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Statistical inference sometimes involves order restrictions
which are usually due to prior knowledge. Such order restrictions
whenever they occur, will be a major factor in performing a good
and reliable statistical analysis. How to make use of these order
restrictions is one of the most interesting and the most facinating
subjects in statistics nowadays.

Isotonic regression has been formulated and studied for the past
25 years by many statisticians. Their researches are very success-
ful and very fruitful. The theory of such a statistical analysis is
called the conditional expectation given a o-lattice which is an exten-
sion of the conditional expectation. Conditional expectation given a
o-lattice has been analyzed in the same direction as that of the condi-
tional expectation. The understanding of the concept of the latter will

be very helpful for the study of the former. When several



measurements have been made at each given sample and each
measurement has its own restriction, the point estimation of this type
is called the multivariate isotonic regression.

The structures, the properties and the algorithms of isotonic
regression and of multivariate isotonic regression are the major
research in this thesis. Conditional expectation given a o-lattice and
isotonic regression are presented in separate chapters. They shall be
considered as a single unit. The former emphasizes properties and
the latter emphasizes algorithms. Multivariate isotonic regression is
treated in the simplest case. Only bivariate isotonic regression with
linear ordering in each variate will be considered.

The fundamental concept is the generalized projection. Some
necessary and sufficient conditions have been presented. Isotonic
regression and multivariate isotonic regression are discussed in the
finite case. In such a situation, they are generalized projections to
finitely generated cones. However, in such general structures, the
monotonicity and the averaging property will not be preserved.
Although the algorithms are different from each other, they are pre-
sented in the same pattern, i.e., as successive projections to linear

spaces.
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CONDITIONAL EXPECTATION GIVEN A c-LATTICE.
ISOTONIC REGRESSION, UNIVARIATE
AND MULTIVARIATE.

I. INTRODUCTION

1.1 Forward

Over the past 25 years, statisticians have formulated and
studied problems of statistical inference in the presence of order con-
ditions arising in various contexts. For the most part, these prob-
lems may be interpreted in terms of isotonic regression over a
quasi-ordered set. Some examples will be presented in the next
section. Because of its theoretical interest and broad applications,
the author devoted himself to research in this field.

The regression function of one random variable X on
another, Y., is the conditional expectation u(y) = E(XlY =y), and
furnishes the best fit to the distribution of X by a functionof Y
in the sense of least-squares. Isotonic regression is introduced in
Chapter III by means of least-squares, as a generalization of the
regression function. As a generalization of conditional expectation,
this concept is called conditional expectation given a o-lattice. Since
it involves least-squares, isotonic regression is an instance of
quadratic programming. Examining the objective function and the

feasible region of an isotonic regression problem, we shall quickly



discover that the arithmetical manipulations involved are mainly the
routine calculation of means.

Following the isotonic regression is the multivariate isotonic
regression. The latter is quite complicated as we shall soon find out
in Chapter V. But its nature is essentially the same as that of the
former. Thus its research may take similar directions to that of the
isotonic regression. Generalized projection, isotonic regression,
conditional expectation given a o-lattice, and multivariate isotonic
regression are studied respectively from Chapter II to Chapter V.
The author hopes that these results will provide a general outlook for

the problems of least-squares under order restrictions.

I.2 Statistical Problems Under Order Restrictions

The (daily maximum) temperatures measured (in Fahrenheit) at
Oregon State University during the two periods, March 16th, 17th,
18th and April 16th, 17th, 18th, 19th, 20th of 1974, were 68°, 58°,
56° and 56°, 59°, 63°, 58°, 55° respectively. The three days' aver-
age temperature in March is x = 60.7° and the five days' average
temperature in April is y = 58.2°. One wishes to estimate long run
average (daily maximum) temperature in March p and that in April
v with these eight observations. If we believe that p < v, then the
estimates ﬁ and ¥ for M and Vv respectively should there-

. . A
fore satisfy the constraing p < v



The statistical hypothesis testing for M =V against its
alternative p < Vv based on the eight observations will favor the
former. Therefore, |/-\L =7 and fL == 59.1°, the average of the
above eight observations, is the best fitto x and vy in the sense

that 3(x-ﬁ)2 + 5(y—’\\/)2 has the smallest value among

3(x—p)2 + 5(y-V)2 with p <v. (2.4) shows that
30c-p)2 + 5(y-v)2 > [3(x-P)245(y-2)%1 + BE-wZ+5(0-v)?]. It follows
that whenever x and y are consistent estimators for p and V
then so are ﬁ and V.

The average (daily maximum) temperature measured at Oregon
State University in March 1974 was 54° and that in April 1974 was
57.5° (cf. AppendixI). If we compare a three consecutive days'
average temperature in March x with a five consecutive days’
average in April y of that year, we shall find out that there are
284 pairs such that x >y, 2 pairs such that x =y and 468 pairs
such that x < y. This shows that pn = 54° is less than Vv = 57.5°
by as much as 3.5°, but there is about 3/8 chance that one may
observe x >y.

Experimental investigations sometimes deal with continuous
variables which can not be measured in practice. For example,
Dixon and Massey (1957) describe a procedure for testing the sensi-

tivity of explosives to shock. A weight is dropped on specimens of

the same explosive mixture from various heights. Suppose that a



given specimen, if it is dropped at some chosen height, will explode;
so will it if dropped from any greater height. On the other hand, if it
does not explode at that height, neither will any lesser height cause it
to explode. Therefore, we may assume that there is a critical height
associated with each specimen. The investigator's interest is in the
rates of explosions from a population of such specimens dropped from
various heights.

In such an experiment it is impossible to make more than one
observation on a given specimen. Once a test has been made, and
the specimen does not explode, one may suspect that its critical
height will be altered. Thus a valid result can not be obtained from a
second test. An experimental designer usually divides the sample of
specimens into several groups and tests one group at one height, a
second group at another height, etc. The data gathered are the num-
bers of those exploded and of those not exploded at each height.

Let X be the random variable, critical height, with distribu-
tion function F(h) = Pr{X < h}. Suppose 50 experiments have been
made with ten tests at each height hi’ i=1,2,...,5; for conveni-
ence suppose the heights hl’hZ’ ces ,h5 are arranged in increasing
order. The 50 tests may be regarded as a set of 50 independent trials
of events having probabilities P = F(hi)’ i=1,2,...,5, of success

if success means that the given specimen will explode at the height.

If a large number of trials is made at each height h,, i=1,2,...,5,



the ratios T number of success divided by number of trials, each
determined for a particular height, will with high probability be in
non-decreasing order. The best estimates of the probability are then
these ratios. Suppose that a small number of trials will be allowed;
these ratios may not be in monotone order. In such a case, the maxi-
mum likelihood estimates of the probabilities Py'Pys---sPg are
determined under order restrictions. This is a typical example of an
isotonic regression problem over a linearly ordered finite set.

Ayer and coworkers (1955) showed that the maximum likelihood
estimates of Py»Pyse--s Py subject to 12 f_pz <... gpn are the
same as the least-squares estimates of PysPyr 9P subject to the
same constraints. Suppose that r. = 0.3, r, = 0.2, ry = 0.7,

1

r, = 0.8 and rg = 0.5. Then the optimal solution is that

B, =P, =0.25 and B, = ’134 =’I§5 = 0.67 (cf. Example 3.1). There

are ten tests at the fifth height with five specimens exploded, 20 tests
at the fifth height and the fourth height with 13 specimens exploded,
30 tests at the fifth, fourth and third heights with 20 specimens
exploded, etc. The explosive ratios in such combinations of heights
are respectively .5, .65, .67, .55 and .5 with .67 the largest value.
If we drop the 30 specimens at the fifth height which were dropped at
the third, fourth and fifth heights, then the explosive ratio will be at
least . 67. On the other hand, if we drop these 30 specimens at the

third height, then the explosive ratio will be no more than . 67.



Similarly for the situation at the first and second heights (cf. Appen-
dix II).

Let q, = (p_1+1-p_l)/(h_l+1-h.), i=1,...,4. The ordering

P, <p, <..- <P is equivalent to that q, >0, i=1,2,3,4. In

some situations, we require that 9, > a i=1,2,3,4 for a setof
non-negative real numbers a;s a,. ag and a,. Such a considera-

tion was introduced by Reid (1968). The maximum likelihood esti-

H L B j . H . < 2
mates of P;'P, P subject to 12 + 0.05 ipz P, + 0.05 < P3

5
p, +0.05<p,, p, +0.05<p, are ’131 = 0.225, ’132 = 0.275,
By = 0.617, ’134 = 0.667, ’135 =0.717.

Estimation of variance components in random models is also an
example with order restrictions. Consider the two-way random

model

=pta,t+b, tec, +
Vi T M TR TR e ey

i=1,...,rs j=1,...,83 k=1,...,t where {a.l}, {bj}, {Cij} and

{eijk} are sets of mutually independent normal variates with means

and variance ¢ 0'2 2 d 2 tivel Let
zero and varianc A g’ O'AB an o respectively. e
_ r 2
SSA = s'ch_l(Yi y )
_ s 2
SSB = rthzl(y i -y )
ss ¢=F x5 2



and

r s t 2
=zf 2% 3 ;
S8 = B %=1 =1 ik Yy

and let MSA = SSA/(r-l), MS_ = SSB/(s—l), MSAB = SSAB/(r—l)(s-l)

B
and MS =SS /rs(t-1). Then the expectations of MS,, MS_,
e e A B

2 2 2 2 2 2
+ + , + + ,
MSAB and MSe are o tcrAB stcrA o tUAB rtch
2 2 : , , :
o+ tcrAB and o respectively. Since variances are non-negative,

E(MSA) > E(MSAB) 2E(MSe) and E(MSB) > E(MSAB) > E(MSe).
However, the sample estimates MSA’ MSB, MSAB and MSe may
not be in such order. Estimating these variance components subject
to order constraints is a problem of an isotonic regression over a
tree (cf. Appendix III).

Let (X(t),Y(t)) be a random vector having a bivariate normal
distribution with mean vector (p(t),v(t)) for each t and with a
known constant covariance matrix. It has been indicated that the
means WK(t) and v(t) are respectively a monotone increasing
function of t and a monotone decreasing function of t. Suppose a
random sample of size N has been given with Ni observations at
each parameter value t. i=1,...,n. Multivariate isotonic regres-
sion will yield the maximum likelihood estimates to the sample by a
monotone vector -valued function.

For instance, Bhattacharyya and Kotz (1966) use freezing dates

and thawing dates for Lake Mendota for a period of 111 years to test
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against warming trend. Suppose there is a warming trend in the Lake
Mendota during that period and suppose the covariance matrix is con-
stant for each year and it is given. Then the means p(t) and v(t)

can be obtained by using the Simplified Projection algorithm.

1.3 Organization

As the title implies, the core of the study is the conditional
expectation given a o-lattice and its applications to the isotonic
regression and to the multivariate isotonic regression. The applica-
tion to the latter is indirect.

The algorithms that appear in this paper, Projection of
Minimum Violators, Projection of Violators, Pool-Adjacent-
Violators, Minimum Violators, Minimum Upper Sets, Maximum
Lower Sets, anmd Simplified Projection have the similar structures.
Making use of the smoothing property, we obtain the projections of a
given vector X to a strictly decreasing sequence of linear spaces
successively until we have the desired solution. Therefore, the
justification for one algorithm can be applied to that of others. The
only difference is the way we identify those pivotal elements and the
way we obtain the projection to a linear space. Since the Projection
of Minimum Violators algorithm comes first, its justification is given

in more detail.



Conditional expectation of a square-integrable random variable
given a o-lattice, isotonic regression and multivariate isotonic
regression are generalized projections to closed convex cones. The
generalized projection presented in Chapter Il furnishes the back-
ground for these topics. Let H be a Hilbert space, let C be a
closed convex cone in H and let S be a linear space in H such
that S O C. The smoothing property shows that
P(X|C) = P(P(X|S)|C) for every X ¢ H. This is the property that
we shall use constantly for various algorithms in this thesis. The
chapter is by itself an extension of results in Brunk (1965).

The aim of Chapter III, isotonic regression, is to develop some
efficient algorithms for various types of isotonic regression problems
through the use of indicators. We introduce a novel approach, accord-
ing to which the isotonic regression can be seen as an orthogonal
projection to a linear space. But which linear space is a proper one
is uncertain. Therefore, we have to use the smoothing property and
pivotal elements successively to obtain a linear space we want. Once
a proper linear space is found, the isotonic regression for a given
function X is the orthogonal projection of X to that linear space.
Similarly fbr the multivariate isotonic regression. For the problems
of isotonic regression over a linearly ordered set and isotonic regres-
sion over a tree, pivotal elements can be identified easily. For the

isotonic regression over a partially ordered set, Alexander (1970)
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introduced a method which rewrites a partial ordering into a consistent
linear ordering.

The properties of isotonic regression are presented in Chapter
IV, conditional expectation given a o-lattice. Observing the similari-
ties between the isotonic regression and the regression, one can gen-
erate a parallel concept, conditional expectation given a o-lattice, by
that of conditional expectation. Johansen (1967), and Brunk and
Johansen (1970) introduced that conditional expectation given a
o-lattice as the Lebesgue-Radon-Nikodym derivative given a o-lattice.
Conditional expectation appears as a special case of conditional
expectation given a o-lattice. A special interest attaches to the case
when the o-lattice is linearly ordered. In such a situation, there are
martingale and submartingale structures.

Although multivariate isotonic regression is the title of Chapter
V, all the work has been done on the case of bivariate isotonic regres-
sion over a linearly ordered finite set. The author hopes that these
results can serve as the "frontier" for the general case. The aver-
aging property and the monotonicity in the bivariate problem have
quite different significance as compared with the univariate case,
which makes the problem a lot more complicated.

The monograph of Barlow and coworkers (1972), which contains

a bibliography listing of 247 published works referred to this subject,
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is a complete reference for this thesis, especially its Chapters 1, 2
and 7.

The sequences of theorems, lemmas, and examples will be
numbered for each chapter individually. Each corollary will be num-
bered according to that of the theorem it follows. Theorems and
formulas which are quoted will be presented without proof.

Terminologies and notations are standard. Terms will be
underlined when they are introduced for the first time in the thesis.
Capital letters X, Y and Z will be used to denote functions,
vectors, matrices or random variables. Small letters a, B, vy, x,
y, z will be used to denote real numbers. The inequality <
between a pair of functions stands for the same inequality between
corresponding components. The same notation < between a pair
of Greek letters | and Vv stands for a quasi-ordering. The meet
a A B is the smaller number of a and B. The meet XAY
between a pair of functions is a function such that

(XAY)(w) = X(w) A Y(w) at each argument w.
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II. GENERALIZED PROJECTION

II.1 On a Closed Convex Set

Let H be a Hilbert space: a linear space with an inner

product (-,°) such that every Cauchy sequence converges in the

space, where the norm of the element X is defined by

1/2

X := (X, X) Let C be a subsetof H. An element Y is

said to be a boundary point of C if for every & >0, there exist

ZeC and X ¢ C suchthat ||Z-Y|| <6 and |X-Y|| <6. C is
said to be closed if it contains all its boundary points. It therefore
follows that the limit of a convergent sequence from a closed set is in
the set. C is said to be convex if Y, Z ¢ C implies

AY + (1-N)Z ¢ C for each real number N between zero and one.
Throughout the rest of the section, the letter C will denot a non-
empty closed convex set in the Hilbert space H. The following

result is well known.

Theorem 2.1. Let C be a nonempty closed convex set in the

Hilbert space H. For every X € H, there exists a unique X* € C

which minimizes ”X-ZH among all Z e C.

The closedness of C vyields the existence of X* and the
convexity of C yields the uniqueness of X?%*. Such an element X%,

denoted by P(X|C), is called a projectionof X on C and the
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operator P(- |C) is called a generalized projection. The general-
ized projection P(- |C) depends on C and also depends on the
inner product (-,") associated to the Hilbert space H. It is

trivial that

(2.1) P(Y+X|Y+C) = Y + P(X|C) for each Y ¢ H
and
(2. 2) P(aX|aC) = aP(X|C) for each real a,

where Y + C := {Y+Z:Z ¢ C} and aC :={aZ:Z ¢ C}. The sets
Y+ C and aC are closed and convex.
If XeC, then P(X|C)=X. A well known result which plays

an important role in the theory of projection is the following theorem.

Theorem 2.2. Let C be a nonempty closed convex set in the

Hilbert space H. If X ¢ C, then P(X|C) is a boundary point

of C.

Therefore, if X ¢ C, then the candidates for P(X| C) are
boundary points of C. Let X ¢ C, Z € C and let
B(X,Z) = {Y:| Y-(X+Z2)/2| < |X-z]|| /2}. From a geometric point of
view, if Y e B(X,Z) and Y #Z then |Y-X|| < |Zz-X||. It fol-
lows that if X* is P(XlC) then B(X,X*) ~ C is a singleton
{X*}. Since both C and B(X,X*) are convex, there is a separat-

ing hyperplane which separates C from B(X,X%*). The hyperplane
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supports B(X,X*) at X%, so it can be characterized as
{Y:(X-X%*,Y) = (X-X%,X*)}. From the separation by the hyperplane,
we have (X-X%,X%*-Z)>0 for every Z € C. On the other hand,
the inequality || Y-(X+Z)/2|| < ||X-2| /2 is equivalent to
(X-Y,Y-Z) >0. If wereplace Y by X%, then [X-X*| <|x-Z]|.

We have thus proved the following theorem.

Theorem 2.3. Let C be a closed convex set in the Hilbert

space H andlet X € H. An element X* € C is the projection of

X on C if and only if
(2. 3) (X-X*,X%-Z) >0 for every Z € C.

Analytic proofs of the theorem have been given by Brunk (1965)
and by Barlow and coworkers (1972). By the identity
2 2 2
[x-2]° = || X-X*[|© + || X*-Z||© + 2(X-X*, X*-Z), we have the fol-

lowing result.

Corollary 2.3.1. An element X% € C is the projection of X

on C if and only if

(2. 4) ||x-z|t‘2 > || x-x* 24 ||x=:<-zI|‘2 for every Z ¢ C.

It follows that

(2.5) |px|C)-z|| < ||X-Z|| for every Z e C,



and if the equality holds for an element Z ¢ C, then P(X|C)=X.
After a simple manipulation, an immediate result from (2.3) i
that

(2. 6) IPx;[c)-Px,|o)l < [Ix,-x,]

for each pair Xl,X € H. This yields the following corollary.

2

Corollary 2.3.2. The generalized projection P(-|C)

reduces distance. Therefore, it is a continuous mapping on H.

Let C1 and C2 be closed convex sets in H with

c,Cc For every X ¢ H, (2.4) showed that

1 2

2
(2.7) I P(X|C2)—P(X|Cl)||2 < |x-Pix|c)ll
2
- [ x-Px|c,)ll"
Inequalities (2.3), (2.4), (2.6) and (2.7) are given by Brunk (1965).
They are fundamental to the concept of the generalized projection
P(-|C).
Let S be a closed linear space. The closed convex set Y +

is called an affine space. Let A=Y +S. Then A = Y1 +S for

any Y1 ¢ A. Write A =P(X|A)+S. By (2 3), we have that

X* = P(X|A) ifandonlyif X*e¢ A and (X-X* Z)=0 for every

15

S

S

Z ¢S or equivalently, for any Y1 € A, (X-X%, Yl-Z) = 0 for every
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Z e A. If A is also a closed linear space, i-e., 0 € A, then
X* = P(X|A) if and only if (X-X*,Z) =0 for every Z € A. It is

obvious that P(P(X|SZ)|SI)=P(X|SI) if S and S2 are closed

1

linear spaces and S1 C SZ- A similar result under a weaker

hypothesis is given below.

Theorem 2.4. Let C1 and C2 be two closed convex sets

in H. Forevery X € H, if either C2 is an affine space and

P(P(XICZ)ICI) € CZ’ or C1 is an affine space and C1 C CZ’

then P(P(X|C,)| c,) = P(X|C1r\ C,)-

Proof. The intersection of closed convex sets is also closed and

convex. Therefore, the operator P(: lClr\ CZ) is well defined. Let

Y2 = P(X|C2) and let Y1 = P(YZICI). We are going to show that

Y, = P(X| Cin CZ) if either one of the above two hypotheses is true.
Suppose C2 is an affine space and Y1 € CZ- Then

(X-Y,,Y,-Z) = 0 for every Z € C, by the fact that Y, = P(X|C2),

and (YZ-YI,YI-Z) >0 for every Z ¢ C1 by the fact that

Y1 = P(Y2|C1)- Hence, (X-Yl, Yl-Z) >0 for every Z ¢ C1 ~ CZ.

By Theorem 2.3, Y, = P(X|C1r\ C,).

Suppose C1 is an affine space and C1 C CZ. Then there

exists a closed linear space S in H such that C1 = Y1 +S. If

we can show that (X-Yl, Z)=0 for every Z €S, then

Y, = P(X|C1) = P(XIClr\ CZ)- We claim that Y2 +S is a subset of
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CZ. By the convexity of CZ’ )\Y2 + (1-)\)(Y1+(1Z) € C2 for each

N € (0,1), for each real a and for each Z € S. Set a:(1-)\)_1.

By letting N —™ 1 and using the fact that C2 is closed, we find

that Y2 + Z ¢ CZ.

Since Y2 = P(XICZ), (X-Y,,Y,-Y) >0 foreach Y e C,. It

2" "2 2

follows that (X-Y,,Z) =0 for each Z¢S. Since Y, = P(Yzlcl)

and C is affine, (YZ-Y ,Z) =0 forall ZeS. The last two

1 1

equalities yield that (X—Yl, Z) =0 foreach Z € S. This completes

the proof. [

Corollary 2.4.1. Let C1 and C2 be two closed convex

sets with C1 C CZ. If either C1 or C2 is an affine space, then

(2. 8) P(P(X|C2)|C1) = P(X|C1)-

The identity (2. 8) is called the smoothing property. Most of the

algorithms developed in Chapter III and Chapter V make use of this
identity.

The important convergence theorems, Theorem 2.5, Corollary
2.5.1 and Theorem 2.6, are introduced by Brunk (1965) except that
Theorem 2.5 is given here under a weaker hypothesis. Theorem 2.5
and Corollary 2.5.1 given below show that P(XI C) can be obtained
as the limit of {P(XICn)} or {P(Yn| Cn)} as the monotone sequence

{Cn} converges to C.
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Theorem 2.5. Let {Cn} be a monotone sequence of closed

convex sets in H, let X ¢ H and let Xn = P(X| Cn). If the
sequence is monotone increasing, then lim X exists and the
n—ow n 0
limit is P(X|C_) where C_ is the closureof w__, C . Ifthe
w0’ 00 n=1 "n

o0
sequence is monotone decreasing and M -1 C is nonempty, then
n=1 'n

lim X exists and the limit is P(X|~"_. C_).
n n=1 "n

n—o
A countable union of a monotone increasing sequence of convex
sets is convex and the closure of a convex set is convex. A countable
intersection of closed convex sets is closed and convex. Therefore,
C, and r\;o:l Cn are closed and convex under their corresponding
assumptions. If {Cn} is monotone increasing then by (2. 7), the
sequence {”X—Xn”} is monotone decreasing and {Xn} is Cauchy.
If {Cn} is monotone decreasing and m::l Cn # ¢, then by (2.7),
the sequence {”X-Xn”} is monotone increasing, it is bounded from

0

above by ”X-Z” for any Zer\n:l Cn and {Xn} is Cauchy.

Corollary 2.5.1. Additional to the assumptions in Theorem

2.5, let {Yn} be a convergent sequence with X as its limit. Then

the sequence {P(Ynl Cn)} converges to P(XICOO) or

0
PX[~__;

C ) according as {C } is monotone increasing or mono-
n n

tone decreasing.

A sequence {Xn, Cn} is called a martingale if for each n,
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C is a closed convex setin H, X e¢eH, C (C C and
n n n ntl

Xn = P(X |Cn) for any non-negative integer k. If for each n,

ntk
Cn is a closed linear spacein H and Xn = P(XI Cn) for an ele-
ment X € H, then {Xn’ Cn} is a martingale provided that {Cn}

is a monotone increasing sequence. An example of a martingale which

is not composed of closed linear spaces will be given in Corollary

4.18.1.

