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ERROR ANALYSIS, CONVERGENCE, DIVERGENCE, AND
THE ACCELERATION OF CONVERGENCE

CHAPTER I

INTRODUCTION

Given a complex series
Ean'

we shall write Ean
o

cc

for
Ea'

S = Eak and, if Ean converges, S = Ean.
o n n o '

Similarly, if Ear'l converges, then S' = Ear'l Given two

convergent series Ean andE ' the latter is said to
n'

converge more rapidly than the former iff

(S'-S')/(S-S) -4 0 as n 03. If Ean converges,

"MR(Ea )" will denote the Class of all series Ebn which

converge more rapidly to S than

ciently large n. If "*" denotes any relation, 11*.ft

Eb MR(Ea) iff Ebn converges more rapidly to

than
Ean. The concept of "acceleration" or "speed-up"

can now be defined as the problem of finding a series Zion

such that Eb E
MR(Ea_n).

We will say that Z con-

verges with the same rapidity as Ean iff there are

numbers A and B such 0 < A . IS'-Sr'11/1S-Snl . B.

The notation 11.11 means that < holds for all suffi-
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will be used in the same manner, while I1*: It means that

holds for infinitely many positive integers n. Simi-

larly, f(x) . g(x) iff f(x) < g(x) for all suffi-

ciently large values of the real variable x.

Various methods, found in the literature, for ob-

taining a series Ea e MR(Zan) may be summarized as fol-

lows. A sequence (b 3 is proposed, and then the partial

sums SI; are specified by the equation Sn = Sn+bn+i

for n > 0. It is immediate that a' =ao+b and
o

= a
n+bn+i -bn

for n > 1.

It seems somewhat advantageous to set bn = anan

for n >1,anicispecifYthe"transformsequence{}-an

In doing so, we set
%n = Sn+an 1a. n+i

for n >

a0a = S0 a0 a
ao 0 1 l' and . aan

-.17 San-Sa(n-1)

= a + a+1n+i - a a for n > 1. It follows that if
n n n n _

Zan converges, and an =: 0 or =: 0, then

San
=:S and thus Eaan i MR(Za ). Consequently, we

n'

shall usually consider only series Za for which

an
/. 0. If Zaan

converges, its sum will be denoted by

S
a

Suppose that Zan converges and for n>0.
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The optimal choice of fa for acceleration should yield

san
= s for n > 0. Thus

Sn
+ an+ian+i = S and we must

have
an+1 (S-Sn)/an+1 for n > 0. We easily verify that

S S aSan n n+i n+i
=

Sn
+ an+1(S-Sn)/an+1 = S for n 0=

with = (S-81171 )/an for n > 1. Hence this transform

sequence is the "exact" solution to our problem of speed-up.

In general we must satisfy ourselves with an approximation

to this solution. we now turn to some of these "approxi-

mations".

For each n such that an-1 we write

= a /a . The notation Q = (1-r), Q = lim Q,
n n-1

and r = lim
rn

(Lubkin uses "R" in place of our

Aitken's o2-process will be treated in detail in

this paper and can be obtained by defining its transform

sequence {6. } as follows:

1.1 = 1/(1-rn) if rn X1 = 0 otherwise.

The notation in 1.1 will be adhered to throughout this

paper. Various other processes considered in this paper

can be described by defining their corresponding trans-

form sequence. We enumerate some of them as follows:

of Lubkin (17, p. 228-229) will be used
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The author suggests the use of the following trans-

form sequences for acceleration.

1.2 a = 1/(1-r).

1.3 a = (1-rn_1)/(1-2rn+rrn) for n > 2,

1.4
an = n/(Q-1).

1.5 = Q/(Q-1)(1-rn) = nQ/(Q-1)Qn = Q n/(Q-1).

1.6 a = s/(s-1)(1-r), s = lim a /
n

Among publications in which 1.1 is found are the

following: Aitken (1,p.301), Forsythe (11, p. 310),

Hartree (12, p. 233), Householder (13, p. 117), Isakson

(14, p. 443), Lubkin (17, p. 228), Pflanz (18, p. 27),

Samuelson (20, p. 131), Schmidt (21, p. 376), Shanks (23,

p. 233), Todd (28, p. 5, 86, 115, 187, 197, 260). We find

1.2 in Lubkin (17, p. 232), Shanks (22, p. 39) and (23, p.

25-26); 1.3 in Lubkin (17, p. 229); 1.4 in Szsz (26, p.

274); 1.5 in Lubkin (17, p. 232), Pflanz (18 p. 25); 1.6

in Shanks (23, p. 39).

Lubkin calls Ea the T transformation, Eon an

of 1.2 the Ratio transformation, and Eaan of 1.3 the W

transformation. The transformation defined by 1.5 is found

in Lubkin's Theorem 8 (17, p. 232). Daniel Shanks calls

Eaan of 1.6 the e(s) transformation.



1.7 = (n+a)/(Q-1), a some complex number.

1.8 an = (n+a)/(Qn-l), a some complex number.

The sequence 1.7 reduces to 1 4, if a = 0. A

method for determining the most appropriate value for a

in 1.7 will be indicated by an example at the end of

Chapter V. The sequence 1.8, with a = 0, is suggested

for application to power series an where

an
= b zn for n > 0.

Given any sequence [x11 define, for every n,

Axn = xn+1 xn and A2xn = A(Ax ) = Axn+1 - Axn

=
xn+2 - 2xn+1 +

xn.
No use will be made of the higher

order differences Akx' k > 3.n

Aitken's 0-process can be formulated in various

ways. In particular, assuming that division by zero i

excluded, we have:

1.9 Son = Sn + an+iOn+1 = Sn + an+1/(1-rn), n > 0.

1.10 SOn = (S1 S -S2)/(S -2S +S ), n > 1.
n- n+i n n-1 n n

Sn-1 Sn
1.11 SOn = AS

ASnn-I AS AS
n-1 n

, n > 1.

1.12 S =( S )2/A2S n > 1.
n-1 n-1' 1 n-1

1.13 Sri = Sn - (AS AS )/A2S n > 1.
n-1 n n-1



1.14 S =S1
n+1 - (ASn)2A2S1 n > 1.

n-

Moreover, if we define F(x,y,z) = (xz-y )/( -.2y+z),

0, we have F(X+a, z+a) = a + F(x,y,z),

for every a, and 1.10 becomes,

>1.15
S61-1

= F(Sn_i, Sn, Sn+1),, n 1.

The function F also satisfies F(c,x,cy,cz) = cF(x,y,z).

We see that these two properties of F may be of some

use in actual numerical calculations. For example, suppose

that S = 15.001418373, S2 = 15.000304169, and

S = 15.000065221. Then, S62 = F(S1,S2,S3)= 15.000065221

-9+ 10 F(1353152, 238948, 0) = 15.000065221

(10-9)[-(238948)2]/[1353152-2(238948)-0] = etc.

The 62-process has the following geometrical inter-

pretation. Suppose that Sn S, so that

(S S )

n' n+1
(S,S). The points (S,S) and ( ,Sn

6

n > 0, are graphed. The straight line through two suc-

cessive points(S
,Sn

) and (SnSn+1) is intersected
n-1

with the line y = x. Denoting this point of intersection

by (S6n,S6n) yields Aitken's 62-process. This interpre-

tation is found in Todd (28, p. 260), but no mention is

made of the 62-process there. Also, Todd (28, p. 5

credits the 62-process to Kummer (16, p. 206-214).
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Returning to the exact solution for speed-up

an = (S-Sn)/an, n > 1, we have = (an+(S-Sn))/an

= 1 + (S-S )/a = 1 + T if we set T+1 (S-S )/a
n n n+1, n+1 n n

for n > 1. Hence 1 + T > is the exact solu-_ n+l '

tion.

Suppose that Zan converges and n is any in-

teger > 1 such that an_l / 0. We then formally

define

For 1.17, Tn = (S-S )/an-1 = (an+S-Sn)/an-1
=

n/an-1

+ (a /a )[(S-S )/a ] = r +r T = r (1+T
n - n n nni n ni Thus,

(1-r )(1+Tn+i ) = 1+Tn+1-r (1+Tn+i ) = 1+Tn+1 -Tn
i.e., 1.18

'

1.16

Tn,

1.17

'n
(S-S )/a

n n-1 n-1

Various relations are satisfied by the quantities

some of which we now state and prove:

if a a / 0.
Tn = rn (1+Tn+1 n-1 n

1.18 (1-rn)(1+T ) = 1 + T
n+i n+i - Tn, if an-1an

0.

1.19 [(1-r](S-Sn-1 ) = 1+Tn+i -Tn
if

'

a a 0.
fl-1

1.20 Tn+1 = rn/(1-rn) +(Tn+1-Tn)/(1-rn),
if

rn
/ 0 or 1.

1.21 Tn =+/-nr+.+ (r r ,

...rn+k)+--11 11-1-

for m > n-1.

if a / 0



holds. Consequently, [(1-rn)/an](S-Sn_1)

= (1-rn)[(S-Sn_yan] = (1-rn)(Tn/rn) = (1-rn)(1+Tn4.1)

= 1+Tni. -Tn, and thus 1.19 holds. From 1.18, 1+T+1

= l/(1-r) + (Tn+1.-T )/(1-rn), so that Tn4.1

= 1/(1-rn) - 1 + (Tn4.1-Tn)/(1-rn) = r/(1-r)

+ (Tn+i-In)/(1-rn), i e., 1.20 holds. Finally,

Tn = (S-Sn 1 )/a1 = (a +a +.+
an+k +...)/

- n- n n
an_i

= a /a + a /a ++ an+k/an-1+...= a /a
n n-1 ri+1 n-1 n n-1

n n n- n n k)/( n-1 n -1)+ (a a+1 1
)/(a a ) +"'+

(anan+1
a a

...an+k

r +rn rn+ +.-.+(rnrn+1-..rn+k)+..., i.e., 1.21 holds.
n i

Given a series Ean, not necessarily convergent,

we define

1.22 Tnk = (Sn+k -Sn1 )/an1' for k > -1 and a 0.
n-1

We note that T ,-1 = 0. Also, if k is any integer > 0,
n

and n is any integer such that a 0 for

n - 1 < m < n + k, then_ _

1.23 Tn,k =r +rrn+1 (

rnrn+lern+k)*n n

We also define Pn iff an/P,n -÷ 1 as

The abreviation "n.a.s.c." is used both for "necessary and

sufficient condition" and "necessary and sufficient condi-

tions."

8

Instead of a convergent series Ean, one may desire



to accelerate the convergence of a sequence of complex

numbers
Sn.

We then set S = Sn an+1an+1
where

an
= ASn-1 = 5n 5n-1 r = an/an-l' and [an

is a pre-
'

scribed transform sequence. If s = lim Sn, we require

that (S-San)/(S-Sn)
0 in order that (San

converge

more rapidly to S than tSn1. Thus we may view accele-

ration from either the series or sequential viewpoint.

They are clearly one and the same thing.

9



CHAPTER II

ACCELERATION, RAPIDITY OF CONVERGENCE, AITKEN'S

62-PROCESS, AND DIVERGENCE

All series in this chapter are assumed complex un-

less explicitly stated to the contrary.

Theorem 2.1. The conditions (1) rn -+ 0, (2) Tn

and (3) Tn/rn 1 are equivalent.

Proof: If T -4 , then
an

0 so that

rn
=. Tn/(14-Tn+1 ) 0. Conversely, assume that rn

O.

Let 0 < e < 1. Then Irni . e, so that

ITni =. Irn+rnrn+1+.-.1 . Irni+IrnlIrn+11+

and thus
Tn

0.

If Tn 0, then Tn/rn =. 1+Tn+1 1. Con-

versely, if Tn/rn -4- 1, then Tn+i = Tn/rn - 1 0.

Q.E.D.

Theorem 2.2. If
Tn t for some complex number t,

then:

r = t/(1+t), Irl < 1, and

t = r/(1-r) and -1/2 < Ret.

If, in addition,
(ccn

is a sequence of complex numbers

10
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such that
an -4- ao for some complex number ao, then:

(3) Sa = S.

(4)Eaan e MR(Ea) if and only if a = 1/(1-r).

(5) Eaan converges with the same rapidity as Ean

if and only if ao X 1/(1-r).

Proof: Since [In converges and Tn =. rn(l+Tn+1),

Tn
0 and

Tn
/. -1. Consequently t / -1, since

otherwise Ir I =. IT /(1+T )1 + (x), which is impossible
11 n

since
an

+0. Thus, rn=. Tn/(1+Tn4.1) t/(1+t), i.e.,

r = t/(1+t) X 1. Clearly, Irl < 1 so that (1) holds.

From (1), t = r/(1-r) and It1/1(-1)-ti It/(11-t)1

= in < 1. Thus, Itl < I(-1)-ti, which is equivalent

to -2 < Re t, so that (2) holds. (3) holds since

San = S +an+1 an+i
S + 0a = S. Since

Tn
X. 0, we

n

have (S-Sn_ ) X. 0. If t = 0, then rn/Tn 1 = 1-r,

according to (1), (2) and Theorem 2.1. If t / 0, then

rn/Tn
r/t = (1-r) from (1) and (2). In either case,

(S-San)/(S-S) =. [5-(Sn+an+lan+1)1/(S-Sn)

=. 1-an+1 an+1
/(S-S ) =. 1-an+1 rn+i /Tn+1 1-a0(1-r).

Hence, (4) and (5) hold, since 1-a0(1-r) = 0 is equi-

valent to ao = 1/(1-r). Q.E.D.
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Corollary 2.3. If {Til} converges, then Ea6n e MR(Ean).

Proof: Suppose Tn 4 t. From (1) of Theorem 2.2,

r r where r / 1. Thus On =. .1/(1-r)

so that Ea E
MR(Ean)

according to (4) of Theorem 2.2.

Q.E.D.

We inquire if the convergence of fTn3 is also

necessary for
EaOn e MR(Ean).

In the following chapter,

we shall see that the answer is in the negative. There it

will be proven that an 6 MR(an) if and only if

Tn 1 -Tn -4 0.

Theorem 2.4. IfEan and
Ea6n

are convergent real

series, then S = S.

Proof: Assume that S S. Since an6n =. S
6(n-1)-S(n-i)

-4 S6-S / 0, On /. 0 and an/(1-rn) =. anbn -4 St-S 0.

Thus an -4 0 implies that
1-rn

0, i.e.,
rn

-+ r = 1 so

that 0 .
rn

and 0
Tn.

From 1+Tn+1-Tn

=. [(1-r )/an](S-Sn_i) -4 o, we have 1+Tn+1-Tn . 1/2 and

0 .
Tn+i which implies that

tTn
converges.

From (1) of Theorem 2.2, r 1, which contradicts r = 1.
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Thus our assumption is false, and S = S. Q.E.D.

Lubkin (17, P. 230) gave the first published proof

of Theorem 2.4 for real series. The proof of this theorem

for the complex case is given in Theorem 2.6, and to the

author's knowledge is the first such proof.

Theorem 2.5. If (1-rn)/an L X 0, then an diverges.

Proof: Assume that Ean converges. We may suppose that

L = 1-i;- since otherwise Ear'l converges where

a' =a L/(1-i) and (1-r')/a' =. (1-rn)/[anL/(1-i)] 1-i.
n n n n

Accordingly, (1-r)/a =. [(Re an)/lan12-(Re an_Plan_112]

i [(Im a
1
)/1a1 12 - (Im an)/1a 12] -4 1-i. Conse-

n- n-

quently, (Re an_1)/la 12. (Re a )/la 12 so that
n-1

(Re an)/1an12 -3- LI for some Li < + cc. If L1 < + co,

then Re [(1-r)/a -L1 = 0, which is impossible

since Re [(1-r )/an] 1. Thus L = + co and 0 . Re
an.

Similarly, (Im a )/la 12 (Im a )/la 12
n-1 n-1

.

n n
and 0 .

lenIm
an.

Hence setting an = [ale we may chose 0n

such that 0 . On . 7/2. From

Tn =. an/an-1+an+1/an-1+.+an+k/an-1+.

i(0 -0 ) i(O-0n-1)
an/an-1

n n-i
+ [an+1/an _11e +
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=. [lanIcos(0n-0n-i )+.+Ian+kIcos(0n+k-0n-1)

1]/Ian- I -I- (Im Tn)i1

and 0 . On 7/2, we have 0 . Re Tn. Since

1+Tn+T-Tn =. [(1-rn)/an]( S-Sn_i) -4. 0, we have

1+Re Tn+1-Re Tn =. Re (1+T+i -T ) 0. Thus Re T
n n n+1

- Re Tn < -I/2 for n > N, where N is some positive in-

teger. Consequently,

Re
TN+

=. Re TN +
1E 1

Re
TN i -TN+.

] Re TN 2
a

-
n -1-1 .

as n 00. Hence, Re Tn which contradicts

0 . Re T. Consequently our initial assumption cannot

hold, i.e., an must diverge. Q.E.D.

Theorem 2.6. If Ean and an both converge, then

S = S.

Proof: Assume that S S. Then ann =. S6(n-l)_Sn-1

-4- S5 - S 0 so that 6n /. 0 and an/(1-rn)

=. an5n S5-S / 0. Thus (1-rn)/an 1/(S5-S) / 0,

which implies, in view of Theorem 2.5, that Zan di-

verges, a contradiction. Therefore our assumption cannot

hold, i.e., S = S. Q.E.D.
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It should be kept in mind throughout the remainder

of this paper that, according to the preceeding theorem,

the statements "Za6n E MR(an)t' and "Eaon converges

more rapidly than Ean" are equivalent.

Lemma 2.7. Suppose that an is a convergent series,

an X. 0, and c =c+S -S for n> 0 where c is
n n -

some complex number. Then,

1-rn\ 1-rn
1 + c ( ) +

n-i n
a a a a

n n
n-i

n-1 n

Proof: We have

1-r

ann,
cn c+S -S

1 n-1
1 + c ( ) +

cn-i

an
=. l+c (1

a
1an

)+
a a

c+Sn
- 1 +

n
-S S-S S-S S-S S-S

n-1 n-1 n -

.

an a a a a
n nn-1 n-1

( 1 1
1-r

- a ) (S-S
n-i

) =. (

ann)
Q.E.D.=. n-i

n n-1

Theorem 2.8. If t(1-rn)/an is bounded, then the com-

plex series Zan diverges.

Proof: Assume that Ean converges. Since t(1-rn)/an
is bounded, there is an e > 0 such that

1 e (1-r n)/a
n

1 . 1/4. Let c be any complex number satis-

fying 1cl = e so that



-Re c(1-rn)/an . V.

Setting Cn= c + S-S, for n > 0, we have c C.

From Lemma 2.7,

1-r c c 1-r
Re [1 + c (

an
n

n-1

ani

-. Re S S )

a
an

n-i
0

n-1

and thus,

1-rn
cn-

cn
1 + Re c ( + Re 1

an
a

Re
n-1

Using (1) and (2),

cn
1-r cn

a2
Re <, Re - Re c

( an) - <. Re
rin-1,1 n

from which it is easily seen that Re cn/an + and

Re cn/an >. 0. Since Re c /a >. 0 and
cn

c, we
n n

conclude that

an
tz: arg c + 37T/4 < arg z < arg c + 57/41.

Chosing arg c successively in (3) as 0,7/2, 7, and

37/2, we conclude that
an

is not in the complex plane

for large n, which is absurd. Hence, our initial assump-

tion cannot hold, i.e., an must diverge. Q.E.D.

For the series Zan where
an

= 1/'n n for

n > 2, we have (1-r )/a =. 1/an-1/an n-i

=. tn n-Ln(n-1) 0 so that, from Theorem 2.8, an di-

verges. Similarly, with an = 1/(n+1) for n 0, we

16
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have 1/a_1/an-1 = (n+1)-n = 1 for n > 1, and thus^

Ean diverges. For the divergent series Zan where

an
=. 1/(n Zh n), we have 1/an-1/an-1 =. n Zn n

- (n-1) -?,n (n-1) =. (n-1)[n n-tn(n-1)] + tn n

so that Theorem 2.8 is not applicable, and thus appears to

be a very limited criterion for divergence.

Theorem 2.9. If
Zan

is a convergent series, then some

subsequence of {S6n} converges to S.

Proof: Suppose
an

is convergent and assume that no sub-

sequence of [S610 converges to S. Since S6n-Sn

= an+1n+1' our assumption holds if and only if no sub-

sequence of {ann converges to zero, and this is equi-

valent to lan6n! >. B for some B > 0. Thus

1(1-r )/a =. 1/lan6n1 . 1/B. From Theorem 2.8, Zan

diverges, a contradiction. Therefore our assumption can-

not be true, i.e., some subsequence of (S6n1 converges

to S. Q.E.D.

Theorem 2.9 clearly yields a second proof of The-

orem 2.6.

Example 2.10. It is not necessarily true that if Zan

converges, Zan will also converge. In particular,



vergent. Q.E.D.
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Lubkin (1, p. 240) considers the series Ian = 1 + 1/2

- 1/3 - 1/4 + 1/5 + 1/6 - 1/7 - 1/8 + 1/9 + which

converges while Ian diverges. However, according to

Theorem 2.9 some subsequence of [Son3 must converge to

S. Hence, of course, this is evident since rn
<: 0 and

S6n =. Sn +
an+1 /(1-rn+

). This particular series shows

that the 62-process is not regular.

Example 2.11. Lubkin (17, p. 240) also shows that the se-

ries Ea = 1+1/(1+1) + 1/22 + 22/( 24+1 ) + 1/32 + 32/( 34+1 )

converges while Ian diverges. Again, according

to Theorem 2.9, some subsequence of tS6n3 must converge

to S. This is not so obvious by inspection as was the

case in Example 2.10.

Theorem 2.12. If Ea is a series such that Ea6n is

properly divergent, i.e., (Son' -4- co , as n co, then

Ian diverges.

Proof: Assume that Ian is convergent. From Theorem 2.9

some subsequence of (S6n3 converges to S, so that

IS6n17.4 09 as n co, i.e., Ian is not properly di-



Theorem 2.13. A n.a.s.c. that {T convergeconverge is that

rn
r 1 and

Tn+1 - Tn 0.

Proof: The necessity follows from (1) of Theorem 2.2 and

the fact that [T} implies that Tn+1 -Tn
-0. 0.

For the sufficiency, r X 1 implies that

rn(1-rn) X. 0. From 1.20,
Tn+1 =. rn/(1-rn)

(Tn+i- T )/(1-r n) -+ r/(1-r). Q.E.D.

Theorem 2.14. If
rn

r where In < 1, then

Tn -+ r/(1-r).

Proof: Since In < 1, r 1 and Ean converges, so

that Tn exists for large n. Let E > 0 and p

any number such that In < p < 1. There exists an inte-

ger N such that for n > N and m > N we have

IrnI < p and Irn -r I < e(1-p). Thus, for each n > N
n

we have
ITn+1 -Tn

I = I[rn+1 -r n] + [rn n+2-rnrn4.1]

+...
[(rn+1 rn+k+1) - (rn...rn+k)]

<I
I+ I rn+i I I rn+2-rn I -F I rn+i .rn+k I rn+k+l-rn I +

e(1-p) + p e(1-p) +...+ pke(1-p) +..- = e.

Hence, ITn+1-TnI -> 0, i.e.,
T11-1-1-Tn

0. From

19



Theorem 2.13, IT 3 converges. Consequently,

Tn r/(1-r) according to (2) of Theorem 2.2. Q.E.D.

Theorem 2.15. Suppose that rn r where In < 1,

and let {qn} be a complex sequence converging to some

complex number 40. Then Tn
t for some complex

number t, and conditions (1) through (5) of Theorem

2.2 hold.

Proof: From Theorem 2.14, 3TJ converges. Now apply

Theorem 2.2. Q.E.D.

According to Theorem 2.15, Ea6n e MR(an) if

r = 0. Nevertheless, the reader should be forewarned in
00

case r = 0. In particular, let Ean = E(--1)n/n2 = 1/e.

We have
rn

= -1/n for n > 1, and bn = 1/(1-rn)

= 1/[1+(1/ )] = n/(n+1) = 1-1/(n+1) = 1+n n > 2.

Consequently, S6n = 5n+an+16n+1 = 5nl-an+1(14-rn+2) = Sn+2

for n >n1, Hence t6 3 appears to be a poor selection_

for accelerating the convergence of Ean.

Lemma 2.16. If In < 1, then Tn/rn .4 1/(1-r).

20

Proof: If r = 0, then Tn/rn -* 1 = 1/(1-r) according

to Theorem 2.1. If r 0, then Tn/rn [r/(1.- )1/1

= 1/(1-r) according to Theorem 2.14. Q.E.D.



Theorem 2.17. Suppose that an and Ea are series

such that In < 1 and WI < 1. Then:

Ear'l converges more rapidly than Ean if and only

if a'/a 0.
n n

Ea' converges with the same rapidity as an if

and only if there are numbers a and b such

that 0 < a . 1ar;/anl . b.

Proof: From Lemma 2.16, Tn/rn -4 1/(1-r) and

1/(1-r').
n n

If a'/a 0,
n n

a' T'/r'
n-1 n n

S-Sn-t an Tn/rn

0 < ac
S' -S

Conversely, if Ea' converges more rapidly than Ean,

an
T/r S'-S'
n n n-1 1/(1-r) 0 = 0.

an
T'/r' S-

Sn-1
1/(1-rt)

n n

This proves (1).

Assume that a and b are numbers such that

0 < a . la'/a I . b. Since IT1/ ')/(Tn/rn)In n n n

1(1-r)/(1-r')I 0, there are numbers c and d

such that 0 < c . 1(T'/r')/(T /r )I<. d. Thus,
n n n n

a

ri

n

T'/r'
n
T /r
n n

C. bd.

21



Assume that A and B are numbers such that 0 < A

K. 1(S'-S..1)/(a-S)1 . B. As above, there are

numbers c and d such that 0 < c K. 1(Tn/rn)/(T14/rn)I

. d. Thus,

0 < Ac . -a-- -. T,
al iTn rn

1 n n

St-St
n-1

S-Sn-1
K. Bd. Q.E.D.

22

Lemma 2.18. If Irn1 . p < 1/2 for some number Pl

then 0 < (l-2p)/(1-p) . 1Tn/rn1 1/(1-p).

Proof: We have
ITn

1 1r 1+1r rn+1 ...rn+kn

<. Irn1/(1-p) . p/(1-p) < 1. Thus, 1Tn/rn1

K. 1/(1-p) and IT/r1 =. 11+Tn+11 >. 1111 - 1Tni_111

=. 1-1Tni.11 >. 1-p/(1-p) = (1-2p)/(1-p) > 0. Q.E.D.

Theorem 2.19. Suppose that Zan, Ear; are series such

that aji/an -4 0, and Irn1 . pl < 1/2, Irr°11 . p < 1

for some numbers pl,p2. Then Ear converges more ra-

pidly than Zan.

Proof: From Lemma 2.18, 0 < (1-2p1)/(1-p1) . 1Tn/rnl.

Also, Tr!i/r1 =. 11+r41+r41 r42+...1 . 1/(1-p2).

Thus,



Q.E.D.

According to the following counterexample, Theorem

2.19 fails to hold if we replace 11p1 < I/2" by "p1 < 1"

and "p2 < 1" by "p2 <
1".

Counterexample 2.20. For n > 0, define )n/(n+1)

and a = 1/(n+1)(n+2). Then a'/a 0, r' r' = 1,
n n

and rn r= - 1. Since S'-S' =. 1/(n+2) and IS-Sill

. lan+il =.

thus Ea' does not converge more rapidly than Zan

Is'-sA_11
S-Sn_i -*

23

IT;l/rAI 1/(1-p2)

I Tn/rn I 1a1 (1-2p1 )/(1-p1 )

we have IS'-Sr'11/1S-Snl >. 1, and



CHAPTER III

BASIC THEOREMS FOR ACCELERATION, AITKEWS

62-PROCESS, AND LUBKIN'S W TRANSFORMATION

All series in this chapter are assumed to be com-

plex. The first two theorems of this chapter, the second

theorem in particular, are basic for a study of accelera-

tion.

