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AN ELEMENTARY APPROACH TO HYPERBOLIC GEOMETRY

Introduction

S0 much has been written on the history and impor-
tance of non-REuclidean geometry that little concerning it
need be mentioned here, Suffice it to say that the papers
of Lobatchewski and Bolyal stand as perhaps among the most
important milestones in the history of mathematics, involv-
ing, as they do, ldeas which were completely new and
exceedingly fruitful, These led to an investigation of
the postulates and tacit assumptions of FKuclid in particu-
lar, and of postulate sets in general, Perhaps the
culmination of this phase of development was the formue
lation by Hilbert of hls postulate set for Euclidean
geometry, and of corresponding sets for the two non-
Fucllidean geometries, The Hilbert postulates are now
8o standard that they are the obvious ones to follow in
a paper of this sort, and such has been done,

Inasmuch as this paper is concerned with the hyper=
bolic geometry, 1t might be well at this point to state
explicitly the characteristic parallel postulate chosen by
Hilbert for the hynerbolic geometry, It is as follows:
Given a line b and a point A not lying on b, then there
exists, in the plane determined by b aml A, an infinite

number of lines which contain A but not any point of b,
Inevitably, an inveatigation of postulate sets leads

to questions of conslstency, The question might be aslked,
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"Althouch no eontradlictions have ever been reached in non-
Euclidean geometry, can we be sure that none will arise?"
As every mathematician knows, the answer is, "Only rela-
tively." 1In the field of analysis, postulate sets are
shown to be as consistent as the famous postulate set of
Peano, which, it is felt, 1is almost certainly consistent,
Even in the field of geometry, we have elaborate treate
ments showing the Hilbert sets as consistent as Peano's.
On the other hand, however, if we can devise a Euclidean
model for hyperbolic geometry, (that is, a Euclidean
geometrical system in which the primitive terms of hyper-
bolic geometry can be interpreted in such a manner as to
satisfy, say, Hilbert's postulates for hyperbolic geometry),
then thls geometry must be as consistent as ZEuclidean
geometry, whose consistence 1s taken for granted,

Now, many methods have been devised for deriving
the theorems of non-Huclldean geometry, ranging from the
pure synthetic methods of Lobatchewsitl and Bolyal to the
more advanced viewpoint of modern projective geometry.
"But," it might be asked,"why cannot these theorems be
derived directly from a Euclidean model?" Obviously, it
ls theoretically possible, since the elements of the ge=-
ometry of a model are in direct one~to-one correspondence
with the elements of the geometry which the model repre-
sents, The beauty of this idea is that we would be workirg

with Euclidean geometry, with which we are more familiar,
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This is precisely the viewpoint of this paper. From
the Poincaré model of the hyperbolic geometry, many of the
theorems of hyperbolic geometry will be developed.

The simplicity of proofs and the rapldity of devel-
opment in this aoproach are to be noticed, Proofs of
theorems will be presented which, in other approaches,
becom§ difficult, often requiring many cases or compli- »
cated accompanying figures.

It must be pointed out, however, that unfortunately
some of the proofs using the model become only reitera-
tions of already existing proofs. Such are many of those
theorems of a metric nature, These have not been included
here since they may be found elsewhere, But since these
proofs anply equally well in the model, and the model
#zlves a more graphic i1llustration of them, it may be felt
that the value of this approach is not diminished, and

remains Jjustified,



fhe Poincard lodel

In this model the points of the hyperbolis plane are
represented by the points in the intor&ar of a clrele,
called the fundamental cirele, which we will refer to as
F. The points on F correspond to the ideal points of the
hyperbolic geometry, The points exterior to F are not
consldered as polnts of the geometry at all, The arecs
of circles orthogonal to ¥ and interior to F constitute
the lines of the geometry, Since they are not actually
1lines, they will be referred to as nominal lines, after
Garalaw,«and any nominal line will be referred to by
placing the letters indlcating two of 1ts points adjacent
to one another and plaeing a bar over them, as AB, In
fact, in referring to a nomiral triangle, or any other
nominal figure, the bar will be used, When referring to
the oirele eoinclding with any nominal line 18, we will
use the symbol OiB, The angle between two intersecting.
nominal lines is defined as the angle between the tangent
lines, at the point of intersection, ef the cireles which
colnolde with these nominal lines. It is realized that
there are three possible relationships two nominal lines
may have, They may intersect inside ¥, in which case they
are called intersecting: they may be tangent to one another
on P, when they are sald to be parallel: or they may not