Theorem 2.6. Let {Xn, Cn} be a martingale in H with the
sequence {Xn} being bounded. Then 1lim Xn = Xoo exists and
n—"v
Xn = P(Xoo|Cn) for each n. Consequently, every bounded martin-

gale is of the form {P(XICn), Cn} for some X e C_, where C

00
is the closureof o _, C .
n=1 "n

A necessary and sufficient condition for the bounded sequence
!

{Xn’ Cn} to be a martingale when the C 's are cones is given by

Corollary 2.11.1.

II.2 On a Closed Convex Cone

A subset C of the Hilbert space H is said to be a cone if
X ¢ C implies 06X ¢ C for each 6 >0. The family of isotonic
functions described in Chapter III, the family of isotonic functions
described in Chapter V, and the family of square-integrable

Z-measurable random variables described in Chapter IV are closed
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convex cones with respect to their corresponding Hilbert spaces.
Throughout this section we shall let C denote a non-empty closed

convex cone in the Hilbert space H. From (2.2) we have

(2.9) P(6X|C) = 8P(X|C) for each & >0.

An immediate result from Theorem 2. 3 is the following theorem.

Theorem 2.7. Let C be a closed convex cone in H and

let X € H. An element X* € C is the projectionof X on C if

and only if it satisfies

(2.10) (X-X*%,X*% =0
and

(2.11) (X-X*,Z) <0 for each Z € C.

The generalized projection P(- |C) is positive homogeneous in the
sense of (2. 9) and orthogonal in the sense of (2.10) provided that C

is a closed convex cone.

Corollary 2.7.1. Let X* be the projectionof X on C.

Then

, , 2
(2. 12) x| = x,x%) < || x]|
and if | X*| = ||X||, then X*=X.
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A geometric interpretation of (2.10) can be given as below.

Let BX := {Y € H:(X-Y,Y) > 0}. Consider a simple case first. Let
H = R® and let the inner product (-,-) be defined by
(X,Y) = XtVY for a given positive definite matrix V. Then BX
is the region bounded by the ellipse YtV(X-Y) = 0 which passes
through X and the origin. Let C be a closed convex cone in R
and set CX = C r\BX- Then for each X € CX’ we have
Izl < llPx|o)]l. 0<(X,2) < (X,P(X[C)) and (P(X|C),Z)>0.

The above results also hold in general; the proof follows.

Theorem 2.8. Let C be a closed convex cone in H, let

XeH andlet C_ :={Z e C:(X-2Z,2Z) >0}. Then C is closed and

X X
convex, and for each Z ¢ CX we have

2 2
(2.13) |z||® < (X,2) < (P(X]|C),Z) < (P(X]|C),X) = fP(x|C)

and if the last inequality becomes an equality, then Z = P(X|C).

Proof. The set B = {Y ¢ H:(X-Y,Y) >0} is a closed ball
with center at X /2 and with radius - ||X|| /2. Therefore,
CX =C BX is closed and convex. For each Z ¢ CX’ the first
inequality holds by the definition of Z, the second inequality is
from (2.11) and the identity is from (2. 12). Since
||z||2 < (P(X|C),Z), by the Holder's inequality

(P(x|C),2) < |Px|C)|||Zz]|], wehave | Z] < |P(X]|C)| and hence
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the last inequality follows.
If any one of the identities | Z|| 2. (P(X]|C), X),
(X,Z) = (P(X|C),X) and (P(X|C),Z)=(P(X|C),X) holds, then

2
I

(P(x|c),z) = |pxic)| |l z| = |Px|C) and hence Z = P(X|C). []

The theorem shows that if Z € C satisfies (2 10), then
|z]| < [|P(X|C)||; and the equality holds if and only if Z is the
projectionof X on C. This conclusion can also be made by
observing that ” X” 2 - || X-Z || 2 + || Z ” 2.

Let C be aclosed convex cone in H and let
C#* := {Y:(Y,Z) <0 for each Z € C}. The set C%* is a closed con-
vex cone and C* ~ C = {0}. Such a set C* is called the dual cone
of C. A simple and obvious result about the projection of X to

C* is given below.

Theorem 2.9. Let C be a closed convex cone in H and let

C* be the dual cone of C. For each X ¢ H, we have
(2. 14) P(X|C) + P(X|C*) = X

Consequently, P(X|C) =0 ifand onlyif (X,Z) <0 for each

Z ¢ C.

If Y satisfies (2.11), i.e., (X-Y,Z) <0 foreach Z e C,

then X - Y ¢ C*. Therefore, the collection {Y ¢ H:(X-Y,Z) < 0}
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is simply X - C*.

Theorem 2.10. Let C be a closed convex cone in H and

let C* ©be the dual cone of C. For every X ¢ H, we have
2
(2.15) ||P(x|C)||2 = (P(X]|C),X) < (P(X|C),Y) < | Y

for every Y e X - C* and if (P(X|C),Y) = HY“Z, then

Y = P(X|C). Further, if Ye C(X-C%), then (X-Y,Y) <O.

Proof. If Y € X - C%, then (X-Y,P(X|C)) <0 and hence
the first inequality in (2.15) follows. By the Holder's inequality
(P(X|C),Y) < |P(X|O)| || Y]], wehave [PX]|C)| <Yl and the
second inequality follows. If (P(X|C),Y) = ||Y[%, then
12]2 = (Bx|c),¥) < |[PX|O)| [ Y]l. But we have just shown that
Ipx|c) <|Yll. so (PX|cC),Y)=|PX|C)||Y| and hence
Y = P(X|C). If YeCA(X-C*) then (X-Y,Y)<O0 since

X-YeC* and YeC. ||

By Theorem 2. 8, the closed convex set CX is contained in the
closed ball with center at origin and with radius ||P(X|C)|, while
from Theorem 2. 10 it follows that the closed convex set X - C* is

contained in the half-space {Y:(P(X|C),Y) > ||P(X|C)]| °}). The

intersection of CX and X - C*¥ is a singleton, {P(X|C)}.
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Theorem 2.11. Let C1 and C2 be closed convex cones in

H with C, CC, andlet Xe¢H. Set Y.1=P(X|C.l), i=1,2 and

set Y :P(Y2|C Then

0 1)'

(2.16) Iy P <yl <y, < 1],

and if any equality holds, then the corresponding two elements in H

are identical.

Proof. Since YZ=P(X|C2) and Y =P(Y2|C1), the results

0
for the sequence || Yo” < ”YZH < ||X” » follow from Corollary

2.7.1. Since C, C C,, by (2.11), we have (X-Y,,Z) <0 and

2

(YZ-Y »Z) <0 for each Z € C . Therefore, (X-Y_,,Z) <0 for

0 1 0

each Z ¢ C1 and the results follow immediately from Theorem

2.10.

Corollary 2.11.1. Under the same assumptions as in Theorem

2.11, a necessary and sufficient condition for
P(P(X|C2)|C1) = P(X|C1) is that (P(XICZ)-P(X|C1),Z) <0 for

each Z ¢ Cl-

Proof. Let Y_1=P(X|C_1), i=1,2 andlet Y =P(Y2|C).

0 1

If YO = Yl,

Z ¢ Cl. On the other hand, if (YZ-Y

then Y1 € Y2 - C1 and by (2.15), ||Yo|| < ||Y1|| We may

then by (2.11) we have (YZ-YI, Z) <0 for each

yZ) <0 for each Ze€ C_,

1 1
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conclude our result by applying the above theorem. 1

By the identity (2.12), the identity
Ix-px|C)||% = [|X]|% - |P(X|C)|® and the inequality (2.7), we may
obtain that

2 2
| [

(2.17) ||P(X|CZ)-P(X|C1) ||P(x|c2)l|2 - I|P(x|c1)

IN

(P(X|C,)-P(X[C,), X)

for each pair of closed convex cones C1 and C2 with C1 C CZ-
Theorem 2.7, Corollary 2.7.1, the identity (2.9) and the inequality

(2.17) were introduced by Brunk (1965).

I1.3 On a Finitely Generated Cone

Let Zl, ZZ’ che Zm be a finite sequence of elements in the
Hilbert space H and let C be the set of all non-negative linear

combinations of the sequence. It has been shown that C is a closed

convex cone (cf. Rockafellar (1970)). Such a closed convex cone is

said to be finitely generated. And we denote it by C[Zl’ ey Zm]-
Let Z ¢ C[Zl’ cees Zm]- Then there exists a set of non-negative

real numbers a .« flm such that Z = El;: aizi' The repre-

1’ 1

sentation need not be unique and we may even have a representation
which is composed of some non-negative coefficients and some

negative coefficients. An element Y of a closed convex cone C
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is said to be an extreme vector of C if there do not exist linearly

independent elements Y1 and Y2 in C suchthat Y = Y1 + YZ.
If Y is an extreme vector of the cone C[Zl, cee Zm], then Y
must be a scalar multiple of Zi for an i between 1 and m.

If Z s Zm are linearly independent, then they form a complete

R
set of extreme vectors for C[Zl’ cer Zm] . Let S be the smallest
linear space in H which contains the finitely generated cone C.
Then S is closed in H. By the smoothing property (2. 8),
P(P(X|S)|C) = P(X|C) for each X € H. Since our interest here is
to obtain P(X| C) and the projection P(X|S) can be obtained very
easily, without loss of generality we may assume that H is the

smallest linear space containing C. The following theorem is an

immediate result of Theorem 2.7.

Theorem 2.12. Let C be the cone C[Zl, ve ey Zm] and let

X e H. Anelement X* e C is the projectionof X on C if and

only if X* satisfies (X-X*,X%) =0 and
(2.18) (X-X*,Z,) <0 for i=1,2,....,m.

If X¢ C[Zl’ Cee Zm], then by Theorem 2.2,
P(X|C[Zl, .. .,zm]) is a boundary point of c[zl, . .,zm].
Boundary points of a finitely generated cone may not be easily identi-

fied. An element in a cone is said to be an interior point if it is not a
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boundary point. Let Y=Z‘.rin a.Z, with a

=1 %% 1’ ¢

PAEREE am positive.

We claim that Y 1is an interior point. Without loss of generality,
we may assume that Zl’ ZZ’ cees Zn are linearly independent where
n <m and the dimensionof H is n. Let Z_ = ZT fl.Z. . Then
= 0 i=nt+tli 1
Z0 € C[Zl’ cees Zm]. It can be shown that there is an open ball B
containing Y such thatif Z € B, then Z can be represented by
Z=zZ +3° B.Z. wh B p are positi Therefore, the
0 =1 P2y ere Py positive. )

claim is established. Let S be a linear subspace of H and let

C be a closed convex cone contained in S. Relative boundary point

and relative interior point of C with respect to the linear space S

are defined in the same way except that only elements of S are

considered.
Let C= C[Zl,--.,Zm] be aconein H and let X ¢ H.

Then there is a sequence of non-negative real numbers al’ Qyaeees am
such that P(XlC) = Zn?zl aiZi. Let us define A := {i: a, > 0},

Cpi={2, A BZ;:B, >0 for each i€ A} and

S, =12, B

Z.l: [3,1 is real for each i€ A}. Since P(XIC) € CA’
we have P(X|C) = P(X| CA)' By the smoothing property,
P(X|C,) = P(P(X|S,)|C,). We claim that P(X[S,) € C, and hence

P(X[S,) = P(X|C). If it were not true, i.e., P(X|[s,) { C then

A H
by Theorem 2.2, P(X| CA) would be a relative boundary point of

CA with respect to SA' But on the other hand,
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P(xch)=P(XIC)=z Z, with a >0 foreach i€ 4, so

a.
1eA 174

P(X|CA) must be a relative interior point of C with respect to

A
SA . Therefore, we have a contradiction, and thus the following

theorem has been proved.

Theorem 2.13. Let C be the cone C[Zl, v Zm] and let

X € H. Then there exists a linear space S generated by a subset

of {zl,...,zm}, such that P(X|C) = P(X]S).

The linear space S satisfying P(X|C) = P(X|S), is not
unique. Since the representation of X by Zl, ey Zm is not
unique, the linear space SA described above need not be unique.

If we can identify a subset I of {1,2,...,m} such that

P(X|C) € CL: then P(XISI,) is the solution we want, provided that
P(XlSr) € CP' Such an identification can be achieved for the prob-
lems of isotonic regression over a linearly ordered set, isotonic
regression over a tree, and bivariate isotonic regression with

p > 0. However, inthese three cases, the closed convex cones are

each generated by a set of linearly independent vectors.

Corollary 2.13.1. Let C be the cone C[Z1""’Zm] and

let X e H. Let A and SA be defined as above and let I° be a

subindex set of {1,2,...,m}. If srjsA, then

P(X|SL) = P(X|C) provided that P(X[S_) ¢ CL..
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Proof. If Sl" D) SA’ then by (2.17) we have
[[P(xlsl_)n > |P(X|C)||. Recall that (x—P(xlsr), P(X[SL)) = 0,

so if P(XlSl_) € C then by Theorem 2.8 we have

r
P(xlsl_) = PX|c). [l

It is obvious that if P(X|S) = P(X|C), then P(X|S) = P(X]|C)
for any linear space such that CA Cs(C Sl'" If Sl" D SA and
P(X|Sr) ¢ Cl’" then by the smoothing property, we have
P(X| CA)C P(P(X|Sl_,)| C,)- Therefore, we may suppose that our
Hilbert space at this stage is Sr. As the dimension of Sl" goes
down, we shall eventually obtain P(X|C) by successive projections
on linear spaces and that is the process employed in Chapter III and
Chapter V.

Suppose that P(X|C) is unknown and there is no way to iden-
tify a subindex set I such that either P(X|C)eC or

r

P(X|C) ¢ S+ Theorem 2.8 shows that P(X|C) has the largest

norm among those P(X|Sl_,)'s such that P(XISI_,) € Cl‘" We state

this formally as the following theorem.

Theorem 2.14. Let C be the cone C[Zl, cee Zm], let

X e H and let i= {P(X|Sl_):1" is a subset of {1,...,m} and

Sx

P(X|Sl_) € C}. If P(X|Sr) has the largest norm in S then

X,
P(xlsl_) = P(X| ).
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There are 2 possible linear spaces of the form Sl'"
P(X|C) = P(X|H) if and only if X ¢ C, and P(X|C)=P(X|{0}) if
and only if (X’Zi) <0 for i=1,2,...,m. A further reduction of
candidates for P(X|C) of the form P(X|Sr) can be described as
follows. P(X|Sr) satisfies (2.10). Let (P1l) be the property that

P(XISP) € C. If (Pl) is true, then by Theorem 2.8,

||P(X|Sr)|| < |P(x|c)||. Let (P2) be the property that
(x-P(x|sl,),z,1) <0 for i=1,...,m. If (P2) is true, then by
Theorem 2. 10, ||P(X|Sr) | > | P(x] C)|l- A program to obtain |

P(X|C) can be made through calculation of P(X|Sr) by the follow-

ing theorem.

Theorem 2.15. Let C be the cone C[Zl,...,Zm], let

XeH andlet T” be a subindex set. Then we have the following
statements.
(1) P(X|Sr) = P(X|C) if and only if P(X|Sr) satisfies (P1)
and (P2).
(2) 1If (P1) holds but (P2) fails, then for any A such that
IPxis )l < ||P(X|Sr)||, we have P(X[S,) # P(X|C).
In particular, P(X|SA) # P(X|C) for each a C T.
(3) If (P1l) fails but (P2) holds, then for any A such that
||P(X|SA)|| > ||P(X|Sr)||, we have P(X|SA) # P(X|C). In

particular, P(X|SA) # P(S|C) for each & DT.
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Proof.- The projection P(XlSr) satisfies (2.10), i.e.,
(X-P(XlSr),P(Xlsr)) = 0. Statement (1) follows from Theorem
2.12. If (Pl) holds but (P2) fails, then P(Xlsl_) ¢ Cy and
P(X|Sr) # P(Xl C). Statement (2) follows from Theorem 2.8. If
(P2) holds but (P1l) fails, then P(xlsl_) € X - C* and

P(X|Sr) # P(X|C). Statement (3) follows from Theorem 2. 10. [

Let C be the cone generated by a linearly independent

sequence Z . Zn of elements in H and let the dimension of

1
H be n. For each i, there exists an element Yi € H such that
(Y.l, Zi):< 0 and (Yi’ Zj) =0 for each j 7 i. The sequence

Yl, ce e Yn is linearly independent and it is unique up to scalar
multiplication. The cone C[Yl, ce e, Yn] is the dual cone of C.

Theorem 2.16. Let C be the cone C[Zl, e Zn] and let

C* = C[Yl, ceey Yn] be the dual cone of C. For every X ¢ H,

i i i = a + 2
there exists a unique representation X EieA iZi e AC ﬁjYJ, for

some index set A such that a. 20 for each ice A and ﬁj >0

for each j e AC. Furthermore P(XlC) = ZieA aiZ.l and
P(X|C%*) = zj cAC BJ.YJ,.
Proof. Let P(X|C) be represented by P(X|C) = E?:l aizi’

where a >0 foreach i. Let A :={i: a >0}. Then

P(X|c) = P(XISA) and hence (X-P(XIC),Zi) = 0 for each i€ A.
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Let P(X|C*) be represented by P(X|C*) = 2;1 BJ_YJ., where
BJ, >0 for each j. By Theorem 2.9, P(X|C* =X - P(X|C) and
hence (P(X|C*),Z.) = 21?_ B(Y.,Z.)=B.(Y.,Z.) =0 for each i€ A.
i j71 33 i i1t
It follows that B.l =0 for each i€ A and therefore,

X = ZieAaizi+ ZjeAC BJ,YJ,.

If X has a representation ZieAaizi + Z)J. ¢ AC ﬁjYJ_ with

ai's and B.'s non-negative, then it is trivial that
J

P(X|C) = D aA%Z; and P(X|C#) = z:j CAC ﬁij. Since

{Zl, ey Zn} and {Yl, RPN Yn} are each linearly independent, the
representations of P(X|C) by Zl’ SN Zn and of P(X|C*) by
Yl’ cees Yn are unique. For each i, the product of the corres-

ponding coefficients a.l and B.l must be zero. The uniqueness of

the above representation for X must therefore be satisfied. 1

Let A be an index set. Theorem 2.9 shows that
P(X|C) = P(X|s,) ifandonly if P(X|C%) = P(XISJA), where
Sj\ ={r:«(Y,Z) = 0 for each Z ¢ SA} is the orthogonal complement of

S, Under the hypothesis of Theorem 2. 16,

A

i ] _ .
SA_— {Z)j € I BJ,YJ,.BJ, real}. The property that aiﬁ,l 0 for each i
reminds us that Bl, Cees Bn are Lagrangian multipliers. The

inequalities (YJ.,P(XIC)) <0 for j=1,...,n are the constraints.

Therefore, the theorem is equivalent to the Kuhn-Tucker condition.
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III. ISOTONIC REGRESSION

II1.1 Preliminaries

Isotonic regression problems discussed in this chapter are those
defined on some quasi-ordered finite sets. We shall leave the general
case to the next chapter. The problems are standard mathematical
programming problems. Their objective functions are the weighted
sums of squares described in (3. 1). Their feasible regions are the
intersections of some closed half-spaces which are each determined
by a pair of arguments.

The binary relation < defined on a set £ is said to be a

partial ordering if

(1) it is reflexive; w < w for each w in &
(2) it is transitive; w,p, v € R, w <p and w <V imply
w<vV
and (3) it is antisymmetric; w,p € 2, w<p and W <w imply
AR

A guasi-ordering is reflexive and transitive but not necessarily

antisymmetric. A pair of elements u and Vv in & is said to be

comparable if either p < Vv or Vv < pu. Alinear ordering is a

partial ordering such that each pair of elements is comparable.
Let < Dbe aquasi-orderingon £ and let I be a subset of

2. Anelement we I ismaximalin T' if peIl and w<p
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imply W <w; wel' isminimalin T’ if pe I’ and p<w

imply w <. I' is said to be bounded from above if there exists
an element W €£ such that w <p foreach w in TI; suchan

element } is called an upper bound of I'. If the set A of all

upper bounds of I' is non-empty and it has a unique minimal ele-

ment, then such an element is said to be the least upper bound of T,

and is denoted by VI'. Similarly for the definitions of "bounded from

below", "lower bound" and the "greatest lower bound". The greatest

lower bound of I’ is denoted by AT.

A partial ordering is said to have a tree structure if every

non-comparable pair has a greatest lower bound but does not have an
upper bound. A set £ with an ordering < is said to be an

ordered set; such a pair is denoted by (£, <). The pair (Q,St) is

called a tree if st is a partial ordering having a tree structure.
Some problems involving trees have been given by Thompson (1962)
and Hartigan (1967). A finite tree, by its definition, has a unique
minimal element. A simple tree is a tree such that every element is
either maximal or minimal. A tree with a unique maximal element is
a linearly ordered set. From the definitions, a linearly ordered set
is a tree, a tree is a partially ordered set and a partially ordered set
is a quasi~-ordered set.

Let (£, ﬁq) be a quasi-ordered finite set. The finiteness of

,1" be

2 is our assumption throughout this chapter. Let 1"1, SRR
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subsets of I'. They are unrelated if every pair of elemenfs from
different subsets is not comparable. Let A be a subset of £ and
let e A. Anelement ve A can be reached from p in A if
there exist w,,w,,...,w in A suchthat w, <w, or

1" 72 k i — i+l

w, > Let

i= ’l’-’-’ =
(29 for i=0 k where wq b and w

= v
k+1
A(p) := {v € A:v can be reached from p in A}. It is obvious that if
ve A(n), then A(v)=A(p); andif veA and v¢ Ap),

then A(v) and A(p) are unrelated. A is said to be

connected if A(p)=A for some pe A.. A is said to be

separable if it is not connected. If A is separable, then there

k
exist w SR in A such that A= ui:lA(wi) and

1’ k

A(wl), ce s A(wk) are unrelated. FEach subset A(w.l) is called a

component of A. Linearly ordered sets and trees are connected.
Let <_1 and £2 be two quasi-orderings on £2. <_1 is

said to be the reversal of <, provided that for p,v in &

M il v if and only if Vv <_2 p. The reversal of a quasi-ordering

< is denoted by <_r« The quasi-ordered set ($2, ir) is called the

reversal of (£,<). When there is no ambiguity, we shall use £

to denote a quasi-ordered set and Qr to denote its reversal. The

quasi-ordered set §2 is connected or separable if and only if its

reversal is connected or separable. The reversal of a tree is called

a reversed tree.




36
A pair of elements p and Vv in £ is said to be an

immediately comparable pair if p < Vv and there does not exist an

element ® otherthan p and Vv suchthat p<w and w<V.
We denote such a pair by [p <v]. If [p< v] is an immediately

comparable pair, then p is called an immediate predecessor of

v, and Vv is called an immediate successor of . For a partially

ordered set £, the ordering on each component can be described by
listing all immediately comparable pairs. Let I' be a component of
Q2 with m elements. If I is alinearly ordered set or a tree,
then there are m-1 immediately comparable pairs in I'; and
m-1 is the smallest number of immediately comparable pairs that a
connected partially ordered set I’ may have.

A real-valued function Z defined on a quasi-ordered set is
isotonic if pM,ve € and p < Vv imply Z(p) < Z(v). Isotonic func-

tions are constant over each equivalence class

[w] = {p:p < w,0 < p}. Let M(R) be the collection of all isotonic
functions defined on £2. It is obvious that M(Qr) = -M(2). When
there is no ambiguity, we shall use M instead of M(Q2). A weight
function W is a non-negative function defined on £. The pair
(2,W), where 2 is a quasi-ordered setand W is a weight

function, will furnish the structure for the isotonic regression prob-

lems described below.
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Let X be a given real-valued function defined on §. An

isotonic regression of X over (£2,W) is an elementin M which

minimizes

(3. 1) £(Z) := Z .q [X(w)-Z(w)]ZW(w)

among all functions Z in M. If & 1is separable, then the
minimization problem can be studied in each component of £ inde-
pendently. If in addition, each component is an equivalence class
[w], then it is a regression problem. Let I be a subsetof
and let XII‘ and W| I"  be the restrictions of X and of W to
I'. Then I is by itself a quasi-ordered set. An isotonic regres-

sion of X|T over (T,W|T) is called a restricted isotonic

regressionof X to T.