Theorem 3.1. Suppose that Ean is a complex series

[Jon
is a complex sequence, and Ea' is a series with

partial sums S'=. S +b
*

Then Ea' 6 MR(Za) if and
nn n+1

only if bn+i S-Sn O.

Proof: If either condition holds, then S-Sn = S-SI'l+bn+1

X. 0, so that bn+i/(S-s) + (S-Sr'1)/(S-Sn) =. 1. Thus

(S-S,',1)/(S-Sn) -+ 0 and S-Sn -4 0 if, and only if,

bn+1 /(S-S n) -4 1 and S-Sn 0; but this is equivalent

to
bn+1 S-Sn O. Q.E.D.

From Theorem 3.1, we see that the class of all se-

quences tc 3 such that Ea' e MR(Ean), where Sr!).

= Sn+cn+1' is completely determined by one such sequence

fb 3. the required condition being that
cn bnn '

24



Similarly, we now show that if Eaan e MR(Ean), then

Ea, e MR(E n), if and only if pn

Theorem 3.2. Suppose that Zan e MR(Ean). Then
a

an MR(Zan) if and only if

Proof: From Theorem 3.1,
an+1an+i

S-Sn -+ 0. Hence,

from Theorem 3.1, Ea n6 MR(Zan) if and only if
p

an113n+1
S-Sn, and this is equivalent to

n+ipn+1, that is, pn+1
Q.E.D.

an+1
a

Pn+1 an+1*

Lemma 3.3. If (1-rn)(1-rn+1) X 0, then an/an

= 1/(1-rn+1) - 1/(1-rn) = r
,i /(1-rn+1

) - rn/(1-rn)nT

(rn+1-rn)/(1-rn)(1-rn+1)*

Proof: Since and r
i

X 1, we have
n+

Thus, ,= 1/(1-rn) and
n+1

= 1/(1-r an/an

= (a +a 6 -6 = r /(1-r )

n n+i n+i-a )/a = l+rnSnn n+1 n+1 n n+1 n+1

+ 1-1/(1-r ) = rn+1 /(1-rn+1 ) - r
n/(1-rn ) = rrn+1 (1-rn )n

- rn(1-rn 1)]/(1-rn)(1-rn+1) = (rn+i-rn)/(1-r )(1-rn+1)

= 1/(1-rn 1) - 1/(1-rn). Q.E.D.

Theorem 3.4. Suppose that abn/an -4. 0. Then

25



Ea E MR(Ea) if and only if Ea E MR(an) where
bn an

an =. (1-rn+1 )/(1-2rn+i +rnrn+1 ) .

Proof: Suppose that an e MR(Ean). From Lemma 3.3,

1-2r +r r =. (1-rn)(1-rn+i) - (r -r )n+1 n n-i-i n+1 n

(1-rn)(1-r1)[1-(rn+i-rn)/(1-rn)(1-
)]

(1- )(1,-rn+1)(1-a6n/an) X. 0. Hence, ann

.. (1-rn)(1-rn+1 )/(1-2rn+1+rnrn+i) =. 1,/(1-a6n/an) ' 1.

From Theorem 3.2, Ea 6 MR(Ea
n).an

that

Suppose that Ea 6 MR(E.an).
Then

rn
X. 1, so

an

1/(1-a6n/an) -+ 1 and, from Theorem 3.2,
an/6n ='

Ea61-1 MR(Ean).
Q.E.D.

Theorem 3.5. Suppose that an/an 0. Then

an MR(a) if and only if
Eaan E MR(Ean), where

an =. (1-rn-1)/(1-2rn+rn-1rn).

Proof: Suppose that an 6 MR(Ean). As in the proof of

Theorem 3.4, 1-2r +r r = (1-r )(1-rn)[l-a /an-
' I

n n-1 n
.

n-1 o(n 1) 1

X. 0. Hence, an/an (1-rn-1
)(1-r

n
)/(1-2r

n+rn-1 r n)

=. 1/(1-ab(n_1)/an_i) 1. From Theorem 3.2,

Eaan
6

MR(Ean).

26
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Suppose that Zaan E MR(Ean). Then
rn

/. I, and

thus a /6 =. 1/(1-a /a ) -3- 1. From Theorem 3.2,
n n n-i

Eabn
E

MR(Ean).

Theorem 3.6.
Eaan

E
MR(Ean), an '-Tn/rn,

and

an 1+T+ are equivalent.

Proof: From Theorem 3.1, an e MR(Zan) if and only if

an+1an+1 S-Sn
0; and this is equivalent to

a1-11-1
(S-Sn)/an+1 =. T

1
/rn+4 . Moreover, an Tn/rnn+

is equivalent to a 1+T since T /r = 1+T
.n+l' n n n+1

Q.E.D.

Lemma 3.7. If Ean is a convergent series and n is a

positive integer such that Tn+i-Tn X -I, then

(S-S6(n_1))/(S-Sn_i) = (Tn+i-Tn)/(1+Tn41-Tn).

Proof: From
(1-rn)(1+Tn-F

) = I+Tn+i -Tn / 0,
Tn-F

/ -1
i i

and
rn

X 1. Thus S-S
1
= an(1+Tn+1) / 0. We then have

n-

(S-S6(n_1))/(S-Sn_i)
=' (S-Sn-i-an6n)/(S-Sn-1)

= 1-an6n/(S-Sn_1)

= 1
a
n 1 1 rn 1 Tn/(1+Tn-1-1)

S-S
n-i

1-r
1 - 1

n Tn 1-rn Tn 1-Tn/(1+Tn+1)



= 1 - 1/(1+Tn+i-Tn) = (Tn+i-Tn)/(1+Tn4.1-Tn). Q.E.D.

Theorem 3.8. Eabn e MR(Ea) if and only if

T -T O.
n+1 n

1st Proof: From Theorem 3.6, Za6n e MR(Ean) if and

only if ôn. 1+T and this is equivalent to
n+1

(1+Tn+1) (1-rn) -0. 1, since 8 =. 1/(1-r ). Finally,

(1+Tni.1)(1-rn) -4 1 if and only if Tn+i-Tn -4. 0, since

Tn+1-Tn =. (1+Tn+1)(1-rn) - 1. Q.E.D.

2nd Proof: If
Tn+.1-Tn

0, then Tn-Tn X. -1. Thus,

from Lemma 3.7, (5-So(n_1))/(8-Sn_i)

=. (Tn+i-Tn)/(1 +Tn 1-

(S-S8(n-1))/(S-Sn_i) -40. Then
an

X. 0 and rn X. 1,

since
8n 0. We must have 1+Tn+i-Tn X. 0, since

otherwise (1-rn)(Tn/rn) =. 1+Tn+i-Tn =: 0, Tn =: 0,

and S-S
n-i

=: 0; a contradiction. From Lemma 3.7,

(Tn+i-Tn)/(1+Tn+i-T ) =. (S-S6(n_1))/(S-Sn_i) 0, and

thus Tn+1-Tn -+ 0. Q.E.D.

The preceeding theorem immediately yields the co-

rollary, also proven in the previous chapter, that the

28

Tn) 0. Conversely, suppose that



convergence of {Tri} implies Zac MR(Ean).

Lemma 3.9. If Ean is a convergent series and n is

a positive integer such that aa a / 0, thenn-1nn
n+1-rn = (Tn+2-Tn+1)(1-rn)(1-rn+1)-(Tn+2-Tn+1)(1-rn)

+ (Tn+i-Tn)(1-rn4.1).

Proof: We have (1-r )(1+Tn+1) = 1-r +T -r Tn n+1 n n+1

= 1+Tn+1n(1+Tn+1) = 1+Tn+1-Tn so that T -Tn n

= (1-r )(1+Tn+1 )-I. Similarly, T2-T1
= (1-rn 1)(1+Tn+2)-1. Thus, (Tr1+2-Tn1.1)(1-r ).(1-rn

(Tn+2n+1)(1-rn) + (Tn-T )(1-r )
n+1

(Tri+2-Tri+1)(1-rn)(1-rn+1) - (1-rn)[(1-rn+1)(1+Tn+2)-1]

(1-rn+1)[(1-r )(1+T )-13 =
(Tn+2-Tn+1)(1-rn)(1-rn+1)n n+1

(1-rn) - (1-rn)(1-rn)(1+Tn+2) - (1_r1)

(1-r )(1-r )(1+T ) = (1-r )(1-r )[(T -T )n n+1 n+1 n+1 n+2 n+1

(1+Tn+2) + (1+Tn+1)] + rn+1-rn = rn+1-rn. Q.E.D.

Lemma 3.10. If Ean is a convergent series and n is

a positive integer such that (1-rn)(1-rn+1)an+1 , then

aon/an = (Tn+2-Tn+1) - (Tn+2n+1)/(1-rn+1)

(Tn+i-Tn)/(1-rn).
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Proof: We have an-1anan+1 0, and aon/an

= (rn+1 -rn)/(1-r )(I-rn+1
) according to Lemma 3.3. Now

apply Lemma 3.9. Q.E.D.

Lemma 3.11. If Eaon e MR(Ean) and 0 < B . 11-rill for

some number B, then
abn

/a 0.
n

Proof: From Theorem 3.8, Tr_14.1-Tn -4 0. Using Lemma 3.10

and 0 < B . 11-rnl, it is obvious that an/an 0.

Q.E.D.

Theorem 3.12. Suppose that Zan 6 MR(Ea) and

0 < B . 11-rnl. Then Eaan c MR(Z n), where

(1-rn+1)/(1-2rn+1+rnrn+1) or an

=. (1-rn 1 )/(1-2rn+rn-1rn).-

Proof: From Lemma 3.11, an/an -+ 0. We now apply

Theorem 3.4, if an =. (1-rn+1 )/(1-2rn+1 +rn rn+i'). or

Theorem 3.5, if an =. (1-rn_1)/(1-2rn +rn_irn).

Theorem 3.13. If an C MR(an) and Irni . B for

some number B, then rn+i-rn

Proof: From Theorem 3.8, Lemma 3.9, and Irn . B, it



is obvious that rn+1-rn
-4 0. Q.E.D.

Theorem 3.14. Suppose that Irni K. p < 1 for some

number p. Then a n.a.s.c. that Ea MR(Ea) is that

rn+1-rn 0.

Proof: Since
irn

p < 1, Ea converges.

The necessity follows from Theorem 3.13.

For the sufficiency, let > 0. Since

rn+1-rn 1rn+1-rnI
61/(1-p)2. With

6 = e'/(1-p)2,

T+1 -TI l(r+1 -r )-1-x (r -r )+r r (r
n n n+1 n+2 n n+i n+2 n 3 n

-r )

4-...+(rn+lrn+k-1)(rn+k-rn)4-1

r -r 1+1r lir -r 1+...+Irn+1...rr1+1 n n+1 n+2 n+k-1 I I rn k_r

+ 26Ir+1 1+...+ kelrn+1...rn+k-11+n

K. 6 [1+2p+3p2+...+kpk-1 +...] = e/(1-p2) = s'.

Hence T+1-Tn -4. 0, and thus, from Theorem 3.8,

Ea,511 MR(Ean).
Q.E.D.

Corollary 3.15. Suppose that I K. p < 1 for some

number p, and Eabn e MR(Ean).
Suppose, in addition,

that q is an integer and a anzn+q for every n.

Then Ea' 6 MR(Ea'), for each complex number

<.
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satisfying 0 < 1 z 1 < 1/p.

Proof From Theorem 3.14,
rn4-1-rn

-+ 0. Let z be any

complex number such that 0 < [z1 < 14. Then

1r' I =. Ir
n n+1

z1 plzi < 1 and r' -r' =
rn+1 n

z-r z

= z(r-r )n+i n,
. Thus an eMR(Ear'1), according to

Theorem 3.14. Q.E.D.

Corollary 3.16. Suppose that [rni . p < 1 for some

number p, and
rn+1

. Suppose, in addition, that

q is an integer and a = a zn-Fq for every n. Then

Ea' EMR(Ea') for each complex number z satisfying
bn n '

0 < tz < l/p.

Proof: From Theorem 3.14, Zan e MR(Ean). We now apply

Corollary 3.15. Q.E.D.

Lemma 3.17. If 0 < A . 11-rn1 . B, then abn/an

=. (rn+i -rn
)/(1-r

n )(1-rn+1' )
and an/an 0 if and only

if rn+i-rn 0.

Proof: Since 0 < A . 11-rn1 . B,

0 < A2 .
1(1-r )(1-rn+i)1 < B2. Hence from Lemma 3.3,

aorl/an=.
(rn+i-rn)/(1-rn)(1-r

). Thus, from
n+1
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only if rn+l-rn

and only if abn/an -+ 0. Q.E.D.

Theorem 3.20. If Irn . p < 1 and aOn/an -> 0, then

Ea
an MR(Ean), where

an =. (1-rn+i )/(1-2rn+1+rnrn-1-1)
or

an =. (1-r
n-1 )/(1-2rn+rn-1rn).

Proof: From Theorem 3.19,Za0n 6 MR(Ea ). From Theorem

3.4,Ean E MR(Ea ) if
an =. (1-rn+101-2a n+rnrn+1)*

0. Consequently,
Ea01

E MR(Ea) if
-1

33

0 < A2 1(1-rn)(1-rn+i)I . 32, an/an--)- 0 if and only

if r -r Q.E.D.
n+i n

Lemma 3.18. If Irn1 p < 1, then a n/an

=. (rn+1-rn)/(1-rn)(1-rn+1 ) and abn/an
0 if and only

'

if rn+1-rn -÷ 0.

Proof: From IrnI . p < 1, 0 < 1-p . 2. We

now apply Lemma 3.17. Q.E.D.

Theorem 3.19. Suppose that Irn1 . p < 1. Then

Ea 6 MR(a) if and only if a0 /an-+ 0.

Proof: Lemma 3.18,
abn/an

0 if and only if

rni_crn 0. From Theorem 3.14, Eabn E MR(Ea) if and
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If an =. (1-rn-1)/(1-2rnn-1 rn)'
we may apply Theorem

3.5 to obtain Ea e MR(Ean). Q.E.D.
an

Theorem 3.21. If Irn1 . p < 1 and rn+1-rn 0, then

Ea
an

e MR(Ean), where an =. (1-rn+1)/(1-2rn+ +r r )
1 n n+1

or an =.(1-rn1)/(1-2rn+rn-1rn).

Proof: From Lemma 3.18, abn/an
0. We now apply

Theorem 3.20. Q.E.D.



CHAPTER IV

RAPIDITY OF CONVERGENCE AND VARIOUS METHODS
FOR ACCELERATING CONVERGENCE. A VACUOUS THEOREM

In this chapter, both real and complex series will

be considered. Various methods for accelerating conver-

gence will be treated. That part of Lubkin's Theorem 6

(17, p. 231) concerning acceleration will be shown to have

no application if rn 1. That part of his Theorem 7 (17,

p. 232) concerning acceleration will be proven to be va-

If a,P are real numbers and 0 < p < 7/2, the no-

tation <a,p> will be used to denote the set of complex

numbers z such that larg z - al < p for some arg z.

Thus <a,p> is the infinite sector in the complex plane,

subtending the angle 2p and bisected by the ray 0 = a.

If p = o, <a,P> degenerates to the ray 0 = a.

The following theorem appears to be the only one of

general character, concerning rapidity of convergence, which

is found in Knopp (15, p. 279-280),

Theorem 4.1. Suppose that an and Ebn are convergent

series of positive terms. Then Zan converges more ra-

pidly than Ebn if
an/bn

-4- 0.
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According to Counterexample 2.20, Theorem 4.1 fails

to hold for arbitrary convergent complex series Zan, Ebn..

The converse of Theorem 4.1 is false. That is, if

Zan and
Ebn are series of positive terms, and Zan con-

verges more rapidly than Ebn, then it is not necessarily

true that a
n/bn 0. This is made obvious by the follow-

ing theorem.

Theorem 4.2. Suppose that Zan and
Ebn

are series of

positive terms, and that Ea converges more rapidly than
n

Eb . Then a +a +a +a +...+a +a +... converges more rapid-
n o o 1 1 n n

ly than
ao
+b

a1 +b1 +...+an+bn+.o

Proof: We have

a +a +a +a
n n n+1 n+i

a +b +a +b, +...
n n n+1 n+1

as n c°, and

=.
2(an+an+i+...)/(bn+bn+1+...)
(a +an+i +...)/(bn +bn+1

+...)+1
n

n
a +an++a1n+i+ n+ +an±2+ 2(an+an+1+...)

...

b +a+1 +bn+1 +an+2 +bn+2
.+... (an+1+an+2+. )+(b +b +.--)

n n n n+1

2(an+an+1+...)/(bn+bn+1+...)_.

(an+1 +an+2 +...)/(bn +bn+1 +..
) +

as n 00 . Q.E.D.

As previously noted, Theorem 4.2 shows that the con-

verse of Theorem 4.1 is false; however, we do have the



following theorem.

Theorem 4.3. Suppose that Zan and Ebn are convergent

series of positive terms. Then an/bn if, and only

if Zan, converges more rapidly than Ebn for each

subsequence tr113 of tri3.

Proof: If an/bn and 3 is any subsequence of

tri3, then a,/b, -+ 0 and, according to Theorem 4.1,

Zan, converges more rapidly than Ebn,.

Assume that an/b744.- 0. Then there is an E > 0

and a subsequence [11'3 of [n3 such that > E.

Consequently, E ak, >. 6 7. bk,,
k=n k=n

for n > 0, we have bn e.

and thus Zan,

does not converge more rapidly than Ebn,. Q.E.D.

Lemma 4.4. If Ean is a convergent complex series such

CO

that an s.<,13> for some set <a,p>, then E lak1
k=n

1 E 1/cos p.
k=n

Proof: We may assume that a = 0, since with bn= aneia
cc cc

E a I -=- I 2 bk I ,
k=n k=n

and E lak1 =. E Ibkl. Since an e. <O,p>, we may
k=n k=n
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i0
set an = lanle n where

10n1
p < 7/2. Thus,

00 CO

cose >. cosp and 1 E a 1 =. 1 E la 'cos()n k kk=n k=n
. . .

+ i E la IsinOkl >. 1 E ladcosekl =. E la lcosek
k=n k=n ' k=n

00 00

IakIcosp =. (cosp) E 1ak1. Q.E.D.
k=n k=n

Theorem 4.5. Suppose that Zan., Ebn are complex series

such that Ean converges and ac. <a,p> for some set

<a,p>. Then bn/an -4 0 if and only if Ebn, converges

more rapidly than Earl, for every subsequence 13 of

Proof: If =: 0, then a=. 0 for some subse-
nt
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quence tril3 of tri3, and both conditions in the con-

clusion of our theorem fail to hold. Thus we may assume

that
an

0.

Suppose that bn/a 0, 6 > 0, and (rig is

any subsequence of tnl. Then Ibn,1 . e lan,lcosP,

and E 1bn'1, E lan,1 both converge, since E lan1 con-

verges according to Lemma 4.4. Hence, 1 E b 1

k=n

C. E Ibk,1 . (ecosP) E lak,1 6 I Eak,I, the last
k=n k=n k=n

inequality following from Lemma 4.4. Thus Ebn, converges



>.
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more rapidly than Ea,.

Suppose that b/an74 0. Then there is an e > 0

and a subsequence 1n'3 of 1n3 such that 1bn,1

nI. Since
bn e: a',7/4> for some real a',

'

there is a subsequence [n*} of [1.1'3 such that

bn*
E. <a' 7/4> and Ibn*1 >.e an*I. If Ebn* does

not converge, there is nothing to prove. Hence, assume

that
Zbn*

converges. From
lbn*I

E
lan*1

and

Lemma 4.4,

I E bk*I >. (cos 7/4) E Ibk*I >. E cos 7/4) E
lak*

k=n k=n k=n

. (E cos7/4)1 E
ak*I '

and thus
Ebn*

does not con-
k=n

verge more rapidly than Zan*. Q.E.D.

Corollary 4.6. Suppose that an is a convergent series

such that
an

E. <a,P> for some set <a,p>. Then a

n,a.e.c. that Ean' converge more rapidly than Ea
b

for each subsequence tn'l of tnl, is that

a /a --+ 0.
bn n

Proof: Set
aon = bn and apply Theorem 4.5. Q.E.D.
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Theorem 4.7. Suppose that Ea is a convergent real se-

ries such that r .
rn+1

and Ea 6 MR(Ea ). Suppose,
n

in addition, that q is an integer and a = anzn+q for

every n. Then Eagn e MR(Ear;) for each complex number

satisfying 0 < 1z1 < 1.

Proof: Let 0 < 1z1 < 1. Since
Ean converges and

rn rn+l' rn
r where -1 < r < 1. If r < 1, then

In . p < 1 for some number p, and 0 < 1z1 < 14.

Since
rn+1

- rn -) 0, Corollary 3.16 implies

Ea' e MR(E '). Suppose that r = 1. We note thaton n

0<.
rn,

so that 0
an

Elan' converges. Also, 11'1.'11 ir 1 . irn1, and

thus Ea' converges absolutely. In view of Theorem 3.8,

Tn+1-Tn 0. Since r' =. r z, T' = r' +
n n+1

1(+1+ ( r ...r
+k )+ = rnz +

rnrn+i z2+...+(r r )z +°.. .n n n+k

Thus, 1T41-T1
1(rn+1-rn)z+rn+1(rn+2-rn)z2

+ (rn+1 ...r )(r -r )

n+k n

or
an

0. In either case,

. Ir-r 14-1r (r -rn )1+-41(r rn+k )(rn+k-rn)1n+1 n n+1 n+2 n+i -1

-rn-rn)+rn+1 n+2 n n+i n+k-1)(rn+k-rn)+



=.
Tn+1

- T 0

as n c.o. Hence T'+1 - 0, and thus Ea' e MR(Ear)
n n o n

according to Theorem 3.8. Q.E.D.

Theorem 4.8. If Ean is a real series, 0 <.
rn,

and

Eabn e MR(Ea ), then r K. 1 and 0 K. Q

Proof: Since - 0 K. rn, Tn >. 0. From Theorem 3.6,

=. 1,/(1-rn) Tn/rn >. 0, so that 1 -
rn

>. 0. Thus,

rn
K. 1 and 0 K. n(1- ) = Q.E.D.

Lemma 4.9. Suppose that Fan is a real convergent Series

such that abn/ -4- 0 and 0 K. r . Then rn K. 1,

rn+1 - rn
-4- 0, and Za 6

MR(Zan).ôn

Proof: Since 0 K. r,
an

e. <0,0> or

From Corollary 4.6 and Theorem 2..6,

an/an -4- 0. Thus, according to Theorem 4.8

41

e MR(Fa) since

K. 1, so

that ir i K. 1. Hence
rn+.1. - rn 0 in view of Theorem

n

3.13. Q.E.D.

Theorem 4.10. Suppose that Ea is a Convergent

real series such that rn. rn+1 and abn/an 0. Suppose,

in addition, that q is an integer and aji = a zn+q for



every

such that 0 < < 1.

Proof: Since Ea converges, r r where -1 < r <

If r < 1, we may complete the proof in the same manner

as in the proof of Theorem 4.7. If r = 1, then

0 K. rn, and Eaon c MR(Ean) according to Lemma 4.9.

may now apply Theorem 4.7 to complete the proof. Q.E.D.

Theorem 4.11. Suppose that Zan is a convergent series

such that
an

C. <a,p> for some set <a,p>. Then a

n.a.s.c. that Za
On'

for each subsequence {ng of 1n3, is that

( rn+i -rn)/( 1-rn ) (1-rn+i ) 0.

Proof: For the sufficiency, 611 =. 1/(1-rn since

(rn+i -r n)/(1-rn)(1-rn+1) exists for large n. Thus

aon/an =. (rn4-1/(1-rn)(1-rn4.1) -+ O. From Corollary

4.6,
n

converges more rapidly than Zan, for each

subsequence {n'} of tn}.

For the necessity, Sri 0; since ifn =: 0,

then
SOn =: Sn and thus,

ZaOn
does not converge

more rapidly than Zan, a contradiction. Hence,
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ThenEa'b 6 MR(Ear) for every complex number
n

converge more rapidly than Zan,,,



n =. 1/(1-r)n and, from Corollary 4.6,

(rn+1-rn)/(1-rn)(1-rn+i ) =. aOn/an 0. Q.E.D.

Theorem 4.12. If
Ean is a real series such that r1

and in(n+1)(rn+1-rn)1. 1, then
Ean

diverges.

Proof: By hypothesis,
1-rn 0 and -r I

n n

<, 1/n(n+1). Thus,

00

1-rn
=.

k=n K )1 <.
k=n

CO

E 1/k(k+1) =.
k=n

from which 1-1/n . r
n

. Since Ea', a' =. , di-
n n

verges and r' =. -1)/n . 1-1/n . r,
Ean

must

diverge. Q.E.D.

Corollary 4.13. If Earl is a real series such that r = 1

and
n2(rn+1-rn)

0, then
Ean

diverges.

Proof: Since n-rn) ,

n(n+1)(rn+1-rn)
0 so

that In(n+1)(rn+l-rn)1 1. We now apply Theorem 4.12.

Q.E.D.

Lubkin (17, p. 231-232) has proven the following

two theorems.
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Theorem 6. If
Ean is a convergent real series, rn

>. 0,

Qn >. K > 0, and
n2(rn+1-rn) 0, as n c°, then

Eabn e MR(Ean).

Theorem 7. If
Ean is a convergent real series, Q

exists (as a finite limit), and n2(rn+i-r ) -0- 0, then

Eane MR(Ea ).

If Ea isis a real series such that in2(r -r )}
n 1 n

is bounded, then Elrni.1-rn1 converges since Irn+l-rn1

. B/n2 for some number B. Thus E(rn+1-rn)
converges,

from which
I'n

r for some number r. In view of Corol-

lary 4.13, it is now evident that 0 < r < 1, if the

hypothesis of Theorem 6 is satisfied. Consequently if r= 1,

the hypothesis of Theorem 6 cannot be satisfied. On the

other hand, r= 1 if Q exists. Hence, according to

Corollary 4.13, the hypothesis of Theorem 7 can never be

fulfilled.

Theorem 4.14.

(1) If Re Qn Q' and Re n2

(2) If Im
Qn

Q7 and Im n2(rn+1 -r n) P", then P" =Q".

(3) If Qn Q and

n+1-rn)
P', then P' Q1

n+i-rn)
P, then = Q.

44
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Proof: We first note that Qn+l-Qn (n+1)(1-rn+)- (1-rsn)

=. n(1-r
)+(l-rn+1 n n+1 n+1 n

)-n(1-r) = (1-r)-n(r-r) and
n+1

n Qn4.1-Qn)=.n(1-rn 1)- 2(rn+i- )=.(n+1)(1-rn+1)-(1- n 1)

-n2(rn+1-rn).

Assume that Pt X Q'. Set QA =. Re Qn Since

Re n(1r) Qt, Re(1r) -+ 0. Thus, p(QA+1-QA)

=. QA+1-Re(1 -rn+1 )-Re n2(
'rn+i-

(Q'HPV2. If L> 0, then n A QA >. L. Hence there

is a positive integer m such that Q414.n =. m m
1 AQ,

+ AQt+1 +.+
AO,m+n-1

.---4- 00, so that QA +00,m a contra-

diction. If L < 0, then n A Q . L. Hence there is
n

a positive integer m such that %..E.n =. Qrtn + AQrlyi +

AQM+n-1 -c° , so that QA -co, a contradiction. Thus

we must have Pt = Qt. This proves (1). The proof of (2)

follows in a similar manner, and (3) is an immediate con-

sequence of (1) and (2). Q.E.D.

Theorem 4.14 again shows that the hypothesis of

Lubkin's Theorem 7, previously mentioned, can never be ful-

filled, since we would have Q=0 and an would diverge.

Theorem 4.15. If 0 < K C. Re
Qn

and Re [n2'(rn+1
n

then Re Qn Re Qn4.1 and Re Q +a)

rn) -4- Qt-0-Pt=Qt-PtX0. Let



Proof: Since Re n2(rn+1 -r ) -4. 0, Re n(n+1)(
n

Also, (n+1)(Qn-Qn 1) -Q
+ (n+1)

Qn-nQn+in+1

.._-.

