$\frac{\text { Richard Ray Tucker }}{\text { (Name) }}$ for the $\frac{\text { Doctor of Philosophy }}{\text { (Degree) }}$
in $\frac{\text { Mathematics }}{\text { (Major) }}$.

Date thesis is presented
May 11, 1963
Title _ ERROR ANALYSIS, CONVERGENCE, DIVERGENCE, AND THE
ACCELERATION OF CONVERGENCE.
Abstract approved $\frac{\text { Redacted for privacy }}{\text { (Major Professor) }}$

The problem of acceleration or speed-up of a convergent complex series Σa_{n}, i.e., finding a series $\sum b_{n}$ which converges more rapidly than a given series Σa_{n}, and which has the same sum, has occupied the interest of various mathematicians, dating back at least to E.E. Kummer in 1837. In many cases, only real series have been considered; in particular, series of positive terms or alternating series.

To the author's knowledge, there is no basic treatment of this subject in the literature to date, and it is hoped that this paper will serve, at least as a beginning, to fill this gap. Such an exposition should present some of the methods in some type of unified setting and, at
the same time, bring new information to light. The author believes that both of these objectives have been "partially" fulfilled, while presenting a more or less self-contained introduction to some of the aspects of speed-up.

ERROR ANALYSIS, CONVERGENCE, DIVERGENCE, AND THE ACCELERATION OF CONVERGENCE by

RICHARD RAY TUCKER

A THESIS
submitted to OREGON STATE UNIVERSITY

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
June 1963

APPROVED

Redacted for privacy

$$
\begin{aligned}
& \text { Professor of Mathematics } \\
& \text { in Charge of Major }
\end{aligned}
$$

Redacted for privacy

Chairman of Department of Mathematics

Redacted for privacy

Dean of Graduate School

Date thesis is presented May 11, 1963

Typed by Jolán Erőss

ACKNOWLEDGMENT

Many persons have contributed to the completion of this thesis. The author is above all indebted to Professor A. T. Lonseth, without whose guidance, encouragement, and patience the completion of this thesis would not have been possible.

To his wife, for her patience, encouragement, and faith, the author is deeply grateful.

TABLE OF CONTENTS
Page
CHAPTER I. INTRODUCTION 1
CHAPTER II. ACCELERATION, RAPIDITY OF CONVERGENCE,
AITKEN'S δ^{2}-PROCESS, AND DIVERGENCE.. 10
CHAPTER III. BASIC THEOREMS FOR ACCELERATION, AITKEN'S δ^{2}-PROCESS, AND LUBKIN'S W TRANSFORMATION 24
CHAPTER IV. RAPIDITY OF CONVERGENCE AND VARIOUS
METHODS FOR ACCELERATING CONVER- GENCE. A VACUOUS THEOREM. 35
CHAPTER V. NONALTERNATING SERIES 61
CHAPTER VI. CONVERGENCE AND DIVERGENCE OF REAL SERIES 79
CHAPTER VII. CONVERGENCE AND DIVERGENCE OF COMPLEX SERIES 84
CHAPTER VIII. ALTERNATING SERIES 87
CHAPTER IX. SUMMARY 175
BIBLIOGRAPHY 180

ERROR ANALYSIS, CONVERGENCE, DIVERGENCE, AND THE ACCELERATION OF CONVERGENCE

CHAPTER I

INTRODUCTION

Given a complex series $\sum_{0}^{\infty} a_{n}$, we shall write $\sum a_{n}$ for $\sum_{0}^{\infty} a_{n}, S_{n}=\sum_{0}^{n} a_{k}$, and, if $\sum a_{n}$ converges, $s=\Sigma a_{n}$. Similarly, if Σa_{n}^{\prime} converges, then $S^{\prime}=\Sigma a_{n}^{\prime}$ Given two convergent series Σa_{n} and Σa_{n}^{\prime}, the latter is said to converge more rapidly than the former if $\left(S^{\prime}-S_{n}^{\prime}\right) /\left(S-S_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\sum a_{n}$ converges, "MR($\left.\Sigma a_{n}\right)$ " will denote the class of all series Σb_{n} which converge more rapidly to s than Σa_{n}, ie., $\sum b_{n} \varepsilon M R\left(\Sigma a_{n}\right)$ iff $\sum b_{n}$ converges more rapidly to S than Σa_{n}. The concept of "acceleration" or "speed-up" can now be defined as the problem of finding a series $\sum b_{n}$ such that $\sum b_{n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. We will say that Σa_{n}^{\prime} converges with the same rapidity as $\sum a_{n}$ iffy there are numbers A and B such $0<A<S^{\prime}-S_{n}^{\prime}\left|/\left|S-S_{n}\right|<. B\right.$. The notation " $<$." means that $<$ holds for all sufficiently large n. If "*" denotes any relation, "*."
will be used in the same manner, while "*:" means that * holds for infinitely many positive integers n. Similarly, $f(x) \leq g(x)$ iff $f(x) \leq g(x)$ for all sufficiently large values of the real variable x.

Various methods, found in the literature, for obtraining a series $\sum_{n}^{\prime} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ may be summarized as follows. A sequence $\left\{b_{n}\right\}$ is proposed, and then the partial sums S_{n}^{\prime} are specified by the equation $S_{n}^{\prime}=S_{n}+b_{n+1}$ for $n \geq 0$. It is immediate that $a_{0}^{\prime}=a_{0}+b_{1}$, and $a_{n}^{\prime}=a_{n}+b_{n+1}-b_{n}$ for $n \geq 1$.

It seems somewhat advantageous to set $b_{n}=a_{n} \alpha_{n}$ for $n \geq 1$, and specify the "transform sequence" $\left\{\alpha_{n}\right\}$. In doing so, we set $S_{\alpha n}=S_{n}+a_{n+1}{ }^{\alpha}{ }_{n+1}$ for $n \geq 0$, $a_{\alpha 0}=S_{\alpha 0}=a_{0}+a_{1} \alpha_{1}$, and $\quad a_{\alpha n}=S_{\alpha n}-S_{\alpha(n-1)}$ $=a_{n}+a_{n+1} \alpha_{n+1}-a_{n} \alpha_{n}$ for $n \geq 1$. It follows that if $\sum a_{n}$ converges, and $a_{n}=: 0$ or $\alpha_{n}=: 0$, then $S_{\alpha n}=: S_{n}$, and thus $\Sigma a_{\alpha n} \not \approx \operatorname{MR}\left(\Sigma a_{n}\right)$. Consequently, we shall usually consider only series Σa_{n} for which $a_{n} \neq$. O. If $\sum a_{\alpha n}$ converges, its sum will be denoted by S_{α}. Suppose that $\sum a_{n}$ converges and $a_{n} \neq 0$ for $n \geq 0$.

The optimal choice of $\left\{a_{n}\right\}$ for acceleration should yield $S_{\alpha n}=S$ for $n \geq 0$. Thus $S_{n}+a_{n+1} \alpha_{n+1}=S$ and we must have $a_{n+1}=\left(S-S_{n}\right) / a_{n+1}$ for $n \geq 0$. We easily verify that $s_{\alpha n}=s_{n}+a_{n+1} a_{n+1}=s_{n}+a_{n+1}\left(s-s_{n}\right) / a_{n+1}=s$ for $n \geq 0$, with $a_{n}=\left(S-S_{n-1}\right) / a_{n}$ for $n \geq 1$. Hence this transform sequence is the "exact" solution to our problem of speed-up. In general we must satisfy ourselves with an approximation to this solution. We now turn to some of the se mapproximations" ${ }^{\text {It }}$.

For each n such that $a_{n-1} \neq 0$ we write
$r_{n}=a_{n} / a_{n-1}$. The notation $Q_{n}=n\left(l-r_{n}\right), Q=\lim Q_{n}$, and $r=\lim r_{n}$ of Lubkin (17, p. 228-229) will be used (Lubkin uses "R ${ }^{\prime \prime}$ in place of our "r").

Aitken's δ^{2}-process will be treated in detail in this paper and can be obtained by defining its transform sequence $\left\{\delta_{n}\right\}$ as follows:
1.1 $\delta_{n}=l /\left(1-r_{n}\right)$ if $r_{n} \neq 1, \delta_{n}=0$ otherwise.

The notation in 1.1 will be adhered to throughout this paper. Various other processes considered in this paper can be described by defining their corresponding transform sequence. We enumerate some of them as follows:
$1.2 \quad a_{n}=1 /(1-r)$.
$1.3 \alpha_{n}=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$ for $n \geq 2, \alpha_{1}=-1 / r_{1}$.
$1.4 \quad \alpha_{n}=n /(Q-1)$.
$1.5 \quad a_{n}=Q /(Q-1)\left(1-r_{n}\right)=n Q /(Q-1) Q_{n}=Q \delta_{n} /(Q-1)$.
1.6
$a_{n}=s /(s-1)\left(1-r_{n}\right), s=\lim a_{n} / a_{\delta n}$.
Among publications in which 1.1 is found are the following: Aitken (1,p.301), Forsythe (11, p. 310), Hartree (12, p. 233), Householder (13, p. 117), Isakson (14, p. 443), Lubkin (17, p. 228), Pflanz (18, p. 27), Samuelson (20, p. 131), Schmidt (21, p. 376), Shanks (23, p. 233), Todd (28, p. $5,86,115,187,197,260$). We find 1.2 in Lubkin (17, p. 232), Shanks (22, p. 39) and (23, p. 25-26); 1.3 in Lubkin (17, p. 229); 1.4 in Szász (26, p. 274); 1.5 in Lubkin (17, p. 232), Pflanz (18, p. 25); 1.6 in Shanks (23, p. 39).

Lubkin calls $\Sigma a_{\delta n}$ the T transformation, $\Sigma \mathrm{a}_{\alpha \mathrm{n}}$ of 1.2 the Ratio transformation, and $\Sigma a_{\alpha, n}$ of 1.3 the w transformation. The transformation defined by 1.5 is found in Lubkin's Theorem 8 (17, p. 232). Daniel Shanks calls $\Sigma a_{\alpha n}$ of 1.6 the $e_{1}^{(s)}$ transformation.

The author suggests the use of the following transform sequences for acceleration.
$1.7 a_{n}=(n+a) /(Q-1), \quad a \quad$ some complex number.

1. $8 \quad \alpha_{n}=(n+a) /\left(Q_{n}-1\right)$, a some complex number.

The sequence 1.7 reduces to 1.4 , if $a=0$. A method for determining the most appropriate value for a in 1.7 will be indicated by an example at the end of Chapter V. The sequence l. 8 , with $a=0$, is suggested for application to power series Σa_{n} where $a_{n}=b_{n} z^{n}$ for $n \geq 0$.

Given any sequence $\left\{x_{n}\right\}$ we define, for every n, $\Delta x_{n}=x_{n+1}-x_{n}$ and $\Delta^{2} x_{n}=\Delta\left(\Delta x_{n}\right)=\Delta x_{n+1}-\Delta x_{n}$ $=x_{n+2}-2 x_{n+1}+x_{n}$. No use will be made of the higher order differences $\Delta^{k} x_{n}, k \geq 3$.

Aitken's $\delta^{2}-p r o c e s s$ can be formulated in various ways. In particular, assuming that division by zero is excluded, we have:

$$
\begin{aligned}
& \text { 1.9 } S_{\delta n}=S_{n}+a_{n+1} \delta_{n+1}=S_{n}+a_{n+1} /\left(1-r_{n+1}\right), n \geq 0 \text {. } \\
& \text { 1.10 } S_{\delta n}=\left(S_{n-1} S_{n+1}-S_{n}^{2}\right) /\left(S_{n-1}-2 S_{n}+S_{n+1}\right), n \geq 1 . \\
& 1.11 \quad S_{\delta n}=\left|\begin{array}{cc}
S_{n-1} & S_{n} \\
\Delta S_{n-1} & \Delta S_{n}
\end{array}\right| \div\left|\begin{array}{cc}
1 & 1 \\
\Delta S_{n-1} & \Delta S_{n}
\end{array}\right|, n \geq 1 \text {. } \\
& 1.12 \quad S_{\delta n}=S_{n-1}-\left(\Delta S_{n-1}\right)^{2} / \Delta^{2} S_{n-1}, n \geq 1 \text {. } \\
& 1.13 \quad S_{\delta n}=S_{n}-\left(\Delta S_{n-1} \Delta S_{n}\right) / \Delta^{2} S_{n-1}, n \geq 1 .
\end{aligned}
$$

$1.14 \quad S_{\delta n}=S_{n+1}-\left(\Delta S_{n}\right)^{2} / \Delta^{2} S_{n-1}, n \geq 1$.
Moreover, if we define $F(x, y, z)=\left(x z-y^{2}\right) /(x-2 y+z)$, $x-2 y+z \neq 0$, we have $F(x+a, y+a, z+a)=a+F(x, y, z)$, for every a, and 1.10 becomes,
$1.15 S_{\delta n}=F\left(S_{n-1}, S_{n}, S_{n+1}\right), n \geq 1$.
The function F also satisfies $F(c, x, c y, c z)=c F(x, y, z)$. We see that these two properties of F may be of some use in actual numerical calculations. For example, suppose that $S_{1}=15.001418373, S_{2}=15.000304169$, and $S_{3}=15.000065221$. Then, $S_{\delta_{2}}=F\left(S_{1}, S_{2}, S_{3}\right)=15.000065221$ $+10^{-9} \mathrm{~F}(1353152,238948,0)=15.000065221$ $+\left(10^{-9}\right)\left[-(238948)^{2}\right] /[1353152-2(238948)-0]=e t c$.

The δ^{2}-process has the following geometrical interpretation. Suppose that $S_{n} \rightarrow S$, so that $\left(s_{n}, s_{n+1}\right) \rightarrow(s, s)$. The points (s, s) and $\left(s_{n}, s_{n+1}\right)$, $n \geq 0$, are graphed. The straight line through two successive points $\left(S_{n-1}, S_{n}\right)$ and $\left(S_{n}, S_{n+1}\right)$ is intersected with the line $y=x$. Denoting this point of intersection by ($S_{\delta n}, S_{\delta_{n}}$) yields Aitken's δ^{2}-process. This interpretation is found in Todd (28, p. 260), but no mention is made of the δ^{2}-process there. Also, Todd ($28, \ldots$. 5) credits the δ^{2}-process to Kummer (16, p. 206-214).

Returning to the exact solution for speed-up $\alpha_{n}=\left(S-S_{n-1}\right) / a_{n}, n \geq 1$, we have $\alpha_{n}=\left(a_{n}+\left(S-S_{n}\right)\right) / a_{n}$ $=1+\left(S-S_{n}\right) / a_{n}=1+T_{n+1}$, if we set $T_{n+1}=\left(S-S_{n}\right) / a_{n}$ for $n \geq 1$. Hence $1+T_{n+1}, n \geq 1$, is the exact solulion.

Suppose that Σa_{n} converges and n is any integer ≥ 1 such that $a_{n-1} \neq 0$. We then formally define
1.16 $\quad T_{n}=\left(S-S_{n-1}\right) / a_{n-1}$.

Various relations are satisfied by the quantities
In, some of which we now state and prove:
$1.17 \quad T_{n}=r_{n}\left(1+I_{n+1}\right)$, if $a_{n-1} a_{n} \neq 0$.
$1.18\left(1-r_{n}\right)\left(1+T_{n+1}\right)=1+T_{n+1}-T_{n}$, if $a_{n-1} a_{n} \neq 0$.
$1.19 \quad\left[\left(1-r_{n}\right) / a_{n}\right]\left(S-S_{n-1}\right)=1+T_{n+1}-T_{n}$, if $a_{n-1} a_{n} \neq 0$.
1.20 $T_{n+1}=r_{n} /\left(1-r_{n}\right)+\left(T_{n+1}-T_{n}\right) /\left(l-r_{n}\right)$, if $r_{n} \neq 0$ or 1 .
1.21 $T_{n}=r_{n}+r_{n} r_{n+1}+\cdots+\left(r_{n} r_{n+1} \cdots r_{n+k}\right)+\cdots$, if $a_{m} \neq 0$ for $m \geq n-1$.

For 1.17, $T_{n}=\left(S-S_{n-1}\right) / a_{n-1}=\left(a_{n}+S-S_{n}\right) / a_{n-1}=a_{n} / a_{n-1}$
$+\left(a_{n} / a_{n-1}\right)\left[\left(s-S_{n}\right) / a_{n}\right]=r_{n}+r_{n} T_{n+1}=r_{n}\left(1+T_{n+1}\right)$. Thus,
$\left(1-r_{n}\right)\left(1+T_{n+1}\right)=1+T_{n+1}-r_{n}\left(1+T_{n+1}\right)=1+T_{n+1}-T_{n}$, i.e., 1.18
holds. Consequently, $\left[\left(1-r_{n}\right) / a_{n}\right]\left(s-s_{n-1}\right)$
$=\left(1-r_{n}\right)\left[\left(S-S_{n-1}\right) / a_{n}\right]=\left(1-r_{n}\right)\left(I_{n} / r_{n}\right)=\left(1-r_{n}\right)\left(l+I_{n+1}\right)$
$=1+T_{n+}-T_{n}$, and thus 1.19 holds. From l.18, $1+T_{n+1}$
$=1 /\left(1-r_{n}\right)+\left(T_{n+1}-T_{n}\right) /\left(1-r_{n}\right)$, so that T_{n+1}
$=1 /\left(1-r_{n}\right)-1+\left(T_{n+1}-T_{n}\right) /\left(1-r_{n}\right)=r_{n} /\left(1-r_{n}\right)$
$+\left(T_{n+1}-T_{n}\right) /\left(1-r_{n}\right)$, i e., 1.20 holds. Finally,
$T_{n}=\left(s-S_{n-1}\right) / a_{n-1}=\left(a_{n}+a_{n+1}+\cdots+a_{n+k}+\cdots\right) / a_{n-1}$
$=a_{n} / a_{n-1}+a_{n+1} / a_{n-1}+\cdots+a_{n+k} / a_{n-1}+\cdots=a_{n} / a_{n-1}$
$+\left(a_{n} a_{n+1}\right) /\left(a_{n-1} a_{n}\right)+\cdots+\left(a_{n+1} a_{n+k} a_{n+1}\right) /\left(a_{n-1} a_{n} \cdots a_{n+k-1}\right)$
$+\cdots=r_{n}+r_{n} r_{n+1}+\cdots+\left(r_{n} r_{n+1} \cdots r_{n+k}\right)+\cdots$, i.e., 1.21 holds.
Given a series Σa_{n}, not necessarily convergent,
we define
1.22 $T_{n, k}=\left(S_{n+k}-S_{n-1}\right) / a_{n-1}$, for $k \geq-1$ and $a_{n-1} \neq 0$. We note that $T_{n,-1}=0$. Also, if k is any integer ≥ 0, and n is any integer such that $a_{m} \neq 0$ for
$n-1 \leq m \leq n+k$, then
$1.23 T_{n, k}=r_{n}+r_{n} r_{n+1}+\cdots+\left(r_{n} r_{n+1} \cdots r_{n+k}\right)$.
We also define $\alpha_{n} \sim \beta_{n}$ iff $\alpha_{n} / \beta_{n} \rightarrow 1$ as $n \rightarrow \infty$ 。
The abreviation "n.a.s.c." is used both for "necessary and sufficient condition" and "necessary and sufficient conditions."

Instead of a convergent series Σa_{n}, one may desire
to accelerate the convergence of a sequence of complex numbers S_{n}. We then set $S_{\alpha n}=S_{n}+a_{n+1} a_{n+1}$, where $a_{n}=\Delta S_{n-1}=S_{n}-S_{n-1}, r_{n}=a_{n} / a_{n-1}$, and $\left\{a_{n}\right\}$ is a presscribed transform sequence. If $s=\lim S_{n}$, we require that $\left(S-S_{\alpha n}\right) /\left(S-S_{n}\right) \rightarrow 0$ in order that $\left\{S_{\alpha n}\right\}$ converge more rapidly to S than $\left\{S_{n}\right\}$. Thus we may view acceleration from either the series or sequential viewpoint. They are clearly one and the same thing.

CHAPTER II

ACCELERATION, RAPIDITY OF CONVERGENCE, AITKEN'S δ^{2}-PROCESS, AND DIVERGENCE

All series in this chapter are assumed complex unless explicitly stated to the contrary.

Theorem 2.1. The conditions (1) $r_{n} \rightarrow 0$, (2) $I_{n} \rightarrow 0$, and (3) $I_{n} / r_{n} \rightarrow I$ are equivalent.

Proof: If $T_{n} \rightarrow 0$, then $a_{n} \neq 0$ so that
$r_{n}=. I_{n} /\left(1+I_{n+1}\right) \rightarrow 0$. Conversely, assume that $r_{n} \rightarrow 0$.
Let $0<\varepsilon<1$. Then $\left|r_{n}\right| \leq \varepsilon$, so that
$\left|I_{n}\right|=\cdot\left|r_{n}+r_{n} r_{n+1}+\cdots\right| \leq \cdot\left|r_{n}\right|+\left|r_{n} \| r_{n+1}\right|+\cdots \leq \cdot \varepsilon /(1-\varepsilon)$
and thus $I_{n} \rightarrow 0$.
If $I_{n} \rightarrow 0$, then $I_{n} / I_{n}=1+T_{n+1} \rightarrow 1$. Con-
versely, if $I_{n} / r_{n} \rightarrow 1$, then $I_{n+1}=. T_{n} / r_{n}-1 \rightarrow 0$.
Q.E.D.

Theorem 2.2. If $T_{n} \rightarrow t$ for some complex number t, then:
(1) $\quad r=t /(1+t),|r| \leq 1$, and $r \neq 1$.
(2) $\quad t=r /(1-r)$ and $-1 / 2 \leq$ Ret.

If, in addition, $\left\{\alpha_{n}\right\}$ is a sequence of complex numbers
such that $\boldsymbol{\alpha}_{n} \rightarrow \boldsymbol{\alpha}_{0}$ for some complex number $\boldsymbol{\alpha}_{0}$, then:
(3) $\quad S_{\alpha}=S$.
(4) $\quad \sum a_{\alpha_{n}} \varepsilon M R\left(\sum a_{n}\right)$ if and only if $\alpha_{0}=l /(1-r)$.
(5) $\quad \Sigma a_{a n}$ converges with the same rapidity as $\sum a_{n}$ if and only if $\alpha_{0} \neq l /(l-r)$.

Proof: Since $\left\{T_{n}\right\}$ converges and $I_{n}=. r_{n}\left(I+I_{n+1}\right)$, $\mathrm{T}_{\mathrm{n}} \neq 0$ and $\mathrm{T}_{\mathrm{n}} \neq-1$. Consequently $\mathrm{t} \neq-1$, since otherwise $\left|I_{n}\right|=\left|I_{n} /\left(I+I_{n+1}\right)\right| \rightarrow+\infty$, which is impossible since $a_{n} \rightarrow 0$. Thus, $r_{n}=T_{n} /\left(1+T_{n+1}\right) \rightarrow t /(l+t)$, ie., $r=t /(1+t) \neq 1$. Clearly, $|r| \leq l$ so that (l) holds. From (I), $\quad t=r /(1-r)$ and $|t| /|(-1)-t|=|t /(1+t)|$ $=|r| \leq 1$. Thus, $|t| \leq|(-1)-t|$, which is equivalent to $-1 / 2 \leq \operatorname{Re} t$, so that (2) holds. (3) holds since $S_{\alpha n}=S_{n}+a_{n+1} \alpha_{n+1} \rightarrow s+O \alpha_{0}=s$. Since $T_{n} \neq 0$, we have $\left(S-S_{n-1}\right) \neq 0$. If $t=0$, then $r_{n} / T_{n} \rightarrow 1=1-r$, according to (1), (2) and Theorem 2.1. If $t \neq 0$, then $r_{n} / T_{n} \rightarrow r / t=(1-r)$ from (1) and (2). In either case, $\left(s-s_{\alpha_{n}}\right) /\left(s-s_{n}\right)=\left[s-\left(s_{n}+a_{n+1} a_{n+1}\right)\right] /\left(s-s_{n}\right)$ $=1-a_{n+1} \alpha_{n+1} /\left(S-S_{n}\right)=1-\alpha_{n+1} r_{n+1} / T_{n+1} \rightarrow l-\alpha_{0}(1-r)$. Hence, (4) and (5) hold, since $l-\alpha_{o}(l-r)=0$ is equivalent to $\alpha_{0}=1 /(1-r)$ Q.E.D.

Corollary 2.3. If $\left\{T_{n}\right\}$ converges, then $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

Proof: Suppose $T_{n} \rightarrow t$. From (I) of Theorem 2.2,
$r_{n} \rightarrow r$ where $r \neq 1$. Thus $\delta_{n}=.1 /\left(1-r_{n}\right) \rightarrow I /(1-r)$,
so that $\sum a_{\delta n} \varepsilon M R\left(\sum a_{n}\right)$ according to (4) of Theorem 2.2. Q.E.D.

We inquire if the convergence of $\left\{T_{n}\right\}$ is also necessary for $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$. In the following chapter, we shall see that the answer is in the negative. There it will be proven that $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ if and only if $T_{n+1}-T_{n} \rightarrow 0$.

Theorem 2.4. If Σa_{n} and $\Sigma a_{\delta n}$ are convergent real series, then $S=S_{\delta}$.

Proof: Assume that $S \neq S_{\delta}$. Since $a_{n} \delta_{n}=S_{\delta(n-1)^{-S}(n-1)}$ $\rightarrow S_{\delta}-S \neq 0, \delta_{n} \neq 0$ and $a_{n} /\left(1-r_{n}\right)=a_{n} \delta_{n} \rightarrow S_{\delta}-S \neq 0$.

Thus $a_{n} \rightarrow 0$ implies that $l-r_{n} \rightarrow 0, i . e ., r_{n} \rightarrow r=1$ so that $0<\cdot r_{n}$ and $0<. T_{n}$. From $I+T_{n+1}-I_{n}$
$=.\left[\left(I-r_{n}\right) / a_{n}\right]\left(S-S_{n-1}\right) \rightarrow 0$, we have $1+I_{n+1}-T_{n}<.1 / 2$ and $0<. T_{n+1}<. I_{n}$, which implies that $\left\{I_{n}\right\}$ converges. From (l) of Theorem 2.2, $r \neq 1$, which contradicts $r=1$.

Thus our assumption is false, and $S=S_{\delta}$. Q.E.D.
Lubkin (17, p. 230) gave the first published proof of Theorem 2.4 for real series. The proof of this theorem for the complex case is given in Theorem 2.6, and to the author's knowledge is the first such proof.

Theorem 2.5. If $\left(1-r_{n}\right) / a_{n} \rightarrow L \neq 0$, then $\sum a_{n}$ diverges.

Proof: Assume that $\sum a_{n}$ converges. We may suppose that $L=1-i ;$ since otherwise Σa_{n}^{i} converges where $a_{n}^{\prime}=a_{n} L /(1-i)$ and $\left(1-r_{n}^{\prime}\right) / a_{n}^{\prime}=\left(1-r_{n}\right) /\left[a_{n} L /(1-i)\right] \rightarrow 1-i$. Accordingly, $\left(1-r_{n}\right) / a_{n}=\left[\left(\operatorname{Re} a_{n}\right) /\left|a_{n}\right|^{2}-\left(\operatorname{Re} a_{n-1}\right) /\left|a_{n-1}\right|^{2}\right]$ $+i\left[\left(\operatorname{Im} a_{n-1}\right) /\left|a_{n-1}\right|^{2}-\left(\operatorname{Im} a_{n}\right) /\left|a_{n}\right|^{2}\right] \rightarrow 1-i$. Consequently, $\quad\left(\operatorname{Re} a_{n-1}\right) /\left|a_{n-1}\right|^{2}<.\left(\operatorname{Re} a_{n}\right) /\left|a_{n}\right|^{2}$ so that $\left(\operatorname{Re} a_{n}\right) /\left|a_{n}\right|^{2} \rightarrow L_{1}$ for some $L_{1} \leq+\infty$. If $L_{1}<+\infty$, then $\operatorname{Re}\left[\left(l-r_{n}\right) / a_{n}\right] \rightarrow L_{1}-L_{1}=0$, which is impossible since $\operatorname{Re}\left[\left(1-r_{n}\right) / a_{n}\right] \rightarrow 1$. Thus $L_{1}=+\infty$ and $0<$. Re a_{n}. Similarly, $\left(\operatorname{Im} a_{n-1}\right) /\left|a_{n-1}\right|^{2}<.\left(\operatorname{Im} a_{n}\right) /\left|a_{n}\right|^{2}$ and $0<$. $\operatorname{Im} a_{n}$. Hence setting $a_{n}=\left|a_{n}\right| e^{i \theta_{n}}$ we may chose θ_{n} such that $0<. \theta_{n}<. \pi / 2$. From

$$
\begin{aligned}
T_{n} & =a_{n} / a_{n-1}+a_{n+1} / a_{n-1}+\cdots+a_{n+k} / a_{n-1}+\cdots \\
& =\left|a_{n} / a_{n-1}\right| e^{i\left(\theta_{n}-\theta_{n-1}\right)}+\left|a_{n+1} / a_{n-1}\right| e^{i\left(\theta_{n}-\theta_{n-1}\right)}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
=\left[\left|a_{n}\right| \cos \left(\theta_{n}-\theta_{n-1}\right)\right. & +\cdots+\left|a_{n+k}\right| \cos \left(\theta_{n+k}-\theta_{n-1}\right) \\
& +\cdots] /\left|a_{n-1}\right|+\left(\operatorname{Im}_{n}\right) i
\end{aligned}
$$

and $0<. \theta_{n}<. \pi / 2$, we have $0<. \operatorname{Re} I_{n}$. since $1+I_{n+1}-T_{n}=\cdot\left[\left(1-r_{n}\right) / a_{n}\right]\left(s-S_{n-1}\right) \rightarrow 0$, we have $1+\operatorname{Re} T_{n+1}-\operatorname{Re} T_{n}=\cdot \operatorname{Re}\left(I+T_{n+1}-T_{n}\right) \rightarrow 0$. Thus $\operatorname{Re} T_{n+1}$

- $\operatorname{Re} T_{n}<-1 / 2$ for $n \geq N$, where N is some positive integer. Consequently,
$\operatorname{Re} T_{N+n}=\cdot \operatorname{Re} T_{N}+\sum_{i=1}^{n} \operatorname{Re}\left[T_{N+i}-T_{N+i-1}\right]<\operatorname{Re} T_{N}-\frac{n}{2} \rightarrow-\infty$ as $n \rightarrow \infty$. Hence, $\operatorname{Re} T_{n}<.0$ which contradicts $0<. \operatorname{Re} \mathrm{T}_{\mathrm{n}}$. Consequently our initial assumption cannot hold, ie., Σa_{n} must diverge. Q.E.D.

Theorem 2.6. If Σa_{n} and $\Sigma a_{\delta n}$ both converge, then $S=S_{\delta}$.

Proof: Assume that $S \neq S_{\delta}$. Then $a_{n} \delta_{n}=S_{\delta(n-1)^{-} S_{n-1}}$
$\rightarrow S_{\delta}-S \neq 0$ so that $\delta_{n} \neq 0$ and $a_{n} /\left(1-r_{n}\right)$
$=a_{n} \delta_{n} \rightarrow s_{\delta}-s \neq 0$. Thus $\left(1-r_{n}\right) / a_{n} \rightarrow l /\left(s_{\delta}-S\right) \neq 0$,
which implies, in view of Theorem 2.5, that $\sum a_{n}$ diverges, a contradiction. Therefore our assumption cannot hold, i.e., $S=S_{\delta}$ Q.E.D.

It should be kept in mind throughout the remainder of this paper that, according to the preceeding theorem, the statements " $\Sigma a_{\delta n} \varepsilon M R\left(\Sigma a_{n}\right)$ " and " $\Sigma a_{\delta n}$ converges more rapidly than $\Sigma a_{n} "$ are equivalent.

Lemma 2.7. Suppose that Σa_{n} is a convergent series, $a_{n} \neq 0, \quad$ and $c_{n}=c+s_{n}-s$ for $n \geq 0$ where c is some complex number. Then,

$$
1+c\left(\frac{1-r_{n}}{a_{n}}\right)+\frac{c_{n-1}}{a_{n-1}}-\frac{c_{n}}{a_{n}}=\frac{1-r_{n}}{a_{n}}\left(s-s_{n-1}\right)
$$

Proof: We have
$1+c\left(\frac{1-r_{n}}{a_{n}}\right)+\frac{c_{n-1}}{a_{n-1}}-\frac{c_{n}}{a_{n}}=1+c\left(\frac{1}{a_{n}}-\frac{1}{a_{n-1}}\right)+\frac{c+S_{n-1}-S}{a_{n-1}}$

$$
-\frac{c+S_{n}-s}{a_{n}}=1+\frac{s-S_{n}}{a_{n}}-\frac{s-S_{n-1}}{a_{n-1}}=\frac{s-S_{n-1}}{a_{n}}-\frac{s-S_{n-1}}{a_{n-1}}
$$

$$
=\left(\frac{1}{a_{n}}-\frac{1}{a_{n-1}}\right)\left(S-S_{n-1}\right)=\left(\frac{1-r_{n}}{a_{n}}\right)\left(S-S_{n-1}\right) \text {. Q.E.D. }
$$

Theorem 2.8. If $\left\{\left(I-r_{n}\right) / a_{n}\right\}$ is bounded, then the comflex series Σa_{n} diverges.

Proof: Assume that Σa_{n} converges. Since $\left\{\left(1-r_{n}\right) / a_{n}\right\}$ is bounded, there is an $\varepsilon>0$ such that $\left|\varepsilon\left(1-r_{n}\right) / a_{n}\right|<.1 / 4$. Let c be any complex number satistying $|c|=\varepsilon$ so that
(1) $\quad-\operatorname{Rec} c\left(1-r_{n}\right) / a_{n}<1 / 4 \cdot$

Setting $c_{n}=c+S_{n}-S$, for $n \geq 0$, we have $c_{n} \rightarrow c$.
From Lemma 2.7,

$$
\operatorname{Re}\left[1+c\left(\frac{1-r_{n}}{a_{n}}\right)+\frac{c_{n-1}}{a_{n-1}}-\frac{c_{n}}{a_{n}}\right]=\operatorname{Re} \frac{1-r_{n}}{a_{n}}\left(S-S_{n-1}\right) \rightarrow 0
$$

and thus,
(2) $\quad I+\operatorname{Rec}\left(\frac{l-r_{n}}{a_{n}}\right)+\operatorname{Re} \frac{c_{n-1}}{a_{n-1}}-\operatorname{Re} \frac{c_{n}}{a_{n}}<\cdot 1 / 4$.

Using (1) and (2),

$$
1 / 2+\operatorname{Re} \frac{c_{n-1}}{a_{n-1}}<\operatorname{Re} \frac{c_{n}}{a_{n}}-\operatorname{Rec}\left(\frac{1-r_{n}}{a_{n}}\right)-1 / 4<\operatorname{Re} \frac{c_{n}}{a_{n}},
$$

from which it is easily seen that $\operatorname{Re} c_{n} / a_{n} \rightarrow+\infty$ and $\operatorname{Re} c_{n} / a_{n}>$. O. Since $\operatorname{Re} c_{n} / a_{n}>0$ and $c_{n} \rightarrow c$, we conclude that

$$
\begin{equation*}
a_{n} \notin \cdot\{z: \arg c+3 \pi / 4 \leq \arg z \leq \arg c+5 \pi / 4\} \tag{3}
\end{equation*}
$$

Chosing arg c successively in (3) as $0, \pi / 2, \pi$, and $3 \pi / 2$, we conclude that a_{n} is not in the complex plane for large n, which is absurd. Hence, our initial assumpion cannot hold, ie., Σa_{n} must diverge. Q.E.D.

For the series $\sum a_{n}$ where $a_{n}=l / l_{n} n$ for $n \geq 2$, we have $\left(1-r_{n}\right) / a_{n}=1 / a_{n}-1 / a_{n-1}$ $=. \ln n-\ln (n-1) \rightarrow 0$ so that, from Theorem 2.8, $\sum a_{n}$ diverges. Similarly, with $a_{n}=l /(n+1)$ for $n \geq 0$, we
have $1 / a_{n}-1 / a_{n-1}=(n+1)-n=1$ for $n \geq 1$, and thus Σa_{n} diverges. For the divergent series Σa_{n} where $a_{n}=1 /(n \ln n)$, we have $1 / a_{n}-1 / a_{n-1}=n \ln n$ $-(n-1) \ln (n-1)=(n-1)[\ln n-\ln (n-1)]+\ln n \rightarrow \infty$,
so that Theorem 2.8 is not applicable, and thus appears to be a very limited criterion for divergence.

Theorem 2.9. If $\sum a_{n}$ is a convergent series, then some subsequence of $\left\{S_{\delta_{n}}\right\}$ converges to S.

Proof: Suppose Σa_{n} is convergent and assume that no subsequence of $\left\{S_{\delta n}\right\}$ converges to S. Since $S_{\delta n}-S_{n}$ $=a_{n+1} \delta_{n+1}$, our assumption holds if and only if no subsequence of $\left\{a_{n} \delta_{n}\right\}$ converges to zero, and this is equivalent to $\left|a_{n} \delta_{n}\right|>$. B for some $B>0$. Thus
$\left|\left(1-r_{n}\right) / a_{n}\right|=1 /\left|a_{n} \delta_{n}\right|<.1 / B$. From Theorem 2. $8, \quad \Sigma a_{n}$ diverges, a contradiction. Therefore our assumption cannot be true, i.e., some subsequence of $\left\{S_{\delta n}\right\}$ converges to S. Q.E.D.

Theorem 2.9 clearly yields a second proof of Theorem 2.6.

Example 2.10. It is not necessarily true that if Σa_{n} converges, $\Sigma a_{\delta n}$ will also converge. In particular,

Lubkin (1, p. 240) considers the series $\sum a_{n}=1+1 / 2$
$-1 / 3-1 / 4+1 / 5+1 / 6-1 / 7-1 / 8+1 / 9+\cdots$ which converges while $\Sigma a_{\delta n}$ diverges. However, according to Theorem 2.9 some subsequence of $\left\{S_{\delta n}\right\}$ must converge to S. Hence, of course, this is evident since $r_{n}<: 0$ and $S_{\delta n}=. S_{n}+a_{n+1} /\left(l-r_{n+1}\right)$. This particular series shows that the δ^{2}-process is not regular.

Example 2.11. Lubkin (17, p. 240) also shows that the series $\sum_{a_{n}}=1+1 /(1+1)+1 / 2^{2}+2^{2} /\left(2^{4}+1\right)+1 / 3^{2}+3^{2} /\left(3^{4}+1\right)$ $+\cdots$ converges while $\Sigma_{\delta n}$ diverges. Again, according to Theorem 2.9 , some subsequence of $\left\{S_{\delta n}\right\}$ must converge to S. This is not so obvious by inspection as was the case in Example 2.10.

Theorem 2.12. If Σa_{n} is a series such that $\Sigma a_{\delta n}$ is properly divergent, i.e., $\left|S_{\delta n}\right| \rightarrow \infty$, as $n \rightarrow \infty$, then Σa_{n} diverges.

Proof: Assume that Σa_{n} is convergent. From Theorem 2.9 some subsequence of $\left\{S_{\delta n}\right\}$ converges to S, so that $\left|S_{\delta n}\right| \nrightarrow \infty$ as $n \rightarrow \infty$, i.e., $\sum a_{\delta n}$ is not properly divergent. Q.E.D.

Theorem 2.13. An.a.s.c. that $\left\{T_{n}\right\}$ converge is that $r_{n} \rightarrow r \neq 1$ and $I_{n+1}-I_{n} \rightarrow 0$.

Proof: The necessity follows from (1) of Theorem 2.2 and the fact that $\left\{I_{n}\right\}$ converges implies that $T_{n+1}-I_{n} \rightarrow 0$.

For the sufficiency, $\mathrm{r} \neq 1$ implies that
$r_{n}\left(1-r_{n}\right) \neq$. 0 . From $1.20, T_{n+1}=r_{n} /\left(1-r_{n}\right)$
$+\left(T_{n+1}-T_{n}\right) /\left(1-r_{n}\right) \rightarrow r /(1-r)$. Q.E.D.

Theorem 2.14. If $r_{n} \rightarrow r$ where $|r|<1$, then $T_{n} \rightarrow r /(1-r)$.

