(X 1-X1) .
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V.2 Bivariate Isotonic Regression

Let H be the linear space of 2 x n matrices, let M be

the family of matrices such that Z E M if for i = 1,2

and for j = 1, , n-1. The problem in the remainder of the chapter

is to minimize

n
1 1=

(5.3) f(Z) = E. E.
1 13
{(x..-z..)2-P(x13.-z13.)(x2j -z )}

3= 13

subject to Z E M where X is a given 2 x n matrix and p is

a given real number, -1 < p < 1. The optimal solution to the prob-

lem is called the bivariate isotonic regression of x with respect to

p and is denoted by P(X I M, p)

Let Mid := {Z: Z1 e M
1,

-Z2 E M e. , Z E Mid if the

first row of Z is monotone increasing and the second row of Z

is monotone decreasing. Let Y be such that Y1 = X1 and

Y2 = -X2, let Y* = P(Y1M, -p) and let X* be defined by

X1 = Yi and X9 = -Y2. Then X* = P(X I Mid, p). Similarly for

the situations Mdi. and Mdd, where

Mdi = {Z: -Z1 E M1, Z2 E M2} and Mdd = {Z: -Z1 E M1, -Z2 E M2 }.

The sign of p will play the most important role in analyzing the

properties of P(X1M, p) as we shall soon see. Therefore

P(XIM,p), P(XI Mid, -p), P(XIMdi , -p) and P(XIMdd,p) will have

the same properties.
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Let 1.. be the 2 x n matrix such that the jth,... , nth
13

entries at the ith row have values one with zeros elsewhere,

i = 1,2, j = 1,2, ... , n. The set {1..:i = 1,2,j = 1,2,...,n} is lin-

early independent, and the family M is the cone generated by the

set such that Z E M if and only if Z = E2 En 13_1 with
ji=1 =1 13 13

2 n *p.. > 0 if j > 1. Let X* = E. E. a..1.. with af:t. > 0 if j > 1.
13 1=1 3=1 13 13 13

Theorem 2.12 and Theorem 2.13 show that X* = P(XIM, if and

only if X* satisfies

(5.4) "dh=lx1h-Px2h) Zn h=j(x1h-Px2h) j 1'. **, n

n
(x

2h
-px lh ) < Enh=j *(xE=j

2h Pxlh ) j = 1, . . . , nh

(5. 5) Eh=j (x lh -px2h = Eh=j (x)lh -px2h)1( ) if a lj >

n *
Eh=3 .(x

2h
-px lh ) = h=.(x2h -px lh ) if (12j > 0

and (5.2), i.e. , Eh=1 x
ij

=E
h=1

xih i = 1,2.

Theorem 5.1. If p > 0 and X1 pX2 is monotone

increasing then X2 = P(X 21M2) and X1 = X1 + p(X2-X2) where

X* = P(XIM,p). Similarly if we interchange indices 1 and 2.

Proof. Let Y be defined by Y2 = P(X21M2) and

Y1 = X1 + p(Y
2

-X
2

). We are going to show that Y = P(XIM, p). By
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the assumption that X1 pX2 is monotone increasing and p > 0,

we have Y E M. Note that X1 - pX
2

= Y1 - pY . Therefore Y

satisfies (5.4) and (5.5). By (4.2), En y = En x and it fol-j=1 2j j=1 2j

lows that En y = En x . This completes the proof. 0
j=1 lj 3=1 lj

Theorem 5.2. Let p < 0. If X
1

- pX2 is monotone
J.

increasing and P(X
2

I M2) is constant, then X2 = P(X 2IM2) and

X1 = X1 + p(X 2-X2) where X* = P(XIM,p). Similarly if we inter-

change indices 1 and 2. If P(X 11M1) and P(X 2IM2) are
J.

Pconstant,then X. = (X. I M.), i = 1,2.

Proof. The first statement is similar to Theorem 5.1 except

that we need P(X 2IM2) be constant to ensure that X1 + p(X 2-X2)

is isotonic. Let us consider the second statement. Let P(X
1

1M1)

and P(X 2IM2) be constant with value y
1

and y2 respectively.

Then 'y.
I

= En
k= 1 j

x. In and Enk=.x.. < (n-j+1)yi for i = 1,2 and fori3 13
j = 1, ... ,n. Let Y = Y1111 + Y2121. By the assumption p < 0,

Y satisfies (5.2), (5.4) and (5.5). Therefore Y = P(XIM,p).

The average property which plays the most important role in

the isotonic regression and its algorithms, is the one we are inter-

ested in. Let X* be the bivariate isotonic regression and let

x.. < x.. and xik < xik+1 for some
13+1

i = 1,2. By (5.5) and (5.2), we have

and k with j <



and

h=1
(x

1h
-px2h ) =

h=1
(x lh -px2h )

-pX ) = Ei (X P )
h= 1 lh h=1 2h xlh

* *
Ek . (x -px ) = Zhk (x -px )

h=3+1 lh 2h =3+1 lh 2h

Zk (x -px ) = Zhk (x -px )h=j+1 2h lh =j+1 2h lh

zn
(x -px ) = Zn (x -px )

h=k+1 lh 2h h=k+1 lh 2h

zn
(x -px ) = En

*

h=k+1 2h lh h=k+1(x2h -px 1h)

The first two equations show that

h=1 xih =
h=1

x. i = 1, 2,

the next two equations show that

k k
. 11 = Z 1, 2,Zh=j+1 x3. h=j+1 x. i

and the last two equations show that

n x. = E
h=k+1

x. , i = 1, 2.

If x
1 3

. <
x13 . +1

and xlk < x lk+1 for a pair of

j < k, then by (5.5) and (5.2) we have

and k with

127
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and

Zj (x -px ) = (x* -px* )
h =1 1h 2h h=1 lh 2h

* *
Ek (x -px ) = Ek (x -px )

h=3+1 lh 2h h=3+1 lh 2h

En (x -px ) = En (x -px )
h=k+1 lh 2h h=k+1 lh 2h

Similarly if we interchange indices 1 and 2.

