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RECTANGULAR PLYWOOD PLATES WITH THE GRAIN OF THE

FACE PLIES INCLINED  TO THE EDGES!

By

H. W. MARCH, Head Mathematician

The purpose of this report is to present: (1) material on the elastic
behavior of plywood plates that has furnished the basis for mimeographed
reports that have been issued by the Laboratory and also, (2) related
material that can be used in solving other problems that arise in connection
with such plates. Under the first heading, but given last in this report
are the details of the analysis in the application of the energy method to
the buckling of long flat plates, the results of which were published in
mimeographs Nos. 1316, 1316-B, and 1316-C. In this connection, it has
seemed worthwhile to give the differential equation of buckling for a plate
having the orthotropic axes of the plywood inclined to the edges, for the
purpose of comparison with the corresponding but simpler differential
equation for the buckling of a plate having the orthotropic axes parallel
to the edges.

Under the second heading are given the basic differential equations
for the stress function for a plate in a state of plane stress under the
action of forces in its plane and for the deflection of a plate under a load
normal to its surface. The first of these differential equations is needed
not only for studying the stress distribution in a plate with a given distri-
bution of forces on its edges,including concentrated forces, but also for
studying the effects of holes in the interior of large plates. The second
differential equation furnishes the basis for determining the behavior of a
plate under a load normal to its surface and subject to prescribed conditions
of support on its edges. From one of the coefficients of this equation it
is possible to calculate the flexural rigidity of a broad strip of plywood
having the grain of the face plies inclined to the edges. The steps taken
in deriving this differential equation are also useful in making approximate
estimates of the behavior of plywood plates which are not of the typical
construction assumed in this report.

Subject to certain assumptions that are made concerning the structure
and elastic behavior of plywood, the analysis used in this report involves
only the standard procedures of the theory of elastieity and no claim for
novelty of treatment is made. However, it is hoped that it will be helpful

!This mimeograph is one of a series of progress reports prepared by the Forest
Products Laboratory to further the Nation's war effort. Results here
reported are preliminary and may be revised as additional data become
available.
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to have this material made available in a form directly applicable to plywood
plates. The assumptions are the same as those of previous mimeographed
reports of the U. S. Forest Products Laboratory 2 . In particular, it will be
assumed that the construction of the plywood plate is symmetrical with respect
to its middle plane. The notation is chiefly that of U. S. Forest Products
Laboratory mimeograph No. 1503. When notation is used that is not found in
that publication, references to other publications will be given.

1. Plywood Plate under the Action of Forces 
in its Plane. No Buckling. Grain of
Face Plies Inclined to the Edges 

Consider a rectangular plywood plate in a state of plane stress under
the action of a system of forces acting on its edges and in the plane of the
plate. The grain in the face plies makes an angle 0 with the direction 06-
as shown in figure 1. The axes (:)' and 077 are parallel to the edges of the
plate while the axes OX and OY are parallel and perpendicular, respectively,
to the grain -of the face plies. The angle 0 is the negative of the angle 0
used in mimeograph No. 1503. As in mimeograph No. 1503, the stress com-
ponents are denoted either by Xx , Yy , Xy , or by txxs tyys txys whicheverby
notation seems most convenient. The state of stress being one of plane
stress, the remaining stress components vanish. The strain components are
denoted by exx, eyys exy.

The linear relation between the strain components e t,t , e, er , and
7717	 671

the mean stress components	 tn,77, t6.77 as referred .to the axes 06 , On
will be written as in equation (40) of mimeograph No, 1503 in the form:

ea all t66	 a12 t7171 a13 te77

a21 t 6	 a22 t7]%1 a23 t:,7
	 (1)

e
	 - a31 tE + a32 tor) 	 a33 t,57)

The values of the coefficients a ll , a22 ,	 , can be obtained from

equations (42) - (47) of mimeograph No. 1503 by using instead of Ex , Ey,

and the Poisson's ratios, the effective moduli and Poisson's ratiosxy,

that were found in that report for plywood in a state of plane stress. The
angle 0 in figure 1 is the negative of the corresponding angle in mimeograph
No. 1503. Consequently, terms containing odd powers of sin 9 have signs
opposite to those of the previous report,