Qn+i+ n(n+1)(rn+i Thus, with Q Re Qn,

(n+1)(Qr!I-Cql.41) -QT
+n+1
Re n(n+1)(rn+i-rn) - K

+ Re n(n+1)(rn+l-rn) . 0 from Which Qr'l Hence,

where K < Q' < + 00. If Qt < co, Q1 = 0 ac-

cording to (1) of Theorem 4.14; this is a contradiction.

Thus, Q' = + 00. Q.E.D.

Theorem 4.16. Suppose that Zan is a convergent series

such that (1) an . <a,p> for some set <a,3> and (2)

Q 0° Suppose further that [P a sequence such

-4 0 and (4) niQn+i-Qn

n e MR(2 n).

Proof: From (2), on =. 1/(1-r)and aon/an

=. n(Qn-Qn.")//QnQn+1 + 1/Qn
1'

From (2), 0. From

(3) and (4), In(Qn-Qn4.1)/QnQn+11 <. 1PnQII/QnQn4-11

=. IPn/Qn [ 0. Thus
abn

/a -* 0. Hence Ea6n e MR(Zan)
n

according to Corollary 4.6 and Theorem 2.6. Q.E.D.

n+1-rn)
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-4- 0 .

IlDnQn1. Thenthat
(3) Pn/Qn+1

a /a 0 andOn n



Theorem 4.17. Suppose that Zan is a real series such

that -1 . rn
<' r n+1' Qn <*Qn+l' and Qn + 03. Then

aon/an -4. 0 and an e MR(Ea ).

Proof: Since Qn =, n(1-r) -4 + c°,
rn

. 1. Hence

-1 . rn n+1
. 1 and thus

rn
r where -1 < r < 1.

If r < 1, it is obvious that IrnI p < 1 for some

number p. Also rn+i-rn -4. 0. Thus from Theorem 3.14,

Eabn v MR(Ea.n). Suppose that r= 1. Then

0 .
rn rn+1

. 1, and an v. <0,0> or an v. <7r,0>.

Also, abn/an =. 1/(1- n+1) 71/(1-

(Q -Q )//Q Q L/Q .n ni n n+1 + n+i

) > . 0 and 0 a /a
n

Hence, with P =. 1, we
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have
ö . n(Qn+l-Q1J/QnQn+1 L'n+1' rilQn+l-Qn1

IP Q I, and P/Qn+i -4 0. Since Qn + °3, Ean con-nn

verges. Thus, from Theorem 4.16, abn/an 0 and

n
e MR(Ea ). Q.E.D.

n

As previously noted, Lubkin's Theorem 6 is not

applicable if r r = 1, and his Theorem 7, in which

n
1, is vacuous. This is not the case with Theorem

4.17. In particular, if Qn =. anP where a > 0 and

0 < p < 1, it can be verified that rn -+ 1 and Theorem
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4.17 is applicable. The same is true with Qn =. al-1/(,Pn n),P

where a > 0 and p > 0. Moreover, the proof of Theorem

4.17 shows that the theorem itself is a special case of

Theorem 4.16. Consequently, Theorem 4.16 is also applicable

with
rn

-4- 1.

Theorem 4.18. If an is a complex series such that

Eaan, an =. (Q_1), and Ea both converge more rapidly

to S than Zan, then
Qn

co.

Proof: From Theorem 3.2, - on, i.e., n/(Qn- h/Qn.

Hence, (Q -WQn =. 1-1/Qn -4- 1, and thus Qn -. Q.E.D.

Theorem 4.19. Suppose that
an

is a complex series such

that Q m. ThenEa
'
an =. n/(Qn-1), Converges more

n

rapidly to than Ean if and only if za6 c MR(Ean).

Proof: Since 'Qn w, on/an =. En/Qn][(Qn-1)/

= 1-Qn 1, i.e., on - an. Thus, from Theorem 3.2)

Ea. e MR(Ea ) if and only if Ea6 e MR(Ea). Q.E.D.
an n

Theorem 4.20. Suppose that Zan is a real series such

that -1 . r
<.rn+.1'

Q Qn - n+1' and Qn + 00. Suppose,

in addition, that q is an integer and ar!1 = anzn+q for



Proof: From Theorem 4.17, aon/an

Let z be any complex number such that 0 < I z I < 1. From

Theorem 4.7, Eagn e MR(Eajl).

Suppose an (1-ri1 )/(1-2r'-r'1 r'). If 2=1,
n- n n- n

agn/ajl =. on/an 0. If z /4 1, agn/arll

+i -r')/(1-r')(1-r'n+i ) =. (zr --Zr )/(1-zrn) (1-zrn+i )

n n n

0/(1-zr)(1-zr) = 0, since rn -* r where -1 < r < 1.

In either case, Theorem 3.5 impliesEa'n MR(EaA).
a

Suppose that ann/(Q-1). Then Q n(1-q)

1-zrn) co. From Theorem 4.19 and Eagn e MR(Eajl),

Ea'n e MR(Ea'). Q.E.D.a

Lemma 4.21. If Ean is a complex series such that Qn Q

where Re Q 1, then (1-1 r'ri)-+ Re Q, an converges

absolutely, nan 0, and an = S where an

Proof: Let a,b be any numbers satisfying 1 < a < Re Q <b.

Geometrically, it can be seen that In-b1 . In-QnI I. In-al

andEan E MR(E
b
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every n. Then for each complex number z satisfying

0 < I z I< 1, Eagn e MR(a) and Ea' e MR(Ear'1), where
an

an (1-r )/(1-2rti-r' r') orn-1 n n-1 nan=. n/(Q111-1).

so that 1-4/n _. 11-9k/ -a/n, and thus



Eaan S. Q.E D.
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a n(1-1rni). b and 1Re Q - (1-1rn1)1 Ib-al. With

lb-al > 0 taken arbitrarily small we thus conclude that

n(1-Irn1)-1- Re Q. Since Irn1 1-a/n, Ean converges ab-

solutely. Since 1r 1 . 1 and Zia 1 converges,
n

nla I 0, i.e.,
nan (15, p. 124). Consequently,

San
. S -a

n n n+1 Sn-an+i(n+1),/(Q-1) S, i.e.,

Theorem 4.22. If Ean is a complex series such that

an e. <a',5> for some set <a/,p> and Qn'-* Q where

Re Q > 1, then Tn/n 1/(Q-1) andEaan e MR(Ea) where

Proof: From Lemma 4.21, Ea = S. Also, a/aan an n

=. 1+11-Q11.1.1/(n+1)][(n+1)/(Q-1)]-n/(Q-1)

11-(n+1)/(Q-1)-Qn+1/(Q-1)-n/(Q-1) 1+(Q-1)-Qn+1/(Q-1)

(Q-Q11+1)/(Q-1) -0. 0. Thus, from Theorem 45,
Eaa

con-

verges more rapidly than Zan. From Theorem 3.6, a/(Q1)

=, an T /rso that n/n rn/(Q-1) 1/(Q-1) andn n'

Tn/n -4 1/(Q-1). Q.E.D.

SzAsz (26, p. 274) has proven Theorem 4.22 in the

following form for real series: Ifun , a > 1, and



+ yn,i/n where yn 0, then the trans-

follmtn=sr1+(n+.1)1)+i/(a-1)
converges more rapidly than

n

= uo+ul+u2+...+un, and Is-t1 < 7n4.1(5-sn)/(a-1) where

yn = max lykl. A slight error is evident here, since strict
k>n

equality cannot hold if yn =. 0. We now generalize The-

orem 4.22 by removing the condition an e. <(11,p>.

Theorem 4.23. If
Qn

Q where Re Q > 1, then Tn/n

-'. 1/(Q-1), and7a.an e MR(a) where an =. n/(Q 1).
--

Proof: We have rn=. 1-010 =. 1-Q/n-(Qn-Q),/n- Setting

Yn-1 Qn-Q' r 1-Q/n-Yn-l/P
where yn -0. 0. Hence,

na =. na -Q (n-1)a +(1-Q)a -y
an1n-i-Yn-lan-i n-1 n-1 n-1

and, replacing n by n+1, n+l)an+1 an+(l-Q)a -y- a, .

n n n

Consequently na -(n+l)an+1 =. (Q-1)an + man. From Lemma
n

4.21, nan -+ 0 and Ean converges. Thus nan

=.E [kak-(k+l)ak4.1] =. (Q-1) E ak + E ykak. From
k=n k=n k=n

CO

Lemma 4.21, Elanl converges, so that Inan-(Q-1) E
k=n

=. 1 E Ykakk=n
<. Ekn lak I where

=. max lyj -+ 0. Dividing by Ina n_11, Irn-(Q-1)Tn/n1
k>n

y E
nkn lakl/Inan-1 I. Setting a' =.
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r' = attal
n n-1 Qn =. n(1-r?) =. and

T' =.
kEn

la,
'

l/la we have Q' Q' = ReQ from
K

n-i'=
CO

Lemma 4.21, andE, lakl/Inan_i
k=n

Theorem 4.22. Thus, -(Q71)Tn/n1 . 7)71.1 Tr!l/n -- 0, so

that (Q-1)Tn/n -4 1 since r 1. Hence Tn/n -4

and n/(Q-1)
Tn Tn/rn' i ,

an T
n/rn .

From

Theorem 3.6, Eaan e MR(Ean). Q.E.D.

Corollary 4.24. If Qn where Re Q > 1, then

Tn+1-Tn -4- 1/(Q-1).

Proof: Using Theorem 4.23, Tn+i-Tn =. Tn+l-rn(l+Tni.i)

=. (1-rn)Tn+1-rn =. QnTn/n-rn Q/(Q-1) - 1

Q.E.D.

Suppose that Qn -4 where Re Q > 1. Recalling

that an = 1+T n > 2, yields the best transform for

accelerating convergence, we are led quite naturally to the

transform sequence 1.5 in the Introduction by Corollary 4.24

and the following estimate: 1+Tn+1 11(1-r)

+ (Tn+i-Tn)/(1-rn) Z. 1/(1-r) + [1/(Q-1)]/(1-rn)

= Q/(Q-1)(1-r).
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Tr'l/n 1/(Qt-1) from
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Theorem 4.25. Suppose that Qn Q where Re Q > 1. Then

Eaan e MR(Zan) if and only if an/n -+ 1/(Q-1).

Proof: From Theorem 4.23, Ea MR(a) where
pn

=. n/(Q-1). Thus, from Theorem 3.2, Eaan c MR(a) if

and only if an i.e., an n/(Q-1). But this is

equivalent to an/n 1/(Q-1). Q.E.D.

Corollary 4.26. Suppose that Qn Q where Re Q > 1,

and that an =. n/(Qn-1). Then Zaan e MR(Ean).

Proof: We have an/n 1/(Qn-l) -+ 1/(Q-1). Thus, from

Theorem 4.25, Ea c MR(Ean). Q.E.D.
an

Theorem 4.27. Suppose that Qn Q where Re Q > 1, and

a =. bbn where b is any complex number. Then:

Ea MR(Ea) if and only if b = Q/(Q-1).

Ea converges to S with the same rapidity as
an

Zan if, and only if, b X Q/(Q-1).

Proof: Part (1). From Theorem 4.25,
Eaa

e MR(a) if

and only if bbn/n -4 1/(Q-1), i.e., b/Qn 1/(Q-1). But

this is equivalent to b/Q = 1/(Q-1), i.e., b = Q/(Q-1).
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Part (2). Suppose that b / Q/(Q-1). From Lemma

4.21, Zan converges. From Theorem 4.23, n/Tn

Thus, since rn -4. 1, (S-Sa, )/(S Sn_i)
kn-1)

=. (S-S
-an an )/(S-Sn -

) =. 1-r an/T =. 1-brnn/Tn

=. 1-(bnrn)/(TnQn) 1.-b(Q-1)/Q / 0. Consequently Zaan

converges to S with the same rapidity as Zan.

The converse follow from (1). Q.E.D.

Corollary 4.28. If Qn Q where Re Q > 1, then Zao

converges to S with the same rapidity as Zan.

Proof: Setting b=1, we haven =. bbn and b Q/(Q-1).

Now apply (2) of Theorem 4.27. Q.E.D.

Corollary 4.29. Suppose that an is a real series such

that -1 .
rn rn+1

and Qn K. Qn+1. Then a n.a.s.c.

that Ian e MR(Zan) is that Qn + c°

Proof: The sufficiency is a restatement of Theorem 4.17.

For the necessity, since Zan converges and

Qn n+1 we we see that Qn Q where 1 < Q < + 00.

From Corollary 4.28, we cannot have Q < + 00 Thus,

Q.E.D.
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Lubkin (17, P. 232) has proves the following theorem.

Theorem 8. If Ea is a convergent real series, Q exists

/ 1, and
n(Qn-Qn-1)

-4 0 as n co, then the series

U =
Eun converges more rapidly to S than Zan, where

un = (Qabn-an)/(Q-1) for n > 0.

In Theorem 8, the convergence of Zan and the exist-

ence of Q 1 implies that Q > 1. With this in mind, we

presently show that the condition n(Qn-Qn_i) -+ 0 can be

omitted from the hypothesis of Theorem 8 and, at the same

time, generalize into the complex plane. Pflanz (18, p. 25)

proved this fact for real series.

Before extending Theorem 8, we note that Shanks

(23, p. 39) suggests the transform e(An)

= (s Bn-An)/(5-1), where s = lim (AAn)/(ABn) and
n -400

Bn = e (A
n), be applied for acceleration in the critical

case
rn

-4 1. In our notation, this transform becomes

(s)
(Sn) = San = Sbn-Sn)/(s-1) = [s(Sn+an+in+1)-Sry(s-1)1

= [(s-1) Sn+san+in+1]/(s-1) =
Sn + an+i sn+1/(s-1)

S + a a where an = s bn/(s-1) andn n+1 n+1 '

s = lim an/an. Shanks (23, p. 40) appears to be unaware

of Lubkin's transform given in Theorem 8, or, at least, that
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the two transforms are identical, if n(Qn-Q_1 -+0 and

Q exists with Re Q > 1. In fact, we will see in Theorem

(s)4.32 that if Q exists with Re Q > 1, then el (Sn)

converges more rapidly to S than Sn if and only if

n(Qn-Qn_i) -4- 0; consequently Lubkin's transform, given

in Theorem 8, has a broader applicability if Re Q > 1,

since the condition n(Qn-Q ) -4. 0 is irrelevant.

We now extend Lubkin's Theorem 8.

Theorem 4.30. If
Ean is a series such that Qn

where Re Q > 1, and u = (Qa6n-an)/(Q-1) for n> 0,

then Eu e MR(Ea ).

Proof: Set a = Qb/(Q-1) for n > 1. Then

Un =. E E (Qabk-ak)/(Q-1) =. (Q E )/(Q-1)
k=0 k=0 k=0

(Q s5n- )/(Q-1) [Q(Sn+an+lbn+1)-Sn3/(Q-1)

=- [(Q-1)Sn + Q an+lon+1]/(Q-1) =. Sn + an+1[CNi1/(Q-1)]

=. Sn + an+lan+1. From (1) of Theorem 4.27, Eaan e MR(Ean ,

so that (S-Un)/(S-S ) =. (S-Sa )/(S-S ) 0. Q.E.D.

Lemma 4.31. Suppose that Qn Q for some complex number

Q X 0. Then
an/aon

Q if and only if n(Q -Q ) 0.
n n-1



Proof: Since Qn X. 0,

aon/an =. (n+1)(Q -Q )/Q Q + MQnn n+1 n n+1

and

(n+1)(Qn n+1 QnQn+i aon/an Qn+1.

Thus, if n(Qn-Qn_i) -+ 0, then from (1), a6n/an MQ.

Hence, an/aon -+ Q. Conversely, if an/an -+ Q, then

aon/an 1/Q. Thus from (2),
n(Qn-Qn-1)

0. Q.E.D.

Theorem 4.32. Suppose that Qn Q where Re Q > 1,

s = lim an/aon X 1, and an =. s bn/(s-1). Then

Zan E MR(Zan) if and only if
n(Qn-Qn-1)

0.

Proof: From Theorem 4.27, Zan E MR(Zan) if and only if
a

s/(s-1) = Q/(Q-1), i.e, Q = s = lim an/an. But, from

Lemma 4.31, Q = lim an/aon if and only if n(Qn-

Q.E.D.

It is very easy to construct a series Zan satis-

fying the hypothesis of Theorem 4.30, while

n(Qn n-1
- Q )774-0. 0. In particular, we mention the following

example.

Example 4.33. Let Q be any number such that Re Q 1.

Set y= o 2n-1 14/' and Qn =. Q + yn. Then
I2n ' Y7
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Qn-i )



Qn+1)/QnQn 1/Q1 = w'
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n(Qn-Q) =. n[(Q4-yn) - (Q+yri_1)] =. n yn-yn_1),

2n(Q2n-Q2n-i ) =' 2 (Y2n-Y2n-i ) =' 2 1/171
and

(2n-1)("Q2n-l-Q2n-2) = (2n-1)(y -Y2n-2)

= (2n-1)/1/-n- + co. Clearly, Q Q so that the hypo-

thesis of Theorem 4.30 is satisfied while n(Qn-Qn-i )-/- 0'

Thus, Lubkin's transformation Ean, given in Theorem 4.30,

converges rapidly to S than Zan. However, as we have

just observed,ln(Q
n-Qn-

1 -.+ 00; thus, according to
1

(s)
Theorem 4.32, Daniel Shank's transform e

(Sn)

Sn + sn+i/(s-1) must fail to converge more rapidly

to S than Sn Here, $ = lim an/a = 0 since

limla6n/a 1 = lim 1(n+1)(Qn-

Hence, we have in facte (s) ( )(S ) =. e (S ) =.S , and
n n

thus e(s)(S ) clearly converges with the same rapidity
n

as Sn We could have also applied Theorem 4.27 to arrive

at this conclusion. If we carry our analysis a little

deeper in this example, a very surprising phenomenon arises.

In particular, un/an =. (Q abn/an - 1)/(Q-1), aon/an =.1/Qn

- (n+1)(Qn+1n)/Qnn+1' Qn -+ Q, and, as shown above,

(n 1) IQn+i -Q/11 c°. Consequently, lun/an1-*+ c.) even

though Eun e MR(Zan).



Lubkin (17, p. 232-233) has proven the following

theorem.

Theorem 9. If Ea is a convergent real series, Q

exists / 1, n(Q -+ 0, and n[(n+1)(Qn4.1 Qn)

n(Q -Q )] -+ 0, then the transform
ZAN'n

converges
n nri

more rapidly to than Ean'
where Wo = 0 and

.o+-..+ wn = S + a+i (1-rn)/(1-2rn+i +rn rn+1
) for

n

n > 0.

As previously noted, we must have Q > 1. With

this in mind, we will show in Theorem 4.35 that the con-

dition nEn4-1)(Qn4.1-Qn)-n(Qn-Qn_1)] -+0 can be omitted

from the hypothesis of Theorem 9 and, at the same time,

generalize into the complex plane.

Lemma 4.34. Suppose that Qn-+ Q for some complex number

Q 0 or 1, and an =. (1-r)/(1-2rn+rn_irn). Then
-1

an/n 1/(Q-1) if and only if n(Qn- Qn-1) °'

Proof: From Lemma 4.31, n (Q -Qn-1) 0 if and only if

aOn /an
-+ 1/0. As shown in the proof of Theorem 3.4,

1-2rn+1+rnrn+1
=. (1- n)(1-r )(1-a6n/an).

Thus,

an+1/(n+1) = [1/(n+1)][(1-rn)/(1-2rn+11-rnrn+1)]

=. 1/[Q (1-abn/an)], SO that aon/an -4- 1/Q if and only
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if a /(11+1) - 1/(Q-1). Q.E.D.
n+i

Theorem 4.35. Suppose that Qn Q where Re Q > 1, and

(1-rn- )/(1-2rn +rn
r
n
). Then E an e MR(an) if

-1

and only if n(Qn-Qn_i)

Proof: From Theorem 4.25, an e MR(an) if and only if

an/n 1/(Q-1); and according to Lemma 4.34, this is equi-

valent to
nn(Q n-I

0. Q.E.D.
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CHAPTER V

NONALTERNATING SERIES

A real series an will be called nonalternating

iff
rn

> 0 for every n, and N-nonalternating iff

rn
> 0 for n > N, where N is some integer.

Shortly, it will be shown that E. E. Kummer's cri-

terion for the convergence of a nonalternating series is

not only sufficient, but also necessary. We now prove a

slight generalization of this fact.

Theorem 5.1. Let L be any real number and c be any po-

sitive number. Then a n.a.s.c. that an N-nonalternating

series Zan converge is that there exist a sequence 0 3

such that,

a p L,
n n

and

Pn c rn+1.Ph+1' n>

Moreover, if (1) and (2) hold, then for n > N,

0 < rn < Tn < rnpn/c - L/cani

And in general, for n > N and k > 1,

Tn,k-2
< T < T n.n+k-n n,k-2

+ (r.. r Pn+k-i/c

- L/c
an-1
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Proof: For the necessity, define pn = c + c Tn+1
+ L/an

for n > N. Consequently, anPn =. ca n+ca T L=. ca

+ c(S-Sn) +L-,-L as n 00. For n > N, c + rn+03n+1

= c + rn+1(c+cT 2+L/an+i ) = c + crn+i(1+Tn+2) + L/an

= c +Tn+1 + L/an = pn' so that (2) hold with equality.

For the sufficiency, assume that (1) and (2) hold.

Let n be any integer > N, and define Pk = Tn,k-2

+ (rn.rn+k_i)pn+k_ /c for k > 1. From (2), Pk+i - Pk

= (rn.-.rn+k-1)(1+rn+kn+k/c-pn+k-1/ ) < 0 for k > 1.

Also, Pk >an+k--+ L/ca as k co. Thus

[Pki is a monotone bounded sequence, so that Pk P as

k co, for some number P. Consequently, Tn,k_2

- an+k-n+k-i /ca P - L/ca-1 as k cc. Hence
=' Pk iP n-1 n

Tn = P - (L/can-1 ) < P - (L/ca1 ) for k > 1. Obviously,
n-

Tn,k-2< Tn for k > 1. Thus (b) holds, and (a) follows

from (b). Q.E.D.

Condition (1) of Theorem 5.1 can be somewhat weakened,

as is now proven.

Corollary 5.2. Let c be any positive number. Then a

n.a.s.c. that an N-nonalternating series Ean converge is

that there exist a sequence
(13ni

such that,



(1) some subsequence Of

and

(2)
1311 c rn+113n+1/ n N.

Moreover, if (1) and (2) hold, then ta p 3n n converges.

Proof: The necessity follows from Theorem 5.1.

For the sufficiency, we may assume that
an

> 0 for

n > N-1. From (2), ap >ca+ aan 3n n n+113n1-1 an+113n

for n > N. Thus tanpni converges because of (1). Now

apply Theorem 5.1. Q.E.D.

Corollary 5.3. Let c be any positive number. Then

a n.a.s.c. that a series
Ean of positive terms converge

is that there exist a sequence tpn3 such that,

some subsequence of ta p 3 is bounded below,

and

p . c n+113n+1.

Moreover, if (1) and (2) hold, then
tanpn converges.

Proof: The necessity follows from Theorem 5.1.

For the sufficiency, from (2) we have anp>. can

an+i pn+1
. ani-iPn 1. Thus

tanpn
converges because

of (1). From Theorem 5.1, Ean converges. Q.E.D.

tapnn is bounded,
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Corollary 5.4. Let L be any real number. Then a

n.a.s.c. that an N-nonalternating Zan converge is that

there exit a sequence
{pn

such that,

anpn L,

and

p > 1 + rn ipn+i, n > N.

Moreover, if (1) and (2) hold, then for n > N,

0 <r<Tn <rp (L/a ).
n

And in general, for n > N and k > 1,

T < (L/a )n,k-2
< T T

n n,k-2 rn+k-i)Pn k-1

Proof: Choose c = 1 in Theorem 5.1. Q.E.D.

Let Zan be any divergent nonalternating series such

that
an

, Let p
1

be any real number, and define {3 3

recursively by p = 1 + Then anpn - a+i p
n n

=
an

0, and p > 1 + rnpn+1 for n > 1. Thus, we
n

cannot replace (1) of Corollary 5.4 by the condition that

anpn - an+ipn+1 -I. 0.

Theorem 5.5. (Kummer's criterion) Let c be any positive

number. Then a n.a.s.c. that an N-nonalternating series

Ean converge is that there exist a sequence [f3}



> 0, n > N,

and

Pn
> c + rn+ipn+i , n N.

Moreover, if (1) and (2) hold, then for n > N,

0 < rn < Tn < rnPn/c - (lim akpk)/can_i < rnpn/c,

and

p 3 converges.

Proof: We may assume throughout that an_i > 0 for n > N.

For the necessity, choose L > 0 in Theorem 5.1.

From (a) of Theorem 5.1, pn > 0 for n > N.

For the sufficiency, according to Theorem 5.1 we need

only show that a Pn -4 L for some number L > O. From (1)
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and (2) above, a > ca + aant 3n n n+1Pn+1 an+1Pn+1
0 for

n > N, which implies the existence of the required number

L. Q.E.D.

The fact that Kummer's criterion, Theorem 5.5, is

also necessary was first published by Shanks (24, p. 338-

341). In (24, p. 338-341), Shanks employs Theorem 5.5 in

an equivalent form to serve as a general framework for short

proofs of the sufficient conditions of many of the known

tests for convergence or divergence of series with positive

terms. On the other hand, we are interested in Theorem 5.5
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also as furnishing bounds for Tn and S-Sn-1 , and con-

sequently exhibiting the convergence of [T} cer-

tain conditions.

It should be noted that Theorem 5.1, as a criterion

for convergence of Zan, is more general than Theorem 5.5

in the sense that for every convergent non-alternating se-

ries an there is a sequence fpn3 satisfying (1) and

(2) of Theorem 5.1 with N= 1, while condition (1) of

Theorem 5.5 fails to hold for the same sequence [13n3. In

particular, let Zan be a convergent non-alternating series

and ip 3 be any sequence satisfying (1) and (2) of Theo-

rem 5.1 with N=1. Let L' be any number such that

(L-L')/ < 0 for n > 0, and define p, = p
n - L'/ann

Then an p, =. anpn - L' L-L', so that p, -4 -00 and
n

pn < 0. Moreover, for n =1, pn pn L'/an > c

+ r = c + rn+1Pn+1.n+1Pn+1 L'/an = c r (P -LI/an+1n+1 n+1

Thus, (1) anPr'l L-L' and (2) prl, > c + r while
n+1 n+1'

the condition p, > 0 fails for large n.
n

Theorem 5.6. A n.a.s.c. that an N-nonalternating series

Zan converge is that there exist a sequence lpn3 such

that,



Pn , n>

and

13n> 1 + rn+ipn+1, n > N.

Moreover, if (1) and (2) hold, then for n > N,_
(a) 0 <r <T<rp - (lim ap)/a <rp.

n n n k..,,,c. k k n-1 n n

Proof: Choose c= 1 in Theorem 5.5. Q.E.D.

Example 5.7. Let Ean = 1 + 1/22 + 1/32 + . Then,

an = 1/(n+1 )2 for n > 0, and r = [n/(n+1)]2 for

n > 1. Defining (n+2)2 for n > 1, pn > 1

n+1Pn+1 for > 1, and, for k > 1, akPk

[(k+2)/(k+1)]2 1. From Theorem 5.6, an converges.

Some of the known tests for convergence are now

proven by exhibiting a sequence
tpn

satisfying the con-

ditions of the preceeding theorem.

Theorem 5.8. (Comparison test) If 0 < an. an and

Ean converges, then Ea converges.

Proof: From Theorem 5.6, there is a sequence tpnl such

that pn > 0 and pn >. 1 + Accordingly,

a pn/al; >.a /a' + (a41/ar'1)(an+ipn+1/a41) >. 1

+ r41(an+ipn+1/ n+1) >. 0. Now apply Theorem 5.6. Q.E.D.

67



Pn 1 + rn+iPn+.1 > 1+ rn+iPn+i'

and p >. 0. Now apply Theorem 5.6. Q.E.D.n

Theorem 5.10. (Root test) If an >.0 and

lim sup Van < 1, then an converges.