Theorem 5.3. If p > 0 and VX < VY, then

P(XIM,p) < P(YIM,p).

Proof. Let Ulk be the 2 x n matrix such that the (1,k)

entry has value one, the (2,k) entry has value p with zeros else-

where, k = 1, ,n. Similarly for the U21, U22, . ,U2n. We

shall show P(X+50 I M, p) > P(X I M, p) for any 5 > 0 and for each

i and j. Since Y - X can be represented as a non-negative lin-

ear combination of Uki, i = 1,2; j = 1, ,n, it will then follow

P(XJM,p) < P(YIM,p)

Let X* = P(X I M, p) and let Y* = P(X+U I M, p) where

U = 5U lk for a fixed positive real number 5. Then by (2. 3)

(X+U-Y*, Y*-X*) > 0

and

(X-X*, Y* -X *) < 0.

The difference of the above two inequalities is



and hence

(U-Y*+X*, Y*-X*) > 0

(U, Y*-X*) > (Y*-X*, Y* -X*)
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The left-hand side of the above inequality is 6(1-p - xlk ) and

hence y > x .lk lk

It is trivial that

11X+U -Z112 = II X-Z112 + g(Z)

. Since *
>where g(Z) 28(1-1) )(xlk-z1k+812) v lk xlk'

g(X*/.. Y*) = g(X*) where the (i,j) entry of )0( A Y* has the

value xij n y. . By a similar argument as in (4.7), we have

(X+U-Y*, Y*-X*) > (X+U-Y*, Y*-X*A y*).

Since

YiiY*-X*112 = Zn. *0)-X*0))tV(Y*0 ) -X*0))
J=1

n * 2 +
Y23-x

-x
3

2

31
(.3r

1j 15 *)2

Zp(y
1J 1J J

and

(Y*(j)-X*WitV(Y*(j)-X*(j)) > CY*(j)-X*(j)/\ Y*(MtV(Y*(j)-X*WAY*(j)),

j = 1, ,n provided that p > 0, we have

11 Y*-X*11 2 > II Y*-X*A Y*112. Therefore,



Ilx+u-x*112 = 11X+U -Y*11
2

+ 11 Y*-X*11
2+ 2(X+U-Y*, y*-X*)

> 11X+U-Y*11
2

11Y*-X*A

and it follows

+ 2(X+U-Y*, Y*-X*/\ Y*)

11X+U -X* n Y* II
2

11X-X*112 = 11X+U -X*112 - g(X*)

> 11X+U -X* / Y*112 - g(X*" Y*)

= 11X -X* /\ Y*11
2

.
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By the fact that 11X-X*11 < 11X-Z11 for each Z E M and Z = X*

if the equality holds, we have X* A Y* = X* and hence X* < Y*.

This completes the proof. [1

Corollary 5. 3. 1. If p > 0 and a < VX < b, then

V la < P(X1M, p) < V -1
b where a and b are 2 x 1 column

vectors.

An upper bound and a lower bound of P(XI M, p) for p > 0

can be determined by the above corollary. Let Y and Z be

2 x k and 2 x (n-k) matrices defined by Y(j) = X(j), j = 1, . ,k

and Z(j) = X(k+j), j = 1, , n-k respectively. Let

Mk := {U E R2 xk :uji = 1 , 2, j = 1, . , k-l} for each
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positive integer k. If there exists a 2 x 1 vector c such that

P(Y1Mk, p ) < c and P(XI Mn-k'P) > c, then by (5.2), (5.4) and

(5. 5), P(X I M, p) can be obtained by considering the first k com-

ponents and the last n-k components independently for each p

between -1 and 1. From (2.2) P(XI -M, P) = -P( -X I M, P), so

if p > 0 and a < VX < b then V
-1 a < P(Xj -M, p) < V -lb. But

it is not true in general that X > 0 implies P(X I M, p) > 0 for

p > O.

Theorem 5.4. If p < 0 and a < X < b, then

a < P(XI M, p) < b where a and b are 2 x 1 vectors.

Proof. We shall show that if X > 0 then P(XI M, p) > 0 and

P(XI -M, p) > 0. It will then follow that X > c implies

P(X-cl M, p) >0 and P(X-cl -M, p) > 0 and hence P(XIM,p) > c

and P(X I -M, p) > c. By the identity P(XI m, p) = -P( -XI -M, p), if

X < b, then -X > -b and hence -P(XI M, p) = P(-XI -M, p) > -b.

Therefore, if a < X < b then a < P(X I M, p) < b provided that

p < 0.

y

Let a and 13 be non-negative real numbers and let x and

be real numbers. If x < 0, then
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(a-x) 2
+ (P-02 2p(a-x)(13-y) = (1-p 2)(a-x) 2 + (P-y-ap+px) 2

> (1-p 2)0.2
+ (R-

+px)2

= (1-p2)a 2 + (P-y+px)2 + p 2 a2

- 2pa((3-y+px)

= a2
+ (R- y+px)2 - 2pa((3-y+px).

If also y px < 0, then

a2 + (P-y+px) 2 - 2pa((3-y+px) > a2
+ 132 - 2paP

Therefore

(a-x, P-y)V(a-x, 13-y)t > (a, P-(y-Px)V0)17(a, 13-(y-Px)y 0)t

Similarly, if y < 0 then

(a-x, P- y)V(a -x, 13-y)t > (a-(x-Py)vo, P)v(a-(x-PY)vo, P)t

Let Z c M and let k be the largest index between 1 and

n such that Z(k) is not non-negative. Let Y be defined by

Y(j) = Z(j) for each j >k and

ylj

Y2i

-Pz2j) v ° if z > 0lk

if zlk <°

{0 if zlk °

(z2i-pzii) v 0 if zlk <



for j = , k. It is trivial that Y > 0 and Y E M.