-Mime ographs-Mimeographs Nos. 1312, pages 6, 7; 1316, pages 17, 18.
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For plywood for which all plies are composed of the Same species of
wood, E, E	 , and o- may be replaced with sufficient approximation byx, TY, yx and xy
Ea , Eb , ayx ,:i-- xy , respectively, as defined in equations (53), (55), and (60)

of the previous report. If the veneers are composed of wood of different
species, the constants defined by equations 	 (65),	 (70),	 (75),	 (76), and
(63)'of the previous report may be used in all ordinary cases.

The coefficients all, 	 a33 of equations(1) have the following
values:

oos 4 e	 sin4	 yx sin2 9 cos t 0
a ll = Ee =

(2)- 2 sin2 6 cos 2 8Ea	 4-	 hb	 Eb
xy

1
a22 = E

sin4 e	 cos 4 9	 2	 °yx
- 2 sin2 6 co

sin2 0 cos t e
0Ea -	 Eb	 Eb -7xy

1
= 4

sin2 9 cos2 9	 sin2 9 cos 2 9 2	 __12]sin2 6 cos	 6	 -
'b

a 33 =33	 kt
5Th

+ 2Ea	Eb

(00s 2 0	 sin2 
9)2 ( 4)

crre _	 cr.77

a 12 = a21 =	 E

asin2 6 cos t 6	 sin2 6 cos t 6	 4	 4	 yx
Eb
	cos U + sin a) -7

Ea	
b

sin2 6 cos 2 0 

xy

2 sin 6 cos 3 0 2 sin3 9 cos e 61rx

a13 = a31 =	 + 2 sin 6 cos 6(cos2 0 - sin2 6) -===.
Ea	Eb	 Flo

sin 9 cos e(cos a	 sin2 0)
	

(7)

xy

(5)

(6)
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(8)

(9)

n

•

2 sin3 
6 cos 6 2 sin 6 cos 3

=a 32=a23	 0	
(cos t
	 2	 cryx

2 sin 0 cos 0 cos e - sin u/a2 

\
sin 0 cos 0(cos

2
	- sing 6 / 

/4 xy

The equations of equilibrium for the mean stress components are:

at^y 	 at 
6-77 o

)77

at	
7777
	  - o

7377

where ta 	 trui = Yy , t,17 = Try

These equations are satisfied if the stress components are considered to be
obtained from a stress function F in accordance with the following equations:

	

D 2 F	 -6
2 F	 "0 2 F

t	 =	 t =	 t
6"4 	 .a7.12	 77,7	 e7,73

3
The strain components must satisfy the following equation of compatibility-:

2	 2	 2

	

+ `)	 e7771 _ 	 e'77	 (11)
2	

e2	 .,„;7.17

If the expressions (10) for the stress components in terms of the stress
function F are introduced into (1) and the results are substituted in (11),
the following differential equation for the function F is obtained:

a 4 F
' 4 F

.
4 F

a22 	 2 a23 	  + (2a	 + a )	 2 —2- .- 2a12	 33 4	 23 
76 

3	
-66 .677	 13 aka

,4
0 F

a ll ---T - °
.377 

Love, A.E.H., The Mathematical Theory of Elasticity, Art. 17; Timoshenko,
S., Theory of Elasticity, Art. 12.

Ea	 E
b
	Eb

(io)

(12)

Restricted Mimeo. No. 1507	 -4.



This equation is to be solved subject to suitable boundary conditions which
for a given problem are satisfied by the stress components.

The differential equation (12) could also have been obtained by first
finding its form when the strain components and the mean stress components
are referred to the orthotropic axes OX and OY of figure 1 and then changing
the independent variables from x and y to 6 and 77 by the linear transformation

f = x cos 0 -y sing	
( 13 )

=x sin 0 + y cos 0

The first steps in this procedure will be outlined.