Proof: Since $|r|<1, r \neq 1$ and $\sum a_{n}$ converges, so that T_{n} exists for large n. Let $\varepsilon>0$ and ρ be any number such that $|r|<\rho<1$. There exists an interger N such that for $n \geq N$ and $m \geq N$ we have $\left|r_{n}\right|<\rho$ and $\left|r_{n}-r_{n}\right|<\varepsilon(1-\rho)$. Thus, for each $n \geq N$ we have $\left|T_{n+1}-I_{n}\right|=\mid\left[r_{n+1}-r_{n}\right]+\left[r_{n+1} r_{n+2}-r_{n} r_{n+1}\right]$ $+\cdots+\left[\left(r_{n+1} \cdots r_{n+k+1}\right)-\left(r_{n} \cdots r_{n+k}\right)\right]+\cdots \mid$ $\leq\left|r_{n+1}-r_{n}\right|+\left|r_{n+1}\right|\left|r_{n+2}-r_{n}\right|+\cdots+\left|r_{n+1} \cdots r_{n+k}\right|\left|r_{n+k+1}-r_{n}\right|+\cdots$ $<\varepsilon(1-\rho)+\rho \varepsilon(1-\rho)+\cdots+\rho^{k} \varepsilon(1-\rho)+\cdots=\varepsilon$.

Hence, $\left|T_{n+1}-T_{n}\right| \rightarrow 0$, i.e., $T_{n+1}-T_{n} \rightarrow 0$. From

Theorem 2.13, $\left\{I_{n}\right\}$ converges. Consequently, $I_{n} \rightarrow r /(1-r)$ according to (2) of Theorem 2.2. Q.E.D.

Theorem 2.15. Suppose that $r_{n} \rightarrow r$ where $|r|<1$, and let $\left\{a_{n}\right\}$ be a complex sequence converging to some complex number α_{0}. Then $T_{n} \rightarrow t$ for some complex number t, and conditions (1) through (5) of Theorem 2.2 hold.

Proof: From Theorem 2.14, $\left\{\mathrm{T}_{\mathrm{n}}\right\}$ converges. Now apply Theorem 2.2. Q.E.D.

According to Theorem 2.15, $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if $r=0$. Nevertheless, the reader should be forewarned in case $r=0$. In particular, let $\Sigma a_{n}=\sum_{0}^{\infty}(-1)^{n} / n!=1 / e$. We have $r_{n}=-1 / n$ for $n \geq 1$, and $\delta_{n}=1 /\left(1-r_{n}\right)$ $=1 /[1+(1 / n)]=n /(n+1)=1-1 /(n+1)=1+r_{n+1}$ for $n \geq 2$. Consequently, $S_{\delta n}=S_{n}+a_{n+1} \delta_{n+1}=S_{n}+a_{n+1}\left(l+r_{n+2}\right)=S_{n+2}$ for $n \geq 1$. Hence $\left\{\delta_{n}\right\}$ appears to be a poor selection for accelerating the convergence of Σa_{n}.

Lemma 2.16. If $|r|<1$, then $T_{n} / r_{n} \rightarrow 1 /(1-r)$.

Proof: If $r=0$, then $T_{n} / r_{n} \rightarrow l=l /(1-r)$ according to Theorem 2.1. If $r \neq 0$, then $T_{n} / r_{n} \rightarrow[r /(1-r)] / r$ $=1 /(1-r)$ according to Theorem 2.14. Q.E.D.

Theorem 2.17. Suppose that Σa_{n} and Σa_{n}^{\prime} are series such that $|r|<1$ and $\left|r^{\prime}\right|<1$. Then:
(1) $\quad \Sigma a_{n}^{\prime}$ converges more rapidly than Σa_{n} if and only if $a_{n}^{\prime} / a_{n} \rightarrow 0$.
(2) $\quad \Sigma a_{n}^{\prime}$ converges with the same rapidity as $\sum a_{n}$ if and only if there are numbers a and b such that $0<a<.\left|a_{n}^{\prime} / a_{n}\right|<. b$.

Proof: From Lemma 2.16, $I_{n} / r_{n} \rightarrow I /(1-r)$ and
$I_{n}^{\prime / r_{n}^{\prime}} \rightarrow 1 /\left(1-r^{\prime}\right)$.

$$
\begin{aligned}
& \text { If } \quad a_{n}^{\prime} / a_{n} \rightarrow 0 \\
& \frac{S^{\prime}-S_{n-1}^{\prime}}{S-S_{n-1}^{\prime}}=\cdot \frac{a_{n}^{\prime}}{a_{n}} \frac{T_{n}^{\prime} / r_{n}^{\prime}}{T_{n} / r_{n}} \rightarrow 0 \cdot \frac{1 /\left(1-r^{\prime}\right)}{1 /(1-r)}=0
\end{aligned}
$$

Conversely, if Σa_{n}^{\prime} converges more rapidly than Σa_{n},

$$
\frac{a_{n}^{\prime}}{a_{n}}=\cdot \frac{T_{n} / r_{n}}{T_{n}^{\prime} / r_{n}^{\prime}} \frac{S^{\prime}-S_{n-1}^{\prime}}{S-S_{n-1}^{\prime}} \rightarrow \frac{l /(l-r)}{l /\left(l-r^{\prime}\right)} \cdot 0=0
$$

This proves (1).
Assume that a and b are numbers such that
$0<a<.\left|a_{n}^{\prime} / a_{n}\right|<. b$. Since $\left.\mid I_{n}^{\prime} / r_{n}^{\prime}\right) /\left(I_{n} / r_{n}\right) \mid$
$\rightarrow\left|(1-r) /\left(1-r^{\prime}\right)\right| \neq 0$, there are numbers c and d such that $0<c<.\left|\left(I_{n}^{\prime} / r_{n}^{\prime}\right) /\left(I_{n} / r_{n}\right)\right|<. d$. Thus,

$$
0<a c<\cdot\left|\frac{S^{\prime}-S_{n-1}}{S-S_{n-1}}\right|=,\left|\frac{a_{n}^{\prime}}{a_{n}}\right|\left|\frac{T_{n}^{\prime} / r_{n}^{\prime}}{T_{n} / r_{n}}\right|<. b d .
$$

Assume that A and B are numbers such that $0<A$ $<.\left|\left(S^{\prime}-S_{n-1}^{\prime}\right) /\left(S-S_{n-1}\right)\right|<$. B. As above, there are numbers c and d such that $0<c<\cdot\left|\left(T_{n} / r_{n}\right) /\left(T_{n}{ }^{\prime} / r_{n}\right)\right|$ <. d. Thus,

$$
0<A c<\cdot\left|\frac{a_{n}^{\prime}}{a_{n}}\right|=\cdot\left|\frac{I_{n} / I_{n}}{T_{n}^{\prime} / r_{n}^{\prime}}\right|\left|\frac{S^{\prime}-S_{n-1}^{\prime}}{S-S_{n-1}}\right|<\text { Bd. Q.E.D. }
$$

Lemma 2.18. If $\left|r_{n}\right| \leq \cdot \rho<1 / 2$ for some number ρ, then $0<(1-2 p) /(1-\rho) \leq \cdot\left|T_{n} / r_{n}\right| \leq \cdot 1 /(1-\rho)$.

Proof: We have $\left|I_{n}\right| \leq \cdot\left|r_{n}\right|+\left|r_{n} r_{n+1}\right|+\cdots+\left|r_{n} \cdots r_{n+k}\right|$
$+\cdots \leq \cdot\left|r_{n}\right| /(1-\rho) \leq \cdot \rho /(1-\rho)<1$. Thus, $\left|I_{n} / r_{n}\right|$
$\leq 1 /(1-p)$ and $\left|I_{n} / r_{n}\right|=\left|1+T_{n+1}\right| \geq \cdot| | 1\left|-\left|T_{n+1}\right|\right|$ $=$. $1-\left|T_{n+1}\right| \geq \cdot 1-\rho /(1-\rho)=(1-2 p) /(1-p)>0$. Q.E.D.

Theorem 2.19. Suppose that $\Sigma a_{n}, \Sigma a_{n}^{\prime}$ are series such that $a_{n}^{\prime} / a_{n} \rightarrow 0$, and $\left|r_{n}\right| \leq \cdot \rho_{1}<l / 2,\left|r_{n}^{\prime}\right| \leq \cdot \rho_{2}<l$ for some numbers ρ_{1}, ρ_{2}. Then $\sum a_{n}^{\prime}$ converges more rapily than Σa_{n}.

Proof: From Lemma 2.18, $0<\left(1-2 p_{1}\right) /\left(1-\rho_{1}\right) \leq \cdot\left|T_{n} / r_{n}\right|$. Also, $\left|T_{n}^{\prime} / r_{n}^{\prime}\right|=\left|\left|1+r_{n+1}^{\prime}+r_{n+1}^{\prime} r_{n+2}^{\prime}+\cdots\right| \leq \cdot 1 /\left(1-\rho_{2}\right)\right.$. Thus,

$$
\frac{\left|S^{\prime}-S_{n-1}^{\prime}\right|}{\left|S-S_{n-1}\right|}=\cdot \frac{\left|a_{n}^{\prime}\right|}{\left|a_{n}\right|\left|T_{n}^{\prime} / r_{n}^{\prime}\right|}\left|T_{n} / r_{n}\right| \leq \cdot \frac{\left|a_{n}^{\prime}\right|}{\left|a_{n}\right|} \frac{l /\left(1-\rho_{2}\right)}{\left(1-2 \rho_{1}\right) /\left(1-\rho_{1}\right)} \rightarrow 0
$$

Q.E.D.

According to the following counterexample, Theorem 2.19 fails to hold if we replace $" \rho_{1}<1 / 2$ " by $" \rho_{1} \leq 1$ " and $" \rho_{2}<1$ " by " $\rho_{2} \leq 1 "$.

Counterexample 2.20. For $n \geq 0$, define $a_{n}=(-1)^{n} /(n+1)$ and $a_{n}^{\prime}=1 /(n+1)(n+2)$. Then $a_{n}^{\prime} / a_{n} \rightarrow 0, r_{n}^{\prime} \rightarrow r^{\prime}=1$, and $r_{n} \rightarrow r=-1$. Since $S^{\prime}-S_{n}^{\prime}=1 /(n+2)$ and $\left|S-S_{n}\right|$ s. $\left|a_{n+1}\right|=1 /(n+2)$, we have $\left|S^{\prime}-S_{n}^{\prime}\right| /\left|S-S_{n}\right| \geq$. 1 , and thus Σa_{n}^{\prime} does not converge more rapidly than Σa_{n}.

CHAPTER III

BASIC THEOREMS FOR ACCELERATION, AITKEN'S

 δ^{2}-PROCESS, AND LUBKIN'S W TRANSFORMATIONAll series in this chapter are assumed to be complex. The first two theorems of this chapter, the second theorem in particular, are basic for a study of acceleradion.

Theorem 3.1. Suppose that Σa_{n} is a complex series $\left\{b_{n}\right\}$ is a complex sequence, and Σa_{n}^{\prime} is a series with partial sums $S_{n}^{\prime}=. S_{n}{ }^{+b_{n+1}}$. Then $\Sigma a_{n}^{\prime} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $b_{n+1} \sim s-S_{n} \rightarrow 0$.

Proof: If either condition holds, then $S-S_{n}=. S-S_{n}^{\prime+b}{ }_{n+1}$ \neq. 0 , so that $b_{n+1} /\left(S-S_{n}\right)+\left(S-S_{n}^{\prime}\right) /\left(S-S_{n}\right)=$. 1. Thus $\left(S-S_{n}^{\prime}\right) /\left(S-S_{n}\right) \rightarrow 0$ and $S-S_{n} \rightarrow 0$ if, and only if, $b_{n+1} /\left(S-S_{n}\right) \rightarrow 1$ and $S-S_{n} \rightarrow 0$; but this is equivalent to $b_{n+1} \sim S-S_{n} \rightarrow$ O. Q.E.D.

From Theorem 3.1, we see that the class of all sequinces $\left\{c_{n}\right\}$ such that $\Sigma a_{n}^{\prime} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$, where S_{n}^{\prime} $=S_{n}+c_{n+1}$, is completely determined by one such sequence $\left\{b_{n}\right\}$; the required condition being that $c_{n} \sim b_{n}$.

Similarly, we now show that if $\sum a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$, then
$\sum_{a_{\beta n}} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$, if and only if $\beta_{n} \sim \alpha_{n}$.

Theorem 3.2. Suppose that $\Sigma a_{a n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. Then
$\sum a_{\beta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $\beta_{n} \sim \alpha_{n}$.

Proof: From Theorem 3.1, $a_{n+1} a_{n+1} \sim S-S_{n} \rightarrow 0$. Hence, from Theorem 3.1, $\sum_{\beta a_{n}} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ if and only if
$a_{n+1} \beta_{n+1} \sim S-S_{n}$, and this is equivalent to
$a_{n+1} \beta_{n+1} \sim a_{n+1} \beta_{n+1}$, that is, $\beta_{n+1} \sim \alpha_{n+1}$. Q.E.D.

Lemma 3.3. If $\left(1-r_{n}\right)\left(1-r_{n+1}\right) \neq 0$, then $a_{\delta n} / a_{n}$
$=1 /\left(1-r_{n+1}\right)-1 /\left(1-r_{n}\right)=r_{n+1} /\left(1-r_{n+1}\right)-r_{n} /\left(1-r_{n}\right)$
$=\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right)$.

Proof: Since $r_{n} \neq 1$ and $r_{n+1} \neq 1$, we have δ_{n}
$=1 /\left(1-r_{n}\right)$ and $\delta_{n+1}=1 /\left(1-r_{n+1}\right)$. Thus, $a_{\delta n} / a_{n}$
$=\left(a_{n}+a_{n+1} \delta_{n+1}-a_{n} \delta_{n}\right) / a_{n}=1+r_{n+1} \delta_{n+1}-\delta_{n}=r_{n+1} /\left(1-r_{n+1}\right)$
$+1-1 /\left(1-r_{n}\right)=r_{n+1} /\left(1-r_{n+1}\right)-r_{n} /\left(1-r_{n}\right)=\left[r_{n+1}\left(1-r_{n}\right)\right.$
$\left.-r_{n}\left(1-r_{n+1}\right)\right] /\left(1-r_{n}\right)\left(1-r_{n+1}\right)=\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right)$
$=1 /\left(1-r_{n+1}\right)-1 /\left(1-r_{n}\right)$. Q.E.D.

Theorem 3.4. Suppose that $a_{\delta n} / a_{n} \rightarrow 0$. Then
$\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $\sum a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ where $a_{n}=.\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)$.

Proof: Suppose that $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. From Lemma 3.3,
$1-2 r_{n+1}+r_{n} r_{n+1}=\left(1-r_{n}\right)\left(1-r_{n+1}\right)-\left(r_{n+1}-r_{n}\right)$
$=\left(1-r_{n}\right)\left(1-r_{n+1}\right)\left[1-\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right)\right]$
$=\left(1-r_{n}\right)\left(1-r_{n+1}\right)\left(1-a_{\delta n} / a_{n}\right) \neq 0$. Hence, a_{n} / δ_{n}
$=\left(1-r_{n}\right)\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)=1 /\left(1-a_{\delta n} / a_{n}\right) \rightarrow 1$.
From Theorem 3.2, $\quad \Sigma a_{a n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.
Suppose that $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. Then $r_{n} \neq 1$, so that $a_{n} / \delta_{n}=1 /\left(1-a_{\delta_{n}} / a_{n}\right) \rightarrow 1$ and, from Theorem 3.2, $\sum a_{\delta n} \varepsilon M R\left(\Sigma a_{n}\right)$. Q.E.D.

Theorem 3.5. Suppose that $a_{\delta n} / a_{n} \rightarrow 0$. Then $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $\Sigma a_{a n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$, where $\alpha_{n}=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$.

Proof: Suppose that $\Sigma a_{\delta n} \varepsilon M R\left(\Sigma a_{n}\right)$. As in the proof of Theorem 3.4, $1-2 r_{n}+r_{n-1} r_{n}=\left(1-r_{n-1}\right)\left(1-r_{n}\right)\left[1-a_{\delta(n-1)} / a_{n-1}\right]$ $\neq 0$. Hence, $a_{n} / \delta_{n}=\left(1-r_{n-1}\right)\left(1-r_{n}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$ $=.1 /\left(1-a_{\delta(n-1)} / a_{n-1}\right) \rightarrow 1$. From Theorem 3.2, $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$.

Suppose that $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. Then $r_{n} \neq 1$, and thus $a_{n} / \delta_{n}=1 /\left(1-a_{\delta(n-1)} / a_{n-1}\right) \rightarrow 1$. From Theorem 3.2, $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

Theorem 3.6. $\sum a_{\alpha n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right), \alpha_{n} \sim T_{n} / r_{n}$, and $\alpha_{n} \sim 1+I_{n+1}$ are equivalent.

Proof: From Theorem 3.1, $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $a_{n+1} \alpha_{n+1} \sim S-S_{n} \rightarrow 0 ;$ and this is equivalent to $a_{n+1} \sim\left(S-S_{n}\right) / a_{n+1}=I_{n+1} / r_{n+1}$. Moreover, $a_{n} \sim I_{n} / r_{n}$ is equivalent to $\alpha_{n} \sim 1+T_{n+1}$, since $T_{n} / r_{n}=I+T_{n+1}$. Q.E.D.

Lemma 3.7. If Σa_{n} is a convergent series and n is a positive integer such that $\mathrm{T}_{\mathrm{n}+1}-\mathrm{T}_{\mathrm{n}} \neq-1$, then
$\left(S-S_{\delta(n-1)}\right) /\left(S-S_{n-1}\right)=\left(T_{n+1}-T_{n}\right) /\left(1+T_{n+1}-T_{n}\right)$.

Proof: From $\left(1-r_{n}\right)\left(1+T_{n+1}\right)=1+T_{n+1}-T_{n} \neq 0, \quad T_{n+1} \neq-1$ and $r_{n} \neq 1$. Thus $S-S_{n-1}=a_{n}\left(1+T_{n+1}\right) \neq 0$. We then have $\left(S-S_{\delta(n-1)}\right) /\left(S-S_{n-1}\right)=\left(S-S_{n-1}-a_{n} \delta_{n}\right) /\left(S-S_{n-1}\right)$ $=I-a_{n} \delta_{n} /\left(S-S_{n-1}\right)$
$=1-\frac{a_{n}}{S-S_{n-1}} \frac{1}{I-r_{n}}=1-\frac{1}{T_{n}} \frac{r_{n}}{1-r_{n}}=1-\frac{1}{T_{n}} \frac{T_{n} /\left(1+T_{n+1}\right)}{1-T_{n} /\left(1+T_{n+1}\right)}$
$=1-1 /\left(1+T_{n+1}-T_{n}\right)=\left(T_{n+1}-T_{n}\right) /\left(I+T_{n+1}-T_{n}\right)$. Q.E.D.

Theorem 3.8. $\sum_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ if and only if
$\mathrm{T}_{\mathrm{n}+1} \mathrm{~T}_{\mathrm{n}} \rightarrow 0$.
lost Proof: From Theorem 3.6, $\sum a_{\delta_{n}} \varepsilon M R\left(\Sigma a_{n}\right)$ if and only if $\delta_{n} \sim 1+T_{n+1}$, and this is equivalent to $\left(1+T_{n+1}\right)\left(l-r_{n}\right) \rightarrow l$, since $\delta_{n}=1 /\left(l-r_{n}\right)$. Finally, $\left(1+T_{n+1}\right)\left(1-r_{n}\right) \rightarrow 1$ if and only if $T_{n+1}-T_{n} \rightarrow 0$, since $T_{n+1}-T_{n}=\left(1+T_{n+1}\right)\left(1-r_{n}\right)-1$. Q.E.D.
and Proof: If $T_{n+1}-I_{n} \rightarrow 0$, then $I_{n+1}-T_{n} \neq-1$. Thus, from Lemma $\left.3.7, \quad\left(S-S_{\delta(n-1}\right)\right) /\left(S-S_{n-1}\right)$ $=\left(I_{n+1}-T_{n}\right) /\left(1+T_{n+1}-I_{n}\right) \rightarrow 0$. Conversely, suppose that $\left(S-S_{\delta(n-1)}\right) /\left(S-S_{n-1}\right) \rightarrow 0$. Then $a_{n} \neq 0$ and $r_{n} \neq 1$, since $\delta_{n} \neq 0$. We must have $1+T_{n+1}-T_{n} \neq 0$, since otherwise $\left(1-r_{n}\right)\left(T_{n} / r_{n}\right)=.1+T_{n+1}-T_{n}=: 0, T_{n}=: 0$, and $S-S_{n-1}=: 0 ;$ a contradiction. From Lemma 3.7, $\left.\left(T_{n+1}-T_{n}\right) /\left(1+T_{n+1}-T_{n}\right)=\left(S-S_{\delta(n-1}\right)\right) /\left(S-S_{n-1}\right) \rightarrow 0$, and thus $T_{n+1}-T_{n} \rightarrow O$ Q.E.D.

The preceeding theorem immediately yields the corollary, also proven in the previous chapter, that the
convergence of $\left\{I_{n}\right\}$ implies $\Sigma a_{\delta n} \varepsilon M R\left(\Sigma a_{n}\right)$.

Lemma 3.9. If Σa_{n} is a convergent series and n is
a positive integer such that $a_{n-1} a_{n} a_{n+1} \neq 0$, then

$$
\begin{aligned}
& r_{n+1}-r_{n}=\left(T_{n+2}-T_{n+1}\right)\left(1-r_{n}\right)\left(1-r_{n+1}\right)-\left(T_{n+2}-T_{n+1}\right)\left(1-r_{n}\right) \\
& +\left(T_{n+1}-T_{n}\right)\left(1-r_{n+1}\right)
\end{aligned}
$$

Proof: We have $\left(1-r_{n}\right)\left(1+T_{n+1}\right)=1-r_{n}+T_{n+1}-r_{n} T_{n+1}$

$$
\begin{aligned}
& =1+T_{n+1}-r_{n}\left(1+T_{n+1}\right)=1+T_{n+1}-T_{n}, \text { so that } T_{n+1}-T_{n} \\
& =\left(1-r_{n}\right)\left(1+T_{n+1}\right)-1 \text {. Similarly, } I_{n+2}-T_{n+1} \\
& =\left(1-r_{n+1}\right)\left(1+T_{n+2}\right)-1 \text {. Thus, }\left(I_{n+2}-T_{n+1}\right)\left(1-r_{n}\right)\left(1-r_{n+1}\right) \\
& -\left(T_{n+2}-T_{n+1}\right)\left(1-r_{n}\right)+\left(T_{n+1}-T_{n}\right)\left(1-r_{n+1}\right) \\
& =\left(T_{n+2}-T_{n+1}\right)\left(1-r_{n}\right)\left(1-r_{n+1}\right)-\left(1-r_{n}\right)\left[\left(1-r_{n+1}\right)\left(1+T_{n+2}\right)-1\right] \\
& +\left(1-r_{n+1}\right)\left[\left(1-r_{n}\right)\left(1+T_{n+1}\right)-1\right]=\left(I_{n+2}-T_{n+1}\right)\left(1-r_{n}\right)\left(1-r_{n+1}\right) \\
& +\left(1-r_{n}\right)-\left(1-r_{n}\right)\left(1-r_{n+1}\right)\left(1+T_{n+2}\right)-\left(1-r_{n+1}\right) \\
& +\left(1-r_{n}\right)\left(1-r_{n+1}\right)\left(1+T_{n+1}\right)=\left(1-r_{n}\right)\left(1-r_{n+1}\right)\left[\left(T_{n+2}-T_{n+1}\right)\right. \\
& \left.-\left(1+T_{n+2}\right)+\left(1+T_{n+1}\right)\right]+r_{n+1}-r_{n}=r_{n+1}-r_{n} \text {. Q.E.D. }
\end{aligned}
$$

Lemma 3.10. If $\sum a_{n}$ is a convergent series and n is a positive integer such that $\left(1-r_{n}\right)\left(l-r_{n+1}\right) a_{n+1} \neq 0$, then

$$
\begin{aligned}
& a_{\delta n} / a_{n}=\left(T_{n+2}-T_{n+1}\right)-\left(T_{n+2}-T_{n+1}\right) /\left(1-r_{n+1}\right) \\
& +\left(T_{n+1}-T_{n}\right) /\left(1-r_{n}\right)
\end{aligned}
$$

Proof: We have $a_{n-1} a_{n} a_{n+1} \neq 0$, and $a_{\delta n} / a_{n}$
$=\left(r_{n+1}-r_{n}\right) /\left(I-r_{n}\right)\left(I-r_{n+1}\right)$ according to Lemma 3.3. Now apply Lemma 3.9. Q.E.D.

Lemma 3.11. If $\Sigma a_{\delta_{n}} \varepsilon M R\left(\Sigma a_{n}\right)$ and $0<B \leq\left|l-r_{n}\right|$ for some number B, then $a_{\delta n} / a_{n} \rightarrow 0$.

Proof: From Theorem 3.8, $\mathrm{T}_{\mathrm{n}+1}-\mathrm{T}_{\mathrm{n}} \rightarrow 0$. Using Lemma 3.10 and $0<B \leq\left|l-r_{n}\right|$, it is obvious that $a_{\delta n} / a_{n} \rightarrow 0$. Q.E.D.

Theorem 3.12. Suppose that $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ and
$0<B \leq \cdot\left|1-r_{n}\right|$. Then $\sum a_{a_{n}} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$, where a_{n}
$=\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)$ or a_{n}
$=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$.

Proof: From Lemma 3.11, $a_{\delta n} / a_{n} \rightarrow 0$. We now apply
Theorem 3.4, if $a_{n}=\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)$; or Theorem 3.5, if $a_{n}=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$. Q.E.D.

Theorem 3.13. If $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ and $\left|r_{n}\right| \leq B$ for some number B, then $r_{n+1}-r_{n} \rightarrow 0$.

Proof: From Theorem 3.8, Lemma 3.9, and $\left|r_{n}\right| \leq$ B, it
is obvious that $r_{n+1}-r_{n} \rightarrow 0$. Q.E.D.

Theorem 3.14. Suppose that $\left|r_{n}\right| \leq \rho<1$ for some number ρ. Then a n.a.s.c. that $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ is that $r_{n+1}{ }^{-r_{n}} \rightarrow 0$.

Proof: Since $\left|r_{n}\right| \leq . \rho<1, \sum a_{n}$ converges.
The necessity follows from Theorem 3.13.
For the sufficiency, let $\varepsilon^{\prime}>0$. Since
$r_{n+1}-r_{n} \rightarrow 0, \quad\left|r_{n+1}-r_{n}\right| \leq \cdot \varepsilon^{\prime} /(1-\rho)^{2}$. With
$\varepsilon=\varepsilon^{\prime} /(1-\rho)^{2}$,
$\left|T_{n+1}-T_{n}\right|=\cdot \mid\left(r_{n+1}-r_{n}\right)+r_{n+1}\left(r_{n+2}-r_{n}\right)+r_{n+1} r_{n+2}\left(r_{n+3}-r_{n}\right)$

$$
+\cdots+\left(r_{n+1} \cdots r_{n+k-1}\right)\left(r_{n+k}-r_{n}\right)+\cdots \mid
$$

s. $\left|r_{n+1}-r_{n}\right|+\left|r_{n+1}\right|\left|r_{n+2}-r_{n}\right|+\cdots+\left|r_{n+1} \cdots r_{n+k-1}\right|\left|r_{n+k}-r_{n}\right|+\cdots$
$\leq \quad \varepsilon+2 \varepsilon\left|r_{n+1}\right|+\cdots+k \varepsilon\left|r_{n+1} \cdots r_{n+k-1}\right|+\cdots$
s. $\varepsilon\left[1+2 p+3 \rho^{2}+\cdots+k p^{k-1}+\cdots\right]=\varepsilon /\left(1-\rho^{2}\right)=\varepsilon^{\prime}$.

Hence $T_{n+1}-T_{n} \rightarrow 0$, and thus, from Theorem 3.8,
$\sum a_{\delta_{n}} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right) \cdot$ Q.E.D.

Corollary 3.15. Suppose that $\left|r_{n}\right| \leq . \rho<1$ for some number ρ, and $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$. Suppose, in addition, that q is an integer and $a_{n}^{\prime}=a_{n} z^{n+q}$ for every n. Then $\sum a_{\delta n}^{\prime} \varepsilon \operatorname{MR}\left(\sum_{n}^{\prime}\right)$, for each complex number z
satisfying $0<|z|<l / \rho$.

Proof: From Theorem 3.14, $r_{n+1}-r_{n} \rightarrow 0$. Let z be any complex number such that $0<|z|<1 / \rho$. Then $\left|r_{n}^{\prime}\right|=\left|r_{n} z\right| \leq \rho|z|<1$ and $r_{n+1}^{\prime}-r_{n}^{\prime}=r_{n+1} z-r_{n} z$ $=z\left(r_{n+1}-r_{n}\right) \rightarrow 0$. Thus $\Sigma a_{\delta}^{\prime} n \varepsilon M R\left(\Sigma a_{n}^{\prime}\right)$, according to Theorem 3.14. Q.E.D.

Corollary 3.16. Suppose that $\left|r_{n}\right| \leq \rho<1$ for some number ρ, and $r_{n+1}{ }^{-r_{n}} \rightarrow 0$. Suppose, in addition, that q is an integer and $a_{n}^{\prime}=a_{n} z^{n+q}$ for every n. Then $\sum a_{\delta}^{\prime} n \in M R\left(\Sigma a_{n}^{\prime}\right)$, for each complex number z satisfying $0<|z|<l / \rho$.

Proof: From Theorem 3.14, $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. We now apply Corollary 3.15. Q.E.D.

Lemma 3.17. If $0<A \leq \cdot\left|1-r_{n}\right| \leq B$, then $a_{\delta n} / a_{n}$
$=.\left(r_{n+1}-r_{n}\right) /\left(l-r_{n}\right)\left(l-r_{n+1}\right)$, and $a_{\delta n} / a_{n} \rightarrow 0$ if and only if $r_{n+1}-r_{n} \rightarrow 0$.

Proof: Since $0<A \leq \cdot\left|l-r_{n}\right| \leq . B$,
$0<A^{2} \leq\left|\left(1-r_{n}\right)\left(l-r_{n+1}\right)\right| \leq B^{2}$. Hence from Lemma 3.3,
$a_{\delta n} / a_{n}=\cdot\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right)$. Thus, from
$0<A^{2} \leq \cdot\left|\left(1-r_{n}\right)\left(1-r_{n+1}\right)\right| \leq B^{2}, a_{\delta n} / a_{n} \rightarrow 0$ if and only if $r_{n+1}{ }^{-r_{n}} \rightarrow$ O. Q.E.D.

Lemma 3.18. If $\left|r_{n}\right| \leq \rho<1$, then $a_{\delta n} / a_{n}$
=. $\left(r_{n+1}-r_{n}\right) /\left(l-r_{n}\right)\left(l-r_{n+1}\right)$, and $a_{\delta n} / a_{n} \rightarrow 0$ if and only if $r_{n+1}^{-r} n \rightarrow 0$.

Proof: From $\left|r_{n}\right| \leq . p<1,0<1-\rho \leq \cdot\left|1-r_{n}\right| \leq \cdot 2$. We now apply Lemma 3.17. Q.E.D.

Theorem 3.19. Suppose that $\left|r_{n}\right| \leq . \rho<1$. Then
$\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $a_{\delta n} / a_{n} \rightarrow 0$.

Proof: Lemma 3.18, $a_{\delta n} / a_{n} \rightarrow 0$ if and only if
$r_{n+1}-r_{n} \rightarrow 0$. From Theorem 3.14, $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $r_{n+1}-r_{n} \rightarrow 0$. Consequently, $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $a_{\delta n} / a_{n} \rightarrow 0$. Q.E.D.

Theorem 3.20. If $\left|r_{n}\right| \leq \rho<1$ and $a_{\delta n} / a_{n} \rightarrow 0$, then $\sum a_{a_{n}} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$, where $\alpha_{n}=\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)$ or $\alpha_{n}=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$.

Proof: From Theorem 3.19, $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. From Theorem 3.4, $\quad \sum a_{\alpha_{n}} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ if $a_{n}=.\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)$.

If $a_{n}=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$, we may apply Theorem 3.5 to obtain $\sum a_{a n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$. Q.E.D.

Theorem 3.21. If $\left|r_{n}\right| \leq \rho<1$ and $r_{n+1}-r_{n} \rightarrow 0$, then $\sum a_{\alpha n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$, where $\alpha_{n}=\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)$ or $\alpha_{n}=\cdot\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$.

Proof: From Lemma 3.18, $a_{\delta n} / a_{n} \rightarrow 0$. We now apply
Theorem 3.20. Q.E.D.

CHAPTER IV

RAPIDITY OF CONVERGENCE AND VARIOUS METHODS FOR ACCELERATING CONVERGENCE. A VACUOUS THEOREM

In this chapter, both real and complex series will be considered. Various methods for accelerating convergence will be treated. That part of Lubkin's Theorem 6 (17, p. 231) concerning acceleration will be shown to have no application if $r_{n} \rightarrow$. That part of his Theorem 7 (17, p. 232) concerning acceleration will be proven to be vacuous.

If α, β are real numbers and $0 \leq \beta<\pi / 2$, the notation $\langle\alpha, \beta\rangle$ will be used to denote the set of complex numbers z such that $|\arg z-\alpha| \leq \beta$ for some arg z. Thus $\langle\alpha, \beta\rangle$ is the infinite sector in the complex plane, subtending the angle 2β and bisected by the ray $\theta=\alpha$. If $\beta=0,\langle\alpha, \beta\rangle$ degenerates to the ray $\theta=\alpha$.

The following theorem appears to be the only one of general character, concerning rapidity of convergence, which is found in Knopp (15, p. 279-280).

Theorem 4.1. Suppose that Σa_{n} and Σb_{n} are convergent series of positive terms. Then Σa_{n} converges more rapidly than Σb_{n} if $a_{n} / b_{n} \rightarrow 0$.

According to Counterexample 2.20, Theorem 4.1 fails to hold for arbitrary convergent complex series $\Sigma a_{n}, \quad \Sigma b_{n}$. The converse of Theorem 4.l is false. That is, if $\sum a_{n}$ and $\sum b_{n}$ are series of positive terms, and Σa_{n} converges more rapidly than Σb_{n}, then it is not necessarily true that $a_{n} / b_{n} \rightarrow 0$. This is made obvious by the following theorem.

Theorem 4.2. Suppose that Σa_{n} and Σb_{n} are series of positive terms, and that Σa_{n} converges more rapidly than Σb_{n}. Then $a_{0}+a_{0}+a_{1}+a_{\uparrow}+\cdots+a_{n}+a_{n}+\cdots \quad$ converges more rapid ly than $a_{0}+b_{0}+a_{1}+b_{1}+\cdots+a_{n}+b_{n}+\cdots \quad$.

Proof: We have

$$
\frac{a_{n}+a_{n}+a_{n+1}+a_{n+1}+\cdots}{a_{n}+b_{n}+a_{n+1}+b_{n+1}+\cdots}=\frac{2\left(a_{n}+a_{n+1}+\cdots\right) /\left(b_{n}+b_{n+1}+\cdots\right)}{\left(a_{n}+a_{n+1}+\cdots\right) /\left(b_{n}+b_{n+1}+\cdots\right)+1} \rightarrow 0
$$

as

$$
n \rightarrow \infty, \quad \text { and }
$$

$$
\begin{aligned}
\frac{a_{n}+a_{n+1}+a_{n+1}+a_{n+2}+a_{n+2}+\cdots}{b_{n}+a_{n+1}+b_{n+1}+a_{n+2}+b_{n+2}+\cdots}< & \frac{2\left(a_{n}+a_{n+1}+\cdots\right)}{\left(a_{n+1}+a_{n+2}+\cdots\right)+\left(b_{n}+b_{n+1}+\cdots\right)} \\
= & \frac{2\left(a_{n}+a_{n+1}+\cdots\right) /\left(b_{n}+b_{n+1}+\cdots\right)}{\left(a_{n+1}+a_{n+2}+\cdots\right) /\left(b_{n}+b_{n+1}+\cdots\right)+1} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. Q.E.D.
As previously noted, Theorem 4.2 shows that the converse of Theorem 4.1 is false; however, we do have the
following theorem.

Theorem 4.3. Suppose that Σa_{n} and Σb_{n} are convergent series of positive terms. Then $a_{n} / b_{n} \rightarrow 0$ if, and only if Σa_{n}, converges more rapidly than Σb_{n}, for each subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$.

Proof: If $a_{n} / b_{n} \rightarrow 0$ and $\left\{n^{\prime}\right\}$ is any subsequence of $\{n\}$, then $a_{n} / b_{n}, \rightarrow 0$ and, according to Theorem 4.i, Σa_{n}, converges more rapidly than $\Sigma b_{n}, \cdot$

Assume that $a_{n} / b_{n} \nrightarrow 0$. Then there is an $\varepsilon>0$ and a subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$ such that $a_{n} / b_{n} \geq \geq \varepsilon$. Consequently, $\quad \sum_{k=n}^{\infty} a_{k}, \geq . \varepsilon \sum_{k=n}^{\infty} b_{k}$, , and thus $\sum a_{n}$, does not converge more rapidly than $\Sigma b_{n} . \cdot$ Q.E.D.

Lemma 4.4. If Σa_{n} is a convergent complex series such that $a_{n} \varepsilon_{0}\langle\alpha, \beta\rangle$ for some set $\langle\alpha, \beta\rangle$, then $\sum_{k=n}^{\infty}\left|a_{k}\right|$ $\leq\left|\sum_{k=n}^{\infty} a_{k}\right| / \cos \beta$.

Proof: We may assume that $\alpha=0$, since with $b_{n}=a_{n} e^{-i \alpha}$ for $n \geq 0$, we have $b_{n} \varepsilon .\langle 0, \beta\rangle,\left|\sum_{k=n}^{\infty} a_{k}\right|=\left|\left|\sum_{k=n}^{\infty} b_{k}\right|\right.$, and $\sum_{k=n}^{\infty}\left|a_{k}\right|=, \sum_{k=n}^{\infty}\left|b_{k}\right|$. Since $a_{n} \varepsilon .\langle 0, \beta\rangle$, we may
set $a_{n}=\left|a_{n}\right| e^{i \theta_{n}}$ where $\left|\theta_{n}\right| \leq \beta<\pi / 2$. Thus, $\cos \theta_{n} \geq \cdot \cos \beta$ and $\left|\sum_{k=n}^{\infty} a_{k}\right|=\left|\sum_{k=n}^{\infty}\right| a_{k} \mid \cos \theta_{k}$ $+i \sum_{k=n}^{\infty}\left|a_{k}\right| \sin \theta_{k}|\geq \cdot| \sum_{k=n}^{\infty}\left|a_{k}\right| \cos \theta_{k}\left|=. \sum_{k=n}^{\infty}\right| a_{k} \mid \cos \theta_{k}$土. $\sum_{k=n}^{\infty}\left|a_{k}\right| \cos \beta=.(\cos \beta) \sum_{k=n}^{\infty}\left|a_{k}\right| \cdot$ Q.E.D.

Theorem 4.5. Suppose that $\Sigma a_{n}, . \Sigma b_{n}$ are complex series such that $\sum a_{n}$ converges and $a_{n} \varepsilon .\langle\alpha, \beta\rangle$ for some set $\langle\alpha, \beta\rangle$. Then $b_{n} / a_{n} \rightarrow 0$ if and only if $\sum b_{n}$: converges more rapidly than $\sum a_{n}$, for every subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$.

Proof: If $a_{n}=: 0$, then $a_{n},=.0$ for some subsequince $\left\{n^{\prime}\right\}$ of $\{n\}$, and both conditions in the conclusion of our theorem fail to hold. Thus we may assume that $a_{n} \neq 0$.

Suppose that $b_{n} / a_{n} \rightarrow 0, \varepsilon>0$, and $\left\{n^{\prime}\right\}$ is
any subsequence of $\{n\}$. Then $\left|b_{n},|\leq \varepsilon \varepsilon| a_{n},\right| \cos \beta$, and $\Sigma\left|b_{n}\right|, \Sigma\left|a_{n}\right| \mid$ both converge, since $\Sigma\left|a_{n}\right|$ converges according to Lemma 4.4. Hence, $\left|\sum_{k=n}^{\infty} b_{k},\right|$ $\leq . \sum_{k=n}^{\infty}\left|b_{k^{\prime}}\right| \leq \cdot(\varepsilon \cos \beta) \sum_{k=n}^{\infty}\left|a_{k}\right| \leq \cdot \varepsilon\left|\sum_{k=n}^{\infty} a_{k}{ }^{\prime}\right|$, the last inequality following from Lemma 4.4. Thus $\sum b_{n}$, converges
more rapidly than Σa_{n}..
Suppose that $b_{n} / a_{n} \nrightarrow 0$. Then there is an $\varepsilon>0$ and a subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$ such that $\left|b_{n},\right|$ \geq. $\varepsilon\left|a_{n^{\prime}}\right|$. Since $b_{n}, \varepsilon:\left\langle\alpha^{\prime}, \pi / 4\right\rangle$ for some real a^{\prime}, there is a subsequence $\left\{n^{*}\right\}$ of $\left\{n^{\prime}\right\}$ such that $b_{n *} \varepsilon \cdot\left\langle a^{\prime}, \pi / 4\right\rangle$ and $\left|b_{n *}\right| \geq \cdot \varepsilon\left|a_{n *}\right|$. If $\Sigma b_{n *}$ does not converge, there is nothing to prove. Hence, assume that $\sum b_{n *}$ converges. From $\left|b_{n *}\right| \geq . \varepsilon\left|a_{n *}\right|$ and Lemma 4.4,
$\left|\sum_{\mathrm{k}=\mathrm{n}}^{\infty} \mathrm{b}_{\mathrm{k} *}\right| \geq .(\cos \pi / 4) \sum_{\mathrm{k}=\mathrm{n}}^{\infty}\left|\mathrm{b}_{\mathrm{k} *}\right| \geq \cdot(\varepsilon \cos \pi / 4) \sum_{\mathrm{k}=\mathrm{n}}^{\infty}\left|\mathrm{a}_{\mathrm{k}^{*}}\right|$ 2. $(\varepsilon \cos \pi / 4)\left|\sum_{k=n}^{\infty} a_{k *}\right|$, and thus $\sum b_{n *}$ does not converge more rapidly than $\Sigma_{a_{n}} \cdot$ Q.E.D.