If zlk < 0, then zii < 0 for j = 1, ,k. By the

inequality described above, if X > 0 then

(X(j)-Z(j))tV(X(j)-Z(j)) > (Z(j)-Y(j))tV(X(j)-Y(j))

j = 1 , . , n . Therefore X- Z I I > X-Y I I if zlk > 0, then

and similarly II X-Z II > II Z -Y II It follows thatz2k <0
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M,p) > 0. By a symmetric argument in the sense of reversal we

have P(Xj -M,p ) > O.

Theorem 5.5. If p °' xlk-1 and

P(x2k-1-x2k) then xik = xik_i where X* = P(XIM, p).

Similarly if we interchange indices 1 and 2.

Proof. Suppose it were not true, i . e . ,
x > x Fromlk lk-1.

(5.4) and (5. 5), we have

and

Therefore

En (x .-px .) < Zn (x .-px .)h=k-1 13 23 h=k-1 13 23

Zh=k (x
13
.-px

23
.) = Eh=k (x13 .-px23 .)

(x lj -px
2j

) <
h=k+1

(x lj -px
2j

) if k+1 < n.Zh=k+1

xlk-1 Px2k-1 Px2k-1 and

XlICPX2k > xlk -px2k
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,r,

Consider the case x
2k

= x2k-1. We have

and hence

xlk - px
2k

>xlk - px
2k

>xlk-1 - px2k-1

> xlk -1 x2k 1

This contradicts the assump-P(x2k-1-x2k) >xlk-1 xlk.
tion that xlk-1 xlk P(x2k -1 -x2k).

* *Consider the alternative Then we havex2k > x2k -1.

x2k-1 Pxlk-1 < x2k-1 Pxlk-1 and x2k px lk > x
2k

- px lk.

Since x
lk - 1

ppx 2k-1 xlk -1 x2k-1 and

xlk px2k xlk px2k, it follows that

VX(k-1) < VX*(k-1) and VX*(k) < VX(k)

and hence x lk > x lk > x lk-1 > x lk-1 This contradicts the assump-

tion that > x . nlk

If p > 0, the index (1, k) or (2, k) with k > 1 satisfying

both inequalities described in the above theorem is said to be pivotal.

An algorithm based on the pivotal indices will be given in the next

section.

Theorem 5. 6. If p < 0 and xik_i - xlk P (x2k - 1 -x2k)
* *

then xlk xlk-1 where X* = P(XIM,p). Similarly if we
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interchange indices 1 and 2.

Proof. By the same argument as in the proof of Theorem 5.5,

if xlk > xlk-1' then we have xlk-1 - px2k-1 xlk-1 px2k-1

and xlk px2k > x lk px
2k

. Therefore,

xlk - px
2k > x lk px

2k

>xlk-1 - px2k-1

> x lk-1 - px2k-1

and hence p(x2k-1-x2k) > xlk-1 xlk. This contradicts the assump-

tion.

If p < 0, the index (1, k) or (2, k) with k > 1 satisfying

the inequality described in the above theorem is said to be pivotal.

Let P > ° If xlk-1 or x2k-1 >x
2k

, then at least one of

(1, k) and (2, k) is pivotal. But if xik_i xik and x2k-1 x2k'

it is not necessary that both (1,k) and (2,k) are pivotal. There-

fore, whenever there is a violation, ie. > x , there is axik-1 ik

pivotal element. Let p < 0. If xlk-1 x1k or x2k-1 > x2k'

is not necessary that (1, k) or (2,k) is pivotal. But is

xlk-1 xlk and
x2k -1 x2k' then both (1, k) and (2, k)

pivotal. In some cases, we may have violations but there is no

pivotal element.

are

it
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V.3 Simplified Projection

The bivariate isotonic regression of X is the generalized

projection of X to the closed convex cone M. By Theorem 2.13,

P(X I M, p) can be obtained as the projection to a linear space which

is generated by a subset of {1: i = 1,2; j = 1, , n}. Therefore,
iJ

how to obtain the projection to such a linear space in our present

structure is our primary work.

Let r be a subindex set of {(i, i = 1, 2; j = 1, , n}, let

{jr.= :(i,j) E r }, i = 1,2 and let S be the linear space generated

by {lii: (i, j) e r}, i.e.,

Sr = {Y:Y = Z. p 1 + z. p2.12.' P.. real}.Er 3 E r
2

2j 2j' 1j
1

For convenience, in the following three paragraphs we denote

X = (X
1,

X2) as a 2n-component row vector and similarly for Y, Z

and 1..'s. Let T be a 2n x 2n positive definite matrix which is

the tensor product of V and In, i. e t.. = 1, tin+i -p,
11

t.. = ti = 0 for i, j = 1, ... ,n with j i i and t .
I

= - p ,
13 int) n+1,

tn+i, n+i n+i
= 1, t = t . . = 0 for i, j = 1, . . . , n with j i., n+j n+1, 3

Let rl have p elements, r
2

have q elements and let A

be the (p+q) x 2n matrix which is composed of 1..13 , (i, j) E r, such

that the first p rows are 11 , 11. , ... , 1 . with
131 132 13
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ji < jz < < j and the last q rows are 1 , 1 , , 1
2k1 2k2 2kq

with k
1

< k
2

< < k . Every row vector Y in S is of the

form Y = UA where U is a p+q-component row vector.

Let us define an inner product by

(X, Z) = XT Zt

for each pair of row vectors X and Z. The quantity

X-Zji = (X-Z,X-Z) is the same as f(Z) in (5.3). The projec-

tion of X to the linear space S is the product of X and the

2n x 2n matrix P where P = TAt (ATAt
)
-1A. To verify the above

result, we shall show (X-XP, Y) = 0 for each Y E Sr. Let U be

the p+q row vector such that UA = Y. It is trivial that the matrix

A has rank p+q and ATAt is invertible. Therefore

(X-XP, Y) = (X-XP)TYt

= XTAtUt - XTAt
(ATAt

)
-1

ATAtUt

= XTAtUt - XTAtUt

= 0.