Let QO ={pe Q:W()>0}. If Q_ is an empty set, the

0

sle
-~

problem is trivial. Suppose QO is non-empty and . XO is a

restricted isotonic regression of X to QO' The function X

defined by X () = min{XZ(u)w € 90} if {pe 02 w}=¢ and

sle
R

X (w) = max{X;(M)‘-tJL <w,pe QO} otherwise, is an isotonic regres-
sionof X over (£,W). Since isotonic functions are constant on

each equivalence class, the objective function can be written as

Zw ] QO[X(uo)-Z(uo)

= [X(0)-Z () *W(0) + =
w €N w

f(Z) W (w)

[X () =X () ]2 W (0)

I

0 €&,
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where X(w) 1is the weighted average of X over the equivalence
class [w] in QO and W(w) is the average of W over the
same equivalence class [w]. The second term on the right -hand
side of the above equation is independent of Z and
[)—(-(w)-Z(w)]ZVV(w) is constant on each equivalence class. Therefore,
without loss of generality, we may assume that £ is a connected
partially ordered set and W is a positive weight function.

L.et H be the linear space of all real-valued functions defined
on the connected partially ordered set £, let W bea positiye

weight functionon £ and let (:,-) be a bilinear functional

defined on H xH by

(X,Y) = ZweQX(w)Y(w)W(w) for each pair X,Y e H.

The bilinear functional (-,:) 1is an inner product on H, and the

linear space H with the inner product described above is a Hilbert
space. The objective function £(Z) can be represented as ||X—Z|| 2
where | Y| = (Y, Y)1 /2.

For each immediately comparable pair [p < v], let us define

a linear functional gH , on H by

2

g, ,12) = Z(W) - Z().

(Y) <0} 1is a closed half-space containing 0 and

The set‘ {Y:gp’ v

hence is a closed convex cone. Since an element Z ¢ H 1is isotonic
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if and only if gM V(Z) < 0 for each immediately comparable pair,

H

the family M of all isotonic functions can be characterized as the
intersection of all such closed half-spaces, i.e.,

M={Z ¢ H:gp, V(Z) < 0 for each [p < v]}. Therefore, the family M
is a closed convex cone and the isotonic regression is the generalized
projection to M. The uniqueness and existence of the isotonic regres-
sion of a given X follows from Theorem 2.1.

Let Z be a non-constant isotonic function and let ¢ be a
constant function. Then ¢ and Z-c are linearly independent and
Z=ctZ -c. Since M contains constant functions, Z is not an
extreme vector of M and hence the only extreme vectors of M
are constant functions, positive or negative. Let M#* be the dual
coneof M, i.e., YeM* if (Y,Z) <0 for each Z ¢ M. For
each [p < Vv], Ilet YM , bethe function in H defined by
YH: V(M) = W(H)-l, Yp, V(V) = -W(V)_1 and YH: v(w) = 0 elsewhere.
Since (YPL yZ) = g (Z), Y € M* for each [u <_v]. The dual
cone of the closed half-space {Y: gp, v(Y) < 0} is the ray
{6YH: ,* 820}, The convex hull of a given set A is the intersection

of all convex sets containing A, and is denoted by conh(A). Let

Cl’ CZ’ Ceey Ck be a finite sequence of closed convex cones in H.

ol
>R

b3 3
= conh.(C1 wCu. .. uCk)

*
)

It is known that (Clm sz e Ck
(cf. Rockafeller (1970)). Therefore,

M?3¥* = conh v {GY.H " [0 < v] an immediately comparable pair}. In
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other words, M?* is the cone generated by the YP- ,8 [k < v]

an immediately comparable pair.
If Y is an extreme vector of M?3%*, then Y 1is a scalar

multiple of YH , for some [p < v]. We shall show that YH , is

an extreme vector of M* for each [p < Vv]. If Z e M*, then

(Z, lw) <0 and (Z, lg) <0 for each we £ because lco and

10 arein M where 1 (v)=1 if w<v and 1 (v)=0 other-
w w - w

wise; lg(v) =1 if w<v,wdVv and lg(V) = 0 otherwise. It
follows that M?%* does not contain any line {aZ:a real}. Suppose
that there is an immediately comparable pair 3 < n] such that

Y is not an extreme vector of M?%*. Then the cone generated by

£, M

other Y v's is M* because M* does not contain a line and it

)

is the cone generated by the YP- v's (cf. Rockafeller (1970)). By

)

%k

£ %k
% = .
) conh(Clu Czu U Ck-l

the identities (Clm sz ce.~C )

k-1
and M = (M*)%, it will then follow that M can be represented as
an intersection with one less closed half-space {Y:gg’ TI(Y) < 0}.

Therefore, gg’ n is a redundant constraint. On the other hand, let
Z be defined by Z(w) =1 if w> £, w # M with zeros elsewhere-

Then Z satisfied all other constraints but Z is not isotonic.

This contradicts that gg n is redundant. It follows that YP- , is

an extreme vector of M¥* for each [p < v].

Let S0 be the linear space {Y:(Y,1) = 0}. Since (YP- v 1)=0

for each [p < v], M* is a subset of So-
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II1. 2 Upper Sets and Indicators

A subset U of a quasi-orderes set £ is said to be an upper
setif pe U and v>p imply v € U. A subset L of 2 is said to be
a lower set if ve L and p < Vv imply pe L. It is obvious that if
U is an upper set then US is a lower set and if L is a lower set
than LS is an upper set. A non-empty connected upper set is called
a basic set. If an upper set is separable, then each of its components
is an upper set and hence a basic set. For each w € £, the set
U(w) := {p:p >w} is a basic set. Such a basic set U(w) is said to be

determined by w. £ and ¢ are upper sets and lower sets. £ is

separable if and only if there exists a proper subset of £ which is
both an upper set and a lower set. Further discussion of upper sets
and lower sets will be given in SectionIV.1l. Inthe remainder of the
chapter, we shall let £ denote a connected partially ordered finite
set. The intersection of an upper set and a lower set is called a level
set. A subset I' of 2 is alevel set if and only if B, v € I and
pM<w <V implythat w e I'. A component of a level set is a level
set. The intersection of level sets is a level set.

Let I" be a subset of £. The jndicator of I, denoted by

1 is a real-valued function which assumes the value one at each

r’
element in I" and zero elsewhere. Indicators of £ and ¢ are

denoted by 1 and O respectively. The indicator 11" is isotonic



42
if and only if I is an upper set. The indicator of a basic set is

called a basic function. For a basic set U(w) determined by w,

its basic function is denoted by lw' If Z is an isotonic function,
then for each real a, [Z > a] := {w'Z(w) > a} is an upper set. Sup-
pose Z assumes the values a, < a, < ... Sak. Then

[Z = ai] = {wiZ(w) = ai} is a level set for each i. Let

B. = a, - a i=1,...,k where a

_ _k
T %7 % 07 0 Then 255y Bilfz > 0]

Since an indicator of an upper set is the sum of the indicators of its
components, every non-negative isotonic function is a non-negative
linear combination of basic functions and every isotonic function is a
linear combinatioﬁ of basic functions such that the coefficient associ-
ated with each indicator other than 1 is non-negative. But such a
representation need not be unique.

Let M, be the family of all non-negative isotonic functions.

Then M+ is the cone generated by the basic functions. Therefore

M, has finitely many extreme vectors. Let U be a basic set and

let lU be it indicator. We clain that lU is an extreme vector of

M,. Suppose there are Z1 and Z2 in M+ such that

ly=2Z,+Z,. Then Z,(w)=2Z,(w) =0 forall w ¢ U. Let p and

vV be two elements in U with p < V. Then Z.l(p) <_Zi(V),

i=1,2 and Zl(p) + Z2(|.L) = Zl(V) + ZZ(V) = 1. Therefore

Zi(H) = Zi(V) , i=1,2. If we U can be reached from p in U,
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then it follows that Zi(w) = Zi(p.), i=1,2. Since a basic set is a

non-empty connected upper set, every element w ¢ U can be

reached from § and hence Z1 = )\lU and Z2 (1-)\)1U for
some \ between zero and one. Our claim therefore has been
established and basic functions form a complete set of extreme vec-
tors for M+- If © is atree, then every upper set with more than
one minimal element is separable. It follows that basic functions
must be of the form lw’ and M+ has exactly the same number of

extreme vectors as the number of elements in . Thus we have

proved the following theorem.

Theorem 3.1. Let £ be a connected partially ordered finite

set, let M be the family of isotonic functions and let M+ be the
family of non-negative isotonic functions. Then M, is the cone
generated by the basic functions, and basic functions form a complete
set of extreme vectors for M, ,. The family M is the cone gen-

+

erated by basic functions and -1.

Following the same procedure, one can show that the above
theorem also holds for general quasi-ordered finite sets connected or
separable.

The isotonic regression of X over § is the projection
P(XIM) of X on the closed convex cone M. In the finite case,

LZ(E), introduced in Chapter IV is the same as M and the
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conditional expectation E(X| Z), also introduced in Chapter IV, is
the same as P(X|M). Therefore, properties of isotonic regression
can be found in Chapter II in the form of P(XlM) and also can be
found in Chapter IV in the form of either P(X| LZ(ZJ)) or E(X| =).
The main interest in the remaining part of this chapter is in
algorithms for various isotonic regression problems and some results

which lead to these algorithms.

Theorem 3.2. Let X*x=X

i >
U basic aUlU with Gy 2 0 for

each basic set U different from £, and let

A ={U:U is basic, GU >0} v {R}. Then X* is the isotonic

regression of X if and only if (X-X%*,1 ) =0 for each Ue A

U
and (X-X*, lU) < 0 for each basic set U.

Proof. The function X* given above is obviously an isotonic

function. Let SA= {z = Z}U eAﬁU U: ﬁU real}. The condition

(X-X*, lU) =0 for each U e A is equivalent to * = P(XISA)-
Therefore, the result follows from Theorem 2.12 and Theorem 2.13.
The only difference is that we have £ ¢ A no matter what value
an is. This gap can be filled by considering (4.2), which can be

interpreted as (X-X*,1) = 0 in our present situation. []

Corollary 3.2.1. Let X* e M. Then X* is the isotonic

regression of X if and only if X* satisfies
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(3.2) Zw . [X*:Y]X(w)W(w) = Ewe [X*:Y]X*(w)W(w) for each vy
and
(3. 3) 5, XOWE) <3 XMW

for each upper set U.

Proof. Let X3* be an isotonic function which assumes values

Y1<Y2<"'<Yk and let R PR AT i=1,...,k where

k al
i=1 i[X*_>_y.1]

Let 'X* satisfy (3.2) and (3.3). Then

Yo = 0. Then X*=2 with a positive for i > 1.

(X-X3#, X*) = 21:=1 v.Z

i“we [X*zYi](X(w)-X*(w))W(w) =0

and (X-X*,-1)=0. Since M is the cone generated by upper sets

sl

and -1, by Theorem 2.12, X* is the isotonic regressionof X.
On the other hand, let X* be the isotonic regression of X.

Since each upper set is the disjoint union of its components, by

Theorem 3.2 we have (X-X%, lU) < 0 for each upper set U.

Similarly, (X-X%*, 1[ =0 for i=1,...,k. For each vy

X% > Yi])

different from VYy.,,...,Y,, X* satisfies (3.2) automatically. For
1 k Y

each i.,

-Xx,1 = -X*, - X%, 1
(X-X* 1y )= (X-X 1[X*_>,Y.]) (X-X [

) = 0.
* >

X=
X Yi]

This completes the proof. [
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Corollary 3.2.2. Let X* be the isotonic regression of X.

If v is minimal in [a < X* < B], then X*v) <X(v). If p is

maximal in [a < X* < B], then X*(u) > X(u).

Proof. If Vv is minimal in [a < X* < B], then Vv is mini-
mal in [a < X*]. By the minimality of v in [a < X¥],

U = {w:X*(w) >a, w # v} is an upper set. From Corollary 3.2.1,

(X-X*,1 0

[a<x#]
and

(X-X*,1_) <0,

U

which implies X(v) - X*(v) > 0. Similarly we have the second

statement. D

Corollary 3.2.3. Let X* be the isotonic regressionof X,

let [p < v] be an immediately comparable pair and let X(p) > X(v).
Then either there exists an immediate successor w of P such that
X*(w) = X*(n) or there exists an immediate predecessor T of V

such that X*(1) = X*(v).

Proof. Suppose on the contrary that neither X¥*(w) = X*(n) for
any immediate successor w of W nor X¥*(T)=X*(v) for any
immediate predecessor T of V. Then X*(v)>X*(u), Vv is

minimal in [X* > X*(v)] and p is maximal in [X* < X*(p)]. By
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Corollary 3.2.2, we have X(v) >X*(v) > X*(n) >X(p). This contra-

dicts that X(p) >X(v). [l

Theorem 3.3. Let £ be a partially ordered set, let X*

be the isotonic regression of X and let P be an immediate pre-
decessor of V. If any one of the following three statements is true:
(1) p is the only immediate predecessor of Vv, V is the only
immediate successor of B, and X(p) >X(v),
(2) p is the only immediate predecessor of Vv and
X(v) < X{w) for every w >,
(3) v is the only immediate successor of p and X(p) > X(w)
for every w <V,

then X*(p) = X*(v).

The theorem is an extension of Theorem 2.6 given by Barlow
and coworkers (1972). That X*(p) = X*(v) follows from the first
statement is an immediate result of Corollary 3.2.3. If £ isa
linearly ordered set, then each element has at most one immediate
predecessor and at most one immediate successor. Thereofre,
statment (1) is enough to provide an algorithm in such a situation. If
2 1is a tree, then each element has at most one immediate predeces-
sor, and if £ is a reversed tree, then each element has at most one
immediate successor. Statement (2) and statement (3) will be suffi-

cient for obtaining isotonic regressions in such situations. Statement
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(2) and statement (3) are symmetric with respect to reversal, because

M(®) = -M(2 ) and P(X|M(R)) = —P(—XIM(Qr)).

Proof. Only the result following from statement (2) will be
considered. Let p be the only immediate predecessor of V and
X(v) < X(w) for every w >p. Suppose X*(u) < X*(v). Then V
is minimal in [X*(v) < X*]. By Corollary 3.2.2, X*(v) < X(v).
On the other hand, U(p) = {ww >p} is an upper set and X(w) >X(v)
for each w € U(p). By Corollary 4.15.2 which does not depend on
Theorem 3.3, X*(u) >X(v) and hence X#(u) >X(v) >X*(v). This

contradicts the assumption X*(u) < X*(v). |[]

I1I1I.3 On a Linearly Ordered Set

The minimization problem discussed here is to minimize £(Z)

subject to z, < z, for i=1,2,...,n-1 where Z=(z,,...,2)
i—7itl 1 n

and

£7(z) = =2 (x.-2.) 2w,
i=1 i i i

with given X = (xl,...,xn) and given w.1>0, i=1,...,n.
The problem is known as an isotonic regression over the linearly
ordered set {1,2,...,n}. It can be solved by the Pool-Adjacent-

Violators algorithm which was introduced by Ayer and coworkers

(1955). The algorithm, which is an immediate result of Theorem
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3.3, will be presented later in this section.

Let M= {Z:zi §zi yi=1,2,...,n-1} be the feasible region,

+1

let M?>* ©be the dual cone of M with respect to the inner product

(X,Y) = = be n-component

_.xyw, andlet Y. .,Y_ ,...,Y
i=1l "i’1 1 n

1" "2 -1

vectors such that for each k, Yk = (Ykl’ Ce ’Ykn) is defined by
-1 1 and Vg = 0 i i # k,ktl. The dual

= Wk ’ Yk,k+1 = -Wk+1

Yk

cone M?* is the cone generated by the linearly independent vectors

Yl’ ce ’Yn-l’ and it is a subset of the linear space
SO = {Z:Z?:l z, W, = 0}. The inner products of Yi's among them-
S -1 -1
selves are (Y, .,Y,)=-w. , (Y,,Y,))=w, +w, .,
ji-1" 7] J J j jtl
] = - ) %] . = i i-j > .
(YJ.+1 YJ,) Wi and (Y, YJ) 0 if |i-j| >1

The isotonic regression of X, P(X|M), is X - P(XIM*) as
given by Theorem 2.9. By the smoothing propery,

P(X|M*)=P(P(XISO)|M*). The projectionof X on S, is

P(X|S.) = X -X where §=Zf1_ xw. /=% w.
0 i=1 i1 i=1 i

Let XO =X - x. Since SO is the linear space generated by

Y there exists a unique set of real numbers

n-1’
., a such that
n

The projection P(X IM*) is in M?%*, so there exists a unique set

0
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a such that
n

*
= {1 > = = : > .
Let A={i 0.i 0} and let NA {y zieAﬁiYi [3_1_0} Then
P(XOIM*) = P(XOI NA). We shall soon see that P(XOIM*) can be
obtained by successive projections on linear spaces, each of which is

generated by a subset of {Yl, oY }.

n-1
Let T be a subindex set of {1,2,...,n-1}. The linear space
generated by {Y.lzi € I'}), is denoted by Tl'" If jeI, the pro-

P(Y.|T ), is Y. itself. For fixed
T j

jection of Yj on Tl’"

i,j,k with i<j <k, let 1"1={i,i+1,---,j-l,j+1,...,k}, let

r,= {1,2,...,i-2, k+2,...,n-1} and let I,=T, v T, The linear

spaces T and T are orthogonal and Y, is orthogonal to
1"1 l"2 j

TFZ. It follows that P(YjITr3) = P(leTrl).

If I is such that 1"1 CcCrcC 1"3, then by the smoothing
property we have P(leTI‘) = P(P(leTr‘3)|TI‘) = P(P(leTr‘l)lTI‘)
:P(leTrl). Let

(3.4) a =34 LW /= . W_, b =Zk+_1 w Zk+_1. w
q m=i m m=i m q m=q+*tl m m=j+l m

and let Y= —ZJZI, aY -Z .. . b Y . Then for each
Q=i q9°'q q=jtl 'q q

h =1i,itl,...,j-2, we have
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-(Y, Y, )

I

(Y.-Y,Y,)
J

h

= ) + )
ap (Yo p Yy) Fa, (YY) tay (V0 YY)
] -1, -1, 1 -1
%-1"R T %%h T 0 Vht1 T %ht17h+l
= w-l( -a ) - w-1 (a -a )
h “*h 3h-1 h+1'%h+1 2h
=0

and similarly for each h = j+2,...,k, we have (Yj-Y,Yh) =0 by

changing the a's 'to b's. For h=j-1, we have

1
%
Y
+
©

%

(Y.-Y,Y. .)=(Y.,Y,
j j-1 i -1

and similarly, we have (Yj-Y,Y.+ ) = 0. Therefore, Y is the

jtl
projection P(Y.|T_. ) and
3y

k

i-1
3.5 PY.IT)=-2 ayYy -2 . by .
(3-3) J| r) q=i q'q q=jtl "9 q

If T, ={+,. ..k} ry=r v il...,j-2,kt2,...,n-1} and

I 1is such that Pl CrcC P3, then following the same procedure
we have

k

(3.6 P(Y,|T )=-Z _. . bY .
) (Jl r/ q=jtl 'q q
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Similarly, if T = {i,i+1,...,j-1}, L,=I v {1,...,i-2,j+2,...,n-1}

and I is such that l"1 CrC l"3, then

ayY

-1
3.7 = .
(3.7) P(leTl_) A q

J .
q:

If j-1, j and j*+1 arenotin I, then P(Yj|Tr)=0.

Let Z = Z?____ll Bij. The projection of Z on Tl’" for some
n-1
i ? i = . . . j r’
subindex set T is P(Z|Tr) Zj=l BJP(YJ|TF) If je

P(YJ,|T1_) = Y, Let j¢T. If j-leT, let i be the smallest
index such that 1i,itl,...,j-1 arein I andif j+l eI, let k
be the largest index such that j+1,j+2,. .,k arein TI. If j-1
and jtl arenotin I, we have P(YjITl") = 0. We identify I as
{i,i+l,...,j-1}, {j+1,...,k} or their union according as only

j-l1 eI, only jtleI orboth j-1 and j+tl1 in TI. Therefore,
the projectionof Z on Tl_ can be calculated by (3.5), (3.6) and
(3.7).

[3'

Let P(Z|Tr) : R

:= Zher For each h € T, ;et

p=max{mm <h,m ¢{ T} and let q = min{m:m >h,m ¢ I'}. Suppose
p and q exist. Then for each j #h which is less than p,
greater than q or belongingto I, we have

P = 1 = .
(YJ.|T1_) = y Y with y =0. It follows that

mel

sl
>R

(3.8) By = B - (Bb +B,ap)
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_ b q
where ah— = =p+lw /= =p+lw and
-~ <4 q
bh b =ht1 W /= =p+lw . The a, and the bh are the same

as in (3.4); for the a, we identify i and j as ptl and g

respectively; for the b we identify j and k as p and q-1

h’
respectively. If p does not exist, set p =0 and [3P=O, and

e
<

o
if q does not exist, set q =n and Bq=0. Then Bh is still

given by (3. 8).

Theorem 3.4. Ilet X _ = Z)I,l_—l a Y, and let
0 i=1 ii
n-1 *
XY = . = i “ e ey < )
P(X|M*) =2 aY. If a =minfa, a } and o <0

e

then o.h = 0.

b
Proof. Let A = {i: 0.,1 > 0}. Theorem 2.13 shows that

P(X,|M#) = P(XOITA). Suppose h e A. By (3.8),

e
-«

= - . i > > > >
o =a (apbh+aqah) Since ap—oh' b >0, aq—ah’ a >0

Ao

=1, sk <o. . . -
and bh + ay 1, we have q < 0. This contradicts that h e A. []

The Projection of Minimum Violators is an algorithm to obtain

the isotonic regression of X over the linearly ordered set
{1,2,...,n} through the dual cone M?*. By a violator we mean an
index j such that aj < 0.

Step 1. Set x=Z0  xw /Z. . w..
1 1 1 1
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Step 2. If Gs--epa y are non-negative, go to Step 4;
otherwise, choose j such that aj=min{a1,...,an_l}.
Set T =T - {j}.
If j-1eTI, then find the smallest i such that
i,i+l,.--,j-1€l" and set Ym:O for m:].,'-',,i'l
and set Yy =z W/j w, for m=1i,it+tl,...,j-1;

m h=i hzi1=i h
otherwise, set Y, © 0 for m~=1,...,j-1. If j+lel,
then find the largest k such that j+1,...,ke I’ and
k+l k+1
= =j+1,...,
set Y 2h=m+1 Wh/Z)th._*_1 Wy for m = j+l k set
Yy =0 for m=ktl,...,n-1; otherwise, set y_ =0
m m
for m =j+l,...,n-1.
Set vy, = 1.
J

Step 3. Set @ T % " %Ym for m=1,...,n-1.
Go to Step 2.

Step 4. Set y. =w. a =w Na-a ) for i=2 -1

ep - e yl AT T A W.1 7% or 1 y»-e,n-1,
= -la

Yn Wn Tn-1l
Set X =X Uy, for i=1,2,...,n.
End.

When we have more than one j such that

a, = min{a }, we may compute Ym s simultaneously for

; 1,...,a

n-1

such a set of j's. The algorithm is not efficient as evidenced by

Example 3.1; yet, it is the method developed through the dual cone.

The justification of the algorithm can be described as follows. Let
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Xy=Z,_, oY, , where X, =P(X[S). If a,....a . are
non-negative, then XO = P(XO|M*) = P(X|M*)- In any case, let
Ay = {i: a, 20 or a, > o for some j #i}. Theorem 3.4 shows that

e

n—

._1 a,Y, . Since
i=1 i

AO ) A, where A ={i: a:> 0} and P(XOIM*) = X

P(XO| M3*) = P(XOI NA), by the smoothing property

P(XO|M*):P(P(XO|TA JIN ). Let X, = P(XOITA) be repre-

0 1 0
= i : > >
sented by zieAO oY, and let A1 {i € Agia), 20 or a alj
for some j ¥ i}. If “113 0 for each i€ AO, then A1 = AO and

X1 € NA' Since P(XO|M*) = P(XO|NA), the smoothing property

shows that P(XO|NA1) = P(P(X,[T, )N, )=P(X [N, ). It follows

0 1 1
that X, = P(X,|M%*). If a ., <0 for some i€ A_, then
1 0 1i 0
Ay # A DA Since P(XO|M*) = P(X1|NA ), the set A stays the
1
same, and P(XOIM*) = P(P(X1|TA )INA)- Therefore, applying the
1

above procedure inductively, we have a strictly decreasing sequence
AO D A1 D A2 D) ... JA. The sequence will terminate at some

i - = A . ) >
index k such that Ak 1 At that stage O >0 for each

i A, = %*) . i A
ie i Xk € NA and Xk P(XO|M %). The index set " need

k
not be the same as A, and we may reach the situation Ak =A=¢g
which indicates X =0 and N, =T, = {0}. The situation occurs
k k

only when X € M. Once P(XOIM*) is obtained,
P(X|M) = X - P(X|M*) = X - P(XOIM*).
A similar technique can be applied to M also. For each i,

let 1-1 be the vector such that the 1ith,...,nth entries have values
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one with zeros elsewhere. The vectors 11, 12, ces ln are linearly
independent, and every vector in M is a linear combination of these

indicators such that the coefficients are non-negative except the one

corresponding to ll-

Theorem 3.5. Let X = Z}Iilzl aili’ let the isotonic regression

% *

of X, X%, be represented by X* = 2111:1 c1.11.1 where a >0 for

i>1 and let A={i:a;‘>0 or i=1}. If ajgo for some j >1,

then j¢ A.

