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RECTANGULAR PLYWOCD PLATES WITHE THE GRAIN OF THE
FACE PLIES INCLINED TO THE EDG§§1

By

H. W. MARCH, Head Mathematician

The purpose of this report is to present: (1) material on the elastic
behavior of plywood plates that has furnished the basis for mimeographed
reports that have been issued by the Laboratory and also, (2) related
material that can be used in solving other problems that arise in connection
with such plates., Under the first heading, but given last in this report
are the details of the analysis in the application of the energy method to
the buckling of long flat plates, the results of which were published in
mimeographs Nos. 1316, 1316-B, and 1316-~C, In this connection, it has
seemed worthwhile to give the differential equation of buckling for a plate
having the orthotropic axes of the plywood inclined to the edges, for the
purpose of comparison with the corresponding but simpler differential
equation for the buckling of a plate having the orthotropic axes parallel
to the edges.

Under the second heading are given the basic differential equations
for the stress function for a plate in a state of plane stress under the
action of forces in its plane and for the deflection of a plate under a load
normal to its surface. The first of these differential equations is needed
not only for studying the stress distribution in a plate with a given distri-
bution of forces on its edges,including concentrated forces, but also for
studying the effects of holes in the interior of large plates. The second
differential equation furnishes the basis for determining the behavior of a
plate under a load normal to its surface and subject to prescribed conditioens
of support on its edges. From one of the coefficients of this equation it
is possible to calculate the flexural rigidity of a broad strip of plywood
having the grain of the face plies inclined to the edgess The steps taken
in deriving this differential equation are also useful in making approximate
estimates of the behavior of plywood plates which are not of the typical
construction assumed in this report,

Subject to certain assumptions that are made concerning the structure
and elastic behavior of plywocd, the analysis used in this report involves
only the standard procedures of the theory of elastieity and no claim for
novelty of treatment is made, However, it is hoped that it will be helpful

lThis mimeograph is one of a series of progress reports prepared by the Forest
Products Laboratory to further the Nation's war effort. Results here

reported are preliminary and may be revised as additional data become
available,
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to have this material made available in a form directly applicable to plywood
plates. The assumptions are the same as those of previous mimeographed
reports of the U. S. Forest Products Laboratoryg. In particular, it will be
assumed that the construction of the plywood plate is symmetrical with respect
to its middle plane., The notation is chiefly that of U, S, Forest Products
Laboratory mimeograph No., 1503, When notation is used that is not found in
that publication, references to other publications will be given.

1. Plywood Plate under the Action of Forces
in its Plane., No Buckling, Grain of
Face Plies Inclined to the Edges

Consider a rectangular plywood plate in a state of plane stress under
the action of a system of forces acting on its edges and in the plane of the
plates The grain in the face plies makes an angle 6 with the direction 0&
as shown in figure l. The axes 0¢ and O7n are parallel to the edges of the
plate while the axes O0X and OY are parallel and perpendicular, respectively,
to the grain4of the face plies. The angle € is the negative of the angle €
used in mimeograph Yo. 1503, As in mimeograph No. 1503, the stress com-
ponents are denoted either by Xy, Yy, Xy, or by txx, tyy, txy, whichever
notation seems most convenient, The state of stress being one of plane
stress, the remaining stress components vanish., The strain components are
denoted by eyy, eyys Cxye

The linear relation between the strain components ocs s ®rmy 8fms and

the mean stress components tff* tnn’ tz, as referred ‘to the axes 0¢ , Oy
will be written as ip equation (40) of mimeograph Mo, 1503 in the form:

egg = 811 Tgg toagp tygp f oAz ey

e

I}

mm = %21 bgg *oagy typ +oags ey (1)

°gn = 831 Tgr toazp tyy *oagz toy

The values of ths coefficients ajj, agg, +s» , can be obtained from
equations (42) =~ (47) of mimeograph No. 1503 by using instead of By, Ey,
Fxys and the Poisson's ratios, the effective moduli and Poisson's ratios

G /
that were found in that report for plywood in a state of plane stress. The
angle € in figure 1 is the negative of the corresponding angle in mimeograph
No. 1503, Consequently, terms containing odd powers of sin & have signs
opposite to those of the previous report,

ELimeographs Nos. 1312, pages 6, 7; 1316, pages 17, 18,
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For plywood for which all plies are composed of the same species of
wood, Ey, Ey, Tyxs and Oxy may be replaced with sufficient approximation by

Ea’ Eb’];&x'z;xy’ respectively, as defined in equations (53), (55), and (50)

of the previous report. If the veneers are composed of wood of different
species, the constants defined by equations (65), (70), (75), (76), and
(83)" of the previous repoert may be used in all ordinary cases.