The (p+q) x 2n matrix A can be written as

A
Cl 0

0 C2
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where C
1

is a p x n matrix with rank p and C2 is a q x n

matrix with rank q. The (p+q) x (p+q) matrix ATAt is

ATAt =

t t
C

1
C1 pClC2

t
pC

2
C

1

t
C

2
C2

Let U1 and U2 be p-component and q-component row vectors

respectively suth that

[U1 U2] = XTAt(ATAt)-1.

Then [U1C1 U2C2] = XP. Since [U1 U2]ATAt = XTAt, we have

and

[U1 U2] = XTAt 1 1
0(C C t) -1Ip -pC1 C2

t t -1-pC
2

C
1

(C
1

C
1

) C
2

C2 0

[
I 0

P[U1 U2]
-pC C t (C C t

)
-1 C C t -p 2 C C t(C C t

)
-1 C C t

2 1 1 1 2 2 2 1 1 1 1 2

(C
1

C
1
t)-1 0 [ I

P
pC

1
C2ti

0 I 0 I
q q

vs*

= XTAt

(C C p(C Ct -1 t
C

1
C2

= [(XcpX2)Cit (X
2

-pX )C
1 2

1 1 1 1)

0

Let B
1 1

= C t
(C

1 1
C

t
)
-1

C
1

. Then

q



(5.6) U
2

(C
2

C 2-p
2

C
2

B
1 2
Ct) = (X

2 -pX
1 2

)C
t

+ p(X
1

-pX
2
)B Ct

1 2

and

U
1

- pU
2

C
2 1

C
t

(C
1 1

C
t

)
-1 = (X

1
-pX

2 1
)C

t
(C

1 1
C

t
)
-1

It follows that

(5. 7)

and

(5. 8)

(XP)
2

= U
2

C2

(XP)
1

= (X
1

-pX
2

+p(XP)
2

)B1

Similarly if we interchange indices 1 and 2.

Let Ti = {ji,j2, , jp} and let
Y (Y1,Y2'. 'yn) be a

row vector. Then YCit = (a1, , a) such that a.
k = Eh-

n
yjk h

k = 1,..,p, and YB
1

= (P1 , , f3
n such that

ik+1-1
Zh=jk yh /(jk+1-jk), k = 0,1, . , p+1 where jk j < jk+1,

jo = 1 and jp+i = n+1. Similarly if we interchange indices 1

and 2.

Suppose kErirmr2 and k > 1. Let us define

and

S = {Y:Y = Z.2 E. P..(1. -1. ), p.. real}
1 3=1JET. 1. 1.5

j <k

2S2 = {Y:Y = E. E. 3.. real} .
1=1 j Er. 13 13 13

j > k

139
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Then S
1

and S2 are orthogonal and S1 + S2 = Sr. It follows

that

(5. 9) P(XIS , p) = P(XISi,p) +P(XISz,P)

In other words, P(X I S p) can be obtained by considering the first

k-1 components and the last n-k+1 components independently.

Suppose r2 = {1} and 1 E
1

. Then C2 is a row vector
t twith each entry having value one, B

1
C2 = C2, C

2
C2 = n and U2

is a real number. Thus (5.6) is an = Zi=lx2i and X2 = aCz,
ni.e., x21 x22 x2n Zj=1x2i /n.

2 2Let X = Z.
i =1 =1

a 1.., X* = Z. Z.n a..l . and let1=1 ,3=1 1.3 1=1 j=1
A = > 0} Lr {(1, 1), (2,1)} where X* = P(XIM, p). Theorem

5.5 shows that if p > 0, alk < 0 and a lk < pa
2k for some k > 1,

then a lk = 0, (1,k) A and (1,k) is pivotal. Similarly if we

interchange indices 1 and 2. Whenever X M, there is at

least one pivotal element. Theorem 5.6 shows that if p < 0 and

alk < pa
2k for some k > 1, then a lk = 0, (1, k) A and (1, k)

is pivotal. Similarly if we interchange indices 1 and 2. If

X M, we may or may not have pivotal elements.

Let A0 be the collection of all non-pivotal elements. Then

AO 3 A. Since P(XIM,P) = P(XISA,P) as indicated in Theorem

2.13 and (5. 2), by the smoothing property we have
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P(X1M,p) = P(P(XISA0,p)ISA, p). Let X1 = P(XISA0,p). If

1
X E M, then by Theorem 2.8 and Theorem 2.11 we have

1 '1 2 n 1 1X = P(X1M,p). Otherwise, write X = Z Z. a..1.. and let Ai=1 3=1 13 13

be the set of non-pivotal elements in A with respect to X
1. Since

P(X1(MA, p) = A° D Al D A . If p > 0, then AO Al.

Applying the above procedure inductively, we shall terminate at a

positive integer k such that Xk E M and X
k = X*. The projec-

tion P(XhIS Ah' p) for h = 0,1, ... ,k-1 can be obtained by (5. 6),

(5. 7), (5. 8) and (5. 9). Such an algorithm for p > 0 is called the

Simplified Projection (cf. Appendix V).

The monotone decreasing sequence {Ah} can be replaced by

a monotone decreasing sequence {1-11} such that rh D Ah . The

purpose for the presence of rh is that we may use (5.9) more

efficiently and hence the order of the simultaneous linear equations

(5. 6) can be reduced significantly. Such a device may be helpful when

we use desk calculators.

If p < 0, we may possibly obtain the bivariate isotonic

regression of X by the Simplified Projection algorithm. However,

if there exists an k such that X
k M and Ak-1 = Ak, then the

Simplified Projection algorithm will fail to yield the bivariate iso-

tonic regression of X. At this stage, we may choose any one of the

2 x n matrices X, Xl, X2, ,Xk as our given data. For each h
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between one and k, the problem of obtaining P(Xhi
M Ah' p) is

the same problem of obtaining P(X I M, p) for

.1"-(A I p) = p(X I m, p)

Example 5.1. The data X given below is a portion of that

from Bhattacharyya and Kotz (1966).

