
&N ILEMENTARY APPFOACH TO 

HYPìRWLI G)METRY 

by 

ORVILLE DALE SMITH 

A THISIS 

submitted to 

OR:GON ST TE COLLEGE 

in partial fulfil1ncnt of 
the requirements for the 

deEree of 

MASTER OF SCINCE 

June 1950 



iPPfÖVED: 

Professor of Mathematics 

In charge of Major 

Head of Department of Mathematics 

Chairman of School Graduate Committee 

Dean of Graduate School 

Date thesis presented: May 2, 1950 

Typed by: Edith M. Smith 



Table of Contets 

Introduction 

The Poincar Model 

i 

4 

Proertios of Parallels and Non-intersecting Linea 7 

ProDrties of Trianles 
The Larnbert and 3accheri uadri1aterals 14 

The quidistant Curve 16 

The Variation In Distance Between Two Lines 18 

Pröerties of Horocycles and EquIdistant Curves 21 

The eonetry on a Horosphere 25 

3ihliof.raphy 27 



NTARY APPFìOtCH TO HYPER YLIC GEOMETRI 

tntroduct1n 

So much has been written on tbe h1stry an1 irnpor- 

tance f non- uc11dean gometry that little concerning lt 

need be mentioned hero. Suffice lt to say tbat the papers 

of Lobatohewaki .nd i3olyal 9tand as perhaps amone the most 

important m11ostneE3 iì t'ho Mstory of mathematics, InvdLv- 

ing, as they do, Ideas whtch were completely new and 

exceedingly frutfu1. These led to an investigation of' 

tie T)ostulates and tacit assumptions of' Euclid in particu-. 

lar, ad of' postuiate sets in oneral0 Perhaps the 

culmination of this phase of development was the forrnu- 

lation by FTilhert of hi.. s postulate set for uc1idean 

geometry, and of corresponding sets for the two non- 

uclidean geometries. The Hubert postu1.tes aro now 

so standard that they .re the obvious ones to follow In 

a paper of this sort, and such hi.s been dono. 

Inasmuch as this paper is concerned with the hyoer 

bollo geometry, it might he well at thIs point to state 
explicitly the cTaracteristic parallel postulate chosen by 

Hubert for the hyorho1ic eometr. It is as follows: 
Given a line b and a point not lyrig on b, then there 
exIsts, in the piane doternined by b ardA, an Infinite 

number of lines whIch contain A hut not any point of b. 
Inevitably, an investigation of ostui:t,e sots leads 

to iuestions of corsistoncy. The uestlon might he ae'ed, 



tA1toh no cntrad1ct1one have ever been reached In non- 

Euc1idean geometry, can we be sure that nono will arise?t 

Aa every mathematician know5, the answer ts, niy rda- 
tive1y.' In the field of analyst8, postulate sots are 

shown to he as consistent as the famous ìöstulate set of 

Peano, which, It is felt, is almost certainly consistont, 
Even in t1e 1eI of eDmetry, wc have elaborate treat- 
monts showing the Hubert sets as consistent aB ?eario's. 

(n te other hand, however, 1f we can devIse a uc1idean 

model for hyperbolic geometry, (that is, a uc1i1ean 

geometrical system in which te 7rlmltive torns of hyer- 
bolle geometry can he interpreted in such a manner as to 
satisfy, say, }Iilbert's postulates for hyperbolic geometr, 
then this e,metrv must he as consistent as Euclidean 

geomotry, whose cnslstence is taken for granted, 
Now, many methods have been devlsed for deriving 

the thoeres of non-ucfldean geometry, ranging from the 

pure synthetic methods of Lobatchewskl and Bolyai to the 
more advanced viewpoint of modern projective ?eOmetry. 

it mIght be ased,twhy cannot these thoores be 

derived d1r'ctly from a uc1idean model?t' Obviously, it 
t 2 eorotically possible, since the elements of the go- 

omotry of a model are in direct one-to-one correspondence 

with the elements of the geometry which the model repre- 
sents, The beauty of this idea its that we would be worklr 

with Euclidean geometry, with which we are more familiar. 