Corollary 4.6. Suppose that $\sum a_{n}$ is a convergent series such that $a_{n} \varepsilon .\langle\alpha, \beta\rangle$ for some set $\langle\alpha, \beta\rangle$. Then a
n.a.s.c. that $\Sigma a_{\delta n}$, converge more rapidly than Σa_{n}, for each subsequence $\{n!\}$ of $\{n\}$, is that $a_{\delta n} / a_{n} \rightarrow 0$.

Proof: Set $a_{\delta n}=b_{n}$ and apply Theorem 4.5. Q.E.D.

Theorem 4.7. Suppose that Σa_{n} is a convergent real sefries such that $r_{n} \leq \cdot r_{n+1}$ and $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$. Suppose, in addition, that q is an integer and $a_{n}^{\prime}=a_{n} z^{n+q}$ for every n. Then $\Sigma a_{\delta}^{\prime} n^{n} \operatorname{MR}\left(\Sigma_{n}^{\prime}\right)$ for each complex number z satisfying $0<|z| \leq 1$.

Proof: Let $0<|z| \leq 1$. Since Σa_{n} converges and $r_{n} \leq r_{n+1}, r_{n} \rightarrow r$ where $-1<r \leq 1$. If $r<1$, then $\left|r_{n}\right| \leq \rho<1$ for some number ρ, and $0<|z|<1 / \rho$. Since $r_{n+1}-r_{n} \rightarrow 0$, Corollary 3.16 implies $\Sigma a_{\delta n}^{\prime} \varepsilon \operatorname{MR}\left(\Sigma a_{n}^{\prime}\right)$. Suppose that $r=1$. We note that $0<. r_{n}$, so that $0<. a_{n}$ or $a_{n}<0$. In either case, $\Sigma\left|a_{n}\right|$ converges. Also, $\left|r_{n}^{\prime}\right|=.\left|r_{n} z\right| \leq$. $\left|r_{n}\right|$, and thus Σa_{n}^{\prime} converges absolutely. In view of Theorem 3.8, $T_{n+1}-T_{n}+0$. Since $r_{n}^{\prime}=r_{n} z, T_{n}^{\prime}=r_{n}^{\prime}+r_{n}^{\prime} r_{n+1}^{\prime}+\cdots$ $+\left(r_{n}^{\prime} \cdots r_{n+k}^{\prime}\right)+\cdots=r_{n} z+r_{n} r_{n+1} z^{2}+\cdots+\left(r_{n} \cdots r_{n+k}\right) z^{k+1}+\cdots$. Thus, $\left|I_{n+1}^{\prime}-T_{n}^{\prime}\right|=\cdot \mid\left(r_{n+1}-r_{n}\right) z+r_{n+1}\left(r_{n+2}-r_{n}\right) z^{2}+\cdots$ $+\left(r_{n+1} \cdots r_{n+k-1}\right)\left(r_{n+k}-r_{n}\right) z^{k}+\cdots$ |
$\leq \cdot\left|r_{n+1}-r_{n}\right|+\left|r_{n+1}\left(r_{n+2}-r_{n}\right)\right|+\cdots+\left|\left(r_{n+1} \cdots r_{n+k-1}\right)\left(r_{n+k}-r_{n}\right)\right|$
$=\left(r_{n+1}-r_{n}\right)+r_{n+1}\left(r_{n+2}-r_{n}\right)+\cdots+\left(r_{n+1} \cdots r_{n+k-1}\right)\left(r_{n+k}-r_{n}\right)+\cdots$

$$
=T_{n+1}-T_{n} \rightarrow 0
$$

as $n \rightarrow \infty$. Hence $I_{n+1}^{\prime}-T_{n}^{\prime} \rightarrow 0$, and thus $\sum a_{\delta}^{\prime} n \in \operatorname{MR}\left(\Sigma a_{n}^{\prime}\right)$ according to Theorem 3.8. Q.E.D.

Theorem 4.8. If Σa_{n} is a real series, $0<\cdot r_{n}$, and $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$, then $r_{n}<.1$ and $0<\cdot Q_{n}$.

Proof: Since $0<r_{n}, T_{n}>$. 0 . From Theorem 3.6, $\delta_{n}=. l /\left(1-r_{n}\right) \sim T_{n} / r_{n}>0$, so that $1-r_{n}>0$. Thus, $r_{n}<. l$ and $0<n\left(l-r_{n}\right)=Q_{n}$. Q.E.D.

Lemma 4.9. Suppose that Σa_{n} is a real convergent series such that $a_{\delta n} / a_{n} \rightarrow 0$ and $0 \leq r_{n}$. Then $r_{n}<1$, $r_{n+1}-r_{n} \rightarrow 0$, and $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$.

Proof: Since $0 \leq \cdot r_{n}, a_{n} \varepsilon .\langle 0,0\rangle$ or $a_{n} \varepsilon .\langle\pi, 0\rangle$. From Corollary 4.6 and Theorem 2.6, $\quad \sum_{\delta n} \varepsilon M R\left(\Sigma a_{n}\right)$ since $a_{\delta n} / a_{n} \rightarrow 0$. Thus, according to Theorem 4.8, $r_{n}<. i$, so that $\left|r_{n}\right| \leq$. Hence $r_{n+1}-r_{n} \rightarrow 0$ in view of Theorem 3.13. Q.E.D.

Theorem 4.10. Suppose that Σa_{n} is a convergent real series such that $r_{n} \leq \cdot r_{n+1}$ and $a_{\delta n} / a_{n} \rightarrow 0$. Suppose, in addition, that q is an integer and $a_{n}^{\prime}=a_{n} z^{n+q}$ for
every n. Then $\Sigma a_{\delta}^{\prime} n \in \operatorname{MR}\left(\Sigma a_{n}^{\prime}\right)$ for every complex number z such that $0<|z| \leq 1$.

Proof: Since Σa_{n} converges, $r_{n} \rightarrow r$ where $-1<r \leq l$. If $r<1$, we may complete the proof in the same manner as in the proof of Theorem 4.7. If $r=1$, then $0 \leq r_{n}$, and $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ according to Lemma 4.9. We may now apply Theorem 4.7 to complete the proof. Q.E.D.

Theorem 4.11. Suppose that Σa_{n} is a convergent series such that: $a_{n} \varepsilon .\langle\alpha, \beta\rangle$ for some set $\langle\alpha, \beta\rangle$. Then a n.a.s.c. that $\Sigma a_{\delta n}$, converge more rapidly than Σa_{n}, for each subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$, is that $\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right) \rightarrow 0$.

Proof: For the sufficiency, $\delta_{n}=. I /\left(1-r_{n}\right)$ since $\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right)$ exists for large n. Thus $a_{\delta n} / a_{n}=.\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right) \rightarrow 0$. From Corollary 4.6, $\quad \sum a_{\delta n}$, converges more rapidly than $\sum a_{n}$, for each subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$.

For the necessity, $\delta_{n} \neq .0 ;$ since if $\delta_{n}=: 0$, then $S_{\delta n}=: S_{n}$, and thus, $\Sigma_{a_{n n}}$ does not converge more rapidly than Σa_{n}, a contradiction. Hence,
$\delta_{n}=.1 /\left(1-r_{n}\right)$ and, from Corollary 4.6,
$\left(r_{n+1}-r_{n}\right) /\left(1-r_{n}\right)\left(1-r_{n+1}\right)=. a_{\delta n} / a_{n} \rightarrow$ O. Q.E.D.

Theorem 4.12. If Σa_{n} is a real series such that $r=1$ and $\left|n(n+1)\left(r_{n+1}-r_{n}\right)\right| \leq$. 1 , then $\sum_{a_{n}}$ diverges.

Proof: By hypothesis, $1-r_{n} \rightarrow 0$ and $\left|r_{n+1}-r_{n}\right|$ s. $1 / n(n+1)$. Thus,
$1-r_{n}=\sum_{k=n}^{\infty}\left[\left(1-r_{k}\right)-\left(1-r_{k+1}\right)\right] \leq \sum_{k=n}^{\infty}\left|r_{k+1}-r_{k}\right|$

$$
\leq \cdot \sum_{k=n}^{\infty} 1 / k(k+1)=1 / n,
$$

from which $1-1 / n \leq r_{n}$. Since $\Sigma_{a_{n}^{\prime}}^{\prime}, a_{n}^{\prime}=1 / n$, diverges and $r_{n}^{\prime}=.(n-1) / n=1-1 / n \leq r_{n}, \quad \sum a_{n}$ must diverge. Q.E.D.

Corollary 4.13. If $\sum a_{n}$ is a real series such that $r=1$ and $n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow 0$, then $\sum a_{n}$ diverges.

Proof: Since $n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow 0, n(n+1)\left(r_{n+1}-r_{n}\right) \rightarrow 0$ so that $\left|n(n+1)\left(r_{n+1}-r_{n}\right)\right| \leq$. 1. We now apply Theorem 4.12. Q.E.D.

Lubkin (17, p. 231-232) has proven the following two theorems.

Theorem 6. If Σa_{n} is a convergent real series, $r_{n}>0$, $Q_{n}>K>0$, and $n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow 0$, as $n \rightarrow \infty$, then
$\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

Theorem 7. If Σa_{n} is a convergent real series, Q exists (as a finite limit), and $n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow 0$, then $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

$$
\text { If } \sum a_{n} \text { is a real series such that }\left\{n^{2}\left(r_{n+1}-r_{n}\right)\right\}
$$

is bounded, then $\Sigma\left|r_{n+1}-r_{n}\right|$ converges since $\left|r_{n+1}-r_{n}\right|$ s. B / n^{2} for some number B. Thus $\Sigma\left(r_{n+1}-r_{n}\right)$ converges, from which $r_{n} \rightarrow r$ for some number r. In view of Corollary 4.13, it is now evident that $0 \leq r<1$; if the hypothesis of Theorem 6 is satisfied. Consequently if $r=1$, the hypothesis of Theorem 6 cannot be satisfied. On the other hand, $r=1$ if Q exists. Hence, according to Corollary 4.13, the hypothesis of Theorem 7 can never be fulfilled.

Theorem 4.14.
(1) If $\operatorname{Re} Q_{n} \rightarrow Q^{\prime}$ and $\operatorname{Re} n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow P^{\prime}$, then $P^{\prime}=Q^{\prime}$.
(2) If $\operatorname{Im} Q_{n} \rightarrow Q^{\prime \prime}$ and $\operatorname{Im} n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow P^{\prime \prime}$, then $P^{\prime \prime}=Q^{\prime \prime}$.
(3) If $Q_{n} \rightarrow Q$ and $n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow P$, then $P=Q$.

Proof: We first note that $Q_{n+1}-Q_{n}=(n+1)\left(1-r_{n+1}\right)-n\left(1-r_{n}\right)$
$=n\left(1-r_{n+1}\right)+\left(1-r_{n+1}\right)-n\left(1-r_{n}\right)=\left(1-r_{n+1}\right)-n\left(r_{n+1}-r_{n}\right)$ and $n\left(Q_{n+1}-Q_{n}\right)=. n\left(1-r_{n+1}\right)-n^{2}\left(r_{n+1}-r_{n}\right)=.(n+1)\left(1-r_{n+1}\right)-\left(1-r_{n+1}\right)$ $-n^{2}\left(r_{n+1}-r_{n}\right)$.

Assume that $P^{\prime} \neq Q^{\prime}$. Set $Q_{n}^{\prime}=$. Re Q_{n}. Since $\operatorname{Re} n\left(1-r_{n}\right) \rightarrow Q^{\prime}, \operatorname{Re}\left(1-r_{n}\right) \rightarrow 0$. Thus, $n\left(Q_{n+1}^{\prime}-Q_{n}^{\prime}\right)$ $=Q_{n+1}^{\prime}-\operatorname{Re}\left(l-r_{n+1}\right)-\operatorname{Re} n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow Q^{\prime}-0-P^{\prime}=Q^{\prime}-P^{\prime} \neq 0$. Let $L=\left(Q^{\prime}-P^{\prime}\right) / 2$. If $L>0$, then $n \Delta Q_{n}^{\prime} \geq$. L. Hence there is a positive integer m such that $Q_{m+n}^{\prime}=. Q_{m}^{\prime}+\Delta Q_{m}^{\prime}$ $+\Delta Q_{m+1}^{\prime}+\cdots+\Delta Q_{m+n-1}^{\prime} \rightarrow+\infty$, so that $Q_{n}^{\prime} \rightarrow+\infty$, a contradiction. If $L<0$, then $n \Delta Q_{n}^{\prime} \leq$. L. Hence there is a positive integer m such that $Q_{m+n}^{\prime}=. Q_{m}^{\prime}+\Delta Q_{m}^{\prime}+\cdots$ $+\Delta Q_{m+n-1}^{\prime} \rightarrow-\infty$, so that $Q_{n}^{\prime} \rightarrow-\infty$, a contradiction. Thus we must have $P^{\prime}=Q^{\prime}$. This proves (1). The proof of (2) follows in a similar manner, and (3) is an immediate consequence of (1) and (2). Q.E.D.

Theorem 4.14 again shows that the hypothesis of Lubkin's Theorem 7, previously mentioned, can never be futfilled, since we would have $Q=0$ and Σa_{n} would diverge.

Theorem 4.15. If $0<k \leq \operatorname{Re} Q_{n}$ and $\operatorname{Re}\left[n^{2}\left(r_{n+1}-r_{n}\right)\right] \rightarrow 0$, then $\operatorname{Re} Q_{n}<\cdot \operatorname{Re} Q_{n+1}$ and $\operatorname{Re} Q_{n} \rightarrow+\infty$.

Proof: Since $\operatorname{Re} n^{2}\left(r_{n+1}-r_{n}\right) \rightarrow 0, \operatorname{Re} n(n+1)\left(r_{n+1}-r_{n}\right) \rightarrow 0$.
Also, $(n+1)\left(Q_{n}-Q_{n+1}\right)=-Q_{n+1}+(n+1) Q_{n}-n Q_{n+1}$
$=-Q_{n+1}+n(n+1)\left(r_{n+1}-r_{n}\right)$. Thus, with $Q_{n}^{\prime}=$. Re Q_{n},
$(n+1)\left(Q_{n}^{\prime}-Q_{n+1}^{\prime}\right)=-Q_{n+1}^{\prime}+\operatorname{Re} n(n+1)\left(r_{n+1}-r_{n}\right) \leq-K$ $+\operatorname{Re} n(n+l)\left(r_{n+1}-r_{n}\right)$ <. 0 from which $Q_{n}^{\prime}<. Q_{n+1}^{\prime}$. Hence, $Q_{n}^{\prime} \rightarrow Q^{\prime}$ where $K<Q^{\prime} \leq+\infty$. If $Q^{\prime}<+\infty, Q^{\prime}=0$ according to (1) of Theorem 4.14; this is a contradiction. Thus, $Q^{\prime}=+\infty$. Q.E.D.

Theorem 4.16. Suppose that $\sum_{a_{n}}$ is a convergent series such that (1) $a_{n} \varepsilon .\langle\alpha, \beta\rangle$ for some set $\langle\alpha, \beta\rangle$ and
$Q_{n} \rightarrow \infty$. Suppose further that $\left\{P_{n}\right\}$ is a sequence such that (3) $P_{n} / Q_{n+1} \rightarrow 0$ and (4) $n\left|Q_{n+1}-Q_{n}\right| \leq\left|P_{n} Q_{n}\right|$. Then $a_{\delta n} / a_{n} \rightarrow 0$ and $\sum a_{\delta n} \varepsilon M R\left(\sum a_{n}\right)$.

Proof: From (2), $\delta_{n}=1 /\left(1-r_{n}\right)$ and $a_{\delta n} / a_{n}$ $=n\left(Q_{n}-Q_{n+1}\right) / Q_{n} Q_{n+1}+I / Q_{n+1}$. From (2), $I / Q_{n} \rightarrow$ O. From (3) and (4), $\left|n\left(Q_{n}-Q_{n+1}\right) / Q_{n} Q_{n+1}\right| \leq\left|P_{n} Q_{n} / Q_{n} Q_{n+1}\right|$ $=.\left|P_{n} / Q_{n+1}\right| \rightarrow 0$. Thus $a_{\delta n} / a_{n} \rightarrow 0$. Hence $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ according to Corollary 4.6 and Theorem 2.6. Q.E.D.

Theorem 4.17. Suppose that Σa_{n} is a real series such that $-1<. r_{n} \leq r_{n+1}, Q_{n} \leq Q_{n+1}$, and $Q_{n} \rightarrow+\infty$. Then $a_{\delta n} / a_{n} \rightarrow 0$ and $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$.

Proof: Since $Q_{n}=\cdot n\left(1-r_{n}\right) \rightarrow+\infty, r_{n}<$. 1 . Hence
$-1<. r_{n} \leq \cdot r_{n+1}<l$ and thus $r_{n} \rightarrow r$ where $-1<r \leq l$.
If $r<l$, it is obvious that $\left|r_{n}\right| \leq \cdot \rho<1$ for some number ρ. Also $r_{n+1}-r_{n} \rightarrow 0$. Thus from Theorem 3.14, $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. Suppose that $r=1$. Then $0<. r_{n} \leq \cdot r_{n+1}<.1$, and $a_{n} \varepsilon \cdot\langle 0,0\rangle$ or $a_{n} \varepsilon \cdot\langle\pi, 0\rangle$. Also, $a_{\delta n} / a_{n}=1 /\left(1-r_{n+1}\right)-1 /\left(1-r_{n}\right) \geq \cdot 0$ and $0 \leq \cdot a_{\delta n} / a_{n}$ $=n\left(Q_{n}-Q_{n+1}\right) / Q_{n} Q_{n+1}+1 / Q_{n+1}$. Hence, with $P_{n}=$. 1 , we have $0 \leq \cdot n\left(Q_{n+1}-Q_{n}\right) / Q_{n} Q_{n+1} \leq \cdot L / Q_{n+1}, n\left|Q_{n+1}-Q_{n}\right|$ $\leq \cdot\left|P_{n} Q_{n}\right|$, and $P_{n} / Q_{n+1} \rightarrow 0$. Since $Q_{n} \rightarrow+\infty, \Sigma a_{n}$ converges. Thus, from Theorem 4.16, $a_{\delta n^{\prime}} / a_{n} \rightarrow 0$ and $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right) \cdot$ Q.E.D.

As previously noted, Lublin's Theorem 6 is not applicable if $r_{n} \rightarrow r=1$, and his Theorem 7 , in which $r_{n} \rightarrow 1$, is vacuous. This is not the case with Theorem 4.17. In particular, if $Q_{n}=$ an ${ }^{p}$ where $a>0$ and $0<p<l$, it can be verified that $r_{n} \rightarrow 1$ and Theorem
4.17 is applicable. The same is true with $Q_{n}=a n /(\ln n)^{p}$ where $a>0$ and $p>0$. Moreover, the proof of Theorem 4.17 shows that the theorem itself is a special case of Theorem 4.16. Consequently, Theorem 4.16 is also applicable with $r_{n} \rightarrow 1$.

Theorem 4.18. If $\sum a_{n}$ is a complex series such that $\Sigma a_{a n}, a_{n}=\cdot N\left(Q_{n}-1\right)$, and $\Sigma a_{\delta n}$ both converge more rapidly to S than Σa_{n}, then $Q_{n} \rightarrow \infty$.

Proof: From Theorem 3.2, $\alpha_{n} \sim \delta_{n}$, ie., $\quad N\left(Q_{n}-1\right) \sim N Q_{n}$. Hence, $\quad\left(Q_{n}-1\right) / Q_{n}=1-1 / Q_{n} \rightarrow 1$, and thus $Q_{n} \rightarrow \infty$. Q.E.D.

Theorem 4.19. Suppose that Σa_{n} is a complex series such that $Q_{n} \rightarrow \infty$. Then $\Sigma a_{a n}, a_{n}=N\left(Q_{n}-1\right)$, converges more rapidly to S than Σa_{n} if and only if $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

Proof: Since $Q_{n} \rightarrow \infty, \delta_{n} / a_{n}=\left[\left[n / Q_{n}\right]\left[\left(Q_{n}-1\right) / n\right]\right.$ $=1-1 / Q_{n} \rightarrow 1$, i.e., $\delta_{n} \sim \alpha_{n}$. Thus, from Theorem 3.2, $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. Q.E.D.

Theorem 4.20. Suppose that Σa_{n} is a real series such that $-1<. r_{n} \leq \cdot r_{n+1}, Q_{n} \leq \cdot Q_{n+1}$, and $Q_{n} \rightarrow+\infty$. Suppose, in addition, that q is an integer and $a_{n}^{\prime}=a_{n} z^{n+q}$ for
every n. Then for each complex number z satisfying $0<|\mathrm{z}| \leq 1, \sum a_{\delta_{n}^{\prime}}^{\prime} \varepsilon \operatorname{MR}\left(\Sigma a_{n}^{\prime}\right)$ and $\sum a_{\alpha n}^{\prime} \varepsilon \operatorname{MR}\left(\Sigma a_{n}^{\prime}\right)$, where $\alpha_{n}=.\left(1-r_{n-1}^{\prime}\right) /\left(1-2 r_{n}^{\prime}+r_{n-1}^{\prime} r_{n}^{\prime}\right)$ or $\alpha_{n}=n /\left(Q_{n}^{\prime}-1\right)$.

Proof: From Theorem 4.17, $a_{\delta n} / a_{n}+0$ and $\Sigma a_{\delta n} \varepsilon M R\left(a_{n}\right)$. Let z be any complex number such that $0<|z| \leq 1$. From Theorem 4.7, $\Sigma a_{\delta}^{\prime} n_{n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}^{\prime}\right)$.

Suppose $\alpha_{n}=\left(1-r_{n-1}^{\prime}\right) /\left(1-2 r_{n}^{\prime}-r_{n-1}^{\prime} r_{n}^{\prime}\right)$. If $z=1$,
$a_{\delta}^{\prime} n^{\prime} a_{n}^{\prime}=, a_{\delta n} / a_{n} \rightarrow 0$. If $z \neq 1$, $a_{\delta n}^{\prime} / a_{n}^{\prime}$
$=\left(r_{n+1}^{\prime}-r_{n}^{\prime}\right) /\left(1-r_{n}^{\prime}\right)\left(1-r_{n+1}^{\prime}\right)=\left(z r_{n+1}-2 r_{n}\right) /\left(1-z r_{n}\right)\left(1-z r_{n+1}\right)$
$\rightarrow 0 /(1-z r)(1-z r)=0$, since $r_{n} \rightarrow r$ where $-1<r \leq 1$.
In either case, Theorem 3.5 implies $\sum a_{\alpha n}^{\prime} \varepsilon \operatorname{MR}\left(\sum a_{n}^{\prime}\right)$.
Suppose that $\alpha_{n}=n /\left(Q_{n}^{\prime}-1\right)$. Then $Q_{n}^{\prime}=n\left(1-r_{n}^{\prime}\right)$ $=n\left(1-z r_{n}\right) \rightarrow \infty$. From Theorem 4.19 and $\Sigma a_{\delta}^{\prime}{ }_{n} \varepsilon \mathbb{M}\left(\Sigma a_{n}^{\prime}\right)$, $\Sigma a_{\alpha}^{\prime}{ }^{\prime} \varepsilon \operatorname{MR}\left(\Sigma a_{n}^{\prime}\right)$. Q.E.D.

Lemma 4.21. If Σa_{n} is a complex series such that $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$, then $n\left(1-\left|r_{n}\right|\right) \rightarrow \operatorname{Re} Q, \quad \sum a_{n}$ converges absolutely, $n a_{n} \rightarrow 0$, and $\sum a_{a n}=s$ where $\alpha_{n}=n /(Q-1)$.

Proof: Let a, b be any numbers satisfying $1<a<\operatorname{Re} Q<b$. Geometrically, it can be seen that $|n-b| \leq \cdot\left|n-Q_{n}\right| \leq \cdot|n-a|$ so that $1-b / n \leq \cdot\left|1-Q_{n} / n\right|=\cdot\left|r_{n}\right| \leq \cdot 1-a / n$, and thus
$a \leq n\left(1-\left|r_{n}\right|\right) \leq b$ and $\left|\operatorname{Re} Q-n\left(1-\left|r_{n}\right|\right)\right| \leq \cdot|b-a|$. With $|b-a|>0$ taken arbitrarily small, we thus conclude that $n\left(l-\left|r_{n}\right|\right)+\operatorname{Re} Q$. Since $\left|r_{n}\right| \leq 1-a / n, \quad \sum a_{n}$ converges $a b-$ solutely. Since $\left|r_{n}\right| \leq 1$ and $\Sigma\left|a_{n}\right|$ converges, $n\left|a_{n}\right| \rightarrow 0$, ie., $n a_{n} \rightarrow 0$ (15, p. 124). Consequently, $S_{\alpha n}=. S_{n}-a_{n+1} a_{n+1}=S_{n}-a_{n+1}(n+1) /(Q-1) \rightarrow S, \quad$ ie., $\Sigma a_{\alpha n}=S . \quad$ QED.

Theorem 4.22. If Σa_{n} is a complex series such that $a_{n} \varepsilon \cdot\left\langle\alpha^{\prime}, \beta\right\rangle$ for some set $\left\langle\alpha^{\prime}, \beta\right\rangle$ and $Q_{n}{ }^{2} \rightarrow Q$ where $\operatorname{Re} Q>1$, then $T_{n} / n \rightarrow l(Q-1)$ and $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ where $\alpha_{n}=n /(Q-1)$.

Proof: From Lemma 4.21, $\sum a_{\alpha n}=S$. Also, $a_{\alpha n} / a_{n}$
$=1+r_{n+1} a_{n+1}-a_{n}=1+\left[1-Q_{n+1} /(n+1)\right][(n+1) /(Q-1)]-n /(Q-1)$
$=1+(n+1) /(Q-1)-Q_{n+1} /(Q-1)-n /(Q-1)=1+1 /(Q-1)-Q_{n+1} /(Q-1)$
$=\left(Q-Q_{n+1}\right) /(Q-1) \rightarrow 0$. Thus, from Theorem 4.5, $\quad \Sigma a_{\alpha n}$ con-
verges more rapidly than $\sum a_{n}$. From Theorem $3.6, \quad N(Q-1)$
$=\alpha_{n} \sim T_{n} / r_{n}$, so that $T_{n} / n \sim r_{n} /(Q-1) \rightarrow I /(Q-I)$ and $T_{n} / n \rightarrow 1 /(Q-1)$. Q.E.D.

Szász (26, p. 274) has proven Theorem 4.22 in the following form for real series: If $u_{n}>0, a>l$, and
$u_{n} / u_{n-1}=1-a / n+\gamma_{n-1} / n$ where $\gamma_{n} \rightarrow 0$, then the transform $t_{n}=s_{n}+(n+1) u_{n+1} /(a-1)$ converges more rapidly than $s_{n}=u_{0}+u_{1}+u_{2}+\ldots+u_{n}$, and $\left|s-t_{n}\right|<\bar{\gamma}_{n+1}\left(s-s_{n}\right) /(a-1)$ where $\bar{Y}_{n}=\max _{k \geq n}\left|\gamma_{k}\right|$. A slight error is evident here, since strict equality cannot hold if $Y_{n}=$. 0 . We now generalize Theorem 4.22 by removing the condition $a_{n} \varepsilon .\langle\alpha ', \beta\rangle$.

Theorem 4.23. If $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$, then T_{n} / n $\rightarrow 1 /(Q-1)$, and $\sum a_{a_{n}} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ where $\alpha_{n}=n /(Q-1)$.

Proof: We have $r_{n}=1-Q_{n} / n=1-Q / n-\left(Q_{n}-Q\right) / n$. Setting $Y_{n-1}=Q_{n}-Q, r_{n}=1-Q / n-Y_{n-1} / n$ where $Y_{n} \rightarrow 0$. Hence, $n a_{n}=n a_{n-1}-Q a_{n-1}-\gamma_{n-1} a_{n-1}=(n-1) a_{n-1}+(1-Q) a_{n-1}-\gamma_{n-1} a_{n-1}$ and, replacing n by $n+1,(n+1) a_{n+1}=n a_{n}+(1-Q) a_{n}-\gamma_{n} a_{n}$. Consequently $n a_{n}-(n+1) a_{n+1}=(Q-1) a_{n}+Y_{n} a_{n}$. From Lemma 4.21, $n a_{n} \rightarrow 0$ and $\sum a_{n}$ converges. Thus na n

$$
=. \sum_{k=n}^{\infty}\left[k a_{k}-(k+1) a_{k+1}\right]=.(Q-1) \sum_{k=n}^{\infty} a_{k}+\sum_{k=n}^{\infty} Y_{k} a_{k} \text {. From }
$$

Lemma 4.21, $\Sigma\left|a_{n}\right|$ converges, so that $\ln a_{n}-(Q-1) \sum_{k=n}^{\infty} a_{k} \mid$

$$
\begin{aligned}
& =\left|\sum_{k=n}^{\infty} Y_{k} a_{k}\right| \leq \cdot \sum_{k=n}^{\infty}\left|\gamma_{k} a_{k}\right| \leq \cdot \bar{Y}_{n} \sum_{k=n}^{\infty}\left|a_{k}\right| \text { where } \bar{Y}_{n} \\
& =\max _{k \geq n}\left|\gamma_{k}\right| \rightarrow 0 . \text { Dividing by }\left|n a_{n-1}\right|,\left|r_{n}-(Q-1) T_{n} / n\right| \\
& \leq \cdot \bar{\gamma}_{n} \sum_{k=n}^{\infty}\left|a_{k}\right| /\left|n a_{n-1}\right| \cdot \text { Setting } a_{n}^{\prime}=\left|a_{n}\right|,
\end{aligned}
$$

$r_{n}^{\prime}=\cdot a_{n}^{\prime} / a_{n-1}^{\prime}=\cdot\left|r_{n}\right|, \quad Q_{n}^{\prime}=n\left(1-r_{n}^{\prime}\right)=n\left(1-\left|r_{n}\right|\right)$, and
$T_{n}^{\prime}=\sum_{k=n}^{\infty}\left|a_{k}\right| /\left|a_{n-1}\right|$, we have $Q_{n}^{\prime} \rightarrow Q^{\prime}=\operatorname{ReQ}$ from
Lemma 4.21, and $\sum_{k=n}^{\infty}\left|a_{k}\right| /\left|n a_{n-1}\right|=I_{n}^{\prime} / n \rightarrow 1 /\left(Q^{\prime}-1\right)$ from
Theorem 4.22. Thus, $\quad\left|r_{n}-(Q-1) T_{n} / n\right| \leq \cdot \bar{\gamma}_{n} T_{n}^{\prime} / n \rightarrow 0$, so that $(Q-1) I_{n} / n \rightarrow 1$ since $r_{n} \rightarrow 1$. Hence $T_{n} / n \rightarrow 1 /(Q-1)$, and $n /(Q-1) \sim I_{n} \sim T_{n} / r_{n}$, ie., $a_{n} \sim I_{n} / r_{n}$. From Theorem 3.6, $\sum a_{a_{n}} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$. Q.E.D.

Corollary 4.24. If $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>I$, then $T_{n+1}-T_{n} \rightarrow 1 /(Q-1)$.

Proof: Using Theorem 4.23, $T_{n+1}-T_{n}=. T_{n+1}-r_{n}\left(I+T_{n+1}\right)$ $=\left(1-r_{n}\right) T_{n+1}-r_{n}=Q_{n} T_{n+1} / n-r_{n} \rightarrow Q /(Q-1)-1=1 /(Q-1)$. Q.E.D.

Suppose that $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$. Recalling that $\alpha_{n}=l+I_{n+1}, n \geq 2$, yields the best transform for accelerating convergence, we are led quite naturally to the transform sequence 1.5 in the Introduction by Corollary 4.24 and the following estimate: $1+T_{n+1}=1 /\left(1-r_{n}\right)$ $+\left(I_{n+1}-T_{n}\right) /\left(1-r_{n}\right) \approx 1 /\left(1-r_{n}\right)+[1 /(Q-1)] /\left(1-r_{n}\right)$ $=Q /(Q-1)\left(1-r_{n}\right)$.

Theorem 4.25. Suppose that $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$. Then $\sum a_{\alpha_{n}} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ if and only if $a_{n} / n \rightarrow l /(Q-1)$.

Proof: From Theorem 4.23, $\quad \Sigma a_{\beta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ where β_{n} $=n /(Q-1)$. Thus, from Theorem 3.2, $\Sigma a_{\alpha_{n}} \varepsilon M R\left(\Sigma a_{n}\right)$ if and only if $\alpha_{n} \sim \beta_{n}$, i.e., $\alpha_{n} \sim n /(Q-1)$. But this is equivalent to $\alpha_{n} / n \rightarrow 1 /(Q-1)$. Q.E.D.

Corollary 4.26. Suppose that $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$, and that $\alpha_{n}=n /\left(Q_{n}-1\right)$. Then $\Sigma a_{\alpha_{n}} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

Proof: We have $\alpha_{n} / n=1 /\left(Q_{n}-1\right) \rightarrow l /(Q-1)$. Thus, from Theorem 4.25, $\quad \Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$. Q.E.D.

Theorem 4.27. Suppose that $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$, and $a_{n}=. b \delta_{n}$ where b is any complex number. Then:
(1) $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $b=Q(Q-1)$.
(2) $\sum a_{\alpha n}$ converges to S with the same rapidity as Σa_{n} if, and only if, $b \neq \mathbb{Q}(Q-1)$.

Proof: Part (1). From Theorem 4.25, $\quad \Sigma a_{a n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $b \delta_{n} / n \rightarrow 1 /(Q-1)$, ie., $b / Q_{n} \rightarrow 1 /(Q-1)$. But this is equivalent to $b / Q=1 /(Q-1)$, ie., $b=Q /(Q-1)$.

Part (2). Suppose that $b \neq Q /(Q-1)$. From Lemma 4.21, Σa_{n} converges. From Theorem 4.23, $n / T_{n} \rightarrow Q-1$. Thus, since $r_{n} \rightarrow 1,\left(S-S_{\alpha(n-1)}\right) /\left(S-S_{n-1}\right)$
$=.\left(S-S_{n-1}-a_{n} \alpha_{n}\right) /\left(S-S_{n-1}\right)=1-r_{n} \alpha_{n} / T_{n}=1-b r_{n} \delta_{n} / T_{n}$
$=1-\left(b n r_{n}\right) /\left(I_{n} Q_{n}\right) \rightarrow l-b(Q-1) / Q \neq 0$. Consequently $\Sigma a_{\alpha n}$ converges to S with the same rapidity as Σa_{n}.

The converse follow from (1). Q.E.D.

Corollary 4.28. If $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$, then $\sum a_{\delta n}$ converges to S with the same rapidity as Σa_{n}.

Proof: Setting $b=1$, we have $\delta_{n}=. b \delta_{n}$ and $b \neq Q /(Q-1)$. Now apply (2) of Theorem 4.27. Q.E.D.

Corollary 4.29. Suppose that Σa_{n} is a real series such that $-1<\cdot r_{n} \leq \cdot r_{n+1}$ and $Q_{n} \leq \cdot Q_{n+1}$. Then a n.a.s.c. that $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ is that $Q_{n} \rightarrow+\infty$.

Proof: The sufficiency is a restatement of Theorem 4.17. For the necessity, since Σa_{n} converges and $Q_{n} \leq Q_{n+1}$, we see that $Q_{n} \rightarrow Q$ where $1<Q \leq+\infty$. From Corollary 4.28, we cannot have $Q<+\infty$. Thus, $Q=+\infty$. Q.E.D.

Lubkin (17, p. 232) has proves the following theorem. Theorem 8. If Σa_{n} is a convergent real series, Q exists $\neq 1$, and $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$ as $n \rightarrow \infty$, then the series $U=\Sigma u_{n}$ converges more rapidly to S than Σa_{n}, where $u_{n}=\left(Q a_{\delta n}-a_{n}\right) /(Q-1)$ for $n \geq 0$.

In Theorem 8, the convergence of Σa_{n} and the existence of $Q \neq 1$ implies that $Q>1$. With this in mind, we presently show that the condition $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$ can be omitted from the hypothesis of Theorem 8 and, at the same time, generalize into the complex plane. Pflanz (18, p. 25) proved this fact for real series.

Before extending Theorem 8, we note that Shanks (23, p. 39) suggests the transform $e_{1}^{(s)}\left(A_{n}\right)$ $=\left(s B_{n}-A_{n}\right) /(s-1)$, where $s=\lim _{n \rightarrow \infty}\left(\Delta A_{n}\right) /\left(\Delta B_{n}\right)$ and $B_{n}=e_{1}\left(A_{n}\right)$, be applied for acceleration in the critical case $r_{n} \rightarrow$. In our notation, this transform becomes $e_{1}^{(s)}\left(S_{n}\right)=s_{\alpha n}=\left(s s_{\delta n}-s_{n}\right) /(s-1)=\left[s\left(s_{n}+a_{n+1} \delta_{n+1}\right)-s_{n}\right] /(s-1)$ $=\left[(s-1) s_{n}+s a_{n+1} \delta_{n+1}\right] /(s-1)=s_{n}+a_{n+1} s \delta_{n+1} /(s-1)$ $=s_{n}+a_{n+1} \alpha_{n+1}$, where $\alpha_{n}=s \delta_{n} /(s-1)$ and $s=\lim a_{n} / a_{\delta n}$. Shanks (23, p. 40) appears to be unaware of Lubkin's transform given in Theorem 8, or, at least, that
the two transforms are identical, if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$ and Q exists with $\operatorname{Re} Q>1$. In fact, we will see in Theorem 4.32 that if Q exists with $\operatorname{Re} Q>1$, then $e_{1}^{(s)}\left(S_{n}\right)$ converges more rapidly to S than S_{n} if and only if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$; consequently Lubkin's transform, given in Theorem 8, has a broader applicability if $\operatorname{Re} Q>1$, since the condition $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$ is irrelevant.

We now extend Lubkin's Theorem 8.
Theorem 4.30. If Σa_{n} is a series such that $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$, and $u_{n}=\left(Q a_{\delta n}-a_{n}\right) /(Q-1)$ for $n \geq 0$, then $\Sigma u_{n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

Proof: Set $\alpha_{n}=Q \delta_{n} /(Q-1)$ for $n \geq 1$. Then $U_{n}=. \sum_{k=0}^{n} u_{k}=\cdot \sum_{k=0}^{n}\left(Q a_{\delta k}-a_{k}\right) /(Q-1)=.\left(Q \sum_{k=0}^{n} a_{\delta k}-S_{n}\right) /(Q-1)$
$=.\left(Q S_{\delta n}-S_{n}\right) /(Q-1)=\cdot\left[Q\left(S_{n}+a_{n+1} \delta_{n+1}\right)-S_{n}\right] /(Q-1)$
$=\left[(Q-1) S_{n}+Q a_{n+1} \delta_{n+1}\right] /(Q-1)=. S_{n}+a_{n+1}\left[Q \delta_{n+1} /(Q-1)\right]$
$=S_{n}+a_{n+1} \alpha_{n+1}$. From (1) of Theorem 4.27, $\sum a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$,
so that $\left(S-U_{n}\right) /\left(S-S_{n}\right)=.\left(S-S_{\alpha n}\right) /\left(S-S_{n}\right) \rightarrow$ O. Q.E.D.

Lemma 4.31. Suppose that $Q_{n} \rightarrow Q$ for some complex number $Q \neq 0$. Then $a_{n} / a_{\delta n} \rightarrow Q$ if and only if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$.