Proof: Let

since 0 . r' rn n
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Theorem 5.9. (Ratio comparison test) If 0 . r . r
n

and
Ean converges, then Ear'l converges..

Proof: From Theorem 5.6, there is a sequence f3n3 such

that pn >. 0 and Pn-?: 1 + rn+ipni.i. Accordingly,

n
be any number satisfying lim sup v/an <t<1.

Then.
n

Defining pn tn/an(1-0, p

=. t / (1-t) - rn+1 t +1/an+1 (1-t)

tn/an(1-0-tn+1/an(1-0 =. [tn/an(1-01(1-0 =. tn/a >.1.

Thus pn >. 0 and pn >. 1 + rni.ipn+1. Now apply Theorem

5.6. Q.E.D.

Theorem 5.11. (Ratio test) If 0 . rn and

lim sup rn < 1, then an converges.

Proof: Let t be any number for which lim sup rn < t<1.

Defining pn =. 1/(1-0, we have pn =. 1 + tpn

>. 1 + r
n+irR n+1

since 0 . rn
t. Now apply



Theorem 5.6. Q.E.D.

Theorem 5.12. (Raabe'S: test) If 0 . rn . 1-a/n where

1 < a, then converges.

Proof: Set pn =. n/(a-1). Then pn >. 0 and

1 + rn+Ipni.1 . 1 + [1-a/(n+1)]pn+1 =. 1 + (n+1)/(al)

- a/(a-1) n/(a-1) =. pn, so that pn >. 1 + r R
n+irn+1*

Now apply Theorem 5.6. Q.E.D.

Theorem 5.13. Let L be any real number and c be any

positive number. Then a necessary condition that an

N-nonalternating series Ea converge is that there exist

a sequence ta j such that,

aa L,

and

< c +
n+lan+1' n N.

Moreover, if (1) and (2) hold, then for n > N,

r- n/c L/ca < T
n-1 n'

and in general, for n > N and k > 1,

T + - L/ca < T.n,k-1 n-1 n
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Proof: For the necessity, we may use the proof of the ne-

cessity of Theorem 5.1, replacing "p" by "a" throughout.
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Next, assume. that (1) and (2) hold. Let n be any

integer > N, and define P = T
k n,k-2

+ (r -..rn+k-1)
an+k- /c for k > 1. From (2), Pk+1

= (rn-..rn+k-1)(1+rn+ian+k /c-+k-I/c) > 0 for k > 1.

=. Tn,k-2 +
an+k-lan+k- /an- c Tn + L/ca n-/

- L/oan,..1 I Tn for k > 1, i.e (b) holds.

(a). Q.E.D.

Theorem 5.14. Let L be any teal number. Then a neces-

sary condition that an N-nonalternating series an con-

verge is that there exist a sequence [a) that,

a a L,
n n

and

a< 1 + r a n > N.
n+1 n+1'

Moreover, if (1) and (2) hold, then for n > N,

(a) r (L/an_i) < T,

and in general, for n > N and k > 1,

Trl,k_2 (rn- n+k- 1 n+k-1
(L/an_i) < T.

Proof: Choose c = 1 in Theorem 5.13. Q.E.D.

Theorem 5.15. Let c be any positive number. Then a

n.a.s.c. that an N-nonalternating series Zan diverge is

that there exist a sequence [a) that,

Also,

Thus,

With k = 1, (b) reduces t



I anan co

and

an +rn+1 an+i <c+ an,n1 N.

Proof: We may assume that an_i > 0 for n > N.

For the necessity, let aN be any real number, and

define [an} recursively by the equation an = c+rn+1an+1.

Accordingly, an = c + rn_Flan+1 < c
an

for n > N, i.e.,

(2) holds. For k > 1,

- c(a +a ++
N N+1
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For the sufficiency, from (2) we have
an+ian+1

anan for n > N. Thus, (1) implies that a nan

From (2),
N 1\1 naN+n)/ aN+1

+..+
aNi-n-1

+ co

as k co , since -aa + co as n 00 . Thus Zann n

diverges. Q.E.D.

Corollary 5.16. Let c be any positive number. Then a

n.a.s.c. that a series
Ean of positive terms diverge is

that there exist a sequence tan) such that,

(1) some subsequence of ta a 3 is unbounded,n n

and

(2) an <c+rnan+ + a , n >
1.

1

00, i.e., (1) holds.



Moreover, if (1) and (2) hold, then a a - m .

Proof: The necessity follows from Theorem 5.15.

For the sufficiency, from (2) we have

an+1an+1 anan for n > 1. Thus from (1),
anan

Hence la an n +D

an diverges. Q.E.D.

Clearly, (1) of Corollary 5.16 may be replaced by

the condition anan -4 -09.

Theorem 5.17. If
Ean is an N-nonalternating series such

that 0 < p < rn < q < 1 for n>N, where p and

are constants, then

(1) p/(1-p) < rn/(1-p) < Tn < rn/(1-q) < q/(1-q),

for n > N.

Proof: Set
an = 1/(1-p) and pn = 1/(1-q) for n> N.

For n > N,
an

= 1 + 1 rn+lan+1 and 13 = 1 +
n+i

> 1 + rn+/Pn+1' From Theorem 5.6, an converges, so that

lim a a = lim a p = 0. Fromnn nn

we obtain (1). Q.E.D.

0 < r < 1, then Tn r/(1-r).

and, according to Theorem 5.15,
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Theorem 5.18. If an is an N-nonalternating series and

(a) Of Theorems 5.6 and 5.14,
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Proof: We implicitly restrict n to large values through-

out. There is a monotone increasing series {Ion} such

that 0 < pn K rn and
pn

r. Define a monotone in-

creasing sequence {an} by the equation a =

Accordingly, an = 1 + pn+lan < 1 + rn_i_lan+1, i.e.

an 1 + rn+ian. Similarly, there is a monotone deaeas-

ing sequence {ci } such that rn < qn < 1 and qn r.

Define a monotone decreasing sequence
1pn3 by the equa-

tion Pn = 1/(1-qn+1). We then have Pn = 1+qn+1Pn

l+rn+1n+1, i.e., pn > l+rn+ipn+1 0. From Theorems 5.6

and 5.14, ran <T <rnnp. Also lim ran = limrp
n n

= r/(1-r), so that In r/(1-r). Q.E.D.

We now turn to the critical case
rn

1. Suppose

that an is a positive term series and Qn Q > 1.

According to Theorem 4.25, Zaan E MR(a) if and only if

an n/(Q-1). As we have seen, SzSsz suggests
an

= n/(Q-1)

for n > 1. Now for a fixed number k, (n+k)/(Q-1)

n/(Q-1), so that, with Pn = (n+k)/(Q-1) for n >1,

Ean E
MR(Ean). Thus, why should we restrict ourselves

to k= 0? We shall see that we should not make this re-

striction.
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Suppose that {an} and
fpn

have been determined

such that

anan
0 and 0 <

an
< l+rn+1an+1' n N,

and

anpn -F. 0 and 0 < 1+rn+i3ni.1 < pn, n > N.

From Theorems 5.4 and 5.14,

(8)
an Tn/rn = 1+T

n-1-1 Pn for
n > N.

From (3), it is clear that we wish to maximize the
an

and minimize the
pn'

in order to obtain sharp bounds

for
1+Tn+i.

Also, we desire an Pn n/(Q-1). Multi-

plying (3) by an we obtain

an an < S-Sn-1 I anpn for n > N.

Thus,

.sa(n =-1)

Sn_i+a a < S < Sp(
n-i

)+anpn, n > N.
n n

From (1) and (2), for n > N, aan/an = l+r a -a > 0
n+1 n4-1 n

and an/an = 0. Hence for n > N,

aan
0, a < 0,

Sa(n-1) an'an and Spn < Sp(n)

order to obtain fairly sharp bounds by (4), we will give

only one example to show the general procedure.

Example 5.19.

00 00

E a = E 1/(4n+1)(4n+3) = 1/(1.3)+1/(5.7)+... = 7/8.
o n o
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This series is considered by Szasz (26,p.275). He takes

k0 in a° = (n+k)/(Q-1), and sets t = S +a a'
n n n+1 n+i

for n> 0. Thus, tn = Sa, for n> 0. The numbers tn,

2 < n < 7, in (26,p.275) are in error. They should read:

t = .38739, t = .38952, t = .39056
2 3 4

t = .39116, t = .39153, t = .39183.
5 6 '7

Now .39269908 < 7/8 < .39269909. Setting 7/8 = .39270,

7/8 - t = .00087.
7

We have an = 1/(4n+1)(4n+3) for n> 0, and for

n > 1,
rn = an/an_i = (4n-3)(4n-1)/(4n+1)(4n+3)

= 1 - 32n/(4n+1)(4n+3) = 1 - Thus

Qn 32n2/(4 +1)(4n+3) --+ Q=2 and at = n k)/(Q-1) = n+k.

We have, for n > 1,

aa,n/an=1+rni_lar'14.1-al;=[32n(1-k)-32k+38]/(16n2+48n+35).

From (6), it is obvious k= 1 yields the best sequence

taji} for the acceleration of
Ean.

Thus, setting

= n+1 for n > 1,

aao = ao+alal = 1/3 + 2/(5'7) = 1/3 + 6/(1.3.5.7)

and from (6), for n > 1,

aan = [6/(4n+5)(4n+7)1an = 6/(4n+1)(4n+3)(4n+5)(4n+7).

Thus,
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E a = [1/3+6/(1.3-5-7)] + E 6/(4n+1)(4n+3)(4n+5)0 an
(4n+7)

OT

Ea =1/3+E6/(4n+1)(4n+3)(4n+5)(4n+7)=1/3+Eb .0 an o on

In (10) we have absorbed part of aao into the summation,

i.e., a
ao

= 1/3+b0 and aan = bn for n > 1. No use

will be made of (10), although it is suggestive for applic-

ation of the above procedure to Ebn.

At this point we have the following alternatives:

S = S +a a =E1/(4i+1)(41+3) + (n+2)/(4n+5)(4111-7)an n n+i niA 0

or

=Ea :=a +Ea ,=[1/3+2/35]+E6/(4i+1)(4i+3)(4i+5)an 0 al Q0 ai

x(4i+7).

Clearly, (1) is preferable for actual numerical calculation.

Leaving Zaan in the form (11), we have a so-called "modi-

fied seriesu of Bradshaw (9,p.486-492). In applying (11)

as an approximation to S, we have no information, assum-

ing no previous calculations for 7/8 as known, as to the

error involved, i.e.,
S-San.

We now turn to the resolu-

tion of this problem.

Comparing (1) with (6), we require

(1.3) 1+rn+la41-al!I > 0 for n > N.

From (6), (13) is .seen to be equivalent to
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k < 1+3/(16n+16), n > N.

From (14), we must have k < 1, since 1+3/(16n+16) 1

as n-÷ co. Thus, we are led to set k= 1 and ar') = n+k

= n+1 = an an
as defined for (9) and (11). We now see

from (4) that

anan S-Sn-1
for n > 1, an=n+1

for n> 1.

Comparing (2) with (6), with Pn = al!), we re-

quire

1 + r 1,11.1Pro.1-Pn < 0 for n > N.

From (6), (16) is seen to be equivalent to

k > 1+3/(16n+16), n > N.

Recalling that Pn = n+k is to be minimized and noting

that 31+3/(16n+16)1 is monotone decreasing, we set

k = 1+3/(16N+16) as the optimal choice satisfying (17).

From (4), we then have,

S-Sn_i<anpn and pn=n+1+3/(16N+16), n > N.

Setting n=N in (18) and noting that (18) holds for

N > 1, we have

S-Sn_i < anpn and pn = n+1+3/(16n+16), n> 1.

From (15) and (19), we obtain the desired bounds for

S-S , i.e.,
an

0 .5_ S._Sa(n_1)< an(Pn-an)=3/(4n+1)(4n+3)(16n+16),

n > 1.
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With n = 1 in (20), 0 < S-Sao < 3/(5.732) < .0027.

With n=8 in (20), 0 < S-Sa7 < 3/(3335.144) = 1/55440

< .000019. Using a- iff a- < a and a+ iff a < a+,

we have S- = .3848938, S+ = .3848946, (a a )- = .0077922,
7 7 8 8

and (a a ) = .0078102. Thus, S- + (a a )- = .3926860
8 8 7 8 8

< S < .3927050 = S+ + (a8a8)+. Letting S' be the average

of these two bounds for S = Tr/8, we find S' = .3926955

and we must have 15-S11 = 17/8 - .39269551

< (.3927050 - .3926860)/2 = .0000095.



CHAPTER VI

CONVERGENCE ANDDIVERGENCE OF REAL SERIES

Throughout this chapter, all series are assumed

to be real. We now state and prove some of the theo-

rems, corresponding to those of Chapter V.

Theorem 6.1. Let L be any real number and c be any

positive number. Then a n.a.s.c. that a series Zan

converge is that there exist a convergent series Zbn

and a sequence fp j such that,

(an+bn)fin L,

0 <. ( )/(a 410n n n
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Proof: For the necessity, let Ecn be any convergent non-

alternating series, and define bn = cn-an for n > 0. The

series
E(an +bn )

= is a convergent nonalternating

series, so that (2) holds. According to Theorem 5.1, there

is a sequence {n} which satisfies conditions (1) and

(3) above. Clearly, El) converges.

For the sufficiency, we see that E(an+bn) con-

verges according to Theorem .1. Consequently,



converges since Ebn converges. Q.E.D.

Theorem 6.2. Let L be any real number and c be any

positivenumber.Therlan.a.s.c.thataseriesZadi-

verge is that there exist a divergent series
Zbn and a

sequence Pri} such that,
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Proof: For the necessity, let Eon be any convergent non-

alternating series and define
bn = cn-an for n > 0. The

series E(an+bn) = Eon is a convergent nonalternating se-

ries so that (2) holds. From Theorem 5.1, there is a se-

quence {P,} such that (1) and (3) hold. Also, Zbn must

diverge.

For the sufficiency, an must diverge, since

otherwise Ebn would converge according to Theorem 6.1.

Theorem 6.3. Let c be any positive number. Then a

n.a.s.c. that a series an converge is that there exist

a convergent series EJon and a sequence On} such that,

(an+bnn -÷ L,

0 . (an+1+bn4.1)/(an+bn),

and

Pr, >. c + [(ani.i+bn+1)/(an+bn)]Pn+1.



pn 0,

0 K. (an+1+bni..1) (an+bn),

C+ [(a +b )/(a +b )1118n+1 n+1 n n+1*

Proof: For the necessity, let Ecn be any convergent

nonalternating series, and define bn = on-an for n> 0.

The
seriesE(an +b n) = Ecn is a convergent nonalternating

series so that (2) holds. According to Theorem 5.5, there

is a sequence
[pn satisfying conditions (1) and (3)

above. Also, Ebn converges.

For the sufficiency, Theorem 5.5 implies that

E(an+bn) converges. Thus,
Ean converges since Ebn con-

verges. Q.E.D.

Theorem 6.4. Let c be any positive number. Then a

n.a.s.c. that a series an diverge is that there exist

a divergent series Ebn and a sequence fPn3 such that,

Pn >' 0,

0<.
(an-1-1+b)/(an+bn)'

and

pn.>. c + [(a +b
)/(a +bn+1 n+1 .nn)1Pn+1.

Proof: For the necessity, let Eon be convergent

pn
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nonalternating series and define bn = cn-an for n > 0.

The series
E(an+bn) = Ecn is a convergent nonalternating

series so that (2) holds. From Theorem 5.5, there is a

sequence
fpn satisfying conditions (1) and (3). More-

over, Ebn must diverge.

For the sufficiency, an must diverge since other-

wise Ebn would converge according to Theorem 6.3. Q.E.D.

Theorem 6.5. Let c be any positive number. Then a

n.a.s.c. that a series
Ean converge is that there exist

a convergent series Ebn and a sequence {Pn} such that,

(2)
pn c + 1(a +b

)/(a+b)1Pn+1.n+i n+1 n n

Proof: The necessity follows from Theorem 6.3.

For the sufficiency, Theorem 5.5 implies that

Elan+13n converges. Consequently, E(an+bn) converges,

so that an converges since Ebn converges. Q.E.D.

Theorem 6.6. Let c be any positive number. Then a

n.a.s.c. that a series
Ean diverge is that there exist

a divergent series Ebn and a sequencen such that,
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( 1)

and



(1) pn >. o,

and

(2), pn c + l(a +b , ) (an+bn)1Pn+1.n+1 n+i

Proof: The necessity follows from Theorem 6.4.

For the sufficiency, an must diverge, since

otherwise
Ebn

would converge according to Theorem 6.5.

Q.E.D.

Theorem 6.7. Let c be any positive number. Then a

n.a.s.c. that a series an converge is that there exist

a convergent series Ebn and a sequence fpn3 such that,

pn >. 0,

0 K. an + bn,

and

c + [(a +b a +)/( b ) B
n+) n+i s n n'lrn+1.

Proof: For the necessity, let Ecn be any convergent se-

ries of positive terms, and define bn = cn-an for n> 0.

Clearly, Ebn converges and (2) above holds. The exist-

ence of a sequence
{pn

satisfying (1) and (3) follows

from Theorem 5.5.

The sufficiency follows from Theorem 6.3. Q.E.D.
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quence
fpn

such that

lanIpn L,

and

pn
c + Ir IB

n+1 un+1'

CHAPTER VII

CONVERGENCE AND DIVERGENCE OF COMPLEX SERIES

Throughout this chapter, all series are assumed to

be complex.

A complex series Zan will be called restricted

iff
rn

0 for every n, and N-restricted iff
rn

0

for n > N, where N is some integer. We now general-

ize some of the theorems in Chapters V and VI.

Theorem 7.1. Let L be any real number and c be any

positive number. Then a n.a.s.c. that an N-restricted

series
Zan converge absolutely is that there exist a se-

such that

n > N.
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Proof: Apply Theorem 5.1 to Elan'. Q.E.D.

Theorem 7.2. (Kummer's criterion) Let c be any positive

number. Then a n.a.s.c. that an N-restricted series
Zan

converge absolutely is that there exist a sequence R



p >
n

0, n > N,

and

P I' Pn+1'n
n > N.

Proof: Apply Theorem 5.5 to Elani. Q.E.D.

Theorem 7.3. Let c be any positive number. Then a

n.a.s.c. that a series Zan converge is that there exist

a convergent series Zbn and a sequence fpn such that,

and

(2) >. c (an+11-bn+1)/(an-Flon)if3n4.1.

Proof: For the necessity, let Zcn be any restricted se-

ries which converges absolutely and define bn = cn-an

for every n. Since an+bn = cn for all n, E(an+bn) is

a restricted series which converges absolutely. From Theo-

rem 7.2, there is a sequence IPn3 satisfying conditions

(1) and (2) above. Clearly, Ebn converges.

For the sufficiency, Zlan+bnI converges according

to Theorem 7.2 so that
E(an+bn)

converges. Thus, Zan

converges since Ebn converges. Q.E.D.

Corollary 7.4. Suppose that c > 0 and (Pn is a
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sequence such that,

Pn >. 0,

and

pn a. c + i(ani_i+bni.1)/(an+bn)113n4.1.

Then Ean converges if and only if
Zipn

converges.

Proof: Apply Theorem 7.3. Q.E.D.

Theorem 7.5. Let c be any positive number. Then a

n.a.s.c. that a series
Ean diverge is that there exist

a divergent series Ebn and a sequence [p 3 such that,

p >. o,

and

pn a. c + 1(an+i+bn+1)/(a
n)1Pn

Proof: For the necessity, let Ecn be any restricted se-

ries which converges absolutely and define bn = cn-an for

n > 0. The series
E(an+bn) = Ecn is a restricted series

which converges absolutely. From Theorem 7.2, there is a

sequence
{pn satisfying conditions (1) and (2) above.

Clearly, Ebn diverges.

For the sufficiency, Elan+bnl converges according

to Theorem 7.2. From Theorem 7.3, an must diverge since

otherwise Ebn would converge. Q.E.D.
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CHAPTER VIII

ALTERNATING SERIES

A real series an is called alternating iff

rn < 0 for every n, and N-alternating iff rn < 0

for n > N, where N is some integer.

Various theorems stating necessary and sufficient

conditions for the convergence of an N-alternating series

will be proven, along with corresponding error bounds for

the quantities T. In many such theorems, it will bepro-

ven that all inequalities, excluding those between indices,

may be reversed. Calling any such theorem and the derived

theorem duals, a duality structure become apparent, but

fails in at least one case. In particular, Theolem8.:2 has

no dual according to Counterexample 8.10. Because of this

duality, if the sequence {rn }
is fairly smooth, the dif-

ficulty in satisfying the required inequalities involving

[a} [13 3 is reduced considerably. Of course, the

more judicious the choice of 3 or tpn3, the better

the resulting bounds for the quantities Tn.

Several theorems proven in this chapter will contain

explicitly, or implicitly, in their conclusion that [Tn3

converges. As we have previously seen, this implies
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Ea eMR(Ea )' but this will usually be omitted from the
n n

conclusion.

Lemma 8.1. If
(P2n-1 is monotone decreasing, {P2n

is

monotone increasing, and some subsequence of (ID2n-1-P3

is bounded below, then (P and
[1:)2nI

both converge.
2n-1

Proof: Suppose that L is a lower bound of some subse-

quence [ID , -P ,3 of
(P2n-I-P2n3.

It is easily seen
2n -1 2n'

that
EP2n-1-P2n is monotone decreasing. Consequently,

L < P
2n

,

2n
-P

2n-1 P2n< P for n > 1. We then have

L+P < L+P <P <P and P <P <P -L < P -L,
2 2n 211-1 1 2 2n 2n-1 1

for n > 1. Accordingly, {10 - and [P2} are bounded2n1 n

monotone sequences, and thus converge. Q.E.D.

Theorem 8.2. Let L and L be any real numbers. Then
1 2

a n.a.s.c. that an N-alternating series Zan converge is

that

and there exist a sequence 3 such that,

a a L and a aL
2n-1 2n-I 1 2n 2n 2

and

a < l+r +r r , a , n > N.
n n+1 n+1 n-r2



Moreover, if (0), (1), and (2) hold, then, for n > N,

rn+rnrni.lan+1-(L2/a) < Tn < rnan-(L /a)

(b)

rn+rnrn < Tn< rnan-(L2/an_1),

accordingly as n is odd or even, respectively. And in

general, for n > N and k > 1,

Tn,2K-2 n
, +(r ...rn+2k-1)an+2k-1 - (L /a ) < T

2 n-1 n

< T , +(r
...rn+2k-2)an+2k-2-(L1/an-1)

or

Tn,2k-2+(rnrn+2k-i)an+2k-1-(Li/an-1) Tn

Tn.,2k-2-1-(rnrn+2k-2)an+2k-2 L /a )n-1 '

accordingly as n is odd or even, respectively.

Proof: Assume that Zan converges. Accordingly (0) holds.

Define L =L and L = L for every n, and2n-1 i 2n 2

an = 1+T +
Lft/an

for n > N. We then have
anann+1

= an+anTn+i+Ln = a+(S-S)+L = S-Sn_i+Ln._ Thus
a2n-1a2n-1

=.
S-8211-2+L.2n-1

L and
a2na2n =. S-S2n-1+L2n -4- L2' SO1

that (1) holds. For n > N, an-1-r -r r a
1 nrn i n 2 nm2

=
1+Tn+1+Ln/an-1-r -r A r , (1+T +L /a )n+1 n+i nm2 nm3 nm2 nm2

= T +L /a -r -r r -r , r -Ln+1 n n n+i n+i n+2 n+i n+2 nm 3 n+2/an

= T +L /a -T -L /a = 0, so thatn+1 n n n+i n n
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(a) Or



an = 1+rn+i+rn+irn+2an+2 for n > N. Thus (2) holds with

equality. This proves the necessity.

For the sufficiency, assume that (0), (1), and (2)

hold, and let n be any integer > N. We now define

Pk
=
Tn,k-2+(rn-..rn+k-1)an+k-1

for k > 1. Accordingly

(3) Pk-Pk+2

(rn...rn+k-1)[an+k-1

k > 1.

From (2) and (3) it can be seen that P2k-P2k+2 < 0 and

2k-12k+1 > 0 for k > 1, so that [P is monotoneP 2K

increasing and
[P2k-1

is monotone decreasing. Moreover,

P -P
k k+i = (rn**.rn+k- )[an+k-1-(1-Frn+k Ian k-lan+k-1

- an+k-1-an+kan+kI/an-l' so that, by (0) and (1), the se-

quence (P -P 3 is bounded. Consequently
{k k+1 P2k-1-P2k}

is bounded. By Lemma 8.1, P2k-1 -4 P'
and P2k P", for

some numbers P' and P" . We then have Tn,2k-2

= rn+...+(rn...r
n+2k-2) P2k-(r *** n+2k-1)an+2k-1
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=. P ,-a , a _,_ , /a --* P" - (L /a ) or
2K n+2K-1 117-2K-1 n-1 2 n-1

P" -
(L1

/an-), accordingly as n is odd or even. Simi-
1

larly, T__,, -n n 2k-1n 2K-1 'r4rr-n n n+i+.**+(r*** ) =. P2k+i

-(rn..-rn+2k)an+2k =. P 1_,_ -a _i_ ,a ,_ ja -9- P'-(L /a )

2N,1 1-0-2K. CI-12N n-1 1 n-1



or P'-(L /a ), accordingly as n
2 n-1

, -TT
n,2k-2

k- , so that T T
n,k n

toneity of [ID
2K

7

-1
3 and P[-20' we have, for k 1,

The dual of Theorem 8.2 is Theorem 8.25.

Choosing L1 = L2 = 0 in Theorem 8.2, we obtain

the following theorem.

Theorem 8.3. A n.a.s.c. that an N-alternating series Zan

converge is that

(0)
an

0,

and there exist a seqUence lan such that,

a an 0

and

a < l+r +r r an nT2 nT2'
n > N.

Moreover, if (0), (1), and (2) hold, then

is odd or even. Also,
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n+2k-1) =. an+2k-1/an-1 -4 0 as

as k 00 . Using the mono-

(a)
rn n+rrn+1an+1 I Tn I man, n > N.

And in general, for n N and k 1,

(b) T , +(r ...r )a
n n-F2k-1 n-r2K.-1n,2k-s

+ (rn..-rn+2k-2)an+2k-2

P2k- (L2/an_i) < Tn < P2 -(L /a
n-1),

if n is odd, or

P2k-(Li/an_i) < Tn I P2k-1-(L2/an-1)' if n
is even.

With k = 1, we obtain (a), and with

(b). Q.E.D.

k > 1, we obtain



=. (a +a )+(a +a )+...+(a +a )=.
(1-a)ao+(l-a)ao 2 3 2n-2 2n-1 2

++(l-a)a =. (1-a)[1+1/2+1/3+...+1/n] -co, i.e.,
2n-2

Zan diverges. We have
r2n

=. -n/a(n+1) -4- -1/a,
r2n+1

= -a,
r2nr2n+i

=. n/(n+1),
r2n+1 r2n1-2

= (n+1)/(n+2),

c+r2n c-1/ > 0, and c+r2n+i c-a > 0. Thus,

(c+rn+1)/(1-rn+irn+2) +co and a K. (c+rn+1)/(1-
n

r )

2-n

for any real number a. Consequently, a(1-rn+1 n 2)

K. (c+rn+i) and a <. c+r+ +rn+ rn+2
a. Withn1 1

92

The dual of Theorem 8.3 is Theorem 8.27.

The following example shows that condition (2) of

Theorem 8.3 cannot be replaced by the condition

= a,

condition (2') holds. We conclude that conditions (0) and

(1) of Theorem 8.3, and (2') are necessary, but not suf-

ficient, for the convergence of Zan.

Theorem 8.5. Let c be any number < 1. Then a n.a.s.c.

that an alternating series Zan converge absolutely is

that

(2')
an c+rn+1+rn+1rn+2an+2'

1 < c.