The following relations connect the strain components and the mean
stress components when referred to the axes OX and OY:

1	 cryx
e	 - -	 Yxx E x	 Eb ya 

1
e	 -	 -f -	 -5 -c x
YY Eb Y	 Ea

1
e - =-- Xxy a	 y

xy

On expressing the mean stress components in terms of a stress function F and
using the equation of compatibility (11) as written for the strain components
referred to the axes OX and OY, it is readily found that the stress function
F satisfies the differential equation:

	

1 'a
4 F	 (_1 	 2c;ybx) :x4 F 	 4_	 -a,a4yF

- 0

	

Eb Bx4	/7xy	
2 

3 
2	 Ea	4
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Equation (12) is then obtained by changing the independent variables from x
and y to ; and 7) in accordance with the linear transformation (13).

2. Plywood Plate under a Load Normal to its Faces.
Grain of Face Plies Inclined to the Edges

A plate such as that shown in figure 1 is supported along its edge in
a prescribed manner and is subjected to a distribution of load normal to its
faces. The procedure to be followed in obtaining the differential equation
satisfied by the deflection w is identical with that used in mimeograph
No. 1312 in obtaining the corresponding differential equation for the case
in which the edges of plate are parallel or perpendicular to the grain.
The notation of mimeograph No. 1312 will be used. Reference is made to
appendix 2 of that report for an explanation of the significance of the
steps taken in the derivation of the differential equation.

For small deflections, the strain components have the values:

2
w

2
w

2
e	 = - Z	 e	 =	 z

777/S6 2 ' -077

2
w 

e6.77 = - 2z
3f '37)

In each ply, equations (1) connect the strain components at a given
point in that ply with the stress components at that point. In the
coefficients a11 , a22 ,	 a33, the constants Ea , Eb, xy,

, and 71 - are to be replaced by the constants Ex , Ey, axy,yxl andyx	 xy
ihxy , respectively, of the ply in question. On solving equations (1),

interpreted as just described, the following equations are obtained:

ta = b11 e, 	 b21	 + b31 (3.77

trm	 b12 e "
 

b22 en. + b32 e77	 (15)

t77 - b13	 + b23	 + b33 ej.71

where	 b.. = A.. /A
	

(16)

and A is the determinant of the coefficients of (1) and A ij is the cofactor
of the element a 1 . of A.ij
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On substituting (14) in (15) the following expressions are obtained
for the stress components at a given point in a given ply:

2

	

D w
2 w	 w

=	 z%ull	2 	 b21	 2 + 2b31 	

	

r") .-77	 .36

2

	

d
2 

W	
2 

w ,	 ,
	  + 2b32	 	 71 )t -777)	 z (b 12	 b22

Z.r?

t	 = - z(b 13

2
 w	 .

2	 2 
w 

."r?	 2 + b23	 + 2b 33	 )

The bending and twisting moments-4- are obtained by integrating the products
of z and the various stress components over the thickness of the plate.

Thus,

	

h/2	 h/2

z d z	 ni77 =	 zdz

	-h/2	 -h/2

(17)

h/2

m4:77 =	 f	 te77 z d z .

-h /2

= - B112 - 2B31 _a 4.. 7)77	  - B
.6e

2 	 B 21

... 2,	 Z 
2 

w	 cl w	 'a
2 w

17177 = - '12 --7 - B22 7377 2 - 2B 32 ..ay 
a77

-1 2 w	 d w	 0	 -a w
m77 = - B 13 -----,e2.-- - 323 ---i 	

n
---712 - '33 73 ,5 -., 77

h/2

iiB.. = B. =	 h. z 2 d zB id	 Bpi

-h/2

Then

where

.a2 w	 _ 2
w w

(18)

(19)

4
--Mimeograph No. 1312, page 36 and figure 29.
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The components of vertical shears are given by the equations:

10,c =	 P

a me:	 a rn	 'am	 am p
 77

77	 D77
	 (20)

Then

I3

-	 R D
3 

w-11
D6' 