intersect at all, in which case they are designated as



non=intersecting lines,
Suppose we have a nominal line AB intersecting F in
points 3 and T, with B between T and A, as shown, The
metric of the model may be
defined as
AB = 1n(73,AB),
the natural logarithm of the
crogs-ratio of the indicated
eyelie range, This can be
shown to satlsfy the usual
% requirements of a metrie,
Fig. 1
provided we define displace=~
ment properly.

e find that in the model inversion takes the place
of reflection, That 1s, a reflection in nominal line AiB
is represented by an inversion with respect to <3§§. It
c¢an be shown that the metric is invariant under an invere
sion so defined, Since a displacement can always te
factored into a product of reflections, it follows that
the metric 1s invariant under the corresponding nominal
displacement,

In three dimensions, which we will need to consider,
we have instead of a fundamental eircle, a fundamental
sphere, 5., Polnts within S are the points of the geometry;

polnts on 8 represent the ideal points; lines are circles

orthogonal to S3 planes are spheres orthogonal to 5. The



metric 1s defined as 1n the plane, and reflections are
represented by appropriate inversions., For a verification
of the fact that three dimensional inversion is entirely
analogous to the two dimensional case, cf, Court (1,

ps 214),



Suppose we have gilven
AB HEATBTH A7ET,
a8 in the figure, Obvie
ously, OAB 1is tangent at
<
T to OA'8', which 18 in
turn, tangent at T %o
Oﬁ”. Two immediate and

obvious theorezs arel

Flg. II
Ihe 1: If ome line is parallel to a seeond, then the sece
ond is parallel to the first,
Ih, 2t If two lines are parallel to a third line in the

same direction, they ars parallel to sach other,

Further, since OAB 1s the enly ecirele through
either A or B, orthogonal to F, and tangent to OA'S' at
T, we have
dhe 3t If a line is the parallel through a given polnt
to a given 1line in a given direction, 1t is the parallel
at each of its points to the glven line and in the given
direction,

Ih., 4: There 1s one and only one common perpendlcular to
two non-intersecting lines,

This 1s obvious, since there is one and only one

eirele orthogonal to three given oircles, namely, the
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radical cirele of the three given circles, and this radical
cié&le 1s real in the case under eonsiaération.
Th. 5: 1If two given lines have a common perpendicular,
the given lines must be non-intersecting.

If the two given lines are parallel, i.e,, if the
eirecles corresponding to these two lines are tangent
on F, the radical cirele of the glven circles and F
degenerates to a point-eirecle, namely, the point of tan-
gency. If the two given lines are intersecting, 1.,e.,
if the circles corresponding to these two lines intersect
within F, the radical cirele of the given circles and F
becomes imaginary, Thus, if the two given lines (cirecles)
have a common perpendicular (eircle orthogonal to them and

te F) they must be non-intersecting.



Properties of Triangles

Note: 1If we are given any point P in F, it is always easy
to find an inversion in a circle orthogonal to F which will
earry P into O, the center of ¥, and F into 1tself, This
fact 1s important to this development, for it means that
we can always place a triangle with one vertex, or any
other point, at 0, and be assured that our treatment of
it is perfectly general,
Th, 1: In ADAB an exterior angle is greater than the
sum of the opposite interior angles,

Let OB intersect F at
Re Draw the tangent to
ofB at A, This must inter=
sect OB at some point C,
Draw the tangent to (o3 §:

at B, This must intersect

AC at some point D, How,
A ABR = A DBR > ADCB,

since &L DBR is an exterior
angle of A DCB, But, ADCB = X COA+ & 0AC, Therefore
A DBR = AABR> A BOA + & 0AB,
Similarly, if OA intersects F in P,
A TAB > A K08 + X OBA,
Further, we see that A ABK * T . A X80, Therefore
T - AABO> XTOA + A DAB
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or, AZAO+ ABOA ~ &0RB< T,
and we have
Th, 2: The sum of the angles of a triangle 1s less than
two right angles. :
Cor,:t The sum of the ancles of a convex gquadrilateral is
less than two straight angles,