25 13 2 15 14 21
X =

57 36 77 89 76 62

Let p = -0.1. By Theorem 5.6, the set of non-pivotal indices A°

is {(1, 1), (1,4), (1, 6), (2, 1), (2, 3), (2, 4) }. Since 4 e A° , A°
2 where

1

A. = {j:(i,j) E Ao}, we may consider the first three elements and the

last three elements independently as shown in (5.9). Let

r = {(i,j):(i, j) E A°,i< 3}. Then r1 = {1} and 1 E r 2. So

xil = x12 x13 = (25+13+2) /3 = 13.333.

X2 - pX, + p(XP)2 = (58. 167, 35. 967, 75. 867) for the first three ele-

ments. By (5.8) we take the average for the first two elements of

X2 - pX
1

+ p(XP)
2

and the first three elements of X1 are

[13.333 13.333 13.333

47.067 47.067 75.867

Similarly, we have the last three elements of X
1. Therefore



x 1
=

At this

equation (5.6)

13.333 13.333

47.067 47.067

Alstage, is

is

5.94 3.96

3.96 3.9667

13.333

75.867

{(1, 1),

p
1

[132

(1,4),

.

15.183

75.667

(1,6),

393.03

300.03
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15.183 19.633

75.667 75.667

(2, 1), (2, 3)} and the

The solution to the above linear equations is (31 = 47.066 and

132 = 28.651. By (5.7) and (5.8), we have

13.338 13.338 13.338 15.178 15.178 19.628
X2 =

47.066 47.066 75.717 75.717 75.717 75.717

where X2 = P(X 1
I S Ai, p). Since X2 E M, X2 is P(X I M, p)

because

P(X I M, p ) = P(X I MAD p) = P(P(P(xisAo, p)

= P(P(x IsAi, p) I MAI, p) = P(X 2IMAD
p) = X2.

The projection P(X1 I MA1, p) is X2 , but generally

P(X 11M,
p) is not X2. Consider X1. We have

X1(1) = X1(2) = < X 1
(j) j = 3,4,5,6.

47.067
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By Theorem 5.4, P(X 11M,
p) can be obtained by considering the

first two elements of X1 and the last four elements of X1 inde-

pendently. Consider the last four elements of X1. By the Pool-

ID
l
2

I m
2

)Adjacent -Violator s algorithm, we have (x is the constant
1 175.717. The 4-component row vector X
1

- pX
2

is monotone

liincreasing. By Theorem 5.2, Y2 = P(X
2

1M
2

) and

Y1 = X1
1

+ p(Y
2

-Y2
1

) where Y = P(X1 I M, p). Therefore,

13.333 13.333 13.348 15.178 15.178 19.628
P(X 11M, p) =

47.067 47.067 75.717 75.717 75.717 75.717

V.4 Approximation

Let X be a given 2 x n matrix and let X* = P(XIM,p).

The process introduced here is that we may obtain a region A(j)

such that X*(j) e A(j), j = 1; ; n by the Pool-Adjacent-

Violators algorithm. But the process can be only applied to the case

p > O.

Let al = -px2j j = 1, . ,

maxIxi -pxzi : j = 1, . . . , = min{x2j -pxii j = 1,

P2 = max{x2i-px1i:j = 1, and let 2 x n matrices X, Y, T

and U be defined by



(5.10) zlj Pz2j = xlj Px2j

z2j Pzlj P1

and

Yij PY2i

3r2j PYlj

=
px- x .li 23

P2

tli ptzj = a
1

tzj ptij = x2i - pxij

u1. - puzj = a2

uzj puij = x2j pxzj
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for j = 1, ... ,n. By the structure, Z2 - pZi, Y2 -pY1, T1-pT2

and Ul-pU
2 are constant and hence monotone increasing. Theorem

5.1 shows that if p > 0, then their bivariate isotonic regressions

Z*, Y*, T* and U* can be obtained by the Pool-Adjacent-Violators

algorithm.

For each j, VZ(j) < VX(j) < VY(j) and

VT(j) < VX(j) < VU(j). If p > 0, then by Theorem 5. 3 we have

Z*(j) < X*(j) < Y*(j)
and

T*(j) < X*(j) < U*(j)

where X* is the bivariate isotonic regression of X. Therefore
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(5. 11) Z*(j) v T*(j) < X*(j) < Y*(j) A U *(j).

* *When p = 0, Theorem 5.1 shows that Z1 = Y1 = P(X
1

I M1),

* * * *
Z2 = 13

1
, Y

2
= (3

2
, T

1
= a

1
, U

1
= a

2
and T2 = U2 = P(X 2IM2). It

follows that Z*(j)V T*(j) = Y*(j) A U*(j) for j = 1, ,n. If p >0

and it is small enough, then the region A(j) determined by (5. 11)

is small for each j = 1, ...,n. In such a situation, a good approxi-

mation can be obtained.

(5.3) shows that xln px2n < x ln - px2n and

x2n - px ln < x
2n px1n. Combining (5.2) and (5.3), we have

x11 - px
21

> x
11

- px
21

and x21 - px
11

> x
21

- px
11.

Therefore,

no matter whether p > 0 or p < 0, VX(1) > VX*(1) and
* * n n *VX(n) < VX*(n). For each i, x. < x. and E. ,x. = E. x.., it
11 in 3=1 1j 3=1 1.3

*
follows that x. < ;. < x. where 71 = E. x.. /n.

11 1 In 1 3=1 13

Example 5.2. Let X be the 2 x 5 matrix given below and

let p = 1/2.

X =
1 1 2 2 4

0 1 3 2 1

Let X* be the bivariate isotonic regression of X. We would guess

that X*(1) = X(1). Consider the last four elements of X. If the

regions A(2), A(3), A(4) and A(5) determined by (5.11) for the

last four elements are such that a E A(j) implies a > X(1),



j = 2, 3, 4, 5, then our conjecture X*(1) = X(1) has been verified.