Ti-us is precisely the viewuiolnt of this Daper. From 

the Poincar model of the hy,erbolic geometry, many of the 

theorem8 of hyperbolic :reometr-, will be clevelooed. 

The sirnolicity of proofs and the raidity of ovel- 

oprnent in this a)proach are to be noticed. Proofs of 

theorems will be oresented which, in other approaches, 

become difficult, often requjrin many cases or compli- 

cated accompanying figures. 

It must he pointed out, however, th-t unfortunately 

some of the proofs using the model become only reiters- 

tions of already existing proofs. Such are many of those 

theorems of a metric nature. Th .. eso have not been included 

here sthoe they my be found elsewhere. But since these 

proofs aply equally well in the model, and the model 

:ives a more graphic illustration of them, it may be felt 

that the value of this a:pr-'ach is not diminished, and 

remains justified. 
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2tncí HQç%øi 

In ti ioc1e1 the portts Of t:e hyorbo1io plano are 

repre3ented by the pointo in the Interior of a otrøle, 

ca11ed. the fundamental craIo, whtoh we will rerer to aa 

r The pointa on F oorreaped to the ideal pointa of t!'e 

hyrerboltc ooetry, The points extr1or to F are nt 

constaored a potnt of the eoiotry t all. The arco 

of circieB orthogonal to anc interior to comititute 

to lthe9 ot the geometry, 1no they are riot actually 

lines, they will be rotorret to as nominal lines, after 

ralaw, and any nomintil lino will be referred to by 

placing the lettera indicating two of ito points adjacent 

to one another and placing a bar oor them, ao . In 

fact, in retrrtn to a noutral trianj le, or any other 

noninal f iure, the bar will ho uød. 1hen reforvtnç; to 

the oircie cotncdtng wth any nominal lina t, w. will 

u3o the symbol O. The an.o between two interectng. 

nortnl lineo is defined as the angle between the tanont 

linos, at the point of interseotion, of the circles which 

coinoie wth those n,nal linos. it io realized that 

tbre ro three posihle rolitionshipa two nominal llne8 

nay have. They may intersect insIde F, in which case they 

aro called Intoraectin they may be tangent to one another 

on P', when they are aa:'d to be parallele or they may not 

intoriect at all, in ioh cane they are deigntod as 



non-interseetirì 
lines0 

3uppo$e we have a noriinal lIne intersecting F in 

poInts S and T, with 3 between T and A, as shown. The 

F 

hj. 

metric of t1 

dfirìed as 

= 

tie nstural 

cross-ratio 

5 

e model may be 

mf i1.3,B), 

logarithz of the 

of the indIcated 

cyclic ran3e. This can he 

shown to satisfy the usual 

requirements of a metric, 

provided we define displace- 

ment properly. 

JO find that in the model Invorion takes the place 

of reflection, That Is, a refloctior in nominal line 

ja represented by an inversion jth respect to OB. It 

can be shown that the retrio is Invariant under an inver- 

slon s defined. 3ince a disrlacement ca.n alwn.y be 

factored into a product of reflections, it follows that 

the metric is Invariant uner the corresponding nomInal 

displacement. 

In three dImension9, which we will need to consider, 

we have instead of a fundamental circle, a fundamental 

sphere, 3, Points 'thin S are the points of the geometry; 

points on 3 represent the ideal points; lines are circles 

orthogonal to S; planes aro spheres orthoonal to S. The 



metric Is defined as In the ilane, nì reflections are 

represented by apxpriate inversions. T-'or a vertftcation 

of the fact that three dimensional inversion is ont .re1y 

ana1ogus to the two dimensional case, cf. Court (1, 

p. 214). 



__________ _________ thtereqtç 4ea 

II 

Suppoo we hvo ivn 

a 1.n t!o r1ure. Obvi- 
T 

0w31y, GA3 iS taníent at 

T t O'', which 19 In 
turn, trnent at T to 

Two trnniedite and 

Öbvtou8 thoores are: 

7 

1: if line ta parall1 to a eoond, then the sec- 

nc1 la rar-ai1ol to the f irit. 

_____ Il' tw lines are parallel to a third line 

Same direction, they tre p*rlll to each other. 