This is evident since any convex quadrilateral may
be divided into two triangles by alllne Joining either
pair of opposite vertices, Each of these trlangles has
an angle sum less than two right angles, and by summing
angles, the corollary follows,

If, in Fig. III, A falls on F, DA and BA become nomi=-
nal parallel lines, and OAB becomes what has been termed
a singlveasymptotic triangle by Coxeter (2, p. 188).
Obviously, theorems 1 and 2 above apply to thls type of
triangle as well as to one with ordinary vertices, But
since A OAB = 0, then A ABR > AR08, and 4 AF0 + A BOA< T,
Thus we have
The 3t In a singly-asymptotiec triangle, an exterior
angle 18 greater than the opposite interior angle,
The 4: In a singly-asymptotic triangle, the sum of the
interior angles is less than two right angles,

It is seen that these two theorems might have been
stated as properties of parallels, and indeed, theorem 4
may be taken as the characteristie postulate of hyperbolie
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geometry, in contradiction to Huclid's fifth postulate,
Now, in the singly-asymptotic triangle AOB, let
ATABO be right, as in Fig. IV, Now 4 BOA is the angle
of parallelism correspond-
ing to distance 0B, If we
let OAB shrink continuously,

always remaining orthogonal

to OR and F, it will assume
the positions of members
of a non-intersecting coaxal

‘family of circles with

Fig. IV

limiting point R, At the

same time, since OA remains tangent to OIB at 4, X BOA
will diminish continuously, and approach the value zero,
Also 0B, which is given by 1n(SR,B0) £ 1n(SB/BR) will 4
inerease without bound, for BR— 0 as ofB - R, 3B remain-
ing finite., On the other hand, a3 of3 expands, always
remaining orthogonal to both F and OR, A BOA increases to
w/2 and 0B = 1n({S8B/Bl) decreases to zero since SB -~ 30,
. BR - OR, SB/BR-=S50/0R = 1, Thus we have
Ih, 5: The angle of parallelism H, corresponding to a
distance h, is acute, and H—+ 0 as h— 0o, and H—~ /2
as h - 0,

For an actual derivation of the functional relation
between an angle and its corresponding distance of par-

allelism, from the model, see Wolfe (5, p. 214),
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Th. 6: The perpendicular bisectors of the sides of a tri-
angle are concurrent.
Let us place our trie
£ angle as in Flg. V, where
< - TBC 1s the triangle; AB lies

along a diameter of F, and O,

the center of F, is the mid~
point of AB and thus the

midpoint also of AB., Draw
the nominal perpendicular
Flg. V
bisector of AB, Since this
line 1s also the pervendicular bisector of AB, it is
certainly orthogonal to the circle determined by points A,
B, and C, i.e,, the circumcircle of AABC, Since this
argument is perfectly general, the nominal perpendicular
bisectors of BC and CA must also be orthogonal to the
eircumeirecle. Since these perpendlicular bisectors are
orthogonal to both the circumecirele and F, they are members
of a coaxal family of circles, If the circumeirele lies
entirely within F, the three nominal perpendlcular bisectors
are concurrent in a point within F, If the circumeircle is
internally tangent to F, the three nominal perpendicular
bisectors are parallel, and thus have an ideal point in
common, If the circumecircle intersects F in two distinct

points, the nominal perpendicular bisectors belong to a

hon-intorseeting coaxal family of cireles, But in this
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case, we‘may draw a circle through the two points of inter-
section of the circumcirele and F which is orthogonal to
F and of necessity orthogonal to the three nominal perpen~
dicular bisectors, Thus, there exists a nominal line
perpendicular to all three nominal bisectors, and they are
sald to have an ultra-ideal point in common, :
Ih, 7: The internal angle blsectors of a triangle are
concurrent, The external angle bisectors are concurrent
in pairs with the internal angle bisectors at the opposite
vertices,

The concurrence of the internal angle bisectors may
be established as in Euclidean geometry. Now, in nominal
AABC we may escribe circles Ey, E,, E, externally to
4AABC such that Ey, EHp, E, lie within nominal angles BAC,
ABC and ACB, respectively, Now by inverting first B and
then C to the center of F, it is easy to see that the
external angle bisectors at B and C are both orthogonal to
Eae By inverting A to the center of F we see that the
internal angle bisector at A is also orthogonal to Eg.