The coefficients ayy, eee gz of equations (1) have the following

values:
1 cos* 9 sint g 7;§x sin® 6 cos? @
817 = T = + == . 2 sin 6 cos® @ b — (2)
11 Eé; E& t.b . Eb [u‘xy
1 sin% g cos? o, in® 8 cos® @
a22 = TB-_ = E " 4= E 9 - 2 Sinz 8 oosz 8 ny + 8 (5)
7 a b b “Fxy
" 1 2.8 P 2 .2 2 Ty
o o sin cog” @ , sin 8 cos” @ ¢ 2 sin® 0 cos® @ ﬁgk
53 = gn E, By, R
. (cos2 8 - sin® Qli (4)
“xy
SR S (5)
12 = %21 7 7 TR :
E,,7 Ef
. 2 2 2 2 , 7,
_ sin i cos® 8 | sin E? cos® 6 _ (0054 6 + sint 6) ny
‘a b b
_ sin2 G cosz (% 6)
#xy
. 3 s T,
2 sin 8 ¢ g 2 & é X
Byg = 8g) = s 28 %, L840 = €08 % + 2 sin 6 cos 6(cos® 8 - sin? @) EL
a b b
sin € cos 8(0082'5 - sin? 0) (7)
“xy
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. 3 . 3 o
. . _ 2 sin” @ cos & _ 2 sin gcos" g - 2 sin 8 cos e(cosz 6 - sinz 6) yX
23 32 E B B

a b b
1 2 . 2
, 8in @ cos 6(cos” § - sin” g) (8)
=
xy
The equations of equilibrium for the mean stress components are:
O%e 9% 5
+ =
ES om
" (9)
Yn 3y .
+ =
o an

—

where tre = Xes Gy = Yy b = Ky,

These equations are satisfied if the stress components are considered to be
obtained from a stress function F in accordance with the following equations:

32 F - 32 F 3% F

= £ -
6 a2t T e’ Tém A

(10)

v riqsg O
The strain components must satisfy the following equation of compatibility :
° o 3" e d e
O Pee 0 Oqm_? gy

- (11)
an? ¥

If the expressions (10) for the stress components in terms of the stress
function F are introduced into (1) and the results are substituted in (11),
the following differential equation for the function F is obtained:

3% F 24 L, ) 3% p L, AT
a ——— - A : + (2a + a T3S - 2a ——
4
37 F (12)

fen g a0

éLove; A,EH., The Mathematical Theory of Elasticity, Art, 17; Timoshenko,
S., Theory of Elasticity, Art. 12.
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This equation is to be solved subject to suitable boundary conditions which
for a given problem are satisfied by the stress componentse.

The differential equation (12) could also have been obtained by first
finding its form when the strain components and the mean stress components
are referred to the orthotropic axes OX and OY of figure 1 and then changing
the independent variables from x and y to & and 7 by the linear transformation

x cos 8 -y sin 8

oy
1

(13)

X sin @ + y cos 6

3
]

The first steps in this procedure will be outlined.

The following relations connect the strain components and the mean
stress components when referred to the axes 0X and 0Y:

T,

o =5 % -7
XX Ea x ﬁ y
1l — 7;kz e
°yy B Yy - E, X
1
- ==X
xy Ty
xy

On expressing the mean stress components in terms of a stress function F anad
using the equation of compatibility (11) as written for the strain components
referred to the axes OX and 0Y, it is readily found that the stress function
F satisfies the differential equation:

——

1% F 1 2oyx, 3t 1 TR _
et -wlrgmte 3"
b 9% p’xy b 3x” 3:}' ! a 3 y
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then obtained by changing the independent variables from x

5 7 in accordance with the linear transformation (13).

Equation (12) i
and y to £ and

2. Plywood Plate under a Load Normal to its Faces,
Grain of Face Plies Inclined to the Edges

A plate such as that shown in figure 1 is supported along its edge in
a prescribed manner and is subjected to a distribution of load normal to its
faces. The procedure to be followed in obtaining the differential equation
satisfied by the deflection w is identical with that used in mimeograph
Noes 1312 in obtaining the corresponding differential equation for the case
in which the edges of plate are parallel or perpendicular to the grain,
The notation of mimeograph No. 1312 will be used. Reference is made to
appendix 2 of thet report for an explanation of the significance of the
steps taken in the derivation of the differential equation.