Example 8.4. Let 1 < c. Define a = (1+c)/2, so that

1 < a < c. Define a = 1/(n+1) and
2n a2n+i = -a/(n+1)

= -aa for
2n

n > 0. Clearly
an

-÷ 0. Also, S
2n-1



(0) an -+ 0,

and there exist a sequence C,a such that,
n

(1) anan -4. 0

and

(2)
an -5-

c+r ,r,ran+1 n+2 n+2'

Proof: For the necessity, define
an,

n 1, by the

equation
anan = c(a +a , +-..)+(n n+2

n > 1.

n+1 Then

a a -+ 0. Also anan = can+an+1+an+2an+2'nn

an =
c+rn+1+rn+1rn+2an+2

for n > 1.

and thus

For the sufficiency, we first note that Zan con-

verges according to Theorem 8.3. Define a 1+T+1 and

pn (ar'l-an)/(1-c) for n > 1. Then a' =
l+rn+1

+ r
r+2 an+2' for n 1, and a a' 0, so thatn n n

lan0n =. la 1(a'-a )/(1-c) 0. Also, (1-c)[1-Pn n n n

+ p , a , /a ] = (1-c)[1-(a'-a )/(1-c)n+2 n+2 n n n

+(a' -a )r r /(1-c)] = 1-c-a'+a +(a'n+2 n+2 n+i n+2 n n n+2 n+2 n-1-1 n+2

= -a'+1+r +r r at +a -c-r -r r a =
an-cn+1 n+1 n+2 n+2 n n+1 n+1 n+2 n+2

-r -r r a <n+1 n1-1 n+2 n-1-2
0 for n > 1. Thus,

pn
1

+(an 2/an)Pn+2 = 1+(lan+21/lanl)Pn+2 for n > 1. From

Theorem 5.1, E1a2n1 and
Zla2n+1 converge, and thus

Zan is absolutely convergent. Q.E.D.

93



The dual of Theorem 8.5 is Theorem 8.29.

Theorem 8.6. Let c, L2 be any real numbers where

c < 1. Then a n.a.s.c. that an alternating series Z

converge absolutely is that

(0)

and there exist a sequence
n3

such that,

(1)L and a
L2a2n-1a2n-I 2na 2n

and(2)1.an
< +

rn+i+ n n 2an+2' n >

Proof: For the necessity, there is a sequence [a} sa-

and (2) above.

For the sufficiency, define

tisfying (1) and (2) of Theorem 8.5. Define by the
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=
-L and a a' = -L . Ita2n-1 2n-I 2n-Ia2n,..1 1 2n 2n a2n 2n 2

may be seen that 3aji3 satisfies (1) and (2) of Theorem

8.5, and thus an converges absolutely. Q.E.D.

The dual of Theorem 8.6 is Theorem 8.30.

Theorem 8.7. Suppose that an is an N-alternating series

such that a 0,
r+i rn+2

< 1 for n > N, and a is
n

a real number such that a < (l+rn+1)/(1-rn+1rn+2) for

ta by the equations



n.> N. Then
rn+rnrn la

T
rna

for n > N.

Proof: For n > N, a(1-r n+2) < l+r
n

and a < 1

+rn+i+rn n+2a.
Setting an = a for n > N, we may

use (a) of Theorem 8.3 to complete the proof. Q.E.D.

Taking N = 1 in Theorem 8.3, We have the fol-

lowing theorem.

Theorem 8.8. A n.a.s.c. that an alternating series

Ean converge is that

(0)
an

0,

and there exist a sequence {an} such that,

a a -0
n n

and

a < l+r+ +r rn+2 an+2 ,
n > 1.

n n1 n

Moreover, if (0), (1), and (2) hold, then

(a) rrr+an+ < T <ra n> 1.
n n n1 i n'

And in general, for n > 1 and k > 1,

(b),
+(rn )a < <Tn,2K-2 n+2k-1 n+2k-

T
T1n n,2k-s

+ (r ...r )an+2K-2 n+2k-2

The dual of Theorem 8.8 is Theorem 8.31.
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Remark 8.9. We will show that if any of the three condi-

tions (0), (1), or (2) of Theorem 8.2 are omitted, the
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remaining two are not sufficient for the convergence of

Zan. We may do this by making the same considerations of

Theorem 8.8, since condition (0), (1), or (2) of Theorem

8.8 implies the corresponding condition of Theorem 8.2.

We will show even more. In particular, condition (a)

Theorem 8.8 implies that an < l+rni.lan+1 for n 1.

We thus consider the four conditions:

(0) a 0,

a
n
a
n

-* 0,

a < l+r +r r a n > 1,
n n+i n+2 n+2'

a < r a > 1.
n n+i n+1'

We will show if (0), (1), or (2) i omitted, the remaining

three conditions are not sufficient for the convergence of

Zan. We will also show that if (1) is replaced by the two

weaker conditions that
anan-an+1an+1 -4 0 and that

[anan be bounded, the resulting four conditions are not

sufficient for the convergence of Zan.

Counterexample 8.10. Let Zan be the divergent series

We have
an

= ( 1)n for n > 0, and1-1+1-1+-...

= -1 for n > 1. Defining
an

= 0 for n > 1, the

following three conditions obviously hold:



anan
0,

a <
l+rn+14-rn+1rn+2an+2'n

a < 1+r +a+,n n+1 11+1' n >

n > 1,

We have shown that conditions (1), (2), and (3) are not

sufficient for the convergence of Zan.

Counterexample 8.11. Let an = 1-1/2+1/2-1/(2.2)

1/(n+1)-1/2(n+1)+... .

This series is divergent, since for n > 1,

S2n-1 = (1-1/2)+(1/2-1/(2.2))+...+(1/n-1/2n)

= (1/2)(1+1/2+1/3+...+1/n).

Let a be any real number, and define the sequence fa

-recursively by the equation an = The fol

lowing conditions are seen to hold:

(0) an 0,

(2)
an l+rn+rn+1 n 2ani.2'

n > 1,
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(3) an l+r
n+1 n+1'

n > 1.

We conclude that Conditions (0), (2), and (3) are not swf-

ficient for the convergence of Earl. Moreover,
anan

- a a =.
an

-4- 0, so that the four conditions an+i n+i an an

-
ani-1 n+1

-4 0, (0), (2), and (3) are not sufficient for

the convergence of Ean.



(2)
an

l+r +r r an+i n+1 n+2 n+2' n > 1,

is false. Indeed, (2) must fail to hold for infinitely

many values of n according to Theorem 8.3.

Counterexample 8.13. Let Zan be any divergent alternat-

ing series whose partial sums are bounded, and such that

an
0. Let

a1
be any real number, and define the se-

quence
tan recursively by the equation

an
=

+
rn+ian+1. We easily see that

an+1an+1 =
a1a1

(a1+a2+...+an) for n > 1. Consequently, the sequence

tanan is bounded, since the partial sums
Sn

are bounded.
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Counterexample 8.12. Let an be the divergent series

given in Counterexample 8.11. Defining
an

= 0 for

n> 1, it is obvious that the following conditions hold:

(0)
an

-+ 0,

(1)
anan

0,

(3) an < l+rn1 n+1' n > 1.

Thus conditions (0), (1), and (3) are not sufficient for

the convergence of Zan. Also, Theorem 8.8 implies that

the condition

Conditions (0), (2), and (3) of Remark 8.9 are easily seen

to hold. Consequently, these three conditions along with



the condition that
fanan

be bounded are not sufficient

for the convergence of Ean. Moreover, it is of no avail

to also require that an n-an+1an -Y 0, since

a =. 1 +
rn+1an+1

yields a a - =. a -+ 0 innna11+1 a
n+i

the present counterexample.

Theorem 8.14. Let L be any real number and Zan be

any N-alternating series such that a2n
>. 0. Then a

n.a.s.c. that an converge is that

(0) a 0,

and there exist a sequence ta 3 such that,

(1) some subsequence of

and a a L2n 2n

and

(2)
an

1 + r +r r a
n+1 n+1 n+2 n+2'

Then,

2n-I 2i-

n > N.

Moreover, if conditions (0), (1), and (2) hold, then

la
2n-1 a2n-I

3 converges.

Proof: The necessity is immediate from Theorem 8.2.

For the sufficiency, let m be any odd integer

> N+1. Define Pk = Tm,k-2+(rm..-rm+k-1)am+k-1 for k> 1.
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3 is bounded below



P -P = (k+2 rn" rm+ k -1 ) [am+ k -1-
( 1+

rm+ k

+ rm+krm+k-1am+k)]-1 '

k > 1.

From (2) and (3), we see thatP-- < 0 and
P2k+2

2k-1P2k+1 > 0 for K > 1, so that
IP2k

is mono-P-
tone increasing and 3 is monotone decreasing.

Also,

-P = (a , a -a
2 -1 2k M+2K-2 M1-2K-2 MT2K-2

, a , )/-
a171+2k-1 M1-2K-1' am-1

for k > 1, so that by (0), (1), and the fact that

am-1 2kI> 0, some subsequence of tP -2k-
P I is bounded

and Pik P" forbelow. By Lemma 8.1,
P2k-1

some numbers P' and Ps'. Also, according to (1),

aM+2k,1 aMT2K-1 L as k -4-00. From (4), ,
m 2K-2aM-1-2k-2-

(P , -P ,) L + aM-1(P-P")am+2k-2+am+2k-1am+2k-1+a M-1 2K-1 2K

as k 00 . Consequently, m being odd, we see that

(a
2n-a2

3 converges. Theorem 8.2 now implies that
I -1

Zan converges. Q.E.D.

The dual of Theorem 8.14 is Theorem 8.40.

Theorem 8.15. Let L be any real number and Zan be

any N-alternating series such that a2n . 0. Then a

n.a.s.c. that
Zan converge is that
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(0)
an

.4 0,

and there exist a sequence [an} such that,

some subsequence of [an- 'a2n-13 is bounded21
above and a a Lzn 2n

and

an
l+rn+1+rn+1rn+2an+2' n > N.

Moreover, if conditions (0), (1) and (2) hold, then

{a2na 2n-} converges.-I 1

Proof: The necessity follows from Theorem 8.2.

For the sufficiency, define ar'l = -an for n> 0.

Accordingly, r = a'/a'1 = a /a1 =
rn

for n > N.
n n-

It is obvious that Theorem 8.14 is applicable, yielding

the convergence ofEar' and [a' , a }. Thus, Ea
2n-1 2n-1

and
[a211-1a21-1-1

both converge. Q.E.D.

The dual of Theorem 8.15 is Theorem 8.39.

It has been shown that (1) of Theorem 8.2 cannot be

omitted, or replaced by the weaker condition that (ana

be bounded and a a -a a -4- 0. The following theorem
n n n+.1 n+1

shows that (1) can be replaced by the weaker condition that
some subsequence of fa a 3 be bounded and

2n-I 2n-1

{a2na2n converge.
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Theorem 8.16. Let L be any real number. Then a n.a.s.c.

that an N-alternating series Ean converge is that

(0) an 0,

and there exist a sequence [an} such that,

some subsequence of tan a2n 11 is bounded and2-1 -

a a L
2n 2n

and

an I 1+rn+1n+1rn+2an+2 n N.

Moreover, if conditions (0), (1), and (2) hold, then

ta
2n-1 a2n-1

converges.

Proof: The necessity follows from Theorem 8.2.

For the sufficiency, we need only note that

a2n
>. 0 or

a211
<. 0, and then apply Theorem 8.14 or

Theorem 8.15, respectively. Q.E.D.

The dual of Theorem 8.16 is Theorem 8.41.

The following counterexample shows that (1) of

Theorem 8.14 or Theorem 8.16 cannot be replaced by the

condition

(1')
ta2n-1a2n-1

is bounded above and a2na2n
-+ L.

Counterexample 8.17. Let Zan be the divergent series

given in Counterexample 8.11. We have a2n
= 1/(n+1)

and
a2n+1 = -1/2(n+1) for n > 0. Define a2n

= 0
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for n > 1. Define
{a2n-1

recursively by the equation

a2n-1 2n 2n
. = l+r +r r2n+1,a , n> 1, where

a1
is any

real number. It can be seen that (0)
an

-> 0, (1)
a2n a2n

->0,

and (2)
an I l+r _, r

+_,_

a ,_ for n > 1. Also,
n 1 n+i n2 n+2

a
n-r
_, a _,_ a a -(a +a +.--+ a2n) -). _00 , so that2i 2n1-1 1 1 1 2

211-1a2n-13 is bounded above.

The following counterexample shows that (1) of The-

orem 8.15 or Theorem 8.16 Cannot be replaced by the condi-

tion

(1')
la2n-Ia2n-1 is bounded below and

a2na2n
L.

Counterexample 8.18. Let
Ean

be the divergent series

whose terms are the negatives of those of the series given

in Counterexample 8.17, i.e.,
a2

= -1/(n+1) and a2n+n

= 1/2(n+1) for n > 0. Define a2n = 0 for n > 1.

Define
Ea2n-

3 recursively by the equation
a2n-1

= 1
I

r2n+r2nr2n+la2n+1' 1'
where a is any real number.

Then (0)
an

-> 0, (1) a2na2n -> 0, and (2)
an < l+rn+i-

Also,so, a =li+
rn+1rn+2an+2

for n > 1
a2n+1 2n+i

. aa

a

- (a +a +-..+a ) -> +°°
1 2 2n

below.

so that
[a2n-1a2n-1

is bounded

Theorem 8.19. Let L be qny real number and Ean be



any N-alternating series such that a2n >. 0. Then a

n.a.s.c. that an converge is that

(0)
an

-4. 0,

and there exist a sequence
tan)

such that,

some subsequence of ta__a
211 2111

is bounded above

and
a2n-1a2n--1 L

and

an
< l+r.T,1 +rn+i rn+2 an+2'

n > N.
n

Moreover, if conditions (0), (1), and (2) hold, then

ta 2na 2n
converges.

Proof: The necessity follows from Theorem 8.2.

According to Theorem 8.2, for the sufficiency we

need only show that
la2na2n

converges. Define

a = a+1 for n > 0, and a' = an+1 for n > N. Then

a' -4. 0 and a a' =
a2n+1a2n1

-4 L. Since some subse-
c 2n

quence of
ta2na2n)

is bounded above and a' a'2n-1 2n-1

=. a a it follows that some subsequence of ta' '2n 2n' 2n-1a 2n-I3

is bounded above. We have =. a . 0. Also,
2n 2n+1

= a'/a' =
an = rn+1 for

n n-1
n > N. From (2), for

> N, a' = an-1-1 I l+r +r ra = 1+1-1
n+2 n+2 n+3 n+3 n-1-1

1-1 I''+,2 an+2' . Applying Theorem 8.15, taL-1a2n-11n n

104
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converges. Thus,
ta2na2n] converges. Q.E.D.

The dual of Theorem 8.19 is Theorem 8.43.

Theorem 8.20. Let L be any real number and Ean any

N-alternating series such that a2n . 0. Then a

n.a.s.c. that converge is that

(0)

and there exist a sequence a} that,

some subsequence of ta2na2n3 is bounded below and

azn-1a L
2n-1

and

a < + r r a n > N.
n n+ n 1 rIm2 n+2'

Moreover, if conditions (0), (1), and (2) hold, then

ta211a2n1 converges.

Proof: The necessity follows from Theorem 8.2.

For the sufficiency, define a =
-an

for n > 0.

Accordingly,
rn = a1'/a'1 =n- n n-1

It is easily seen that Theorem 8.19 is applicable, yielding

the convergence of Ea' and {a'
a2

}. Thus,
Ean

and
zn n

la
zn

a
2 n

3 both converge. Q.E.D.

The dual of Theorem 8.20 is Theorem 8.42.

for n > N.



Theorem 8.21. Let L be any real number. Then a n.a.s.c.

that an N-alternating series
Ean converge is that
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and there exist a sequence
t an}

such that,

some subsequence of
{a2na2n} is bounded and

a2n-1a2n-1

and

an < 1 +
rn+i+rn+1rn+2an+2'

n > N.

Moreover, if conditions (0), (1), and (2) hold, then

a a 32n 2n converges.

Proof: The necessity follows from Theorem 8.2.

For the sufficiency, we need only note that

a
211

>. 0 or
a2

<. 0, and then apply Theorem 8.19 or

Theorem 8.20, respectively. Q.E.D.

The dual of Theorem 8.21 is Theorem 8.44

The following counterexample shows that (1) of

Theorem 8.19 or Theorem 8.21 cannot be replaced by the

condition

(1') ta a 3 is bounded below and
a2n-1a2n-1

-4 L.2n 2n

Counterexample 8.22. Define a2 1/2(n+1) and

a2n+1
= -1/(n+1) for n > O. Since

a2n+a211+1=
1/2(n+1)



for n > 0, Sn -co. Define a = 0 for n > 1. De-
2n-1

fine (a 3 recursively by the equation a = l+r
2n 2n 2n+1

2n+1r2n+2a2n+2' n. > 1, where a2 is any real number.

We then have (0) an -+ 0, (1) a2n 1a2 0, and (2)--1
a < 1 +r +r r a for n > 1. Also, a an n+1 n+i n.+2 n+2 2n 2n

=. a2a-(a2+a3+..-+a) +00 , so that [a2
a2

3 is
n n

bounded below.

The following counterexample shows that (1) of

Theorem 8.20 or Theorem 8.21 cannot be replaced by the

condition

(1')
fa2na2ni is bounded above and a a L.2n-1 2n-I

Counterexample 8.23. Let an be the divergent series

whose terms are the negatives of those of the series given

in Counterexample 8.22, i.e.,
a2n

= -1/2(n+1) and

= 1/(n+1) for n > 0. Define
a2n-1

= 0 fora2n+1

n > 1. Define
fa21.1

recursively by the equation

+r
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+r a_ ,a2n = l+r2n+1 2n+1r2n+2a 2nm2 n > 1,
where-

is any

real number. Accordingly, (0)
an-*

0, (1)4- 0,
a2n-1 2h-1 -

and (2)
an < 1-Fr

,-r

-Fr
i_+

r a ,_ for n > 1. Also,
n 1 n 2 nm 2

-r - 00 , and thusa a =. a a -(a +a +...+a
2n 2n 2 2 2 3 2n-1'

{a2na2n} is bounded above.
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Lemma 8.24. Let Zan be an N-alternating series and

[Pr) be a sequence such that

(0) a -4.0,

a2n-1 2n-1 L1 and
a2np2n L2, for some

L1

and
L29

and

pn > 1 + rn
n irn+2Pn+2' n > N.

Defining an = 11-rn+1[3n-W for n > N, we have

a a
L2

and
a2ha2r1

L2n-1 2n-1 1

and

an < l+rn+i+rn+1rn+2an+2' n > N.

Moreover, for n > N and k > 1,

Tn,2k-24-(r ...rn+2k-i)Pn+2k-1

= Tn,2k-3+( n+2k_2)an+2k-2

and

(6),Tn,2K-s rn+2k-2)Pn+2k-2

, +(r )n,2K-2 n rn+2k-1a. n+2k-1

Proof: Since
an

=. l+r
n+113n+1' a2n-la2n-1,=. a2n-1+a2np2r1

and a_. Using (2),
4ria2n =. a2n+8.2n+1132n+1 Ll.



a -(1+r +r r a = l+rninip
-(1+rn+i+rn+1rn+2n+1 n+1 n+2 n+2

n+irn+2rn+3Pn+3) = rn+1[Pn+1-(1+rn+2-Frn+2rn+3Pn+3)1 0'

so that (4) holds. Next, Tn,2k-3 + (rn---rn+2k-2)a n+2k-2

= Tn,2-aK n
1, +(r ..-rn+2k- )(1i-rn+2k-iPn+2k-1') = Th,2k-2

(rnrn+2k-i)Pn+2k-1

Tn,2k- +(rnrn+2k-2)Pn+2k-2 Tn,2k-

(rn...rn+2k-2)(1+rn+2k-1+r n+2k-1rn+2k. n+201 = n,2k-2

(rnrn+2k-1)(11-rn+20n+2k) Tn,2k-2

(r--nrn+2k-)an+2k-i*

Theorem 8.25. Let
L1

and L2
be any real numbers. Then

a n.a.s.c. that an N-alternating series Zan converge is

that

(0)
an

0,

and there exist a sequence
fpn

such that,

(1)a2n- 2n-
-4- L and

a211p21-1 L21 1

and

(2) Pn 1/-rn+1-1-rn+1r.n+2Pn+2' n N.

Moreover, if (0), (1), and (2) hold, then, for h > N,

rni-rnrn+1Pn+1-(-42/an-1) Tn rnPn-(Li/an-1)

(a) or

rn+rnrni.1pni.1-(L /an-1 >T >rP L/a )
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Thus (5) holds. Again using (2),

Consequently (6) holds. Q.E.D.
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accordingly as n is odd or even, respectively. And in

general, for n > N and k > 1,

n,2K-24.-(r n.. r n+21(-1)Pn+2k...1-(L /an-1)
.

(b) or

Tn,2N-2

cessity of Theorem 8.2, replacing

> Tn 2k-s+(

...r i/an_i) > T
n+2k- )Pn+2k-1-(L

> T ( /an-1)'n,2k-s+(r n...r 114-2k-2)Pn+2k-2-L' 2

accordingly as n is odd or even, respectively.

Proof: For the necessity, we may use the proof of the ne-

/a )

1-1-1

tta TT by trp throughout.

For the sufficiency, assume that (0), (1), and (2)

hold, and define an = l+rn+in+i for n > N. According

to Lemma 8.24, conditions (0), (1), and (2) of Theorem

8.2 hold, with
L1

and
L2

interchanged. Using (b) of

Theorem 8.2, and (5) and (6) of Lemma 8.24, we obtain (b)

of the present theorem, from which (a) follows with k= 1.

Q.E.D.

The dual of Theorem 8.25 is Theorem 8.2.

Choosing L= L = L in Theorem 8.25, we obtain the fol-

lowing theorem.

Theorem 8.26. Let L be any real number. Then a n.a.s.c.

that an N-alternating series Ean converge is that

n+2k-2)13n+2k-2



(0)
an

-4- 0,

and there exist a sequence
fpn

such that,

anpn L

and

pn l+rn, +
1-1rn+r1n+2Pn+2' n > N.

Moreover, if (0), (1), and (2) hold, then, for n > N,

(a)
rn+rnrn+113n+1-(L/an-1) Tn rnPn-(L/an-1).

And in general, for n > N and k > 1,(b)> T
Tn,2k-2+(rn..-rn+2k-1)pn+2k-i-(L/an-1)

Tn,2k-s+(rnrn+2k-2)Pn+2k-2-(L/an-1)*

Theorem 8.26 can be seen to have a dual by setting

L1 = L2 = L in Theorem 8.2.

The following example shows that condition (2) of

Theorem 8.27 cannot be replaced by the condition

(2')pn c+rn+l+rni.irni_2pn+2, c < 1.

Example 8.28. Let 0 < c < 1, so that 1 < l/c. Let

Zan be the divergent series defined in Example 8.4.

According to that example,
an

-4. 0, and there is a sequence

such that a a -40 and an 1/c+r +rn+1 rn+2 an+2°fin

Defining pn =. c(l+rn+lan+1), anpn =. c(an+an+1an+1) 0.

From the preceeding inequality it is easily seen that
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(2 ) holds. We conclude that (0) and (1) of Theorem 8.27

and (2') are necessary, but not sufficient, for the con-

vergence ofan.

Choosing Li = L2 = 0 in Theorem 8.25, we obtain the fol-

lowing theorem.

Theorem 8.27. A n.a.s.c, that an N-alternating series

an converge is that

(0)
an

-+ 0,

a -+ 0
n n

and

Pn > l+rn+1-1-rn+1rn+2Pn+2, n > N.

Moreover, if (0), (1), and (2) hold, then, for n > N,

r +r r B
n n n+irn+.1 Tn rnI3n*

And in general, for n > N and k > 1,

>Tn,2k-2 + (r ...rn+2k-i)Pn+2k-1TnTn,2k_3

+ (rn...rn+2k-2)Pn+2k-2'

The dual of Theorem 8.27 is Theorem 8.3.

Theorem 8.29. Let c be any number > 1. Then a

n.a.s.c. that an alternating series Zan converge ab-

solutely is that

(0)
an

0,

and there exist a sequence (pro such that,



and there exist a sequence fp 3 such that,

a p o
11 11

and

Pn > c + ni.i+rn+irni.2pn+2, n 1.

Proof: For the necessity, we may use the proof of the

necessity of Theorem 8.5, replacing " a" by "P" through-

out.

For the sufficiency, define an, n > 1, by the

equation
can

= l+r
n+113n+1*

Then
an

--+ 0 and
anan

=. (a +a
n n+1Pn+1)/c

c an - (1/c+rn+I+rn+1rn+2an+2)] 7 rn+1[Pn+1

- (c+rn+2+

0. From (2),

n
2rn+an+s)1 < 0, so that an

< l/c + r
P

+rn+1 rn+2 am2 for n > 1, where 1/c < 1. According to
n

Theorem 8.5, Elani converges. Q E.D.

The dual of Theorem 8.29 is Theorem 8.5.

Theorem 8.30. Let c,
L1- L2

be any real numbers

where 1 < c. Then a n.a.s.c. that an alternating series

Ea Converge absolutely is that

(0)
an

-+ 0 1

and there exist a sequence
tpn

such that,

(1)
an- p2n

L and an 2np
L221 -1
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and

(2)
Pn rn+14-rn+irn+213n+2' n > 1.

Proof: For the necessity, there is a sequence [pn3 sa-

tisfying (1), (2) of Theorem 8.29. Define {l3 the

equations a p, :=, a is3 + L and a p,2n-1 2n-1 en-i 2n-1 1 zn 2n

=a2n 2n
p +L2. It is easily seen that (p,3 satisfies

n

(1) and (2) above.

For the sufficiency, define tp,3 by the equations
n

a a - L
i

p, = and a p, - a p - L .2n-1 2n-1 zn-1P2n-1 2n 2n 2n 2n 2

We easily verify that tp,3 satisfies (1) and (2) of
n

Theorem 8.29, and thus Zan converges absolutely. Q.E.D.

The dual of Theorem 8.30 is Theorem 8.6.

With N = 1 in Theorem 8.27, we obtain the following theo-

rem.

Theorem 8.31. A n.a.s.c. that an alternating series Zan

converge is that

(0)
an 0,

and there exist a sequence tpn such that,

a p onn

and

p > + n > 1.
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(3) Pn l+r + Pn n+1' n > N.

Moreover, if (1), (2), and (3) hold, then, for n > N,

(a) rn+rnrn+ipn+i- (L/a) Tn rnpn - (L/an).

And in general, for n > N and k > 1,(b)>
Tn,2k-2+(rnwrn+2k-i)Pn+2k-1-(1-/an-1

T

Tn,2k-s+(rnrn+2k-2)Pn+2k-2-(L/an-1)*

Proof: For the necessity, Theorem 8.26 implies the exist-

ence of a sequence 0n such that conditions (0), (1),

and (2) are satisfied. Also, by (a) of Theorem 8.26, we

have
rn+rnrn+ipn+1 (L/a1 ) > rn p - (L/a n1) for

n- -
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Moreover, if (0), (1), and (2) hold, then, for n > 1,

rn+rnrn+1Pn+1 Tn rnP

And in general, for n > 1 and k > 1,

Tn,2k-2+(rnrni-2k-i)Pn+2k-1 Tn Tn,2k-s

(rn0"rn+2k-2)Pn+2k-2

The dual of Theorem 8.31 is Theorem 8.8.

Theorem 8.32. Let L be any real number. Then a n..a.s.c.

that an N-alternating series Zan converge is that there

exist a sequence (Pni such that

an pn
L,

P 1+1.1-14-rn+1rn+2Pn+2'
n > N,

and
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n > N, from which (3) follows.

For the sufficiency, assume that (1), (2), and (3)

hold. Using (1), (3), and the fact that la Van, n > N,

is bounded, we have 0 <, lanl . lant(pn-pni.irn+1)

=. (lanVan)(anpn-an+Ipn+1) -4- 0, so that tact -4- 0, i.e.,

an
0. Now apply Theorem 8.26. Q.E.D.

According to Counterexample 8.10, Theorem 8.32 has

no dual.