It follows that these angle bisectors are concurrent in an
ordinary point, an ideal point, or an ultra-ideal point
according as Ey lies entirely within F, is internally
tangent to F, or intersects F in two distinct points,
liote: For a derivation of the functional relations among
the parts of a triangle, and hyperbolic trigonometry in

general, from the Poincare model, see Foggatt (3).
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The Lambert and Saccheri Quadrilaterals

Def,t A Lambert quadrilateral is one in which three of
the interior angles are right.

Ih, 1: In a Lambert quadrilateral, the fourth angle 1s
acute, 3

This 1s obvious, since the sum of §11 four angles
must be less than four right angles, and the sum of three
of these is three right angles,

Def.t A Saoéherl quadrilateral is formed by drawing equal
perpendiculars to the ends of a line*éégment on the same
side of it, and joining the extremities. The given line
‘segment is called the base, the side obpbsite to the

base 1s called the summit, and the two interior angles at
the ends of the summit are called the summit angles,

Th,2: The summit angles of a Saccheri quadrilateral are
equal and acute,

Place the quadrilateral
as shown, with ovat the mide
point of AB, Draw OE . AB,
intersecting ¢ in P, It is

not difficult to prove the

’ congruence of figures OBCP

and OADP by reflection in OE,

Therefore AL BCP = A 7ADP,
Fig. VI
and each must be acute since
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OBCP is a nominal Lambert quadrilateral,
Ih, 3: The line Joining the midpoints of the base and
summlt of a Saccheri quadrilateral is perpendicular to
both.

In Fig. VI, 1t 1s easy to show that if OP . AB, then
the center of O D0 lies on OP, due to the symmetry of the
figure., Thus, OP 1 DG, and OP bisects DG, thus blsecting
BC.

Th, 4: The summit and base of a Saccheri quadrilateral
are non-intersecting lines,

From theorem 3, AB and DG have a common perpendiculan

ergo, they are non-intersecting lines,
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The Eguidistant Curve

Thet The locus of points equally distant from a given
line 1s the orthogonal trajectory of the perpendiculars
to the given 1ine and conversely. This locus is called
.an equlidistant curve, and the given line is called the

P(
base line,

Pig., VII (a) Pig. VII (b)

Suppose that BT 1s any given nominal line placed
along a diameter of F as in Fig, VII {(a). Let 3'T' and
B"T" be two nominal perpendiculars to 3T and B', B" be two
points of the required locus, If we invert the whole fig-
ure with respect to T as a center of inversion we get Fig.
VII (b), where F and ST become perpendicular straight
lines, and ©5'T" and © 5T become concentriec circles
with S as their common center. Now, assume first that

A'BT = A"B", Then; since cross-ratio is invariant under
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inversion, we have, in Fig. VII (b).

(T*A'/8°A")/(T'B'/8"B") & (T"A"/8"A")/(2"B"/8"B"),
But T'A' = A'S’, T"A" = A"S", and so T'B'/8'B' = 7"B"/3"B",
Therefore, in Fig, VII (b), B' and B" lie on a straight
1ine through S and when inverted back into Fig. VII (a),
this line becomes a cirele through 3 and T, But this is
a member of the family of circles orthogonal to o i's"
and OA"B", and the direct theorem is established, The

converse 18 established by a reverse argument,
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The Variation in Distance Between Two Lines

Ih, 1: Glven two intersecting lines, the perpendicular
distance from one to the other inereases continuously and
without bound as the line along wﬁich the distance is
measured moves away from the point of intersection, and
decreases to zero as the line moves toward the point of
intersection,

Let P3 and ¥l be nomi-
nal intersecting lines,
thelr point of intersection

being placed at 0, the cen=-

o,
ter of F. Let PAQ be a
- nominal equidistant curve

with base line P3 and inter-

secting MN at A, Let AB

Fig. VIII

be perpendicular to ?5 at
B, Thus, the distance from PAQ to B3 is AB. Now let A
move eontinuously toward M, Obviously, as it does 80,
S—+M, B~B', T T', where MB' = B'T', MP = PT', and
AB = 1n(75,4B) = 1n(TA/SA)(SB/TB) — 1n(T'M/MM)(MB'/T'B")
= In(T'M/0)(~1) = oo,
On the other hand, as A~ 0, B—> 0, S=-+U, and T— V,
Therefore

A8 = 1n(VU,00) = 1n 1 = O,
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Th., 2: Given two parallel lines, the perpendicular dis-

tance from one to the other increases continuously and
without bound as the line along which the distance 1is
measured moves opposite to the direction of parallelism,
and decreases to a limit of zero as the line moves in
the direction of parallelism.