For small deflections, the strain components have the values:

> o= - Bzw o = -, 82w
é:é: agz ! 77’7 . D’T}
2 (14)
- m 9y O w
€n 3&3m

In each ply, equations (1) connect the strain components at a given'
point in thet ply with the stress components at that point. In the
coeffici?EPs 811y 8ppy === agz, the constants E,, E, Eky, :
T yxs and Fxy 2re to be replaced by the constants E, Ey, “xy? Ty
Fxys respectively, of the ply in question. On solving equations (1),
interpreted as just described, the following equations are obtained:

«s and

tff = bll efé: ok b21 & + bSl o

t

m P12 °g¢ * P2z °my * Paz oy (15)
ben = Prg egg * oz eqp * g ey
where bij = Aij /A (16)

and A is the determinant of the coefficients of (1) and AiJ is the cofactor

of the element a, ij of A,
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On substituting (14) in (15) the following expressions are sbtained

for the stress components at a given point in a given ply

2 2
b w 9% w
tep = = 2(b +b + 2bgzy

&5 11 agz 21 . 2 o
(b —-——gaz R 3—-——-—2 X+ 2b az——-
. == - Z + —
2 2 2
3w 3 0w 9 W
t, = ~-2(b +b + 2by,
&) 13 agz 23 “"‘;‘Zn 3 €D

(17)

The bending and twisting momentsé are obtained by integrating the products
of z and the various stress components over the thickness of the plate.

Thus,

h/2
mg = J/ 1:_;_- z d gz =

-h/2
Then
. '52 - . v2 " - '«_12 -
m = - —_— - = - ==
£ 11 sz 21 an 8l 29
. 32 w . a2 w 32 w
m Y = -
M i2 sz 22 an 32 3£3
_ :i? v B ::,‘Z_W 9B _(3_2 w
Tgn = = P13 A N S Y
h/2
where -

A

(18)

(19)

—Mimeograph No, 1312, page 36 and figure 29.
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The components of vertical shearé are given by the equations:

' ?mé_ Omé:.}7 ’ an Bmf,q
Peg = 35—+ — P, = + (20)
S a'f 377 n 377 35
Then
B 1 5 |
33 w 5 ___i_my + B o w
e = = P11 77 *(Byp + 2Bgg) 2 B e, | 28 3B
2 © 3£ 3¢ * o K
: - 3 3 33, ((21)
P 37w 3T W B o~ W \
p, = = |B, + 2Bg5) + B t Bz m—g * By 3
m 20788 aglen P S, B ot 3¢

The condition for equilibrium of forces mormal to the plate leads to the
equation:
9 D& 3 0
S5 Py = -p 22y
of o7

where p is the normal load per unit area.

The substitution of (21) in (22) yields the final faorm of the differential
equation for the deflection of the plate:

4 4 4
3" w L A w 27 w
B — + 4B, + (2B + 4Bg,) - + 4B, —
11 3l 12~ *733 3
det 3 33y 223 2£ 9378
(23)

A more direct drivation of equation (23) consists in starting with
the different%al equation of the plate as referred to the axes OX and OY.
This equation— is

EMimeograph Vo, 1312, page 37 and figure 29,

EMimeograph Nos. 1312, Appendix 2, where the differential equation is
derived and the coefficients Dy, Dy, and K are defined,
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= p (24)

If the independent variables are changed to & and 7 by the transformation
(13), the following differential equation is obtained:

2 %

Dy cos® 6 + 2K sin? P2 cos? 6 + Dy sin48] Chl.

t

B : - : A%
+| 4Dy sin 8 cos® 6 + 4K sin 6 cos & (sin2 6 - 00529 ) - 4Dy Sin3 @ cos c’-’Ja -

b

+16Dq sinze c’osB g + 2K (siﬁq’ 6 + cos4 g - 4 sinz 6 coszg)
-

+ 6D inzf) c 29 ' quiw
8 o ——
P S 352 3772

- . .
+ I_xlDl sin” @ cos@ + 4K sin 6 cos 6 (00323 - sin @)

4
~4Ds sin @ 0033 8 _.3__"‘_3
g 31
2 ~4 . . o5
+ E)l sin46 + 2K sin & 00329 + D2 00548‘, . a% Z = p (2
a7

It seems desirable to have both forms (23) and (25) of the differen-
tial equation., Without doubt the form (25) is the easier one to use as the
coefficients are readily determined from Dy, Dy, K, and 6. It is, however,
useful to have available the expressions for the bending and twisting
mom<znt§ given in (18) and those for the components of vertical shear given
in (21).