The theorem is essentially the same as Theorem 2.1 of Ayer
and coworkers (1955), and it is a consequence of Theorem 3.2,

Corollary 3.2.2 or Theorem 3.3. Suppose there is an index j >1

x

such that aj <0 and aj >0. Let X = (xl, ce ,xn) and let
S b sk sk ES
X*=(x,5+.-,%x ). Then a, = x, - x, and a, = x, - x, for
1 n ioi -l j j j-1

j>1. Since an">0, j is minimal in [X*Zx;] and j-1 is

maximal in [X* <_x.'\_ ], by Corollary 3.2.2 we have x, >x, and

j-1 iT )
3 3k 3k
X, . >x, .- This contradicts that x, >x, and x, <x, ..
j-1—7j-1 j j-1 j—j-1
For each subindex set I of {1,2,...,n}, let SI‘ denote

the linear space generated by {li:i e I'} and let M
Let AO = {i: a >0 or i-= 1}. Then A0 DA,

p(p(x|sAO)|MA) = P(X|M) and p(x|sAO) 22
computes P(lilSA ) for each i and then does a succession of
0

aiP(li|SA)- If one
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projections on certain linear spaces SI‘ with T D A in a manner

similar to the Projection of Minimum Violators algorithm, one obtains

the Projection of Violators algorithm. However, there is a better

method to compute projections on the linear spaces SI"
Let I be a subindex set of {1,2,...,n}. Suppose p and g

are two consecutive indices in I'. If Y = (yl, .. ,yn) is the pro-

jectionof Z =(z,,...,z ) on S

, then (Z-Y,1)=0 for each
1 n r j

i eI and = = ,.. = . Therefore, (Z-Y,1 -1 )=0
j Yo T Vpt1 Yq-1 q’'p)

or equivalently

and hence

This modified version of the Projection of Violators algorithm

is known as the Pool-Adjacent-Violators algorithm, which was intro-

duced by Ayer and coworkers (1955). Let X = (xl,xz, e ,xn) be a

vector of n entries.

Step 1. If x, <x, < .. gxn, stop; otherwise, divide the
sequence into several monotone decreasing sequences from
left to right such that each subsequence is as long as pos-

sible, 1i.e.,



e T e T P s A L
x1k+1 > >x  with Xij'l < xiJ for each j = 1, y k
Set I ={l,ij,iy, .., ,ntl}

Step 2.  Set x = Z?:_pl xi’\avi/Z?:“p1 w. for =1,...,n where p

and q are two consecutive indices in I' such that
p<h <gq.
Go to Step 1.

The justification of the algorithm is similar to that of the
Projection of Minimum Violators algorithm. Let X, X* and A
be defined as in Theorem 3.5. Let AO = {is cJ.,1 >0 or i=1}. The
condition a >0 1is the same as X1 < X, - Theorem 3.5 shows

that AODA. If x, <x

IA

.sxn, then X e M and X*=X.

1 2

Otherwise, X%* = P(X|M) = P(XIMA). By the smoothing property,

we have P(XIMA) P(P(X|SA )IMA). Let X, := P(XISAO) be
represented by X, = ZieA el and let Al ={i e AO'. @ >0 or
0

, then X. eM and X*=X. as
1n 1 1

indicated by Corollary 2.13.1. Otherwise, AO 7 Al O A. Applying

i= 1} If xllixlzi"' <x

the above procedure inductively, we have a strictly decreasing
sequence A DA DA, D... D Ak D A. The sequence will
0 1 2
i i < < ... < .
terminate at some index k such that X %, < <X, The

situation that Ak = {1} is the case when X - X ¢ M* where

x= =0 xw /T w,.
i i1 1=l



59
The similarity of the Projection of Minimum Violators algorithm
and the Pool-Adjacent-Violators algorithm can be observed from

Theorem 2. 16 by considering M%* and MO =M A SO. The closed

convex cone M0 is the dual cone of M?* with respect to the
linear space SO. There are n-1 extreme vectors in M0 each
of which is determined by P(liISO) for some i=2,...,n. Itis

obvious that for each i, (Y, lj) = (Yi,P(1j|SO)) =0 if j#itl and

(Y1) = (Y PO ISg) = -1

Example 3.1. Let X =(3,2,7,8,5) and let

w., =w, =w, =w, =w_. = 10. The isotonic regression of X will be
the same if we let w_ = Wy SWySw, =W, = 1. By the Projection of

Minimum Violators algorithm, we have X =5 and

X -%x=(-2,-3,2,3,0).

Step 1. a:-Z,a:-S,a3--3,a=0
r =1{1,2,3,4}

Step 2. j=2, I={1,3,4},i=1, k=4

Y, = 1/2, Y, = 1. y5 = 2/3, v, = 1/3
Step 3. al =1/2, az =0, a3 =1/3, a4 =5/3
Now, as 9y Ag and a, are non-negative

Step 4. yl =1/2, YZ = -1/2, Y3 =1/3, V4 =4/3, Y5 = -5/3

K 1 3 1 B
X, = 23, x2 = 23, x3

K 3k
= 6%, x4=6§, xg = 6

Wi

P(X|M*), X* = P(X|M))

]
It
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By the Pool-Adjacent-Violators algorithm, we have
Step 1. {3.2}, {7}, {8,5}
T ={1,3,4,6}
Step 2. X, = (23,23,7,63,63)
Step 1. {23.23}, {7.63,63}

T ={1,3,6}
Step 2. X, = (23,23, 63,65, 63)
X2=P(X|M)- (]

I11.4 On a Tree

A partially ordered set is a tree if each non-comparable pair
has a greatest lower bound but does not have an upper bound. A
finite tree has a unique minimal element r, called the root, and
each element other than r has exactly one immediate predecessor-.
In a partially ordered set, if p < Vv, then there exists a chain

w, <w ] is an immediately com-

< ... <
O —

_wj+1 such that [mi <w

1 i+l

parable pair, i=0,1,...,j, where pu=w0 and Vv =w,, .. The
chain connecting p and Vv need not be unique. The intersection of
chains need not be a chain. Let £ be a finite tree, let

ml,mz, .. ,mk be its maximal elements and let

Ch(ml), Ch(mz), ces Ch(mk) be the chains which connect r and

m., i=1,...,k. The chain Ch(m.l) connecting r and m, is
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unique. The intersection Ch(mi) e Ch(mj) is also a chain which
connects r and mi/\ m.. The union ul.l(:l Ch(mi) is simply £
itself. The basic sets are upper sets with a unique minimal element;
they are denoted by U(w) with w the minimal element in the set.

- The indicator of U(w) is denoted by lw' An example of a tree will
be given below.

Let Y be a function defined on 2, let a(r)= Y(r) and for
each‘ v other than r, let a(v)=Y(v) - Y(r) where p is the
immediate predecessor of V. Let w be an element other than r

and let Ch(w) = {r,wl,w .. ,wj,w} be the chain connecting r and

2’

w. The sum ZVGCh(w)a(V) is Y(w). Let Z=2w

Zw) =Z  _ LV).  The set {viv < w} is the chain Ch(w). There-

c O a(w) lw. Then
fore, we have Y = zweﬂa(w)lw' Since every function Y on
has a unique linear representation by {lw:w € Q}, it follows that
{lw:w € Q} is linearly independent. If Z is isotonic, then Z is
a linear combination of {lw:w € Q} such that the coefficients are
non-negative except possibly the one corresponding to lr- The
coefficient of lv is Z(v) - Z(p) where p is the immediate pre-
decessor of Vv provided that v differs from r. If £ has n
elements, then there are n-1 constraints (immediately comparable
pairs) and M+ has n extreme vectors {lw:w e Q}.

The isotonic regression over a tree can be obtained very easily

as we shall soon see in Example 3.2. Thompson (1962) introduced the
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Minimum Violator algorithm. Let X be a given function defined on

€2 and let X* be the isotonic regressionof X. If Vv isan
immediate successor of p and X(v) < X(K), then Vv is said to
be a violator. Among all the violators, if X(v) attains the mini-

mum value, then VvV is called a minimum violator. Let Vv be a

minimum violator and let p be its immediate predecessor. Then
by Theorem 3.3 X¥*(u) = X*(v). By the smoothing property, we may
group B and Vv as a single element K whose X value is the
weighted average of those at | and Vv and whose weight is the sum
of the weights at | and Vv Now, we have n-1 elements in

Q - {v}. The orderingon £ - {v} is determined by all immediately
comparable pairs in € except that we take out the pair [p < V]

and change all the pairs [v < w] into [p <w]. Applying this pro-
cedure inductively, there will eventually be no violator. Let QO be

e
b4

the set of remaining elements and let X(; be the function on QO at
this stage. Define the function X* on £ by

X*(w) = max{XZ(p): M <w,pe QO}. Then X* 1is the isotonic regres-
sion of X.

A modified version of the Minimum Violator algorithm is the

Minimum Upper Set algorithm which involves an improvement in the

method of grouping. Let Vv be a violator and let W Dbe its immedi-
ate predecessor. A violator V is said to be pivotal if either

X(v) = min{X(w):w >pu} or Vv is the only immediate successor of K.
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By Theorem 3. 3 a pivotal element and its immmediate predecessor will
have the same X* wvalue. Instead of using minimum violators, we

use pivotal elements in the Minimum Upper Set algorithm.

Example 3 2- Let Q = {(1: 4)’ (2; 3)’ (2’4): (3’ 1): (3’ 2)’ (3’4):

(4,3),(4,4),(5.4)} be a tree with its ordering being specified by the
five chains {(3.1).(3,2),(2,3),(1,4)}, {(3,1),(3,2),(2,3),(2,4)},
{(3,1),(3,2),(2,3),(3,4)}, {(3,1),(3,2),(4,3),(4,4)} and
{(3,1),(3,2),(4,3),(5,4)}, let the weight function W have the value
one at each element in £ and let X be the function given as

follows.

j 4

w

Let us say the pivotal element V is typel, if Vv is the only
immediate successor of its immediate predecessor and is type II
otherwise. The grouping of a pivotal element V and its immediate
predecessor M into a single element P is not necessary as long

as we keep the pair [p < v] having the same function value. The
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pair [p < v] will be connected by double line segments to indicate
their special relation.

The violators are (1,4)‘, (3,2), (4,3), (4,4) and (5,4). The
element (3,2) 1is a typel pivotal element and elements (1,4) and
(4,4) are type Il pivotal elements. The first iteration yields the

function X1 given below:

jl\

4 ﬂ45 07 T6 1.5 o2
X 31 .5 1.5
1

Z ~

H3.5
1 3.5
1 2 3 4 5 i

The element (4,3) is the only violator. Therefore, the
average is taken over {(3,1),(3,2),(4,3),(4,4)} and the second
iteration yields the function XZ-
i A

4 4.5 T?
3 >
4.5
X
z j
2
1

ey
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A new violator occurs at (5,4). We take the average over the

set {(3,1),(3,2),(4,3),(4,4),(5,4)}. We see that the function X3

is isotonic and hence it is the isotonic regression of X. [l
j

4 I ﬂ4-5 Q7 Tf)
3 =

2.4 2.4

-3.)

—
N
w
N
921
ey

If Q2 is a reversed tree, then its reversal Qr is a tree.
One may use the reversal technique based on the relation,
P(X|M(R)) = -P(-X|M(Qr)), to obtain the isotonic regression. The
procedure is that we change the ordering from less than to greater
than and replace X(w) by -X(w) for each w e Q2. After we have
the isotonic regression Y of the latter problem, we define
X*(w) = -Y(w) for each we £ and X* is the isotonic regression

of X over £. For convenience, we may use the Maximum Lower

Set algorithm. The method is the same as the Minimum Upper Set
algorithm except that pivotal elements are K's such that either
X(p) = max{X(w):w < v} or W is the only immediate predecessor of
v, where VvV is the immediate successor of HN. In this situation,

we group [p < v] into a single element V. Applications of the
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Maximum Lower Set algorithm will be found in Example 3.3 and

Example 3.5.

II1.5 On a Partially Ordered Set

The structure of a general connected partially ordered finite set
is very complicated and hence algorithms for isotonic regression of
this type will not be easy to develop. Alexander (1970) introduced a
method which rewrites a partial ordering into a consistent linear
ordering. The method is much more complicated than the Pool-
Adjacent-Violators algorithm and the Minimum Upper Set algorithm.
In the remainder of this section we will try to reduce the minimization
problem into several small problems, whenever it is possible, such
that the combination of the solutions to the small problems is the
desired solution. In a smaller problem, Alexander's algorithm will
be easier to apply.

Let 2 ©be a connected partially ordered finite set, let W be
a given positive weight function, let X be a given function and let

I be asubsetof 2. If Z is a function defined on §£2, we denocte

f(Z;T) := Zwer[X(w)-Z(w)]ZW(w).

r.,.r,,..., iti 2, ie., ) s
Let 1’12 l"k be a partition of i.-e l"1 l"2 l"k
are mutually disjoint and u%f_ll"i =R, let Yl’ YZ, cee Yk be the
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restricted isotonic regression of X to 1"1,1"2, e ,I"k respectively
and let Y be defined by Y(w) = Yi(w) if we 1",1. For any isotonic
function Z, f(Z;l"i) Zf(Y;l"i), i=1,2,...,k and hence
f(Z) >£(Y). Therefore, if Y is isotonic, it is the isotonic regres-
sion of X.

Let X* be the isotonic regressionof X, let [a < X* < f]

be non-empty, let C be a component of [a < X* < B] and let Y

be the restrictionof X* to C, X*|C. Let UC be an upper set

in C, i.e., MEUC, ve C and p <vVv imply VEUC. For any

U, define U=U_wv [X* >B]. Then U is an upper set. By

(3.2) and (3. 3) we have

ZweUCX(w)W(w) < ZwEU X (w)W(w) = ZweU Y(w)W(w).
c c

For any Y between a and f, let v, = {w ¢ Ciy <X*w) < B}

and let V=V v [X*>B]. Then V is an upper set and similarly

= X(w)W(w) < Zw

w eV Xk {w)W(w).

eV
c c

The set {w € C:X*(w) >y} is an upper setin C and
VC v {we C:X*w) >y} is the level set [y < X* < B]. Therefore,

by (3.2) we have
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and it follows that Y is the restricted isotonic regression of X
to C. The restriction of X* to any non-empty level set

[a < X* < B], to one of its component or to the union of some of its
components is the restricted isotonic regression of X to that set.

Therefore, the following theorem has been established.

Theorem 3.6. Let X* be the isotonic regression of X,

let the non—empt'y level set [a < X* < B] have components

,C, andlet T = u‘]i: Ci where 1 <j <k Then the

Cl"” k 1

restriction of X% to I 1is the restricted isotonic regression of X

to T.

Theorem 3.7. Let T be a non-empty level set, let

2
Fl C 1"; be a lower set such that w € 1"; and w < p for some
wel, implythat weTI,, let I, C 1"(]? ~ 1"; be an upper set
such that w ¢ 1"; and w>p for some P € 1"2 imply that

w € 1"3 and let Yl, Y2 and Y3 be the restricted isotonic regres-

sions of X to 1"1, TZ and 1"3 respectively. If there exist a

and f suchthat Y., <a, a LY, < B and B <Y then

1 3’

X#(w) < Y. (w) for each weI , X¥*w) =Y (w) foreach wel

1 1 2 2
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and X*(w) ZY3(w) for each w € T, where X* is the isotonic

regression of X.

Proof. Let I' = - (l"lul"

4 wuT.), let Z be an isotonic

2 3

function and let Y be defined by Y(w) = Z(w) A Yl(w) on Fl,

Y(w) Yz(w) on T Y(w) = Z(w) v Y3(w) on T and

2’ 3

Z(w) on I ,. We shall show that Y is isotonic and

Y(w) 4

f(Y) < f(Z). It will then follow that X w) le(w) for each w ¢ 1"1,

X*¥w) = Yz(w) for each we T and X*(w) > Y3(w) for each

2

w € 1"3. The order-preserving property of Y on each 1",1 is

trivial. The sets l"2 and l"4 are unrelated. Since l"1 is a

lower set, elements in Fl will be no greater than ay element in

FZ W F3 O 1“4. Since F3 is an upper set, elements in I‘3 will

be no less than any element in 1"1 W 1"2 W 1"4- Any element greater

than an element in T isin I', U T and any element less than

2 2 3

an element in l"2 is in l"lul"z. Since Y < a on l"l,

a<Y<P on FZ and Y>p on F3, it follows that Y is

isotonic. By (4.7), we have f(Y;l"l) <f(Z;T",) and

¥

1

£(Y;T,) < f(Z; T

3 ) when we regard I', or I _ as our given

1 3
<H(zZ;T,), £(YsT

3

partially ordered set. Since f(Y;l"Z) 4) = f(Z;l"4)

4
and f(Z) = Zizlf(Z;l".1 ), we have f(Y) < f(Z). This completes the

proof. 1
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Corollary 3.7.1. Let U be a non-empty upper set, let

1"1 C U® be a lower set such that w e U and w < p for some

peU imply that w e 1“1 and let YU and Y1 be the restricted

isotonic regressions of X to U and 1"1 respectively. If there

exists an a suchthat Y. <a and a<Y then

1 U’

X*w) =Y (w) for all we U and X¥w) §_Y1(w) for all we I

U I

Similarly, le¢ L be a non-empty lower set, let F3 C L® be an

upper set such that w e LS and w 21 for some pe L imply

that w € 1"3 and let YL and Y3 be the restricted isotonic

regressions of X to L and l"3 respectively. If there exists

a B such that YL <P and B<Y then X*w) = YL(w) for

3’
each we L and X%*w)> Y3(w) for each w ¢ I‘3.
Proof. For the first statement, let 1“2 =U and F3 =dg.

For the second statement, let Fl = ¢ and Fz = L. The results

follow from Theorem 3.7. []

Corollary 3.7.2. Let 1"2 be a non-empty level set, let

1"1={<.oel" :w < p for some }.Lel"z} and let

DO DO

1"3 ={wel:w > K for some [ € 1"2}. If there exist a and B

suchthat X <a on I'', a<X<PB on I, and X>B on T

1 2 3’

then the isotonic regression of X can be obtained by considering

1"2 and 1"; independently, i.e., the restriction of the isotonic
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regressionof X to 1"2 is the restricted isotonic regression of

X to l"z.

Proof. Fl is a lower set, F3 is an upper set and

'. ~T_=g¢g. Let Yl, YZ’ and Y3 be the restricted isotonic

regressions of X to Pl, I‘Z and 1"3 respectively. Then by the

monotonicity in Theorem 4.5, we have Y1 <a, a< YZ <P and

Y, 2 B. It follows from Theorem 3.7 that X*(w) = Yz(w) for each

wel,. 0

Corollary 3.7.3. Let U be a non-empty upper set and let

1"1 = {w € U w < p for some p € U}. If there exists an a such that
X>2a on U and X <a on l"l, then the isotonic regression of
X can be obtained by considering U and u¢ independently.
Similarly, let I be a non-empty lower set and let

1"3 = {w € LC:w >4 for some p € L}. If there exists a B such that

X<B on L and X2>B on T then the isotonic regression of

3!
X can be obtained by considering L and L¢ independently.

In particular, if a maximal element has a maximum X value
or a minimal element has a minimum X value, then the value of

the isotonic regression of X at that element is the value of X at

that element.

Proof. For the first statement, let 1"2 = U and 1"3 = ¢d. For
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the second statement, let l"1 = ¢ and let l"2 = L. The results

follow from Corollary 3.7.2. ||

The level set l"2 in Theorem 3.7, if it is connected, will be
a component of the level set [a < X* < Bl where X* is the iso-
tonic regression of X. Such a component may be obtained by
inspection of X wvalues as indicated by Corollary 3.7.2 or
Corollary 3.7.3. Corollary 3.2.3 and Theorem 3. 3 may be able to
take care of violations locally; Theorem 3.7 and its corollaries may
be able to take care of the problem globally. Theoretically, these
results are enough to obtain the isotonic regression of X. The diffi-
culties are how to determine such a component l"2 and how to find

the restricted isotonic regression of X to l"z. Presumably, if
the longest chain in £ has a small number of elements or upper
sets tend to have larger X values than lower sets, then the diffi-
culties mentioned above will not be serious.

When difficulties arise, the reader may want to refer to
Alexander's algorithm. But Corollary 3.2.3, Theorem 3.3, Theorem
3.7 and its corollaries may be greatly helpful in reducing the problem,

as demonstrated by the following example which appears in Alexander

(1970).

Example 3.3. Let @ = {(i,j):i,j=1,2,3,4} be a partially ordered

set with the ordering (i,j) < (h,k) if i<h and j<k. For each
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element (i,j), the function value xij and the weight Wij are

respectively the fraction and the denominator as given below.
4 1/5 2/11 1/2 1/3
3 1/6 1/7 1/8 1/3
2 1/8 1/10 1/7 1/2
1 1/16 1/7 4/39 1/6

% 1 2 3 4

By inspection, one may find out that U = {(3,4), (4, 2), (4, 3),(4,4)}

is an upper set and X >1/3 on U, X <1/5 on US (1,1) is the
minimal element with the minimum X value; T, = {(1,4), (2, 4)}

is a level set with l"3 = {(3,4), (4,4)} and

r, ={t1n,1,2),1,3), 2, 1),(2,2),(2,3)} suchthat X <2/11 on

I, 2/11<X<1/5 on I', and X>1/5 on T, and also

1 2 3’
AZ = {(4,1)} 1is a level set with A3 = {(4,2),(4,3),(4,4)} and

Al = {(1,1),(1,2),(1,3)} suchthat X< 1/6 on A X =1/6 on

1’

AZ and X >1/6 on A3- From Corollary 3.7.2 and Corollary

f,

3.7.3, xfl = 1/16 where X* is the isotonic regression of X

and we may consider U, l"2 and AZ independently. The set U

is a reversed tree and by the Maximum Upper Set algorithm we have

sk sk sk £
X3 = Xyp T Xyg T Ky, T 2/5. The set l"2 is a linearly ordered set

and by the Pool-Adjacent-Violators algorithm we have

* * *
X147 %54 " 3/16. The set AZ is a singleton and hence X41 " 1/6.
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Therefore, the remaining problem is the following:

3 1/6 1/7 1/8
X 2 1/8 1/10 1/6

1 1/7 4/39

{/4/ 1 2 3

Since (1,3) and (3,2) have the largest X value 1/6,

sk sk
and x_., = x_,,- By the

Theorem 3. 3. shows that 32 33

X137 *23
smoothing property as described in the Maximum Lower Set algorithm,
we may replace 1/7 and 1/8 at (2,3) and (3,3) by 2/13

and 2/14 respectively and cross out elements (1,3) and (3,2).

The weights at (2,3) and (3,3) noware 13 and 14.