?urtlier, sinfle O !a the only ctrcle through 

either or R ohoaì to , n1 tangent to ÔA'B' at 

r , we have 

if a line le the parallel through a iven poInt 

to a tven line in a ptvon direction, It is the parallel 

t each of Ita pointe to the çtven line ad th the given 
dIrection, 

i__ TherE ta one an1 only onc cron perendleular to 
two n,n-lnteraecttn lines, 

D'is la obvious, since tre Is oto and only one 
otrolo orthoonfl to three tven otrolee, namely, the 
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radical circle of the three given circles, and this radic. 

circle is real in the case under consideration, 

If two riven linos have a common perpeniicular, 

the :iven lines muet be non-intorsectin. 

if the two given lines are oarallel, i.e., if the 

circles corresponding to these two lines are tangent 

on F, the radical cIrcle of the iVCfl circles and F 

depenerates to a point-circle, na-ely, the point of tan- 

gen.cy. If the two ivon lines are 1ntersectng, i.e., 

if the crcies corresponding to these two lines intersect 

within F, the radical circle of the given circles an F 

becomes imaginary. Thus, if the two given lines (circles) 

have a oomnon Derpendicuir (circle orthogonal to them and 

to F) they must be non-intersecting. 



PrortIes of Trian1es 

Notes If w are given any point P in F, it is alîays easy 

to fint an inversion in a circle oithoonai to i' which iiU 

carry P into O, the center of F, and F into itself. This 

tact is iriportant to this development, for it mea:s that 

we can always place a triangle wIth one vertex, or any 

other potnt, at O, and be asered that our treatment of 

it is eorfectly general. 

Th.l n an exterior an3le Is greater than the 

sum of the opposite interior an1es, 

F 

Fig. III 

Let OB intersect F' at 

,. raw the tan5ent to 

at A, Thls must inter- 

sect 03 at some point C. 

aw the tancrent to 

at B. This must intersect 

AC at some point D. Now, 

4_ FZ DI3R > 4- DC B, 

since 4.DBR le an exterior 

angle of DO3. But, &DCfl _COk+ &OAC. Therefore 

4 )ßR : L A3R > 4- t A. 

3imilarly, if OA intersects F in P, - - A-PB>AAOB+ &OßA, 

Further, we see that 11 I& Therefore 

ir --X?5>ZA +? 
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or, A+ LBOA#1-''&B4l', 
ìnd we have 

Tb. 2 The sum of the anles of a tr1an1e is less than 

two right angles. 

Cor. The sum of the an-ies of a convex quadrilateral is 
less than two straiht angles. 

This is evident since any convex quadrilateral may 

be divided into two triangles by a llro joining eIther 

pair of opposlte vertices. ach f these triangles has 

an ane sum loss than two rigt an;les, and by summing 

angles, the corollary follows. 

If, in Fig. III, A Thlls on F, an A become nomi- 

nal parallel lines, and becomes what has been termed 

a singly-asym7totic triangle by Coxetor (2, p. 188). 

Obviously, theorecs i and 2 above ar))1y io this type of 

triangle as weil as to one wIth ordinary vertices. ut 

since L?B: O, then LX!1T> L, and 4+ .4W, 
Thus we have 

ri. 3 In a singly-asymptotic triangle, an exterior 

angle Is greater than the opposite interior angle. 

Ph. : In a singly-asymptotic trlangle, the sum of the 

interior angles is less than two right angles. 

It is seen that those two theorems might have been 

stated as properties of parallels, and Indeed, theorem 4 

may he taken as the characteristic postulate of hyperbolic 
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geometry, in contradiction to Tuclid's fifth postulate. 

Now, in the sinIy-asymptotic triangle A013, let 

LO be right, as in Fig. IV. Now ¿OA is the angle 

F 

s 

Fig. IV 

of parallelism correspond- 

ing to distance . If we 

let shrink continuously, 

R always remaining orthogonal 

to OR and F, it will assume 

the positions of members 

of a non-interect1np coaxal 

family of circles with 

limiting point R. At the 

same time, since OA remains tangent to O at A, 4 

will diminish contInuously, and approach the value zero. 