3. Buckling of a Plywood Plate under Forces in Its Plane.,
| Grain of Face Plies Inclined to.the Edges

Consider a plate of thickness h, having the grain of the face plies
inclined to the edges as in figure 1. The plate is under the action of

| compressive or tensile forces and shear forces in its planes. Certain con=-
ditions along the edges of the plete are prescribed. For example, the
edges may be simply supported or they may be clampeds It is desired to
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determine the conditions under which the plate will become unstable and
buckle from its planes. The differential equation for the deflection of the
middle surface of the plate from its plane can be written, when referred to
the axes OX and OY of figure 1, in the form:

4 4 4 -2 2 2
) o if .
Dy S+ 20 =S e pp 2T (e, ST b STk 2, ) (26)
ox 2 x” 3y Y 3x Y Toax Dy

’

When txx and t__ are positive, they denocte tensile stresses,

Yy
Equation (26) has been used in a number of papers dealing with the buckling
of plates of orthotropic material. It is readily obtained from the corre-
sponding equation for plates of isotropic materialsz by replacing the
expression

w 34w
+ 4)
Ay

4 .
D (2 123 5
" axt T axf oy

by the left-hand member of equation (24),. If the independent variables in
(26) are transformed in accordance with equation (13) so that the new
independent variables are the variables & and 7 referred to axes parallel
to the edges of the plate as in figure 1, the left-hand member of equation
(26) becomes the left-hand member of equation (25) while the right-hand
member becomes

2 52

3w

32
e + 2t
m :,}772 (f'f) aé_«—an

LR
352

h (tzg

\
If the left-hand member of (25) is denoted by L(w), equation (26) after
transformation to the new axes hecomes:

2 2 £
2 3w I,
L =h G 4 P T e e’
(w) (téf'*7£?g LTm 2 Ztgﬂ B 3 ) (27)

In the cases to be considered in this report, certain of the stress
components tﬂf’ tﬂﬂ’ and\tén have constant values while the remaining
component or:bomponents vanish., The probiem of determining the critical
buckling stress from equation (27) and appropriate boundary conditions is

ZSee, for example, Timoshenko, S., Theory of Elastic Stability., Equation
(197), page 305 and equation (209), page 324,
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much more difficult than the corresponding problem for equation (26)
4 4 4
3 3" w_ .,
because of the presence of the terms containing JS Y and Ay in L(w)

) AE & an 0o g
in equation (27). Consequently, as in numerous prgﬁ%gms of elastic stability,
an energy method is used to obtain approximate solutions. This consists in
assuming a reasonable form for the buckled surface and equating the strain
energy of bending of the deformed plate to the_work done by the applied
forces acting in the middle plane of the plate= in producing the deformation
of the plate, .

The method will be applied to an infinitely long plywood plate under
uniform compression, uniform shear, or combined uniform compression and
shear in order to give some of the details of the derivation of the formulas
published in Mimeographs 1316 and 1316C, For definiteness, all plies will
be taken to be rotary-cut, The notation is that of figure 2 where p denotes
the uniform compressive stress and q the uniform shearing stress, For
plates with simply-supported edges, the form of the buckled surface is taken
to be represented by the equation

w = H sin i sin%r(n-’}’f) (28)

where w denotes the deflection of the middle surface from the plane of the
plate; a the width of the plate; b the half-wave length of the buckled
surface, that is, one~half the distance within which the phenomenon repeats
itself; and y = tan ¢, the angle ¢ being the inclination of the buckling
wrinkles to the axis 0&, (See page 17.)