Remark 8.33. We now consider the four conditions:

(0) a-

a -4 0,nn

p 1+rn+1+rni.1rn+213n4.2, n > 1,

pn > l+r
n n+1, n>1.

We have seen that if (0) or (3) is omitted, the remaining

three conditions are necessary and sufficient for the con-

vergence of an alternating series Zan. It will be shown

that if condition (1) or (2) is omitted, the remaining

three are not sufficient for the convergence of Zan. We

will see that conditions (1) and (2) are not sufficient

for the convergence of Zan. It will also be seen that if

(1) is replaced by the weaker conditions that
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anpn-an+Ip-4 0 and that tanpn3 be bounded, the result-

ing four conditions are not sufficient for the convergence

of
Ean

Counterexample 8.34. We use Counterexample 8.11 with

an, n > 1, as defined there. Defining pn = an for

n > 1, the following conditions are obvious:

(0) an 0,(2)n >Pn 14-rn+11-rn+irn+2Pn+2' 1,

(3) p
l+rn-F1Pn+1'

n > 1.

Also,a 3 -a p =.
ann 11+1 n n

so that the four conditions

Thus conditions (0), (1), and (3) are not sufficient for

the convergence of Ea .

ann-an+ipn -4 0, (0), (2), and (3) are not sufficient

for the convergence of E
n.

Counterexample 8.35. Let Ean be the divergent series

given in Counterexample 8.11. Defining pn = 1 for n > 1,

it is obvious that the following conditions hold:

(0) a -4 0,

(1) anpn
0,

(3) Pn li-rn+1Pn+1'
n >



Counterexample 8.36. Let Zan be the divergent series

in Counterexample 8.10 and [P} any monotone decreas-

ing sequence such that pn -4 0. We then have

anpn -4 0

and

Pn l+rn-FI-1-rn-Firn+2Pn-F2'
n > 1.

Thus conditions (1) and (2) are not sufficient for the

convergence of Zan.

Counterexample 8.37. Let Zan be the divergent series in

Counterexample 8.10, L be any number > 1/2, and [Pn

be any monotone decreasing sequence converging to L.

We then have

(1) a2n-1p2n-1 -L and a B L,
2n. 211

p > 1-Fr +r r
n ni n n+2 1"1+2'

and

pn 11-rn+ii3n+l' n 1.

Consequently, (1) of Theorem 8.32 cannot be replaced by

the weaker condition that anp2n-1 L and2-1 1

a2n p2n
L
2

, for some numbers L and L The corres-

ponding replacement in Theorem 8.26 was valid according to

Theorem 8.25.

n > 1,
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Moreover, if conditions (0), (1), and (2) hold, then

{a2n-1p211-1 converges.
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Counterexample 8.38. We use Counterexample 8.13 with an,

n > 1, as defined there. Defining pn =
an,

for n > 1,

the following conditions hold:

(0) an -4 0,

Pn > l+rn 1/-rni-irn+2Pn+2' n > 1,

Pn l+rn+IPn+l'
n > 1.

According to Counterexample 8.13, the sequence [an np
3 is

bounded and ann-an+iPn -4 0. Thus, replacing (1) of

Remark 8.33 by these two conditions, the resulting condi-

tions are not sufficient for the convergence of
Zan

Theorem 8.39. Let L be any real number and Zan

any N-alternating series such that a2n >. 0. Then a

n.a.s.c. that Zan converge is that

(0) an -4 0,

and there exist a sequence {pn such that,

some subsequence ofta2n- p2n-1 is bounded
I

above and
a21-1132n

L

and

Pn l+rn+l+rn+irn+213n+2'
n > N.
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Proof: The necessity follows from Theorem 8.25.

For the sufficiency, define
an

= l+rni.lpn+1 for

n > N. Thena a a+ap L. Since
2n-12n-1 2n-1 2n 2n

some subsequence of [a2na2na2na2n a2n4-a2n+1132n+t'

is bounded above. Also, an = l+r p < l+rn+1n+1 n+1

+r r (l+rn+On4.3) = l+r j_ +r .,.. r _,2 a+2rrrl r1T-2
for n > N.

nA 1 ni 1 ni n

From Theorem 8.19, both Zan and [a2na2nj converge.

Consequently,a = a a -a lim a a , i.e.,
2n+1132n+1 2n 2n 2n 2n 2n

(a
n-

p 3 converges. Q.E.D.2I 2n-I

The dual of Theorem 8.39 is Theorem 8.15.

Theorem 8.40, Let L be any real number and Zan

any N-alternating series such that a2n <. 0. Then a

n.a.s.c. that
Zan converge is that

(0)
an

0,

and there exist a sequence {3} that,

some subsequence of {a2._...Bn P 2n-1}
is bounded below

and
a2np2n L

and

>n 11-rni-l+rn+1 n+2Pn+2'
n > N.

Moreover, if conditions (0), (1), and (2) hold, then

[a2n-Ip2n-I
converges.
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Proof: The necessity follows from Theorem 8.25.

For the sufficiency, define a =
-an

for n > 0.

Accordingly, r = aT/a'
I
= an/ant

- = rn for n > N. It
n n-

is easily seen that Theorem 8.39 is applicable, yielding

the convergence of Ea' and [a' 33. Thus, Ea and
n 2n-1 2n-I n

(a2n-Ip2n-13 both converge. Q.E.D.

The dual of Theorem 8.40 is Theorem 8.14.

Theorem 8.41. Let L be any real number. Then a n.a.s.c.

that an N-alternating series Ean converge is that

(0) an -+ °'

and there exist a sequence
tpn

such that,

some subsequence of ta2n1 2n-Ip
3 is bounded and

-

a p --+ L
2n 2n

and

pn > l+rn+1 rn+Irn4.2pn+2, n > N.

Moreover, if conditions (0), (1), and (2) hold, then

ta2np2n converges.
-1 -1

Proof: The necessity follows from Theorem 8.25.

For the sufficiency, we need only note that a2n >. 0

Or
a2n

<. 0, and then apply Theorem 8.39 or Theorem 8.40,

respectively. Q.E.D.



The dual of Theorem 8.41 is Theorem 8.16.

Theorem 8.42. Let L be any real number and
Ean any

N.-alternating series such that
azn

> 0. Then a n.a.s,c.

that Ea converge is that

(0)
an

-4- 0,

and there exist a sequence [pi such that,

some subsequence of
ta211p2n

is bounded below

and8 La2n-i'

and

14-rn+1+rni.jr,4-213,+2'
n > N.

Moreover, if conditions (0), (1), and (2) hold, then

t a p 3
2n 2n converges.

Proof: The necessity follows from Theorem 8.25.

For the sufficiency, define

n > N. Then a a=. a +azn 2n 2n 2n, 1. 2n-r1

1+rn+1 forn+IP

L. Since

a2n-1a2n- .

a2n-1
+a

2n
p
21

some subsequence of1 =1-,
ta2n_la2n_13 is bounded below. Also, an = l+rni.18,1+1

< 1+rn+l+rn_Firn+2(1+rn+38n 3) = l+r
n n 1rn+2an+2 for

n > N. From Theorem 8.14, both Ean and ta2n_la2n_11

converge. Consequently, a___43 =. a
211 2n 2n-1a2n-1-a2n-1

lim an a2n , i.e., ta p 3 converges. Q.E.D.2-I -I 2n 2n

=
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The dual of Theorem 8.42 is Theorem 8.20.

Theorem 8.43. Let L be any real number and Ean be

any N-alternating series such that a 0. Then a

n.a.s.c. that
Ean converge is that

(0)
an

0,

and there exist a sequence tpn1 such that,

(1) some subsequence of
ta2n132n

is bounded above

Land
a2n-1P2n-1

and

(2)
pn 1 + r

n+1+rn Irn+2Pn+2'
n > N.

Moreover, if conditions (0), (1), and (2) hold, then

Eap converges,

Proof: The necessity follows from Theorem 8.25.

For the sufficiency, define ar'l = -an for

n > 0. Then r' = a'/a'
1

=
an /an-1

= r for n > N.
n n-

From Theorem 8.42, both Ear 'l and ta' p 3 converge.
2n 2n

Thus,Ean and ta p
2h

3 converge. Q.E.D.

The dual of Theorem 8.43 is Theorem 8.19.
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Theorem 8.44. Let L be any real number. Then a n.a.s.c.

that an N-alternating series an converge is that



(0)
an

0,

and there exist a sequence 03 3 such that,

(1) some subsequence of
ta2n132n

is bounded and

B La2n-1,2n-i

and

(2)
Pn 1 rn+t+rn n 2Pn+2' n > N.

Moreover, if conditions (0), (1), and (2) hold, then

fa2np2n converges.

Proof: The necessity follows from Theorem 8.25.

For the sufficiency, we need only note that

a2n
. 0 or

a211
. 0, and then apply Theorem 8.42 or

Theorem 8.43, respectively. Q.E.D.

The dual of Theorem 8.44 is Theorem 8.21.

Theorem 8.45. (Leibnitz's Theorem for alternating series.)

Let
Ean be an alternating series such that -1 < rn,

for n > 2, and a -÷ 0. Then Ean converges, and more--

over IS-Sn_il Ian for n > 1.

1st Proof: Choosing = 0 for n > 1, we may use (a)

of Theorem 8.8 to obtain

rn+rnrn+i-0
< (S-S )/a < r -0, n > 1,

n-1 n-1 n
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and this immediately yields the desired inequality. Q.E.D.



2nd Proof: Choosing 3ri = 1 for n > 1, we may use

(a) of Theorem 8.31 to obtain

0 > r +r r+ .1 > (S-S)/a > r .1, n > 1,n n n/ n-I n-I

from which the desired inequality follows. Q.E.D.

Lemma 8.46. Suppose that p,x,y, and q are numbers

such that -1<p<q<0, p<x<q, and p<y<q. Setting

a = (l+p)/(1-pq) and p (1+q)/(1-pq), we have

and

pP < xP < x+xya < x+xyp < xa < qa,

a < 1+x+xya and p > 1+x+xyp,

(3) pP < x/(1-x) < qa.

Proof: It is easily seen that 0 < a = l+pp < p = l+qa.

Accordingly pp < xp = x(l+qa) < x(l+ya) < x(l+yp)

< x(l+pp) = xa < qa, a = l+pP < 1+x+xya, and p = l+cia

> 1+x+yp. This proves (1) and (2). For (3), we have

[x/(1-x)] - pp = [(x-p)+p(x-q)]/[(1-x)(1-pq)] > 0 and

qa - [x/(1,x)] = [(q-x)+q(p-x)]/[(1-x)/(1-Pc1)] > 0. Q.E.D.

Theorem 8.47. Suppose that Zan is an N-alternating se-

ries such that -1 < p < rn < q < 0 for n > N, where

and q are constants. Setting a = (l+p)/(1-pq) and

p = (l+q)/(1-pq),

(1) pP < rnp < rn+rnrn nnnna <T <r+rr+I p <ma

< qa, n > N.
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Proof: Define an = a and Pn = P for n > N. Since

jrJ < IPI < 1 for n > N,
an

0,
anan

-4 0, and

a 8 -÷ 0. By Lemma 8.46,
an

l+r +r r a andn n+1 n+1 n+2 n+2

Pn
l+rn+1+r-1-n,.

8 for n > N. Let n be any in-
1 n 2 2

teger > N. Using (1) of Lemma 8.46, pP < r 2 < rn

+rnrn+ a<rn+rnrn+1 8 <ra< qa. Also Theorem 8.8 and
1

Theorem 8.27 yield the respective inequalities

r
n
+r

n rn+I
a < T and T < r

n
+r

n rn+1
8. (1) of the presentn n

theorem is now evident. Q.E.D.

Suppose that p,q are constants such that

-1 < p < q < 0. We now exhibit a series
Zan satisfying

the hypotheses of Theorem 8.47, and for which pp and qa

are the corresponding largest and smallest constants such

that pp < Tn < qa for n > N = 1. In particular, let

Ea = 1-1-0.pq+p2q+p2q2.4.p3q2+... Then2 = p and
n-1

r = q for n > 1, so that T = r211-1+r21-1-1 2n+.,.2n 2n-1

= pP and T 2n = r +r rn+ +... = qa, for n > 1.2n 2n 21
Lemma 8.48. If -1 < x, a < 1, and a< x(l+y)/(1+x),

then 1/(1-a) < 1+x+xy/(1-a).

Proof: We have 0 < 1-a and 0 < 1+x. Thus, a(l+x)

< x(l+y), 1 < (1-a)+x(1-a)+xy, and 1/(1-a) < 1+x+xy/lab
Q.E.D.



Lemma 8.49. If -1<x and 14>x(l+y)/(1+x), then

1/(1-p) > 1+x-i-xy/(1-13).

Proof: We have 0 < 1-13 and 0 < 1+x. The following

inequalities are now obvious: P(1+x) > x(l+y),

1 > (1-p)+x(1-P)+xy, 1/(1-p) > 1+x+xy/(1-13). Q.E.D.

We give three proofs of the following theorem.

Theorem 8.50. If
rn

r, -1 < r < 0, then Tn
r/(1-r).

1st Proof: Let e > 0. Since (Y-x)/(1-xy) -4- 0 as

(x,y) (r,r), there are numbers p,q such that

-1 <p<r<q< 0 and (q-p)/(1-pq) < e. Using (3) of

Lemma 8.46, pp < r/(1-r) < qa where a = (l+p)/(1-pq)

and p = (1+q)/(1-pq). Also, there is a positive integer

N such that p < rn < q for n > N. By Theorem 8.47,

pP < Tn < qa for n > N. Hence, ITn-r/(1-r)( < qa-pP

(q-p)/(1-pq) < e for n > N. Q.E.D.

2nd Proof: Since rn(l+rn+i)/(1+rn) -4 r, there is a po-

sitive integer N and a monotone increasing sequence

{an} such that an r and, for n > N, -1 < rn < 0

and an < rni.1(1+rn+2)/( We now use Lemma 8.48

and the inequality 1/(1-an) < 1/(1-an+2) for n > N to

obtain
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1
1-a l+rn+1+rn+1rn+2 14,n

i+r

1
rn+1rn+2 1-an+2

for n > N. Since Irl < 1, an 0 and an/(1-an) 0.

According to Theorem 8.3, r r+ /(1-an+ ) < Tn n ni 1

< r/(1-an) for n > N. The conclusion now follows

since rnnrn+1/(1-an+i) -4 r+r2/(1-r) = r/(1-r) and

rn/(1-an) r/(1-r). Q.E.D.

3rd Proof: Since rn (l+rn+ )/(1+rn1

positive integer N and a monotone decreasing sequence

1%3 such that B r and, for n > N, -1 < rn < 0

and 1 > pn > rfli.1(1+rni.2)/(1+rn+1). We now use Lemma

8.49 and the inequality 1/(1-Bn) > 1/(1-Bn4.2) for n>N

to obtain

1/(1-B) l+rn+1+rn+irn+2/(1-Bn)

l+rni_11-rni_irn+2/(1-pn+2

for n > N. Since

r, there is a
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< 1, a -* 0 and a
fl/(1-11B ) -+ 0.

According to Theorem 8.27, rn-Frnrn+1/(1-13n+1) Tn

rn/(1-Pn) for n > N. The conclusion now follows singe

rn+rnrn+1/(1-Bn+1) -4- r+r2/(1-r) = r/(1-r) and rn/(1-pn)

r/(1-0. Q.E.D.



Theorem 8.51. If Ean is an N-alternating series,

-1 < r < 0, and 1/(1- < l+rn+1+rn+Trn+2/(1-r) for

n > N, then rn+rnrn+1/(1-r) < Tn < rn/(1-r) for n > N.

Proof:Sinceirl<1,a0andan/(1-r) -F 0. Now

apply Theorem 8.3 with an = 1/(1-r) for n > N. Q.E.D.

Theorem 8.52. If Ean is an N-alternating series,

-1 < r < 0, and r <r for n > N, then
n+2 n+1

rn+rnrn+1/(1-r) < T < rn/(1-r) for n > N.

Proof: Let n > N. Then -1 < r < rn+2 < rn+1, So that

r < rn+, < rn+1(1+rn+2)/(1+rn+1). By Lemma 8.48, 1/(1-r)

< l+rn irn+2/(1- ). Now apply Theorem 8.51. Q.E.D.

Theorem 8,53. If -1 <r<r+ <rn < 0 for n > N,

then, for n > N, rn+rnrn4.1(1+r)/(1-rrn) < Tn <

+rnrn+i(l+rn)/(1-rrn).

Proof: Let m be any integer > N, p = r, q = rm,

a = (1+p)/(1-pq), and p = (1+q)/(1-pq). Then

-1 < p < rn < q < 0 for n > m. From (1) of Theorem 8.47,

r
n
+r

n rn+i
a < 'n <

r+rn+1
p for n > m. Setting n = m,

the desired inequality obtains. Q.E.D.
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Assuming the hypotheses of Theorem 8.53, the lower

bound given there for
Tn

and that given by Theorem 8.52

will now be compared. No comparison of upper bounds appears

evident.

The following inequalities are equivalent:

rnn n+1/(1-r) > rnn rn+1 (l+r)/(1-rrn)' 1/(1-r)

> (l+r)/(1-rrn), 1-rrn > 1- 2, rn > r. Consequently, the

lower bound for
Tn given by Theorem 8.52 appears better.

It is also simpler in form.

Theorem 8.54. Let
Ean be an N-alternating series. Then

a n.a.s.c. that T -1/2 is that an -4- 0, r = -1, and

there exist a sequence [an} such that

(1) a -4- 1/2,

and

(2)
an l+r r a ,n 1 n+1 117-2 irr 2 > N.

Proof: For the necessity, assume that Tn -4 -1/2. Ac-

cordingly, an converges and an 0. Thus,
rn

= Tn/(1+Tni,i) (-1/2)/(1-1/2) = -1, i.e r = -1. D

fining
an = 1+Tn+1 for n > N,

an
1-1/2 = 1/2 and

= l+r +r+ r a for n > N.n1 n+2 n+2

For the sufficiency, Theorem 8.3 yields
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r +r r+ a+. T ra for n > N. Also,n n n1 n1 n nn
lim (r +r r an n n+1 n 1) = lim rnan = -1/2, which implies

that
Tn -1/2. Q.E.D.

Theorem 8.55. Let Ean be an N-alternating series. Then

a n.a.s.c. that
Tn -1/2 is that an 0, -1,

and there exist a sequence {P such that

pn -÷ 1/2

and

> l+rn+1+rn+Irni.2pn+2, n N.

Proof: For the necessity we may use the proof of the ne-
cessity of Theorem 8.54, replacing a by !TB It through-
out.

For the sufficiency, we Use Theorem 8.27 to obtain
rdn < Tn < rn+rnrn4.1Pn+1 for n > N. Also, rnPn -* -1/2

and rn+rnrni.ipn+1 -1/2, so that Tn -1/2. Q.E.D.

Lemma 8.56. If xn x, x < 0, and lim sup yn = y,

-co< y < +00, then lim inf xnyn = (lim xn)(lim sup yn).
Proof: Suppose that y = + oo Then Yn +00 for some

subsequence {11'}
I xntYnt X ( + 00 ) = co, and

lim inf x y = -00. Also (lim x )(lim sup yn)=x(+ c°)=
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and thus lim inf x y = (lim xn)(lim sup yn).n n

Suppose that Then lim yn = 00

lim inf x y co
n n and (lim xn)(lim sup yn) = x(-CO )

= 0° Hence lim inf
xnyn

= (lim xn)(lim sup yn).

Suppose that < y < + °° and let lim inf xnyn=
L.

Then < L < °3 and yn, y for some subsequence

frig of ini: Hence
xn,yn, xy, and thus L < xy.

Since lim inf knyn = L, there is a subsequence

of fril such that xn*yn* L, and thus yn*

=.
xn* yn* /xn -L/x < y. consequently, L > xy. Hence,

L = xy. Q.E.D.

Theorem 8.57. and lim sup (l+rn

< 1, then

Ea diverges, and there is a positive integer

132

Proof: By hypothesis, 0 <. l+rn and (l+rn+1)/(1+rn

Thus -1 and
rn

r where -1 < r. We

must have r = ...;1; since otherwise, lim sup (i+rn+0/(1+rn)

= lim (l+rn )/(1+r ) = 1, a contradiction. Since r = -

we have -1 r . 0, lan/an-1 . 1, and



lan
. la

n-I Consequently, lan1 -4- a for some a > 0.

Assume that a = 0. Setting L = lim sup (l+rni.1)/(1+rn),

0 < L < 1. From Lemma 8.56, lim inf rn(l+rni.1)/(1+rn)

= (lim rn) [Um sup (l+rn4.1)/(1-1-rn)]. = -L, -1 < -L < 0.

Hence, there is a positive integer N and a monotone in-

creasing sequence fa such that an -L and, for

> N, -1 < r_i< 0 and
an

< rn+ (l+rn+2 )/(1+rn+ ). From
1

Lemma 8.48 and the inequality 1/(1-an) < 1/(1-an+2) for

> N, 1/(1-an) < l+rn+l+rni.irn+2/(1-an) < l+rn+1

n+rn7 ,2 /(1-an72
) for n > N. Also, a /(1-

i

From (a) of Theorem 8.3, r
n+rn rn+ /(1-an+

) < /(1-an1 1

for n > N. Letting n -4- 0,,), we obtain -1+1/(1+L)

< -1/(1+L), -(1+L)+1 < -1, and 1 < L; a contradiction.

Thus, a > 0 and Earl must diverge. Since rn <. 0,

there is a positive integer m such that
rn

0 for

> m, and thuslr llr 1..,lr 1 =. la 1/lam m+i m+n m+n m-11

co
4+ a/la m-11 > 0 as n -1,-00. Hence II 1r 1 converges to

a/la I. Q.E.D.
m-1

The preceeding proof of Theorem 8.57 involved only

the theory of N-alternating series. By use of known theo-

rems for series of positive terms, and alternate proof is

now given.

)
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Proof: By hypothesis, 0 . l+rn and (1+rn+1)/(1+rn)

. 1. Thus -1 .
rn+I

C. rn and
rn

r where -1 < r.

We must have r = -1; since otherwise,

lim sup (l+rn+1)/(1+rn) = lim (l+rni.1)/(1+rn) = 1, a

contradiction. Since r = -1, -1 <. rn <. 0 and there

is a positive integer m such that -1 < rn < 0 for

00 00

Consequently, E (1-IrnI) = E (l+rn) is a series of posi-

tive terms, which converges since lim sup (l+rn+1)/(1+rn)

< 1. Thus
l+rn

0 and
rn

r = -1. Also with

1-Irni > 0, for n > m, it is known (5, p. 382) that

(1-Irnl) converges if and only if H [1-(1-lrnI)]

CO 00

= H lrn converges; thus H Irk! = a for some a > 0.

Hence, for n > m, lanl = la llr rnm 1111-2

lamI ( H 1rk1) = laml(a) > 0. Consequently, Ea di-

verges. Q.E.D.

Corollary 8.58. If an -4 0 and -1. rn, then

lim sup (1+rni.1)/(1+rn) > 1.

Proof: Assume that lim sup (1+rni.1)/(1+rn) < 1. Then

from Theorem 8.57, lanI a > 0 which contradicts



an
-4 0. Thus, lim sup (l+rn+i)/(1+rn) 1. Q.E.D.

Theorem 8.59. If a 0, -1 .
rn,

and

Jim sup (1+rn+1)/(1-1-rn) = 1, then Tn -4 r/(1-r) = -1/2.

Proof: From Lemma 8.5.6, Jim inf rn(l+rn+1)/(1-Frn)

= Jim r .lim sup (l+rn+1)/(1+rn) = r.1 = r. Consequently,

there is a positive integer N. and a monotone increasing

sequence [a i such that a r and, for n > N,

-1 < rn < 0 and an < rni_1(1+rn+2)/(1+rn+1). Using Lemma

8.48 and the inequality 1/(1-an) < 01-an+2) for n > N,

1/(1-an ) < l+rn+1 +rn+1 rn+2 /(1-an ) < l+rn+1+rn+1rn+2/(1-an+2)

for n > N. Also, 1/(l_ an) 1/2. Now apply Theorem

8.54. Q.E.D.

Corollary 8.60. If a 0, r = -1 <. rn, and

Jim sup (l+rn+1)/(1+rn) < 1, then lim sup (1+rn+/)/(1+rn)

= 1 and
Tn

r/(1-r) = -1/2.

Proof: From Corollary 8.58, Jim sup (1+rn+1)/(1+rn) > 1,

and thus Jim sup (1+rn+1)/(1+rn) = 1. Now apply Theorem

8.59. Q.E.D.

Lemma 8.61. If
an

,4 0 and lim inf (1+rn+1)/(1+rn) =

0 < L < co , then -1 .
rn.
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Proof : Since 0 < L, 0 <. (1-Frn+1 )/( l+rn) . Hence

l+rn <. 0 or 0 <. 1+r. If 1-1-rn . 0, then
rn

. -1,

and [ a
I <. [ ann-/

an -f 0. Thus 0 .
l+rn

and -1 .
rn.

Q.E.D.

Lemma 8..62. If xn x, - co < x < 0, and lim inf yn Y,

- co < y < + co , then lim sup xnyn = ( lim xn) ( lim inf yn)

Proof : Suppose that y = + cc Then lim yn = + co ,

lim sup
xnyn and (Urn xn) ( lim inf yn) = x(+ 00)=_00..

Suppose that y = co Then
yn

- co for some

subsequence fn 3 of [n}, xn Yni x( - co ) = + c° and

lim sup x y =n n

- cc ) + co

Suppose that -< y < + 00 and let lim Sup xnyn

L. Then - co < L < + co and yn f or some subse-

quence {n'} of 1 n3 . Hence x y xy, and thus
n n

xy < L. Since lim sup
xny = L, there is a subsequence

=

In*) of [n} such that and thus yn*

=. xn*yn*/xn* L/x > y. Thus L < xy. Hence L = xy.

Q.E.D.

This is impossible since

+ 00 . Also, ( lim x ) ( lim inf yn

Theorem 8.63. If
an

-4- 0, r = -1, and

1 <.
1 rn ,



lim inf (1+rn+1)/(1+rn) = 1, then -1 . rn and

Tn --+ r/(1-r) = -1/2.

Proof: Using Lemma 8.61 and the fact that rn r = -1,

-1 <.
rn < 0. From Lemma 8.62,

lim sup rn(l+rn+1)/(1-Ern) (lim rn)[lim inf

(l+rn+1)/(1+r )] = r.1 = r. Consequently, there is a

positive integer N and a monotone decreasing sequence

On} such that pn r and, for n > N, -1 < rn < 0

and 1 > pn > rn+1(1+rn+2)/(1+rn+1). Using Lemma 8.49

and the inequality 1/(1-Pn) > 1/(1-pn+2) for n N,

1/(17pn) l+rn+l+rni.irn+2/(1-p ) > l+rn+1

-1-rn+irn+2/(1-Pn+2)
for n > N. Also, 1/(1-pn) 1/2.

Now apply Theorem 8.55. Q.E.D.

Theorem 8.64. If
an

0, r = -1, and

lim (1+rn+1)/(1+rn) = 1, then -1 . rn
and

lim
Tn r/(1- r) = -1/2.

Proof: Since lim inf
(l+rn+ )/(1+rn) = lim(l+r

n)/(1+rn)--=-1,i

the conclusion follows from Theorem 8.63. Q.E.D.

Pflanz(18, p. 27) has proven that if Zan is an
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alternating series such that -1+a/n+yn/n, where a>0



ting L = lim inf (l+r

138

and yn 0, then Ea6n eMR(Ean). We now give a short

proof of this fact.

Theorem 8.65. If
rn

-1-4-a/n+y /n where a > 0 and
n

yn 0, then T -4- -1/2 and Eaon e MR(Ean).