3 2/13 2/14
X, 2 1/8 1/10
1 1/7  4/39
j///ff 1 2 3

At this stage we have six elements. Since X2 >1/7 in the
apper set U ={(2,3),(3,3)} and X, <1/7 on US, by Corollary
3.7.3 we may consider U and u© independently. The set U is

linearly ordered and by the Pool-Adjacent-Violators algorithm we

5% % 3k % 3k %
have x_._.=x_._.=4/27. Recall that x._ = x and x_.. =x

23 %33 13 %23 32 ¥33°* %°
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13 = Xp3 = X3, = X34 = 4/27.

i

2 1/8 1/10

1 1/7 4/39
J/ 1 2 3

For a set with four elements, the problem can always be solved

very easily. If [p < v] is an immediately comparable pair and
X(k) > X(v), then by Corollary 3.2.3 we shall group | with at least

one of its immediate successors or group V with at least one of its

. . * ¥ ook

immediate predecessors. It follows that X10 T ¥y Xy T Xy, OF
sk %k

Xy1 T Xaa Let us consider U = {(1,2),(2,2)}. This is an upper set

and the restricted isotonic regressions Y and Z of X3 to U

¢ = = = g =
and U~ are Y12 7 Y22 2/18 and Z,) = %3 5/46. The value

2/18 is larger than 5/46 and from Corollary 3.7.1 we have

sle 1. sk

X5 = X0 = 2/18 and X1 = Xo0 = 5/46. Therefore, the isotonic

regression X* of X has been obtained. Suppose we group (2,1)
and (2,2) first. Then we have a linearly ordered set with function

values from the smallest element to the largest element being 1/8,

2/17 and 4/39. The Pool-Adjacent-Violators algorithm shows that
% 3k 3k Sk

12 T %31 T %2 T %33 =2 and

= 7/64. But X1, W, +x22vv22

B " B - . . ) .
X1, Wi, tELWo, 63/32 which violates (3-3) . Therefore, the
proper grouping should be {(1,2),(2,2)} or {(2,1),(3,1)} and either

one will lead to the final solution. The isotonic regression X* of
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X is given below. (]

4 3/16 3/16 | 2/5 2/5

3 4/27 4/27 4/27 | 2/5
X*

2 2/18 2/18 | 4/27|2/5

1 1/16 | 5/46 5/46 1| 1/6
j/ ] 2 3 4

III. 6 Some Related Problems

Let £ be a partially ordered set and let W be a given

sl
>

weight function. For any X there is an isotonic regression X%*
of X. Let {0-1, Ceey O-k} be the range of X* and let

r = [X’-‘< = O.i], i=1,...,k. The sequence T

; , T is a parti-

1 Ty

tion of £. Such a partition may possibly be determined by Theorem
3.3, Corollary 3.7.2 and Corollay 3.7.3 without regarding what the
weight function is. Therefore, we will be able to select another

weight function WO of interest such that the function Y defined by

Y(w) = = X(w)WO(w)/Z}
W

W _ (w) for weTI,, isisotonic. Our
wel"i i

el’, O
i

interest could be the weight function, the isotonic regression or both.

The problem we are going to study is to minimize

f(Z,W) = z [Z(w)-X(w)]ZW(w)

e

subject to Z € M and subject to some conditions on the weight
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function W. For each weight function W, there is an isotonic
regression X*(W). Since f(Z,W) >f{(X*(W), W), the minimization

problem can be studied as a functionof W, i.e.,

h(W) = £(X*(W), W).

The isotonic regression X*(W) may not heavily depend on W. If

that is the case, the problem can be solved very easily.

Example 3.4. The problem is to minimize

HZ W) = () -1/ W) |+ (2, -1/8) 5w, | + (2173w,
bz, 2 1) W+ (2, 1/2) 2wy, + (2y,-1/3) 0w,
subject to
zijs'zhk if i<h and j<k
WUZI/S i=1,2,3; j=1,2
and
Wil+wi2=1’ i=1,2,3

Let X ©be given by

2 2/11 1/2 1/3

1 1/7 1/8 1/3

J///ﬁr 1 2 3
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b

For each W, let X*(W) = (x;j) be the isotonic regression of X

s &
with respect to W. Then X1 "% T (W11/7+W12/8)/(W11+W12):

s £

Xq =1/3, X5 =2/11. and Xo0 = X35 = (W22/2+w32/3)/(wzz+wz3).
Therefore,
h(W) = £f(X*(W), W)
_ * 2 * 2 * 2
= (1/7-x11) ST + (1/8-x21) Wa 1 + (1/2-x22) Wso
* 2
+ (1/3-x32) Wao
)-1/3136 + w, WL (W, tw )-1/36
22 3222 32

= +
W1i%21W111%2,

For fixed Wort Woo and Wao h is an increasing function of v

*
over the range [1/5,4/5] and hence Wi T 1/5 where W* s
*
the optimal solution. Similarly, Was = 1/5. Let X\ = ol We

have

h(\) = N/3136(1+5\) + (1-1)/36(6-5\) where X\ € [1/5,4/5].

Since h is monotone decreasing, X\ =4/5. The optimal solution

(X*, W*) has been obtained and it is given below. {0

X * Wk
2 2/11 5/12 5/12 2 4/5 1/5 1/5
1 9/70 9/70 1/3 1 1/5 4/5 4/5

J/ 1 2 3 J/ 1 2 3
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Another problem we are interested in is the situation when the
ordering imposed on the set § could be one of k given types.

We want to minimize

£(2) =2 [Z(w)-X(w)]"W(w)

w €N

subject to Z ¢ u%:_ M(§e, S_i) where M(£, gi) is the family of

1

isotonic functions with respect to the ordering Si’ i=1,...,k.

Let X1 be the isotonic regression of X with respect to the

%k

ordering < .. Since f(Z)zf(Xi) whenever Z ¢ M(Q,ii), the

ale
<

optimal solution is xJ such that f(XJf") = min{f(X;):i =1,...,k}.

Example 3.5. The problem is to minimize

2 2 2 2
= - + - - + - -
£(Z) (z1 3) (z2 2) + (z3 7) (z4 8) +(z_-5)
subject to Z being unimodal, i.e., z, <z, < ... gzj and
zj > Zj+1 >... 2> zZg for j from one to five. For each ordering

<_.1, the pair (2, ii) is a reversed tree where & =1{1,2,3,4,5}.
The isotonic regressions of X =(3,2,7,8,5) with respect to these
orderings can be found very easily and the optimal solution is

(2.5,2.5,7,8,5). [l

Bounded isotonic regression is isotonic regression with an

addition constraint:
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where Z1 and Z2 are two given functions. The problem was

introduced by van Eeden (cf. Barlow and coworkers (1972)). Let X%*
N

and X be the isotonic regression and the bounded isotonic regres-

sion of a given X over a partially ordered finite set and let

A
£ := {ZeM:Z <z < ZZ}. Since M is a cosed convex set, if it

1

is non-empty then the bounded isotonic regression exists and is unique

By the monotonicity (cf. Theorem 4.5) of the isotonic regres-

. st
>l R

sion, if Z <Z<Z, and Z<¢M, then Z <Z<Z, where

%

Z1 and Z2 are respectively the isotonic regressions of Z1 and

ZZ. Without loss of generality, we may assume that Z1 and Z2

are isotonic. If thereis an w such that Zz(w) < Zl(w), then there

is no feasible solution. If Z1 < Z2 and Zl(w) = Zz(w) for some

w, then X(w) = Zl(w)- In the remainder of the section, we shall

assume that Z1 and Z2 are isotonic and Z1<_Z2.

Theorem 3.8. If Z1 and Z2 are constant functions with

values a and P respectively, then X = (X*vya)A B.

Proof. Let U =[X*>p], L=[X*<a] and I =[a< X* <]

L and X*|I' are the restricted

From Theorem 3.6, X*|U, X%
isotonic regressions of X to U, L and I" respectively. Let

ZGICI, then Z <P on U and X*>PB on U. By (4.8), we
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have f(ZvB;U) < {(Z;U) where £(Z;U) =2 [X(w)-Z(w)] " W(w).

weU
Similarly, f(Z A a;L) < f(Z;L). Since f£(Z;I) >£(X*;T),
ZvPB=PB, ZAa=a and f(Z)=1£(Z;U)+£(Z;L)+1£(Z;T), it fol -

A
X* on T, §=a on L and X=B on U [

Il

lows that 5\(

min{X*w):w ¢ £}, b= max{X*w):w ¢ 2},

Ii

Let a
a= min{ZZ(w):w € 2} and PB= max{Zl(w):w e 2} Let

U={w:Z1(w):|3}, U, ={w:Z

b 1(co) >b}, L ={w: Zz(w) = a} and

L ={w:Z,(w) <a}.

2

A
Lemma 3.1. If Ub is non-empty, then X(w) = Zl(w) for

A
each we U. If La is non-empty, then X(w) = Zz(w) for each

we L.

Proof. If Ub is non-empty, then P >b. For each w e U,

A ~
X(w) >pB. We are going to show X(w) = . Note that X* <b and
A
hence X*<B. If ZefX, then ZaPeM. By (4.8),
AN
f(Zz) >f(ZA B). Therefore X = XAP. Similarly if L  isnon-

A
empty then X(w) = Z_(w) for each w e L. []

2

Lemma 3.2. Let X% be a constant function. If La is

o A
empty, then X >X*. If U,  is empty, then X* >X.

b

Proof. If La = ¢, then Z2 >a = X* and it follows that

e Vol
Z €M implies Z v X*e M. By (4.7), f(Z) >f(Zv X*%). Therefore
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N A
R =Xy X* Similarly, if U_ is empty, then X*>X. [

b

Theorem 3.9. Let £ = {wl,w .. ,wn} be a linearly ordered

2’
i=1,2,...,n-1. The bounded

. . <
set with the ordering W, S

isotonic regression of X can be obtained by considering each level

set [X*=c¢ independently, where X* is the isotonic regression
of X.

Proof. Let [X* =a]= {wi,wi+1, R ,wj} and
[X’nl< = p] = {wj+1, ces ,wk} be two adjacent level sets with a <b and

A
let Xa and Qb be the bounded restricted isotonic regressions of

VAl

A
a] and [X* =bl. If we can show Xa(wj) Xb(wj+1

A

)

X to [X*

A ~ A A
then X(w) Xa(w) for each w ¢ [X*=a] and X(w)= Xb(w) for
each w € [X*% =1Db]. By Theorem 3.6, the restricted isotonic regres -
sionof X to each level set [X* = c] is the constant c. There-

A
fore, if Zl(wj) >a then by Lemma 3.1 Xa(w,) = Zl(w,); other -
J J

A
wise, by Lemma 3.2 Xa(wj) < X*(w,) = a. Similarly, if
J
A
< = 1
Z(wj+l) <b we have Xb(wj+l) ZZ(wj+l) and otherwise

> N

c

)

c
iv
o
-
[
N
T
v
g
[
5
[¢]
=]
>
€
]
N
T
A
N

N
195 = a'j 1957 = 21%+1

> A
x>

U‘A

€

=

(a0}

N

€

aj—25—2j+1)_bj+1'

x> X

This completes the proof. [

Example 3.6. Let X = (25,13,2,15,14,21,9, 33,25, 15),
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Z1 =(10,11.5,13,14.5,16,17.5,19,20.5,22,23.5) and

Z2 =(13,14.5,16,17.5,19,20.5,22,23.5,25,26.5). The problem is

to minimize

10 2
Z. (x.-z.)
i=171 1

£(Z)

subjectto z, <z

< ... < < < .
] < <z and Z __Z__Z2

2 10 1

The isotonic regression X* of X |is
X* = (13. é, 13. .:5, 13. é, 14.5, 14.5, 15, 15, 24. é, 24. '3, 24. :;) Theorem
3.9 shows that the bounded isotonic regression 3\( of X can be
obtained by considering the set {25, 13,2}, {15, 14}, {21, 9} and
{33,25,15} of X wvalues independently. For the first partition

{25,13,2}, the average is 13.3 and La = {l}. By Lemma 3.1,

A
9{1 =2, 7 13. Therefore, ?{2 and X, are the optimal solution to the
following problem. Minimize (13—z2)2 + (2-z3)2 subject to
A
13 <z, < 14.5, 13 <z3 < 16 and z, < 2y Hence X, = 13 and

X, = 13. For the second partition {15, 14}, the average is 14.5 and

Ub = {4,5}. By Lemma 3.1, ?{5 =z = 16. Therefore, ?<4 is the

optimal solution to the problem: minimize (15-z4)2 subject to

< 16. Hence &, = 15. Similarly, for the third partition

14.5 < z 4

4

{21,9} we have ?{7 = 19 and it follows that Qé = 19. For the last

partition {33,25,15}, we have %, =23.5 and it follows that

Xq = X10 " 23.5. The bounded isotonic regression is therefore
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X = (13.13,13,15, 16, 19, 19, 23. 5, 23. 5, 23.5). In order to check that
N
X has the correct values, one may refer to the Kuhn-Tucker condi-

tion (cf. Appendix IV). []
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IV. CONDITIONAL EXPECTATION GIVEN A c-LATTICE

IV.1 o-Lattices and 2 -Measurable Random Variables

Let = be afamily of subsets of a given set £. It is said to
be a lattice if it contains £ and q{ and it i"s‘"‘élos ed under union
and closed under intersection. A field is a lattice which contains
complements of sets in the family. A g-lattice is a lattice which is
closed under countable union and closed under countable intersection.

A g-field is a o-~lattice which is also a field.- A complete lattice is a

lattice which is closed under arbitrary union and closed under arbi-

trary intersection. The family 2Z 1is said to be a2 monotone class if

0
whenever {An} is a monotone sequence in 2, both 1A
n= n

o0
and A are in 2.

n=1 n
The collection of complements of a monotone class is a mono -
tone class and the collection of complements of a o-lattice (lattice,
or complete lattice) 2 is a o-lattice (lattice or complete lattice);
such a collection is denoted by 2. The intersection of an arbitrary
collection of o-lattices is a o-~lattice. In particular, the intersection

of a o-lattice 2 with its complement =% isa c-field. Let I

be a family of subsets of . The o-lattice generated by I is the

intersection of all o-lattices which contain I'. Similarly for the

definition of g-field generated by a family of subsets in .
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Let < be a quasi-orderingon £ and le¢ X be the family
of all upper sets. Then 2Z is a complete lattice, such a complete
lattice is said to be induced by <. On the other hand, let I be a
family of subsets of $§2 and let < Dbe the binary relation defined
on £ sothat p<v if peU and Ue I imply veU; ifno
setin I contains W, then WP <V for every VvV e 2. Then the
binary relation < is a quasi-ordering on £; such an ordering is
said to be induced by I.

Let A ©be the collection of all families of subsets of £ each
of which induces the same quasi-ordering <. Let I € A. For each
we R, let U(w) = ~{UtweU, UeI} andlet
L(w) = ~{L:we L, LS ¢ I}; and if there is no set in I which con-
tains w, set Ul(w) =R and if every setin I contains w, set
L(w) = . It is clear from the definitions, for each pair n and vV
in &, p<v, veU(u) and p e L(v) are equivalent. Since
U(p) is the set of all elements Vv such that p < v, it follows that
for each e Q, U(p) is the same for all families in A.

Let I' e A, andlet U € I'. Then for each we¢ U, we have
we U C U and hence U = UweUU(w)' ILet 2 be the family of
arbitrary unions of U(w)'s. If U € X, then for each we U we
have U(w) C U. Since X contains every U(w), X € A and if
I' ¢ A then we have I (_ Z. The family = is maximalin 4 in

the sense of set inclusion. By the convention, a void union of sets is
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the empty set. The family X contains £ and ¢, and it is
closed under arbitrary union. We shall show that Z 1is also closed
under arbitrary intersection. It will then follow that X is a com-
plete lattice. Let {Uai a e A} I;e a subfamily of X and let
A=~ U,- If weA, then weU_ foreach ac A and hence

ael " a

Ufw) C U, for each ace A. It follows that

A= uco eA{w} C uco eAU(w) Ca

and hence Ae¢Z. If A=¢g, then Ae¢Z. If ' isa complete
lattice in A, then X' contains {U(w):w € R}. It follows that
Z ( Z'. But we have just shownthat I’ (C = foreach I € A.
Therefore, the collection A contains at most one complete lattice.
Let < be aquasi-ordering in £, let Z' be the complete
lattice induced by < and let <' be the quasi-ordering induced by
Z'. Let p and Vv bein . If p < v, then every upper set
U e Z' which contains [, contains V. It follows that p <'wv.
On the other hand, if g i v then there exists an upper set U ¢ Z'
suchthat pe U and v ¢ U. It follows that p 4'v and therefore
< and <' are identical. The complete lattice =' 1is in A,

thus we have proved the following theorem.

Theorem 4.1. Let £ be a given set. Quasi-orderings on £

and complete lattices of §2 are in one-to-one correspondence such
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that if < <corresponds to X, then < induces X and X

induces <.

Let A be the collection of all families of subsets of £ each
of which induces the same quasi-ordering <. We have shown that
the maximal element in A is the complete lattice induced by the

quasi-ordering <. However, minimal elements in A need not be

unique.
Let <_1 and gz be two quasi-orderings on f2. < is
said to be finer than SZ if for each pair p and Vv in £,

M 51 v implies p 52 v. Let l"1 and l"2 be two families of

subsets of 2 and let <, and < be the quasi-orderings

1 =2
induced respectively by l"1 and l"z. If 1"2 C l"1 and M Sl v,
then every U ¢ l"1 which contains W, contains V; so does
every U ¢ l"z. It follows that il is finer than <_2- But if 51

is finer than < it need not be true that I, C T'_. On the other

2’ 1

hand, let Zl and 22 be the complete lattices induced respec-

tively by two quasi-orderings Y and 52 on £2. Let gl

be finer than 32. For each w ¢ R, let Ui(w) be the set of V's

such that wf_iV, i=1,2. If peUz(w), then Ul(p)CUz(w)

and hence Uz(w) = v Ul(p). Since Ei is the family of
arbitrary unions of Ui(w)'s for i=1,2, 22 C Z,- Thus we have

proved the following theorem.
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Theorem 4.2. Let £ be a given set, let 51 and <_2

be two quasi-orderings on £ and let 21 and 22 be the com-
plete lattices induced respectively by 31 and <_2- Then <_1

is finer than <, if an only if 22 C Z)l.

The relation "finer than" on quasi-orderings of 2 is by
itself a partial ordering. The finest quasi-ordering is the one induced
by the power set of £, and the least fine quasi-ordering is the one
induced by {@,d4}. Let {<_ a: aeA} be a collection of quasi-
orderings on £, and let A ={<:< is finer than <, for each
ae A}. We claim that A has a unique minimal element <, o
the sense that < € A implies < is finer than im For each
ae A, let Za be the complete lattice induced by <4 Let
$={Z:Z is a complete lattice, = D) Za for each a € A} and let
Zm = AQZ. Then Zm is a complete lattice. The quasi-ordering
sm induced by Zm is finer than <, foreach ae A If <
is finer than <  for each ae A, then X D) Z  for each ae A
where 2 is the complete lattice induced by <. Since Z ) Zm,
< is finer than <, Similarly, if 4= {<: <, is finer than <
for each ae€ A}, then A has aunique maximal element sm in

the sense that < € A implies <_rn is finer than <. Thus, we

have proved the following theorem.
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Theorem 4.3. Let $§ ©be a given set. The relation "finer

than" on quasi-orderings of § 1is a partial ordering such that every
non-empty collection of quasi-orderings of £ has a greatest lower
bound and a least upper bound with respect to the partial ordering

"finer than".

Let <_1 and 32 be two quasi-orderings induced respec-

tively by complete lattices Z and €. Then e il v if and only
if v<,p foreachpair p and v in Q. If UeXAZS, then
U and US are unrelated with re spect to 51- A complete lattice
Z is a field if and only if U(w) is an equivalence class for each
w, 1i.e., Vv e U(p) implies p € U(v) for each pair p and Vv
where U(w) is the set of all Vv's suchthat w < v with the quasi-
ordering < induced by 2. A quasi-ordering < is partially
ordered if and only if U(p) = U(v) implies p =V for each pair
and V. A partial ordering has a tree structure if and only if for
each pair p and Vv, wehave U(pn) ~ U(v) = d, U(p) C U(v) or
U(v) C U(p)- A tree structured partial ordering is linearly ordered
if and only if U(p) ~ U(v) # 4 for each pair p and V.

When & is finite, every lattice is a complete lattice. Let
=R and let < be the natural ordering of real numbers. The
complete lattice corresponding to < is the o-lattice generated by

2
(a,+0) for all real a. Let R =R, let < be the partial
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ordering defined by (a,f) < (a,b) if a<a and P<b, let =
be the complete lattice correspondingto <, 1let U e Z with
U 7/ ¢/ and let f be the extended real-valued function defined on R
such that f(x) = inf{y:(x,y) € U}. It is clear by the definition that if
(x;y) € U and (x,y) <(a,B8) then (a,B) € U. Let Xy and X,

be two real numbers such that X) < X, Since y > f(xl) implies
(XI’Y) € U and (xz,y) € U, f(xl) zf(xz) and hence f is mono-
tone decreasing. It follows that {(x,y):y >f(x)} C U C {(x,y):y >f(x)}.
Let ZO be the family of Borel measurable sets in XZ. Since the

family of Borel measurable sets in R2 is a o-lattice, ZO is a
o-lattice. It is clear that the partial ordering induced by ZO is the
same as that induced by X. It follows that EO is the o-lattice
generated by U(a,B) = {(a,b):a >a,b >p} for all (a,P) ¢ RZ-
As far as measurability is concerned, our interest will be in
o-lattices rather than complete lattices. An element of a o-lattice
2 is an upper set with respect to the quasi-ordering indueced by Z.
However, an upper set with respect to the quasi-ordering induced by
a oc-lattice Z need not be in X=.
A o-lattice is a mono-tone class. By a proof analogous to that of
the Mcnotone Class Theorem, one cah show that a monotone class
which contains a lattice EO contains the o-lattice generated by

ZO. It follows that a monotone class which is a lattice is a o-lattice.
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Let I be afamily of subsets of £2. The o-lattice =
generated by I can be described as follows. Since £ and ¢
are in X and the o-lattice generated by I U {R,d} is Z,
without loss of generality we may assume £ and ¢ in I. Let
I' =TI and for each ordinal number a >0, let I‘a be defined

0
inductively by

o0 o0
ro={u ;A )oln _B)A,B ¢ SN

}.

Let A=wyv I‘a where P is the first uncountable ordinal num-
ber. Since 1"c1 (C T implies ra+1 (C £ and since I‘O C Z, by

the transfinite induction A ( . On the other hand, if {Cn} C A,

then for each n there is a < B such that Cn € Ac1 . Let
n
a=sup a. Then a<f and C_e€ A for each n. Therefore,
n n n a
0 0 . .
u C and ~__.C are in T and hence they are in A.
n=1"n n=1"n a+1l

It follows that A is a o-lattice containing I" and thus Z = A.

A co-lattice X is said to be linearly ordered if whenever

Uu.,U

. 262 then either UICUZ or UZCUI. If £ is a lin-

early ordered o-lattice, then so is =€ and in such a situation

= mZC is the trivial o-field {Q,d}. If £ isa linearly ordered
set, then the collection of all upper sets is a linearly ordered
o-lattice. However, the ordering induced by a linearly ordered

o~lattice need not be linear.
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Let (£2,F,P) be a probability space, i.e., F is a o-field

of subsets of £ and P is a probability measureon F. A

random variable is an equivalence class of extended real-valued

F-measurable functions defined on £ such that each pair of func-
tions in the class differ by a set of P measure zero. Therefore,

' will be omitted from the context.

the term "almost everywhere'
Whenever we say that a random variable satisfies a property, it
means that one of its representations satisfies that property. It is
implicit that if a random variable is integrable, then it is finite.

Let Z be a sub-o-lattice of F. A random variable X is

said to be Z-measurable if [X > a] € & for each real number o

or equivalently [X >a] € & for each real number a. The family
of Z-measurable random variables is denoted by R(Z). Indicators

of upper setsin Z are Z-measurable. If X is a random variable,
then the family of all sets [X >a] and [X >a] for all extended
real numbers a is a o-lattice: Such a o-lattice, denoted by Z(X),
is said to be induced by X. The o-lattice X(X) is linearly ordered.
The family of all sets [X € B] for all Borel measurable sets in the
extended real line is a o-field. Such a o-field, denoted by F(X), is
said to be induced by X. It is obvious that the intersection of all
o-fields containing XZ(X) is the o-field F(X). Therefore F(X) is

the o-field generated by XZ(X).
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If X1 and XZ are Z-measurable random variables, then so

are X1 +X2, Xl\/ XZ, Xl/\XZ and 6X1 for each & >0 (cf.
Barlow and coworkers (1972)). Let {Xn} be a monotone increasing
sequence of Z-measurable random variables and let X be defined by
X(w) = nli{noo Xn(w) for each w. Then X = \/nZIXn and

[X < a] = A:ZI[Xn < a] for each a. Therefore,

[X > a] = u:10=1[xn >a]l e & for each a and X is Z-measurable.
Similarly, the limit of 2 monotone decreasing sequence of
Z-measurable random variables is Z-measurable. It follows that the
upper limit and the lower limit of any sequence of Z-measurable ran-
dom variables are Z-measurable. In particular, the limit of a point-
wise convergent sequence of Z-measurable random variables is Z-
measurable. Thus, we have shown that R(Z) is a convex cone
which is closed under countable meet, closed under countable join
and closed under pointwise convergence.