Also , which is given by ln(SR,BO) ; ln($/F3R) will 

increase without bound, for BR-O as SB remain- 

Ing finite. On the other hand, as Q exp3nds, always 

remaIning orthogonal to both F and OR, 45A increases to 
/2 and 3 2 ln(3/BL) decreases to zero since 33 -'SO, 

BR - OR, SB/3R -' so/oR i Thus we have 

Tb. 5 The arwle of parallelism FI, corrosonin to a 

distance h, is acute, and H - O as h - co , nd H - 

as h -' O. 

For an actual dorition of the functional relation 

between an angle and its corresronding distance of par- 

allelism, from the model, see folte (5, p. 214). 



12 

Th.6? 'he perendicular bsectors of the sides of a tri- 

ancle are concurrent. 

F 

Let us placo our tri- 

angle as in Fig. V, where 

is the triangle: lies 

along a diameter of F, and O, 

the center of F, is the mid- 

ootnt f T and thus the 

midpoint also of 'J3. Draw 

the nominal errendicular 
Fig. V 

bisector of AB. :3ince this 

line is also the Derendicular bisectr of AB, it is 

certainly orthogonal to the circle determined by ooints , 

F3, and C, i.e., te circumcircle of since this 
argument is norfectly general, the nominal rerendicular 

bisectors of and must also be orthogonal to the 

circumcircle. since these peroendioular bisectors are 

orthogonal to both the crcumcirc10 and F, they are members 

of a coaxal fart1y of circles. If the circunicircie lles 
entirely withn F, the three nomInal perpendicular biscthrs 

are concurrent in a ?oint within F, If the clrcumcircic is 

internally tangent to F, the three nominal perpon'Ucular 

bisectors are parallel, and thus have an ideal point in 

common. If the cirournoirole intersects F in two distinct 

points, the nominal peroondlcular bIsectors belong to a 

non-intersect'ng coaxal family of circles, Rut in this 
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case, we niay draw a cIrcle throuh the two points ot inter- 

section at the circurnoircle md F which is orthoona1 to 

F and of necessity orthoona1 to the three nominai perpon- 

dioular biBectors. Thus, there exists a nominal line 

perendicu1ar to all three nominal hisector, mnc1 they are 

said to have an ultra-ideal point in corrimon. 

Tb. 7 The internal anale bisectors of a trtanle are 

concurrent. The external an8le bisectors are concurrent 

in pairs wlth the internal angle bisectors at the opposite 

vertices. 

The concurrence of the internal angla bieeetors may 

he established as in olidean geometry. Now tu noatnal 

AAC e may escribo circles Ea, b' c externally to 

BC such that Ea, b' c 
lie within noiinal anglos BPC, 

ABC and ACB, respectively. ow by 1nvert1n first 3 and 

thon C to the center of F, it i easy to see that the 

external angle bisectors at B arid C are both orthogonal to 

Ea. By invertiri A to the center of F we see that the 

internal ançie bisector at is also orthogonal to 

It follows that these anale bisectors are concurrent in an 

ordinary point, an ideal point, or an ultra-ideal point 

according as Ea lies entlreiy within F, is internally 

tangent to F, or intersects in two distinct points. 

Ngte For a derivation of the functional relstions among 

the parts of a trianie, and hyperbolic trigonometry in 

Reneral, from the Poincar model, see Hoggatt (3). 
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The Lambert and 3acchi udrilatorals 

Def,t ! Lambert quadrilateral is oe in which three of 

te ntortor anales are right. 
T'si. i In a Laibert quadrilateral, the fourth an4e i. s 

acute. 

This is obvious, since the sum of all four anglos 

must be lesa than four right angles, and the sum of three 

of these is three ri.ht angles. 
' Saccheri quadrilateral ls formed by drawing equal 

perr)endiculars to the ends of a line segment on the same 

side of it, and joining the oxtremittes. The g,ivon line 

segment is called the base, the side opposite to the 

hase is called the summit, and the two interior angles at 

the ends of the su'nrnît are called the summit angles. 

Th. The summit angles of a 3accherl quadrilateral are 

equal and acute. 