Proof: Since $Q_{n} \neq 0$,

$$
\begin{equation*}
a_{\delta n} / a_{n}=\cdot(n+1)\left(Q_{n}-Q_{n+1}\right) / Q_{n} Q_{n+1}+1 / Q_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(n+1)\left(Q_{n}-Q_{n+1}\right)=. Q_{n} Q_{n+1} a_{\delta n} / a_{n}-Q_{n+1} . \tag{2}
\end{equation*}
$$

Thus, if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$, then from (i), $a_{\delta n} / a_{n} \rightarrow l / Q$. Hence, $a_{n} / a_{\delta n} \rightarrow Q$. Conversely, if $a_{n} / a_{\delta n} \rightarrow Q$, then $a_{\delta n} / a_{n} \rightarrow l / Q$. Thus from (2), $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$. Q.E.D.

Theorem 4.32. Suppose that $Q_{n} \rightarrow Q$ where $R e Q>l$, $s=\lim a_{n} / a_{\delta n} \neq 1$, and $a_{n}=s \delta_{n} /(s-1)$. Then $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$.

Proof: From Theorem 4.27, $\sum a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $s /(s-1)=Q / Q-1)$, ie., $Q=s=\lim a_{n} / a_{\delta n}$. But, from Lemma 4.31, $Q=\lim a_{n} / a_{\delta n}$ if and only if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$. Q.E.D.

It is very easy to construct a series Σa_{n} satisfying the hypothesis of Theorem 4.30, while $n\left(Q_{n}-Q_{n-1}\right) \nrightarrow 0$. In particular, we mention the following example.

Example 4.33. Let Q be any number such that $R e Q>1$. Set $\gamma_{2 n}=.0, \gamma_{2 n-1}=1 / \sqrt{n}$, and $Q_{n}=\cdot Q+\gamma_{n}$. Then
$n\left(Q_{n}-Q_{n-1}\right)=n\left[\left(Q+Y_{n}\right)-\left(Q+Y_{n-1}\right)\right]=n\left(Y_{n}-Y_{n-1}\right)$,
$2 n\left(Q_{2 n}-Q_{2 n-1}\right)=.2 n\left(Y_{2 n}-Y_{2 n-1}\right)=-2 \sqrt{n} \rightarrow-\infty$, and
$(2 n-1)\left(Q_{2 n-1}-Q_{2 n-2}\right)=(2 n-1)\left(Y_{2 n-1}-Y_{2 n-2}\right)$
$=(2 n-1) / \sqrt{n} \rightarrow+\infty$. Clearly, $Q \rightarrow Q$ so that the hypothesis of Theorem 4.30 is satisfied while $n\left(Q_{n}-Q_{n-1}\right) \nrightarrow 0$. Thus, Lubkin's transformation Σa_{n}, given in Theorem 4.30, converges rapidly to S than Σa_{n}. However, as we have just observed, $\mid n\left(Q_{n}-Q_{n-1} \mid \rightarrow+\infty\right.$; thus, according to Theorem 4.32, Daniel Shank's transform $e_{1}^{(s)}\left(S_{n}\right)$ $=. S_{n}+s \delta_{n+1} /(s-1)$ must fail to converge more rapidly to s than S_{n}. Here, $s=\lim a_{n} / a_{\delta n}=0$ since $\lim \left|a_{\delta n} / a_{n}\right|=\lim \left|(n+1)\left(Q_{n}-Q_{n+1}\right) / Q_{n} Q_{n+1}+l / Q_{n}\right|=+\infty$. Hence, we have in fact $e_{1}^{(s)}\left(S_{n}\right)=. e_{1}^{(0)}\left(S_{n}\right)=S_{n}$, and thus $e_{1}^{(s)}\left(S_{n}\right)$ clearly converges with the same rapidity as S_{n}. We could have also applied Theorem 4.27 to arrive at this conclusion. If we carry our analysis a little deeper in this example, a very surprising phenomenon arises. In particular, $u_{n} / a_{n}=.\left(Q a_{\delta n} / a_{n}-1\right) /(Q-1), a_{\delta n} / a_{n}=\cdot 1 / Q_{n}$ $-(n+1)\left(Q_{n+1}-Q_{n}\right) / Q_{n} Q_{n+1}, Q_{n} \rightarrow Q$, and, as shown above, $(n+1)\left|Q_{n+1}-Q_{n}\right| \rightarrow+\infty$. Consequently, $\left|u_{n} / a_{n}\right| \rightarrow+\infty$ even though $\sum u_{n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$.

Lubkin (17, p. 232-233) has proven the following theorem.

Theorem 9. If Σa_{n} is a convergent real series, \mathbb{Q} exists $\neq 1, n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$, and $n\left[(n+1)\left(Q_{n+1}-Q_{n}\right)\right.$
$\left.-n\left(Q_{n}-Q_{n-1}\right)\right] \rightarrow 0$, then the transform $\sum w_{n}$ converges more rapidly to S than Σa_{n}, where $W_{0}=0$ and $w_{n}=w_{0}+\cdots+w_{n}=S_{n}+a_{n+1}\left(1-r_{n}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)$ for $n>0$.

As previously noted, we must have $Q>1$. With this in mind, we will show in Theorem 4.35 that the condition $n\left[(n+1)\left(Q_{n+1}-Q_{n}\right)-n\left(Q_{n}-Q_{n-1}\right)\right] \rightarrow 0 \quad$ can be omitted from the hypothesis of Theorem 9 and, at the same time, generalize into the complex plane.

Lemma 4.34. Suppose that $Q_{n} \rightarrow Q$ for some complex number $Q \neq 0$ or 1 , and $a_{n}=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$. Then $\alpha_{n} / n \rightarrow 1 /(Q-1)$ if and only if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$.

Proof: From Lemma 4.31, $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$ if and only if $a_{\delta n} / a_{n} \rightarrow 1 / Q$. As shown in the proof of Theorem 3.4, $1-2 r_{n+1}+r_{n} r_{n+1}=\left(1-r_{n}\right)\left(1-r_{n+1}\right)\left(1-a_{\delta n} / a_{n}\right)$. Thus, $\alpha_{n+1} /(n+1)=[1 /(n+1)]\left[\left(1-r_{n}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right)\right]$
$=$. $1 /\left[Q_{n+1}\left(1-a_{\delta n} / a_{n}\right)\right]$, so that $a_{\delta n} / a_{n} \rightarrow 1 / Q$ if and only
if $\alpha_{n+1} /(n+1) \rightarrow l /(Q-1)$. Q.E.D.

Theorem 4.35. Suppose that $Q_{n} \rightarrow Q$ where $\operatorname{Re} Q>1$, and $a_{n}=.\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$. Then $\sum a_{a n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$ if and only if $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$.

Proof: From Theorem 4.25, $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $a_{n} / n \rightarrow l /(Q-1) ;$ and according to Lemma 4.34, this is equivalent to $n\left(Q_{n}-Q_{n-1}\right) \rightarrow 0$. Q.E.D.

CHAPTER V

NONALTERNATING SERIES

A real series Σa_{n} will be called nonalternating iff $r_{n}>0$ for every n, and N-nonalternating iff $r_{n}>0$ for $n \geq N$, where N is some integer.

Shortly, it will be shown that E. E. Kummer's criterion for the convergence of a nonalternating series is not only sufficient, but also necessary. We now prove a slight generalization of this fact.

Theorem 5.1. Let L be any real number and c be any positive number. Then a n.a.s.c. that an N-nonalternating series Σa_{n} converge is that there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\alpha_{n} \beta_{n} \rightarrow L$,
and
(2) $\quad \beta_{n} \geq c+r_{n+1} \beta_{n+1}, n \geq N$.

Moreover, if (1) and (2) hold, then for $n \geq N$,
(a) $0<r_{n}<T_{n} \leq r_{n} \beta_{n} / c-L / c a_{n-1}$.

And in general, for $\mathrm{n} \geq \mathrm{N}$ and $\mathrm{k} \geq \mathrm{l}$,
(b) $T_{n, k-2}<T_{n} \leq T_{n, k-2}+\left(r_{n} \cdots r_{n+k-1}\right) \beta_{n+k-1} / c$

- L/c a_{n-1}.

Proof: For the necessity, define $\beta_{n}=c+c T_{n+1}+L / a_{n}$ for $n \geq N$. Consequently, $a_{n} \beta_{n}=. c a_{n}+c a_{n} T_{n+1}+L=. c a_{n}$ $+c\left(S-S_{n}\right)+L \rightarrow L$ as $n \rightarrow \infty$. For $n \geq N, c+r_{n+1} \beta_{n+1}$
$=c+r_{n+1}\left(c+c T_{n+2}+L / a_{n+1}\right)=c+c r_{n+1}\left(1+T_{n+2}\right)+L / a_{n}$
$=c+T_{n+1}+L / a_{n}=\beta_{n}$, so that (2) hold with equality.
For the sufficiency, assume that (1) and (2) hold.
Let n be any integer $\geq N$, and define $P_{k}=T_{n, k-2}$
$+\left(r_{n} \cdots r_{n+k-1}\right) \beta_{n+k-1} / c$ for $k \geq 1$. From (2), $P_{k+1}-P_{k}$ $=\left(r_{n} \cdots r_{n+k-1}\right)\left(l+r_{n+k} \beta_{n+k} / c-\beta_{n+k-1} / c\right) \leq 0$ for $k \geq 1$.

Also, $P_{k} \geq a_{n+k-1} \beta_{n+k-1} / c a_{n-1} \rightarrow L / c a_{n-1}$ as $k \rightarrow \infty$. Thus $\left\{P_{k}\right\}$ is a monotone bounded sequence, so that $P_{k} \rightarrow P$ as $k \rightarrow \infty$, for some number P. Consequently, $I_{n, k-2}$
$=. P_{k}-a_{n+k-1} \beta_{n+k-1} / c a_{n-1} \rightarrow P-L / c a_{n-1}$ as $k \rightarrow \infty$. Hence
$T_{n}=P-\left(L / c a_{n-1}\right) \leq P_{k}-\left(L / c a_{n-1}\right)$ for $k \geq 1$. Obviously,
$T_{n, k-2}<T_{n}$ for $k \geq 1$. Thus (b) holds, and (a) follows from (b). Q.E.D.

Condition (1) of Theorem 5.1 can be somewhat weakened, as is now proven.

Corollary 5.2. Let c be any positive number. Then a n.a.s.c. that an N-nonalternating series Σa_{n} converge is that there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{n} \beta_{n}\right\}$ is bounded, and
(2) $\beta_{n} \geq c+r_{n+1} \beta_{n+1}, n \geq N$.

Moreover, if (1) and (2) hold, then $\left\{a_{n} \beta_{n}\right\}$ converges.

Proof: The necessity follows from Theorem 5.1. For the sufficiency, we may assume that $a_{n}>0$ for $n \geq N-1$. From (2), $\quad a_{n} \beta_{n} \geq c a_{n}+a_{n+1} \beta_{n+1}>a_{n+1} \beta_{n+1}$ for $n \geq N$. Thus $\left\{a_{n} \beta_{n}\right\}$ converges because of (1). Now apply Theorem 5.l. Q.E.D.

Corollary 5.3. Let c be any positive number. Then a n.a.s.c. that a series $\sum a_{n}$ of positive terms converge is that there exist a sequence $\left\{\beta_{n}\right\}$ such that, (1) some subsequence of $\left\{a_{n} \beta_{n}\right\}$ is bounded below, and
(2) $\beta_{n} \geq \cdot c+r_{n+1} \beta_{n+1}$.

Moreover, if (1) and (2) hold, then $\left\{a_{n} \beta_{n}\right\}$ converges.

Proof: The necessity follows from Theorem 5.1. For the sufficiency, from (2) we have $a_{n} \beta_{n} \geq$. ca ${ }_{n}$ $+a_{n+1} \beta_{n+1} \geq \cdot a_{n+1} \beta_{n+1}$. Thus $\left\{a_{n} \beta_{n}\right\}$ converges because of (1). From Theorem 5.1, Σa_{n} converges. Q.E.D.

Corollary 5.4. Let L be any real number. Then a n.a.s.c. that an N-nonalternating $\sum a_{n}$ converge is that there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $a_{n} \beta_{n} \rightarrow L$,
and
(2) $\beta_{n} \geq 1+r_{n+1} \beta_{n+1}, n \geq N$.

Moreover, if (1) and (2) hold, then for $n \geq N$,
(a) $0<r_{n}<I_{n} \leq r_{n} \beta_{n}-\left(L / a_{n-1}\right)$.

And in general, for $n \geq N$ and $k \geq 1$,
(b) $T_{n, k-2}<I_{n} \leq T_{n, k-2}+\left(r_{n} \cdots r_{n+k-1}\right) \beta_{n+k-1}-\left(L / a_{n-1}\right)$.

Proof: Choose $c=1$ in Theorem 5.1. Q.E.D.
Let Σa_{n} be any divergent nonalternating series such that $a_{n} \rightarrow 0$. Let β, be any real number, and define $\left\{\beta_{n}\right\}$ recursively by $\beta_{n}=1+r_{n+1} \beta_{n+1}$. Then $a_{n} \beta_{n}-a_{n+1} \beta_{n+1}$ $=a_{n} \rightarrow 0$, and $\beta_{n} \geq 1+r_{n+1} \beta_{n+1}$ for $n \geq 1$. Thus, we cannot replace (1) of Corollary 5.4 by the condition that $a_{n} \beta_{n}-a_{n+1} \beta_{n+1} \rightarrow 0$.

Theorem 5.5. (Kummer's criterion) Let c be any positive number. Then a n.a.s.c. that an N-nonalternating series $\sum a_{n}$ converge is that there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\beta_{n} \geq 0, n \geq N$,
and
(2) $\beta_{n} \geq c+r_{n+1} \beta_{n+1}, n \geq N$.

Moreover, if (1) and (2) hold, then for $n \geq N$, (a) $0<r_{n}<T_{n} \leq r_{n} \beta_{n} / c-\left(\lim _{k \rightarrow \infty} a_{k} \beta_{k}\right) / c a_{n-1} \leq r_{n} \beta_{n} / c$, and
(b) $\left\{a_{n} \beta_{n}\right\}$ converges.

Proof: We may assume throughout that $a_{n-1}>0$ for $n \geq N$. For the necessity, choose $L \geq 0$ in Theorem 5.l. From (a) of Theorem 5.1, $\beta_{n} \geq 0$ for $n \geq N$.

For the sufficiency, according to Theorem 5.1 we need only show that $a_{n} \beta_{n} \rightarrow L$ for some number $L \geq 0$. From (1) and (2) above, $a_{n} \beta_{n} \geq c a_{n}+a_{n+1} \beta_{n+1}>a_{n+1} \beta_{n+1} \geq 0$ for $\mathrm{n} \geq \mathrm{N}$, which implies the existence of the required number L. Q.E.D.

The fact that Kummer's criterion, Theorem 5.5, is also necessary was first published by Shanks (24, p. 338341). In (24, p. 338-341), Shanks employs Theorem 5.5 in an equivalent form to serve as a general framework for short proofs of the sufficient conditions of many of the known tests for convergence or divergence of series with positive terms. On the other hand, we are interested in Theorem 5.5
also as furnishing bounds for T_{n} and $S-S_{n-1}$, and consequently exhibiting the convergence of $\left\{T_{n}\right\}$ under centain conditions.

It should be noted that Theorem 5.1, as a criterion for convergence of Σa_{n}, is more general than Theorem 5.5 in the sense that for every convergent non-alternating sevies $\sum a_{n}$ there is a sequence $\left\{\beta_{n}\right\}$ satisfying (1) and (2) of Theorem 5.1 with $N=$ l, while condition (1) of Theorem 5.5 fails to hold for the same sequence $\left\{\beta_{n}\right\}$. In particular, let Σa_{n} be a convergent non-alternating series and $\left\{\beta_{n}\right\}$ be any sequence satisfying (1) and (2) of Theorem 5.1 with $N=1$. Let L be any number such that $\left(L-L^{\prime}\right) / a_{n}<0$ for $n \geq 0$, and define $\beta_{n}^{\prime}=\beta_{n}-L / a_{n}$. Then $a_{n} \beta_{n}^{\prime}=a_{n} \beta_{n}-L^{\prime} \rightarrow L-L^{\prime}$, so that $\beta_{n}^{\prime} \rightarrow-\infty$ and $\beta_{n}<$. O. Moreover, for $n \geq 1, \beta_{n}^{\prime}=\beta_{n}-L 1 / a_{n} \geq c$ $+r_{n+1} \beta_{n+1}-L \prime / a_{n}=c+r_{n+1}\left(\beta_{n+1}-L \prime / a_{n+1}\right)=c+r_{n+1} \beta_{n+1}$. Thus, (1) $a_{n} \beta_{n}^{\prime} \rightarrow L-L$ and (2) $\beta_{n}^{\prime} \geq c+r_{n+1} \beta_{n+1}^{\prime}$, while the condition $\beta_{n}^{\prime} \geq 0$ fails for large n.

Theorem 5.6. A n.a.s.c. that an N-nonalternating series $\sum a_{n}$ converge is that there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\beta_{n} \geq 0, n \geq N$,
and
(2) $\beta_{n} \geq 1+r_{n+1} \beta_{n+1}, n \geq N$.

Moreover, if (1) and (2) hold, then for $n \geq N$, (a) $0<r_{n}<T_{n} \leq r_{n} \beta_{n}-\left(\lim _{k \rightarrow \infty} a_{k} \beta_{k}\right) / a_{n-1} \leq r_{n} \beta_{n}$.

Proof: Choose $c=1$ in Theorem 5.5. Q.E.D.
Example 5.7. Let $\sum a_{n}=1+1 / 2^{2}+1 / 3^{2}+\cdots$. Then, $a_{n}=1 /(n+1)^{2}$ for $n \geq 0$, and $r_{n}=[n /(n+1)]^{2}$ for
$n \geq 1$. Defining $\beta_{n}=(n+2)^{2}$ for $n \geq 1, \beta_{n} \geq 1$
$+r_{n+1} \beta_{n+1}$ for $n \geq 1$, and, for $k \geq 1$, $a_{k} \beta_{k}$
$=[(k+2) /(k+1)]^{2}+1$. From Theorem 5.6, Σa_{n} converges.
Some of the known tests for convergence are now proven by exhibiting a sequence $\left\{\beta_{n}\right\}$ satisfying the conditions of the preceeding theorem.

Theorem 5.8. (Comparison test) If $0<a_{n}^{\prime} \leq a_{n}$ and $\sum a_{n}$ converges, then Σa_{n}^{\prime} converges.

Proof: From Theorem 5.6, there is a sequence $\left\{\beta_{n}\right\}$ such that $\beta_{n} \geq 0$ and $\beta_{n} \geq$. $1+r_{n+1} \beta_{n+1}$. Accordingly, $a_{n} \beta_{n} / a_{n}^{\prime} \geq \cdot a_{n} / a_{n}^{\prime}+\left(a_{n+1}^{\prime} / a_{n}^{\prime}\right)\left(a_{n+1} \beta_{n+1} / a_{n+1}^{\prime}\right) \geq \cdot 1$ $+r_{n+1}^{\prime}\left(a_{n+1} \beta_{n+1} / a_{n+1}^{\prime}\right) \geq$. O. Now apply Theorem 5.6. Q.E.D.

Theorem 5.9. (Ratio comparison test) If $0<r_{n}^{\prime} \leq r_{n}$ and Σa_{n} converges, then Σa_{n}^{\prime} converges.

Proof: From Theorem 5.6, there is a sequence $\left\{\beta_{n}\right\}$ such that $\beta_{n} \geq 0$ and $\beta_{n} \geq 1+r_{n+1} \beta_{n+1}$. Accordingly,
$\beta_{n} \geq \cdot 1+r_{n+1} \beta_{n+1} \geq \cdot 1+r_{n+1}^{\prime} \beta_{n+1}$, since $0<. r_{n}^{\prime} \leq r_{n}$ and $\beta_{n} \geq$. O. Now apply Theorem 5.6. Q.E.D.

Theorem 5.10. (Root test) If $a_{n}>.0$ and \lim sup $\sqrt[n]{a_{n}}<1$, then Σa_{n} converges.

Proof: Let t be any number satisfying him sup $\sqrt[n]{a_{n}}<t<1$.
Then $a_{n} \leq t^{n}$. Defining $\beta_{n}=t^{n} / a_{n}(1-t), \beta_{n}-r_{n+1} \beta_{n+1}$
$=. t^{n} / a_{n}(1-t)-r_{n+1} t^{n+1} / a_{n+1}(1-t)$
$=t^{n} / a_{n}(1-t)-t^{n+1} / a_{n}(1-t)=\left[t^{n} / a_{n}(1-t)\right](1-t)=t^{n} / a_{n} \geq \cdot 1$.
Thus $\beta_{n} \geq .0$ and $\beta_{n} \geq 1+r_{n+1} \beta_{n+1}$. Now apply Theorem 5.6. Q.E.D.

Theorem 5.11. (Ratio test) If $0<. r_{n}$ and lime sup $r_{n}<1$, then $\sum a_{n}$ converges.

Proof: Let t be any number for which \lim sup $r_{n}<t<1$.
Defining $\beta_{n}=. l /(1-t)$, we have $\beta_{n}=.1+t \beta_{n}$
2. $1+r_{n+1} \beta_{n+1}$ since $0<. r_{n}<. t$. Now apply

Theorem 5.6. Q.E.D.

Theorem 5.12. (Raabe's test) If $0<. r_{n} \leq 1-a / n$ where $l<a$, then \sum_{n} converges.

Proof: Set $\beta_{n}=. n /(a-1)$. Then $\beta_{n}>.0$ and
$1+r_{n+1} \beta_{n+1} \leq 1+[1-a /(n+1)] \beta_{n+1}=.1+(n+1) /(a-1)$
$-a /(a-1)=. n /(a-1)=. \beta_{n}$, so that $\beta_{n} \geq .1+r_{n+1} \beta_{n+1}$.
Now apply Theorem 5.6. Q.E.D.

Theorem 5.13. Let L be any real number and c be any positive number. Then a necessary condition that an N-nonalternating series Σa_{n} converge is that there exist a sequence $\left\{\alpha_{n}\right\}$ such that,
(1) $a_{n} \alpha_{n} \rightarrow L$,
and
(2) $a_{n} \leq c+r_{n+1} \alpha_{n+1}, n \geq N$.

Moreover, if (1) and (2) hold, then for $n \geq N$, (a) $r_{n} a_{n} / c-L / c a_{n-1} \leq T_{n}$,
and in general, for $\mathrm{n} \geq \mathrm{N}$ and $\mathrm{k} \geq \mathrm{l}$, (b) $I_{n, k-1}+\left(r_{n} \cdots r_{n+k-1}\right) \alpha_{n+k-1} / c-L / c a_{n-1} \leq I_{n}$.

Proof: For the necessity, we may use the proof of the necessity of Theorem 5.1, replacing " β " by " α " throughout.

Next, assume that (I) and (2) hold. Let n be any integer $\geq \mathrm{N}$, and define $\mathrm{P}_{\mathrm{k}}=\mathrm{I}_{\mathrm{n}, \mathrm{k}-2}$
$+\left(r_{n} \cdots r_{n+k-1}\right) \alpha_{n+k-1} / c$ for $k \geq 1$. From (2), $P_{k+1}-P_{k}$
$=\left(r_{n} \cdots r_{n+k-1}\right)\left(I+r_{n+1} \alpha_{n+k} / c-\alpha_{n+k-1} / c\right) \geq 0$ for $k \geq 1$.
Also, $\quad P_{k}=T_{n, k-2}+a_{n+k-1} a_{n+k-1} / a_{n-1} c \rightarrow T_{n}+L / c a_{n-1}$.
Thus, $p_{k}-I / c a_{n-1} \leq T_{n}$ for $k \geq l$, i.e., (b) holds.
With $k=1$, (b) reduces to (a). Q.E.D.

Theorem 5.14. Let L be any real number. Then a necessary condition that an N-nonalternating series Σa_{n} converge is that there exist a sequence $\left\{\alpha_{n}\right\}$ such that,
(1) $a_{n} \alpha_{n} \rightarrow L$,
and
(2) $a_{n} \leq 1+r_{n+1} a_{n+1}, n \geq N$.

Moreover, if (1) and (2) hold, then for $n \geq N$,
(a) $r_{n} \alpha_{n}-\left(L / a_{n-1}\right) \leq T_{n}$,
and in general, for $n \geq N$ and $k \geq 1$,
(b) $T_{n, k-2}+\left(r_{n} \cdots r_{n+k-1}\right) a_{n+k-1}-\left(L / a_{n-1}\right) \leq I_{n}$.

Proof: Choose $c=1$ in Theorem 5.13. Q.E.D.

Theorem 5.15. Let c be any positive number. Then a n.a.s.c. that an N-nonalternating series Σa_{n} diverge is that there exist a sequence $\left\{\alpha_{n}\right\}$ such that,
(1) $\left|a_{n} \alpha_{n}\right| \rightarrow \infty$,
and
(2) $a_{n} \leq c+r_{n+1} a_{n+1} \leq c+\alpha_{n}, n \geq N$.

Proof: We may assume that $a_{n-1}>0$ for $n \geq N$.
For the necessity, let a_{N} be any real number, and define $\left\{\alpha_{n}\right\}$ recursively by the equation $a_{n}=c+r_{n+1} \alpha_{n+1}$. Accordingly, $\alpha_{n}=c+r_{n+1} \alpha_{n+1}<c+\alpha_{n}$ for $n \geq N$, ie.,
(2) holds. For $k \geq 1$, $a_{N+k}{ }_{N+k}=a_{N}{ }^{\alpha}{ }_{N}$
$-c\left(a_{N}+a_{N+1}+\cdots+a_{N+k-1}\right) \rightarrow-\infty$ as $k \rightarrow \infty$, i.e., (1) holds.
For the sufficiency, from (2) we have $a_{n+1} a_{n+1}$
$\leq a_{n} a_{n}$ for $n \geq N$. Thus, (l) implies that $a_{n} a_{n} \rightarrow-\infty$.
From (2), $\quad\left(a_{N} \alpha_{N}-a_{N+n} a_{N+n}\right) / c \leq \cdot a_{N}+a_{N+1}+\cdots+a_{N+n-1}++\infty$ as $k \rightarrow \infty$, since $-a_{n} \alpha_{n} \rightarrow+\infty$ as $n \rightarrow \infty$. Thus Σa_{n} diverges. Q.E.D.

Corollary 5.16. Let c be any positive number. Then a n.a.s.c. that a series Σa_{n} of positive terms diverge is that there exist a sequence $\left\{\alpha_{n}\right\}$ such that, (1) some subsequence of $\left\{a_{n} \alpha_{n}\right\}$ is unbounded, and
(2) $\alpha_{n} \leq c+r_{n+1} \alpha_{n+1} \leq c+\alpha_{n}, n \geq 1$.

Moreover, if (1) and (2) hold, then $a_{n} \alpha_{n} \rightarrow-\infty$.

Proof: The necessity follows from Theorem 5.15.
For the sufficiency, from (2) we have $a_{n+1} \alpha_{n+1} \leq a_{n} \alpha_{n}$ for $n \geq 1$. Thus from (1), $a_{n} \alpha_{n} \rightarrow-\infty$. Hence $\left|a_{n} \alpha_{n}\right| \rightarrow+\infty$ and, according to Theorem 5.15, Σa_{n} diverges. Q.E.D.

$$
\text { Clearly, (1) of Corollary } 5.16 \text { may be replaced by }
$$ the condition $a_{n} \alpha_{n} \rightarrow-\infty$.

Theorem 5.17. If $\Sigma_{a_{n}}$ is an N-nonalternating series such that $0 \leq p \leq r_{n} \leq q<1$ for $n \geq N$, where p and q are constants, then
(1) $p /(1-p) \leq r_{n} /(1-p) \leq I_{n} \leq r_{n} /(1-q) \leq q /(1-q)$, for $n \geq N$.

Proof: Set $\alpha_{n}=1 /(1-p)$ and $\beta_{n}=l /(1-q)$ for $n \geq N$. For $n \geq N, \alpha_{n}=1+p \alpha_{n+1} \leq I+r_{n+1} \alpha_{n+1}$ and $\beta_{n}=1+q \beta_{n+1}$ $\geq 1+r_{n+1} \beta_{\mathrm{n}+1}$. From Theorem 5.6, $\Sigma \mathrm{a}_{\mathrm{n}}$ converges, so that $\lim a_{n} \alpha_{n}=\lim a_{n} \beta_{n}=0$. From (a) of Theorems 5.6 and 5.14, we obtain (l). Q.E.D.

Theorem 5.18. If Σa_{n} is an N-nonalternating series and $0 \leq r<1$, then $T_{n} \rightarrow r /(1-r)$.

Proof: We implicitly restrict n to large values throughout. There is a monotone increasing series $\left\{p_{n}\right\}$ such that $0 \leq p_{n} \leq r_{n}$ and $p_{n} \rightarrow r$. Define a monotone increasing sequence $\left\{\alpha_{n}\right\}$ by the equation $\alpha_{n}=1 /\left(1-p_{n+1}\right)$. Accordingly, $\alpha_{n}=1+p_{n+1} \alpha_{n} \leq l+r_{n+1} \alpha_{n+1}$, ie., $\alpha_{n} \leq l+r_{n+1} \alpha_{n+1}$. Similarly, there is a monotone decreaseing sequence $\left\{q_{n}\right\}$ such that $r_{n} \leq q_{n}<l$ and $q_{n} \rightarrow r$. Define a monotone decreasing sequence $\left\{\beta_{n}\right\}$ by the equation $\beta_{n}=1 /\left(1-q_{n+1}\right)$. We then have $\beta_{n}=1+q_{n+1} \beta_{n}$ $\geq l+r_{n+1} \beta_{n+1}$, ie., $\beta_{n} \geq l+r_{n+1} \beta_{n+1} \geq 0$. From Theorems 5.6 and 5.14, $\quad r_{n} \alpha_{n} \leq I_{n} \leq r_{n} \beta_{n}$. Also $\lim r_{n} \alpha_{n}=\lim r_{n} \beta_{n}$ $=r /(l-r)$, so that $I_{n} \rightarrow r /(l-r)$. Q.E.D.

We now turn to the critical case $r_{n} \rightarrow l$. Suppose that Σa_{n} is a positive term series and $Q_{n} \rightarrow Q>1$. According to Theorem 4.25, $\sum a_{a n} \varepsilon M R\left(\Sigma a_{n}\right)$ if and only if $a_{n} \sim n /(Q-1)$. As we have seen, Szász suggests $\alpha_{n}=n /(Q-1)$ for $n \geq 1$. Now for a fixed number k, $(n+k) /(Q-1)$ $\sim n /(Q-1)$, so that, with $\beta_{n}=(n+k) /(Q-1)$ for $n \geq 1$, $\Sigma a_{n} \varepsilon M R\left(\sum a_{n}\right)$. Thus, why should we restrict ourselves to $k=0$? We shall see that we should not make this restriction.

Suppose that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ have been determined such that
(1) $a_{n} \alpha_{n} \rightarrow 0$ and $0<\alpha_{n} \leq l+r_{n+1} \alpha_{n+1}, n \geq N$, and
(2) $a_{n} \beta_{n} \rightarrow 0$ and $0<l+r_{n+1} \beta_{n+1} \leq \beta_{n}, n \geq N$.

From Theorems 5.4 and 5.14,
(3) $\alpha_{n} \leq T_{n} / r_{n}=1+T_{n+1} \leq \beta_{n}$ for $n \geq N$.

From (3), it is clear that we wish to maximize the a_{n} and minimize the β_{n}, in order to obtain sharp bounds for $1+I_{n+1}$. Also, we desire $\alpha_{n} \sim \beta_{n} \sim n /(Q-1)$. Multiplying (3) by a_{n}, we obtain
(4) $a_{n} \alpha_{n} \leq s-S_{n-1} \leq a_{n} \beta_{n}$ for $n \geq N$.

Thus,
(5) $\quad S_{\alpha(n-1)}=S_{n-1}+a_{n} \alpha_{n} \leq S \leq S_{\beta(n-1)}+a_{n} \beta_{n}, n \geq N$. From (1) and (2), for $n \geq N, a_{\alpha n} / a_{n}=1+r_{n+1} a_{n+1}-a_{n} \geq 0$ and $a_{\beta n} / a_{n}=1+r_{n+1} \beta_{n+1}-\beta_{n} \leq 0$. Hence for $n \geq N$, $a_{\alpha n} \geq 0, a_{\beta n} \leq 0, S_{\alpha(n-1)} \leq S_{\alpha n}$, and $S_{\beta n} \leq S_{\beta(n-1)} \cdot$ In order to obtain fairly sharp bounds by (4), we will give only one example to show the general procedure.

Example 5.19 .

$$
\sum_{0}^{\infty} a_{n}=\sum_{0}^{\infty} 1 /(4 n+1)(4 n+3)=1 /(1 \cdot 3)+1 /(5 \cdot 7)+\cdots=\pi / 8
$$

This series is considered by Szász (26,p.275). He takes
$k=0$ in $a_{n}^{\prime}=(n+k) /(Q-1)$, and sets $t_{n}=S_{n}+a_{n+1} \alpha_{n+1}^{\prime}$
for $n \geq 0$. Thus, $t_{n}=S_{\alpha}{ }^{\prime} n$ for $n \geq 0$. The numbers t_{n},
$2 \leq n \leq 7$, in $(26, p .275)$ are in error. They should read:

$$
\begin{array}{lll}
t_{2}=.38739, & t_{3}=.38952, & t_{4}=.39056 \\
t_{5}=.39116, & t_{6}=.39153, & t_{7}=.39183 .
\end{array}
$$

Now . $39269908<\pi / 8<.39269909$. Setting $\pi / 8=.39270$, $\pi / 8-t_{7}=.00087$.

We have $a_{n}=1 /(4 n+1)(4 n+3)$ for $n \geq 0$, and for
$n \geq 1, r_{n}=a_{n} / a_{n-1}=(4 n-3)(4 n-1) /(4 n+1)(4 n+3)$
$=1-32 n /(4 n+1)(4 n+3)=1-Q_{n} / n$. Thus
$Q_{n}=32 n^{2} /(4 n+1)(4 n+3) \rightarrow Q=2$ and $a_{n}^{\prime}=(n+k) /(Q-1)=n+k$.
We have, for $n \geq 1$,
(6) $a_{a}{ }_{n} / a_{n}=1+r_{n+1} a_{n+1}^{\prime}-a_{n}^{\prime}=[32 n(1-k)-32 k+38] /\left(16 n^{2}+48 n+35\right)$.

From (6), it is obvious $k=1$ yields the best sequence $\left\{\alpha_{n}^{\prime}\right\}$ for the acceleration of $\sum a_{n}$. Thus, setting $\alpha_{n}=n+1$ for $n \geq 1$,
(7) $a_{\alpha_{0}}=a_{0}+a_{1} a_{1}=1 / 3+2 /(5 \cdot 7)=1 / 3+6 /(1 \cdot 3 \cdot 5 \cdot 7)$
and from (6), for $n \geq 1$,
(8) $a_{\alpha n}=[6 /(4 n+5)(4 n+7)] a_{n}=6 /(4 n+1)(4 n+3)(4 n+5)(4 n+7)$.

Thus,
(9) $\sum_{0}^{\infty} a_{\alpha n}=[1 / 3+6 /(1 \cdot 3 \cdot 5 \cdot 7)]+\sum_{0}^{\infty} 6 /(4 n+1)(4 n+3)(4 n+5)$ $\times(4 n+7)$
or
(10) $\sum_{0}^{\infty} a_{\alpha n}=1 / 3+\sum_{0}^{\infty} 6 /(4 n+1)(4 n+3)(4 n+5)(4 n+7)=1 / 3+\sum_{0}^{\infty} b_{n}$.

In (10) we have absorbed part of $a_{\alpha 0}$ into the summation,
i.e., $\quad a_{\alpha 0}=1 / 3+b_{0}$ and $a_{\alpha n}=b_{n}$ for $n \geq 1$. No use
will be made of (10), although it is suggestive for application of the above procedure to Σb_{n}.

At this point we have the following alternatives:
(11) $S_{\alpha n}=S_{n}+a_{n+1} \alpha_{n+1}=\sum_{0}^{n} 1 /(4 i+1)(4 i+3)+(n+2) /(4 n+5)(4 n+7)$
or
(12) $\quad S_{\alpha n}=\sum_{0}^{n} a_{\alpha i}=a_{\alpha_{0}}+\sum_{1}^{n} a_{\alpha i}=[1 / 3+2 / 35]+\sum_{1}^{n} 6 /(4 i+1)(4 i+3)(4 i+5)$

$$
\times(4 i+7)
$$

Clearly, (1) is preferable for actual numerical calculation. Leaving $\sum a_{\alpha n}$ in the form (11), we have a so-called "modified series" of Bradshaw (9,p.486-492). In applying (11) as an approximation to S, we have no information, assuming no previous calculations for $\pi / 8$ as known, as to the error involved, i.e., $S-S_{\alpha n}$. We now turn to the resolution of this problem.

Comparing (1) with (6), we require
(1.3) $l^{l+r_{n+1}} \alpha_{n+1}^{\prime}-\alpha_{n}^{\prime} \geq 0$ for $n \geq N$.

From (6), (13) is seen to be equivalent to
(14) $k \leq 1+3 /(16 n+16), \quad n \geq N$.

From (14), we must have $k \leq 1$, since $1+3 /(16 n+16) \rightarrow 1$ as $n \rightarrow \infty$. Thus, we are led to set $k=1$ and $\alpha_{n}^{\prime}=n+k$ $=n+1=\alpha_{n}, \alpha_{n}$ as defined for (9) and (11). We now see from (4) that
(15) $\quad a_{n} \alpha_{n} \leq S-S_{n-1}$ for $n \geq 1, \quad a_{n}=n+1$ for $n \geq 1$. Comparing (2) with (6), with $\beta_{n}=\alpha_{n}^{\prime}$, we require
(16) $1+r_{n+1} \beta_{n+1}-\beta_{n} \leq 0$ for $n \geq N$.

From (6), (16) is seen to be equivalent to
(17) $k \geq 1+3 \%(16 n+16), \quad n \geq N$.

Recalling that $\beta_{n}=n+k$ is to be minimized and noting that $\{1+3 /(16 n+16)\}$ is monotone decreasing, we set $\mathrm{k}=1+3 /(16 \mathrm{~N}+16)$ as the optimal choice satisfying (17). From (4), we then have,
(18) $S-S_{n-1} \leq a_{n} \beta_{n}$ and $\beta_{n}=n+1+3 /(16 N+16), n \geq N$.

Setting $n=N$ in (18) and noting that (18) holds for $N \geq 1$, we have
(19) $S-S_{n-1} \leq a_{n} \beta_{n}$ and $\beta_{n}=n+1+3 /(16 n+16), n \geq 1$. From (15) and (19), we obtain the desired bounds for $S-S_{\alpha n}, i \cdot e .$,
(20) $0 \leq S-S_{\alpha(n-1)} \leq a_{n}\left(\beta_{n}-\alpha_{n}\right)=3 /(4 n+1)(4 n+3)(16 n+16)$, $n \geq 1$.

With $n=1$ in (20), $0 \leq S-S_{\alpha_{0}} \leq 3 /(5 \cdot 7 \cdot 32)<.0027$.
With $n=8$ in $(20), 0 \leq S-S_{\alpha 7} \leq 3 /(33 \cdot 35 \cdot 144)=1 / 55440$ $<.000019$. Using a^{-}iff $a^{-}<a$ and a^{+}iff $a<a^{+}$, we have $S_{7}^{-}=.3848938, S_{7}^{+}=.3848946,\left(a_{8} a_{8}\right)^{-}=.0077922$, and $\left(a_{8} \alpha_{8}\right)^{+}=.0078102$. Thus, $S_{7}^{-}+\left(a_{8} \alpha_{8}\right)^{-}=.3926860$ $<S<.3927050=S_{7}^{+}+\left(a_{8} \alpha_{8}\right)^{+}$. Letting S^{\prime} be the average of these two bounds for $S=\pi / 8$, we find $S^{\prime}=.3926955$
and we must have $\left|S-S^{\prime}\right|=|\pi / 8-.3926955|$
$\leq(.3927050-.3926860) / 2=.0000095$.

CHAPTER VI

CONVERGENCE AND DIVERGENCE OF REAL SERIES

Throughout this chapter, all series are assumed to be real. We now state and prove some of the theorems, corresponding to those of Chapter V.

Theorem 6.1. Let L be any real number and c be any positive number. Then a n.a.s.c. that a series Σa_{n} converge is that there exist a convergent series Σb_{n} and a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\left(a_{n}+b_{n}\right) \beta_{n} \rightarrow L$,
(2) $0<\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)$,
and
(3) $\quad \beta_{n} \geq \cdot c+\left[\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right] \beta_{n+1}$.