7 +032 + 2B33 ) -----T + 3137,
a

D
3
 w

a6"-Z77	 oi-	 e a,
w 

+ B23 a 3
? w  j

77

__

P

a3	 ,a.	 3

= - [(1312 .+ 2B33 ) ' 2 w + B22 	 11° + B,	 --7 + 3B23? w	 a 3 w 
77	 22 ----g	 1	 .3.,5

-a-ri 	 ?77 ,	 D6-D-r7
2

The condition for equilibrium of forces normal to the plate leads to the
equation:

air 	 ap77

- P
aC 	 DT)

where p is the normal load per unit area.

The substitution of (21) in (22) yields the final form of the differential
equation for the deflection of the plate:

,3 	
D 4 w

4	
a"

?
4 

w 4B3	 w  + (2B12 + 4B33 )
4 
w 	 + 4B23 	

a a 7)3
B 11 	 +

?
2
a 77 

23 Thrl

a4 w•D	
71	

p22	 4

A more direct drivation of equation (23) consists in starting with
the differential equation of the plate as referred to the axes OX and OY.

equation— equatio.1 is

-Mime ograph—Mimeograph No. 1312, page 37 and figure 29,

Mimeograph No. 1312, Appendix 2, where the differential equation is
derived and the coefficients D	 D 2 , and K are defined.1/	 2/

(22)

(23)

(21)
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D 1	 + 2K 	
4 w 	4

Dx	 .3x	 y	 a Y

4	
2	 2 +D 2 -----

4 w4

4 -P

If the independent variables are changed to 6" and 77 by the transformation
(13), the following differential equation is obtained:

[D.1 cos 4 0 + 2K sin2 0 cos2 0 + D 2 sin4
0 

	 4 w

Zf 
4

'1. w
+ E4D i sin 0 cos 3	+ 4K sin 9 cos 6 (sin2 9 - cos

2
9 ) 4D2 sisin e cos 0	

71

D4-3 -671

6D 1 sin2[	 0 c os 2 0 + 2K (sin4 0 + cos 4 0 - 4 sin2 9 cos t 9 )

It	 + 6D 2 sin2 0 cos20

4

-a777

,	
)+ 4D 1 sin

3
 0 cos 0 + 4K sine cos 9 (cos ? 0 - singe

	
e )[ 

-4D2 sin 9 cos3
4 w

(24)

+ D 1 sin
4

0 + 2K sin
2 

9 cos
2
 0 + D2 cos

4
0[

*
- P

(25)

It seems desirable to have both forms (23) and (25) of the differen-
tial equation. Without doubt the form (25) is the easier one to use as the
coefficients are readily determined from D 1 , D 2 , K, and 8. It is, however,

useful to have available the expressions for the bending and twisting
moments given in (18) and those for the components of vertical shear given
in (21).

3. Buckling of a Plywood Plate under Forces in Its Plane.
Grain of Face Plies Inclined' -Co the Edges 

Consider a plate of thickness h, having the grain of the face plies
inclined to the edges as in figure 1. The plate is under the action of
compressive or tensile forces and shear forces in its plane. Certain con-
ditions along the edges of the plate are prescribed. For example, the
edges may be simply supported or they may be clamped. It is desired to
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determine the conditions under which the plate will become unstable and
buckle from its plane. The differential equation for the deflection of the
middle surface of the plate from its plane can be written, when referred to
the axes OX and OY of figure 1, in the form:

2	 2

	

';4 w 4 
w

4 
w	 w	 B 

2 
WD i	+ 21C	 4	

x"

	

- h(txx 	 2 + tyy	 2txy 	 v)	 (26)

	

)c‘*	 x
2 

"ay2 
+ -2	Dy	 aY2	 y

When t	 and t	 are positive, they denote tensile stresses.