First, axes of reference 0X and OY are chosen parallel and perpen-
dicular, respectively, to the grain of the face plies., With respect to
these axes, the strain energy of bending is represented by the integral—=

B hs J J By ( 82 w 2 + B, ( 32 w)2
¥ g 1RE 5N e
2 2 22 (29)
t2on d %’. 27w, N (_..?.._.YV. dy dx
' 9x Byz ox Jy

where E; and Ep are defined as in mimeograph No. 1312 and A= 1 = o1 O,

The integration is to be taken over an area of width a and of iength b

§See Timoshenko, S., Theory of Elastic Stability, pages 78, 325,
EMimeograph No, 1312, page 46, equation (3.21),

Restricted Mimeo, No, 1507 w]lee




parallel to the sxis 67, As written, the constants in (29) are those for a
plywood plate made of rotary-cut veneers of wood of the same species through-
out. Suitable modifications can be made for plates of other constructions.

On changing the axes of reference from OX and OY to Of and On by
the transformation (13) the integral for the strain energy of bending over
one half-wave length becomes:

a b

3 2 2 a2, B 2 .. 2.
V=B [ K, (2 5 + Ky () + T g L—
24\ 3¢ 37 CISCL
°° (30)
2 = 2 2 2 2 2
3 W ¥ w 3w dw 9w
+ Ky (T5—) + Ky~ + X - dn ag
1 5¢20 5 af v4am 8 a2 3

where 3

K1 = E1 cos4 6 + E2 sin4 6 + 2A sinz 6 0052 o
K2 = E1 Sin4 g + Ez cos4 6.+ 2A sin2 & cosz €
K, = 2E sin2 G cos2 8 + 2E sin2 6 cosz.é + 2(sin4 g + GOS4 f) E e
1 2 : T. ° TL
8 sin® & 0os° @ A

- sin cos My ’ (31)
K4 = 4E1 sin2 o) cos2 6 + 4E2 sin2 6 cos2 G - 8 EL‘UTL sinz 6 cos25

+ AN ppp (sinz § - cos? 9)2

.. 3 . 3

Kg = 4(E1 -~ A) sin” @ cos 6 - 4(E2 - A) sin 6 cos” @

Kg = 4(B; - A) sin @ cos® 6 - 4(B, - A) sin® 6 cos 6

A =B op + 2Ny
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On substituting (28) in (30), using the abbreviations

-7 g T
@z Py (32)
and performing the integration, the value of V is found to be:
B2 apn® 4 2 022 . o4 Ay L oo a4
TE e [ (@T v 62 B YT+ BT YY) + K B
' (33)
4 : 2 2 2 2
+ Ry B (a® + FoP) - Kg Yy - Kg Py (3a +,37J:}
where
Ry =Kz + Ky
(34)

6(E1 + E2) sin® 8 cos® @ + 2A(sin4_ﬁ Yeoste -4 sin® 8 Cees 6)

Under the uniform compressive stress p the work done by the externsal
forces during buckling is given by the integral:

' . a b =

; 2 ,
T=p%Jr J(-B_—;V)-ﬂn ag : _ (35)
(o]

On substituting (28) in (35) and performing the integration it is found
that:

T=phB 2ab /8 (38)

Equating T and V, solving for p, and using (32), it follows thaty
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4 K 2
il . el 2, ¥ e . Y X
~ — E, (27 +64%¢ 45) + 5+ R, (1 +%~) ~K
P =T 1 ¢ yrz ,2 1 Zz) 5,2
3 2 (37)
- K. (By + 2| &
§ =Y 2 N
Z a
where
z = 2
a

Now 7y and z must be determined to make p a minimum,

From the relations Bp/a z = 0 and EP//By = 0, the following equations
are obtained:

2 3
K + R - K -
4 4 2 17 57 "% 7

2> = ¥Y* 4+ (38)
Ky
5K y% + K. = 2R,y - 4K, 3
5 8 5 1 17 (39)
z =
12Ky - 3K,

Values of z and <y are to be found by solving the simultaneous equations
(38) and (39). These values are then to be used in equation (37), Before
making the substitution, it is advisable to collect the terms in (37) that
contain the factor 1/z° and make use of (38), Then (37) becomes
2
2 2

7 = 2 h
p=-——| 2K 2% +6K 9" + R -3k y| = (40)
12}\ 1 1 1 6 a

Under uniform shearing stress q, the work done by the external forces
during buckling of the plate to the form (28) is given by the integral

a b
T=-thj 0% 0 4 af . (41)
J ¢ 9
0 O
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Using (28), it is found that

T=qunu gy 82 | (42)

The expression (33) for the strain energy of bending, V, is unchanged. On
solving for g the result of equating T and V, it is found that

X 2
7 -2 ;2 Y 2 Y
= K, (2° + 84° + =) + = + R, (1 + =)
! 240y 1 Y 22 42 1 52

(43)