A random variable is simple if its range is finite. A simple
random variable is Z-measurable if and only if it is a finite linear
combination of indicators of upper sets in 2 such that the coeffi-
cients are non-negative except the one that corresponds to 1. A
non-negative X -measurable random variable is the limit of a non-
decreasing sequence of simple Z-measurable random variables. An

arbitrary Z-measurable random variable X is the limit of a

sequence of some Z-measurable random variables {Xn} such that
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|Xn| < |X| foreach n. Let X be a Z-measurable random
variable and let f be a non-decreasing function defined on the
extended real line. Then the random variable f°X is Z-

measurable.

1V.2 Conditional Expectation as a Generalized Projection

Let LI(Q, F,P) and LZ(Q, F,P) be the linear spaces of
integrable random variables and of square-integrable random vari-
ables respectively. When there is no ambiguity, we shall use L1

and Lz. The linear space L2 is a subspace of Ll. Let E be

the operator defined by
(4. 1) EXY = §XYdP

for each pair of random variables X and Y, provided that the
integral on the right-hand side exists. If the random variable Y is
the constant random variable 1, then we shall use EX, the inte-

gral of X, instead of EXY when the latter exists. The operator

E restricted to L2 X L2 is an inner product. The linear space
L2 with the inner product E is known to be a Hilbert space. The
normof X e L_, || X” » is the square root of EXZ-

2

The convex cones L1 ~R(Z) and L2 ~ R(Z) are denoted
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briefly by L.(Z) and L_(Z) respectively. Let {Zn} be a

1 2

sequence in LZ(Z)) which converges to Z in LZ’ i.-e.,

Z -Zll -0 as n~— . Then Z € L and there exists a sub-
n 2

sequence {Zn,} which converges to Z pointwise (cf. Ash (1972)).

It follows that Z € R(Z) and hence L_(Z) 1is a closed convex cone

2
in LZ. The uniqueness and existence of the projection P(X]| LZ(Z)))
for each X ¢ LZ follows from Theorem 2.1. Theorem 2.7 shows
that a random variable X* € LZ(E) is P(X| LZ(Z))) if and only if
E[(X-X*)X*] =0 and E[(X-X*)Z] <0 for each Z ¢ L,(Z). Let
X% = P(X| LZ(Z))). Since constant random variables are in LZ(Z),
we have
(4.2) EX* = EX.

For each Z ¢ LZ(Z)), there is a sequence of simple random varia-

ables {Zn} C LZ(Z)) and |Zn| < |z| for each n such that z_

converges to Z pointwise. For each n, I(X-X*)Zn| <_|X-X>'r‘ |Z|

Since |X-X*||Z| is integrable, by the Dominated Convergence

Theorem E [(X-X%)Z] = 1lim E[(X-X*)Zn]. It follows that the con-
n—"o

dition E[(X-X*)Z] < 0 foreach Z ¢ L_(Z) 1is equivalent to

2

E[(X-X*)IU] < 0 for each upper set U € Z. Brunk (1965) showed
that if X* = P(X| LZ(Z))) and g(X*) e L2 for a real-valued function
g, then E[(X-X#*)g(X*)]=0. Inparticular, E[(X-X*)15(X¥] = 0

for each Borel set B Therefore, a necessary and sufficient
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condition for P(X|L2(Z))) can be stated as follows.

Theorem 4.4. A random variable X3 ¢ LZ(Z) is P(XILZ(Z))

if and only if X* satisfies

(4. 3) E[(X—X*)IB(X*)] = 0 for each Borel set B
and
(4. 4) E[(X—X*)IU] <0 for each U € =,
2 2 2

Theorem 2. 3 shows that E(X-Z) > E(X-X*) + E(X*-Z) for
each Z ¢ LZ(Z}). By (4.2), we have E(X-X*) =0 and hence

E(X-Z) = E(X*-Z). 1t follows that
Var(Z-Z) > Var(X-X*) + Var(X*-Z) for each Z ¢ LZ(E).

In particular, Var X >Var X* + Var(X-X*) where the variance of
2
a random variable Z is defined by Var Z = E(Z-EZ) . Theorem

2.7 and (4.2) show that

(4.5) Cov(X,X*) = Var X*
and
(4. 6) Cov(X,Z) < Cov(X*,Z) for each Z ¢ LZ(E)

where the covariance of a pair of random variables X and Z s
defined by Cov(X,Z2) = E(X-EX)(Z-EZ).

If Cov(X,Z) <0 foreach Ze¢ LZ(Z)), then by Theorem 4.4



98
the projection P(X]| LZ(Z)) is the constant random variable EX.

Let XeL, let YeL,(Z) andlet X*= P(X|L2(Z)). If

E[(X-Y)IB(Y)] = 0 for each Borel set B, then E(X-Y)Y =0 and

EX = EY. Since E[(X-X*)Y]< 0, we have

1
EY? = EXY < EX*Y < (EX**EY?) /2 ord hence EYZ < EX*%. By

the fact EX* = EY, Var Y < Var X*. Let T ¢ LZ. If

E[(X—T)IU] <0 foreach Ue X, then E[(X-T)Z] <0 for each

Z € LZ(E). In particular, E[(X-T)X*] < 0. By the fact that

EX*2 = EXX*, we have EX*2 = EXX* < ETX* < (EX*ZET2)1/2 and

2 2

hence EX*” < ET .

If Z1 and Z2 are in LZ(Z), then so are Zlv Z2 and

Zl/\ ZZ. Since X*+Z =X*v Z +X*AN Z for each Z ¢ LZ, by
(4.5) we have Cov(X-X%*,2Z) = Cov(X-X*,X%y Z) + Cov(X-X,X*A Z).
For each Z ¢ LZ(E), by (4.6) we have Cov(X-X*,Z) <0,
Cov(X-X*,X*yv Z) < 0 and Cov(X-X*,X*AZ) < 0. It follows that
Cov(X-X%*,Z) < Cov(X-X*,X*v Z) and

Cov(X-X*, Z) < Cov(X-X*,X*A Z). It is clear that

|X#-Z\ X*| < |X*-Z| and |X*-ZAX*| < |X*-Z|. By the iden-
tity E(X-2)% = E(X-X%)% + E(X*-2)% - 2E[(X-X%)Z] and the iden-
tities when Z 1is replaced respectively by Z v X* and Z A X¥,

we have

(4.7) E(X-ZvX#*)? < E(X-2)° and E(X-Z Ax*)z < E(X-2)°
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for each Z ¢ LZ(Z:).

By (4.2) and by an argument similar to that described above,
C(X-X*,Z) < Cov(X-X*,Zyy) <0 and
Cov(X-X*,2Z) < Cov(X-X*,Z AYy) <0 for each Z ¢ L,(Z) and for
each real number y. If a <X <P, then bythe monotonicity in
Theorem 4.5 we have a < X* < . Suppose a< X* < f for a pair
of real number a and B. Itis obvious that |X*-Zy al )
|X*-Z A B| are bounded by |X*-Z]. By a proof analogous to that of

(4.7), we have

2

(4.8) E(X-ZVa) <_E(X-Z)2 and E(X-ZA ﬁ)z S_E(X-Z)2

for each Z e L_(Z). Consequently, E[X-(Zv a)n B]Z ﬁE(X—Z)Z.

2
(2.6) shows that E(P(X|L,(2)) - P(Y|L,(2)® < EX-¥)® and

hence Var(P(X[LZ(Z))—P(YILZ(Z:))) < Var(X-Y) for each pair X,

YelL. . Let X be a sub-o-lattice of 2. Then L_(Z is a

2 0 20)

closed convex cone contained in LZ(Z). (2.7) shows that
2 2 2
N” <EX-PX|L,(2,))" - E(X-P(X|L,(2)",

E(P(X| LZ(Z))—P(XI L,(Z

0 0

(2.17) shows that Var(P(X[LZ(Z:))-P(X|L2(2 ) 5_Var(P(X|L2(2)))

o)
- Var(P(X|L2(20))) and (2.16) shows that

Var P(X|L2(2 )) < Var P(P(Xle(Z))ILZ(Z: )) < VarP(leZ(z:))gVarx.

0 0

Some other properties of the generalized projection P(X]| LZ(Z)) will

be given in Section IV. 4.
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IV. 3 Conditional Expectation Given a o-Lattice

Conditional expectation given a o-lattice is an extension of
generalized projection on the closed convex cone LZ(E). Let X be
a random variable defined on the probability space (£2,F,P) and let
Z be a sub-o-lattice of F. A random variable X* e R(Z) is said

to be the conditional expectation of X given X if X* satisfies

(4.3) and (4.4). The conditional expectation of X given X need
not exist. If it exists, then it is unique (cf. Theorem 4. 6); such a
random variable is denoted by E(Xl z).

If Xe Ll, then by Theorem 4.7, E(X|Z) exists. Let

Xk = E(X| Z) foran X e Ll. The conditions (4. 3) and (4.4) can be

represented as

(4.9) S X dP = g X* dP for each Borel set B
[X*e B] [X*eB]

and

(4.10) § X dP < 5 X*dP for each U e =.
U U

It follows that X%* e L1 and EX = EX*. (4.9) shows that X* is
the Radon-Nikodym derivative of the measure p with respect to

P restricted to the o-field F(X*) where p(A) =E(X lA) for
each A ¢ F. (4.10) implies that EXZ < EX*Z for every Z ¢ R(Z)

provided that both integrals exist. If Z is by itself a o-field, then
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EXlU = EX*lU for each U € £ and hence X* 1is the Radon-
Nikodym derivative of the measure M given above with respect to P

restricted to X=. It follows that conditional expectation given a

o-field is a special case of conditional expectation given a o-lattice.

Example 4.1. Let £ =(-1/2,1/2), let F be the family of

all Borel subsets of £, let P be the Lebesgue measure on F

and let X be the o-lattice induced by Z where Z(w)=w for

each we . Let X be the random variable defined by

X(w) = 1/|w| if w#0 and X(0)=0. By the definition, one can

show that the conditional expectation of X given Z does not exist.
Another way to see the non-~-existence of E(X|Z) is by (4.13).

'l(Ex1 Jis <t < 1/2)1 and let

(S:t) (s,l/Z)
— -1 .
YS = sup{(s-r) (EXI(r,s))' -1/2<r < S}l(-l/z,s) + ool[s’ 1/2) for

Let ZS = inf{(t-s)

each s e 2. For s >0, Z =(-1n25)-11 and Y =+
S (s, 1/2) S

-1
< 0, =
For s<0 ZS |s| l(s’ 1/2) and

-1
= + . =0, = +
Y_ |s] 1(_1/2’8) °°1(s,1/2) For s=0 z, 001(0’1/2)

+ oo, = = . =
©0. Let Z VSEQZS and let Y ASGQYS Then Y = Z

and

o

and Z(w) = X(w) if w<0 and Zw)=+® if w>0. If EX|Z)
exists, then it must be Z. However, E(X-Z) = -®. Therefore
E(X| ) does not exist.

For each s € (-1/2,0), let YS be the random variable

defined by Ys(w)=X(w) if w<s and Ys(w)=+°0 if w>s.
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Then YS € R(Z) and YS satisfies (4. 9) and (4. 10) for each
s € (-1/2,0). Therefore, conditions (4. 3) and (4.4) for E(XIZ) can

not be replaced by (4.9) and (4. 10). 0

Let X* be the conditional expectation of X given 2Z.

For each real number a, we have

S (X-X*)dP = 0
x> a]

and hence for each L ¢ ZC,

(X-X*)dP -S‘ (X-X%*)dP

Sa (X-X*)dP
LS A[X*> a]

L A[X*> a] S[X*> al

-S (X-X*)dP.
LA [X*> a]

Since LS ~[X*>a] €3, by (4.4) we have

(4. 11) S‘ XdP > S XdP .
LA [X*> a] LA [X*> a]

Similarly, if U e Z then we have

(4. 12) g XdP < S X*dP
Un [X#< a] Un[X*<a]

for each real number a. The inequality (4.11) was introduced by
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Brunk (1965).

se

Theorem 4.5. Let X1 =E(X,|Z), i=1,2 for a pair of

random variables X1 and X2 such that X1 iXZ. Then

X1 < X2 .
Proof. We shall show that P(X;< > X;) = 0. The event
ok Sk b sk £ ES
> > = >a> .
[Xl XZ] can be represented by [Xl XZ] Y rational[xl a XZ]

Therefore, we need only to show that P(XI >a> X;) = 0 for each

rational number a. By (4.11) and (4. 12), we have

%
§ « v XdP < § N « X 4P
[X,< el A[X > a] [x,<a]lnlx,>d

< g[ X,dP

X;< a] r\[X;\> al

S[ XZdP

x;< a} m[xT> al

IA

s
R

oK sk Sk
for each real number a. Since X2 X1 <0 on [X1 >a >X2],

, < a< X;) = 0. This completes the proof. []

it follows that P(X

The abowve property is called monotonicity, which appears in

Barlow and coworkers (1972).

Theorem 4.6. Let X be a random variable. The conditional
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expectation of X given X 1is unique provided that it exists.

Proof. Suppose Y1 and Y2 are two Z-measurable random
variables such that each satisfies (4. 3) and (4.4). The inequalities
(4.11) and (4.12) hold when we replace X* by Y1 or YZ.

Since X < X, by a similar argument in the proof of Theorem 4.5

we have P(Y1 >Y2) =0 and P(Y2 >Y1) = 0. Therefore,

The uniqueness of E(X|Z) can also be obtained by (4.13).
The proof of the theorem is through communication with Professor

H.D. Brunk. The following existence theorem is given by Brunk

(1963).

Theorem 4.7. If X ¢ Ll, then the conditional expectation

of X given X -exists.

Let {Za: ae A} be a collection of random variables. The

random variable Z is said to be the essential supremum of

{Za: ae A} if for any random variable Y, Z <Y if and only if
Zo. <Y for each ae A. Similarly for the definition of the essential

infimum of {Za: a ¢ A}. They are denoted by V and

aeAZa

/\aeAZa respectively. It is known that any family of random vari-

ables has an essential supremum and an essential infimum and
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/\aeAZa: - aeA(_Z)' The following identity derived from (4.11) and
(4.12) was introduced by Brunk and Johansen (1970).

-1
) 1 -
{L em;C [P(LU) EXILU] - oolUC}

P(LU) >0

(4.13) E(X|zZ) Vies

_ -1
=A { sup [P(LU) EXILU]1L+001 C}
Uex L

P(LU) >0

LexC

provided that E(X|Z) exists.

Let a <X < B, Ilet

-]_ '
zZ =\ { inf [P(LU) "EXI1. ]l _+al }
UeD [ o LUTU e
P(LU) >0
and let
-1
= + .
Y=A, 5ol sup  [PU) EXL L JL4RL )
Ue X L

P(LU) >0

Then Z <Y and (4.13) can be represented as EX|z)=2Z=Y.
If Z#Y, then E(X|Z) does notexist. If Z =Y, E(X|Z) need
not exist as shown in Example 4. 1.

If € if finite, then every upper set with respect to the quasi-
ordering induced by = 1is in X. Suppose P({w}) >0 for each

we . (4.13) may be represented by the following identity.
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(4. 14) X*(w) = max min M(LU)
wel wel
= min max M(LU)
wel.L weU
where X* is the isotonic regressionof X, U is an upper set,

I. is alower set, M(LU) is the weighted average of X over
L ~ U and the weight function W is defined by W(w) = P({w})
for each w ¢ Q.

The identity (4. 14) appears in Barlow and coworkers (1972).

Ayer and coworkers (1955) introduced (4. 14) for the case that £ s

a linearly ordered set.

IV.4 Properties of Conditional Expectation

Our interest in this section and the following section is the case
when random variables are integrable, although most of the proper-

ties hold in general. If X e Ll’ then X is finite and E(X|ZX)

exists.
It is trivial that E(X+a|Z) = E(X|Z) + @ for each real a,
E(6X|Z) = 6E(X|Z) for each real 6 >0, and E(X|Z%) = -E(X|Z).

The monotonicity shows that if X. <X then

1 2?

E(X1| z) gE(X2| Z). It follows that
E(XA Y|Z) <EX|Z) <E(Xv Y|Z) for each pair X, Y ¢ L,- Bya

proof analogous to Theorem 4.5, if Xl < X_ then E(XIIZ) <E(X2|Z)).

2
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The following three convergence theorems which appear in

Barlow and coworkers (1972) are given below without proof.

Theorem 4. 8. Let X, Xn € Ll and let {Xn} be a mono-~

tone sequence such that it converges to X. Then {E(Xn| %)} con-

verges to E(X|Z).

Thecrem 4.9. If |Xn| <Y for each n with Y€Ll and

{Xn} converging to X, then {E(Xn|2)} converges to E(X|Z).

Theorem 4.10. Let {Z)n} be a monotone sequence of sub-

o-lattices of F and let X ¢ Ll. Then {E(X|2n)} converges to

E(X|2) where Z is the o-lattice generated by U:‘lzn if {Zn}

0

is monotone increasing and X = r\n_lzn if {&} is montone
= n

decreasing.

A similar result to Corollary 2.11.1 can be applied to the

operator of conditional expectation.

Theorem 4.11. Let X€Ll and let 21 and 22 be two

sub-o-~lattices of F with ZICZZ. Then

E(E(X|22)| z) = E(X| =) if and only if

S E(XIZZ)dP < g E(Xlzl)dP for each Ue Z .
U U
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Proof. Let Yi:E(XIZ}i), i=1,2. If YI:E(Y2|Z}1),

then by (4.4) we have

S' YZdP < g YldP for each U ¢ Z)l.
U U

Conversely. if the above inequality holds for each U ¢ Z)l, then

S‘ YZdP < S YldP for each real a.
[Y1 > d] [Y1> aj
By (4.3) and (4.4) we have
S YldP = g XdP < S YZdP for each real a
[Y,>d [v,>d [v,>d

since [Y1> al € Z)l C Z)Z. Combining the last two inequalities, we

have
S YZdP = 5 YldP for each real a.
[v,>d [¥,>d
1
It follows that
S‘ Y.dP = 5 YldP for each Borel set B.
[YleB] [YleB]

Since Y1 satisfies (4.3) and (4.4) when we replace X and =

by Y2 and Z)l respectively, Y1=E(Y2|Z}). This completes the

proof. 1]
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Theorem 4.12. Let XeL1 and let Zl and 22 be two

or Z is a

sub-o-lattices of F with ZICZ}Z. If either X 5

1
o-field, then E(E(xlzz)lzl) = E(X|Z)l).

Proof- Let Y, = E(X|Z)i), i=1,2. If Z, isao-field, then

C C

U 621 if UGZI- Therefore, if we apply both U and U to

(4. 4) then we have

S YldP = S XdP = S' YZdP

U U U

for each U ¢ Z)l because z, C 22. 1t follows from Theorem 4.11

that Y, = E(Y

1 ). If Z is a o-field, then by a similar argu-

2

ment applying to 22 we have
ngP= 5XdP< 5YdP for each U e Z
U 2 U - 1

U

1

By Theorem 4.11, Y. = E(Y

) z). O

|

The theorem which appears in Robertson (1968), is called the

smoothing property. It is parallel to Corollary 2.4.1. If FO is

the trivial o-field {Q,¢}, then E(X|FO) = EX. Therefore, the

operator E can be regarded as conditional ekpectation given F

0"

By the smoothing property with 21 replaced by FO, we have

(4.2), i.e., E(E(X|Z)) = EX.
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Let I be anopen interval in the real line. The monotonicity
implies that if P(X €I) =1 then P(E(X|Z)el)=1. Let
¥ = E(XI Z). Then by (4.3), X*= E(XIF(X*)). Therefore the fol-

lowing version of the Jensen's inequality follows (cf. Ash (1972)).

Theorem 4.13. Let X ¢ L1 and let I be an open interval

in the real line such that P(X e€I)=1. If g is a real-valued con-

vex function defined on I, then
E(g(X)| F(X*) > g(X*)
where X* = E(X|Z).

By the smoothing property, we have Eg(X) >Eg(X*), and
hence E|X| >E|X*| and EX? _>_EX*2 where X* = E(X|Z),
provided X e Ll.

The following version of the Jensen's inequality appears in

Barlow and coworkers (1972).

Theorem 4.14. TUnder the same assumption as in Theorem

4.13, if Xg'(X*), X*g'(X*) and g(X*) arein L then

1’
E(g(X)]| =) > g(x*)

where g' 1is a determination of the derivative of g.
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Immediate results of the theorem are
|[E(X|=Z)] <E(|X||Z) and (E(X|Z)))2 gE(x2|z).

Let I ¢ F such that P(IT') >0, let FII":= {Ar\I‘:AeF}
and let Pl" be defined by PI‘(A) := P(AAT)/P(I’) for each Ac¢F.
Then (I‘,Fll“,PF) is a probability space. Let
Z|T :={UAT:U € Z}. Then Z|T is a sub-o-lattice of F|T.

Let R(Z)|1") be the family of Z|I-measurable random variables

defined on (T, FI T, Pl")' The restricted conditional expectation of

X given X to T is the conditional expectation of XIl" given
Z|r with respect to (T, F|r. Pl“)' Such a random variable is
denoted by E(X|Z,T) if it exists.

Let X* = E(XI ) andlet I =[X*>a] for some real a

such that P(T") > 0. It is obvious that

§

f XdP < S X*dP foreach Ue X
unrT UunT

XdP = 5 X*dP for each Borel set B.
[

X*eB] AT X*eB] AT

and

provided that X ¢ L. It follows that X*|T = E(X|Z,T).

Suppose I € = ~Z° suchthat P(I)P(CS) >0. By (4.11)

and (4.4), we have



S‘ XdP = g X*dP for each real
[X#> o AT [X#> a AT

and hence

S‘[ XdP = S‘[ X*dP

X*¢B]AT X*eB]~T

for each Borel set B.

It is trivial that

S‘ XdP < S X*dP for each U € XZ.
UnT UnT

Therefore X*|T = E(X|Z,T) and similarly X*|I'°=EX|Z, T

It follows that for each X € L1 we have

(4.15) E(X|Z) = EX|=,T)1_ + EX|Z,T1
r I‘C

where E(X|Z,T)1 and E(X]| =, 7)1 . are extensions of

r
r

E(X|Z,T) and EX|Z.T%) to <.

Theorem 4.15. Let Ue S andlet L e . Then

E(X|=,U) <EX|Z)|U and EX|Z,L)>EX|L)|L

C C

a

)
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provided that P(U)P(U )P(L)P(L") >0. If any equality holds, then

E(X|Z) can be represented by (4.15) with I replaced by U

or

L according as E(X|Z,U) = E(X|Z)|U or EX|=,L)= EX|Z)|L.
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Proof. This is a similar proof to that of Theorem 4.5. Let

X* = E(X|2), Y = E(X|Z,U) and Y, = X*|U. We are going to

show PU(Y >a>Y_) =0 for each real a. The first inequality will

1 2)
then follow. Similarly for the second inequality. The relation

. B -1
between P and PU is that dPU-P(U) lUdP.

By (4.11) and (4. 12), we have

g Y dP__ < S XdP
1 U - U
> >
[Y1>a Yz] [Y1>a YZ]
- -1 (
= P(U) 5 : XdP
[Y,>a>Y,]
-1
= P(U) S XdP
[Y1>a]m[X*< a]
< P(U)-IS X*dP
[Y1>0]m[x*< a]
= Y.dP
§ APy
[Y1>a>Y2]
for each real a, because {w:Yl(w)>a}e T and
> <L = . 3 -
[Y1 a] ~ [X*<a] [Y1>G>Y2] Since Y2 Y1<0 on
>a>Y_], >a> = 0.
[Y,>a Yz] P (Y,>a>Y ) =0

Suppose Y1 =Y2. Then

E(X|Z) =Xx*1_+X*1 <EX|Z,U)l_+EX|Z, U091 .
u Uc - U Uc
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Applying E to both sides of the inequality, by the monotonicity of

E we have

EX < E{(E(X|=,U)1_} + E(EX]|=, U1 }
- U UC

E(XlU) + E(XIUC)

EX.