Place the quadrilateral 
as shown, with O t the mid- 

pcint of AB. r)raw OY i AB, 

intersoctlng 1 in P la 
not difficult to prove the 

congruence of figures 0130? 

and OADP by reflection in 0E, 

Therefore liC? : 
Fig. VI 

and each must ho acute since 
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CF Is a nominal Lambert quadrilateral, 

Thø 3: ihe line join1n the midnoints of the bae and 

summit of a 3accheri quadrilateral is er,endicu1ar to 
both. 

In Fig. VI, it is esv to show that if OP £ AB, then 

the center of lies on O?, due to the symmetry of the 

figure. Thus, I , nd OP bisects Ga, thus bisecting 
Dae 

Th. 4 The summit and base of a 3accheri quadrilateral 
are non-intorsecttng lines. 

From theorem 3, and have a common eroondicu1ar, 

ergo, they are non-Intersecting lines. 



The Tquidistart Curve 

Th±: The locus of points eQually rilstant from a cdven 

line is the orthogonal trajectory of the er;enliculars 

to the riven line and conversely. This locus is called 

an equidistant curve, and the 3iven line is called the 
base lin'. 

ii 

Fig. VII (a) 'ig. VII (h) 

16 

Suppose that is any given nominal line placed 
along a diameter of F as in Fig, VII (a). Let UpI and 

srvTlr be two nominal perpendiculars to and B', be two 

oothts of the required locus. If we invert te whole fi- 

ure with respect to T as a center of inversin we get Fis. 
VII (b), where F and become porQendicular straight 

lInos, and S'T' and O3'T' becrime coneentrc circles 

wIth S as their common center. Now, assume first that 

T9J J3 Then1 since cross-ratio is invariant under 
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lrwerslofl, we have, in Fie. VII (b). 

(TA/S'A')/(T':'/S'B') : (T*A/$A*)/(TtBf/SnBIt). 

3ut rfl$ : A.'S', TtAt$ : A"5", and so T'i3'/9'' : 

Therefore, in Fie. VII (b), R' and Bt lie on a straight 

lino through S and when inverted back into Fig, VII (a), 

this line bocmes a circle through S and T, at this is 

a member of te family of circles orthogonal to O A-3' 

and OA'tT39, and the direct theorem is established. The 

aonverse is established by a reterse argument. 



The Variation in Distance Between Two Lines 

Th. I: Given two .. inter3ectin lines, the perpendicular 

distance from ono to the ot1er increases ctntinuously and 

wIthout bound as the l±ne a1on which the distance is 

measurr,d moves away from the point of intersection, and 

decreases to zero as the line moves towrd the point of 

intersection. 

F 

Let and he nomi- 

nal intersectinp lines, 

their noint of intersection 

N 
be1n placed atO, the cen- 

ter of F. Let PAQ, be a 

nominal eauldjstant curve 

with base line and inter- 
TI T - 

soctin MN at A, Let AB 
Fi;ø VIII 

be perpendicular to P at 

B. Thus, the distance from to is . Now let 

move contInuously toward M. Obviously, as it does so, 

s -.. M, fl - R' , T -' T ' , whore MB' : 3'T ' , MP : PT ' , and 

tln(TS,AB): 

ln(T'M/O)(-l) : 

On the other hand, as AO, B-+0, S-U, and T-V. 
Therefore 

T-'ln(VU,OO) : in i : 
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Th. 2 Given two parallel lines, the perrendicu1ar dis- 

tance from one to the other increases cntthuously and 

without bound as the lIne along which the distance Is 

measured moves opposite to the 'reotion of parallelism, 

an5 decreases to a limIt of zero as the lIne rroves in 
the direction of narallolism. 

F 

I - 

jT 
7T1 

where VP Pi, T'B' : 13'R. 