Do

D

a

‘e

2 |
Zz 2

The quantities  and 2z are to be determined to make q a minimum. F?om the
relations 3g/3z = 0 and dq/¥y = 0, the following equations are obtained:

2 )
K2 + Rl Y - Ksy - Ke)

=ty : (44)
1
4 3
- - i
2 Pyt Bh Y - RSy E Y (45)
2
6K1 y© - R1

The minimum value of q is obtained by substituting in (43), the values of
z and vy obtained by solving the simultaneous equations (44) and (45).
Before the substitution is made, equation (43)_should be simplified by
collecting the terms containing the factor 1/z° and making use of (44),
The simplified form of (43) is:

2
m
no=

2
h
[%Kl 22 4 6K17/2 + Ry - SKRE} - (46)
24 Ny -

[
L

In the case of combined uniform compressive stress p and uniform
shear stress g, the work during buckling of the combined system of external
forces will be the sum of the expressions (36) and (42). Then

Restricted Mimeo, No, 1507 »15w




7 _E hab ﬁz o qul (47)
8 |
Let e = fp (48)
Then 2 2
8

The cxpression (33) for the strain energy of bending, V, is unchanged,

. On solving the result of equating the expressions for T in (49) and
V in (33), it is readily found that

2 " s K 2
p = m Ky (ZZ + syz + ZE ) + > + Ry (1 +?%5)
12A (1 + 2£y) z z z
(50)
2 2
4 ¥ h
- K = - Ky (3 +5)| =
5,2 6 =5 22

The quantities o and z are to be determined to make p a minimum. From the
relations ap/éz = 0 and Bp/57'= 0, the following equations are obtaineds

K, + RI'yz - K Y- K673
[ =Yy + (51)
S

2 N
o 4K £ - 4R (5 + £yt) - 2Ry Y+ Kg(1 - 2) + Kg (3 4 267)
Z -

2
12Ky (y+ £y°) = 2Ry f - 3Kg (52)

/

The values of z and v obtained from the simultaneous equations (51) and
(52) are to be substituted in (50). Before this substitution (50) sheuld

- be reduced to the following simpler form by collecting the terms containing
the factor 1/z2 and using (51):

72

. -
i 2 2 h
|:2K1 2% + 6Ky ¥° + Ry - 31(67:‘ z (53)

T 12a (1 + 29y)

P
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The critical value of q is found from (48) and (53) since the particular
combination of shearing and compressive stresses given by (48) has been
assumed.

In the cases that have been considered, those for which the grain
of the face plies is inclined at an angle © to the direction of the width
of the plate, it is to be carefully noted that the constants Ej and Ep
which enter into the definitions of X3, K2, etc. represent the mean Young's

moduli in bending of strips parallel and perpendicular, respectively,
to the grain of the face plies.

Attention is again called to the fact that the formulas for the
buckling of plates with inclined grain were obtained by an enérgy method and
are consequently to be considered approximate. In particular, the surface
assumed in equation (28) which forms the basis for the derivation of these
formulas, appears to represent quite well the form of the buckled surface
‘although it does not satisfy one of the boundary conditions for simply sup-
ported edges, namely, that the bending moment shall vanish along the edges
of the infinitely long plate. However, in the case of an infinitely long
isotropic plate having simply supported edges and buckling under uniform
shear for which case an exact solution is available, the assumption of this
form for the buckled surface leads to a buckling stress that is only about
6-1/2 percent higher than the exactly determined value,l0 It may reason-
ably be assumed that the effects of the edge moments that are associated
with a buckled surface of this form will be of the same order of magnitude
for the problems that were considered in Mimeographs 1316 and 1316-C and
again in the latter part of the present report, The small effect of these
edge moments as found for isotropic plates under shear and as expected in
the problems under consideration is undoubtedly associated with the fact
that the moments in question vanish at points where the crests and troughs
of the waves of the surface described by equation (28) meet the edges and
that their average value is zero over a segment of an edge bétween points
on two consecutive nodal lines and over any full wave length.

lE)--T:‘Lmosherﬂco, S., Theory of Elastic Stability, pages 360, 36l.
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Fl6. /
RECTANGULAR PLYWOOD PLATE
WITH GRAIN OF FACE PLIES
INCLINED TO THE EDGES.
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Fl6. 2
LONG PLATE UNDER COMPRESSION AND SHEAR.
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