It follows that E(X|=Z) = E(X|=Z,U)l.. + E(X|=, U1 o

U U

Corollary 4.15.1. Let Ue =, L ¢ =° such that

P(U)P(U)P(L)P(L®) >0 and let¢ X >0. Then

E(X1_|Z) = E(X|=,U)1

<
- _E(X|Z))1U

18)

and

E(X1_ |2 = E(X|=, L)1 _>_E(X|Z))1L.

L | L

Proof. It is trivial that E(X1,[Z,U%) = 0. Let

Y = E(XlUl ). Then

EX] =§XdP<§YdP<SYdP=EY
U g Ty T

Since E(X1 ) =EY and Y >0, Y|U =0, ie., E(XIUIZ)IUC=

By Theorem 4. 15,

EX1 |2 = EX[z, 01, .
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The monotonicity implies that E(X1U| =) < E(X|Z). The first

statement will then follow. Similarly we have the second statement. ﬂ

Corollary 4.15.2. If X >a on U foraset Ue€ Z, then

E(X|Z)>a on U. If X<P on L foraset Le=°, then

E(X|Z)<B on L.

Proof. If X | U > a, then by the monotonicity we have
E(X|Z},U)2 a. From Corollary 4.15.1, we have
E(X|Z)|U>E(X|Z,U). Therefore, E(X|Z)|[U >a. Similarly for

the second statement. []

IV.5 On a Linearly Ordered og-Lattice

Let Y be a random variable. The o-lattice Z(Y) induced
by Y is linearly ordered. Let X be a random variable and let
X% = E(X|Z)(Y)). Since X* is Z(Y)-measurable, X* if F(Y)-
measurable. It has been shown that an F(Y)-measurable random
variable is a function of Y, 1i.e., there is an extended real-valued
function f defined on the extended real line such that X* = feY

(cf. Ash (1972)).

Theorem 4. 16. Let E(X|Z(Y))=f°Y. Then f is monotone

increasing on the range of Y.
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Proof. Let w, and w, in £ such that Y(wl)<Y(w2).

Since X* ¢ R(Z(Y)), [x*zx*(wl)] € (Y). Upper sets in X(Y) are
either [Y > a] or [Y > a] for each a. It follows that

[Y > Y(wl)] is the smallest element in Z(Y) which contains W, -

Since w, [X* Zx*(wl)], [x*zx*(wl)] Oly ZY(wl)]. The element

w, is in [YZY(wl)], so wze[X*ZX*(wl)] and hence

X*(wz) > X*(wl)- In other words, f(Y(wz)) > f(Y(wl)) whenever

Y(wz) > Y(wl). This completes the proof. 0

Let = be a sub-o-lattice of F. Let a binary relation S—Z}

be defined on the linear space of random variables by X S‘E Y if

S‘ XdP < S‘ YdP for each U e Z.
U U

The binary relation gz is a quasi-ordering. For each X we

have X ﬁz E(X| Z) provided that X e Ll- If the o-field generated

by X is F, then <_2 is a partial ordering.

Theorem 4.17. Let X be a linearly ordered sub-o-lattice

of F and let Zl and 22 be two sub-o-lattices of 2 such

that X, C 22. For each X ¢ Ll, we have

EX|Z) S_ZE(E(Xlzz)Izl) <s E(X|Z,)
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Proof. Let Y,l=E(X|Z)i), i=1,2, andlet Y_ =E(Y, |Z,).

0 2' 1

Suppose it is not true that Y, SZYO' Then there exists a U such

S YldP > S‘ YOdP

U U

that

Let a-= inf{Yl(w):w € Ul andlet A= [X1 >a] and B =[Y, >al].

1

By the linear ordering property of X, we have A ) U D B. For

each C € Z)l mF(Yl),

5 Y dP = S XdP < § Y,dP < 5 Y dP

C C C C

In particular for C is A or B. Therefore,

and hence P(UA[Y,< a]) >0. By the linear property of X again,

0
[YO >a] C U. It follows that
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<.Y,.. Bya

This contradicts that S‘ YldP < S‘ YOdP- Thus Y = ¥,

A A 1

similar argument, we have Yo <5 Y, [l

A sequence {Xn, Zn} is said to be a submartingale with

respect to SZ: if {Zn} is a monotone increasing sequence of o -

lattices, Xn is Zn-measurable for each n and

X <
n =

= _ e ) .
= E(Xn+k| n) for each non-negative integer k. The following

corollary is an immediate result of Theorem 4. 17.

Corollary 4.17.1. Let X belinearly ordered and let {Zn}

be a monotone increasing sequence of sub-o-lattices of . For each
X e Ll, the sequence {Xn, Zn} is a submartingale with respect to

<5 where X = E(X|Z ) for each n.
- n n

By a similar argument in the proof of Theorem 4.17, one may

obtain the following result.

Corollary 4.17.2. If X is linearly ordered and X ¢ Ll,

then E(XI Z) is a minimal element in the class {Z ¢ Ll(Z):X <.z}

=

with respect to SZ'

Corollary 4.17.3. Under the same assumptions as in Corollary

4.17.1, if X <_X for some n, then X = E(X|Z) for each
Z n ntk

positive integer k.
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Proof. Apply Corollary 4.17.2 and Theorem 4.17. []

Theorem 4. 18. Let Z be a linearly ordered sub-o-lattice of

F, let Zl be a sub-o-lattice of X and let X ¢ LI(Z). Then

E(X|Zl)=E(X|F1) where F1 is the o-field generated by Zl-

Proof. Let X*=E(X|Zl). Then X <, X#* Buton the
1

other hand X = E(X|Z) and Z D Zl- By Theorem 4. 17,

X* < X. Therefore E(X-X*)IU =0 for each Ue€e X and hence

Zl 1

X% = E(X|F1). ]

Corollary 4.18.1. ILet Z be alinearly ordered sub-o-lattice

of F and let {Zn} be a monotone increasing sequence of sub-o-
lattices of 2. For each X € LI(E), the sequence {Xn,Zn} is

a martingale where Xn = E(X| Zn).

Proof. It is obvious that {E(XI Fn), Fn} is a martingale
where Fn is the o-field generated by En for each n. By
Theorem 4.18, E(X| Fn) = E(X|Zn) for each n. It follows that

EX . |2)=EEX|5  )]2)=EEX|F_)Z)=EX|Z)=X_.

ntk ntk

This completes the proof. D
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V. MULTIVARIATE ISOTONIC REGRESSION

V.1 Introduction

Let &£ Dbe afinite set and let H be the linear space of
vector-valued functions Y:® — R for a fixed positive integer m.
For convenience, let £ ={1,2,...,n} and for each je Q let
Y(j) be the function value of Y at j which is an m-component
column vector. The function Y in this case isan m xn matrix
(yij). For each i, we denote the n-component row vector
(Yil’in’ e Yin) by Yi' Therefore, Y,1 is a function from &
to R, i=1,...,m. For each i, let -<-i be a quasi-ordering defined
on £ and let M.1 be the family of real-valued isotonic functions
vﬁth respect to the ordering _<_i. Let M bedefinedby Y e M
if Yi € Mi for each i=1,...,m. The minimization problem we

are interested in is to minimize

(5.1) £(Z) = Z);lzle(X(j)-Z(j))tV(X(j)—Z(j))

subjectto Z € M where X is a given m xn matrix, V is a

given m x m positive definite matrix and w. ,w_,...,w_ are

1" 2 n

positive real numbers.

Let us define a bilinear functional (-, ‘) on H by
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nW
j=1"]

(v,2) = =% w.y()vz()

for each Y and Z in H. Then the bilinear functional (-,:)

is an inner product and the linear space H with (-,-) is a
Hilbert space. Since M.1 is finitely generated as described in
Chapter IIl for i=1,...,m, sois M and hence M is a closed
convex cone in H. Existence and uniqueness of the optimal solution

to (5.1) follow from Theorem 2.1. Such an optimal solution is called

the multivariate isotonic regression of X and is denoted by P(XlM).

For convenience, we denote P(Xil Mi) as the isotonic regression of
X, i=1...,m, ie., PX|M) minimizes Z,
subject to Zi € Mi.
A necessary and sufficient condition for an m xn matrix X?%*
to be the multivariate isotonic regression of X is given by Theorem
2.7. Let J'i be an m xn matrix such that each entry at the ith
row has value one with zeros elsewhere, i=1,...,m. Then Ji

and -J' arein M, i=1,...,m. If X*=P(X|M), then by (2.1l

we have

>3 (X(3)-X>*(j))

. w,
=1

The matrix V is positive definite. Solving the above equations,

we shall obtain
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n n %

(5.2) L W.X.. = D W.X,. i=1,...,m
j=1 i j=1 7
If V is adiagonal matrix, i.e., vis =0 if i#j, then
(5.1) can be written as
_<h m 2
fZ) = 2y wi B vy (5m2y)
2
=z v, {Z7 -z,.) w.}

Therefore, P(XIM)_1=P(X,1|M_1) for i=1,...,m. If V isnota

diagonal matrix, the minimization problem could be very complicated.

In this thesis, we shall treat m =2 and W S W, T W S 1.
2
A 2 x 2 positive matrix V can be represented by Vi1 TV
= 2 d = = h d a i
Vop TV, and v, Fv,, = -pv,v, where v, and v, areposi
tive and -1 < p < 1. The objective function is

n 2 2 2
j=lzi=1{vi(x"'z") -pv vy (x .-z .)(xzj-zzj)}-

f =2
(z) ij ij 213 1j

Let Y bethe 2 xn matrix such that Y.1 = ViXi’ i=1,2 and
let Y* be the multivariate isotonic regressionof Y with respect

to the positive definite matrix T such that t11 = t22 =1 and

1

t, =t =-p. Let X* bedefinedby X =v, Y, i=12 Then

12 21

X* is the multivariate isotonic regression of X with respect to

the positive definite matrix V. Without loss of generality, we may
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assume that v, = v, = 1.

Let X* be the multivariate isotonic regression of X. If

M, is the family of constant functions, i.e., the quasi-ordering SZ

is such that j <, k and k <_2j for each j and k Dbetween one
5k - - _ n

and n, then by (5.2) we have X2 = x2 where x2 = zj=1X2j /n.

For each Z such that Z2 = §2, we have

_ - 2 2. .n
£(Z) = z._1{[x1j-p(x2j-x2)]-zlj} + (1-p )zj

It follows that X, = P(Xl-p(Xz-xz)lMl).
Let M2 be the family of all functions, i.e., the quasi-
ordering 5_2 is such that neither j <,k nor k <, j for each

j and k between one and n with j # k. Let U bea 2xn
matrix such that the (2,j) entry has value one with zeros elsewhere.

Then UJ and -UJ arein M for i

=1,...,n. By (2.11), we
have p(x1 -xlj) = Xpi " %y =1,...,n. For each Z such that
p(le-zlj) = x2J - sz’ j=1,...,n, we have
2 2
£(Z) = (1-p)Z,_, (x..-2z..)
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V.2 Bivariate Isotonic Regression

Let H be the linear space of 2 xn matrices, let M be

the family of matrices such that Z e M if 2z for i=1,2

<
ij = %ij+1
and for j=1,...,n-1. The problem in the remainder of the chapter

is to minimize

(5.3) gz) = =* 2% |

2
je1 11108y m3gy) Py ) gy 2]

1j

subject to Z € M where X 1is a given 2xn matrixand p is
a given real number, -1 < p < 1. The optimal solution to the prob-

lem is called the bivariate isotonic regression of x with respect to

p and is denoted by P(X|M,p).

Let M, := {Z:Z1 € Ml,—Z

d € MZ}, i.e., ZeM, if the

2 id

first row of Z 1is monotone increasing and the second row of Z

is monotone decreasing. Let Y be such that Y1 = X1 and

Y, = -X,, let Y* = P(Y|M, -p) and let X* be defined by

[\

X1 = Y1 and X2 = -YZ. Then X% = P(X|Mid’ p). Similarly for
the situations Mdi and Mdd’ where
Mdi = {Z: -z1 € Ml,z2 € MZ} and Mdd = {Z: -z1 € Ml, -z2 € MZ}.

The sign of p will play the most important role in analyzing the
properties of P(X| M, p) as we shall soon see. Therefore

P(X|M, p), P(X|Mid,-p), P(XlMdi,-p) and P(X|M ) will have

aa’ P

the same properties.
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Let lij be the 2 xn matrix such that the jth,...,nth
entries at the ith row have values one with zeros elsewhere,

i=1,2, j=1,2,...,n. The set {lij:i=1,2,j=1,2,--.,n} is lin-

early independent, and the family M is the cone generated by the

set such that Z ¢ M if and only if Z = =% 2" 1. with

i=1 j=1"1ij ij
B.. >0 if j>1. Let X*-= 2.2 1.‘1_ a.l,. with oX >0 if j> 1L
ij — i=1 j=1 1ij71ij ij —

Theorem 2. 12 and Theorem 2. 13 show that X* = P(X|M,p) if and

only if X* satisfies

.4 o - n - l = ) )
(5. 4) Eh=j(xlh P, ) Eh:_](xlh P, ) j =1 n
n n x sk _
zth(XZh'pxlh) Eh=j(x2h Priy) 3 Le.eun
n _ah o 3 <
(5.5) zh:j(xlh prh) Z)h:J(xlh prh) if alj >0
n n % % b3
- = - >
Ty oo PR ) T FyaRopexyy) ey >0

and (5.2), i.e., =% x. =3P &« i=1,2.

Theorem 5.1. If p >0 and X. - pX is monotone

+ p(X2 —XZ) where

k

increasing then X, = P(X,|M,) and x;‘=xl

P(X|M,p). Similarly if we interchange indices 1 and 2.

\
X

Proof. Let Y bedefined by Y =P(X2|M2) and

2

Y. =X_ +p(Y

] ) Z-XZ)._ We are going to show that Y = P(X|M,p). By



the assumption that X, - pX

1 is monotone increasing and p >0,

2

we have Y ¢ M. Note that X1 - pX2 = Y1 - pYZ. Therefore Y

n n

=z i -
j=1y2j j=1x2j and it fol

satisfies (5.4) and (5.5). By (4.2), Z

n

j=1x1j' This completes the proof. []

n —_
lows that Zj:lylj =2

Theorem 5.2. Let p < 0. If X1 - sz is monotone

= P(X2|M2) and

increasing and P(X2 |M2) is constant, then X,

p © Xy T eXyeX,)

change indices 1 and 2. If P(X1|M1) and P(X2|M2) are

X where X* = P(X|M,p). Similarly if we inter-

constant, then XI‘ = P(Xi|Mi), i=1,2.

Proof. The first statement is similar to Theorem 5.1 except

, <
that we need P(X2|M2) be constant to ensure that X_. + p(X,, -

1 2 XZ)’

is isotonic. Let us consider the second statement. Let P(X1 |M1)

and P(XZIMZ) be constant with value Yy and Yy, respectively.
n n
= p < (m-jt =1,
Then Y; Zk=1xij/n and k=jxij < (n-j 1)\/.l for i=1,2 and for
j=1l....,n. Let Y=\/1111 +y2121. By the assumption p <0,

Y satisfies (5.2), (5.4) and (5.5). Therefore Y = P(X|M,p). f

The average property which plays the most important role in
the isotonic regression and its algorithms, is the one we are inter-

ested in. Let X* be the bivariate isotonic regression and let
x* ] % % .
xij < xij+1 and Xk < Xietl for some j and k with j <k,

i=1,2. By (5.5) and (5.2), we have



e e
-*~ -*~

} . .

he1 X nPEon) T Boq (xpymexgy)

Zj (x,, -px,,) = Zj (x* -px* )

h=1"%2n"P*1n h=1"%2n"P*1n

k _ k 3 s
=41 %10 P2 = Fyoja pnP%oy)

k _ k sk sk
Zh=i41%on TPE1n) = Ppajen Ko PR )
=P (ko -px, ) = ER_ (xl -px.
h=k+1'*1h P*2n h=k+1'*1h P*2n

and

n n
Zp+12n " PEy

The first two equations show that

the next two equations show that

k k

Zp=j+1%h ~ Zh=j+15h "’

and the last two equations show that

n _ 4h ¥
2ok +1%h - Phekr15in’

sle sle sk

* oK
xlj x1j+1 and x

E

<
If 1k  “1k+1

) = B

* x

(

kt+1

i.: 1,2,

i=1,2,

i=1,2.

for a pair of

j < k, then by (5.5) and (5.2) we have

)

Xon PX 1)

and k with

127
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-, oo

j _ _ 3 3k _ 3k
o1 Py 2{'1=l(x1h PX,p)

k k * *
2y i+1F1nPEan) T Phoien B PR
and
n _wn * 3%
2 k1 En P%on) T T Ry exgy)

Similarly if we interchange indices 1 and 2.

Theorem 5.3. If p>0 and VX <VY, then

P(X|M,p) < P(Y|M,p).

Proof. Let Ulk be the 2 x n matrix such that the (1,k)
entry has value one, the (2,k) entry has value p with zeros else-

21’U22:"°:U2n- We

where, k =1,...,n. Similarly for the U
shall show P(X+6Uij|M,p) >P(X|M,p) for any 6§ >0 and for each
i and j. Since Y -X can be represented as a non-negative lin-
ear combination of Uij, i=1,2;j=1,...,n, it will then follow
P(X|M,p) < P(Y|M.,p).

Let X*=P(X|M,p) andlet Y*=P(X+U|M,p) where
U = 6U for a fixed positive real number 6. Then by (2. 3)

(X+U-Y*, Y#-X%) >0

and

(X -X%, Y#-X*) < 0.

The difference of the above two inequalities is
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(U-Y*+X%, Y#-X%) >0

and hence

(U, YH-X*) > (Y*-X*, Y#-X*)

The left-hand side of the above inequality is 5(1-p2)(y'1pk- x:k) and

sk > 3k .
hence Y1k 2 %1k

It is trivial that
2 2
Ix+u-z[|° = [ x-2||" + g(2)
h = 26(1-p2 +6/2). Si s T

where g(Z) = 28(1-p )(xlk-z1k ). Since Yik 2 %1’

g(X*A Y*) = g(X*) where the (i,j) entryof X% A Y* has the

e e
3k sk

value x,. A Yij'

By a similar argument as in (4.7), we have

(X+U-Y*, Y*-X*) > (X+U-Y*, Y*-X*A Y¥).

Since
3 ale 2 -— n se f o e f * t e f & s f &
Fys-X[™ = =) (7(G)-X*(1)V (Y #() -X%())
n %) * 2 sk * 2
- ) N )
Z= gy ey T g7y

2 ES sk 3k ES

and

(Y*(j)-X >"‘(j))tV(Y*(j) -X#(5)) > (Y*(5)-X*(G) A Y*(j))tV(Y*(j)-X*(j)AY*(j )

j=1l,...,n provided that p >0, we have

|ly>k_x>.'<||2 > || Yx-X* A Y>:<||2. Therefore,
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|3+0-3% % = [|x00-v5 2 + [ wr-x0 24 20040- 7%, vrox3)
> || X+U-Y* 2, | Y#-X*nA Y 2
+ 2(X+U-Y*, Y#-X*A Y*)
12
= [ x+U-X* A Y¥|
and it follows
||x-x=:<||2 - | x+u-x*| ° - g(X*)

> Ixcvu-xoep v % - g p ¥

1

2
| X-x% A V| ©.

By the fact that || X-X*| < ||X-Z|| foreach Ze¢M and Z = X%
if the equality holds, we have X* A Y* = X* and hence X* < Y*.

This completes the proof. []

Corollary 5.3.1. If p>0 and a < VX <b, then

via <_P(x|M,p)<_v'1b where a and b are 2x1 column

vectors.

An upper bound and a lower bound of P(X|M,p) for p >0

can be determined by the above corollary. Let Y and Z be

2xk and 2x(n-k) matrices defined by Y(j) = X(j), j=1,...,k
and Z(j) = X(k+j), j=1,...,n-k respectively. Let

2
M :={U eR Xk:u.<u »1=1,2, j=1,...,k-1} for each

k ij = Yij+1
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positive integer k. If there existsa 2 x 1 wvector ¢ such that
P(YIMk,p) <c and P(Xan_k,p) >c, thenby (5.2), (5.4) and
(5.5), P(X|M,p) can be obtained by considering the first k com-
ponents and the last n-k components independently for each p
between -1 and 1. From (2.2) P(X|-M,p)= -P(-X|M,p), so
if p>0 and a<VX<b then V 'a<P(X|-Mp)<V 'b. But
it is not true in general that X >0 implies P(X|M,p) >0 for

p>0.

Theorem 5.4. If p<0 and a <X <b, then

a <P(X|M,p) <b where a and b are 2x1 vectors.

Proof. We shall show that if X >0 then P(X|M,p) >0 and
P(X|-M,p) >0. It will then follow that X >c implies
P(X-c|M,p) >0 and P(X-c|-M,p) >0 and hence P(X|M,p)>c
and P(X|-M,p) >c. By the identity P(X|M,p) = -P(-X|-M,p), if
X <b, then -X>-b andhence -P(X|M,p)=P(-X|-M,p) > -b.
Therefore, if a <X <b then a < P(X|M,p) <b provided that
p<O.

Lee a and B be non-negative real numbers and let x and

y be real numbers. If x <0, then



(a-x)% + (B-y)? - 2p(a-x)(B-y) = (1-p2)(a-x)% + (B-y-aptpx)?

> (1-p%)a? + (B-y-aptpx)’

2, 2 2, 22
= (1-p7)a” + (B-ytpx) +p a

- 2pa(B-ytpx)
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= % + (B-y+px)® - 2pa(B-y+px).

If also y - px < 0, then

a® + (B-y+px)? - 2pa(B-ytpx) > a® + % - 2pap

Therefore

(a-x, B-y)V(a-x, B-y)* > (a, B-(y-px)vO)V(a, B-(y-px)y 0)° .
Similarly, if y < 0 then

(a-x, B-y)V(a-x, B-y)* > (a-(x-py)y0, B)V(a-(x-pY¥)v0, B)° .

Let Ze¢M andlet k be the largest index between 1
n such that Z(k) 1is not non-negative. Let Y be defined by

Y(j) = Z(j) for each j >k and

<
ot
1

- i >
{(zlj pzzj)vO if zlk_O

0 if =z <0

0 if z,. >0

(z .-sz)vo if z. <0

and
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for j=1,...,k. Itistrivialthat Y >0 and Y ¢ M.

If z1k<0, then z1j<0 for j=1,...,k. By the

inequality described above, if X >0 then

XG)-2G)VEG) -2G)) > (2G)-YG)IVIXG)-Y ()

j=1,...,n. Therefore ||X-Z| >|x-Y]|. 1f z), 20, then

Zo < 0 and similarly | X-Z I > |z-Y|. It follows that

P(X|M,p) >0. By a symmetric argument in the sense of reversal we

have P(X|-M,p) >0. []

.5. >0, >
Theorem 5.5. If p >0 X -1 2 X1k and
* *
- > - = * = s P
Xy -1 xlk—p(XZk-l ka) then X~ k-1 where X P(XIM P)

Similarly if we interchange indices 1 and 2.

ES sk

. i , L.e., > .
Proof. Suppose it were not true, i.e X~ k-1 From

(5.4) and (5.5), we have

n n Sk sk
= (x h=k-1¥1;7P¥2;)

h=k-1%1j7P¥p;) 2

1j

b b

n _wn o
Zh=c®157PRy) = By (%57

j
and
B0 ) < ZP . (xr.-pxa) if K+l <
h=k+1715 P¥25) = “h=i+1'¥157P¥25) ! =
Theref <x * nd
erefore ko1 T P¥2i-1 ¥kl T P¥opa 2

ok ok

- > -px. .
1k P2k = * 1 Pk
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b 5%
Consider the case ka = ka-l' We have
X - px >x. - pxq\
1k 2k — 1k 2k
S 5% ES
1k-1 " P¥ar1
>x

- > - ) i i -
and hence p(x2k_1 ka) xlk-l x1k This contradicts the assump
i - > - .
tion that X1~ K1 2 p(ka__1 ka)
5k %
i i > .
Consider the alternative ka ka-l Then we have
< £ * d > * *
Xok-1 T PFia1 SFop1 T PRy 3G Fp TPE I F T PR
Sk Sk
. _ < _
Since  x), 1 = Pxy L SX g " PEy  and
- > * - , i
Xk prk 2% prk it follows that

VX(k-1) < VX*(k-1) and VX*(k) < VX(k)

Sk b3

If p>0, the index (l,k) or (2,k) with k >1 satisfying
both inequalities described in the above theorem is said to be pivotal.
An algorithm based on the pivotal indices will be given in the next

section.