Proof: For the necessity, let Σc_{n} be any convergent nonalternating series, and define $b_{n}=c_{n}-a_{n}$ for $n \geq 0$. The series $\Sigma\left(a_{n}+b_{n}\right)=\Sigma c_{n}$ is a convergent nonalternating series, so that (2) holds. According to Theorem 5.1, there is a sequence $\left\{\beta_{n}\right\}$ which satisfies conditions (1) and (3) above. Clearly, Σb_{n} converges.

For the sufficiency, we see that $\sum\left(a_{n}+b_{n}\right)$ converges according to Theorem 5.1. Consequently, Σa_{n}
converges since $\sum b_{n}$ converges. Q.E.D.

Theorem 6.2. Let L be any real number and c be any positive number. Then a n.a.s.c. that a series Σa_{n} diverge is that there exist a divergent series Σb_{n} and a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\left(a_{n}+b_{n}\right) \beta_{n} \rightarrow L$,
(2) $0<\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)$,
and
(3) $\quad \beta_{n} \geq \cdot c+\left[\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right] \beta_{n+1}$.

Proof: For the necessity, let Σc_{n} be any convergent nonalternating series and define $b_{n}=c_{n}-a_{n}$ for $n \geq 0$. The series $\Sigma\left(a_{n}+b_{n}\right)=\Sigma c_{n}$ is a convergent nonalternating series so that (2) holds. From Theorem 5.1, there is a sequince $\left\{\beta_{n}\right\}$ such that (1) and (3) hold. Also, $\sum b_{n}$ must diverge.

For the sufficiency, $\sum a_{n}$ must diverge, since otherwise Σb_{n} would converge according to Theorem 6.l.

Theorem 6.3. Let c be any positive number. Then a n.a.s.c. that a series. Σa_{n} converge is that there exist a convergent series Σb_{n} and a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\quad \beta_{n} \geq 0$,
(2) $0<\cdot\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)$,
and
(3) $\quad \beta_{n} \geq \cdot c+\left[\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right] \beta_{n+1}$.

Proof: For the necessity, let Σc_{n} be any convergent nonalternating series, and define $b_{n}=c_{n}-a_{n}$ for $n \geq 0$. The series $\Sigma\left(a_{n}+b_{n}\right)=\Sigma c_{n}$ is a convergent nonalternating series so that (2) holds. According to Theorem 5.5, there is a sequence $\left\{\beta_{n}\right\}$ satisfying conditions (1) and (3) above. Also, Σb_{n} converges.

For the sufficiency, Theorem 5.5 implies that $\Sigma\left(a_{n}+b_{n}\right)$ converges. Thus, Σa_{n} converges since Σb_{n} converges. Q.E.D.

Theorem 6.4. Let c be any positive number. Then a n.a.s.c. that a series Σa_{n} diverge is that there exist a divergent series Σb_{n} and a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\beta_{n} \geq 0$,
(2) $0<\cdot\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)$,
and

$$
\begin{equation*}
\beta_{n} \geq \cdot c+\left[\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right] \beta_{n+1} . \tag{3}
\end{equation*}
$$

Proof: For the necessity, let Σc_{n} be convergent
nonalternating series and define $b_{n}=c_{n}-a_{n}$ for $n \geq 0$. The series $\Sigma\left(a_{n}+b_{n}\right)=\Sigma c_{n}$ is a convergent nonalternating series so that (2) holds. From Theorem 5.5, there is a sequence $\left\{\beta_{n}\right\}$ satisfying conditions (1) and (3). Moreover, $\sum b_{n}$ must diverge.

For the sufficiency, $\sum a_{n}$ must diverge since otherwise $\sum b_{n}$ would converge according to Theorem 6.3. Q.E.D.

Theorem 6.5. Let c be any positive number. Then a n.a.s.c. that a series Σa_{n} converge is that there exist a convergent series Σb_{n} and a sequence $\left\{\beta_{n}\right\}$ such that, (1) $\quad \beta_{n} \geq$. 0 , and
(2) $\quad \beta_{n} \geq \cdot c+\left|\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right| \beta_{n+1_{1}}$.

Proof: The necessity follows from Theorem 6.3.
For the sufficiency, Theorem 5.5 implies that
$\Sigma\left|a_{n}+b_{n}\right|$ converges. Consequently, $\Sigma\left(a_{n}+b_{n}\right)$ converges, so that Σa_{n} converges since Σb_{n} converges. Q.E.D.

Theorem 6.6. Let c be any positive number. Then a n.a.s.c. that a series $\sum a_{n}$ diverge is that there exist a divergent series $\sum b_{n}$ and a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\beta_{n} \geq 0$,
and
(2) $\beta_{n} \geq \cdot c+\left|\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right| \beta_{n+1} \cdot$

Proof: The necessity follows from Theorem 6.4. For the sufficiency, Σa_{n} must diverge, since otherwise Σb_{n} would converge according to Theorem 6.5. Q.E.D.

Theorem 6.7. Let c be any positive number. Then a n.a.s.c. that a series Σa_{n} converge is that there exist a convergent series Σb_{n} and a sequence $\left\{\beta_{n}\right\}$ such that, (1) $\beta_{n} \geq 0$,
(2) $0<\cdot a_{n}+b_{n}$, and
(3) $\quad \beta_{n} \geq \cdot c+\left[\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right] \beta_{n+1}$.

Proof: For the necessity, let Σc_{n} be any convergent series of positive terms, and define $b_{n}=c_{n}-a_{n}$ for $n \geq 0$. Clearly, Σb_{n} converges and (2) above holds. The existence of a sequence $\left\{\beta_{n}\right\}$ satisfying (1) and (3) follows from Theorem 5.5.

The sufficiency follows from Theorem 6.3. Q.E.D.

CHAPTER VII

CONVERGENCE AND DIVERGENCE OF COMPLEX SERIES

Throughout this chapter, all series are assumed to be complex.

A complex series Σa_{n} will be called restricted iff $r_{n} \neq 0$ for every n, and N-restricted of $r_{n} \neq 0$ for $n \geq N$, where N is some integer. We now generalize some of the theorems in Chapters V and VI.

Theorem 7.1. Let L be any real number and c be any positive number. Then a n.a.s.c. that an N-restricted series $\sum a_{n}$ converge absolutely is that there exist a sequince $\left\{\beta_{n}\right\}$ such that
(1) $\quad\left|a_{n}\right| \beta_{n} \rightarrow L$,
and
(2) $\quad \beta_{n} \geq c+\left|r_{n+1}\right| \beta_{n+1}, \quad n \geq N$.

Proof: Apply Theorem 5.1 to $\Sigma\left|a_{n}\right|$ Q.E.D.

Theorem 7.2. (Mummer's criterion) Let c be any positive number. Then a n.a.s.c. that an N-restricted series Σa_{n} converge absolutely is that there exist a sequence $\left\{\beta_{n}\right\}$ such that
(1) $\quad \beta_{n} \geq 0, \quad n \geq N$,
and
(2) $\quad \beta_{n} \geq c+\left|r_{n+1}\right| \beta_{n+1}, \quad n \geq N$.

Proof: Apply Theorem 5.5 to $\Sigma\left|a_{n}\right|$. Q.E.D.

Theorem 7.3. Let c be any positive number. Then a n.a.s.c. that a series $\sum a_{n}$ converge is that there exist a convergent series Σb_{n} and a sequence $\left\{\beta_{n}\right\}$ such that, (1) $\beta_{n} \geq 0$, and

$$
\begin{equation*}
\beta_{n} \geq \cdot c+\left|\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right| \beta_{n+1} . \tag{2}
\end{equation*}
$$

Proof: For the necessity, let Σc_{n} be any restricted series which converges absolutely and define $b_{n}=c_{n}-a_{n}$ for every n. Since $a_{n}+b_{n}=c_{n}$ for all $n, \Sigma\left(a_{n}+b_{n}\right)$ is a restricted series which converges absolutely. From Rheorem 7.2, there is a sequence $\left\{\beta_{n}\right\}$ satisfying conditions (1) and (2) above. Clearly, $\mathrm{\Sigma b}_{\mathrm{n}}$ converges.

For the sufficiency, $\quad \Sigma\left|a_{n}+b_{n}\right|$ converges according to Theorem 7.2 so that $\Sigma\left(a_{n}+b_{n}\right)$ converges. Thus, $\sum a_{n}$ converges since Σb_{n} converges. Q.E.D.

Corollary 7.4. Suppose that $c>0$ and $\left\{\beta_{n}\right\}$ is a
sequence such that,
(1) $\quad \beta_{n} \geq$. 0 ,
and
(2) $\quad \beta_{n} \geq \cdot c+\left|\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right)\right| \beta_{n+1} \cdot$

Then Σa_{n} converges if and only if Σb_{n} converges.

Proof: Apply Theorem 7.3. Q.E.D.

Theorem 7.5. Let c be any positive number. Then a n.a.s.c. that a series Σa_{n} diverge is that there exist a divergent series $\sum b_{n}$ and a sequence $\left\{\beta_{n}\right\}$ such that, (1) $\quad \beta_{n} \geq 0$, and

$$
\begin{equation*}
\beta_{n} \geq \cdot c+\mid\left(a_{n+1}+b_{n+1}\right) /\left(a_{n}+b_{n}\right) / \beta_{n+1} . \tag{2}
\end{equation*}
$$

Proof: For the necessity, let Σc_{n} be any restricted series which converges absolutely and define $b_{n}=c_{n}-a_{n}$ for $n \geq 0$. The series $\Sigma\left(a_{n}+b_{n}\right)=\Sigma c_{n}$ is a restricted series which converges absolutely. From Theorem 7.2, there is a sequence $\left\{\beta_{n}\right\}$ satisfying conditions (1) and (2) above. Clearly, Σb_{n} diverges.

For the sufficiency, $\quad \Sigma\left|a_{n}+b_{n}\right|$ converges according to Theorem 7.2. From Theorem 7.3, Σa_{n} must diverge since otherwise Σb_{n} would converge. Q.E.D.

CHAPTER VIII

ALTERNATING SERIES

A real series $\sum a_{n}$ is called alternating iff $r_{n}<0$ for every n, and N-alternating iff $r_{n}<0$ for $n \geq N$, where N is some integer.

Various theorems stating necessary and sufficient conditions for the convergence of an N -alternating series will be proven, along with corresponding error bounds for the quantities I_{n}. In many such theorems, it will beproven that all inequalities, excluding those between indices, may be reversed. Calling any such theorem and the derived theorem duals, a duality structure become apparent, but fails in at least one case. In particular, Theorem8.32 has no dual according to Counterexample 8.10. Because of this duality, if the sequence $\left\{r_{n}\right\}$ is fairly smooth, the difficulty in satisfying the required inequalities involving $\left\{\alpha_{n}\right\}$ or $\left\{\beta_{n}\right\}$ is reduced considerably. Of course, the more judicious the choice of $\left\{\alpha_{n}\right\}$ or $\left\{\beta_{n}\right\}$, the better the resulting bounds for the quantities T_{n}.

Several theorems proven in this chapter will contain explicitly, or implicitly, in their conclusion that $\left\{I_{n}\right\}$ converges. As we have previously seen, this implies
$\sum a_{\delta_{n}} \varepsilon \mathbb{M R}\left(\Sigma a_{n}\right)$, but this will usually be omitted from the conclusion.

Lemma 8.1. If $\left\{P_{2 n-1}\right\}$ is monotone decreasing, $\left\{P_{2 n}\right\}$ is monotone increasing, and some subsequence of $\left\{P_{2 n-1}-P_{2 n}\right\}$ is bounded below, then $\left\{P_{2 n-1}\right\}$ and $\left\{P_{2 n}\right\}$ both converge.

Proof: Suppose that L is a lower bound of some subsetquince $\left\{P_{2 n^{\prime}-1}-P_{2 n},\right\}$ of $\left\{P_{2 n-1}-P_{2 n}\right\}$. It is easily seen that $\left\{P_{2 n-1}-P_{2 n}\right\}$ is monotone decreasing. Consequently, $L \leq P_{2 n^{\prime}-1}-P_{2 n^{\prime}} \leq P_{2 n-1}-P_{2 n}$ for $n \geq 1$. We then have $L+P_{2} \leq L+P_{2 n} \leq P_{2 n-1} \leq P_{1}$ and $P_{2} \leq P_{2 n} \leq P_{2 n-1}-L \leq P_{1}-L$, for $n \geq 1$. Accordingly, $\left\{P_{2 n-1}\right\}$ and $\left\{P_{2 n}\right\}$ are bounded monotone sequences, and thus converge. Q.E.D.

Theorem 8.2. Let L_{1} and L_{2} be any real numbers. Then a n.a.s.c. that an N-alternating series $\sum a_{n}$ converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\alpha_{n}\right\}$ such that,
(1) $a_{2 n-1} a_{2 n-1} \rightarrow L_{1}$ and $a_{2 n}{ }_{2 n} \rightarrow L_{2}$
and
(2) $\quad a_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq N$.

Moreover, if (0), (1), and (2) hold, then, for $n \geq N$,
(a) $\left\{\begin{array}{l}r_{n}+r_{n} r_{n+1} \alpha_{n+1}-\left(L_{2} / a_{n-1}\right) \leq r_{n} \leq r_{n} \alpha_{n}-\left(L_{1} / a_{n-1}\right) \\ \text { or } \\ r_{n}+r_{n} r_{n+1} \alpha_{n+1}-\left(L_{1} / a_{n-1}\right) \leq r_{n} \leq r_{n} \alpha_{n}-\left(L_{2} / a_{n-1}\right),\end{array}\right.$
accordingly as n is odd or even, respectively. And in general, for $n \geq N$ and $k \geq 1$,
(b) $\left\{\begin{array}{c}T_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) a_{n+2 k-1}-\left(L_{2} / a_{n-1}\right) \leq T_{n} \\ \leq I_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) a_{n+2 k-2}-\left(L_{1} / a_{n-1}\right) \\ \text { or } \\ T_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) a_{n+2 k-1}-\left(L_{1 / a_{n-1}}\right) \leq I_{n} \\ \leq I_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) a_{n+2 k-2}-\left(L_{2} / a_{n-1}\right),\end{array}\right.$
accordingly as n is odd or even, respectively.
Proof: Assume that Σa_{n} converges. Accordingly (0) holds.
Define $L_{2 n-1}=L_{1}$ and $L_{2 n}=L_{2}$ for every n, and $\alpha_{n}=1+T_{n+1}+L_{n} / a_{n}$ for $n \geq N$. We then have $a_{n} a_{n}$ $=a_{n}+a_{n} T_{n+1}+L_{n}=a_{n}+\left(S-S_{n}\right)+I_{n}=S-S_{n-1}+L_{n}$. Thus $a_{2 n-1} a_{2 n-1}$ $=S-S_{2 n-2}+L_{2 n-1}+L_{1}$ and $a_{2 n} \alpha_{2 n}=. S-S_{2 n-1}+L_{2 n}+L_{2}$, so that (1) holds. For $n \geq N, \alpha_{n}-l-r_{n+1}-r_{n+1} r_{n+2} \alpha_{n+2}$ $=1+T_{n+1}+L_{n} / a_{n}-1-r_{n+1}-r_{n+1} r_{n+2}\left(1+T_{n+3}+L_{n+2} / a_{n+2}\right)$
$=I_{n+1}+L_{n} / a_{n}-r_{n+1}-r_{n+1} r_{n+2}-r_{n+1} r_{n+2} T_{n+3}-L_{n+2} / a_{n}$
$=T_{n+1}+L_{n} / a_{n}-T_{n+1}-L_{n} / a_{n}=0$, so that
$\alpha_{n}=l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ for $n \geq N$. Thus (2) holds with equality. This proves the necessity.

For the sufficiency, assume that (0), (1), and (2) hold, and let n be any integer \geq N. We now define $P_{k}=I_{n, k-2}+\left(r_{n} \cdots r_{n+k-1}\right) \alpha_{n+k-1}$ for $k \geq 1$. Accordingly

$$
\begin{align*}
& P_{k}-P_{k+2} \tag{3}\\
& =\left(r_{n} \cdots r_{n+k-1}\right)\left[a_{n+k-1}-\left(1+r_{n+k}+r_{n+k} r_{n+k+1} a_{n+k+1}\right)\right] \\
& \quad k \geq 1
\end{align*}
$$

From (2) and (3) it can be seen that $P_{2 k}-P_{2 k+2} \leq 0$ and $P_{2 k-1}-P_{2 k+1} \geq 0$ for $k \geq 1$, so that. $\left\{P_{2 k}\right\}$ is monotone increasing and $\left\{P_{2 k-1}\right\}$ is monotone decreasing. Moreover, $P_{k}-P_{k+1}=\left(r_{n} \cdots r_{n+k-1}\right)\left[a_{n+k-1}-\left(1+r_{n+k} a_{n+k}\right)\right]=\left[a_{n+k-1} a_{n+k-1}\right.$ $\left.-a_{n+k-1}-a_{n+k} a_{n+k}\right] / a_{n-1}$, so that, by (0) and (1), the sequince $\left\{P_{k}-P_{k+1}\right\}$ is bounded. Consequently $\left\{P_{2 k-1}-P_{2 k}\right\}$ is bounded. By Lemma 8.1, $P_{2 k-1} \rightarrow P^{\prime}$ and $P_{2 k} \rightarrow P^{\prime \prime}$, for some numbers P^{\prime} and $P^{\prime \prime}$. We then have $T_{n, 2 k-2}$

$$
\begin{aligned}
& =r_{n}+\cdots+\left(r_{n} \cdots r_{n+2 k-2}\right)=P_{2 k}-\left(r_{n} \cdots r_{n+2 k-1}\right) a_{n+2 k-1} \\
& =P_{2 k^{-a}} a_{n+2 k-1} a_{n+2 k-1} / a_{n-1} \rightarrow P^{\prime \prime}-\left(I_{2} / a_{n-1}\right) \text { or }
\end{aligned}
$$

$P^{\prime \prime}-\left(I_{1} / a_{n-1}\right)$, accordingly as n is odd or even. Simimarly, $T_{n, 2 k-1}=r_{n}+r_{n} r_{n+1}+\cdots+\left(r_{n} \cdots r_{n+2 k-1}\right)=P_{2 k+1}$ $-\left(r_{n} \cdots r_{n+2 k}\right) a_{n+2 k}=P_{2 k+1}-a_{n+2 k} a_{n+2 k} / a_{n-1} \rightarrow P^{\prime}-\left(L_{1} / a_{n-1}\right)$
or $\mathrm{P}^{\prime}-\left(\mathrm{L}_{2} / \mathrm{a}_{\mathrm{n}-1}\right)$, accordingly as n is odd or even. Also,
$T_{n, 2 k-1}-T_{n, 2 k-2}=\cdot\left(r_{n} \cdots r_{n+2 k-1}\right)=\cdot a_{n+2 k-1} / a_{n-1} \rightarrow 0$ as $k \rightarrow \infty$, so that $T_{n, k} \rightarrow T_{n}$ as $k \rightarrow \infty$. Using the monotoneity of $\left\{\mathrm{P}_{2 \mathrm{k}-1}\right\}$ and $\left\{\mathrm{P}_{2 \mathrm{k}}\right\}$, we have, for $\mathrm{k} \geq 1$, $P_{2 k}-\left(L_{2} / a_{n-1}\right) \leq T_{n} \leq P_{2 k-1}-\left(L_{1} / a_{n-1}\right)$, if n is odd, or $P_{2 k}-\left(L_{1} / a_{n-1}\right) \leq T_{n} \leq P_{2 k-1}-\left(L_{2} / a_{n-1}\right)$, if n is even. With $k=1$, we obtain (a), and with $k \geq 1$, we obtain (b). Q.E.D.

The dual of Theorem 8.2 is Theorem 8.25.
Choosing $L_{1}=L_{2}=0$ in Theorem 8.2, we obtain the following theorem.

Theorem 8.3. An.a.s.c. that an N-alternating series $\sum a_{n}$ converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{a_{n}\right\}$ such that,
(1) $\quad a_{n} \alpha_{n} \rightarrow 0$
and

$$
\begin{equation*}
\alpha_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, \quad n \geq N . \tag{2}
\end{equation*}
$$

Moreover, if (0), (1), and (2) hold, then
(a) $\quad r_{n}{ }^{+} r_{n+1} r_{n+1} \leq r_{n} \leq r_{n} \alpha_{n}, n \geq N$.

And in general, for $n \geq N$ and $k \geq 1$,
(b) $\mathrm{T}_{\mathrm{n}, 2 \mathrm{k}-2}+\left(\mathrm{r}_{\mathrm{n}} \cdots \mathrm{r}_{\mathrm{n}+2 \mathrm{k}-1}\right) \alpha_{\mathrm{n}+2 \mathrm{k}-1} \leq \mathrm{T}_{\mathrm{n}} \leq \mathrm{T}_{\mathrm{n}, 2 \mathrm{k}-3}$

$$
+\left(r_{n} \cdots r_{n+2 k-2}\right) \alpha_{n+2 k-2} .
$$

The dual of Theorem 8.3 is Theorem 8.27.
The following example shows that condition (2) of Theorem 8.3 cannot be replaced by the condition

$$
\begin{equation*}
a_{n} \leq \cdot c+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, \quad l<c . \tag{2'}
\end{equation*}
$$

Example 8.4. Let $l<c$. Define $a=(1+c) / 2$, so that $1<a<c$. Define $a_{2 n}=1 /(n+1)$ and $a_{2 n+1}=-a /(n+1)$
$=-a a_{2 n}$ for $n \geq 0$. Clearly $a_{n}+0$. Also, $S_{2 n-1}$
$=.\left(a_{0}+a_{1}\right)+\left(a_{2}+a_{3}\right)+\cdots+\left(a_{2 n-2}+a_{2 n-1}\right)=.(1-a) a_{0}+(1-a) a_{2}$ $+\cdots+(1-a) a_{2 n-2}=.(1-a)[1+1 / 2+1 / 3+\cdots+1 / n] \rightarrow-\infty$, i.e.,
Σa_{n} diverges. We have $r_{2 n}=-n / a(n+1)+-1 / a, r_{2 n+1}$ $=-a, r_{2 n} r_{2 n+1}=n /(n+1), r_{2 n+1} r_{2 n+2}=.(n+1) /(n+2)$,
$c+r_{2 n} \rightarrow c-l / a>0$, and $c^{+}+r_{2 n+1} \rightarrow c-a>0$. Thus, $\left(c+r_{n+1}\right) /\left(l-r_{n+1} r_{n+2}\right) \rightarrow+\infty \quad$ and $\quad \alpha \leq \cdot\left(c+r_{n+1}\right) /\left(1-r_{n+1} r_{n+2}\right)$ for any real number α. Consequently, $\alpha\left(1-r_{n+1} r_{n+2}\right)$ $\leq \cdot\left(c+r_{n+1}\right)$ and $\alpha \leq \cdot c^{+r_{n+1}}{ }^{+r_{n+1}} r_{n+2}$. With $\alpha_{n}=. \alpha$, condition (2') holds. We conclude that conditions (0) and (1) of Theorem 8.3, and (2') are necessary, but not sufficient, for the convergence of Σa_{n}.

Theorem 8.5. Let c be any number <1. Then a n.a.s.c. that an alternating series Σa_{n} converge absolutely is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{a_{n}\right\}$ such that,

$$
\begin{equation*}
a_{n} \alpha_{n} \rightarrow 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n} \leq c^{+r_{n+1}} r_{n+1} r_{n+2} \alpha_{n+2}, \quad n \geq 1 \tag{2}
\end{equation*}
$$

Proof: For the necessity, define $\alpha_{n}, n \geq 1$, by the equation $a_{n} \alpha_{n}=c\left(a_{n}+a_{n+2}+\cdots\right)+\left(a_{n+1}+a_{n+3}+\cdots\right)$. Then $a_{n} \alpha_{n} \rightarrow 0$. Also $a_{n} \alpha_{n}=c a_{n}+a_{n+1}+a_{n+2} \alpha_{n+2}$, and thus $\alpha_{n}=c+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ for $n \geq 1$.

For the sufficiency, we first note that Σa_{n} converges according to Theorem 8.3. Define $\alpha_{n}^{\prime}=1+T_{n+1}$ and $\beta_{n}=\left(\alpha_{n}^{\prime}-\alpha_{n}\right) /(1-c)$ for $n \geq 1$. Then $\alpha_{n}^{\prime}=1+r_{n+1}$ $+r_{n+1} r_{n+2}^{\alpha}{ }_{n+2}^{\prime}$, for $n \geq 1$, and $a_{n}^{\alpha}{ }_{n}^{\prime} \rightarrow 0$, so that $\left|a_{n}\right| \beta_{n}=.\left|a_{n}\right|\left(\alpha_{n}^{\prime}-\alpha_{n}\right) /(1-c) \rightarrow 0$. Also, $(1-c)\left[1-\beta_{n}\right.$ $\left.+\beta_{n+2} a_{n+2} / a_{n}\right]=(1-c)\left[1-\left(\alpha_{n}^{\prime}-\alpha_{n}\right) /(1-c)\right.$ $\left.+\left(\alpha_{n+2}^{\prime}-\alpha_{n+2}\right) r_{n+1} r_{n+2} /(1-c)\right]=1-c-\alpha_{n}^{\prime+\alpha_{n}}+\left(\alpha_{n+2}^{\prime}-\alpha_{n+2}\right) r_{n+1} r_{n+2}$ $=-\alpha_{n}^{\prime}+l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}^{\prime}+\alpha_{n}-c-r_{n+1}-r_{n+1} r_{n+2} \alpha_{n+2}=\alpha_{n}-c$
$-r_{n+1}-r_{n+1} r_{n+2} \alpha_{n+2} \leq 0$ for $n \geq 1$. Thus, $\beta_{n} \geq 1$
$+\left(a_{n+2} / a_{n}\right) \beta_{n+2}=1+\left(\left|a_{n+2}\right| /\left|a_{n}\right|\right) \beta_{n+2}$ for $n \geq 1$. From
Theorem 5.1, $\Sigma\left|a_{2 n}\right|$ and $\Sigma\left|a_{2 n+1}\right|$ converge, and thus Σa_{n} is absolutely convergent. Q.E.D.

The dual of Theorem 8.5 is Theorem 8.29.

Theorem 8.6. Let c, L_{1}, L_{2} be any real numbers where $c<l$. Then a n.a.s.c. that an alternating series $\sum a_{n}$ converge absolutely is that

$$
\begin{equation*}
a_{n} \rightarrow 0, \tag{0}
\end{equation*}
$$

and there exist a sequence $\left\{\alpha_{n}\right\}$ such that,

$$
\begin{equation*}
a_{2 n-1} \alpha_{2 n-1}+L_{1} \text { and } a_{2 n} \alpha_{2 n}+L_{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{n} \leq c+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq 1 \tag{2}
\end{equation*}
$$

Proof: For the necessity, there is a sequence $\left\{\alpha_{n}\right\}$ satisfying (1) and (2) of Theorem 8.5. Define $\left\{\alpha_{n}^{\prime}\right\}$ by the equations $a_{2 n-1} \alpha_{2 n-1}^{\prime}=a_{2 n-1} \alpha_{2 n-1}+L_{1}$ and $a_{2 n} \alpha_{2 n}^{\prime}$ $=a_{2 n} \alpha_{2 n}+L_{2}$. It may be seen that $\left\{\alpha_{n}^{\prime}\right\}$ satisfies (1) and (2) above.

For the sufficiency, define $\left\{\alpha_{n}^{\prime}\right\}$ by the equations $a_{2 n-1} \alpha_{2 n-1}^{\prime}=a_{2 n-1} \alpha_{2 n-1}-L_{1}$ and $a_{2 n} \alpha_{2 n}^{\prime}=a_{2 n} \alpha_{2 n}-L_{2}$. It may be seen that $\left\{\alpha_{n}^{\prime}\right\}$ satisfies (1) and (2) of Theorem 8.5, and thus Σa_{n} converges absolutely. Q.E.D.

The dual of Theorem 8.6 is Theorem 8.30. Theorem 8.7. Suppose that Σa_{n} is an N-alternating series such that $a_{n}+0, r_{n+1} r_{n+2}<1$ for $n \geq N$, and α is a real number such that $\alpha \leq\left(1+r_{n+1}\right) /\left(1-r_{n+1} r_{n+2}\right)$ for
$n . \geq N$. Then $r_{n}+r_{n} r_{n+1}{ }^{\alpha} \leq T_{n} \leq r_{n} \alpha$ for $n \geq N$.

Proof: For $n \geq N, \alpha\left(1-r_{n+1} r_{n+2}\right) \leq I+r_{n+1}$ and $\alpha \leq 1$ $+r_{n+1}+r_{n+} r_{n+2} \alpha$. Setting $\alpha_{n}=\alpha$ for $n \geq N$, we may use (a) of Theorem 8.3 to complete the proof. Q.E.D. Taking $N=1$ in Theorem 8.3, we have the following theorem.

Theorem 8.8. A n.a.s.c. that an alternating series Σa_{n} converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{a_{n}\right\}$ such that,
(1) $\quad a_{n} \alpha_{n} \rightarrow 0$
and
(2) $\quad a_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, n \geq 1$.

Moreover, if (0), (1), and (2) hold, then
(a) $\quad r_{n}+r_{n} r_{n+1} \alpha_{n+1} \leq T_{n} \leq r_{n} \alpha_{n}, \quad n \geq 1$.

And in general, for $n \geq 1$ and $k \geq 1$,
(b) $\quad I_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \alpha_{n+2 k-1} \leq T_{n} \leq T_{n, 2 k-3}$

$$
+\left(r_{n} \cdots r_{n+2 k-2}\right) \alpha_{n+2 k-2}
$$

The dual of Theorem 8.8 is Theorem 8.31.

Remark 8.9. We will show that if any of the three conditions (0), (1), or (2) of Theorem 8.2 are omitted, the
remaining two are not sufficient for the convergence of Σa_{n}. We may do this by making the same considerations of Theorem 8.8, since condition (0), (1), or (2) of Theorem 8.8 implies the corresponding condition of Theorem 8.2. We will show even more. In particular, condition (a) of Theorem 8.8 implies that $\alpha_{n} \leq I+r_{n+1} \alpha_{n+1}$ for $n \geq 1$. We thus consider the four conditions:
(0) $a_{n} \rightarrow 0$,
(1) $\quad a_{n} \alpha_{n} \rightarrow 0$,
(2) $\quad a_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq 1$,
(3) $\quad a_{n} \leq r_{n+1} \alpha_{n+1}, \quad n \geq 1$.

We will show if (0), (1), or (2) i's omitted, the remaining three conditions are not sufficient for the convergence of Σa_{n}. We will also show that if (l) is replaced by the two weaker conditions that $a_{n} \alpha_{n}-a_{n+1} a_{n+1} \rightarrow 0$ and that $\left\{a_{n} \alpha_{n}\right\}$ be bounded, the resulting four conditions are not sufficient for the convergence of Σa_{n}.

Counterexample 8.10. Let $\sum a_{n}$ be the divergent series $1-1+1-1+\ldots$. We have $a_{n}=(-1)^{n}$ for $n \geq 0$, and $r_{n}=-1$ for $n \geq 1$. Defining $a_{n}=0$ for $n \geq 1$, the following three conditions obviously hold:
(1) $\quad a_{n} a_{n} \rightarrow 0$,
(2) $\quad \alpha_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, \quad n \geq 1$,
(3) $\quad \alpha_{n} \leq 1+r_{n+1} \alpha_{n+1}, \quad n \geq 1$.

We have shown that conditions (1), (2), and (3) are not sufficient for the convergence of Σa_{n}.

Counterexample 8.11. Let $\sum a_{n}=1-1 / 2+1 / 2-1 /(2.2)$

$$
+\cdots+1 /(n+1)-1 / 2(n+1)+\cdots .
$$

This series is divergent, since for $n \geq 1$,

$$
\begin{aligned}
S_{2 n-1} & =(1-1 / 2)+(1 / 2-1 /(2 \cdot 2))+\cdots+(1 / n-1 / 2 n) \\
& =(1 / 2)(1+1 / 2+1 / 3+\cdots+1 / n) .
\end{aligned}
$$

Let α_{1} be any real number, and define the sequence $\left\{\alpha_{n}\right\}$ recursively by the equation $\alpha_{n}=1+r_{n+1} \alpha_{n+1}$. The following conditions are seen to hold:
(0) $a_{n} \rightarrow 0$,
(2) $\quad a_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq 1$,
(3) $\quad a_{n} \leq l+r_{n+1} a_{n+1}, \quad n \geq 1$.

We conclude that conditions (0), (2), and (3) are not sufficient for the convergence of Σa_{n}. Moreover, $a_{n} a_{n}$

- $a_{n+1} a_{n+1}=a_{n} \rightarrow 0$, so that the four conditions $a_{n} a_{n}$
$-a_{n+1} a_{n+1} \rightarrow 0,(0),(2)$, and (3) are not sufficient for the convergence of Σa_{n}.

Counterexample 8.12. Let Σa_{n} be the divergent series given in Counterexample 8.11. Defining $a_{n}=0$ for $n \geq 1$, it is obvious that the following conditions hold: (0) $a_{n} \rightarrow 0$, (1) $\quad a_{n} a_{n} \rightarrow 0$, (3) $\quad a_{n} \leq 1+r_{n+1} a_{n+1}, \quad n \geq 1$.

Thus conditions (0), (1), and (3) are not sufficient for the convergence of Σa_{n}. Also, Theorem 8.8 implies that the condition

$$
\begin{equation*}
\alpha_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq 1, \tag{2}
\end{equation*}
$$

is false. Indeed, (2) must fail to hold for infinitely many values of n according to Theorem 8.3.

Counterexample 8.13. Let $\sum a_{n}$ be any divergent alternating series whose partial sums are bounded, and such that $a_{n} \rightarrow 0$. Let a_{1} be any real number, and define the sequence $\left\{a_{n}\right\}$ recursively by the equation $a_{n}=1$ $+r_{n+1} a_{n+1}$. We easily see that $a_{n+1} a_{n+1}=a_{1} a_{1}$ $-\left(a_{1}+a_{2}+\cdots+a_{n}\right)$ for $n \geq 1$. Consequently, the sequence $\left\{a_{n} \alpha_{n}\right\}$ is bounded, since the partial sums S_{n} are bounded. Conditions (0), (2), and (3) of Remark 8.9 are easily seen to hold. Consequently, these three conditions along with
the condition that $\left\{a_{n} \alpha_{n}\right\}$ be bounded are not sufficient for the convergence of Σa_{n}. Moreover, it is of no avail to also require that $a_{n} \alpha_{n}-a_{n+1} a_{n+1}+0$, since $\alpha_{n}=1+r_{n+1} a_{n+1}$ yields $a_{n} \alpha_{n}-a_{n+1}{ }^{\alpha_{n+1}}=. a_{n} \rightarrow 0$ in the present counterexample.

Theorem 8.14. Let L be any real number and $\sum a_{n}$ be any N-alternating series such that $a_{2 n}>0$. Then a n.a.s.c. that Σa_{n} converge is that
(0) $a_{n}+0$,
and there exist a sequence $\left\{\alpha_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n-1} a_{2 n-1}\right\}$ is bounded below
and $a_{2 n}{ }^{\alpha}{ }_{2 n}+L$
and
(2) $\quad a_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n-1} \alpha_{2 n-1}\right\}$ converges.

Proof: The necessity is immediate from Theorem 8.2. For the sufficiency, let m be any odd integer
$\geq N+1$. Define $P_{k}=T_{m, k-2}+\left(r_{m} \cdots r_{m+k-1}\right) \alpha_{m+k-1}$ for $k \geq 1$. Then,
(3)

$$
\begin{aligned}
P_{k}-P_{k+2} & =\left(r_{m} \cdots r_{m+k-1}\right)\left[\alpha_{m+k-1}-\left(1+r_{m+k}\right.\right. \\
& \left.\left.+r_{m+k} r_{m+k-1} \alpha_{m+k-1}\right)\right], \quad k \geq 1 .
\end{aligned}
$$

From (2) and (3), we see that $P_{2 k}-P_{2 k+2} \leq 0$ and $P_{2 k-1}-P_{2 k+1} \geq 0$ for $K \geq 1$, so that $\left\{P_{2 k}\right\}$ is monotone increasing and $\left\{\mathrm{P}_{2 \mathrm{k}-1}\right\}$ is monotone decreasing. Also,

$$
\begin{align*}
P_{2 k-1}-P_{2 k} & =\left(a_{m+2 k-2} a_{m+2 k-2}-a_{m+2 k-2}\right. \tag{4}\\
& \left.-a_{m+2 k-1} \alpha_{m+2 k-1}\right) / a_{m-1}
\end{align*}
$$

for $k \geq 1$, so that by (0), (1), and the fact that $a_{m-1}>0$, some subsequence of $\left\{P_{2 k-1}-P_{2 k}\right\}$ is bounded below. By Lemma 8.1, $P_{2 k-1} \rightarrow P^{\prime}$ and $P_{2 k} \rightarrow P^{\prime \prime}$ for some numbers P^{\prime} and $\mathrm{P}^{\prime \prime}$. Also, according to (1), $a_{m+2 k-1} \alpha_{m+2 k-1} \rightarrow L$ as $k \rightarrow \infty$. From (4), $a_{m+2 k-2}{ }^{\alpha}{ }_{m+2 k-2}$ $=. a_{m+2 k-2}+a_{m+2 k-1} a_{m+2 k-1}+a_{m-1}\left(P_{2 k-1}-P_{2 k}\right) \rightarrow L+a_{m-1}\left(P^{\prime}-P^{\prime \prime}\right)$ as $k \rightarrow \infty$. Consequently, m being odd, we see that $\left\{a_{2 n-1}{ }_{2 n-1}\right\}$ converges. Theorem 8.2 now implies that Σa_{n} converges. Q.E.D.

The dual of Theorem 8.14 is Theorem 8.40.

Theorem 8.15. Let L be any real number and Σa_{n} be any N-alternating series such that $a_{2 n}<0$. Then a n.a.s.c. that $\sum a_{n}$ converge is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{a_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n-1} a_{2 n-1}\right\}$ is bounded above and $a_{2 n}{ }_{2 n} \rightarrow L$
and
(2) $\quad a_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, n \geq N$. Moreover, if conditions (0), (1) and (2) hold, then $\left\{a_{2 n-1} a_{2 n-1}\right\} \quad$ converges.

Proof: The necessity follows from Theorem 8.2.
For the sufficiency, define $a_{n}^{\prime}=-a_{n}$ for $n \geq 0$.
Accordingly, $\quad r_{n}^{\prime}=a_{n}^{\prime} / a_{n-1}^{\prime}=a_{n} / a_{n-1}=r_{n}$ for $n \geq N$. It is obvious that Theorem 8.14 is applicable, yielding the convergence of $\sum a_{n}^{\prime}$ and $\left\{a_{2 n-1}^{\prime} a_{2 n-1}^{\prime}\right\}$. Thus, $\sum a_{n}$ and $\left\{a_{2 n-1} a_{2 n-1}\right\}$ both converge. Q.E.D.

The dual of Theorem 8.15 is Theorem 8.39.
It has been shown that (1) of Theorem 8.2 cannot be omitted, or replaced by the weaker condition that $\left\{a_{n} \alpha_{n}\right\}$ be bounded and $a_{n} \alpha_{n}-a_{n+1} \alpha_{n+1} \rightarrow 0$. The following theorem shows that (1) can be replaced by the weaker condition that some subsequence of $\left\{a_{2 n-1} a_{2 n-1}\right\}$ be bounded and $\left\{a_{2 n^{2}}{ }^{n}\right\} \quad$ converge.

Theorem 8.16. Let L be any real number. Then a n.a.s.c. that an N-alternating series Σa_{n} converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{a_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n-1} \alpha_{2 n-1}\right\}$ is bounded and $a_{2 n}{ }^{\alpha}{ }_{2 n} \rightarrow L$
and
(2) $\alpha_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n-1} \alpha_{2 n-1}\right\}$ converges.

Proof: The necessity follows from Theorem 8.2. For the sufficiency, we need only note that $a_{2 n}>0$ or $a_{2 n}<.0$, and then apply Theorem 8.14 or Theorem 8.15, respectively. Q.E.D.

The dual of Theorem 8.16 is Theorem 8.41.
The following counterexample shows that (l) of Theorem 8.14 or Theorem 8.16 cannot be replaced by the condition
(1') $\left\{a_{2 n-1} \alpha_{2 n-1}\right\}$ is bounded above and $a_{2 n} \alpha_{2 n} \rightarrow L$.