	

xx	 YY
Equa€ion (26) has been used in a number of papers dealing with the buckling
of plates of orthotropic material. It is readily obtained from the correr
sponding equation for plates of isotropic materialei by replacing the
expression

D	
4	 ,.)„ 4 w( a 

4 
W ry	 W

+ 6	 •n•".•••••••

	4-	 2	 2	 4
73)t	 'ay

	by the left-hand member of equation (24). 	 If the independent variables in
(26) are transformed in accordance with equation (13) so that the new
independent variables are the variables 6 and ? referred to axes parallel
to the edges of the plate as in figure 1, the left-hand member of equation
(26) becomes the left-hand member of equation (25) while the right-hand
member becomes

2	 2

	

+ 2.* 	
Tv. )

h (	
2

W2	 7777 _ 2
camt

	 77

If the left-hand member of (25) is denoted by L(w), equation (26) after
transformation to the new axes becomes:

2	 2	 2
w ,wL(w) = h (t,/: C1aS .67M 	 2	

41

In the cases to be considered in this report, certain of the stress
components t"., t , and't

J77h
ave constant values while the remaining

7771
component or components vanish. The problem of determining the critical
buckling stress from equation (27) and appropriate boundary conditions is

See, for example; Timoshenko, S., Theory of Elastic Stability * Equation
(197), page 305 and equation (209), page 324,

(2 7)
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much more difficult than the corresponding problem for equation (26)
4 

w	
4

73 	 rt	because of the presence of the terms containing	 and	 ---	 \ IN)

.3 73	 -C)713

in equation (27). Consequently, as in numerous prolbldms of elastic stability,
an energy method is used to obtain approximate solutions. This consists in
assuming a reasonable form for the buckled surface and equating the strain
energy of bending of the deformed plate to the workdone by the applied
forces acting in the middle plane of the plata- in producing the deformation
of the plate.

The method will be applied to an infinitely long plywood plate under
uniform compression, uniform shear, or combined uniform compression and
shear in order to give some of the details of the derivation of the formulas
published in Himeographs 1316 and 1316C. For definiteness, all plies will
be taken to be rotary-cut. The notation is that of figure 2 where p denotes
the uniform compressive stress and q the uniform shearing stress. For
plates with simply-supported edges, the form of the buckled surface is taken
to be represented by the equation

w = H sin 71. s in Z ( -	 )
	

(28)
a

where w denotes the deflection of the middle surface from the plane of the
plate; a the width of the plate; b the half-wave length of the buckled
surface, that is, one-half the distance within which the phenomenon repeats
itself; and y = tan q, the angle 4) being the inclination of the buckling
wrinkles to the axis	 (See page 17.)

First, axes of reference OX and OY are chosen parallel and perpen-
dicular, respectively, to the grain of the face plies. With respect to 9
these axes, the strain energy of bending is represented by the integral-

h
3

, 2 
Tv,

2
, 75 2 w, 2

f	 El y----•-7 )	 E2
-.24 X	 x	 y

w	 1.1.+ 2 cr TL " w + 4k
22	 L	 z x ")	 dy dx

y

2	 2

where E l and E 2 are defined as in mimeograph No. 1312 and X= 1 °LT crTL°

The integration is to be. taken over an area of width a and of length b

-See Timoshenko, S., Theory of Elastic Stability, pages 78, 325.

2Mimeograph No. 1312, page 46, equation (3.21),

(29)
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parallel to the axis 077. As written, the constants in (29) are those for a
plywood plate made of rotary-cut veneers of wood of the same species through-
out. Suitable modifications can be made for plates of other constructions.

On changing the axes of reference from OX and OY to OS and 0• 7 by
the transformation (13) the integral for the strain energy of bending over
one half-wave length becomes:

a 1
.;)2	 2	 2	 ,2w	 r	 Vit

+ K2 (	 	 + K3 	 2	 2
a 77

h3

f	 J K1

,a 
2 , 2

24X C'

0	 0

+	 K •

4

2
w

2
,

2

3 6. z 5

where

(30)