Let PJ through 0, and
FQ be the parallel lines,
§Z§ an equidistant curve

with base line PG and dise

tance AE where AB is
perpendicvlar to P3, and

A 18 the intersection of
N P
PAQ and RQ. Now as A —R,

_'FiSo IX

we see that T—~T', B—=B',
where T'P = PR, T'B' = B'R, Therefore AB = 1n(TS,AB)
= 1n(TA/SA)(SB/TB) — In(T'R/RR)(RB'/TB') = 1n(T'R/0)(-1)
s o As A~4-Q.‘1t is evident that AT and AS approach
equality, and AB ~-~1n 1 = 0,
ITh, 3: Given two non-intersecting lines, the perpen-
dicular distance from one to the other increases without
bound as the distance 1s measured along a line moving
away from thelr common perpendicular, and decreases as
the line moves toward their common perpendicular.

Let PJ, through 0, and WN be two non-intersecting
lines (Fig. X), BN an equldistant curve with base line



MN, and TV the common perpendicular to NN and T3. Cer=-
tainly, in the figure, if A'H' and AB are both perpendice
ular to NN, then A'B' = AB, Now, as B - Q, 8o that MBN
approéchea MUN, then T —~Q, 5—5", and A — A", Therefors,
AB z A'B' = 1n(T3,AB)

= 1n(TA/SA)(8B/TB)

— 1n(QA"/8"A")(s"Q/QQ)

=w, A8 B—0, T, T'—1U,
8, 8'—V, and A, A'— W,
Therefore, AB = A'HY

S 1n(TS,AB) approaches

1n(UV,W0) = WO, the dis-

tance from ¥N to P) along

thelr common perpendicular,
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froperties of Horocyeles and Hquidistant Curves

Hote: A horocycle may be defined as the orthogonal tra-
Jectory of a sheaf of parallel lines., In the model, a
horocycle is reﬁresented by a eirecle tangent to the
fundanental cirele, F, for a sheaf of parallel lines is
represented by a pencil of nominal lines tangent to one
another, orthogonal to F, and with the vertex on F, and
every orthogonal ﬁrajeotory of this pencil is a circle
tangent to F at the vertex of the penecil,

Ih, 1: Every horocycle is congruent to every other horo-
cyele,

If we have given any two nominal horocycles, we can
always invert one into the other using their external
center of similitude for center of inversion, and a circle
orthogonal to F as the circle of inversion, Thus F will
invert into 1tself,

Ih, 2: Equal chords on the same or different horocycles
subtend equal arcs, and conversely,

We can always invert one horocycle into another, and
we can find a sequence of inversions in nominal lines
which will invert the horocycle and F into themselves, and
invert elther equal arcs or chords one into another, The
theorem is thus proved by congruence,

Ih, 3: A straight line cannot cut a horocycle in more

than two points,



Two cireles intersect in no mors than two points,.
Ihe A1 If a stralght line cuts a horocycle in one point,
and 18 not a radius, it will in general out it in a sece
ond point.

3ince the nominal horocyele, M, lies entirely within
Py 4f H and a nominal stralght line, C, intersect in one
point within P, they must intersect in a second point
within F unless C intersects H in ita point of tangency
with F, in which case C is a radius of H,

Ih, 5t Three points of a horocycle determine 1t,

Obviously, three points of a eircie determine it,
Ihe 6t Any two equidistant curves with the seme Alstance
are ocongruent,

Given two nominal equidistant curves with the same
distance, we may invert one into the other using the
external center of similitude of the base lines for center
ef inversion, and a eircle orthogonal to ¥ for the cirele
of inversion, ’
Lhe 1t For the same or congruent equidistant curves,
equal chords subtend equal ares, and conversely.