Counterexample 8.17. Let Σa_{n} be the divergent series given in Counterexample 8.1l. We have $a_{2 n}=1 /(n+1)$ and $a_{2 n+1}=-1 / 2(n+1)$ for $n \geq 0$. Define $\alpha_{2 n}=0$
for $n \geq 1$. Define $\left\{\alpha_{2 n-1}\right\}$ recursively by the equation $\alpha_{2 n-1}=1+r_{2 n}+r_{2 n} r_{2 n+1} \alpha_{2 n+1}, \quad n \geq 1$, where α_{1} is any real number. It can be seen that (0) $a_{n} \rightarrow 0$, (1) $a_{2 n} \alpha_{2 n} \rightarrow 0$, and (2) $\alpha_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ for $n \geq 1$. Also, $a_{2 n+1} a_{2 n+1}=a_{1} a_{1}-\left(a_{1}+a_{2}+\cdots+a_{2 n}\right) \rightarrow-\infty$, so that $\left\{a_{2 n-1} \alpha_{2 n-1}\right\} \quad$ is bounded above.

The following counterexample shows that (1) of Theorem 8.15 or Theorem 8.16 cannot be replaced by the condilion
(1^{\prime}) $\left\{a_{2 n-1} a_{2 n-1}\right\}$ is bounded below and $a_{2 n} \alpha_{2 n} \rightarrow$. Counterexample 8.18. Let Σa_{n} be the divergent series whose terms are the negatives of those of the series given in Counterexample 8.17, ie., $a_{2 n}=-1 /(n+1)$ and $a_{2 n+1}$ $=1 / 2(n+1)$ for $n \geq 0$. Define $a_{2 n}=0$ for $n \geq 1$. Define $\left\{\alpha_{2 n-1}\right\}$ recursively by the equation $\alpha_{2 n-1}=1$ $+r_{2 n}+r_{2 n} r_{2 n+1} \alpha_{2 n+1}, n \geq 1$, where α_{1} is any real number. Then (0) $a_{n} \rightarrow 0,(1) a_{2 n} \alpha_{2 n} \rightarrow 0$, and (2) $a_{n} \leq 1+r_{n+1}$ $+r_{n+1} r_{n+2} \alpha_{n+2}$ for $n \geq 1$. Also, $a_{2 n+1} \alpha_{2 n+1}=a_{1} \alpha_{1}$ $-\left(a_{1}+a_{2}+\cdots+a_{2 n}\right) \rightarrow+\infty$, so that $\left\{a_{2 n-1} a_{2 n-1}\right\}$ is bounded below.

Theorem 8.19. Let L be any real number and Σa_{n} be
any N -alternating series such that $a_{2 n}>0$. Then a n.a.s.c. that Σa_{n} converge is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\alpha_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n}{ }_{2 n}\right\}$ is bounded above and $a_{2 n-1} a_{2 n-1} \rightarrow L$
and

$$
\begin{equation*}
a_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq N \tag{2}
\end{equation*}
$$

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n}{ }_{2 n}\right\}$ converges.

Proof: The necessity follows from Theorem 8.2.
According to Theorem 8.2, for the sufficiency we need only show that $\left\{a_{2 n} \alpha_{2 n}\right\}$ converges. Define
$a_{n}^{\prime}=a_{n+1}$ for $n \geq 0$, and $\alpha_{n}^{\prime}=\alpha_{n+1}$ for $n \geq N$. Then $a_{n}^{\prime} \rightarrow 0$ and $a_{2 n}^{\prime} \alpha_{2 n}^{\prime}=a_{2 n+1}{ }_{2 n+1} \rightarrow$ L. Since some subsetquince of $\left\{a_{2 n}{ }_{2}{ }_{2 n}\right\}$ is bounded above and $a_{2 n-1}^{\prime} \alpha_{2 n-1}^{\prime}$ $=$. $a_{2 n} \alpha_{2 n}$, it follows that some subsequence of $\left\{a_{2 n-1}^{\prime}{ }_{2 n-1}^{\prime}\right\}$
is bounded above. We have $a_{2 n}^{\prime \prime}=a_{2 n+1}<.0$. Also, $r_{n}^{\prime}=a_{n}^{\prime} / a_{n-1}^{\prime}=a_{n+1} / a_{n}=r_{n+1}$ for $n \geq N$. From (2), for $n \geq N, \quad \alpha_{n}^{\prime}=\alpha_{n+1} \leq l+r_{n+2}+r_{n+2} r_{n+3}{ }_{n+3}=1+r_{n+1}^{\prime}$ $+r_{n+1}^{\prime} r_{n+2}^{\prime}{ }_{n+2}^{\prime}$. Applying Theorem 8.15, $\left\{a_{2}^{\prime}{ }_{n-1} \alpha_{2 n-1}^{\prime}\right\}$
converges. Thus, $\left\{a_{2 n} \alpha_{2 n}\right\}$ converges. Q.E.D.
The dual of Theorem 8.19 is Theorem 8.43.

Theorem 8.20. Let L be any real number and Σa_{n} any N -alternating series such that $a_{2 n}<0$. Then a n.a.s.c. that $\sum_{a_{n}}$ converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{a_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n} \alpha_{2 n}\right\}$ is bounded below and

$$
a_{2 n-1} a_{2 n-1} \rightarrow L
$$

and
(2) $a_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n} \alpha_{2 n}\right\}$ converges.

Proof: The necessity follows from Theorem 8.2. For the sufficiency, define $a_{n}^{\prime}=-a_{n}$ for $n \geq 0$. Accordingly, $r_{n}^{\prime}=a_{n}^{\prime} / a_{n-1}^{\prime}=a_{n} / a_{n-1}=r_{n}$ for $n \geq N$. It is easily seen that Theorem 8.19 is applicable, yielding the convergence of Σa_{n}^{\prime} and $\left\{a_{2 n}^{\prime} \alpha_{2 n}\right\}$. Thus, Σa_{n} and $\left\{a_{2 n} \alpha_{2 n}\right\}$ both converge. Q.E.D.

The dual of Theorem 8.20 is Theorem 8.42.

Theorem. 8.21. Let L be any real number. Then a n.a.s.c. that an N-alternating series $\sum_{a_{n}}$ converge is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{a_{n}\right\}$ such that,
(I) some subsequence of $\left\{a_{2 n} a_{2 n}\right\}$ is bounded and

$$
a_{2 n-1} a_{2 n-1} \rightarrow L
$$

and
(2) $\quad a_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n} a_{2 n}\right\}$ converges.

Proof: The necessity follows from Theorem 8.2.
For the sufficiency, we need only note that
$a_{2 n}>0$ or $a_{2 n}<0$, and then apply Theorem 8.19 or Theorem 8.20, respectively. Q.E.D.

The dual of Theorem 8.21 is Theorem 8.44.
The following counterexample shows that (1) of Theorem 8.19 or Theorem 8.21 cannot be replaced by the condition
(1') $\left\{a_{2 n} a_{2 n}\right\}$ is bounded below and $a_{2 n-1} a_{2 n-1} \rightarrow$ L.

Counterexample 8.22. Define $a_{2 n}=1 / 2(n+1)$ and $a_{2 n+1}=-1 /(n+1)$ for $n \geq 0$. Since $a_{2 n}+a_{2 n+1}=1 / 2(n+1)$
for $n \geq 0, S_{n} \rightarrow-\infty$. Define $\alpha_{2 n-1}=0$ for $n \geq 1$. Define $\left\{\alpha_{2 n}\right\}$ recursively by the equation $\alpha_{2 n}=l+r_{2 n+1}$ ${ }^{+r_{2 n+1}} r_{2 n+2} \alpha_{2 n+2}, n \geq 1$, where α_{2} is any real number. We then have (0) $a_{n} \rightarrow 0$, (1) $a_{2 n-1} \alpha_{2 n-1} \rightarrow 0$, and (2) $\alpha_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ for $n \geq 1$. Also, $a_{2 n} \alpha_{2 n}$ $=. a_{2} \alpha_{2}-\left(a_{2}+a_{3}+\cdots+a_{2 n-1}\right) \rightarrow+\infty$, so that $\left\{a_{2 n} \alpha_{2 n}\right\}$ is bounded below.

The following counterexample shows that (l) of Theorem 8.20 or Theorem 8.21 cannot be replaced by the condition
(1^{\prime}) $\left\{a_{2 n} \alpha_{2 n}\right\}$ is bounded above and $a_{2 n-1} \alpha_{2 n-1} \rightarrow L$.

Counterexample 8.23. Let $\sum a_{n}$ be the divergent series whose terms are the negatives of those of the series given in Counterexample 8.22, i.e., $a_{2 n}=-1 / 2(n+1)$ and $a_{2 n+1}=l /(n+1)$ for $n \geq 0$. Define $\alpha_{2 n-1}=0$ for $n \geq 1$. Define $\left\{\alpha_{2 n}\right\}$ recursively by the equation $\alpha_{2 n}=1+r_{2 n+1}+r_{2 n+1} r_{2 n+2} \alpha_{2 n+2}, \quad n \geq 1$, where α_{2} is any real number. Accordingly, (0) $a_{n} \rightarrow 0$, (I) $a_{2 n-1} \alpha_{2 n-1} \rightarrow 0$, and (2) $\alpha_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ for $n \geq 1$. Also, $a_{2 n} \alpha_{2 n}=\cdot a_{2} \alpha_{2}-\left(a_{2}+a_{3}+\cdots+a_{2 n-1}\right) \rightarrow-\infty$, and thus $\left\{a_{2 n} \alpha_{2 n}\right\}$ is bounded above.

Lemma 8.24. Let Σa_{n} be an N-alternating series and $\left\{\beta_{n}\right\}$ be a sequence such that
(0) $a_{n} \rightarrow 0$,
(1) $\quad a_{2 n-1} \beta_{2 n-1} \rightarrow L_{1}$ and $a_{2 n} \beta_{2 n} \rightarrow L_{2}$, for some L_{1} and L_{2},
and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Defining $\alpha_{n}=I+r_{n+1} \beta_{n+1}$, for $n \geq N$, we have
(3) $\quad a_{2 n-1} \alpha_{2 n-1} \rightarrow L_{2}$ and $a_{2 n} \alpha_{2 n} \rightarrow L_{1}$
and
(4) $\quad \alpha_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}, \quad n \geq N$.

Moreover, for $n \geq N$ and $k \geq 1$,
(5) $I_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1}$

$$
=I_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) \alpha_{n+2 k-2}
$$

and
(6) $T_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) \beta_{n+2 k-2}$

$$
\leq I_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \alpha_{n+2 k-1} \cdot
$$

Proof: Since $\alpha_{n}=.1+r_{n+1} \beta_{n+1}, a_{2 n-1} \alpha_{2 n-1}=a_{2 n-1}+a_{2 n} \beta_{2 n}$
$\rightarrow L_{2}$ and $a_{2 n} \alpha_{2 n}=, a_{2 n}+a_{2 n+1} \beta_{2 n+1} \rightarrow L_{1}$. Using (2),
$\alpha_{n}-\left(l+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}\right)=l+r_{n+1} \beta_{n+1}-\left(l+r_{n+1}+r_{n+1} r_{n+2}\right.$ $\left.+r_{n+1} r_{n+2} r_{n+3} \beta_{n+3}\right)=r_{n+1}\left[\beta_{n+1}-\left(1+r_{n+2}+r_{n+2} r_{n+3} \beta_{n+3}\right)\right] \leq 0$, so that (4) holds. Next, $T_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) \alpha_{n+2 k-2}$ $=T_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right)\left(1+r_{n+2 k-1} \beta_{n+2 k-1}\right)=I_{n, 2 k-2}$
$+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1}$. Thus (5) holds. Again using (2), $\mathrm{T}_{\mathrm{n}, 2 \mathrm{k}-3}+\left(\mathrm{r}_{\mathrm{n}} \cdots \mathrm{r}_{\mathrm{n}+2 \mathrm{k}-2}\right) \beta_{\mathrm{n}+2 \mathrm{k}-2} \leq \mathrm{T}_{\mathrm{n}, 2 \mathrm{k}-3}$
$\left.+\left(r_{n} \cdots r_{n+2 k-2}\right)\left(1+r_{n+2 k-1}+r_{n+2 k-1} r_{n+2 k} \beta_{n+2 k}\right)\right]=T_{n, 2 k-2}$
$+\left(r_{n} \cdots r_{n+2 k-1}\right)\left(1+r_{n+2 k} \beta_{n+2 k}\right)=I_{n, 2 k-2}$
$+\left(r_{n} \cdots r_{n+2 k-1}\right) \alpha_{n+2 k-1}$. Consequently (6) holds. Q.E.D.

Theorem 8.25. Let L_{1} and L_{2} be any real numbers. Then a n.a.s.c. that an N-alternating series Σa_{n} converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\quad a_{2 n-1} \beta_{2 n-1} \rightarrow L_{1}$ and $a_{2 n} \beta_{2 n} \rightarrow L_{2}$
and
(2) $\quad \beta_{n} \geq l+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, n \geq N$.

Moreover, if (0), (1), and (2) hold, then, for $n \geq N$,
(a) $\left\{\begin{array}{l}r_{n}+r_{n} r_{n+1} \beta_{n+1}-\left(L_{2} / a_{n-1}\right) \geq r_{n} \geq r_{n} \beta_{n}-\left(L_{1} / a_{n-1}\right) \\ \text { or } \\ r_{n}+r_{n} r_{n+1} \beta_{n+1}-\left(L_{1} / a_{n-1}\right) \geq r_{n} \geq r_{n} \beta_{n}-\left(L_{2} / a_{n-1}\right),\end{array}\right.$
accordingly as n is odd or even, respectively. And in general, for $n \geq N$ and $k \geq 1$,
(b) $\left\{\begin{array}{l}T_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1}-\left(L_{2} / a_{n-1}\right) \\ \geq I_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) \beta_{n+2 k-2}-\left(I_{1} / a_{n-1}\right) \\ o_{n} \quad \\ I_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1}-\left(I_{1} / a_{n-1}\right) \geq T_{n} \\ \geq I_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) \beta_{n+2 k-2}-\left(I_{2} / a_{n-1}\right),\end{array}\right.$
accordingly as n is odd or even, respectively.

Proof: For the necessity, we may use the proof of the necessity of Theorem 8.2, replacing " α " by " β " throughout. For the sufficiency, assume that (0), (1), and (2) hold, and define $\alpha_{n}=1+r_{n+1} \beta_{n+1}$ for $n \geq N$. According to Lemma 8.24, conditions (0), (1), and (2) of Theorem 8.2 hold, with L_{1} and L_{2} interchanged. Using (b) of Theorem 8.2, and (5) and (6) of Lemma 8.24, we obtain (b) of the present theorem, from which (a) follows with $k=1$. Q.E.D.

The dual of Theorem 8.25 is Theorem 8.2.
Choosing $L_{1}=L_{2}=L$ in Theorem 8.25, we obtain the following theorem.

Theorem 8.26. Let L be any real number. Then a n.a.s.c. that an N-alternating series $\sum a_{n}$ converge is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\quad a_{n} \beta_{n} \rightarrow I$
and
(2) $\quad \beta_{n} \geq I+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Moreover, if (0), (1), and (2) hold, then, for $n \geq N$,
(a) $\quad r_{n}+r_{n} r_{n+1} \beta_{n+1}-\left(L / a_{n-1}\right) \geq I_{n} \geq r_{n} \beta_{n}-\left(L / a_{n-1}\right)$.

And in general, for $n \geq N$ and $k \geq 1$,
(b) $T_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1}-\left(L / a_{n-1}\right) \geq I_{n}$

$$
\geq I_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) \beta_{n+2 k-2}-\left(L / a_{n-1}\right) .
$$

Theorem 8.26 can be seen to have a dual by setting $L_{1}=L_{2}=L$ in Theorem 8.2.

The following example shows that condition (2) of Theorem 8.27 cannot be replaced by the condition (2') $\quad \beta_{n} \geq c^{+r_{n+1}}+r_{n+1} r_{n+2} \beta_{n+2}, \quad c<1$.

Example 8.28. Let $0<c<1$, so that $1<1 / c$. Let Σa_{n} be the divergent series defined in Example 8.4. According to that example, $a_{n} \rightarrow 0$, and there is a sequence $\left\{\alpha_{n}\right\}$ such that $a_{n} \alpha_{n} \rightarrow 0$ and $\alpha_{n} \leq \cdot l / c+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$. Defining $\beta_{n}=c\left(l+r_{n+1} \alpha_{n+1}\right), a_{n} \beta_{n}=c\left(a_{n}+a_{n+1} \alpha_{n+1}\right) \rightarrow 0$. From the preceeding inequality it is easily seen that
(2') holds. We conclude that (0) and (1) of Theorem 8.27 and (2') are necessary, but not sufficient, for the convergence of $\sum a_{n}$.

Choosing $L_{1}=L_{2}=0$ in Theorem 8.25, we obtain the following theorem.

Theorem 8.27. A n.a.s.c. that an N-alternating series Σa_{n} converge is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(I) $\quad a_{n} \beta_{n} \rightarrow 0$
and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Moreover, if (0), (1), and (2) hold, then, for $n \geq N$, (a) $\quad r_{n}+r_{n} r_{n+1} \beta_{n+1} \geq T_{n} \geq r_{n} \beta_{n}$.

And in general, for $n \geq N$ and $k \geq l$,
(b) $\quad T_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1} \geq T_{n} \geq T_{n, 2 k-3}$

$$
+\left(r_{n} \cdots r_{n+2 k-2}\right) \beta_{n+2 k-2} .
$$

The dual of Theorem 8.27 is Theorem 8.3.

Theorem 8.29. Let c be any number >1. Then a n.a.s.c. that an alternating series Σa_{n} converge absolutely is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\quad a_{n} \beta_{n} \rightarrow 0$
and
(2) $\quad \beta_{n} \geq c+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, n \geq 1$.

Proof: For the necessity, we may use the proof of the necessity of Theorem 8.5, replacing " α " by " β " throughout.

For the sufficiency, define $a_{n}, n \geq 1$, by the equation $c \alpha_{n}=1+r_{n+1} \beta_{n+1}$. Then $a_{n} \rightarrow 0$ and $a_{n} \alpha_{n}$ $=\left(a_{n}+a_{n+1} \beta_{n+1}\right) / c \rightarrow 0$. From (2), $c\left[\alpha_{n}-\left(1 / c+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}\right)\right]=r_{n+1}\left[\beta_{n+1}\right.$
$\left.-\left(c+r_{n+2}+r_{n+2} r_{n+3} \beta_{n+3}\right)\right] \leq 0$, so that $a_{n} \leq 1 / c+r_{n+1}$
$+r_{n+1} r_{n+2} a_{n+2}$ for $n \geq 1$, where $1 / c<1$. According to
Theorem 8.5, $\Sigma\left|a_{n}\right|$ converges. Q E.D.
The dual of Theorem 8.29 is Theorem 8.5.

Theorem 8.30. Let c, L_{1}, L_{2} be any real numbers where l <c. Then a n.a.s.c. that an alternating series $\sum a_{\mathrm{n}}$ converge absolutely is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $a_{2 n-1} \beta_{2 n-1} \rightarrow L_{1}$ and $a_{2 n} \beta_{2 n} \rightarrow L_{2}$
and
(2) $\quad \beta_{n} \geq c+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq 1$.

Proof: For the necessity, there is a sequence $\left\{\beta_{n}\right\}$ satisfying (1), (2) of Theorem 8.29. Define $\left\{\beta_{n}^{\prime}\right\}$ by the equations $a_{2 n-1} \beta_{2 n-1}^{\prime}=a_{2 n-1} \beta_{2 n-1}+L_{1}$ and $a_{2 n} \beta_{2 n}^{\prime}$ $=a_{2 n} \beta_{2 n}+L_{2}$. It is easily seen that $\left\{\beta_{n}^{\prime}\right\}$ satisfies (1) and (2) above.

For the sufficiency, define $\left\{\beta_{n}^{\prime}\right\}$ by the equations $a_{2 n-1} \beta_{2 n-1}^{\prime}=a_{2 n-1} \beta_{2 n-1}-L_{1}$ and $a_{2 n} \beta_{2 n}^{\prime}=a_{2 n} \beta_{2 n}-L_{2}$. We easily verify that $\left\{\beta_{n}^{\prime}\right\}$ satisfies (1) and (2) of Theorem 8.29, and thus $\sum a_{n}$ converges absolutely. Q.E.D. The dual of Theorem 8.30 is Theorem 8.6.

With $N=1$ in Theorem 8.27, we obtain the following therem.

Theorem 8.31. A n.a.s.c. that an alternating series Σa_{n} converge is that
$(0) \quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) $\quad a_{n} \beta_{n} \rightarrow 0$
and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq 1$.

Moreover, if (0), (1), and (2) hold, then, for $n \geq 1$,
(a) $\quad r_{n}+r_{n} r_{n+1} \beta_{n+1} \geq I_{n} \geq r_{n} \beta_{n}$.

And in general, for $n \geq 1$ and $k \geq 1$,
(b) $\quad T_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1} \geq T_{n} \geq T_{n, 2 k-3}$

$$
+\left(r_{n} \cdots r_{n+2 k-2}\right) \beta_{n+2 k-2} .
$$

The dual of Theorem 8.31 is Theorem 8.8.

Theorem 8.32. Let L be any real number. Then a n.a.s.c. that an N-alternating series $\sum a_{n}$ converge is that there exist a sequence $\left\{\beta_{n}\right\}$ such that
(1) $\quad a_{n} \beta_{n} \rightarrow L$,
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$,
and

$$
\begin{equation*}
\beta_{n} \geq 1+r_{n+1} \beta_{n+1}, \quad n \geq N . \tag{3}
\end{equation*}
$$

Moreover, if (1), (2), and (3) hold, then, for $n \geq N$,
(a) $\quad r_{n}+r_{n} r_{n+1} \beta_{n+1}-\left(L / a_{n-1}\right) \geq r_{n} \geq r_{n} \beta_{n}-\left(L / a_{n-1}\right)$.

And in general, for $n \geq N$ and $k \geq l$,
(b)

$$
\begin{aligned}
& T_{n, 2 k-2}+\left(r_{n} \cdots r_{n+2 k-1}\right) \beta_{n+2 k-1}-\left(L / a_{n-1}\right) \geq T_{n} \\
& \geq T_{n, 2 k-3}+\left(r_{n} \cdots r_{n+2 k-2}\right) \beta_{n+2 k-2}-\left(L / a_{n-1}\right)
\end{aligned}
$$

Proof: For the necessity, Theorem 8.26 implies the existence of a sequence $\left\{\beta_{n}\right\}$ such that conditions (0), (I), and (2) are satisfied. Also, by (a) of Theorem 8.26, we have $r_{n}+r_{n} r_{n+1} \beta_{n+1}-\left(L / a_{n-1}\right) \geq r_{n} \beta_{n}-\left(L / a_{n-1}\right)$ for
$\mathrm{n} \geq \mathrm{N}$, from which (3) follows.
For the sufficiency, assume that (1), (2), and (3) hold. Using (1), (3), and the fact that $\left|a_{n}\right| / a_{n}, n \geq N$, is bounded, we have $0<,\left|a_{n}\right| \leq,\left|a_{n}\right|\left(\beta_{n}-\beta_{n+1} r_{n+1}\right)$ $=.\left(\left|a_{n}\right| / a_{n}\right)\left(a_{n} \beta_{n}-a_{n+}{ }_{1} \beta_{n+1}\right) \rightarrow 0$, so that $\left|a_{n}\right| \rightarrow 0$, i.e., $a_{n} \rightarrow$. Now apply Theorem 8.26. Q.E.D.

According to Counterexample 8.10, Theorem 8.32 has no dual.

Remark 8.33. We now consider the four conditions:
(0) $a_{n}+0$,
(1) $\quad a_{n} \beta_{n} \rightarrow 0$,
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq 1$,
(3) $\quad \beta_{n} \geq l+r_{n+1} \beta_{n+1}, \quad n \geq 1$.

We have seen that if (0) or (3) is omitted, the remaining three conditions are necessary and sufficient for the convergence of an alternating series Σa_{n}. It will be shown that if condition (1) or (2) is omitted, the remaining three are not sufficient for the convergence of Σa_{n}. We will see that conditions (1) and (2) are not sufficient for the convergence of Σa_{n}. It will also be seen that if (1) is replaced by the weaker conditions that
$a_{n} \beta_{n}-a_{n+1} \beta_{n+1}+0$ and that $\left\{a_{n} \beta_{n}\right\}$ be bounded, the resulting four conditions are not sufficient for the convergence of Σa_{n}.

Counterexample 8.34. We use Counterexample 8.11 with $\alpha_{n}, n \geq 1$, as defined there. Defining $\beta_{n}=\alpha_{n}$ for $\mathrm{n} \geq 1$, the following conditions are obvious:
(0) $\quad a_{n} \rightarrow 0$,
(2) $\quad \beta_{n} \geq l+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, n \geq 1$,
(3) $\quad \beta_{n} \geq 1+r_{n+1} \beta_{n+1}, n \geq 1$.

Also, $a_{n} \beta_{n}-a_{n+1} \beta_{n+1}=a_{n} \rightarrow 0$ so that the four conditions $a_{n} \beta_{n}-a_{n+1} \beta_{n+1} \rightarrow 0,(0),(2)$, and (3) are not sufficient for the convergence of Σa_{n}.

Counterexample 8.35. Let Σa_{n} be the divergent series given in Counterexample 8.11. Defining $\beta_{n}=1$ for $n \geq 1$, it is obvious that the following conditions hold:
(0) $\quad a_{n} \rightarrow 0$,
(1) $a_{n} \beta_{n} \rightarrow 0$,
(3) $\quad \beta_{n} \geq 1+r_{n+1} \beta_{n+1}, \quad n \geq 1$.

Thus conditions (0), (1), and: (3) are not sufficient for the convergence of $\Sigma \mathrm{a}_{\mathrm{n}}$.

Counterexample 8.36. Let $\sum a_{n}$ be the divergent series in Counterexample 8.10 and $\left\{\beta_{n}\right\}$ be any monotone decreasing sequence such that $\beta_{n} \rightarrow 0$. We then have
(1) $\quad a_{n} \beta_{n} \rightarrow 0$
and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq 1$.

Thus conditions (1) and (2) are not sufficient for the convergence of Σa_{n}.

Counterexample 8.37. Let Σa_{n} be the divergent series in Counterexample 8.10, L be any number $\geq l / 2$, and $\left\{\beta_{n}\right\}$ be any monotone decreasing sequence converging to L. We then have
(1) $\quad a_{2 n-1} \beta_{2 n-1} \rightarrow-L$ and $a_{2 n} \beta_{2 n} \rightarrow L$,
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq 1$,
and
(3) $\quad \beta_{n} \geq 1+r_{n+1} \beta_{n+1}, \quad n \geq 1$.

Consequently, (1) of Theorem 8.32 cannot be replaced by the weaker condition that $a_{2 n-1} \beta_{2 n-1} \rightarrow L_{1}$ and $a_{2 n} \beta_{2 n} \rightarrow L_{2}$, for some numbers L_{1} and L_{2}. The corresponding replacement in Theorem 8.26 was valid according to Theorem 8.25.

Counterexample 8.38. We use Counterexample 8.13 with α_{n}, $n \geq 1$, as defined there. Defining $\beta_{n}=a_{n}$, for $n \geq 1$, the following conditions hold:
(0) $\quad a_{n}+0$,
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, n \geq 1$,
(3) $\quad \beta_{n} \geq 1+r_{n+1} \beta_{n+1}, n \geq 1$.

According to Counterexample 8.13, the sequence $\left\{a_{n} \beta_{n}\right\}$ is bounded and $a_{n} \beta_{n}-a_{n+1} \beta_{n+1} \rightarrow 0$. Thus, replacing (1) of Remark 8.33 by these two conditions, the resulting conditions are not sufficient for the convergence of Σa_{n}.

Theorem 8.39. Let L be any real number and Σa_{n} be any N-alternating series such that $a_{2 n}>0$. Then a n.a.s.c. that Σa_{n} converge is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that, (1) some subsequence of $\left\{a_{2 n-1} \beta_{2 n-1}\right\}$ is bounded above and $a_{2 n} \beta_{2 n} \rightarrow L$ and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n-1} \beta_{2 n-1}\right\}$ converges.

Proof: The necessity follows from Theorem 8.25. For the sufficiency, define $\alpha_{n}=l+r_{n+1} \beta_{n+1}$ for
$n \geq N$. Then $a_{2 n-1} a_{2 n-1}=a_{2 n-1}+a_{2 n} \beta_{2 n} \rightarrow$ L. Since $a_{2 n} \alpha_{2 n}=a_{2 n}+a_{2 n+1} \beta_{2 n+1}$, some subsequence of $\left\{a_{2 n} \alpha_{2 n}\right\}$ is bounded above. Also, $\alpha_{n}=l+r_{n+1} \beta_{n+1} \leq l+r_{n+1}$ $+r_{n+1} r_{n+2}\left(1+r_{n+3} \beta_{n+3}\right)=l+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}$ for $n \geq N$. From Theorem 8.19, both $\sum a_{n}$ and $\left\{a_{2 n} \alpha_{2 n}\right\}$ converge. Consequently, $\quad a_{2 n+1} \beta_{2 n+1}=. a_{2 n} \alpha_{2 n}{ }^{-a}{ }_{2 n} \rightarrow \lim a_{2 n} \alpha_{2 n}$, i.e., $\left\{a_{2 n-1} \beta_{2 n-1}\right\}$ converges. Q.E.D.

The dual of Theorem 8.39 is Theorem 8.15.

Theorem 8.40. Let L be any real number and $\sum a_{n}$ be any N -alternating series such that $a_{2 n}<.0$. Then a n.a.s.c. that $\sum a_{n}$ converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n-1} \beta_{2 n-1}\right\}$ is bounded below and $a_{2 n} \beta_{2 n} \rightarrow L$
and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n-1} \beta_{2 n-1}\right\} \quad$ converges.

Proof: The necessity follows from Theorem 8.25. For the sufficiency, define $a_{n}^{\prime}=-a_{n}$ for $n \geq 0$. Accordingly, $r_{n}^{\prime}=a_{n}^{\prime} / a_{n-1}^{\prime}=a_{n} / a_{n-1}=r_{n}$ for $n \geq N$. It is easily seen that Theorem 8.39 is applicable, yielding the convergence of $\sum a_{n}^{\prime}$ and $\left\{a_{2 n-1}^{\prime} \beta_{2 n-1}\right\}$. Thus, Σa_{n} and $\left\{a_{2 n-1} \beta_{2 n-1}\right\}$ both converge. Q.E.D.

The dual of Theorem 8.40 is Theorem 8.14 .

Theorem 8.41. Let L be any real number. Then a n.a.s.c. that an N-alternating series $\sum a_{n}$ converge is that
(0) $a_{n}+0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n-1} \beta_{2 n-1}\right\}$ is bounded and

$$
a_{2 n} \beta_{2 n} \rightarrow L
$$

and
(2) $\quad \beta_{n} \geq l+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n-1} \beta_{2 n-1}\right\}$ converges.

Proof: The necessity follows from Theorem 8.25.
For the sufficiency, we need only note that $a_{z n}>.0$ or $a_{2 n}<.0$, and then apply Theorem 8.39 or Theorem 8.40, respectively. Q.E.D.

The dual of Theorem 8.41 is Theorem 8.16.

Theorem 8.42. Let L be any real number and Σa_{n} any N-alternating series such that $a_{2 n}>$. 0 . Then a n.a.s.c. that Σ_{a} converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(I) some subsequence of $\left\{a_{2 n} \beta_{2 n}\right\}$ is bounded below and $a_{2 n-1} \beta_{2 n-1} \rightarrow L$
and

$$
\begin{equation*}
\beta_{n} \geq I+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N \tag{2}
\end{equation*}
$$

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n} \beta_{2 n}\right\}$ converges.

Proof: The necessity follows from Theorem 8.25.
For the sufficiency, define $\alpha_{n}=1+r_{n+1} \beta_{n+1}$ for
$n \geq N$. Then $a_{2 n} \alpha_{2 n}=\cdot a_{2 n}+a_{2 n+1} \beta_{2 n+1} \rightarrow$ L. Since
$a_{2 n-1} \alpha_{2 n-1}=a_{2 n-1}+a_{2 n} \beta_{2 n}$, some subsequence of
$\left\{a_{2 n-1} a_{2 n-1}\right\}$ is bounded below. Also, $\alpha_{n}=1+r_{n+1} \beta_{n+1}$
$\leq l+r_{n+1}+r_{n+1} r_{n+2}\left(l+r_{n+3} \beta_{n+3}\right)=l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ for
$n \geq N$. From Theorem 8.14, both Σa_{n} and $\left\{a_{2 n-1} \alpha_{2 n-1}\right\}$
converge. Consequently, $a_{2 n} \beta_{2 n}=a_{2 n-1} \alpha_{2 n-1}-a_{2 n-1}$
$\rightarrow \lim a_{2 n-1} \alpha_{2 n-1}$, i.e., $\left\{a_{2 n} \beta_{2 n}\right\}$ converges. Q.E.D.

The dual of Theorem 8.42 is Theorem 8.20.

Theorem 8.43. Let L be any real number and $\sum a_{n}$ be any N-alternating series such that $a_{2 n}<0$. Then a n.a.s.c. that $\sum a_{n}$ converge is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(I) some subsequence of $\left\{a_{2 n} \beta_{2 n}\right\}$ is bounded above and $a_{2 n-1} \beta_{2 n-1} \rightarrow L$
and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n} \beta_{2 n}\right\}$ converges.

Proof: The necessity follows from Theorem 8.25. For the sufficiency, define $a_{n}^{\prime}=-a_{n}$ for
$n \geq 0$. Then $r_{n}^{\prime}=a_{n}^{\prime} / a_{n-1}^{\prime}=a_{n} / a_{n-1}=r_{n}$ for $n \geq N$. From Theorem 8.42, both Σa_{n}^{\prime} and $\left\{a_{2 n}^{1} \beta_{2 n}\right\}$ converge. Thus, Σa_{n} and $\left\{a_{2 n} \beta_{2 n}\right\}$ converge. Q.E.D.

The dual of Theorem 8.43 is Theorem 8.19.

Theorem 8.44. Let L be any real number. Then a n.a.s.c. that an N-alternating series $\sum a_{n}$ converge is that
(0) $a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that,
(1) some subsequence of $\left\{a_{2 n} \beta_{2 n}\right\}$ is bounded and

$$
a_{2 n-1} \beta_{2 n-1} \rightarrow L
$$

and
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$.

Moreover, if conditions (0), (1), and (2) hold, then $\left\{a_{2 n} \beta_{2 n}\right\}$ converges.

Proof: The necessity follows from Theorem 8.25.
For the sufficiency, we need only note that
$a_{2 n}>0$ or $a_{2 n}<0,0$ and then apply Theorem 8.42 or
Theorem 8.43, respectively. Q.E.D.
The dual of Theorem 8.44 is Theorem 8.21 .

Theorem 8.45. (Leibnitz's Theorem for alternating series.) Let Σa_{n} be an alternating series such that $-1 \leq r_{n}$, for $n \geq 2$, and $a_{n} \rightarrow 0$. Then Σa_{n} converges, and moreover $\left|S-S_{n-1}\right| \leq\left|a_{n}\right|$ for $n \geq 1$.
lIst Proof: Choosing $\alpha_{n}=0$ for $n \geq 1$, we may use (a) of Theorem 8.8 to obtain

$$
r_{n}+r_{n} r_{n+1} \cdot 0 \leq\left(S-S_{n-1}\right) / a_{n-1} \leq r_{n} \cdot 0, \quad n \geq 1,
$$

and this immediately yields the desired inequality. Q.E.D.

2nd Proof: Choosing $\beta_{n}=1$ for $n \geq 1$, we may use
(a) of Theorem 8.31 to obtain

$$
0 \geq r_{n}+r_{n} r_{n+1} \cdot 1 \geq\left(s-s_{n-1}\right) / a_{n-1} \geq r_{n} \cdot l, \quad n \geq 1,
$$

from which the desired inequality follows. Q.E.D.
Lemma 8.46. Suppose that p, x, y, and q are numbers such that $-1<p \leq q \leq 0, p \leq x \leq q$, and $p \leq y \leq q$. Setting $\alpha=(1+p) /(1-p q)$ and $\beta=(1+q) /(1-p q)$, we have
(1) $p \beta \leq x \beta \leq x+x y \alpha \leq x+x y \beta \leq x \alpha \leq q \alpha$,
(2) $\alpha \leq 1+x+x y \alpha$ and $\beta \geq 1+x+x y \beta$,
and
(3) $p \beta \leq x /(1-x) \leq q \alpha$.

Proof: It is easily seen that $0<\alpha=1+p \beta \leq \beta=1+q \alpha$. Accordingly $p \beta \leq x \beta=x(1+q \alpha) \leq x(1+y \alpha) \leq x(1+y \beta)$
$\leq x(1+p \beta)=x \alpha \leq q \alpha, \alpha=1+p \beta \leq 1+x+x y \alpha$, and $\beta=1+q \alpha$
$\geq 1+x+y \beta$. This proves (1) and (2). For (3), we have $[x /(1-x)]-p \beta=[(x-p)+p(x-q)] /[(1-x)(1-p q)] \geq 0$ and $q \alpha-[x /(1-x)]=[(q-x)+q(p-x)] /[(1-x) /(1-p q)] \geq 0$. Q.E.D.

Theorem 8.47. Suppose that Σa_{n} is an N-alternating series such that $-1<p \leq r_{n} \leq q \leq 0$ for $n \geq N$, where p and q are constants. Setting $\alpha=(1+p) /(1-p q)$ and $\beta=(1+q) /(1-p q)$,
(1)

$$
\begin{aligned}
p \beta \leq r_{n} \beta \leq r_{n}+r_{n} r_{n+1} \alpha \leq T_{n} & \leq r_{n}+r_{n} r_{n+1} \beta \leq r_{n} \alpha \\
& \leq q \alpha, \quad n \geq N .
\end{aligned}
$$

Proof: Define $\alpha_{n}=\alpha$ and $\beta_{n}=\beta$ for $n \geq N$. Since $\left|r_{n}\right| \leq|p|<1$ for $n \geq N, \quad a_{n} \rightarrow 0, \quad a_{n} a_{n} \rightarrow 0$, and $a_{n}^{\beta} n_{n} \rightarrow 0$. By Lemma 8.46, $\quad \alpha_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ and $\beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2}^{\beta} n+2$ for $n \geq N$. Let n be any integer $\geq N$. Using (1) of Lemma 8.46, $\quad \beta \beta \leq r_{n} \beta \leq r_{n}$ $+r_{n} r_{n+1} \alpha \leq r_{n}+r_{n} r_{n+1}^{\beta} \leq r_{n} \alpha \leq q \alpha$. Also Theorem 8.8 and Theorem 8.27 yield the respective inequalities $r_{n}+r_{n} r_{n+1} \alpha \leq T_{n}$ and $T_{n} \leq r_{n}+r_{n} r_{n+\uparrow} \beta$. (1) of the present theorem is now evident. Q.E.D.

Suppose that p, q are constants such that
$-1<p \leq q<0$. We now exhibit a series Σa_{n} satisfying the hypotheses of Theorem 8.47, and for which $p \beta$ and $q a$ are the corresponding largest and smallest constants such that $p \beta \leq T_{n} \leq q \alpha$ for $n \geq N=1$. In particular, let $\sum a_{n}=1+p+p q+p^{2} q+p^{2} q^{2}+p^{3} q^{2}+\cdots$. Then $r_{2 n-1}=p$ and $r_{2 n}=q$ for $n \geq 1$, so that $I_{2 n-1}=r_{2 n-1}+r_{2 n-1} r_{2 n}+\ldots$ $=p \beta$ and $T_{2 n}=r_{2 n}+r_{2 n^{2}}{ }_{2 n+1}+\cdots=q \alpha$, for $n \geq 1$. Lemma 8.48. If $-1<x, \alpha<1$, and $\alpha \leq x(1+y) /(1+x)$, then $1 /(1-\alpha) \leq 1+x+x y /(1-\alpha)$.

Proof: We have $0<1-\alpha$ and $0<1+x$. Thus, $a(1+x)$ $\leq x(1+y), l \leq(1-\alpha)+x(1-\alpha)+x y$, and $1 /(1-\alpha) \leq 1+x+x y /(1-\alpha)$. Q.E.D.

Lemma 8.49. If $-1<x$ and $1>\beta \geq x(1+y) /(1+x)$, then $1 /(1-\beta) \geq 1+x+x y /(1-\beta)$.

Proof: We have $0<1-\beta$ and $0<1+x$. The following inequalities are now obvious: $\beta(1+x) \geq x(1+y)$, $1 \geq(1-\beta)+x(1-\beta)+x y, \quad 1 /(1-\beta) \geq 1+x+x y /(1-\beta) \cdot$ Q.E.D.

We give three proofs of the following theorem.