Let Z, Y, T and U be the 2 x 4 matrices defined by

(5. 10) with respect to the last four components of X. They are

and

0 0 2 12
Z = 1/3

-3 -3 -2 3

6 6 8 18
Y = 1/3

9 9 10 15

3 6 4 0

T = 1/3
3 9 5 -3

15 18 16 12
U = 1/3

5 15 11 3

147

Let Z*, Y*, T* and U* be the bivariate isotonic regressions of

X, Y, T and U respectively. Then Z* = Z, Y* = Y,

9 10 10 10
T* = 1/9

9 11 11 11
and

45 46 46 46
U* = 1/9

27 29 29 29

Therefore, A(2) = {(a, (3)t: 1 < a < 2, 1 < 13 < 3},

A(3) = {(a, (3)t: 10 /9 < a < 2, 11/9 < P <

A(4) = {(a, (3)t: 10/9 < a < 8/3, 11/9 < p < 29 /9} and

A(5) = {(a, f3)t: 4 < a < 46 /9, 11 /9 < 13 < 29 /9}. It follows that
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X*(1) = X(1).

For the remaining four elements, we have VX*(2) < VX(2).

In other words X*(2) < X(2). Since X*(2) E A(2) and X(2) < a

for each a E A(2), we have X*(2) = X(2). In the remaining three

elements of X, X
1

- pX
2

is monotone increasing. By Theorem 5. 1,

we can obtain the bivariate isotonic regression for the last three ele-

ments. Therefore,

1 1 3/2 2 9/2
X* =

0 1 2 2 2
El
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APPENDIX I

(Daily Maximum) Temperatures Measured (in Fahrenheit)
at Oregon State University in 1974

(cf. Section I. 2)

i 1 2 3 4 5 6 7 8 9 10

March i 48° 48° 45° 44° 52° 48° 43° 44° 48° 56°

10+i 51° 55° 46° 47° 53° 68° 58° 56° 58° 60°

20+i 60° 65° 60° 57° 63° 62° 68° 52° 55° 61°

30+i 52°

April i 49° 53° 50° 52° 61° 55° 55° 62° 55° 46°

10+i 53° 51° 56° 65° 69° 56° 59° 63° 58° 55°

20+i 60° 65° 56° 54° 60° 61° 59° 59° 59° 70°
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APPENDIX II

Combined Explosive Rates
(cf. Section I. 2)

r. explosive rate of ten samples dropped at the jth height.

r1 = 0.30, r2 = 0.20, r3 = 0.70, r4 = 0.80 and r5 = 0.50.

Q(i,j) explosive rate if ox I samples were dropped at the

jth height which were dropped at heights between the ith

height and the jth height.

q..
13 13

q.. = q.., ql.j = (r.+... +r.)/(j-i+1) if i < j.
1 J

Table of q.. Is (and Q(i, j) 's)ij

1 2 3 4 5

height 1

2

3

4

5

0.30 0.25- 0.40- 0.50- 0. 50-

O. 25+ 0.20 0.45- 0.57- 0. 55-

O. 40+ 0.45+ 0.70 0.75- 0. 67-

O. 50+ 0.57+ 0. 75+ O. 80 0 65

0.50+ O. 55+ 0.67+ 0.65+ 0.50

Q(i, j) > qij if i < j, Q(i, j) < q.. otherwise.
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APPENDIX III

MLE of Variance Components
(cf. Section I. 2)

Yijk = N- ai bj cii eijk i = r; j = 1, , s;

k = 1, ,t where {a.}, {b.}, {c..} and {e are mutually
3 13 ijk}

2 2 2independent sets of normal variates with variances o- ,A TB CAB

and 0-2 and with means zero. Let y be the rst-component column

vector which is composed of {Yijk} . Let

L = likelihood function

and

= (2Tr)-
rst(det(A))2 exp{- i (y-it)t

A
-1

(y-p.)}

X = -2 log(L)

, t -1
= -N.) (y-p.) + log det(A) + constant

where A = Cov(y, y). Let z be the rst-component column vector

which is composed of

y... = a. + b. + e...

yi y. . = a. - a + c. - c + e. e
. 1. 1.. = 1, r-1

Y = b . - b + c - c + e
i

- eY j = 1, , s-1
J

Y Y.
3.

YijkYij.

c.. -c. -c . +c + e.. - e. -e +e
13 1. .3 13. 1.. .3.

i = 1,...,r-1; j = 1,...,s-1

= e..
13k

e..
13.

i= 1,...,r; j = 1,...,s; k = 1,...,t-1
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where a , b , c. , c ., c , e. , e . , e.. , e , y. 2 P. . 1. .j . . 1. . . 3. 13.
y

y.. and y are averages. Consider the transformationij.

y = Tz where T is constructed by

Y.. Y + (Y. Y ... ) + (Y J Y ) + (Y.. Y. Y .3. +Y ... )1..

+ (Y.. -Y.. )

if i < r, j < s, t < k. For i r, the y term isr..
r -1replaced by Zi=1 - (y. -y ) and the yrj Y y. + Y

term is replaced by Ei=11 (yij. yi.. -y. +y. ). Similarly for the

cases j = s and t = k. Therefore

X = Zafa(log 0a+MSa/0a) + constant

where fa is the degree of freedom associated with MSa and 0a

is the expectation of MS for each a = A, B, AB, e.

(I) max L
subject to 0e <

0AB 0A.' 0AB °B

min X

subject to 0e
0A.B 0A' °AB

(III) min Z f
Q.

(log Oa-log MS a-1 +MS a /0a )a

subject to Oe <
()AB A' AB

< 0
B
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The problems (I), (II) and (III) are equivalent. Let (x) = -log x.

Then is convex. Let

A(MSa, Oa) = log 0a - log(MSa) + (MS-0a)/0a.