Proof: By hypothesis, r = lim
rn

= -1 and -1 K.
rn

K. 0. Thus, Irni =. an/an1 K. 1, lan[ K. fan!,

and
1

for some c > 0. Also, IrnI

(a+y )/n >. 0, and. (a+y)/n diverges. Con-

sequently, from Apostol (5, p.238), nfrf diverges to

zero so that = 0, i.e., an -4- 0. Moreover,

(

l+rn+1)/(1+r
) [ (a+yn+i) /(n+1 ) 1/[(an+yn)/

=. [n/(n+1)][(a+yn+1)/(a+yn)] 1. From Theorem 8.64,

Tn -1/2, and thus Tn+1-Tn -4 0. We now apply Theorem

3.8. Q.E.D.

Lemma 8.66. If -1 .
rn

K. a for some number a, then

0 < lim inf (1+r1 )/(1+r) 1.
n+

Proof: From -1 K.
rn'

0 . (l+rn+1)/(1+rn). Thus set-

1)/(1+rn), 0 < L < +co._ Suppose

1 < L. Then 1 . (l+rni.1)/(1+rn), -1 K. rn .
rn+1

K . a,

and r exists with -1 < r < a. Hence
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L = lim inf (l+r )/(1+rn) = lim (14-r11+1)/(1+rn) 1, a
11+1

contradiction. Thus 0 < L < 1. Q.E.D.

Theorem 8.67. If
an

0, r = -1
rn,

and

lim (1+rn4.1)/(1+rn) = L where _co< L < +09, then L=1

and
Tn r/(1- = -1/2.

Proof: Since r = -1
rn'

-1 . r . 0. From Corollary

8.58 and Lemma 8.66, L 1 and L 1, respectively.

Hence L = 1, and thus, from Theorem 8.64,

T r/(1-r) = -1/2. Q.E.D.

Theorem 868. If an 0, r = - and lim

(1+rn+1)/(1+rn) = L where

(ii)
rn : -1.

-00< L < +.0 , then exactly

one of the following statements is true:

-1 .
rn

and L = 1.

l+rn is alternately positive and negative, for

large n, and L = -1.

Proof: Since Tn -* -1 we may assume that -2 <
rn

< 0

for n > 1. Exactly one of the following statements is

true:

(1) -1 . r .
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If (i) holds, then L = 1 according to Theorem

8.67.

Suppose that (ii) is true. For each integer n> 1,

define r = r if -1 < r, or r' = -2-rn if
rn

< -1.
n

Accordingly, for n > 1 we have -2 < r < r < 0 and
n

0 < l+r' . Define a' = 1 and a' = r'r'...r' for
0 12

n > 1. Since 0 < <IrnI for n > 1,

= Ir1Ilr21...irnI = lan 0
/aI -4- 0,

1 2

i.e., a' -+ 0. Also, l+r' = l+rn or l+ri =
-1-rn'

i.e., l+r' Il+r I for n > 1, so that

lim(l+r'+10/..1+1)=Iirill(1+rn+101+rn)1 = ILI.n n

Moreover, l+r'=. 11+r n1 0, i.e., r' -+ -1. We now
n n

have at -;- 0, = Urn rA = -1, -1 K. ri!i, and
n

lim (l+rr'1+1)/(1+rril) = ILI. From Theorem 8.67, ILI =

i.e., L = -1 or L = 1. Assume that L = 1. Then

l+rn is of constant sign for large n. Hence, according

to (ii), l+rn . 0, i.e., rn K. -1. This contradicts

an
-+ 0; thus L = -1 and

l+rn
is alternately positive

and negative for large n. Q.E.D.

Corollary 8.69. If an 0, r = -1, and lim

(l+rni.1)/(1+rn) = L where -co< L <co and L -1, then



-1
rn,

L = 1, and Tn -4- r/(1-r) = -1/2.

Proof: From Theorem 8.68, -1 .
rn

and L = 1. We may

now apply Theorem 8.64 or Theorem 8.67 to complete the

proof. Q.E.D.

Lemma 8.70. If (l+rn)(1+rn4.1) . 0, some subsequence

of
tr2h-1

converges to -1, and some subsequence of

{r211
converges to -1, then -1 < lim sup

(l+rn+i)/(1+rn) < 0.

Proof: By hypothesis, (1+rn+1)/(1+rn) . 0. Thus, set-

ting L = lim sup (l+rn+1)/(1+rn), we have -co< L < 0.

Suppose that L < -1. Then (1+rni.1)/(1+rn) . -1 and

(l+r )/(1+r ) =. [(1+r )/(1-i-rn+1)][(11-rn+i)/(1-1-r, )]n 2 frr2

>. 1. Either 1+1- . 0, or 1+r2n-1 . 0. In the
2 n

former case,
l+r2r1+2. l+r2n' so that

r21-1+2
.

r2n

. -1. This is impossible since some subsequence of

tr2n converges to -1. In the latter case,
l+r2n+1

. l+r2n-1' so that
r2n+1

.
r2n-1

. -1. This is im-

possible since some subsequence of
2n-13

converges

to -1. Thus, -1 < L < 0. Q.E.D.
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Lemma 8.71. If
azn

-+ 0,
r2n-1

-+ -1 .
r2n-l'

lim sup (1+ r2n)/(1+r2n-1) = L where -oo < L < -1,

then
r2n

. -1, some subsequence of tr } converges
2n

to -1, and L = -1.

Proof: By hypothesis, (1+ r2n)/( 1+r2n...1) . 0 . 1

, and thus,
r2n

. -1. Clearly, (l+rn)(1+rn+1)zn-1

. 0. Assume that no subsequence of tr2n
converges

to -1. Then there is a number a such that r2n

. a < -1. Since r a -4 -a > 1,la2n/a2n-2
2n-1

r >. r a >. 1. Thus, la I >. la=.
r2n-1 2n 2n-1 zn 2n-2I'

which contradicts a 0. If follows that some subse-
2n

quence of
fr2n converges to -1. From Lemma 8.70,

1 < L < 0, and thus L = -1. Q.E.D.

Theorem 8.72. If
Ean

converges, r -4 -1, -1
2n-1

. r and lim sup (l+r2n)/(1+r2n-1) = L wheren2-'1

co< L < 1, then
r2n

. -1, some subsequence of {r 2n}

converges to -1, L = -1, T2n-1-4 +"

Proof: From Lemma 8.71, r . -1, some subsequence of
zn

{r converges to -1, and L = -1. Let a be any
zn

+r

number < 1. From Lemma 8.56, lim inf r (l+r )/(1+r )

2n-1 2n 2n-1
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and



= lim r .lim sup (l+r
)/(1+r2n-1)

1. Thus, a2n-1 2n

K. r (l+r )/(1+r
2n-1 2n 2n-1 ) From Lemma 8.48, 1/(1-a)

+r 2n-r2n/ (1-a). Defining
a2n = 1/(1- )

forK.
l+r2n-1 1

n 1, a . l+r +r r a . Clearly, a a2n- 2n-1 2n-1 2n 2n 211 2n

-* 0. From Theorem 8.3, there is a sequence [a 3
2n-1

such that
a211- an 0 and a2n..1 l+r2n+r2nr2n+TaZn12-1

We now have anan -4. 0 and a K. l+r +r r a
n n+1 n+1 n+2 n 2

From Theorem 8.3, -1-r a <.r +r r a2n-1 2n- 2n,-1 2n-1 2n 2n

2-1. T
n

. Accordingly, lim inf (-1
-r2n-la2n)

-1 + 1/(1-a) = a/(1-a) < lim inf T. Since a/(1- )

+00 as a-4. 1-, lim inf T = +.0; thus, T -++ co
2n-1 2n-1

Since r . , Tzn K -12n r2n(14-T2n+1) -(1-1-T2n+1)

which yields T211 -4- - . Q.E.D.

The series a11 defined in Example 8.82 satisfies

the hypothesis of Theorem 8.72.

According to the following counterexample, we cannot

replace " <L < -1" in Theorem 8.72 by "-co < L < -V._ _ _ _

Counterexample 8.73. Set a211 = 1/(n 1) and a2n+i

= -1/(n+3) for n > 0. Then S = 3/2, r = -1, r2n <. -1

K. r, lim (l+r )/(1+r ) = -1/2,2n 2n-1
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lim (l+r )/(1+r ) = -2, T = -(2n+3)/(n+1) -2, and
2n+1 2n 2n

T (n+1)/(n+2) -4 1.
2n+1

According to the following counterexample, we can-

not replace " r2n-1 -4 -1" and " -1 <. r2n-1"
in Theorem

8.72 by " r -4 -1" and " -1 . r n", respectively, and
2n 2

obtain as a conclusion that L = -1, T +co, or
2n-1

T2n -4 -T-c°.

Counterexample 8.74. Set at =
an+1

for n > 0, where

an
is defined as in Counterexample 8.73. Accordingly,

= 1/2, r' = -1, r'
2n-1

lim (l+r' )/(1+r'
2n 2n-

) (l+rn+1
)/(1+r2n) = -2,

2

lim (l+r'
2n+1)/(1-Fr'

) = lim (l+r2n+2 )/(1+r , ) = -1/2,
2n 2n+1

T'=. T+ -4 1, and T' =. T -2.
2n 2ni 2n-1 2n

Theorem 8.75. If an converges, r2n
-4 -1, -1 . r

2n

and lim sup (1+ r2n+1)/(1+r2n) = L where -co< L < -1,

thenn- . -1, some subsequence of
r2n-1

con-21
verges to -1, L = -1, T _ , and T2n .

2n-I

Proof: Define a =
an+1

for n > 0. Then -1

. r'
2n-1

=. rn , r'n-
-4 -1, and

2 21

=. r . -1 r' =. r
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lim sup (l+r' )/(1+r ) = lim sup (l+r2r1+1 )/(1-1-r2n)
2n 2n-1

= L < -1. We may apply Theorem 8.72 to Ea', obtaining

=. r' . -1, some subsequence of {r' } , {r2n+1}2n+1 2n 2n

converges to

Q.E.D.

Theorem 8.76. If an converges, r = -1, and

lim sup (l+rni.1)/(1+rn) = L where _oo< L < -1, then

L = -1, and exactly one of the following statements is

true:

r . -1 .
r2n-' T2n1

-0. +00, and T2n -4- -co1-
r . -1 T - co , and T2n +00 .
2n-1

.

2n- 2n-1

Proof: Exactly one of the following statements is true:

(i)

(ii) r . -1 . r2n.
2n-1

Suppose that (i) is true. Then

lim sup
(1+r)/(1+1' )

< lim sup (l+rn+ )/(1+rn )2n.2n-1
< L < -1. From Theorem 8.72, L = -1,

T2n-1
-I- +00, and

T2n
- 00 .

Suppose that (ii) is true. Then

lim sup (l+r2n+i)/(1+r 2) < lim sup (l+rn+i )/(1+r
n)

< L
n

< -1. From Theorem 8.75, L = -1,
T2n-

-0- -00, and
I

r . -1 r
2n 2n-1
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T2n -* +00. Q.E.D.

Lemma 8.77. If x < -1, 1 < $, and > x(l+y)/(1+x),

then 1/(1-p) > 1+x+xy/(1-P).

Proof: By hypothesis, 1+x < 0 and 1-$ < 0. Thus,

$(1+x) < x(i+y), 1 < (1-$)+x(1-$)+xy, and 1/(1-p)

> 1+x+xy/(1-$). Q.E.D,

Theorem 8.78. If >a converges,Converges, r -1, r . -1
2n-I 2n-1

. r
2n'

-1, T
2n-

and lim inf (l+r )/(1+r ) = L > -1, then2n 2n-I

-cc, and T +00.
2n

Proof: Let a be any number < -1. By hypothesis,

a . (1+r2n)/(1+r ), a(l+r ) >*1+1'' and2n-I 2n-1 2n

-1 . r . -1+a(1+r ). Also, im [-l+a(1+2n 2n-1 o, r2r1_1)]

= -1, so that lim r = -1. Thus, r = -1.
2n

Let 8 be any number > 1. From Lemma 8.62,

lim sup
r2n (l+r2n )/(1+rn

) = (lim r
2

)
-1 2-1 n-1

[lim inf (l+r )/(1+r )1 (-1)(L) = -L where
2n 2n-1

0 < -L < 1.
Consequently,>' rn- (l+rn )/(1+r2n-I)21 2

From Lemma 8.77, 1/(1-$) l+r
2n

+r
2n-r2n/(1-8).-1 1

Defining P2n = 1/(1-p) for n > 1,
2n >. l+r2n+i

'

+r2n+r + Bn+2. From Theorem 8.27, there is a sequencei2n2'2
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[5 ]2n-1

+r r
2n 2n+12n+1
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such that a B -4 0 and 8 >. l+r2n-1 2n-1 2n-1 2n

We now have anPn 0 and 5n >. 1

+r
n+

+r +r + ,
. n-

From Theorem 8.27, +r r1 n1 n2'n+2 21 2n-1 21T211

>. T2n-1 Accordingly, lim sup (r +r r 8 ) = -1

- p/(i-p) lim sup 2n-1 Also, p/(1-8)

2n-I 2n-1 2n'2n

as p 1-, so that lim sup T2n-T =

T
2ri- 1 -co Consequently, T

2n =. r2n(1+T2n+1)

-+ (-1)(1- co ) +. Q.E.D.

Thus,

Theorem 8.79. If an converges, r, rn . -1
2n 2

. r2, lim inf (l+r
+1)/(1+r2n) = L > -1, then r = -1,n-1 2n

+co, and T -2n-1 2n

Proof: Define a' =a+ for n > 0. Then r' rn n+1 n n+1.

Thus, r . -1 . r' ' r1 -1, and2n-1 2n 2n-

lim inf (l+r' )/(1+r' ) = lim inf (l+r2n+1)/(1+r2n) = L.2n 2n-I

Applying Theorem 8.78 to Ea', r , =. r' .-+ -1, T
2n+1 2n 2n+1

=. T' -+ + co , and T =. T' --. - co . Q.E.D.2n 2n 2n-1

Theorem 8.80. If an converges, -1, (1+rn)(1+rn+1)

K. 0, and lim inf (l+r+ )/(1+r) > -1, then exactlyni n

one of the following statements is true:



(1)
r2n-1

. -1 . r , T
2n 2n-I

_o,
148

and T
n-+

+00 .

(2) r . -1 .
r2n-1, T2n-1

+co, and
T2n2n

Proof: Exactly one of the following statements is true:

(i)<, -1 .
r2n r-1 2n.

(ii)
r2n

<. -1 .
r2n-1

Suppose that (i) is true. By hypothesis,

-1 < lim inf (1+rn+1)/(1+rn) < lim inf (1+r2_n)/(
14-r2n-1).

From Theorem 8.78,
T2n-1

-00 and
T2n

+co.

Suppose that (ii) is true. Then

-1 < lim inf (l+rn+1)/(1+rn) < lim inf (l+r2r14.1)/(1+r2n).

From Theorem 8.79, T +co and T2n-1 2n

Theorem 8.81. If Ean converges, r = -1, and

lim (l+r+ )/(1+r ) = L where -co < L < +00 and L / 1,n1
then L = -1, and exactly one of the following statements

is true:

r2n-1 <' -1 <' r2n T2n-1 -* -co , and T2n

r <. -1 <.
r2n-1, T2n-1 -+ +00, and

T2n
-+ -co.

2n

Proof: From Theorem 8.68, L = -1 and (1+rn)(1+rni.1).0.

Now apply Theorem 8.76 or Theorem 8.80. Q.E.D.

If
Ean is a series satisfying the hypothesis of

Theorem 8.68 with L = 1, according to Theorem 8.64,Ea
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converges and Tn -+ -1/2. With L = -1, Ean may or may

not converge, as is shown in the following two examples.

Consequently, we cannot replace the requirement in The-

orem 8.81 that Zan converge by the condition that

an -+ 0.

Example 8..82.. Set an = 1/(n+2) and a2n+1

= 1/(n+2)" 1/(n+2) for n > 0. Then an0 and,

for
n ' a2n 2n+1 = 1/(n+2)3/2

. Thus,

00

S = E 1/(n+2)3/2 = z(3/2) - 1, where z( s) = E 1/n5,

s > 1, is the Riemann zeta function. It can be verified

that r -1, (l+rn 1)/(11-rn) -1, and r2n < -1

<
r2n-1 for n > 1. Thus, an is a convergent series

satisfying the hypothesis of Theorem 8.68 with L = -1.

From Theorem 8.81,
T2n

-+ -Qo and T +

Example 8.83. Set a2n = 1/(n+1)1/2 and a2r1+1

= El..(n+2)1/2]/Nni.1)(n+2)]1/2 for n > 0. We have

an 0 and, for n > 0,
a2n +

a2n+i 1/[(n+1)(n+2)11 2

> 1/(n+2). Thus
an

diverges. Also, r = -1 and

(l+rn+1 )/(1+r ) -1. Consequently, the hypothesis of

Theorem 8.68 is satisfied by the given divergent series
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where L = -1. Moreover, we see that the requirement in

Theorem 8.81 that an converge cannot be replaced by

the condition that
an

-4 0.

Theorem 8.84. If Ean is an N-alternating series,

an
0, and 1/2 < l+r +r r /2 for n > N, then,nnni

for n >N, -1 < r -1/2 < r +r r /n, n n+i

lent/2 < 1S-Sn..1
n-1

1/2. If, in addition, r = -1,

then T -4 r/(1-r) -1/2.

Proof: Since 1/2 < l+r +r r+ /2 for n > N, we have
n n nI

-1/2 < r
n
+r

n rn+1
/2. For n > N, we use Theorem 8.3 with

= 1/2 to obtain -1/2 < rn+rnrn+1/2 < Tn < rn/2 and

-1 < r . For n > N, -1/2 < Tn < rn/2 < 0, from which

1 1/2 < ITn1 < 1/2 and an1/2 < IS-Sl < an_11/2.

Suppose that rm = -1 for some integer m > N. Assume that

is any integer such that r = -1. Then

1/2 < l+r
n
+r

n rn+i
/2 =

-rn+i
/2 and

rn+1 -.
-1. Consequent-

ly,
rn+1=

-1 since -1 < r+. By induction,
rn

= -1n1
for n > m which contradicts

an
-4 0. Thus, -1 <

rn

< Tn< rn/2, and

for n > N. If, in addition, r -1, then from

-1/2 5... Tn rn/2 -4 -1/2, we have lim Tn = -1/2. Q.E.D.



Corollary 8.85. If an is an N-alternating series,

a --> 0, and
rn+i -5- rn

for n > N, then, for n > N,

-1 < rn, -1/2 < rn+rnrn+1/2 I Tn < rn/2, and

Ian/2 < IS-Sn_i[ < lan_1[/2. If, in addition, r = -1,

then Tn -4- r/(1-r) - 1/2.

Proof: The inequality 1/2 < 1+x+x2/2 holds for all

real x. Consequently, since rn+1 < rn < 0 for n >

it follows that 1/2 < l+rn+r121/2 < l+rn+rnrn 1/2 for

n > N. Now apply Theorem 8.84. Q.E.D.

Corollary 8.86. If an is an N-alternating series,

an
0, and A fan_li 0 for n > N, then, for n > N,

-1 K r , -1/2 < r +r r+ /2 < T < r /2, and [a [/2n n1 n

< IS-Sn_1( < an_11/2. If, in addition, r = -1, then

Tn r/(1-r) = -1/2.

Proof: Let n > N. Then l+rn+rnrn+1/2-1/2

= (1+2rn+rnrn 1)/2 = (1-21an1/1
n-il+lan+11/1 n-11)/2

= (lan_11-21ani+lan+11)/21 l = (A2lan_11)/21an_11 > 0,

and thus 1/2 <
l+rn+rnrn+i/2. We now apply Theorem 8.84.
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Q.E.D.
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Calabrese (10, p.215-217) appears to be the first

to publish a result similar to our Corollary 8.86. In
CO

particular, he states that if Ian is a convergent al-

ternating series,lann+11 > (a n 21, i.e.,

>0 for al n, and
lak

I < 2e for some integer

k, then ISk-SI < e. His proof is incorrect since he

uses the fact that in "every" convergent alternating se-

ries the sum S must lie between any two successive sums

n-1
and S.

It would be very convenient if the conditions

an and r = -1 . rn implied that T 4/(1-r)

= -1/2, but the following counterexample shows that this

is not the case.

Counterexample 8.87. Let '= a'+a'+a'+... be any al-

ternating series such that ar; -4 0 and r = -1 <

< r < -1/2 for n > 1. For n > 1, set r =
zn-1 zn-1

and
r2n = -1+2(1+r2n-1 ). Define = a ' and

an
=

a0rIr2...rn for n > 1. It can be verified that

Ian is a convergent alternating series such that

r = -1 <
rn

for n > 1. Defining Bzn = 2r2n+1
for

A lanI

n > 1, we have p -
2n -1+r2n+2 > -1

r211+ 132n+2



=
I'2n+1(1+1-2n,2

)/(1+r2n.1)'

Proof: Since

from which 1/3 < l+r2n+1

=rn(ITT+)and Tn
= Tn/rn - 1,ni i

the following inequalities are equivalent:
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for n > 1. Also, p2n = r T(l+r 2n7-2
)/(1+r2nTI) for

2n:

n > 1, so that 1/(143 ) = l+r +r /(1-6 )
'2n 2nTI 2nTI 2n-F2 -2n

> l+r2nT , +r
2nT

,
t
r

2nT ,_2 '

/(1-32117-,2 ) for > 1. Consequently,
1

it can be seen that 1/(1-le )'2n-
1+T21,1+ , i.e., T2n+T

< P201-P2n) for n > 1. For n > 1, -2 < 5 2n

+r2nTr 1-2
/3. Consequently, 1/3 < 1+T2n+i for

n > 1,
i 2n

and thus -2/3 < T2n+1 < p2 /(1-p
2n)

for n > 1. Since

-2/3 and T (1+T )
P2n/(1-P2n) -÷ -2/3' T2n-1 2n

= r
2n 2nT1

-4- -1/3. An example of such a series Ea is 1/3-1/5

+ 1/7=1/9+ =

Theorem 8.-88, Let E be a convergent series and

any positive integer such that rn < 0. Then we either

have

Tn+i < r /(1-r)' Tn+i < Tn' and rn/(1-rn < Tn,

n+-1 n/(1- n), Tn+1 = Tn, and rn/(1-rn ) = T
n

or

(3)n rn/(1-rn), n > Tn, and rn/(1-rn) T



< /(1-rn ' Tn+l-rnTn+1

Tn+1 < Tn' Tn/rn-1 < T, T
n -rn

> r T
Tn

-r
n
Tn > r

n n' n'

Tn > ), r /(1-rn ) < T. Consequently, the in-

equalities in (1) are equivalent. Similarly, the equa-

lities in (2) are equivalent and the inequalities in (3)

are equivalent. Q,E.D.

Theorem 8.89. Let an be an N-alternating series.

Then the following three conditions are equivalent:

Tn+1 < Tn, n N,

Tni.1 < rn/(1- n), n > N,

rn/(1-rn) < Tn, n > N.

r' T < r (1+T
n n+1 n n
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(5) Tn < rn/(1-rn 1)' > N.

Proof: According to Theorem 8.88, if equality holds in

(1), (2), or (3) it also holds in the other two, and like-

wise for inequality. Thus, (1), (2), and (3) are equiva-

lent.

Assume that (1), (2), or (3) holds, and let n be

any integer > N. From (3) and (2)i rn+1/(1-rn+1)< Tn+i

r /(1-r ). Then rn+i(1-r ) rn (1-rn) and



and

r B
n+1+r n+1 n+2'n 2

<- n
n > N.

Moreover,

n+T1
rn/(1-rn) < Tn < rn/(1-r1.0.1)

and

1/(1-rn+i) <
n 1

/r ( n 1

Proof: For the necessity, define Pn = 1+Tn+l'
> N.

Then anpn - an+anTn+i = an+(S-Sn) 4 0. Also, = 1+Tn+1

= l+r +r r (1+T ) = l+r r B for
n+i n+1 n+2 n+3 n n+.1 n+2 n+2

>N, so that (2) holds with equality. Moreover,

rn+11-rn n 2Pn+2 = T n Tn = r (1+T+) ) = r 8 for
rrn

and there exist a sequence

an8 4 0,

Pn 14-rn i+rn+irn+On+2' n > N,

if (0), (1), (2), and (3) hold,
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+ '
< r i.e., (4) holds. Finally, since

1

+1/(1-rn 1
) < T1 =

Tn /rn
-1, we have

Tn /rn
> 1

n+

-Frn+1/(1-rn+1) = 1/(1-rn 1)
and Tn < rn/(1-rn+i). Q.E.D.

Theorem 8.90, Let Ean be an N-alternating series. Then

a n.a.s.c. that Tni.1 < Tn for n > N is that

(0) an -4 0,

3 such that



(5) 1/(1r 1) Pn
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n > N, i.e
, (3) holds.

For the sufficiency, according to (a) of Theorem

8.27 and (3) of the present theorem, we have Tn+i I rni.1

+rni.irni.2Bn <rnpn < Tn for n > N, so that Tn4.1 < Tn

for n >N. Theorem 8.89 implies (4) of the present the-

orem. We now have rn+1/(1-rn+1) I Tn+1 rnPnI Tn

< rn/(1-rn+1) for n > N, from which (5) of the present

theorem is immediate. Q.E.D.

Theorem 8.91. Let Ea be an N7alternating series. Then

a n.a.s.c. that
Tn 1

< T for n > N is that-

(0)
an

and there exist a sequence such that

a 3 -4- 0,m n

B > l+r +r r B ,.n n+i n+1 n+2, n+2'

and

Pn < 1/(1-rn), n > N.

Moreover, if (0), (1), (2), and (3) hold, then, for n > N,

Tn+1 I rn/(1-r ) < rnpn < Tn < rn+rnrn4.1Bni.1

< rn/(1-rn 1)

and
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Proof: Define
pn l+T+1 for n > N. As in the proof

of the necessity of Theorem 8.90, conditions (0), (1), and

hold. Using Theorem 8.89, Pn = 1+Tn4.1 < 1+rn/(1-rn)

= 1/(1-rn), n > N, so that (3) holds.

For the sufficiency, assume that (0), (1), (2), and

hold. Using (3), we have for n > N, (1-rn)pn < 1,

Pn - nPn < 1, and pn-1 I rnpn Consequently, from (2),

rn+14-rn+Irn+2Pn 2 Pn-1 rnPn
for n > N. From Theorem

8.90, we obtain, for n > N, Tn+1 < T, Tn+1 < rn/(1-rn),

and 1/(1-rn 1) p From (3), for n > N, we have

rn/(1-r) < rnpn and rn+rnrn+Ipn+1 < rn+rnrn+1/(1-rn+1)

rn/(1-rn+1). Applying (a) of Theorem 8.27, rnPn < Tn

rn+rnrn+1Pn+1 for Q.E.D.

Theorem 8.92. If Za is an N-alternating series, then a

n.a.s.c. that Tn+1 < Tn for n > N is that

(0)
an 0,

and there exist a sequence
n

such that, for n > N,

1/(1-p) > l+rn+l+rn+irn+2/(1-p)

and

pn < rn.

Moreover, if (0), (1), and (2) hold, then for n > N,



Tr1+1 < n/(1-rn) < n/(1-p)< Tn < rn

+rnr1-14-1/(,-Pn+1) n/(1-rni-1)

and

rn+1 I

Proof: For the necessity, there is a sequence

satisfying (1), (2), (3), and (5) of Theorem 8.91. De-

fining pn = 1-1/3n for n > N, we easily verify that

p < rn
for n > N. Also, for n > N, pn =

n

so that (2) of Theorem 8.91 reduces to (1) above.

For the sufficiency, define pn = 1/(1-p) for

n > N. Condition (1) above thus yields (2) of Theorem

8.91. From (2) and rn < 0 for n > N, we have

0 < l/(1-p) = p < 1/(1-rn)<'1 for n > N, and thus

anpn
, i.e., (1) and (3) of Theorem 8.91 hold.

Finally, (3) and (4) above follow respectively from (4)

and (5) of Theorem 8.91. Q.E.D.

Theorem 8.93. Let Earl be an N-alternating series. Then

a n.a.s.c. that Tn+1 I Tn for n > N is that

(0)
an

0,

and there exist a sequence [an} such that
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arid

(3) rn/ rn+1(1-rn) an+1, n N.