The orem 8.50. If $r_{n} \rightarrow r,-1<r<0$, then $T_{n} \rightarrow r /(1-r)$.
lIst Proof: Let $\varepsilon>0$. Since $(y-x) /(1-x y) \rightarrow 0$ as $(x, y) \rightarrow(r, r)$, there are numbers p, q such that $-1<p<r<q<0$ and $(q-p) /(1-p q)<\varepsilon$. Using (3) of Lemma 8.46, $p \beta \leq r /(1-r) \leq q \alpha$ where $\alpha=(1+p) /(1-p q)$ and $\beta=(1+q) /(1-p q)$. Also, there is a positive integer N such that $p \leq r_{n} \leq q$ for $n \geq N$. By Theorem 8.47, $p \beta \leq T_{n} \leq q \alpha$ for $n \geq N$. Hence, $\left|T_{n}-r /(1-r)\right| \leq q \alpha-p \beta$ $=(q-p) /(1-p q)<\varepsilon$ for $n \geq N$. Q.E.D.
and Proof: Since $r_{n}\left(1+r_{n+1}\right) /\left(1+r_{n}\right) \rightarrow r$, there is a positive integer N and a monotone increasing sequence $\left\{\alpha_{n}\right\}$ such that $\alpha_{n} \rightarrow r$ and, for $n \geq N,-1<r_{n}<0$ and $\alpha_{n} \leq r_{n+1}\left(1+r_{n+2}\right) /\left(1+r_{n+1}\right)$. We now use Lemma 8.48 and the inequality $1 /\left(I-\alpha_{n}\right) \leq l /\left(1-\alpha_{n+2}\right)$ for $n \geq N$ to obtain

$$
\begin{aligned}
\frac{1}{1-a_{n}} \leq 1+r_{n+1}+r_{n+1} r_{n+2} \frac{1}{1-a_{n}} & \leq 1+r_{n+1} \\
& +r_{n+1} r_{n+2} \frac{1}{1-a_{n}+2}
\end{aligned}
$$

for $n \geq N$. Since $|r|<1, a_{n} \rightarrow 0$ and $a_{n} /\left(1-a_{n}\right) \rightarrow 0$. According to Theorem 8.3, $r_{n}+r_{n} r_{n+1} /\left(1-\alpha_{n+1}\right) \leq T_{n}$ $\leq r_{n} /\left(1-\alpha_{n}\right)$ for $n \geq N$. The conclusion now follows since $r_{n}+r_{n} r_{n+1} /\left(1-a_{n+1}\right) \rightarrow r+r^{2} /(1-r)=r /(1-r)$ and $r_{n} /\left(1-\alpha_{n}\right) \rightarrow r /(1-r)$. Q.E.D.

3rd Proof: Since $r_{n}\left(1+r_{n+1}\right) /\left(1+r_{n}\right) \rightarrow r$, there is a positive integer N and a monotone decreasing sequence $\left\{\beta_{n}\right\}$ such that $\beta_{n} \rightarrow r$ and, for $n \geq N,-1<r_{n}<0$ and $1>\beta_{n} \geq r_{n+1}\left(1+r_{n+2}\right) /\left(1+r_{n+1}\right)$. We now use Lemma 8.49 and the inequality $1 /\left(1-\beta_{n}\right) \geq 1 /\left(1-\beta_{n+2}\right)$ for $n \geq N$ to obtain

$$
\begin{aligned}
1 /\left(1-\beta_{n}\right) & \geq 1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-\beta_{n}\right) \\
& \geq 1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-\beta_{n+2}\right)
\end{aligned}
$$

for $n \geq N$. Since $|r|<1, a_{n} \rightarrow 0$ and $a_{n} /\left(1-\beta_{n}\right) \rightarrow 0$. According to Theorem 8.27, $r_{n}+r_{n} r_{n+1} /\left(1-\beta_{n+1}\right) \geq T_{n}$ $\geq r_{n} /\left(1-\beta_{n}\right)$ for $n \geq N$. The conclusion now follows since $r_{n}+r_{n} r_{n+1} /\left(1-\beta_{n+1}\right) \rightarrow r+r^{2} /(1-r)=r /(1-r)$ and $r_{n} /\left(1-\beta_{n}\right)$ $\rightarrow r /(l-r)$. Q.E.D.

Theorem 8.51. If Σa_{n} is an N-alternating series,
$-1<r<0$, and $l /(1-r) \leq 1+r_{n+1}+r_{n+1} r_{n+2} /(1-r)$ for
$n \geq N$, then $r_{n}+r_{n} r_{n+1} /(1-r) \leq r_{n} \leq r_{n} /(1-r)$ for $n \geq N$.

Proof: Since $|r|<1, a_{n} \rightarrow 0$ and $a_{n} /(1-r) \rightarrow 0$. Now apply Theorem 8.3 with $\alpha_{n}=l /(1-r)$ for $n \geq N$. Q.E.D.

Theorem 8.52. If Σa_{n} is an N-alternating series, $-1<r<0$, and $r_{n+2} \leq r_{n+1}$ for $n \geq N$, then $r_{n}+r_{n} r_{n+1} /(1-r) \leq r_{n} \leq r_{n} /(1-r)$ for $n \geq N$.

Proof: Let $n \geq N$. Then $-1<r \leq r_{n+2} \leq r_{n+1}$, so that $r \leq r_{n+1} \leq r_{n+1}\left(1+r_{n+2}\right) /\left(1+r_{n+1}\right)$. By Lemma 8.48, $1 /(1-r)$
$\leq 1+r_{n+1}+r_{n+1} r_{n+2} /(1-r)$. Now apply Theorem 8.51. Q.E.D.

Theorem 8.53. If $-1<r \leq r_{n+1} \leq r_{n}<0$ for $n \geq N$, then, for $n \geq N, \quad r_{n}+r_{n} r_{n+1}(1+r) /\left(1-r r_{n}\right) \leq r_{n} \leq r_{n}$ $+r_{n} r_{n+1}\left(1+r_{n}\right) /\left(1-r r_{n}\right)$.

Proof: Let m be any integer $\geq N, p=r, q=r_{m}$, $\alpha=(1+p) /(1-p q)$, and $\beta=(1+q) /(1-p q)$. Then $-1<p \leq r_{n} \leq q<0$ for $n \geq m$. From (1) of Theorem 8.47, $r_{n}+r_{n} r_{n+1} \alpha \leq T_{n} \leq r_{n+1} r_{n+1} \beta$ for $n \geq m$. Setting $n=m$, the desired inequality obtains. Q.E.D.

Assuming the hypotheses of Theorem 8.53, the lower bound given there for T_{n} and that given by Theorem 8.52 will now be compared. No comparison of upper bounds appears evident.

The following inequalities are equivalent:
$r_{n}+r_{n} r_{n+1} /(1-r) \geq r_{n}+r_{n} r_{n+1}(1+r) /\left(1-r r_{n}\right), l /(l-r)$
$\geq(1+r) /\left(1-r r_{n}\right), l-r r_{n} \geq 1-r^{2}, r_{n} \geq r$. Consequently, the lower bound for T_{n} given by Theorem 8.52 appears better. It is also simpler in form.

Theorem 8.54. Let Σa_{n} be an N-alternating series. Then a n.a.s.c. that $T_{n} \rightarrow-1 / 2$ is that $a_{n} \rightarrow 0, r=-1$, and there exist a sequence $\left\{a_{n}\right\}$ such that
(1) $\quad a_{n} \rightarrow 1 / 2$,
and
(2)

$$
a_{n} \leq 1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, \quad n \geq N
$$

Proof: For the necessity, assume that $I_{n} \rightarrow-1 / 2$. Accordingly, Σa_{n} converges and $a_{n} \rightarrow 0$. Thus, r_{n} $=T_{n} /\left(1+T_{n+1}\right) \rightarrow(-1 / 2) /(1-1 / 2)=-1$, i.e., $\quad r=-1$. Defining $\alpha_{n}=l+I_{n+1}$ for $n \geq N, \quad a_{n} \rightarrow 1-1 / 2=1 / 2$ and $a_{n}=1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}$ for $n \geq N$.

For the sufficiency, Theorem 8.3 yields
$r_{n}+r_{n} r_{n+1} \alpha_{n+1} \leq T_{n} \leq r_{n} a_{n}$ for $n \geq N$. Also, $\lim \left(r_{n}+r_{n} r_{n+1} \alpha_{n+1}\right)=\lim r_{n} \alpha_{n}=-1 / 2$, which implies that $T_{n} \rightarrow-1 / 2$. Q.E.D.

Theorem 8.55. Let Σa_{n} be an N-alternating series. Then a n.a.s.c. that $I_{n} \rightarrow-1 / 2$ is that $a_{n} \rightarrow 0, r=-1$, and there exist a sequence $\left\{\beta_{n}\right\}$ such that

$$
\begin{equation*}
\beta_{n} \rightarrow 1 / 2 \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N \tag{2}
\end{equation*}
$$

Proof: For the necessity we may use the proof of the necessity of Theorem 8.54, replacing " α " by " β " throughout.

For the sufficiency, we use Theorem 8.27 to obtain $r_{n} \beta_{n} \leq T_{n} \leq r_{n}+r_{n} r_{n+1} \beta_{n+1}$ for $n \geq N$. Also, $r_{n} \beta_{n} \rightarrow-1 / 2$ and $r_{n}+r_{n} r_{n+1} \beta_{n+1} \rightarrow-1 / 2$, so that $T_{n} \rightarrow-1 / 2$. Q.E.D.

Lemma 8.56. If $x_{n} \rightarrow x,-\infty<x<0$, and $\lim \sup y_{n}=y$, $-\infty \leq y \leq+\infty$, then $\lim \inf x_{n} y_{n}=\left(\lim x_{n}\right)\left(\lim \sup y_{n}\right)$. Proof: Suppose that $y=+\infty$. Then $y_{n}!\rightarrow+\infty$ for some subsequence $\left\{n^{\prime}\right\}$ of $\{n\}, x_{n}, y_{n}, \rightarrow x(+\infty)=-\infty$, and $\lim \inf x y=-\infty$. Also $\left(\lim x_{n}\right)\left(\lim \sup y_{n}\right)=x(+\infty)=-\infty$,
and thus $\lim \inf x_{n} y_{n}=\left(\lim x_{n}\right)\left(\lim \sup y_{n}\right)$.
Suppose that $y=-\infty$. Then $\lim y_{n}=-\infty$,
$\lim \inf x_{n} y_{n}=+\infty$, and $\left(\lim x_{n}\right)\left(\lim \sup y_{n}\right)=x(-\infty)$
$=+\infty$. Hence $\lim \inf x_{n} y_{n}=\left(\lim x_{n}\right)\left(\lim \sup y_{n}\right)$.
Suppose that $-\infty<y<+\infty$ and let jim inf $x_{n} y_{n}=$ L.
Then $-\infty<L<+\infty$ and $y_{n \prime} \rightarrow y$ for some subsequence $\left\{n^{\prime}\right\}$ of $\{n\}:$ Hence $x_{n}, y_{n}, \rightarrow x y$, and thus $L \leq x y$. Since \lim inf $x_{n} y_{n}=L$, there is a subsequence $\{n *\}$ of $\{n\}$ such that $x_{n *} y_{n} * L$, and thus $y_{n} *$ $=. x_{n *} y_{n *} / x_{n *} \rightarrow L / x \leq y$. Consequently, $L \geq x y$. Hence, $L=x y$. Q.E.D.

Theorem 8.57. If $-1<r_{n}$ and $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)$ <1, then $r_{n} \rightarrow r=-1,\left|a_{n}\right| \rightarrow a$ for some $a>0$, Σa_{n} diverges, and there is a positive integer m such that $\prod_{m}^{\infty}\left|r_{n}\right|$ converges.

Proof: By hypothesis, $0<1+r_{n}$ and $\left(1+r_{n+1}\right) /\left(1+r_{n}\right)<1$. Thus $-1<r_{n+1}<r_{n}$ and $r_{n} \rightarrow r$ where $-1 \leq r$. We must have $r=-1$; since otherwise, $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)$ $=\lim \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=1$, a contradiction. Since $r=-1$, we have $-1<. r_{n}<0,\left|r_{n}\right|=\left|a_{n} / a_{n-1}\right|<1$, and
$\left|a_{n}\right|<.\left|a_{n-1}\right|$. Consequently, $\quad\left|a_{n}\right| \rightarrow a$ for some $a \geq 0$. Assume that $a=0$. Setting $L=1 i m \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)$, $0 \leq L<1 . \quad$ From Lemma 8.56, $\lim \inf r_{n}\left(1+r_{n+\uparrow}\right) /\left(1+r_{n}\right)$ $=\left(\lim r_{n}\right)\left[\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)\right]=-L,-1<-L \leq 0$. Hence, there is a positive integer N and a monotone increasing sequence $\left\{\alpha_{n}\right\}$ such that $\alpha_{n} \rightarrow-L$ and, for $n \geq N,-1<r_{n}<0$ and $a_{n} \leq r_{n+1}\left(1+r_{n+2}\right) /\left(1+r_{n+1}\right)$. From Lemma 8.48 and the inequality $l /\left(1-\alpha_{n}\right) \leq l /\left(1-\alpha_{n+2}\right)$ for $n \geq N, 1 /\left(1-\alpha_{n}\right) \leq l+r_{n+1}+r_{n+1} r_{n+2} /\left(1-\alpha_{n}\right) \leq l+r_{n+1}$ $+r_{n+1} r_{n+2} /\left(1-\alpha_{n+2}\right)$ for $n \geq N$. Also, $a_{n} /\left(1-\alpha_{n}\right) \rightarrow 0$. From (a) of Theorem 8.3, $\quad r_{n}+r_{n} r_{n+1} /\left(1-\alpha_{n+1}\right) \leq r_{n} /\left(1-\alpha_{n}\right)$ for $n \geq N$. Letting $n \rightarrow \infty$, we obtain $-1+1 /(1+L)$ $\leq-l /(1+L),-(l+L)+1 \leq-1$, and $1 \leq L ;$ a contradiction. Thus, $a>0$ and Σa_{n} must diverge. Since $r_{n}<0$, there is a positive integer m such that $r_{n} \neq 0$ for $n \geq m$, and thus $\left|r_{m}\right|\left|r_{m+1}\right| \cdots\left|r_{m+n}\right|=.\left|a_{m+n}\right| /\left|a_{m-1}\right|$ $\rightarrow a /\left|a_{m-1}\right|>0$ as $n \rightarrow \infty$. Hence $\prod_{m}^{\infty}\left|r_{n}\right|$ converges to $a /\left|a_{m-1}\right| \cdot$ Q.E.D.

The preceeding proof of Theorem 8.57 involved only the theory of N -alternating series. By use of known theorems for series of positive terms, and alternate proof is now given.

Proof: By hypothesis, $0<1+r_{n}$ and $\left(1+r_{n+1}\right) /\left(1+r_{n}\right)$ <. 1. Thus $-1<r_{n+1}<r_{n}$ and $r_{n} \rightarrow r$ where $-1 \leq r$. We must have $r=-1$; since otherwise,
$\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=\lim \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=1, \quad a$ contradiction. Since $r=-1,-1<. r_{n}<.0$ and there is a positive integer m such that $-1<r_{n}<0$ for $n \geq m$. Consequently, $\quad \sum_{m}^{\infty}\left(1-\left|r_{n}\right|\right)=\sum_{m}^{\infty}\left(1+r_{n}\right)$ is a series of pori-
five terms, which converges since $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)$
<1. Thus $1+r_{n} \rightarrow 0$ and $r_{n} \rightarrow r=-1$. Also with
$1-\left|r_{n}\right|>0$, for $n \geq m$, it is known (5, p. 382) that $\sum_{m}^{\infty}\left(1-\left|r_{n}\right|\right)$ converges if and only if $\prod_{m}^{\infty}\left[1-\left(l-\left|r_{n}\right|\right)\right]$
$=\prod_{m}^{\infty}\left|r_{n}\right|$ converges; thus $\prod_{m}^{\infty}\left|r_{k}\right|=a$ for some $a>0$.
Hence, for $n>m, \quad\left|a_{n}\right|=\left|a_{m}\right|\left|r_{m+1} r_{m+2} \cdots r_{n}\right|$
$\rightarrow\left|a_{m}\right|\left(\prod_{m}^{\infty}\left|r_{k}\right|\right)=\left|a_{m}\right|(a)>0$. Consequently, $\sum a_{n}$ diverges. Q.E.D.

Corollary 8.58. If $a_{n} \rightarrow 0$ and $-1<. r_{n}$, then
$\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right) \geq 1$.

Proof: Assume that $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)<l$. Then from Theorem 8.57, $\quad\left|a_{n}\right| \rightarrow a>0$ which contradicts
$a_{n} \rightarrow 0$. Thus, $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right) \geq 1$. Q.E.D.

Theorem 8.59. If $a_{n}+0, r=-1<. r_{n}$, and
$\lim \sup \left(I+r_{n+1}\right) /\left(I+r_{n}\right)=I$, then $I_{n} \rightarrow r /(1-r)=-1 / 2$.

Proof: From Lemma 8.56, lm inf $r_{n}\left(I+r_{n+1}\right) /\left(1+r_{n}\right)$
$=\lim r_{n} \cdot \lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=r \cdot 1=r$. Consequently, there is a positive integer N and a monotone increasing sequence $\left\{\alpha_{n}\right\}$ such that $\alpha_{n} \rightarrow r$ and, for $n \geq N$,
$-1<r_{n}<0$ and $a_{n} \leq r_{n+1}\left(1+r_{n+2}\right) /\left(1+r_{n+1}\right)$. Using Lemma 8.48 and the inequality $1 /\left(1-\alpha_{n}\right) \leq 1 /\left(1-\alpha_{n+2}\right)$ for $n \geq N$,
$1 /\left(1-\alpha_{n}\right) \leq 1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-\alpha_{n}\right) \leq 1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-\alpha_{n+2}\right)$ for $n \geq N$. Also, $1 /\left(1-\alpha_{n}\right) \rightarrow 1 / 2$. Now apply Theorem 8.54. Q.E.D.

Corollary 8.60. If $a_{n}+0, r=-1<. r_{n}$, and $\lim \sup \left(1+r_{n_{+1}}\right) /\left(1+r_{n}\right) \leq 1$, then $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)$
$=1$ and $I_{n}+r /(1-r)=-1 / 2$.

Proof: From Corollary 8.58, him sup $\left(1+r_{n+1}\right) /\left(1+r_{n}\right) \geq 1$, and thus $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=1$. Now apply Theorem 8.59. Q.E.D.

Lemma 8.61. If $a_{n} \rightarrow 0$ and $\lim \inf \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=L$, $0<\mathrm{L} \leq+\infty$, then $-1<r_{n}$.

Proof: Since $0<L, 0<.\left(1+r_{n+1}\right) /\left(1+r_{n}\right)$. Hence $1+r_{n}<.0$ or $0<. l+r_{n}$. If $l+r_{n}<0$, then $r_{n}<.-1$,
$1<\cdot\left|r_{n}\right|$, and $\left|a_{n-1}\right|<\cdot\left|a_{n}\right|$. This is impossible since $a_{n} \rightarrow 0$. Thus $0<.1+r_{n}$ and $-1<\cdot r_{n}$. Q.E.D.

Lemma 8.62. If $x_{n}+x,-\infty<x<0$, and him inf $y_{n}=y$,
$-\infty \leq y \leq+\infty$, then $\lim \sup x_{n} y_{n}=\left(\lim x_{n}\right)\left(\lim \inf y_{n}\right)$.
Proof: Suppose that $y=+\infty$. Then $\lim y_{n}=+\infty$, $\lim \sup x_{n} y_{n}=-\infty$, and $\left(\lim x_{n}\right)\left(\lim\right.$ inf $\left.y_{n}\right)=x(+\infty)=-\infty$. Suppose that $y=-\infty$. Then $y_{n}, \rightarrow-\infty$ for some subsequence $\left\{n^{\prime}\right\}$ of $\{n\}, x_{n}, y_{n}, \rightarrow x(-\infty)=+\infty$, and $\lim \sup x_{n} y_{n}=+\infty$. Also, $\left(\lim x_{n}\right)\left(\lim \inf y_{n}\right)$ $=x(-\infty)=+\infty$.

$$
\text { Suppose that }-\infty<y<+\infty \text { and let } \lim \sup x_{n} y_{n}
$$

$=L$. Then $-\infty<L<+\infty$ and y_{n}, \vec{y} for some subsequince $\{n \prime\}$ of $\{n\}$. Hence $x_{n}, y_{n}, \rightarrow x y$, and thus $x y \leq L$. Since \lim sup $x_{n} y_{n}=L$, there is a subsequence $\{n *\}$ of $\{n\}$ such that $x_{n *} y_{n *} \rightarrow L$, and thus $y_{n *}$ $=. x_{n *} y_{n *} / x_{n *} \rightarrow L / x \geq y$. Thus $L \leq x y$. Hence $L=x y$. Q.E.D.

Theorem 8.63. If $a_{n} \rightarrow 0, r=-1$, and
$\liminf \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=1$, then $-1<. r_{n}$ and $I_{n} \rightarrow r /(1-r)=-1 / 2$.

Proof: Using Lemma 8.61 and the fact that $r_{n} \rightarrow r=-1$, - $1<. r_{n}<.0$. From Lemma 8.62,
$\lim \sup r_{n}\left(1+r_{n+\dagger}\right) /\left(1+r_{n}\right)=\left(\lim r_{n}\right)[\lim \inf$
$\left.\left(1+r_{n+1}\right) /\left(1+r_{n}\right)\right]=r \cdot l=r$. Consequently, there is a positive integer N and a monotone decreasing sequence $\left\{\beta_{n}\right\}$ such that $\beta_{n} \rightarrow r$ and, for $n \geq N,-1<r_{n}<0$ and $1>\beta_{n} \geq r_{n+1}\left(1+r_{n+2}\right) /\left(1+r_{n+1}\right)$. Using Lemma 8.49 and the inequality $l /\left(1-\beta_{n}\right) \geq 1 /\left(1-\beta_{n+2}\right)$ for $n \geq N$, $l /\left(1-\beta_{n}\right) \geq 1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-\beta_{n}\right) \geq 1+r_{n+1}$
$+r_{n+1} r_{n+2} /\left(1-\beta_{n+2}\right)$ for $n \geq N$. Also, $1 /\left(1-\beta_{n}\right) \rightarrow 1 / 2$. Now apply Theorem 8.55. Q.E.D.

Iheorem 8.64. If $a_{n} \rightarrow 0, r=-1$, and
$\lim \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=1$, then $-1<r_{n}$ and
$\lim I_{n}=r /(1-r)=-1 / 2$.

Proof: Since $\lim \inf \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=\lim \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=1$, the conclusion follows from Theorem 8.63. Q.E.D. Pflanz (18, p. 27) has proven that if $\sum a_{n}$ is an alternating series such that $r_{n}=-l+a / n+\gamma_{n} / n$, where $a>0$
and $Y_{n} \rightarrow 0$, then $\sum a_{\delta n} \varepsilon M R\left(\sum a_{n}\right)$. We now give a short proof of this fact.

Theorem 8.65. If $r_{n}=.-1+a / n+\gamma_{n} / n$ where $a>0$ and $\gamma_{n} \rightarrow 0$, then $T_{n} \rightarrow-1 / 2$ and $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\sum a_{n}\right)$.

Proof: By hypothesis, $r=\lim r_{n}=-1$ and $-1<. r_{n}$ <. 0. Thus, $\left|r_{n}\right|=.\left|a_{n} / a_{n-1}\right|<. l, \quad\left|a_{n}\right|<.\left|a_{n-1}\right|$, and $\left|a_{n}\right| \rightarrow c$ for some $c \geq 0$. Also, $\left|r_{n}\right|=1-\left(a+y_{n}\right) / n$, $\left(a+\gamma_{n}\right) / n>0$, and $\Sigma\left(a+\gamma_{n}\right) / n$ diverges. Consequently, from Apostol (5, p.238), $\Pi\left|r_{n}\right|$ diverges to zero so that $c=0$, i.e., $a_{n} \rightarrow 0$. Moreover, $\left(1+r_{n+1}\right) /\left(1+r_{n}\right)=\cdot\left[\left(a+\gamma_{n+1}\right) /(n+1)\right] /\left[\left(a_{n}+\gamma_{n}\right) / n\right]$ $=\cdot[n /(n+1)]\left[\left(a+\varphi_{n+1}\right) /\left(a+\varphi_{n}\right)\right] \rightarrow 1$. From Theorem 8.64, $T_{n} \rightarrow-1 / 2$, and thus $I_{n+1}-I_{n} \rightarrow 0$. We now apply Theorem 3.8. Q.E.D.

Lemma 8.66. If $-1<. r_{n}<. a$ for some number a, then $0 \leq \lim \inf \left(l+r_{n+1}\right) /\left(1+r_{n}\right) \leq l$.

Proof: From $-1<r_{n}, 0<.\left(1+r_{n+1}\right) /\left(1+r_{n}\right)$. Thus setting $L=\lim \inf \left(1+r_{n+1}\right) /\left(1+r_{n}\right), 0 \leq L \leq+\infty$. Suppose $1<L$. Then $l<.\left(1+r_{n+1}\right) /\left(l+r_{n}\right),-1<. r_{n}<. r_{n+1}<. a$, and r exists with $-1<r \leq a$. Hence
$L=\lim \inf \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=\lim \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=1, a$ contradiction. Thus $0 \leq L \leq I . Q . E \cdot D$.

Theorem 8.67. If $a_{n} \rightarrow 0, r=-1<. r_{n}$, and $\lim \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=L$ where $-\infty \leq L \leq+\infty$, then $L=1$ and $T_{n} \rightarrow r /(1-r)=-1 / 2$.

Proof: Since $r=-1<. r_{n},-1<. r_{n}<.0$. From Corollary 8.58 and Lemma $8.66, L \geq 1$ and $L \leq 1$, respectively. Hence $L=1$, and thus, from Theorem 8.64, $T_{n} \rightarrow r /(1-r)=-1 / 2$. Q.E.D.

Theorem 8.68. If $a_{n} \rightarrow 0, r=-1$, and him $\left(1+r_{n+1}\right) /\left(1+r_{n}\right)=L$ where $-\infty \leq L \leq+\infty$, then exactly one of the following statements is true:
(1) $-1<. r_{n}$ and $L=1$.
(2) $\quad l+r_{n}$ is alternately positive and negative, for large n, and $L=-1$.

Proof: Since $r_{n} \rightarrow-1$ we may assume that $-2<r_{n}<0$ for $n \geq 1$. Exactly one of the following statements is true:
(i) $\quad-1<r_{n}$.
(ii) $\quad r_{n}<:-1$.

If (i) holds, then $L=1$ according to Theorem 8.67.

Suppose that (ii) is true. For each integer $n \geq 1$, define $r_{n}^{\prime}=r_{n}$ if $-1 \leq r_{n}$, or $r_{n}^{\prime}=-2-r_{n}$ if $r_{n}<-1$. Accordingly, for $n \geq 1$ we have $-2<r_{n} \leq r_{n}^{\prime}<0$ and $0 \leq 1+r_{n}^{\prime} \cdot$ Define $a_{0}^{\prime}=1$ and $a_{n}^{\prime}=r_{1}^{\prime} r_{2}^{\prime} \cdots r_{n}^{\prime}$ for $n \geq 1$. Since $0<\left|r_{n}^{\prime}\right| \leq\left|r_{n}\right|$ for $n \geq 1$, $\left|a_{n}^{\prime}\right|=\left|r_{1}^{\prime}\right|\left|r_{2}^{\prime}\right| \cdots\left|r_{n}^{\prime}\right| \leq\left|r_{1}\right|\left|r_{2}\right| \cdots\left|r_{n}\right|=\left|a_{n} / a_{0}\right| \rightarrow 0$, ie., $a_{n}^{\prime} \rightarrow 0$. Also, $l+r_{n}^{\prime}=l+r_{n}$ or $l+r_{n}^{\prime}=-l-r_{n}$, ie., $\quad l+r_{n}^{\prime}=\left|1+r_{n}\right|$ for $n \geq 1$, so that
$\lim \left(1+r_{n+1}^{\prime}\right) /\left(1+r_{n}^{\prime}\right)=\lim \left|\left(1+r_{n+1}\right) /\left(1+r_{n}\right)\right|=|I|$. Moreover, $1+r_{n}^{\prime}=.\left|l+r_{n}\right| \rightarrow 0$, ie., $r_{n}^{\prime} \rightarrow-1$. We now have $a_{n}^{\prime} \rightarrow 0, \quad r^{\prime}=\lim r_{n}^{\prime}=-1,-1<, r_{n}^{\prime}, \quad$ and $\lim \left(1+r_{n+1}^{\prime}\right) /\left(1+r_{n}^{\prime}\right)=|L|$. From Theorem 8.67, $|L|=1$, i.e., $L=-1$ or $L=1$. Assume that $L=1$. Then $l+r_{n}$ is of constant sign for large n. Hence, according to (ii), $1+r_{n}<.0$ i.e., $r_{n}<.-1$. This contradicts $a_{n} \rightarrow 0$; thus $L=-1$ and $l+r_{n}$ is alternately positive and negative for large n. Q.E.D.

Corollary 8.69. If $a_{n}+0, r=-1$, and \lim $\left(1+r_{n+1}\right) /\left(1+r_{n}\right)=L$ where $-\infty \leq L \leq \infty$ and $L \neq-1$, then
$-1<. r_{n}, L=1$, and $I_{n} \rightarrow r /(1-r)=-1 / 2$.

Proof: From Theorem 8.68, $-1<\cdot r_{n}$ and $L=1$. We may now apply Theorem 8.64 or Theorem 8.67 to complete the proof. Q.E.D.

Lemma 8.70. If $\left(1+r_{n}\right)\left(1+r_{n+1}\right)<.0$, some subsequence of $\left\{r_{2 n-1}\right\}$ converges to -1 , and some subsequence of $\left\{r_{2 n}\right\}$ converges to -1 , then $-1 \leq 1 i m$ sup $\left(1+r_{n+1}\right) /\left(1+r_{n}\right) \leq 0$.

Proof: By hypothesis, $\left(1+r_{n+1}\right) /\left(1+r_{n}\right)<$. O. Thus, setting $L=\lim \sup \left(I+r_{n+1}\right) /\left(I+r_{n}\right)$, we have $-\infty \leq L \leq 0$. Suppose that $I<-1$. Then $\left(1+r_{n+\uparrow}\right) /\left(I+r_{n}\right)<-I$ and $\left(1+r_{n+2}\right) /\left(1+r_{n}\right)=\cdot\left[\left(1+r_{n+2}\right) /\left(1+r_{n+1}\right)\right]\left[\left(1+r_{n+1}\right) /\left(1+r_{n}\right)\right]$ $>$. 1. Either $1+r_{2 n}<.0$, or $I_{2 n-1}<0$. In the former case, $I+r_{2 n+2}<\cdot I+r_{2 n}$, so that $r_{2 n+2}<. r_{2 n}$ <. -l. This is impossible since some subsequence of $\left\{r_{2 n}\right\}$ converges to -1 . In the latter case, $1+r_{2 n+1}$ $<.{ }^{+} r_{2 n-1}$, so that $r_{2 n+1}<. r_{2 n-1}<.-1$. This is imppossible since some subsequence of $\left\{r_{2 n-1}\right\}$ converges to -1. Thus, $-1 \leq L \leq 0$. Q.E.D.

Lemma 8.71. If $a_{2 n} \rightarrow 0, r_{2 n-1} \rightarrow-1<. r_{2 n-1}$, and $\lim \sup \left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)=L$ where $-\infty \leq L \leq-1$, then $r_{2 n}<.-1$, some subsequence of $\left\{r_{2 n}\right\}$ converges to -1 , and $\mathrm{L}=-1$.

Proof: By hypothesis, $\left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)<.0<.1$ $+r_{2 n-1}$, and thus, $r_{2 n}<-1$. Clearly, $\left(1+r_{n}\right)\left(1+r_{n+1}\right)$ <. O. Assume that no subsequence of $\left\{r_{2 n}\right\}$ converges to -1. Then there is a number α such that $r_{2 n}$ $<. \alpha<-1$. Since $r_{2 n-1} \alpha \rightarrow-a>1,\left|a_{2 n} / a_{2 n-2}\right|$ $=. r_{2 n-1} r_{2 n}>r_{2 n-1} \alpha>$. . Thus, $\left|a_{2 n}\right|>-\left|a_{2 n-2}\right|$, which contradicts $a_{2 n} \rightarrow 0$. If follows that some subsequince of $\left\{r_{2 n}\right\}$ converges to -1 . From Lemma 8.70, $-I \leq L \leq 0$, and thus $L=-1$. Q.E.D.

Theorem 8.72. If Σa_{n} converges, $r_{2 n-1} \rightarrow-1,-1$ $<. r_{2 n-1}$, and $\lim \sup \left(l+r_{2 n}\right) /\left(l+r_{2 n-1}\right)=L$ where $-\infty \leq L \leq 1$, then $r_{2 n}<\cdot-1$, some subsequence of $\left\{r_{2 n}\right\}$ converges to $-1, \quad L=-1, \quad \mathrm{I}_{2 n-1} \rightarrow+\infty$.

Proof: From Lemma 8.71, $r_{2 n}<.-1$, some subsequence of $\left\{r_{2 n}\right\}$ converges to -1 , and $L=-1$. Let a be any number < 1. From Lemma 8.56, him inf $r_{2 n-1}\left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)$
$=\lim r_{2 n-1} \cdot \lim \sup \left(I+r_{2 n}\right) /\left(1+r_{2 n-1}\right)=1$. Thus, α
S. $r_{2 n-1}\left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)$. From Lemma 8.48, $\quad 1 /(1-\alpha)$
$\leq \cdot l^{l+r_{2 n-1}}+r_{2 n-1} r_{2 n} /(I-\alpha)$. Defining $a_{2 n}=I /(I-\alpha)$ for
$n \geq 1, \quad \alpha_{2 n-2} \leq \cdot 1+r_{2 n-1}+r_{2 n-1} r_{2 n} \alpha_{2 n}$. Clearly, $a_{2 n} \alpha_{2 n}$
$\rightarrow 0$. From Theorem 8.3, there is a sequence $\left\{\alpha_{2 n-1}\right\}$
such that $a_{2 n-1} \alpha_{2 n-1} \rightarrow 0$ and $\alpha_{2 n-1} \leq 1+r_{2 n}+r_{2 n} r_{2 n+1} \alpha_{2 n+1}$.
We now have $a_{n} a_{n} \rightarrow 0$ and $a_{n} \leq \cdot 1+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}$.
From Theorem 8.3, $-1-r_{2 n-1} \alpha_{2 n} \leq \cdot r_{2 n-1}+r_{2 n-1} r_{2 n} \alpha_{2 n}$
s. $T_{2 n-1}$. Accordingly, $\lim \inf \left(-1-r_{2 n-1} \alpha_{2 n}\right)$
$=-1+1 /(1-\alpha)=\alpha /(1-\alpha) \leq \lim \inf T_{2 n-1}$. Since $\alpha /(1-\alpha)$
$\rightarrow+\infty$ as $a \rightarrow l-$, $\lim \inf \mathrm{I}_{2 n-1}=+\infty$; thus, $\mathrm{T}_{2 n-1} \rightarrow+\infty$.
Since $r_{2 n}<-1, T_{2 n}=. r_{2 n}\left(1+T_{2 n+1}\right) \leq-\left(1+T_{2 n+1}\right) \rightarrow-\infty$,
which yields $T_{2 n} \rightarrow-\infty$. Q.E.D.
The series Σa_{n} defined in Example 8.82 satisfies the hypothesis of Theorem 8.72.

According to the following counterexample, we cannot replace $"-\infty \leq L \leq-1$ " in Theorem 8.72 by $"-\infty \leq L \leq-1 / 2 "$.

Counterexample 8.73. Set $a_{2 n}=1 /(n+1)$ and $a_{2 n+1}$
$=-1 /(n+3)$ for $n \geq 0$. Then $s=3 / 2, r=-1, r_{2 n}<-1$
$<\cdot r_{2 n-1}, \lim \left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)=-1 / 2$,
$\lim \left(1+r_{2 n+1}\right) /\left(1+r_{2 n}\right)=-2, T_{2 n}=-(2 n+3) /(n+1) \rightarrow-2$, and $T_{2 n+1}=(n+1) /(n+2) \rightarrow 1$.

According to the following counterexample, we cannot replace " $r_{2 n-1} \rightarrow-1$ " and "-1<. $r_{2 n-1}$ " in Theorem 8.72 by " $r_{2 n} \rightarrow-1$ " and "-1<. $r_{2 n}$ ", respectively, and obtain as a conclusion that $L=-1, T_{2 n-1} \rightarrow \pm \infty$, or $T_{2 n} \rightarrow \mp \infty$.

Counterexample 8.74. Set $a_{n}^{\prime}=a_{n+1}$ for $n \geq 0$, where a_{n} is defined as in Counterexample 8.73. Accordingly, $S^{\prime}=1 / 2, r^{\prime}=-1, r_{2 n-1}^{\prime}=. r_{2 n}<-I<. r_{2 n}^{\prime}=. r_{2 n+1}$, $\lim \left(1+r_{2 n}^{\prime}\right) /\left(1+r_{2 n-1}^{\prime}\right)=\lim \left(1+r_{2 n+1}\right) /\left(1+r_{2 n}\right)=-2$, $\lim \left(1+r_{2 n+1}^{\prime}\right) /\left(1+r_{2 n}^{\prime}\right)=\lim \left(1+r_{2 n+2}\right) /\left(1+r_{2 n+1}\right)=-1 / 2$, $I_{2 n}^{\prime}=. T_{2 n+1} \rightarrow 1$, and $T_{2 n-1}^{\prime}=. T_{2 n} \rightarrow-2$.

Theorem 8.75. If Σa_{n} converges, $r_{2 n} \rightarrow-1,-1<\cdot r_{2 n}$, and $\lim \sup \left(1+r_{2 n+1}\right) /\left(I+r_{2 n}\right)=I$ where $-\infty \leq I \leq-I$, then $r_{2 n-1}<-1$, some subsequence of $\left\{r_{2 n-1}\right\}$ converges to $-1, L=-1, I_{2 n-1} \rightarrow-\infty$, and $\mathrm{I}_{2 \mathrm{n}} \rightarrow+\infty$.

Proof: Define $a_{n}^{\prime}=a_{n+1}$ for $n \geq 0$. Then -1
$<\cdot r_{2 n-1}^{\prime}=. r_{2 n}, r_{2 n-1}^{\prime} \rightarrow-1$, and
$\lim \sup \left(1+r_{2 n}^{\prime}\right) /\left(1+r_{2 n-1}^{\prime}\right)=\lim \sup \left(1+r_{2 n+1}\right) /\left(1+r_{2 n}\right)$
$=L \leq-1$. We may apply Theorem 8.72 to Σa_{n}^{\prime}, obtaining
$r_{2 n+1}=. r_{2 n}^{\prime}<-1$, some subsequence of $\left\{r_{2 n}^{\prime}\right\}=\left\{r_{2 n+1}\right\}$
converges to $-1, T_{2 n+1}=T_{2 n}^{\prime} \rightarrow-\infty$, and $T_{2 n}=T_{2 n-1}^{\prime}$
$\rightarrow+\infty$. Q.E.D.

Theorem 8.76. If Σa_{n} converges, $r=-1$, and $\lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)=L$ where $-\infty \leq L \leq-1$, then $L=-1$, and exactly one of the following statements is true:
(1) $\quad r_{2 n}<-1<r_{2 n-1}, T_{2 n-1} \rightarrow+\infty$, and $T_{2 n} \rightarrow-\infty$.
(2) $\quad r_{2 n-1}<-1<r_{2 n}, T_{2 n-1} \rightarrow-\infty$, and $T_{2 n} \rightarrow+\infty$.

Proof: Exactly one of the following statements is true:
(i) $\quad r_{2 n}<-1<r_{2 n-1}$.
(ii) $\quad r_{2 n-1}<.-1<\cdot r_{2 n}$.

Suppose that (i) is true. Then
$\lim \sup \left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right) \leq \lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right)$
$\leq I \leq-1$. From Theorem 8.72, $L=-1, T_{2 n-1} \rightarrow+\infty$, and $T_{2 n} \rightarrow-\infty$.

Suppose that (ii) is true. Then
$\lim \sup \left(1+r_{2 n+1}\right) /\left(1+r_{2 n}\right) \leq \lim \sup \left(1+r_{n+1}\right) /\left(1+r_{n}\right) \leq L$ ≤-1. From Theorem 8.75, $L=-1, I_{2 n-1} \rightarrow-\infty$, and
$T_{2 n}++\infty$. Q.E.D.

Lemma 8.77. If $x<-1,1<\beta$, and $\beta \geq x(1+y) /(1+x)$, then $1 /(1-\beta) \geq 1+x+x y /(1-\beta)$.

Proof: By hypothesis, $1+x<0$ and $1-\beta<0$. Thus, $\beta(1+x) \leq x(1+y), 1 \leq(1-\beta)+x(1-\beta)+x y$, and $1 /(1-\beta)$ $\geq 1+x+x y /(1-\beta)$. Q.E.D.