Let Tî through O, .nd 

be the parallel lines, 

P. an equIdistant curve 

with base 11..re and ais- 

tance where is 

perpendicvlar to ïTi, and 

A Is the intersection of 

PA and R. Now as 

we see that TT', B-B', 
Therefore ln(TS,AB) 

: ln(TAJsA)(sn/Tn)-.ln(T'rç/RR)(Rß'/Tr3') : ln(T'R/O)(-l) 

: . A.s A -. q, it is evident that AT and AS aoproach 

equality, and -1n 1 r 

Th. 3: GIven two non-Intersectinp lines, the pornen- 

dicular distance from one to the other Increases without 
bound as the distance is measured alonc a line moving 

away from their common perpendicular, and decreases as 

the line moves towar. their common Derendicu1ar. 
Let TT, through O, and iN he two non-intersecting 

lines (Fig. X), N an equidistant curve wIth base line 
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- - - i, and UV the common perpendicular to MN and P. Cer- 

tainly, in the figure, if A'B' and are both perrondic 
- 

ular to FIN, then A'B' Aß. Now, as B so that 4BN 

approaches N, then T , S S', and A" Therefor 

u AtBr : ln(TS,AB) 

T 

p 

pl 

V 
Fig. X 

: ln(TA/SA)(3B/m) 

- ln(A'/S'1A" )(SttQjcc) 

T ; AsB-'-O,T, T'-u-U, 
Q 

S, 3'-.V, and A, A'-W, 
¡ Therefore, : A'Bt 

their common perpendicular. 

: ln(T3,AB) apnroache 

ln(UV,WO) V, the dis- 

tance from MN to P alone 
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Properties of H'royc1es and Fuidistant Curves 

llte: horocyclo may be defined as the orthoona1 tra- 
ectory of' a sheaf of parallel 11ne. In the model, a 

horocycio ta reresentod by a circle tangent to the 

fundamental circle, F for a sheaf of parallel lines is 

represented by a pencIl of nomiial lines tancent to one 

arother, orthogonal to F, .nd with tbe vertex on F, and 

every orthogonal trajectory of this pencil is a cIrcle 

tangent to F at the vertex of the pencil. 

1h. l Every horocycie is congnient to every other horo- 

cycle. 

If we have given ny two nominal horocycles, we can 

always Invert, one Into the other using their external 

center of similitude for center of inversion, and a circle 
orthogonal to F as the circle of Inversion. Thus F will 

invert into itself. 

rh. .2: Equal chords on the same or different horocycles 

subtend equal arcs, and conversely. 

o can always Invert one horocycie Into another, and 

we can find a sequence of Inversions in nominal lines 

which will iivert the horocycie and F into these1vea, and 

Invert eit!or equal arcs or chorcs one into another. Te 

theorem is thus proved by congruence. 

Th. 3 straiht lino cannot cut a horocycle in more 

than two points. 



Two rcl tors.t in n moro thtn two potht3, 

It a atra1ht lin:. outs a hrooycle in one point, 

nt a riu.s, it will tn ßenerU ut it in a ec 

on rotnt. 

%inc, the nominal horocyoiG, !,lee entrely within 

if T an'1 a n3mlnai øtrttht line, C, intereect in ne 

point within F, they mwst intersect in a second point 

within F uniese C tnterects 9 in t3 point of' tanency 

wtth F1 in Mch c.ae C la a rdiu of II, 

m 5 Three oonts of a horocyole determino it. 

Obviously, three points of irclo deterine It. 

6 Any two equidistant ourva with the em ii9tance 

are 
oonç,ruent4 

3ivon two nonInal equidIsttnt ourvo with the same 

dittne, we rray Invert one tht' the other using the 

external ontor of similitude of' the base lines for conter 

of tnverc:tori, and a cIrcle ortioonal to :? fr the c.role 
of ¶verston. 

7: For the saine or can-'ruent equidistant curves, 

oqurl chords subtend equil arcs, nd conversely. 

rho proof of this Is analooua to the proof of the 

COrrespondir theorem for hroc:c1es, i.e., theOre* 2 

' of th.a section, 

: ! straitht line cannot cut one branch of an 

equt&tttant curvo in moro than two points. 

Two circles intersect In no more than two points. 
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Th. 9 If a straight ithe cuts an equidistant curve in 

one point, it will in general cut it in a second unless 

it is parallel to the baso line. 
3ince the to branches of the nomna1 equidistant 

curvo form closed curve lying entirely within F, a 

circle intersecting It in one point must intersect it in 
a second point within F, unless the circle intersects te 

equidistant curve in a poInt on F, in which caso ±t is 
parallel to the base line of the equidistant curve. 