22 
w	 '3

2 
w	 a w

+ K5 	d de
z	 -,,62o	 'a 77

K 1 = E 1 cos 4 6 + E2 sin4 0 + 2A sin2 0 cos2 0

K2 = E1 sin
4
	E2 cos

4 
0-+ 2A sin

2 
0 cos t

 
0 6 +

K3 = 2E 1 sin
2 
6 cos

2 
6 + 2E2 sin

2 
6 cos

2
 6 + 2(sin

4
 6 + cos

4
 0) °TL

- 8 sin
2 

6 cos t 0 XµLT	 (	 (31)

K4 = 4E 1 sin2 6 cos 2	 + 4E2 sin2 0 cos 2 6 -4	 1	 2	 8 EL cTL sin2
 0 cos2

4X ALT (sin2	 cos2 6) 2

K5 = 4(E1 	A) sin3 
0 cos	 - 4(E2 - A) sin 0 cos 3

 0

.K = 4 E - A) sin 9 cos 3 6 - 4(E2 - A) s in3 9 cos 06	 ( 1

A = E
LTL 

+ 2X
LT
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(34)

= 6(E1	E2 ) sin2 9 00s2 9 + 2A(sin4 e + cos4 9 - 4 sin2 e cos2 0)

R1 = K + v
1	 -3	 K4

On substituting (28) in (30), using the abbreviations

(32)

and performing the integration, the value of V is found to be:

H2 abh
3

v 	 907Kl (a4 + 6 a 
2 

0
2 

Y
2
 /

34 
Y4 ) + K2 /34

(33)

( a2
	

y2)
	 ,,4	 2	 2	 2+ R1 k2 (a + p	 ) - K 5 p y - K6 /3 y (3 a 2 +0 y`)

where

Under the uniform compressive stress p the work done by the external
forces during buckling is given by the integral:

a b

rT	 I

0 0

On substituting (28) in (35) and performing the integration it is found
that:

2 ,2
T =phi' p ab / 8

Equating T and V, solving for p, and using (32), it follows that;

2inr\
) (35)

(36)

Restricted Mimeo. No. 1507	 -13-



Tr 
2	 4	 K2	 2

p —	 K1 (z 2 + 6 7'4- ;) + — + R (1 + 2/ ) K 
212 X	 z2	 1	 z2	 5 z

- Ks (3), + y
	 h2 	(37)

z	 a

where

z = 
—a

Now yand z must be determined to make p a minimum,

From the relations 3p/c) z = 0 and app ay
are obtained:

= 0, the following equations

4	 4 K
2 

+ R
1
y2
	K

5
y - K

6 
y3

z = 'Y +
K

	

3Ky 2 + K5 - 2R1 y	 4K1 y 3
2
z-

12K1y	 3K6

Values of z and y are to be found by solving the simultaneous
(38) and (39). These values are then to be used in equation
making the substitution, it is advisable to collect the terms
contain the factor 1/z 2 and make use of (38). Then (37) beco

equations
(37), Before
in (37) that

mes

p -	 iK1 z 2 + 6K1 y2 
+ R1 - 3K6 y1 7

12X

	

77 2 [	
h 

2	
(40)

Under uniform shearing stress q, the work done by the external forces
during buckling of the plate to the form (28) is given by the integral

a b

	

T,= -qhf	 w al?	04.
a 77 

, „	
(41)

0 0

(38)

(39)
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Using (28), it is found that

T = q h H
2	 2 y ab
	

(42)

The expression (33) for the strain energy of bending, V, is unchanged. On
solving for q the result of equating T and V, it is found that

y 4	 K
2	2TT

2
' 2q =	 K (z 2 + dy +	 +	 + R (1 +

24Xy [ 1 z2	
s2

2
- Ks -Y— - K6 y (3 +

z 2	 s

The quantities y and z are to be determined to make q a minimum. From the

	

relations '21q z	 0 and 7-iciAy = 0, the following equations are obtained:

4	 4 
K

2
 + R

1 
y2 - K5y - K6'y3

	