The proof of this is analogous to the proof of the
corresponding theorem for hornayelés, 1,04y theorem 2
of thls section, |
Ihe 8: A stralght line camnmot cut one branch of an

equidistant curve in more than two points,
Two circles intersect in no more than two points,
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Ih, 9: 1If a straight line cuts an equidistant curve in
one point, it will in general cut it in a second unless
it 18 parallel to the base line,

Since the two branches of the nominal equidistant
curve form a closed curve lying entirely within F, a
eirecle intersecting it in one point must intersect it in
a second point within F, unless the circle 1n£eraocts the
equidistant curve in a point on F, in which case 1t 1s
parallel to the base line of the equidistant curve,

Th, 10: Three points of an equidistant curYe determine
1t, provided they lie on the same branch,

Three points of a circle determine it.

Note: A nominal circle is actually a circle inside F,

since a circle may be defined as the orthogonal trajectory
of a pencil of lines., But in the model, this becomes a
pencil of cireles all orthogonal to F and as such consti-
tute a coaxal family all of whose orthogonal trajectories
are eireles,

Th, 11: A horocyele i1s the limiting case of a circle
whoaé radius increases without bound,

Glven a nominal horocycle H, internally tangent to F
at T, draw the line through T and 0, the center of F, T0
intersects H in some point P, Draw any circle with center
on PT which passes through P, If we let the nominal center

of thils circle move out toward T along PT, we see that the

nominal radius of the circle inereases without bound, and
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that the limlting position of the circle is actually the
horocyecle H,

Ih, 12: A horocycle is the limiting case of an equidis-
tant curve whose dlstance increases without bound,

Given a nominal horocycle H, internally tangent to F
at T, draw the line through T and 0, the center of F, TO
intersects H in some point P, Let AB be a nominal line
perpendicular to PT at some point'between Pand T, Draw
the equidistant curve APB, Now, if we let A and B
approach T along F, we see that the nominal distance of
equidistant curve APB increases without bound, and that
the limiting case of APB is the horocycle H,. |
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The Gesmelry o

e

a Horosphere

In hyperbolic geometry, a hofoaphore is defined as
that surface generated by revolving a horocycle about one
of its axes, Both Lobatchewski and Bolyai made use of
the horosphere in thelr developments, They defined an
axis of a horosphere to be any line through the horoaphere
parallel‘to the axis of revolution, Thus all the axes of
the horosphere are parallel to one another, and it can be
proved that each is orthogonal to the horosphere, The
intersection of a horosphere and a plane thfough an axis
1s a horocycle,

Lobatchewskl showed that if we call such horoeycles
"1imit sphere lines", and the triangle formed by the inter
sections of three of these limit spnere lines taken two by
two a "limit sphere triangle", then the sum of the angles
of a 1imit sphere triangle is equal to two right angles,
Bolyal showed, in additlon, that if a limit sphere trans=
versal falls across two limit sphere parallels, then the
sum of the interior angles on the same side is equal to
two right angles, (See 4, p, 364 and 384,) Thus we are
10& to suspect that the geometry on the horosphere defined
in this manner is Euclidean in nature, HRigorous proofﬁ
of this have been presented, but perhaps none quite so

simple as the proof which ecan be obtained from the model,
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In the three dimensional Poincaré'model, it can be
seen that a horosphere 1s represented by a sphere, H,
1nterﬁally tangent to the fundamental sphere, 5., The
axes are represented by circles orthogonal to both 8
and H, and all going through the point of tangency, T,
Planes through these axes are spheres ortiozonal to S and
Hy and all going through T, The intersectiions of these
spheres with H are circles on H thtcugh Te Thus the
geometry we must consider is the geometry of the pencil
of elrcles on a sphere going through one point, T,

To prove that this geometry is isomorphic to plane
Huclldean geometiry, let us invert the figure with respect
to a sphere with any radius and with T as center., If the
geometry on the sphere 1s Euclidean, then certainly the
inverted geometry is also, and vice versa, for inversion
preserves 5nglea. and there is a one-to~one correspon-
dence between the elements of the two geometries, But in
the process of inversion, the sphere becomes a plane,
the pencil of ecircles on the sphere becomes all the ordi-
nary lines of the plane, and the point T itself becomes
the ideal point, Since this leads us to ordinary Euclidean
geometry, then certainly the geometry on'H, and hence on

a horosphere, is Fuclidean in nature,
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