Th. 10: 1Yree points of an equIdistant curve deternine 

it, provided they 11e on the same branch. 

Three points of a circle detexnine it. 
t! A nominal circle is actually a circle inside F, 

since a circle iay be defined as the orthogonal trajectory 

of a pencil f lines. 3ut in the model, this becomes a 

pendi of circles all orthogonal to F and as such consti- 

tute a coaxal family all of whose orthogonal trajectories 
are clrcles. 

Th. 11: horocycle is the limiting case of a crc1e 

whose radius increases without bound. 

Given a nominal horocycle ri, internally tanpont t F 

at T., draw the line through T and O, the conter of F. TO 

intorseots H in soie point P. Taw any circle with center 

on PT whlch nasses through P. If we let the nominal cent 

et this circle move out toward T along PT, we see that the 
nominal radius of the circle increases without bound, and 
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that the limiting position of the circle is actually the 

hrocycle H. 

Th, 12: horocycle ls the limiting case of an equidis- 

tant curve whose distance increases without bound. 

ivon a nominal horocyclo H, internally tangent to F 

at T, draw the line through T and C, the center of F. TO 

Intersects H in some point p. Let be a nominal lino 

perpendicular to 21' at sorno point between P and T. )raw 

the equidistant curve PB. Now, if we let A and B 

approach T alone F, w see that the nominal dlstance of 

equ?distant curve APB increases without bound, and that 

the limiting case of APB is the horocycle H. 
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a Horsthere 

ifl hyperbolic ;eometry, a horosphere is defined a 

that 3urface ceneratec1 by revolving a horocycle about one 

of its axes, Both Lobatchewski and 3o1yai mado use of 

the horosphere In the'.r developments. They defined an 

axia of a hcrosphero to be any line through the horoshere 
parallel to the axis of revolution. Thus all the axes of 

the höroshere are parallel to one another, and lt can be 

proved that each is orthoonal to the horosphre. The 

intersection of a horosphere and a pine through an axis 

is a horocycle, 

Lobatchewskl showed that if' we call such horocycles 

'liinit sphere lines, and the trian'le formed by te inter.- 

sections of three of these limit snhere lines taken two by 

two a "limit sphore triarigle', ther the sum of the anglos 

of a limit sphere trian.le is equal to two right angles. 

Bolyal showed, in addition, that if a limit sphere trans- 

versal falls across two limit srhere parallels, then the 

sum of the interior anles on the same side is equal to 

two right arles. .f3ee 4, p. 364 and 384,) Thus we are 

led to suspect that the geometry on the horosphere defined 

in this manner is uclidean in nature. Rigorous proofs 

of thts have boon oresented, but perhaps none quite so 

simple as the proof which can he obtained from the model, 



26 

In the three di:nosiona1 Poinearmo:ie1, it can be 

seen that a hörosph.ere s represented by a Bphere, H, 

internally tancont to the fundamental sohere, 3. The 

axes are reorosented by crc1es orthoona1 to both 3 

and H, and all o1n. through the point of taruency, T. 

Planes through t}-oe axo are spheres orthonal to S and 

H, and all going throwh T. The intersections of these 

spheres dth H are circles on H through T, Thus the 

geometry we must consider is the geometry of the penc.tl 

of circles on a sphere goIng throu5h one point, T. 

To prove that this geonetry is lsomorhic to plane 
uclidean geometry, let us invert the figure with respect 

to a sphere with any radius and wIth T as center. If the 
geometry on the schere is Euclidean, then certainly the 

LnverteI geometry is also, and vice versa, for inversion 

')reserves angles, and there is a one-to-one corresDon- 

dence between the elements of the two geometries, But in 
the process of inversion, the sphere becomes a plane, 

tie r,enctl of circles on the sthere becomes all the ordi- 

nary l:tnes of the plane, and the point T Itself becomes 

the ideal point, Since this leads us to ordinary Euclide 

geometry, then certainly the geometry on H, and hence on 

a horosr*iere, Is uclidean in nature, 
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