Z	 y +

2K2 - 2K y
4 - K5 y+ + K

6
y 3 3

2	 -2	 1 

6K1 y 2 -

The minimum value Of q is obtained by substituting in (43), the
z and y obtained by solving the simultaneous equations (44) and
Before the substitution is made, equation (43 should be simpli
collecting the terms containing the factor 1 z 2 and making use
The simplified form of (43) is:

values of
(45).

fied by
of (44),

ky

2

2K1 z 2 + 6K1 •'Y + R	 31C y	
' 

h2

	

a 

2	
(46)

In the case of combined uniform compressive stress p and uniform
shear stress 4, the work during buckling of the combined system of external
forces will be the sum of the expressions (36) and (42). Then

h2

a

(43)

K1

(44)

(45)
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H
2
 h ab 4;2

	

8
	 F	 p + 2g yj

Let	 0 = fP

Then2
H

2
 h ab

	

T	 P (1 + 2fy)
8

The expression (33) for the strain energy of bending, V, is unchanged.

On solving the result of equating the expressions for T in (49) and
V in (33), it is readily found that

4	 K2 Y 
2

p- 	 	 2 + 6y2 + —Y2 ) + 	+ R 1 +

	

12.1k.(1	 2fy)	 z2	 z 2

(50)

K

K y (3 + 2)	 h22
-

0 z 2	 6 a

The quantities y and z are to be determined to make p a minimum. From the
relations .. 1],/3z = 0 and cep/ay 0, the following equations are obtained:

4	 4 
K

2
 + R

1
y2 - K

5
y - K6 Y

z -7 +
K1

(47)

(48)

(49)

z
2

\4K2 f 4K1 (y 3 + fy4 ) R1 7 + K5 (1 - 2fY) + K6 (3Y2 + 2fY3)  

12K1 ( y+ fy2 )	 2R1 f	 3106	 (52)

The values of z and y obtained from the simultaneous equations (51) and
(52) are to be substituted in (50). Before this substitution (50) should
be reduced to the following simpler form by collecting the terms containing
the factor 02 and using (51):

ir	 h
P	

2	
[2K1 z 2 + 6K1 y2 +	 - 3IC6 Y	 (53)

12k (1 + 2fy)	 a
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The critical value of q is found from (48) and (53) since the particular
combination of shearing and compressive stresses given by (48) has been
assumed.

In the cases that have been considered, those for which the grain
of the face plies is inclined at an angle 9 to the direction of the width
of the plate, it is to be carefully noted that the constants El and E2

which enter into the definitions of K1, K2, etc. represent the mean Young's

moduli in bending of strips parallel and perpendicular, respectively,
to the grain of the face plies.

Attention is again called to the fact that the formulas for the
buckling of plates with inclined grain were obtained by an energy method and
are consequently to be considered approximate. In particular, the surface
assumed in equation (28) which forms the basis for the derivation of these
formulas, appears to represent quite well the form of the buckled surface
Although it does not satisfy one of the boundary conditions for simply sup-
ported edges, namely, that the bending moment shall vanish along the edges
of the infinitely long plate. However, in the case of an infinitely long
isotropic plate having simply supported edges and buckling under uniform
shear for which case an exact solution is available, the assumption of this
form for the buckled surface leads to a buckling stress that is only about
6-1/2 percent higher than the exactly determined value. 10 It may reason-
ably be assumed that the effects of the edge moments that are associated
with a buckled surface of this form will be of the same order of magnitude
for the problems that were considered in Mimeographs 1316 and 1316-C and
again in the latter part of the present report. The small effect of these
edge moments as found for isotropic plates under shear and as expected in
the problems under consideration is undoubtedly associated with the fact
that the moments in question vanish at points where the crests and troughs
of the waves of the surface described by equation (28) meet the edges and
that their average value is zero over a segment of an edge between points
on two consecutive nodal lines and over any full wave length.

10
----Timoshenko, S., Theory of Elastic Stability, pages 360, 361.
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F/6. /
RECTANGULAR PLYWOOD PLATE
WITH GRA/N OF FACE PLIES
INCLINED TO THE EDGES.
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FIG. 2
LONG PLATE UNDER COMPRESSION AND SHEAR.
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