Theorem 5.6. If p<0 and x )

- > -
-1~ X1 2 POp 1%

b3 b
then X T X1 where X* = P(X|M,p). Similarly if we
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interchange indices 1 and 2.

Proof. By the same argument as in the proof of Theorem 5.5,
. sk S 3K ’ _ . < K _ K
if Xk~ Xlk-1 then we have X o1l " PXo 1 SE¥ly T PXp

ES b3

- > - .
and x prk'—xlk prk

Therefore,
) > 3k _ 3k
1k - Pk =¥k T P¥ox

> -
lk-1 P

X

KN
>

X2k -1

> -
Z X k-1 " P%oka1

) >x - x.. . This contradicts the assump-

and hence p( 1k-1 1k

Xok-1"

tion-l]

If p <0, the index (l,k) or (2,k) with k >1 satisfying
the inequality described in the above theorem is said to be pivotal.

or x >x%x.., then at least one of

> . >
Let p20. If x,, ;2% 2k-1 = %2k

. . . . : > > B
(1, k) and (2,k) is pivotal. But if X o1 2 ® 1k and X o -1 = X2k

it is not necessary that both (1,k) and (2,k) are pivotal. There-

fore, whenever there is a violation, i.e., x, > X, there is a

ik-1 ik’

i . < 0. > > s i
pivotal element. Let p < 0. If Xlk-1=2%1k ©°F ¥op_1 2% it

is not necessary that (l,k) or (2,k) is pivotal. But is

x > x and then both (l1,k) and (2,k) are

>
1k-1< "1k Xok-1= %2k’

pivotal. In some cases, we may have violations but there is no

pivotal element.
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V.3 Simplified Projection

The bivariate isotonic regression of X 1is the generalized
projection of X to the closed convex cone M. By Theorem 2.13,
P(X|M,p) can be obtained as the projection to a linear space which
is generated by a subset of {lij: i=1,2; j=1,...,n}. Therefore,
how to obtain the projection to such a linear space in our present

structure is our primary work.

Let I be a subindex set of {(i,j)ti=1,25 j=1,...,n}, let

I‘_1 ={j:(i,j) e T}, i=1,2 and let SI‘ be the linear space generated

by {l.lj:(i,j)e r}, i.e.,

S_={Yy:Yy=23. B

r i €I“1 51_] real}.

1.+ 1.,
1j 1j zjel“zﬁZj 2j

For convenience, in the following three paragraphs we denote

X=(X ’XZ) as a 2n-component row vector and similarly for Y, Z

1

and lij's- Let T bea 2nx2n positive definite matrix which is

the tensor productof V and I, i.e., t,,=1, t. ,.= -p,
n ii inti

tlj:tin-}-jzo for 1,J=1,...,n with J#l and t e )

for i,j=1,...,n with j ¥ i.

t . . 1 . . = .
nti, n+i ’ 1:n+1,n+_] 1:n+1,_]

Let Fl have p elements, Pz have q elements and let A

be the (p+q) x 2n matrix which is composed of lij’ (i,j) € I', such

that the first p rowsare 1_. ,1 . ,...,1_ . with
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jl<j2<...<jp and the last q rows are IZk,IZk,...,l

. ) 2k,

with kl < kZ <... < kq- Every row vector Y in Sl" is of the

form Y = UA where U is a ptq-component row vector.

Let us define an inner product by
t
(X,2) = XTZ

for each pair of row vectors X and Z. The quantity

||x-z||2 = (X-Z,X-Z) isthe same as f(Z) in (5.3). The projec-
tion of X to the linear space Sl" is the product of X and the

2n x 2n matrix P where P = TAt(ATAt)-lA. To verify the above
result, we shall show (X-XP,Y)=0 for each Y ¢ Sl'" Let U be
the p*tq row vector such that UA = Y. It is trivial that the matrix

A has rank ptq and ATAt is invertible. Therefore

(X-XP, Y) = (X-XP)TY"
= xTatut - xratiaTal) laratyt
= xTAtut - xTalut

= 0.

The (ptq) x 2n matrix A can be written as
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where C1 isa pxn matrix with rank p and C2 isa gxn

matrix with rank q. The (ptq) x (ptq) matrix ATAlc is

t t
C,C; -pC.C,

t t
PCC GG,

ATAY =

Let U1 and U2 be p-component and q-component row vectors

respectively suth that

[v, u,]= xtafatal) L.

Then [UC; U,C,]=XP. Since [U, U,JATA" = XTA®, we have

7

I -pc.c!t (C ct)'1 0
(v, U] el ltz -xratf 1
-pC,C,(C C) C,C, 0 I
and
I 0
(U, U]
1 2 t t. -1 t 2 t t,. -1 t
pC,C (C, G ¢,C,-p°C,cl(c chH e cf
c.chHt o 1 pC.Ct
— 1°1 P 172
0 I 0 I
q q
1 -
. . (clcf) (clcllc) 1clc;
= [(xl-pxz)c1 (xz-pxl)czl
0 I
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t 2 t t t
. - = - + -
(5.6) UZ(CZC2 P CZBICZ) (X2 le)C2 p(X1 sz)BIC2
and
t t. -1 _ t t, -1
U1 - pUZCZCI(Clcl) = (Xl—pXZ)Cl(CICI) .
It follows that
(5.7) (XP)2 = UZCZ
and
(5. 8) (XP)1 = (Xl-pX2+p(XP)2)B1
Similarly if we interchange indices 1 and 2.
Let ]._\1:{]1’_]2300-’Jp} and let Yz(yl’yz’...’yn) bea
t_ _ sn
row vector. Then YC1 = (al, BN ap) such that @ Zh:jkyh,
k=1,...,p, and YB1 = ([31, N [3n) such that
B—zjk“-l /G j, ), k=0,1 +1  wh i, <j<j
i e TR e T PDeroPTE o wWhere )y S0 gy
jop=1 and jp+1 = ntl. Similarly if we interchange indices 1
and 2.
Suppose k € l"1 ~ l"2 and k >1. Let us define
s, ={v:vy=2% = _ B .(1.-1,), B. real
1 i=17j el Tij i ik i
j <k
and
S, ={Y:Y = ZZ} B..1.., PB.. real}.
2 i=1 jel“i ij ij ij

jzk
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+ = .
Then S1 and S2 are orthogonal and S1 S2 SI‘ It follows

that

(5.9) P(XISr,p) =P(X|Sl,p)+P(X|SZ,p).

In other words, P(XISI,, p) can be obtained by considering the first
k-1 components and the last n-k+l components independently.

Suppose I‘2 ={1} and 1 I‘l- Then C2 is a row vector

. . t_ .t t _

with each entry having value one, B1C2 = CZ’ CZCZ n and U2

is 2 real number. Thus (5.6) is an = Zfl_ x.,. and X* = aC,,
=1 2j 2 2

. sk _ b _ _ b3 _ n

l.e., X531 " Xop T 0 n- xZn zj=1x2j /n.

3k
Let X = 2.2_ 2{1_ a.l, ., * = 2.2_ I.l_ a,.1.., and let
i=l j=1 1ij 1ij i=1 j=1 ij7ij

A={(i,j):ai;.>0}u{(1,1),(2,1)} where X*=P(X|M,p). Theorem

5.5 shows that if p >0, alkgo and a <

1k S P for some k > 1,

L,

then °;k =0, (1,k) ¢ A and (1,k) is pivotal. Similarly if we

interchange indices 1 and 2. Whenever X ¢ M, there is at

least one pivotal element. Theorem 5.6 shows that if p < 0 and

b3

for some k >1, then a, =0, (1,k) # A and (1,k)

<
Yk T P%y 1k

is pivotal. Similarly if we interchange indices 1 and 2. If
X # M, we may or may not have pivotal elements.
Let AO be the collection of all non-pivotal elements. Then

A° D A. Since P(X|M,p) = P(XISA,p) as indicated in Theorem

2.13 and (5.2), by the smoothing property we have
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1
P(X|M,p) = P(P(XISAO,p)|SA, p). Let X

Xl € M, then by Theorem 2.8 and Theorem 2.11 we have

X1 = P(X|M,p). Otherwise, write X1 = Eiz‘lz_?:lailjlij and let A1

= P(X[S 50, p). If

be the set of non-pivotal elements in A with respect to Xl. Since
P(XIIMA,p) = X*, A° D Al JOA. If p >0, then A° 4 Al
Applying the above procedure inductively, we shall terminate at a
positive integer k such that Xk €M and Xk = X*. The projec-
tion P(XhISAh, p) for h=0,1,...,k-1 can be obtained by (5. 6),
(5.7), (5.8) and (5.9). Such an algorithm for p >0 is called the

Simplified Projection (cf. Appendix V).

The monotone decreasing sequence {Ah} can be replaced by
. h h h
a monotone decreasing sequence {T"} suchthat " ) A . The
h

purpose for the presence of T is that we may use (5.9) more
efficiently and hence the order of the simultaneous linear equations
(5.6) can be reduced significantly. Such a device may be helpful when
we use desk calculators.

If p <0, wemaypossibly obtain the bivariate isotonic
regression of X by the Simplified Projection algorithm. However,
. . k k-1 _ ,k
if there exists an k suchthat X ¢M and A = A7, then the
Simplified Projection algorithm will fail to yield the bivariate iso-
tonic regression of X. At this stage, we may choose any one of the

2
2 xn matrices X,Xl,X ,---,Xk as our given data. For each h
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. h .
between one and k, the problem of obtaining P(X |MAh’ p) is
the same problem of obtaining P(X|M,p) for

h

Example 5.1. The data X given below is a portion of that

from Bhattacharyya and Kotz (1966).

25 13 2 15 14 21

57 36 77 89 76 62

Let p = -0.1. By Theorem 5.6, the set of non-pivotal indices AO

is {(1’ 1)’ (1’4)’(1’6)’ (2’ 1): (2’ 3)’ (2’ 4)}- Since 4 ¢ A(].) m A(Z) Where

A? = {j: (i, j) « AO}, we may consider the first three elements and the
last three elements independently as shown in (5.9). Let

= {(i,j): (i, §) € Ao,j<_ 3}. Then r, = {1} and 1 r,. So

1 1 _ 1 _ _
X117 X)p T %[5 T (25+13+2)/3 = 13.333.

X, - le + p(XP)2 = (58.167,35.967,75.867) for the first three ele-

2

ments. By (5. 8) we take the average for the first two elements of

+ p(XP) and the first three elements of X1 are

X, - pX >

2 1

13.333 13.333 13.333

47.067 47.067 75.867

Similarly, we have the last three elements of Xl. Therefore
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13.333 13.333 13.333 15.183 15.183 19.633

47.067 47.067 775.867 15.667 715.667 775.667

At this stage, A1 is {(1,1),(1,4),(1,6),(2,1),(2,3)} and the

equation (5.6) is

5.94 3.96 [31 393.03
3.96 3.9667 [32 300.03
The solution to the above linear equations is . = 47.066 and

1
[32 = 28.651. By (5.7) and (5.8), we have

13.338 13.338 13.338 15.178 15.178 19.628

47.066 47.066 75.717 75.717 75.717 715.717

where X2=P(X1|SA1,p)- Since XZGM, X2 is P(XlM,p)

because

P(X|M,p) = P(X|M,1,p) = P(P(P(X[S 40, P)[S 41, P)[M , 1, p)

1 2 2
PP(X|s,1,p) M, 1,p) = P(X"|M ,1,p) = X"

The projection P(X1 | MAI’ p) is X2 » but generally
1 . 2 . 1
P(X |M,p) isnot X~ . Consider X . We have
13.333

X7(1) =X (2) = <X'(§) j=3.,4,5,6.
47.067
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By Theorem 5.4, P(XIIM, p) can be obtained by considering the
first two elements of X1 and the last four elements of X1 inde -
pendently. Consider the last four elements of Xl. By the Pool-
Adjacent-Violators algorithm, we have P(X;'MZ) is the constant

1 1
75.717. The 4-component row vector X1 - pX2 is monotone

1
increasing. By Theorem 5. 2, Y2 = P(X2|M2) and
1 1
Y1 = X1 + p(YZ—YZ) where Y = P(XIIM, p). Therefore,

! 13.333 13.333 13.348 15.178 15.178 19.628
P(X |M,p) =
47.067 47.067 75.717 75.717 75.717 15.717

L 3

V.4 Approximation

Let X beagiven 2xn matrix and let X* = P(X|M, p).
The process introduced here is that we may obtain a region A(j)
such that X*(j) € A(j), j=1,...,n by the Pool-Adjacent-
Violators algorithm. But the process can be only applied to the case
p20.

Let a = mm{xlj —pxzj'.J =1,...,n},

a, = max{xlj—pxzj:_] =1,...,n}, B, = mln{xzj—pxljz_] =1,...,n},

=1,...,n} andlet 2xn matrices X, Y, T

B

> max{xzj -px

1;°)
and U be defined by
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(5.10) zlJ pzZj = 13 - pxZj
25 ~PZ1; 7 By
{tlj TPt T Y
t25 = Pty T Xp5 T PXy;
and
{ulj ] pqu - az
u,, - pu,. - xX,, - pPx,.
2j 1j 2j 2j

for j=1,...,n. By the structure, Z_ -pZ., Y -pY

2 ) » Ty-pT,

1

and U, -pU

1 are constant and hence monotone increasing. Theorem

2
5.1 shows that if p >0, then their bivariate isotonic regressions
Z%, Y*, T* and U* can be obtained by the Pool-Adjacent-Violators
algorithm.

For each j, VZ(j) < VX(j) < VY(j) and
VT(j) £ VX(j) < VU(j). If p >0, then by Theorem 5.3 we have
Zx(j) < X*(j) < Y*(3)
and

T*(j) < X*(j) < U*(j)

where X* is the bivariate isotonic regression of X. Therefore
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(5.11) Zx(j) v T*(j) < X*(j) < Y*(j) A UX(j).

When p =0, Theorem 5.1 shows that Z; = Yll\ = P(X1|M1),

z = - T = Ul = d T.=U=PX,|M). It
27 Pp Yo =P Ty=0p Up=o, and T, =1, = P(X,[M,).

follows that Z*(j)v T*(j) = Y*(j) AUX(j) for j=1,...,n. If p>0

and it is small enough, then the region A(j) determined by (5.11)
is small for each j =1,...,n. In such a situation, a good approxi-

mation can be obtained.

* *
. - < -
(5.3) shows that xln pxZn _xln pxZn and
* *
- < - . ini . . ’
Xon " PX L SX, -px Combining (5.2) and (5. 3), we have
>x, * and >x. ¥ . Theref
*11 T PXpy =%y T PXpy 3RS Xy T PX) 2%y, - PX);- Therefore,

no matter whether p >0 or p <0, VX(1)>VX*1) and

£ % n n *

VX(n) < VX*(n). For each i, x.. < x. and Z,_.x,. =%, .x,., it
= il —7in j=171j j=11ij
* _ * _ n
follows that x.,. < X, < x. where X, = Z, .x../n.
il ="i —="in i j=17"1j

Example 5.2. Let X bethe 2 x5 matrix given below and

let p=1/2.

Let X* be the bivariate isotonic regression of X. We would guess
that X*(1) = X(1). Consider the last four elements of X. If the
regions A(2), A(3), A(4) and A(5) determined by (5.11) for the

last four elements are such that a ¢ A(j) implies a > X(1),
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j=2,3,4,5, then our conjecture X*(1) = X(1) has been verified.
Let Z, Y, T and U bethe 2 x4 matrices defined by

(5.10) with respect to the last four components of X. They are

[ 0 0 2 12
Z=1/3
| -3 -3 -2 3
r
6 6 8 18
Y =1/3
9 9 10 15
3 6 4 0
T=1/3
3.9 5 -3 |
and F
15 18 16 12
U=1/3
5 15 11 3

Let Z*, Y*, T* and U* be the bivariate isotonic regressions of

X, Y, T and U respectively. Then Z*=2Z, Y* =Y,

(9 10 10 10 ]
T*=1/9
9 11 11 11

-~ -

and <
(45 46 46 46
U*x=1/9

27 29 29 29

-~ 7/

Therefore, A(2) = {(a, B 1<a<2, 1< B< 3,
A(3) = {(a, % 10/9 < a < 2,11/9 < B < 3},
A(4) = {(a,)%:10/9 < a < 8/3,11/9 < B < 29/9} and

MM=Umm54gag4w%1U9gﬁgzww.hﬁMwmma
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For the remaining four elements, we have VX3*(2) < VX(2).
In other words X*(2) < X(2). Since X*(2) e A(2) and X(2) <a
for each a € A(2), we have X%*(2) = X(2). In the remaining three

elements of X, Xl - pX is monotone increasing. By Theorem 5.1,

2
we can obtain the bivariate isotonic regression for the last three ele-

ments. Therefore,

1 1 3/2 2 9/2

0 1 2 2 2
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(Daily Maximum) Temperatures Measured (in Fahrenheit)
at Oregon State University in 1974

APPENDIX I

(cf. Section I.2)

152

i 1 2 3 4 5 6 7 8 9 10
March i 48° 48° 45° 44° 52° 48° 43° 44° 48° 56°
10+i 51° 55° 46° 47° 53° 68° 58° 56° 58° 60°
20+i 60° 65° 60° 57° 63° 62° 68° 52° 55° 61°
30+i 52°
April i 49° 53° 50° 52° 61° 55° 55° 62° 55° 46°
10+ 53° 51° 56° 65° 69° 56° 59° 63° 58° 55°
20+i 60° 65° 56° 54° 60° 61° 59° 59° 59° 70°
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APPENDIX II
Combined Explosive Rates
(cf. Section I.2)
r, explosive rate of ten samples dropped at the jth height.

r, =0.30, r_=0.20, r

1 5 3=O.70, r, =0.80 and r_ = 0.50.

4 5

Q(i,j) explosive rate if 10x|j-it1| samples were dropped at the
jth height which were dropped at heights between the ith
height and the jth height.

= - o= (r,+o 0t j-it i i < j.
q.lj 95 qj1 %; (r1 ?j)/(_] itl) if i<j

Table of qij’s (and Q(i,j)'s)

i | 1 2 3 4 5
j

height 1 0.30 0.25- 0.40- 0.50- 0.50-
2 0.25+ 0.20 0.45- 0.57- 0.55-
3 0.40+ 0.45+ 0.70 0.75- 0.67-
4 0.50+ 0.57+ 0.75+ 0.80 0 65-
5 0.50+ 0.55+ 0.67+ 0.65+ 0.50

Q(i, j) Zqij if i<j, Q(i,j) sqij otherwise.
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APPENDIX III
MLE of Variance Components

(cf. Section I.2)

= +a, + + ..+ . .:1,.-.,;.:1,...,;
yijk M a,1 bj Cl_] ele 1 r; j s

k=1,...,t where {ai}, {bj}, {Cij} and {eijk} are mutually
. . . . 2 2
independent sets of normal variates with variances A’ "B’ TAB

and (rz and with means zero. Let y be the rst-component column

vector which is composed of {yijk}' Let

L = 1likelihood function

_ -1rst -1 1 t -1
= (2m) (det(a)) % expl- 3 (y-p)'a “(y-p)}

and

bl
n

-2 log(L)

(y-p)tA _l(y—p) +log det(A) + constant

where A = Cov(y,y). Let 2z be the rst-component column vector

which is composed of

y = a. tb. +tc.. Tt e
- =a, -a + - + - =1,...,r-1
Y; y a a te -c e e i=1 r
-y =b,-b +c.,-c +te -e =1, »8-1
yJ J . J .. J J
- - - = - - + + - - +
le Vi Y j y ClJ ‘i, C.J € elJ i © J ...

i.: ].,...,r',j: l’ovo’s; k= 1}-0'}t-1
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where a , b, c, ,c.,c ,e ,e.,e, ,e ' sy Y . s
. . i. .J .. i.. .Je ij. 1... K

yij and vy are averages. Consider the transformation

y = Tz where T is constructed by

= + - + - + - - +
Ve TV Py )ty ) iy vi vty )

* (Vijk'yij. )

if i<r, j<s,t<k. For i=r, the Y. "V term is

r-1
- - h - - +
replaced by %, - ly; -y ) andthe y, -y -y, ty
term is replaced by Z::-ll - (yij Y, Y j ty ). Similarly for the

cases j=s and t=k. Therefore
A=Z f (log® +MS /8 )+ constant
aa a a “a

where fa is the degree of freedom associated with MSa and Ga

is the expectation of MSa for each a= A,B,AB,e.

(1) max L

j < <
subject to Ge —eAB <_9A, eAB _GB

(I1) min X\

subject to Ge <90 0

S0, 928 =9

AB
(I11) min Z f (log 6 -log MS -1 +MSa/6a)

. < ’
subject to Ge_6B<_9 GBS_G

A A A B
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The problems (I), (II) and (III) are equivalent. Let &(x) = -log x.

Then @ 1is convex. Let

AMS ,8 ) =1log 6 -log(MS )+ (Ms-em)/eCL

By Theorem 1.10 of Barlow and coworkers (1972), (III) is equivalent

to (IV).

(Iv) min £ f (MS -6 )2
aa a a

; < , <
subject to 9e<_9B_9 GB_G

A A A B



APPENDIX IV

Bounded Isotonic Regression
(cf. Example 3.6)
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min f(Z) = Z)ilfl(zi—xl)z
subject to gi(Z) =10 + 1.5(i-1) - z, <0 i= ..»10
8044(Z) =2, - 13 - 1.5(i-1) <0 =1,...,10
and gZOH(Z)—zl-zHlf_O, i=1,...,9
i 1 2 3 4 5 6 7 8 9 10
x, | 25 13 2 15 14 21 9 33 25 15
z). | 10 11.5 13 14.5 16 17.5 19 20.5 22 23.5
2, | 13 14.5 16 17.5 19  20.5 22 23.5 25 26.5
x: 13.33 13.33 13.33 14.5 14.5 15 15 24.33 24.33 24.33
Qi 13 13 13 15 16 19 19 23.5 23.5 23.5
Ao 0 22 0 4 0 16 0 0 14
Mowi | 24 0 0 0 0 0 0 19 0 0
Noori | O 0 0 0 0 4 0 0 3

A, i=1,...,29 are Lagrangian multipliers



=%\ ve.X)=( 0 0 -22
1=1 1 "1

=20 Nvg(X)=(2¢4 0 0
i=11"1" &f

29 ~o
i:ZIXivgi(X) ( 0 0 0

=
Kuhn-Tucker condition

A
g,(X) <0, i=1,...

» 29

.5 29

.20

-16

-19

19

17)

-14)

0)

-3)
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)

A A A A A A A s e

1 2 3 4 5 6 7 8 9 10
—— e —em—— VY —— TMT———

Isotonic Regression Blocking

2 , %, % and QS are determined by Lemma 3.1

X -- X value
% -- X*value, X*is the isotonic regression of X
0--% value, X is the bounded isotonic regression of X
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APPENDIX V
Simplified Projection Algorithm

(cf. Section V. 3)
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bounded isotonic regression 79

chain 60
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comparable 33
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a o-lattice 100
cone 19
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convergence in L

96
2
convex 12
convex hull 39

covariance 97
dual cone 22
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extreme vector 26

field 85
finer 88
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generalized projection 13
generated o-field 85
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greatest lower bound 34
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induced ordering 86
induced o-field 93

induced o-lattice 93
interior point 26
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isotonic regression 37

Jensen's inequality 110
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level set 41

linear ordered o-lattice 92
linear ordering 33

lower bound 34

lower set 41

martingale 18
maximal element 33
Maximum Lower Set
algorithm 65
minimal element 34
Minimum Upper Set
algorithm 62
minimum violator 62
Minimum Violator algorithm 62
monotone class 85
monotonicity 103
multivariate isotonic
regression 121

norm 12
ordered set 34

partial ordering 33
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algorithm 57
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projection 12
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algorithm 53
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algorithm 57

quasi-ordering 33

random variable 93

reached 35
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relative interior point 27

restricted conditional
expectation 111

restricted isotonic regression 37

reversal of an ordered set 35

reversal of an ordering 35

reversed tree 35

root 60

separable 35

oc-field 85

o-lattice 85

Z-measurable 93

simple random variable 94
Simplified Projection algorithm 141
smoothing property 17, 109
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tree 34
tree structure 34
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