By Theorem 1.10 of Barlow and coworkers (1972), (III) is equivalent

min Eafa(MSa-0a)2

subject to Oe <
U.AB St3

<
AB B
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Bounded Isotonic Regression
(cf. Example 3. 6)

min f(Z) = Z.1 0

1
(z. -x.)2

subject to

and

gi(Z) = 10 + 1. 5(i-1) - zi < 0 i = 1, , 10

gl0+i(Z) = z. - 13 - 1. 5(i-1) < 0 i = 1, , 10

g20+i(z) = z. - z 0,<
1+1

i = 1, ... , 9

157

1 2 3 4 5 6 7 8 9 10

x.
1

zii
zzi

x.
1

x.

X.
1

x
10+i

x 20+i

25

10

13

13.33

13

0

24

0

13

11.5

14.5

13.33

13

0

0

0

2

13

16

13.33

13

22

0

0

15

14.5

17.5

14.5

15

0

0

0

14

16

19

14.5

16

4

0

0

21

17.5

20.5

15

19

0

0

4

9

19

22

15

19

16

0

0

33

20.5

23.5

24.33

23.5

0

19

0

25

22

25

24.33

23.5

0

0

3

15

23.5

26.5

24.33

23.5

14

0

i = 1, . , 29 are Lagrangian multipliers
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vf(X) = (-24

E3.10 (X) = ( 0
1=1 i I

Ei=
0

11Xiv g(X)= (
24

E
29

21 iv g.(X)= ( 0i4

0

0

0

0

22

-22

0

0

0

0

0

0

4

-4

0

0

-4

0

0

4

. 20

-16

0

-4

-19

0

19

0

-3

0

0

3

17)

-14)

0)

-3)

Kuhn-Tucker condition

gi(X) < 0, i = 1, ... 29

kigi(X) = 0, i = 1, , 29

vf(X) + L29
1
X.vg.(X) = 0
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30

25

20

15

10

5
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x

1 2 3 4 5 6 7 8 9 10

Isotonic Regression Blocking

A I\
Xi , ^x5,

Ax7 and are determined by Lemma 3.1

X -- X value
-- X* value, X* is the isotonic regression of X

0 -- 2 value, X is the bounded isotonic regression of X



APPENDIX V
Simplified Projection Algorithm

PC15RAk4 Lr-r7 (cf. Section V. 3)
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C SIMPLIFIED ?/OJECIION ALGORITHM

MTN (5.3) c(?)=ACF (V*(X-Z)*TRANS(X-71)
F(19.frCT TO FACH RIM/ OF 7 IS VICRFAc:ING O2 DECPEASP-1C AS iFCTE"IN£9

C P.Y T WHErr!E X IS A ,TIEN 2XN lATRIX AND V IS A 2X' GIVEN IATP.IX
C SUCH THAT V (1,1)=V1*V1, Vt7,2)=V2*V7 AND V (1,?)=V (2,I)=-V1 4`).
C WITH P > IF TO (1. )= TO (2) AND R< 1 OTHERWISE.
C

0.1'1E 1.'310N X12423;) 9? X ( 2. 2J3) YLL2J31 Y2 (233) )/ (2 )
P 1°(2,2J1),I1 (2011,1.2(2:21),D (2),P,1

13 Rc AI(60,14)61 ,21 TO
14 FPRMAT (Tr), 3F13.6,2A?)

IF ("7CF -!) IC ALL EXIT
PE I!) J,1A ( X (1, J1, 1=10)
pr (63,18) (X (7, J) J=101

18 FTRH AT (11F 3)

N1 = "!41
00 2P
BP (I ,'\11) -71-11
IF (IO(T) .r1..7HIA)G0 TO -.?c

V( T)=- /(I#
2q Di ?ct J=1 01Px(1,..1)=V(I)X(.1,1)

13P (I 9J )= 1H1
20, CONIIPIUr

C
C THIr; PROSPAH IS FIR P > J.
C 07TrmINE PII3TAL INDICES.
C

IFIP.LI.^.1G1 Ti 96
34 P!C=0

DO 47 J=211
01=rx(1,J)-0Y(1,J-1)
n?.-rx(2,i)-lx(2,J-1)
TI(J)=I2(J)=1
IFt3P(1,J).70.1dP)G0 TO 47
IF (111.GT "OR .11.GT .P*12)G1 TO 43
9Pti,J)=1H°
I!°C=1

47 IF(3P(21,1.1AF)G) TO 47
IF(9?.GT.J..) °.i2.GT.RI1lG1 TO 4/
9F(2.J)=1H°
IMO=1

47 CD\IIINUE
C
C IF N') INt:PFASING IN NUM1E7 OF PIVOTAL INDICES. °X IS THE
C 0°TIHAL SOL'JTT N.
r

IF(INC.70.))(;) TO 87
p=o=c
I1(1)=I2(1)=NL=1
DO Pr, N?=2,N1
J=1°-NL+1
IF(11°(1,M2).F.Q.1H°)GC T1 5^
I'. (J) =1
pro41

6fl Y1(J)=PX(10.,fl-R'DY(?,N°)
IF(DP(7,AR).EO.1HP)S0 TO r,4

I7 (J) =1
0=I+1

54 112(J)=PX(20R)R*PY(1.NR)
IF(T1(J).Fl.ft.CR.I?(J).r1.:),G1 In
Y1(1)=PX(10L)-°*PX(2,UL)
Y7(1)=°X(200-R*PY(1.NL)
HO=NP-NL

C DrCOMPOSITIOA TCHNICUE.
C

IF (P .L TO 75
CALL P20J(11,2,I1, I2,Y1, X7,1)
GO TO 7r,

75 CALL PROJ(
76 00 8 J=103

K=.14- tk:L -1
PX (11K )=Y1(.1)
PY (?IK)=Y? (1)
CCNTINU7
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tq..=4!R
p=n=r
00 B5 L=214
11(II=I?(I)=1