Moreover, if (0), (1), (2), and (3) hold, then for

n > N,

(4)ni r+1 a+1 < rn /(1-rn ) < r +r
r+1 an+1--

< T
n

n/(1-rn+1)

and

a < 1/(1-r ).n+1 nrni

Proof: For the necessity, define = 1+Tn 1, n

(5)

Then a =a aT = a n+(S-S ) -4-n n n n

+r r+ an n1 n 1

(5)

< l+rn+i +r
rn+2 an+2' n

> N+1,
n

f Theorem 8.89, T< r /(1-r
n n

. Also,

n+i n+2(1+Tn 3
) = l+r +r r a

n+1 n 1 n 2 n+2

for n > N so that (2) holds with equality.

rn+1 n
=
r+ (1+Tn+2 ) = Tn+i Tn = rn+rnrn n 1'n1

n > N, from which (3) is immediate.

For the sufficiency, define a = l+r
N N+1

N irN 2 N 2. From (3), r+ a+ r/(1-r) rn

for n

Moreover,

for n > N. From (a) of Theorem 8.3,

Tn+1< r +r for n > N. Fromn+1an+1 n nr n+1an4.1 Tn
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for
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Consequently, (4) holds. (5) is a consequence of (4).

Q.E.D.

Lemma 8.94. If
rn' rn+1' rn+2 are any real numbers

such that
(1-rn)(1-rn+2)

0, then

l+r +r r /(1-r )-1/(1-r ) =
n+i n+i n+2 n+2 n n+1

= (Arn+r nArn+1 )/[(l-r )(1-r+2 )].n

Proof: We have
1+r11,1 +rn,,n 2

/(1-r )-1/(1-rn)

= [1-1/(1-r )]+
n 1[1+rn/(1-r m)] = -r /(1-r )n2 n n

=[rni (1-r n)-rn (1-rn+2 )]/(1-r n )(1-rn+2
)

n+1 n+2

[(rn 1- n )1-rn(rn+2-rn+1)]/(1-rn) (1-rn 2)

= [Arn+rnArn+1]/(1-rn)(1- 2). Q.E.D.

Lemma 8.95. If r ,

n 1' rn+2
are any real numbers,

then the following inequalities are equivalent:

1/(1-r
n) > l+rn+i+rn+ rn+2/(1- n 2)

rn/(1-rn) > rn+1/(1-rn+2)

° [Arn+rnArn+1]/[(1-rn) (1-rn 2)1'

Proof: The quivalence follows immediately from Lemma

8.94. Q.E.D.

Theorem 8.96. If
an

is an N-alternating series, a-+0,

n+2 -rn/(1-rn)
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and r /(1-rn 2
) < r /(1-rn) for n > N, then, for
- n

> N, (1) Arn < 0 and (2) T rni.I/(1-r+2)

< rn/(1-r) < Tn < rn/(1-rn+i).

1st Proof: Defining 8n= 1/(1-r) for n > N, we see

that 0 < Pn < 1 for n > N and thus a Bn -4- 0. From

(1) and (2) of Lemma 8.95, pn > i+rn+Irn+2Pn+2
for

> N. From (4) of Theorem 8.91, (2) of the present theo-

rem holds. (1) follows from (2). We could also obtain

(1) from (4) of Theorem 8.89. Q.E.D.

2nd Proof: Define = r for n > N. From (1) and (2)

of Lemma 8.95, 1/(1-pn) > 1+rn+1+rn+Irn+2/(1-pn+2) for

> N. Now apply Theorem 8.92 and Theorem 8.89. Q.E.D.

Theorem 8.97. If an is an N-alternating series,

an -+ 0, and Ar
n
+r

n
Ar

n+i
0 for n N, then, for

> N, Amn < 0 and Tn+1 < rn+1/(1-rn+2) < rn1-rn)

< Tn < r/(1-r1).

Proof: If n > N, then Arn+rnAmni < 0 (1-rn)(1-r )

> 0, and (Arn+rnArni.1)/(1_rn)(1-rn+2) < 0. Thus from

Lemma 8.95, rn+1/(1-rn+2) < rn/(1-rn). We now apply

Theorem 8.96. Q.E.D.



Theorem 8.98. If an is an N-alternating series and

rn/(1-rn) < Tn < rn/(1-rn4.1) for n > N, then

0 < (-1)nan/(1-rn+1) < (-1)n(S-Sn_1)

< (-1)nan/(1-rn), n > N,

or

an/(1-rn) < (-1)11(S-S)

< (-1)nan/(1-rn+i) < 0, n > N,

according as a2ri >. 0 or
a2n

. 0, respectively.

Proof: Multiplying the inequality rn/(1-rn) < Tn

rn/(1-r ) throughout by Iann-1

la i an la n_1 1
a

i

an-1
(S-S )

n-1 n
< 0,

n-1 1-rn a n-1 a
1-rn+1n-1 n-1

and this reduces to 1) if a2n >. 0, or (2) if

a2n
. 0. Q.E.D.

Theorem 8.99. If Ean is an N-alternating series such

that
an

0 and
Arn Arn+1 for n > N, then, for

n > N, Arn < 0, Arrii-rlr+1 < 0, and Tn+in

rn+1/(1-rn+2) < rn/(1-rn) I Tn < rn/(1-rni.1).

Proof: We first show that Arn 0 for n > N. In par-

ticular, assume that 0 < Arm for some m > N. Then
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dicts
an

-÷ 0, so that Ar <0, i.e.,
rn+ < rn

<0 for

Consequently, -1 <
rn

for n > N, since
an

0. There-

fore, Arn+rnArn+i <Arn+1+rnn+i = (l+rn)Arn+T 0 for

> N. We may now apply Theorem 8.97. Q.E.D.

Theorem 8.100. Suppose that Zan is a series such that

an -4 0, and that f is a function and N is a positive

integer such that:

f(x) < 0 for N < x,

f' is increasing on or f'( x) > 0

for N <

r = f(n) for n > N.

Then, for n > N, Arn < Arn+1 and T < r /(1-
n+1

r/(1-r) < Tn < rn/(1-rn+1).

Proof: Let n be any integer > N. By the Mean Value

Theorem for derivatives there exist u,v such that

< u < n+1 < v < n+2 and Arn = f(n+1)-f(n)

= f 1 ( )[(n+1)-n] = ft(u) < ft(v) = f'(v)[(n+2)-(n+1)]
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Arm < Arn for and thus
rm+k = rm+Arm+Arm+i+..-

Arm+k-i rm kArm -*co as k-÷00; hence
rn

This contra-

n >N.

= f(n+2)-f(n+1) = Arni.i. We now apply Theorem 8.99 to com-

plete the proof. Q.E.D.
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We now illustrate Theorem 8.100 with some examples.

Example 8.101. in 2 = 1-1/2+1/3-1/4+ . Here

an = (-1)n/(n+1) for n > 0, rn = an/a = -n/(n 1) for

n > 1, and we set f(x) = -x/(x+1) for x > N =

Accordingly, for 1 < x, we have f(x) < 0, f'(x)

= -1/(x+1)2, and f"(x) = 2/(x+1)2 > 0. Thus

Amn < Arn+i, for n > 1, and Theorem 8.100 is applic-

able with N = 1. (1) of Theorem 8.98 reduces to

(n+2)/(n+1)(2n+3) < 1/(n+1)-1/(n+2)+1/(n+3)-1/(n+4

(-1)n(S-Sn_i) < 1/(2n+1) for n > 1.

Example 8.102. Tr/4 = 1-1/3+1/5-1/7+ . Here

= (-1)n/(2n+1) for n > 0,
rn = an/ n-1 -(2

-1)(2n+1)

for n > 1, and we set f(x) = -(2x-1)(2x+1) for x > N=1.

For 1 < x, f(x) < 0, f'(x) = -4/(2x+1)2, and f(x)

= 16/(2x+1)3 > 0. From Theorem 8.100 and (1) of Theorem

8.98 we obtain, with N = 1, (2n+3)/(2n+1)(4n+4)

< (-1)n(S-Sn_i) = 1/(2n+1)-1/(2n+3)+1/(2n+5)-1/(2n+7)+...

< 1/4n for n > 1.

Example 8.103. in 3/2 = 1/2-1/(2.22)+1/(3-23)-1/(4.24)+... .

Here
an = (-1)fl/(n+1)211+1 for n > 0, r = a /a

n n n-1

= -n/2(n+1) for n > 1, and we set f(x) = -x/2(x+1)

for x > N = 1. For 1< x, f(x) < 0, f (x) = -1/2(x+1)2,

and f"(x) = 1/(x+1)3 > 0.
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From Theorem 8.100 and (1) of Theorem 8.98, we have, with

N = 19 (n+2)/2n(n+1)(3n4-5) < (-1)n(S-Sn_i)

(1/2n1-1)[1/(n+1)-1/2(n+2)+1/22(n+3)-1/23(n+4)-1-1

< 1/2n(3n+2) for n > 1.

Example 8.104. (1- A/7)z(1/2) = 1-1//7 + 1/77 - 1//217+ .

Here z is the Riemann zeta function, an = (-1)n/

for n > 0, rn = an/an_i = -47-n/(n+1) for n > 1, and

we set f(x) = -N/x/(x+1) for x > N = 1. For 1 < x,

we have f(x) < 0, f(x) = -1/[2x1/2(x+1)3/2], and

f"(x) = (4x+1)/[4x3/2(x+1) /2] > 0. We may now use

Theorem 8.100 and (1) of Theorem 8.98, obtaining, with

---
N 1, ( n+2 )/ ( 1/2(Vn+2 - n4-1)< (-1) (S-S )

n-1

(n+3)-2 - (n+4
-2 1<

n2+(n+1)2

= 1//n+1 - 1//n+2 + 1//n+3 1/4/n+4 +.-. < ,/n+1

for n > 1.

Example 8.105. 72/12 = 1_l/22+1/32_1/42+. Here

an = ( ) /(n+1)2 for n > 0, rn = -n2/(n+1)2 for

n > 1, and we set f(x) = _x2/( x+1) 2 for x > N = 1.

For x > 1, f(x) < 0 and f(x) = 2(2x-1)/(x+1)4 > 0.

Applying Theorem 8.100 and (1) of Theorem 8.98, with

N = 1, we have

(n+2)2 1
< (n+1)-2 - (n+2)-2

(n+1)2+(n+22



2n+2 1.3(2n-1)
4n+3 2.4...(2n)

for n > 1.

Arn I. Arn+1 and Tn+1

K. T r /(1-rn+i).
n
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for n > We note that f(x) =. -1+2/(x+1)-1/(x+1)2,

suggesting Theorem 8.107 which follows shortly.

Example 8.106. 1/A/7 = 1-1/2+(1.3)/(2.4)-(1.3.5)/(2.4.6)

+(103.5.7)/(2.4,6.8)- Here

a = (-1)n[1.3...(2n-1)]/[2.4...(2n)] for n > 1,

ao
= 1, .1'0 = -(2n-1)/(2n) for n > 1, and we set f(x)

= -(2x-1)/(2x) for x > N = 1. For x > 1, f(x) < 0 and

f(x) = 1/x3 > 0. From Theorem 8.100 and (1) of Theorem

8.98 with N = 19

< (-1)n(S-Sn_i)

_ 1'3...(2n-1) 1.3...(2n+1)
2-4...(2n+2)

, 2n 1.3...(2n-1)
4n-1 2.4...(2n)

Theorem 8.107. Suppose that Ean is a series such that

an
0,

rn b+b /n+b2/n2+..., where b < 0, and the

first non-zero bk, if such exists, is positive. Then

<. rn+1/(1-rn+2) rn/(1-rn)

Proof: If b, = 0 for all k > 0, then
rn

=. b,

-1 < b < 0 since
an

0, and each inequality in the con-

. clusion of our theorem holds with equality.
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Suppose on the other hand that bp is the first

non-zero b so that b > 0 and
rn

=. b+b /nP

+bp+i/nP+bp+2/nP+2+. . Setting f(x) = b+b /xP

1-6p+1/xP-1-1+b /x13-1-24, we see that f is an analytic

function of l/x for large x, f(x) . 0, and f(n)

=.
rn.

Differentiating twice, we have f"(x)=. [p(p+1)b

-1-(P+1)(13+2)bp+i/x+-..1/xP+2>. 0, since b > 0. We may

now apply Theorem 8.100. Q.E.D.

Theorem 8.108. Suppose that (1) Tan is an N-alternating

series such that
an

-÷ 0 and Am for n > N,

(2) 711a.' is a series such that a' -* 0, and (3) f is a

function such that r' = -f(IrnI), for n > N, and

f'(x) > 0 and f"(x) < 0, for IrNI < x. Then, for

n > N, Ar' < Ar' and T' < r' /(1-r' ). n n+1 n+1 n+1 n+2

< rr;/(1-q) < Tr'.1 < r1V(1-r41).

Proof: Let n be any integer > N. As shown in the

proof of Theorem 8.99, rn+2<rn+i < rn < 0, i.e.,

0 <1r
n

1 <
1rn+1

I <
1rni°2

1. By the Mean Value Theorem

for derivatives there is a u such that



ml <n
[r andand Ar' = r'

1

-r? = f(irn1)-f(Irn+i i)
n n+ n

= f'(u)(irn(-[rn+iI) = f'(u)(rn+i-r) = f'(u)Arn. Simi-

larly, there is a v such that ir i [ < v < Ir i_ 1

0+1 n+2

and Ar41 = f'(v)Ar0+1. Thus from f(u) > f'(v) > 0

and Arn 0, Ar' = f'(u)Arn I f'(v)Ar < f'(v)Ar
n n+1

= Arr")+1 and Ar'n < Arn+1' . We may now apply Theorem 8.99

to complete the proof. Q.E.D.

Corollary 8.109. If Zan is an N-alternating series such

that
an

0,
Arn <_Arn+i

for n > N, and Za' is an

N-alternating series such that lail = lanIP for n > N-1,

where 0 < p < 1; then, for n > N, Arji < A and
n

T' <rn+' /(1-rn+2' ) < r'/(l- r') < <n+i n n+i

Proof: It is obvious that a' 0. Set f(x) = xP for

IrNI < x. Then for n > N, rt!1 =

= -ianIP/lan_iP = -lan/an_lIP = -1rnIP = -f( rnI). Also

for IrNI < x, f'(x) = pxP-1 > 0 and f"(x)

= p(p-1)x2 < 0. We now apply Theorem 8.108. Q.E.D.

Example 8.110. (1-21-P)z(p) = 1-1/2P+1/3P-1/4P+...

0 < p < 1. Here z is the Rieman zeta function and
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(-1)n/(n+1)P for n >' 0. with an (-1)n/(n 1)

for n > 0, Example 8.101 and Theorem 8.100 show that

Arn Amn+i for n > 1. Noting that [a'i P for

n > 0, we may apply Corollary 8.109 to obtain

T:1+1 < r41/(1-r42) r/(1-r) I q/(1-r41) for

n > 1. The case p = 1/2 was previously considered in

Example 8.104, but the above procedure, requiring the

second derivative of -x/(x+1), is preferable to

differentiating -xl°/(1-1-x)P twice, as was done in Ex-

ample 8.104.

Lemma 8.111. Suppose that f is a function and N is a

positive integer such that (1) f(x) > 0, (2) f'(x) > 0,

(3) f(x) < 0, and (4) f'"(x) > 0, for N-1 < x. Then

the function g(x) = -f(x-1)/f(x) satisfies the condi-

tions g(x) < 0 and g"(x) > 0, for N < x.

Proof: Let N < x. Clearly g(x) < 0 and, differenti-

ating twice, g"(x) = tf(x)[f(x-1)f"(x)-f(x)f"(x-1)]

+2f1(x)[f(x)f'(x-1)-f(x-1)f'(x)13/f3(x). From (2),

f(x-1)< f(x) and thus f(x-1)f"(x) > f(x)f"(x) accord-

ing to (3). From (4), f"(x)-f"(x-1) > 0, so that

f(x-1)f(x)-f(x)f(x-1) > f(x)f"(x)-f(x)f"(x-1)

= f(x)[f"(x)-f"(x-1)] > 0, since f(x) > 0. From (2),

f(x)f'(x-1) > f(x-1)f'(x-1). From (3), f'(x-1)-f'(x) >0,
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and thus f (x)f'(x-1)-f(x-1)f'(x) > f(x-1)f'(x-1)

-f(x-1)f(x) = f(x-1)[f'(x-1)-f'(x)] > O. The inequality

g"(x) > 0 is now evident., Q.E.D.

Theorem 8.112. Suppose that Tan is a series such that

an
0. Suppose that f is a function and N is a po-

sitive integer such that: f(x) > 0, f'(x) > 0, f"(x)< 0,

and f(x) > 0, for N-1 < x; and rn = -f(n-1)/f(n)

for . Then, for > N, Arn Arn+i
and

Tn+i rn+1/(1-r2 ) < r
n/(1-rn ) < T < r n/(1-rn+1).n+ n

Proof: Define g(x) = -f(x-1)/f( ) for N < x. Then

rn = g(n) for n > N. Also g(x) < 0 and g"(x) > 0

for N < x according to Lemma 8.111. We may now use

Theorem 8.100 to complete the proof. Q.E.D.

Theorem 8.113. Suppose that Tan is an N-alternating se-

ries such that
an

0. Suppose that is a function

and N is a positive integer such that: f( x) > 0,

f(x) > 0, F(x) < 0, and fu'(x) > 0, for N-1 < x;

andIan' = 1/f(n) for N-1 < n. Then, for N < n,

Ar< Arn+i and
Tn+1 rn 1/(1-rn

1) < rn/(1-rn < Tnn

rn/(1-rn+1).
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Proof: For N < n,
rn

= a /an-1 = -lan[/(a
n-1

= -f(n-1)/f(n). Now apply Theorem 8.112. Q.E.D.

We now apply Theorem 8.113 to some of the series

considered previously.

Example 8.114. in 2 = 1-1/2+1/3-1/4+... . We have

an
= (-1)n(n+1), for n > 0, and we set f(x) = x+1,

for x > 0. Clearly, lani = 1/f(n) for 0 < n. For

0 < x, f(x) > 0, fi(x) = 1 > 0, f(x) = 0 < 0, and

f'"(x) = 0 > 0. Theorem 8.113 is now applicable with

N = 1. This series was previously treated in Example

8.101.

Example 8.115. v/4 = 1-1/3+1/5-1/7+. (see Example

8.102). We have an = (-1)n/(2n+1), for n > 0, and

we set f(x) = 2x+1, for x > 0, so that
lan

1/f(n),

for n > 0. If x >0, then f(x) > 0, f(x) = 2 > 0,

f(x) = 0 < 0, and f'"(x) = 0. We may now apply The-

orem 8.113 with N = 1.

Example 8.116. in 3/2 = Na;n an = (-1)n/(n+1)2n+1 for

n > 0. Setting f(x) = (x+1)2x1-1, for x > 0, we find

f"(x) = 2x+1[2+(x+1)1n 2]1n 2 > 0, for x > 0, so that

Theorem 8.113 is not applicable. In Example 8.103, Theo-

rem 8.100 was shown to be applicable.
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Example 8.117. (1-21-P) z (p) = Ean; an= (-1)11/(n+1)P,

for n > 0, where 0 < p < 1. Setting f(x) = (x+1),

for x > 0, Ian! = 1/f(n) for n > 0. For x > 0,

f(x) > 0, fl(x) = p(x+1)P-1 > 0, f"(x) = p(p-1)(x+1)P-2

< 0, and f'"(x) = p(p-1)(p-2)(x+1)P-3 > 0. Theorem

8.113 is thus applicable with N = 1. This series was

also considered in Example 8.110.

The function f in Theorem 8.113 satisfies the con-

dition

(A) f(x) -co as x -400, fl(k) >. 0, fu(x) . 0,

f"' (x) > 0.

We now prove that if f and g are functions satisfying

condition (A), then so does the composite function h

where h(x) = f(g(x)). This will allow us to build up, or

easily recognize, a wide variety of series Earl for which

Theorem 8.113 is applicable.

Theorem 8.118. If f and g are functions which satisfy

condition (A), then the composite function h= fog also

satisfies condition (A).

Proof: Clearly h(x) =. f(g(x)) --+00 as x ->-00. Also

h(x) =. fl(g(x))-91(x) >. 0 since g(x) -4-cc as x -+00

f'(x) >. 0, and g'(x) >. 0. Moreover, h(x)

=. f"(g(x))[g'(x)]2+P(g(x))-g"(x) <.0 is quite evident.
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Finally, h"' (x) =. f"e(g(x)) [g'(x)]3-ff"(g(x)).2g1(x)g"(x)

fu(g(x))g'(x)g"(x)+f (g(x)).9"' (x) >. 0. Q.E.D.

Corollary 8.119. Suppose that f and g are functions

satisfying condition (A), and that an is a series for

which an =. (-1)n/f(g(n)). Then Amn Arn+i and

rn+i/(1-rn+2) rn/(1-rn) Tn rn/(1-rn+0.

Proof: Defining h(x) =. f(g(x)), h satisfies condition

(A), according to Theorem 8.118. Thus f(x) >. 0 and

lani =. 1/h(n) -4 0. We may now apply Theorem 8.113.

Q.E.D.

Theorem 8.120. Suppose that Zan is an N-alternating

series, an -4- 0, and Ar +r Arn+1 < 0 for n > N. Letn n

Ea' be the power series defined by a' = anxn+p , wheren n

p is some fixed real number. Then, for 0 < x < 1 and_
n >N, Ar'÷r'Ar'1 < 0 and

T41 .5- 1/(1-r'+,2 )_ n n n+

< r'(1-r') < T' < '/(1-r' ).n n n n n+i

Proof: Let x be any number satisfying 0 < x < 1 and

n be any integer > N. qc = akxki-P 0 as

k -400. From Theorem 8.97, Arn+1 < 0 so that

2 n.-1+1dxr Arn I xrnArn+1* Thus r' = anxn+p/an-1x =xr
n'



Art = r' -r' = xr -xr = xdAr and Ar'+r'Ar'n+1 n n+1 n n' n n n+1

= xArn+x2rnArn+1 xAr +xr Ar = x(Ar +r Ar ) < 0.
n n n+1 n n

Now apply Theorem 8.97 to Ear".1. Q.E.D.

Theorem 8.121. Suppose that an is an N-alternating

series,
an

0, and Ar < Ar+1 for n > N. Let
n n

Ea' be the series defined by a' = anxn+p, where is

some fixed real number. Then, for 0 < x < 1 and n > N,

Ar? <
Ar?1 and T' < r'n+ /(1-r'n+ ) < r'/(1-r') <

n n+ n+1
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Proof: Let x be any number satisfying 0 < x < 1 and

n be any integer > N. Clearly, a 0 as k

Also, Aq = xArn 1.rn+1 = Arn+1'

*

We now apply Theorem

8.99 to Ea'. Q.E.D.

Example 8.122. ln (1+x) x-x2/2+x3/3-x4/4 +"'

0 < x < 1. We have (-1)n/(n+1) And a' = a nxn+1
n

for n > 0. As shown in Example 8.101 or 8.114,

Ar< Arn+1 for n > 1, so that Theorem 8.121 isn

applicable to Ear" where N = p = 1.



CHAPTER IX

SUMMARY

In Chapter I, definitions and notations are in-

troduced. In particular, the quantities T are de-

fined by the equation Tn = (S-Sn nl'-1)/a if Ea
-

converges to S and n is any integer such that

a
n-1

X 0. Various algebraic properties of
Tn

are proven.

A geometrical interpretation of Aitken's 62-process is

given, and several formulas are set forth, each of which

yields this method of acceleration. Also, the notion of

"transform sequence" is introduced to set up a unifying

framework for investigating various methods of accelera-

tion.

In Chapter II, the convergence of iTn1 is treated

and corresponding n.a.s.c. for an E MR(Zan) are proven,

Divergence theorems are proven, which are used to prove

that if
Ean and Eaon are convergent complex series,

then S = S. This fact was first published by Lubkin
6

(17, p. 230) for real series. We are then led in a natu-

ral manner to some theorems on rapidity of convergence.

In Chapter III, n.a.s.c for Eaan e MR(Ea) are
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established. It is shown that any sequence {a } such

that Ea E MR(Ea) determines all such sequences tpn3

by the simple condition pn an.
This is then used,

along with algebraic properties of Tn, to prove that

bn 6 MR(Ea) if and only if Tn4.1-In -4. 0. With the

added condition 1rnI I. p < 1, it is proven that

Eaon
6 (Z a) if and only if r-rn -4- 0. It is also

proven that if In
<.I

p < 1 and r-rn 0, then

Lubkin's W transformation and a slight variant of the

W transformation may be used for accelerating the conver-

gence of Zap. The relationship between the 62-process

and the W transformation, as concerns acceleration, is

shown under the restriction an/an 0; in particular,

aon/an -4- 0 implies that Eaon E MR(Zan) if, and only if,

Eaan e MR(Zan), where an =. (1-rn-1)/(1-2rn+rn-1rn).

The application of the 62-process to power series is also

considered.

In Chapter IV, rapidity of convergence is again

considered. Methods for accelerating convergence published

by various authors, previously cited, are extended to com-

plex series. In extending Lubkin's Theorems 8 and 9 (17,

p. 232-233), it is shown that part of each hypotheses may

be omitted. Pflanz (18, p. 25) established this fact for
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the former theorem where
Ean is real.

If Zan is a convergent series such that

Irni 1, the application of Aitken's 62-process becomes

critical. In particular, that part of Lubkin's Theorem

6 (17, p. 231) concerning acceleration is shown to have

no application if rn -4- 1. Similarly, that part of his

Theorem 7 (17, p.232) concerning acceleration is proven

to be vacuous. The letter "C" in Theorem 7 is in error

and should be replaced by "Q". At this point, one

wonders if the 62-process is ever practicable if

irn1 --, 1. The answer is in the affirmative, as is shown

by Theorem 4.17 Theorem 4.20, and the discussion fol-

lowing the former theorem. Theorems on the acceleration

of power series are also established.

Kummer's criterion, known to be sufficient for the

convergence of a series an of positive terms, is

proven to also be necessary in Chapter V. The necessity

was first published by Shanks (24, p. 340). The criterion

is that there exists a sequence
[pn

and a positive

number c such that pn > 0, for n > 0, and pn c

+rni.1pn+1 for n > 1. It is proven in this paper that

"Pn > 0" can be replaced by any one of the conditions

"Pn 0", "tanpnl converges", or "some subsequence of

ta p is bounded below". Proofs of the sufficiency of
n T1
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the comparison test, ratio comparison test, root test,

ratio test, and Raabe s test, are given by exhibiting a

sequence {pn} such that p >. 0 and Pn
n

At the end of Chapter V, a method for applying the pre-

viously developed error analysis is indicated by one

example.

Chapter VI gives the analogues of some of the the-

orems of Chapter V for real series, and Chapter VII does

likewise for complex series.

In Chapter VIII, theorems, similar to Kummer's

criterion for the convergence of series of positive terms,

stating n.a.s.c. for an alternating series to converge are

proven. Some of these theorems lead to fairly sharp

bounds for the quantities T. In many such theorems, it

is proven that all inequalities, excluding those between

indices, may be reversed. Calling any such theorem and

the derived theorem duals, we encounter a duality struc-

ture, which unhappily fails in at least one case.

The theory of alternating series in this paper re-

sulted from an initial study of Aitken's b2-process in

the critical case rn -4- -1. Lubkin's Theorem 5 (17, p.

231) states that if
Zan is a real convergent series,

r = -1, and (l+rn+1)/(14-rn) -4 1, then Zan 6 MR(Ean).

Generalizations of this theorem are proven; one involves
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lim inf (1+rn+i)/(1-Frn) , while another involves

lim sup (1+rn+1 )/(1+rn) = 1. Another theorem along this

line involves the inequality 1/2 . 11-rn+1+rni.irn+2/2,

actually the .first theorem discovered by the author. A

detailed analysis of bounds for In is considered

throughout, which immediately yield bounds for S-Sn...1.

Calabrese (10, p. 216) appears to be the only one to

publish any result along the lines developed in our chap-

ter on alternating series. His theorem is true, but the

proof which he gives contains an error. The final part

of Chapter VIII is devoted to finding simple tests for

applying the developed error bounds for T
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