95 COATI"Ur
GO TO 34

17 In 91
V(I)=1./V(T)
ln qi J=10
PX(I1J)=PX(I,J)*V(T)

91 COATINUE
Wc"ITE(61, 43)(JIA(1,J),PX(19J)0(2,J),PX(29J),J=1,A)

93 FOAT(tl$,T12,tX(11J)*,T24,tPX(1,J)1,T41,,X(?,J)t,T53,tnX(2,J)tt,
1(i1t,I312F1i.513A,2E13.6))
63 TO 13

16 WRTTF(51,97)
17 FO?MTItlIMP?OPEC P VALWEt,

On TO 13
EMI
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SU1ROUTINE 9P0J(NOO,J1,J2,11,12,4)
UIMrNSION 11(301),J2(2111,9112011,q7(2J0),111111,C(110,101),

1C..1120C/,Zt1aJ)
ND1=N1+1
IL=1
00 119 I=2,N11
IE(J1(I).E).0)G) TO 119
IR=T-1
K=I-IL
AV=r7.
DO 113 J=IL4I?
AV=Av+91(J)

113 CONTINUE.
AV=IAV*PUFLOAT(K)
DO 117 J=IL,IR
92(31=37(J)+AV

117 CONTINUE
IL =I

119 CONTINUE
K=1
0° 127 T=101
IF(.12(II.F0.?)G1 TO 127
K=K+1
9(K) =0.
rr 127 j=I,N1
P(K)=3(K1+32(J)

127 CONTINUE.
r

C (5.5) CZ=J 4)(1 ST1ULTAN3US LINEAZ ECOATIONS.

L=I

DO 164 JJ=1,N1
IF(J?(JA.E0.J1S0 TO 164
00 137 I=1,11
CJ(T) =0.

137 CONTINUr
On 140 I=JJ.NO

140 CCATINUF
IL=1
DO 155 I-=2,N31
IF(J1(I).E1.11G) TO 15'
IR=T-1
K=I-IL

09 149 J=ILIF
AV=AV+CJ(J)

149 CONTINUE
AV=(AV*2S3),FLOAT(K)
00 153 J=IL,IR
CJ(J)=CJ(J)-AV

153 CONTIO7
IL=I

155 CONTINUE
K=1
L=L+1
00 164 I=1,41
IF(J2(I1..E.J)G3 TO 164
K=K+1
r(K,L).r,.
33 164 J=1,^:1
C(K,L)=C(K,L)+CJ(3)

164 CONTINUE

C IS AN MXM SY4NETqIC NONSINGULAR ITH POSITIV.= VALUE IN
C EACH ENTRY SUCH THAT EACH DIAGONAL :ATPY HAS LARGER VALUE THAN
C THOSE ON THE SAME COLUMN.

03 179 J=1,41
JP=J+1
IF(JP.GT.1) ; TO 171
30 179 I=J911
F=C(I,J)/C(J,J)
9(I)=9(II-E*?tJ)
0/ 179 K=J9,1
C(I,K)=C(I$<)-F*Gto,K)

179 CONTINUE
7(4)=3(41/C(Mtm,
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no 189 I=20,
K ="1 +1 -7.

S3=C.
K1=K+1
DO 117 J=Kit'
SR=S84O(K.J147_(J)

147 CONTI:N(1r
Z(K)=(R(K)-S11/C(K,K)

119 CONTINUE

C Z IS THE SCLUTICK CF (51.5)._
7 IS THE TNO?,74ENT OF L12 LIVEN PPLOW.

C 32 AND 21 AR7. THE SOLUTIONS IN (5.7) AND (5.1) 2SPFCTIVELY.

Su4=1.7
Dn 2 ^1 I=100
IF(J?(II.E1.))G1 TO 2J1
J=J+1
SU1=SU4+Z(J)
r?(I)=SUM

201 CONTINUE
IL=1
10 115 I=2,111
I7(J1(I).E1.31 SO TI 215
IR =I -1

on ?10 J=IL,IR
AV=A0711(J1+R*92(J)

?) P CONTINUE
AV=AV/FLIAT(<1
DO 214 J=IL,IR
31(J)=AV

?14 NTINUE

215 CONTINUE'
RETUPA
7NO
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INDEX

affine space 15

basic function 42
basic set 41
bivariate isotonic regression 124
boundary point 12
bounded from above 34
bounded from below 34
bounded isotonic regression 79
chain 60
closed 12
comparable 33
complete lattice 85
component 35
conditional expectation given

a cr-lattice 100
cone 19
connected 35
convergence in L2 96
convex 12
convex hull 39
covariance 97
dual cone 22
equivalence class 36
essential infimum 104
essential supremum 104
extreme vector 26
field 85
finer 88
finitely generated cone 25
generalized projection 13
generated o--field 85
generated o--lattice 85
greatest lower bound 34

Hilbert space 12

immediate predecessor 36
immediate successor 36
immediately comparable pair
indicator 41

induced complete lattice 86
induced ordering 86
induced o--field 93
induced cr-lattice 93
interior point 26
isotonic function 36
isotonic regression 37
Jens en' s inequality 110

lattice 85
least upper bound 34
level set 41
linear ordered cr-lattice 92
linear ordering 33
lower bound 34
lower set 41
martingale 18
maximal element 33
Maximum Lower Set

algorithm 65
minimal element 34
Minimum Upper Set

algorithm 62
minimum violator 62
Minimum Violator algorithm 62
monotone class 85
monotonicity 103
multivariate isotonic

regression 121
norm 12
ordered set 34
partial ordering
partition 66
pivotal element 62, 134,
Pool -Adjacent-Violators

algorithm 57
probability space
projection 12

36 Projection of Minimum Violators
algorithm 53

33

93

135



165

Projection of Violators
algorithm 57

quasi-order ing 33
random variable 93
reached 35
relative boundary point 27
relative interior point 27
restricted conditional

expectation 111
restricted isotonic regression 37
reversal of an ordered set 35
reversal of an ordering 35
reversed tree 35
root 6 0

separable 35
cr-field 85
o- lattice 85
E-measurable 93
simple random variable 94
Simplified Projection algorithm 141
smoothing property 17, 109
submartingale 118
tree 34
tree structure 34
unimodal 79
unrelated 35
upper bound 34
upper set 41
upper set determined by (,) 41
upper set in C 67

variance 97
violator 53, 62

weight function 36