Theorem 8.78. If Σa_{n} converges, $r_{2 n-1} \rightarrow-1, r_{2 n-1}<-1$ <. $r_{2 n}$, and $\lim \inf \left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)=L \geq-1$, then $r=-1, T_{2 n-1} \rightarrow-\infty$, and $T_{2 n} \rightarrow+\infty$.

Proof: Let a be any number <-1. By hypothesis, $\alpha \leq \cdot\left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right), \alpha\left(1+r_{2 n-1}\right) \geq \cdot 1+r_{2 n}$, and $-1 \leq \cdot r_{2 n} \leq-1+\alpha\left(1+r_{2 n-1}\right)$. Also, $\lim \left[-1+\alpha\left(1+r_{2 n-1}\right)\right]$ $=-1$, so that $\lim r_{2 n}=-1$. Thus, $r=-1$.

Let β be any number >1. From Lemma 8.62,
$\lim \sup r_{2 n-1}\left(l+r_{2 n}\right) /\left(l+r_{2 n-1}\right)=\left(\lim r_{2 n-1}\right)$
$\left[\lim \inf \left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)\right]=(-1)(L)=-L$ where $0 \leq-L \leq 1$. Consequently, $\beta \geq \cdot r_{2 n-1}\left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)$.
From Lemma 8.77, $\quad l /(1-\beta) \geq \cdot l^{1+r_{2 n-1}}+r_{2 n-1} r_{2 n} /(1-\beta)$.
Defining $\beta_{2 n}=1 /(1-\beta)$ for $n \geq 1, \quad \beta_{2 n} \geq$. $1+r_{2 n+1}$
${ }^{+r}{ }_{2 n+1} r_{2 n+2} \beta_{2 n+2}$. From Theorem 8.27, there is a sequence
$\left\{\beta_{2 n-1}\right\}$ such that $a_{2 n-1} \beta_{2 n-1} \rightarrow 0$ and $\beta_{2 n-1} \geq I^{1+r_{2 n}}$
${ }^{+}{ }_{2 n} r_{2 n+1} \beta_{2 n+1}$. We now have $a_{n} \beta_{n} \rightarrow 0$ and $\beta_{n} \geq .1$
$+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}$. From Theorem 8.27, $r_{2 n-1}+r_{2 n-1} r_{2 n}{ }_{2 n}$
2. $T_{2 n-1}$. Accordingly, $\operatorname{Iim} \sup \left(r_{2 n-1}+r_{2 n-1} r_{2 n}{ }^{\beta} 2 n\right)=-1$
$+1 /(1-\beta)=\beta /(1-\beta) \geq \lim \sup T_{2 n-1}$. Also, $\beta /(1-\beta)$
$\rightarrow-\infty$ as $\beta \rightarrow 1-$, so that \lim sup $I_{2 n-\uparrow}=-\infty$. Thus,
$T_{2 n-1} \rightarrow-\infty$. Consequently, $T_{2 n}=r_{2 n}\left(1+T_{2 n+1}\right)$
$\rightarrow(-1)(1-\infty)=+\infty$. Q.E.D.

Theorem 8.79. If Σa_{n} converges, $r_{2 n} \rightarrow-1, r_{2 n}<-1$
<. $r_{2 n-1}, \lim \inf \left(1+r_{2 n+1}\right) /\left(1+r_{2 n}\right)=I \geq-1, \quad$ then $r=-1$,
$\mathrm{T}_{2 \mathrm{n}-1} \rightarrow+\infty$, and $\mathrm{T}_{2 \mathrm{n}} \rightarrow-\infty$.

Proof: Define $a_{n}^{\prime}=a_{n+1}$ for $n \geq 0$. Then $r_{n}^{\prime}=r_{n+1}$.
Thus, $r_{2 n-1}^{\prime}<-1<. r_{2 n}^{\prime}, r_{2 n-1}^{\prime} \rightarrow-1$, and
$\lim \inf \left(1+r_{2 n}^{\prime}\right) /\left(1+r_{2 n-1}^{\prime}\right)=\lim \inf \left(1+r_{2 n+1}\right) /\left(1+r_{2 n}\right)=L$.
Applying Theorem 8.78 to $\sum a_{n}^{\prime}, r_{2 n+1}=. r_{2 n}^{\prime} \rightarrow-1, T_{2 n+1}$ $=I_{2 n}^{\prime} \rightarrow+\infty$, and $T_{2 n}=I_{2 n-1}^{\prime} \rightarrow-\infty$. Q.E.D.

Theorem 8.80. If Σa_{n} converges, $r=-1,\left(1+r_{n}\right)\left(1+r_{n+1}\right)$ <. 0 , and $\lim \inf \left(I+r_{n+1}\right) /\left(I+r_{n}\right) \geq-1$, then exactly one of the following statements is true:
(1) $\quad r_{2 n-1}<-1<r_{2 n}, I_{2 n-1} \rightarrow-\infty$, and $I_{2 n} \rightarrow+\infty$.
(2) $r_{2 n}<-1<r_{2 n-1}, I_{2 n-1} \rightarrow+\infty$, and $I_{2 n} \rightarrow-\infty$.

Proof: Exactly one of the following statements is true:

$$
\begin{equation*}
r_{2 n-1}<\cdot-1<\cdot r_{2 n} . \tag{i}
\end{equation*}
$$

$r_{2 n}<-1<r_{2 n-1}$.
Suppose that (i) is true. By hypothesis,
$-1 \leq \lim \inf \left(1+r_{n+1}\right) /\left(1+r_{n}\right) \leq \lim \inf \left(1+r_{2 n}\right) /\left(1+r_{2 n-1}\right)$.
From Theorem 8.78, $\mathrm{I}_{2 \mathrm{n}-1} \rightarrow-\infty$ and $\mathrm{I}_{2 \mathrm{n}} \rightarrow+\infty$.
Suppose that (ii) is true. Then
$-1 \leq \lim \inf \left(1+r_{n+1}\right) /\left(1+r_{n}\right) \leq \liminf \left(I+r_{2 n+1}\right) /\left(1+r_{2 n}\right)$.
From Theorem 8.79, $I_{2 n-1} \rightarrow+\infty$ and $I_{2 n} \rightarrow-\infty$. Q.E.D.

Theorem 8.81. If Σa_{n} converges, $r=-1$, and $\lim \left(I+r_{n+1}\right) /\left(1+r_{n}\right)=L$ where $-\infty \leq L \leq+\infty$ and $L \neq I$, then $L=-1$, and exactly one of the following statements is true:
(1) $\quad r_{2 n-1}<-1<. r_{2 n}, T_{2 n-1} \rightarrow-\infty$, and $I_{2 n} \rightarrow+\infty$.
(2) $\quad r_{2 n}<-1<r_{2 n-1}, T_{2 n-1} \rightarrow+\infty$, and $I_{2 n} \rightarrow-\infty$.

Proof: From Theorem 8.68, $L=-1$ and $\left(I+r_{n}\right)\left(I+r_{n+1}\right)<.0$. Now apply Theorem 8.76 or Theorem 8.80. Q.E.D.

If Σa_{n} is a series satisfying the hypothesis of
Theorem 8.68 with $L=1$, according to Theorem $8.64, \Sigma a_{n}$
converges and $I_{n} \rightarrow-1 / 2$. With $L=-1, \Sigma a_{n}$ may or may not converge, as is shown in the following two examples. Consequently, we cannot replace the requirement in Theorem 8.81 that Σa_{n} converge by the condition that $a_{n} \rightarrow 0$.

Example 8.82. Set $a_{2 n}=1 /(n+2)$ and $a_{2 n+1}$
$=1 /(n+2)^{3 / 2}-1 /(n+2)$ for $n \geq 0$. Then $a_{n} \rightarrow 0$ and, for $n \geq 0, \quad a_{2 n}+a_{2 n+1}=1 /(n+2)^{3 / 2}$. Thus, $S=\sum_{0}^{\infty} 1 /(n+2)^{3 / 2}=z(3 / 2)-1$, where $z(s)=\sum_{1}^{\infty} 1 / n^{s}$, $s>1$, is the Riemann zeta function. It can be verified that $r=-1,\left(1+r_{n+1}\right) /\left(1+r_{n}\right) \rightarrow-1$, and $r_{2 n}<-1$ $<r_{2 n-1}$ for $n \geq 1$. Thus, Σa_{n} is a convergent series satisfying the hypothesis of Theorem 8.68 with $L=-1$. From Theorem 8.81, $\quad I_{2 n} \rightarrow-\infty$ and $I_{2 n-1} \rightarrow+\infty$.

Example 8.83. Set $a_{2 n}=1 /(n+1)^{1 / 2}$ and $a_{2 n+1}$ $=\left[1-(n+2)^{1 / 2}\right] /[(n+1)(n+2)]^{1 / 2}$ for $n \geq 0$. We have $a_{n} \rightarrow 0$ and, for $n \geq 0, \quad a_{2 n}+a_{2 n+1}=1 /[(n+1)(n+2)]^{1 / 2}$ $>1 /(n+2)$. Thus $\sum a_{n}$ diverges. Also, $r=-1$ and $\left(1+r_{n+1}\right) /\left(1+r_{n}\right) \rightarrow-1$. Consequently, the hypothesis of Theorem 8.68 is satisfied by the given divergent series
where $L=-1$. Moreover, we see that the requirement in Theorem 8.81 that Σa_{n} converge cannot be replaced by the condition that $a_{n} \rightarrow 0$.

Theorem 8.84. If Σa_{n} is an N-alternating series, $a_{n} \rightarrow 0$, and $I / 2 \leq I+r_{n}+r_{n} r_{n+1} / 2$ for $n \geq N$, then, for $n \geq N,-1<r_{n},-1 / 2 \leq r_{n}+r_{n} r_{n+1} / 2 \leq r_{n} \leq r_{n} / 2$, and $\left|a_{n}\right| / 2 \leq\left|s-S_{n-1}\right| \leq\left|a_{n-1}\right| / 2$. If, in addition, $r=-1$, then $I_{n} \rightarrow r /(1-r)=-1 / 2$.

Proof: Since $1 / 2 \leq 1+r_{n}+r_{n} r_{n+1} / 2$ for $n \geq N$, we have $-1 / 2 \leq r_{n}+r_{n} r_{n+1} / 2$. For $n \geq N$, we use Theorem 8.3 with $a_{n}=1 / 2$ to obtain $-1 / 2 \leq r_{n}+r_{n} r_{n+1} / 2 \leq r_{n} \leq r_{n} / 2$ and $-1 \leq r_{n}$. For $n \geq N,-1 / 2 \leq I_{n} \leq r_{n} / 2<0$, from which $\left|r_{n}\right| / 2 \leq\left|I_{n}\right| \leq 1 / 2$ and $\left|a_{n}\right| / 2 \leq\left|S-S_{n-1}\right| \leq\left|a_{n-1}\right| / 2$. Suppose that $r_{m}=-1$ for some integer $m \geq N$. Assume that n is any integer $\geq m$ such that $r_{n}=-1$. Then $1 / 2 \leq 1+r_{n}+r_{n} r_{n+1} / 2=-r_{n+1} / 2$ and $r_{n+1} \leq-1$. Consequentby, $r_{n+1}=-1$ since $-1 \leq r_{n+1}$. By induction, $r_{n}=-1$ for $n \geq m$ which contradicts $a_{n} \rightarrow 0$. Thus, $-1<r_{n}$ for $n \geq N$. If, in addition, $r=-1$, then from $-1 / 2 \leq \cdot T_{n} \leq \cdot r_{n} / 2 \rightarrow-1 / 2$, we have $\lim T_{n}=-1 / 2 \cdot$ Q.E.D.

Corollary 8.85. If Σa_{n} is an N-alternating series, $a_{n} \rightarrow 0$, and $r_{n+1} \leq r_{n}$ for $n \geq N$, then, for $n \geq N$, $-1<r_{n},-1 / 2 \leq r_{n}+r_{n} r_{n+1} / 2 \leq r_{n} \leq r_{n} / 2$, and $\left|a_{n}\right| / 2 \leq\left|S-S_{n-1}\right| \leq\left|a_{n-1}\right| / 2$. If, in addition, $r=-1$, then $T_{n} \rightarrow r /(1-r)=1 / 2$.

Proof: The inequality $1 / 2 \leq 1+x+x^{2} / 2$ holds for all real x. Consequently, since $r_{n+1} \leq r_{n}<0$ for $n \geq N$, it follows that $1 / 2 \leq 1+r_{n}+r_{n}^{2} / 2 \leq 1+r_{n}+r_{n} r_{n+1} / 2$ for $\mathrm{n} \geq \mathrm{N}$. Now apply Theorem 8.84. Q.E.D.

Corollary 8.86. If Σa_{n} is an N-alternating series, $a_{n} \rightarrow 0$, and $\Delta^{2}\left|a_{n-1}\right| \geq 0$ for $n \geq N$, then, for $n \geq N$, $-1<r_{n},-1 / 2 \leq r_{n}+r_{n} r_{n+1} / 2 \leq r_{n} \leq r_{n} / 2$, and $\left|a_{n}\right| / 2$ $\leq\left|S-S_{n-1}\right| \leq a_{n-1} \mid / 2$. If, in addition, $r=-1$, then $I_{n} \rightarrow r /(1-r)=-1 / 2$.

Proof: Let $n \geq N$. Then $l+r_{n}+r_{n} r_{n+1} / 2-1 / 2$
$=\left(1+2 r_{n}+r_{n} r_{n+1}\right) / 2=\left(1-2\left|a_{n}\right| /\left|a_{n-1}\right|+\left|a_{n+1}\right| /\left|a_{n-1}\right|\right) / 2$
$=\left(\left|a_{n-1}\right|-2\left|a_{n}\right|+\left|a_{n+1}\right|\right) / 2\left|a_{n-1}\right|=\left(\Delta^{2}\left|a_{n-1}\right|\right) / 2\left|a_{n-1}\right| \geq 0$, and thus $1 / 2 \leq 1+r_{n}+r_{n} r_{n+1} / 2$. We now apply Theorem 8.84. Q.E.D.

Calabrese (10, p.215-217) appears to be the first to publish a result similar to our Corollary 8.86. In particular, he states that if $\sum_{1}^{\infty} a_{n}$ is a convergent alternating series, $\quad\left|a_{n}\right|-\left|a_{n+1}\right|>\left|a_{n+1}\right|-\left|a_{n+2}\right|$, ie., $\Delta^{2}\left|a_{n}\right|>0$ for $a l n$, and $\left|a_{k}\right| \leq 2 \varepsilon$ for some integer k, then $\left|S_{k}-S\right| \leq \varepsilon$. His proof is incorrect since he uses the fact that in "every" convergent alternating sefries the sum S must lie between any two successive sums S_{n-1} and S_{n}.

It would be very convenient if the conditions $a_{n} \rightarrow 0$ and $r=-1<r_{n}$ implied that $T_{n} \rightarrow r(l-r)$ $=-1 / 2$, but the following counterexample shows that this is not the case.

Counterexample 8.87. Let $S^{\prime}=a_{0}^{1+} a_{1}^{1}+a_{2}^{1+\cdots}$ be any alternating series such that $a_{n}^{\prime} \rightarrow 0$ and $r^{\prime}=-I<r_{n}^{\prime}+1$ $<r_{n}^{\prime}<-1 / 2$ for $n \geq 1$. For $n \geq 1$, set $r_{2 n-1}=r_{2 n-1}^{\prime}$ and $r_{2 n}=-1+2\left(1+r_{2 n-1}\right)$. Define $a_{0}=a_{0}^{\prime}$ and $a_{n}=a_{0} r_{1} r_{2} \cdots r_{n}$ for $n \geq l$. It can be verified that $\sum a_{n}$ is a convergent alternating series such that $r=-1<r_{n}$ for $n \geq 1$. Defining $\beta_{2 n}=2 r_{2 n+1}$ for $n \geq 1$, we have $\beta_{2 n}=-1+r_{2 n+2}>-1+r_{2 n+4}=\beta_{2 n+2}$
for $n \geq 1$. Also, $\beta_{2 n}=r_{2 n+1}\left(1+r_{2 n+2}\right) /\left(1+r_{2 n+1}\right)$ for $n \geq 1$, so that $1 /\left(1-\beta_{2 n}\right)=1+r_{2 n+1}+r_{2 n+1} r_{2 n+2} /\left(1-\beta_{2 n}\right)$ $\geq 1+r_{2 n+1}+r_{2 n+1} r_{2 n+2} /\left(1-\beta_{2 n+2}\right)$ for $n \geq 1$. Consequently, it can be seen that $l /\left(1-\beta_{2 n}\right) \geq l_{2 n+1}, \quad$ i.e., $I_{2 n+1}$ $\leq \beta_{2 n} /\left(1-\beta_{2 n}\right)$ for $n \geq 1$. For $n \geq 1,-2<\beta_{2 n}$ $=r_{2 n+1}\left(1+r_{2 n+2}\right) /\left(1+r_{2 n+1}\right)$, from which $1 / 3 \leq 1+r_{2 n+1}$ $+_{2 n+1} r_{2 n+2} / 3$. Consequently, $1 / 3 \leq 1+T_{2 n+1}$ for $n \geq 1$, and thus $-2 / 3 \leq T_{2 n+1} \leq \beta_{2 n} /\left(1-\beta_{2 n}\right)$ for $n \geq 1$. Since $\beta_{2 n} /\left(1-\beta_{2 n}\right) \rightarrow-2 / 3, T_{2 n-1} \rightarrow-2 / 3$ and $T_{2 n}=r_{2 n}\left(1+T_{2 n+\uparrow}\right)$ $\rightarrow-1 / 3$. An example of such a series \sum_{n}^{\prime} is $1 / 3-1 / 5$ $+1 / 7=1 / 9+\cdots=1-\pi / 4$.

Theorem 8.88. Let Σa_{n} be a convergent series and n be any positive integer such that $r_{n}<0$. Then we either have
(1) $T_{n+1}<r_{n} /\left(1-r_{n}\right), T_{n+1}<T_{n}$, and $r_{n} /\left(1-r_{n}\right)<T_{n}$,
(2) $\quad T_{n+1}=r_{n} /\left(1-r_{n}\right), T_{n+1}=T_{n}$, and $r_{n} /\left(1-r_{n}\right)=I_{n}$, or
(3) $\quad T_{n+1}>r_{n} /\left(1-r_{n}\right), T_{n+1}>T_{n}$, and $r_{n} /\left(I-r_{n}\right)>T_{n}$.

Proof: Since $T_{n}=r_{n}\left(1+I_{n+1}\right)$ and $I_{n+1}=T_{n} / r_{n}-1$, the following inequalities are equivalent:
$T_{n+1}<r_{n} /\left(l-r_{n}\right), T_{n+1}-r_{n} I_{n+1}<r_{n}, T_{n+1}<r_{n}\left(1+T_{n+1}\right)$, $T_{n+1}<I_{n}, T_{n} / r_{n}-1<T_{n}, T_{n}-r_{n}>r_{n} T_{n}, I_{n}-r_{n} T_{n}>r_{n}$, $T_{n}>r_{n} /\left(l-r_{n}\right), r_{n} /\left(1-r_{n}\right)<T_{n}$. Consequently, the inequalities in (1) are equivalent. Similarly, the equalities in (2) are equivalent and the inequalities in (3) are equivalent. Q.E.D.

Theorem 8.89. Let Σa_{n} be an N-alternating series.
Then the following three conditions are equivalent:
(1) $T_{n_{+}} \leq T_{n}, n \geq N$,
(2) $T_{n+1} \leq r_{n} /\left(1-r_{n}\right), n \geq N$,
(3) $\quad r_{n} /\left(1-r_{n}\right) \leq r_{n}, n \geq N$.

Moreover, if (1), (2), or (3) holds, then
(4) $r_{n+1} \leq r_{n}, n \geq N$,
and
(5) $\quad I_{n} \leq r_{n} /\left(1-r_{n+1}\right), n \geq N$.

Proof: According to Theorem 8.88, if equality holds in (1), (2), or (3), it also holds in the other two, and likewise for inequality. Thus, (1), (2), and (3) are equivalent.

Assume that (1), (2), or (3) holds, and let n be any integer $\geq N$. From (3) and (2), $r_{n+1} /\left(1-r_{n+1}\right) \leq T_{n+1}$ $\leq r_{n} /\left(1-r_{n}\right)$. Then $r_{n+1}\left(1-r_{n}\right) \leq r_{n}\left(1-r_{n+1}\right)$ and
$r_{n+1} \leq r_{n}$, i.e., (4) holds. Finally, since
$r_{n+1} /\left(1-r_{n+1}\right) \leq T_{n+1}=I_{n} / r_{n}-1$, we have $T_{n} / r_{n} \geq 1$
$+r_{n+1} /\left(1-r_{n+1}\right)=1 /\left(1-r_{n+1}\right)$ and $r_{n} \leq r_{n} /\left(1-r_{n+1}\right)$. Q.E.D.

Theorem 8.90, Let Σa_{n} be an N-alternating series. Then a n.a.s.c. that $T_{n+1} \leq T_{n}$ for $n \geq N$ is that
(0) $\quad a_{n}+0$,
and there exist a sequence $\left\{\beta_{n}\right\}$ such that
(1) $a_{n} \beta_{n}+0$,
(2) $\quad \beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, n \geq N$,
and
(3) $\quad r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2} \leq r_{n} \beta_{n}, \quad n \geq N$.

Moreover, if (0), (1), (2), and (3) hold, then for $n \geq N$, (4) $T_{n+1} \leq r_{n} /\left(1-r_{n}\right) \leq T_{n} \leq r_{n} /\left(1-r_{n+1}\right)$
and

$$
\begin{equation*}
1 /\left(1-r_{n+1}\right) \leq \beta_{n} \leq r_{n+1} / r_{n}\left(1-r_{n+1}\right) . \tag{5}
\end{equation*}
$$

Proof: For the necessity, define $\beta_{n}=1+T_{n+1}, n \geq N$. Then $a_{n} \beta_{n}=a_{n}+a_{n}{ }^{T} n+1=a_{n}+\left(S-S_{n}\right) \rightarrow 0$. Also, $\beta_{n}=1+T_{n+1}$ $=1+r_{n+1}+r_{n+1} r_{n+2}\left(1+r_{n+3}\right)=1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}$ for
$n \geq N$, so that (2) holds with equality. Moreover, $r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}=I_{n+1} \leq I_{n}=r_{n}\left(l+T_{n+1}\right)=r_{n} \beta_{n}$ for
$n \geq N$, i.e., (3) holds.
For the sufficiency, according to (a) of Theorem 8.27 and (3) of the present theorem, we have $I_{n+1} \leq I_{n+1}$ $+r_{n+1} r_{n+2} \beta_{n+2} \leq r_{n} \beta_{n} \leq T_{n}$ for $n \geq N$, so that $T_{n+1} \leq T_{n}$ for $n \geq N$. Theorem 8.89 implies (4) of the present theorem. We now have $r_{n+1} /\left(1-r_{n+1}\right) \leq T_{n+1} \leq r_{n} \beta_{n} \leq T_{n}$ $\leq r_{n} /\left(1-r_{n+1}\right)$ for $n \geq N$, from which (5) of the present theorem is immediate. Q.E.D.

Iheorem 8.91. Let Σa_{n} be an N-alternating series. Then a n.a.s.c. that $T_{n+1} \leq T_{n}$ for $n \geq N$ is that (0) $\quad a_{n} \rightarrow 0$, and there exist a sequence $\left\{\beta_{n}\right\}$ such that
(1) $\quad a_{n}^{\beta} n \rightarrow 0$,
(2) $\quad \beta_{n} \geq I+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}, \quad n \geq N$,
and
(3) $\quad \beta_{n} \leq 1 /\left(1-r_{n}\right), n \geq N$.

Moreover, if (0), (1), (2), and (3) hold, then, for $n \geq N$,

$$
\begin{align*}
& I_{n+1} \leq r_{n} /\left(1-r_{n}\right) \leq r_{n} \beta_{n} \leq T_{n} \leq r_{n}+r_{n} r_{n+1} \beta_{n+1} \tag{4}\\
& \leq r_{n} /\left(1-r_{n+1}\right)
\end{align*}
$$

and
(5) $\quad l /\left(I-r_{n+1}\right) \leq \beta_{n}$.

Proof: Define $\beta_{n}=1+T_{n+1}$ for $n \geq N$. As in the proof of the necessity of Theorem 8.90, conditions (0), (I), and (2) hold. Using Theorem 8.89, $\beta_{n}=1+T_{n+1} \leq l+r_{n} /\left(1-r_{n}\right)$ $=1 /\left(1-r_{n}\right), n \geq N$, so that (3) holds.

For the sufficiency, assume that (0), (1), (2), and (3) hold. Using (3), we have for $n \geq N$, (I- $\left.r_{n}\right) \beta_{n} \leq l$, $\beta_{n}-r_{n} \beta_{n} \leq 1$, and $\beta_{n}-1 \leq r_{n} \beta_{n}$. Consequently, from (2), $r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2} \leq \beta_{n}-1 \leq r_{n} \beta_{n}$ for $n \geq N$. From Theorem 8.90, we obtain, for $n \geq N, T_{n+1} \leq T_{n}, T_{n+1} \leq r_{n} /\left(1-r_{n}\right)$, and $l /\left(1-r_{n+1}\right) \leq \beta_{n}$. From (3), for $n \geq N$, we have $r_{n} /\left(1-r_{n}\right) \leq r_{n} \beta_{n}$ and $r_{n}+r_{n} r_{n+1} \beta_{n+1} \leq r_{n}+r_{n} r_{n+1} /\left(1-r_{n+1}\right)$ $=r_{n} /\left(1-r_{n+1}\right)$. Applying (a) of Theorem 8.27, $r_{n} \beta_{n} \leq I_{n}$ $\leq r_{n}+r_{n} r_{n+1} \beta_{n+1}$ for $n \geq N$. Q.E.D.

Theorem 8.92. If Σa_{n} is an N-alternating series, then a n.a.s.c. that $T_{n+1} \leq T_{n}$ for $n \geq N$ is that
(0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{p_{n}\right\}$ such that, for $n \geq N$,
(1) $\quad l /\left(1-p_{n}\right) \geq 1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-p_{n+2}\right)$
and
(2) $\quad p_{n} \leq r_{n}$.

Moreover, if (0), (1), and (2) hold, then for $n \geq N$,
(3) $\quad T_{n+1} \leq r_{n} /\left(1-r_{n}\right) \leq r_{n} /\left(1-p_{n}\right) \leq r_{n} \leq r_{n}$

$$
+r_{n} r_{n+1} /\left(1-p_{n+1}\right) \leq r_{n} /\left(l-r_{n+1}\right)
$$

and
(4) $\quad r_{n+1} \leq p_{n}$.

Proof: For the necessity, there is a sequence $\left\{\beta_{n}\right\}$ satisfying (1), (2), (3), and (5) of Theorem 8.91. Defining $p_{n}=1-1 / \beta_{n}$ for $n \geq N$, we easily verify that $p_{n} \leq r_{n}$ for $n \geq N$. Also, for $n \geq N, \beta_{n}=1 /\left(1-p_{n}\right)$, so that (2) of Theorem 8.91 reduces to (1) above. For the sufficiency, define $\beta_{n}=1 /\left(1-\phi_{n}\right)$ for $\mathrm{n} \geq \mathrm{N}$. Condition (1) above thus yields (2) of Theorem 8.91. From (2) and $r_{n}<0$ for $n \geq N$, we have $0<1 /\left(1-p_{n}\right)=\beta_{n} \leq 1 /\left(1-r_{n}\right)<1$ for $n \geq N$, and thus $a_{n} \beta_{n}+0$, ie., (1) and (3) of Theorem 8.91 hold.

Finally, (3) and (4) above follow respectively from (4) and (5) of Theorem 8.91. Q.E.D.

Theorem 8.93. Let Σa_{n} be an N-alternating series. Then a n.a.s.c. that $T_{n+1} \leq I_{n}$ for $n \geq N$ is that (0) $\quad a_{n} \rightarrow 0$,
and there exist a sequence $\left\{\alpha_{n}\right\}$ such that
(I) $\quad a_{n} a_{n}+0$,
(2) $a_{n} \leq l+r_{n+1}+r_{n+1} r_{n+2} a_{n+2}, n \geq N+1$,
and

$$
\begin{equation*}
r_{n} / r_{n+1}\left(1-r_{n}\right) \leq \alpha_{n+1}, n \geq N . \tag{3}
\end{equation*}
$$

Moreover, if (0), (1), (2), and (3) hold, then for $n \geq N$,
(4) $\quad T_{n+1} \leq r_{n+1} a_{n+1} \leq r_{n} /\left(1-r_{n}\right) \leq r_{n}+r_{n} r_{n+1} \alpha_{n+1} \leq I_{n}$

$$
\leq r_{n} /\left(l-r_{n+1}\right)
$$

and
(5) $\quad a_{n+1} \leq 1 /\left(1-r_{n+1}\right)$.

Proof: For the necessity, define $\alpha_{n}=1+T_{n+1}, n \geq N$. Then $a_{n} \alpha_{n}=a_{n}+a_{n}{ }^{T} n+1=a_{n}+\left(S-S_{n}\right) \rightarrow 0$. Also, $a_{n}=1$ $+T_{n+1}=1+r_{n+1}+r_{n+1} r_{n+2}\left(1+T_{n+3}\right)=1+r_{n+1}+r_{n+1} r_{n+2} \alpha_{n+2}$ for $n \geq N$ so that (2) holds with equality. Moreover, $r_{n+1} \alpha_{n+1}=r_{n+1}\left(1+T_{n+2}\right)=r_{n+1} \leq r_{n}=r_{n}+r_{n} r_{n+1} \alpha_{n+1}$, for $n \geq N$, from which (3) is immediate. For the sufficiency, define $\alpha_{N}=1+r_{N+}$ $+r_{N+1} r_{N+2} \alpha_{N+2}$. From (3), $r_{n+1} \alpha_{n+1} \leq r_{n} /\left(1-r_{n}\right) \leq r_{n}$ $+r_{n} r_{n+1} a_{n+1}$ for $n \geq N$. From (a) of Theorem 8.3, $T_{n+1} \leq r_{n+1} a_{n+1} \leq r_{n}+r_{n} r_{n+1} a_{n+1} \leq r_{n}$ for $n \geq N$. From (5) of Theorem 8.89, $I_{n} \leq r_{n} /\left(1-r_{n+1}\right)$ for $n \geq N$.

Consequently, (4) holds. (5) is a consequence of (4). Q.E.D.

Lemma 8.94. If r_{n}, r_{n+1}, r_{n+2} are any real numbers such that $\left(1-r_{n}\right)\left(1-r_{n+2}\right) \neq 0$, then
$l+r_{n+1}+r_{n+1} r_{n+2} /\left(1-r_{n+2}\right)-1 /\left(1-r_{n}\right)=r_{n+1} /\left(1-r_{n+2}\right)-r_{n} /\left(1-r_{n}\right)$
$=\left(\Delta r_{n}+r_{n} \Delta r_{n+1}\right) /\left[\left(1-r_{n}\right)\left(1-r_{n+2}\right)\right]$.

Proof: We have $1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-r_{n+2}\right)-I /\left(I-r_{n}\right)$
$=\left[I-1 /\left(I-r_{n}\right)\right]+r_{n+1}\left[I+r_{n+2} /\left(1-r_{n+2}\right)\right]=-r_{n} /\left(I-r_{n}\right)$
$+r_{n+1} /\left(1-r_{n+2}\right)=\left[r_{n+1}\left(1-r_{n}\right)-r_{n}\left(1-r_{n+2}\right)\right] /\left(1-r_{n}\right)\left(1-r_{n+2}\right)$
$=\left[\left(r_{n+1}-r_{n}\right)+r_{n}\left(r_{n+2}-r_{n+1}\right)\right] /\left(1-r_{n}\right)\left(1-r_{n+2}\right)$
$=\left[\Delta r_{n}+r_{n} \Delta r_{n+1}\right] /\left(1-r_{n}\right)\left(1-r_{n+2}\right)$. Q.E.D.

Lemma 8.95. If r_{n}, r_{n+1}, r_{n+2} are any real numbers, then the following inequalities are equivalent:
(1) $\quad 1 /\left(1-r_{n}\right) \geq 1+r_{n+1}+r_{n+} r_{n+2} /\left(1-r_{n+2}\right)$
(2) $\quad r_{n} /\left(1-r_{n}\right) \geq r_{n+1} /\left(1-r_{n+2}\right)$

$$
\begin{equation*}
0 \geq\left[\Delta r_{n}+r_{n} \Delta r_{n+1}\right] /\left[\left(1-r_{n}\right)\left(1-r_{n+2}\right)\right] . \tag{3}
\end{equation*}
$$

Proof: The quivalence follows immediately from Lemma 8.94. Q.E.D.

Theorem 8.96. If Σa_{n} is an N-alternating series, $a_{n} \rightarrow 0$,
and $r_{n+1} /\left(I-r_{n+2}\right) \leq r_{n} /\left(I-r_{n}\right)$ for $n \geq N$, then, for $n \geq N,(1) \quad \Delta r_{n} \leq 0$ and (2) $I_{n+1} \leq r_{n+1} /\left(1-r_{n+2}\right)$ $\leq r_{n} /\left(1-r_{n}\right) \leq T_{n} \leq r_{n} /\left(1-r_{n+1}\right)$.

1st Proof: Defining $\beta_{n}=1 /\left(1-r_{n}\right)$ for $n \geq N$, we see that $0<\beta_{n}<1$ for $n \geq N$ and thus $a_{n} \beta_{n} \rightarrow 0$. From (1) and (2) of Lemma 8.95, $\beta_{n} \geq 1+r_{n+1}+r_{n+1} r_{n+2} \beta_{n+2}$ for $n \geq$ N. From (4) of Theorem 8.91, (2) of the present theorem holds. (1) follows from (2). We could also obtain (1) from (4) of Theorem 8.89. Q.E.D.

2nd Proof: Define $p_{n}=r_{n}$ for $n \geq N$. From (1) and (2) of Lemma $8.95, \quad 1 /\left(1-p_{n}\right) \geq 1+r_{n+1}+r_{n+1} r_{n+2} /\left(1-p_{n+2}\right)$ for $\mathrm{n} \geq \mathrm{N}$. Now apply Theorem 8.92 and Theorem 8.89. Q.E.D.

Theorem 8.97. If $\sum a_{n}$ is an N-alternating series,
$a_{n} \rightarrow 0$, and $\Delta r_{n}+r_{n} \Delta r_{n+1} \leq 0$ for $n \geq N$, then, for
$n \geq N, \Delta r_{n} \leq 0$ and $I_{n+1} \leq r_{n+1} /\left(1-r_{n+2}\right) \leq r_{n} /\left(1-r_{n}\right)$
$\leq T_{n} \leq r_{n} /\left(1-r_{n+1}\right)$.

Proof: If $n \geq N$, then $\Delta r_{n}+r_{n} \Delta r_{n+1} \leq 0,\left(1-r_{n}\right)\left(1-r_{n+2}\right)$ >0, and $\left(\Delta r_{n}+r_{n} \Delta r_{n+1}\right) /\left(1-r_{n}\right)\left(1-r_{n+2}\right) \leq 0$. Thus from Lemma 8.95, $r_{n+1} /\left(1-r_{n+2}\right) \leq r_{n} /\left(1-r_{n}\right)$. We now apply Theorem 8.96. Q.E.D.

Theorem 8.98. If Σa_{n} is an N-alternating series and $r_{n} /\left(1-r_{n}\right) \leq T_{n} \leq r_{n} /\left(1-r_{n+}\right)$ for $n \geq N$, then

$$
\begin{align*}
0<(-1)^{n} a_{n} /\left(1-r_{n+1}\right) & \leq(-1)^{n}\left(s-S_{n-1}\right) \tag{1}\\
& \leq(-1)^{n} a_{n} /\left(1-r_{n}\right), n \geq N
\end{align*}
$$

or

$$
\begin{align*}
(-1)^{n} a_{n} /\left(1-r_{n}\right) & \leq(-1)^{n}\left(s-s_{n-1}\right) \tag{2}\\
& \leq(-1)^{n} a_{n} /\left(1-r_{n+1}\right)<0, n \geq N
\end{align*}
$$

according as $a_{2 n}>0$ or $a_{2 n}<.0$, respectively.

Proof: Multiplying the inequality $r_{n} /\left(I-r_{n}\right) \leq T_{n}$ $\leq r_{n} /\left(1-r_{n+1}\right)$ throughout by $\left|a_{n-1}\right|$,

$$
\frac{\left|a_{n-1}\right|}{a_{n-1}} \frac{a_{n}}{1-r_{n}} \leq \frac{\left|a_{n-1}\right|}{a_{n-1}}\left(s-S_{n-1}\right) \leq \frac{\left|a_{n-1}\right|}{a_{n-1}} \frac{a_{n}}{1-r_{n+1}}<0
$$

and this reduces to (1) if $a_{2 n}>0$, or (2) if $a_{2 n}<$. O. Q.E.D.

Theorem 8.99. If Σa_{n} is an N-alternating series such that $a_{n} \rightarrow 0$ and $\Delta r_{n} \leq \Delta r_{n+1}$ for $n \geq N$, then, for $\mathrm{n} \geq \mathrm{N}, \Delta \mathrm{r}_{\mathrm{n}} \leq 0, \Delta \mathrm{r}_{\mathrm{n}}{ }^{+} \mathrm{r}_{\mathrm{n}} \Delta \mathrm{r}_{\mathrm{n}+1} \leq 0$, and $\mathrm{T}_{\mathrm{n}+1}$ $\leq r_{n+1} /\left(1-r_{n+2}\right) \leq r_{n} /\left(1-r_{n}\right) \leq T_{n} \leq r_{n} /\left(1-r_{n+1}\right)$.

Proof: We first show that $\Delta r_{n} \leq 0$ for $n \geq N$. In particular, assume that $0<\Delta r_{m}$ for some $m \geq N$. Then
$\Delta r_{m} \leq \Delta r_{n}$ for $n \geq m$, and thus $r_{m+k}=r_{m}+\Delta r_{m}+\Delta r_{m+1}+\cdots$ $+\Delta r_{m+k-1} \geq r_{m}+k \Delta r_{m} \rightarrow \infty$ as $k \rightarrow \infty$; hence $r_{n} \rightarrow \infty$. This contradicts $a_{n} \rightarrow 0$, so that $\Delta r_{n} \leq 0$, i.e., $r_{n+1} \leq r_{n}<0$ for $n \geq N$. Consequently, $-1<r_{n}$ for $n \geq N$, since $a_{n} \rightarrow 0$. Therefore, $\Delta r_{n}+r_{n} \Delta r_{n+1} \leq \Delta r_{n+1}+r_{n} \Delta r_{n+1}=\left(1+r_{n}\right) \Delta r_{n+1} \leq 0$ for $\mathrm{n} \geq$ N. We may now apply Theorem 8.97. Q.E.D.

Theorem 8.100. Suppose that Σa_{n} is a series such that $a_{n} \rightarrow 0$, and that f is a function and N is a positive integer such that:
(1) $f(x)<0$ for $N \leq x$,
(2) f' is increasing on $[N, \infty)$, or $f^{\prime \prime}(x) \geq 0$ for $N \leq x$,
(3) $\quad r_{n}=f(n)$ for $n \geq N$.

Then, for $n \geq N, \Delta r_{n} \leq \Delta r_{n+1}$ and $I_{n+1} \leq r_{n+1} /\left(1-r_{n+2}\right)$ $\leq r_{n} /\left(1-r_{n}\right) \leq r_{n} \leq r_{n} /\left(1-r_{n+1}\right)$.

Proof: Let n be any integer $\geq N$. By the Mean Value Theorem for derivatives there exist u, v such that
$n<u<n+1<v<n+2$ and $\Delta r_{n}=f(n+1)-f(n)$
$=f^{\prime}(u)[(n+1)-n]=f^{\prime}(u) \leq f^{\prime}(v)=f^{\prime}(v)[(n+2)-(n+1)]$
$=f(n+2)-f(n+1)=\Delta r_{n+1}$. We now apply Theorem 8.99 to complete the proof. Q.E.D.

We now illustrate Theorem 8.100 with some examples.

Example 8.101. $\ln 2=1-1 / 2+1 / 3-1 / 4+\cdots$. Here
$a_{n}=(-1)^{n} /(n+I)$ for $n \geq 0, r_{n}=a_{n} / a_{n-\uparrow}=-n /(n+1)$ for $n \geq 1$, and we set $f(x)=-x /(x+1)$ for $x \geq N=1$. Accordingly, for $1 \leq x$, we have $f(x)<0, f^{\prime}(x)$ $=-1 /(x+1)^{2}$, and $f^{\prime \prime}(x)=2 /(x+1)^{3}>0$. Thus $\Delta r_{n} \leq \Delta r_{n+1}$, for $n \geq 1$, and Theorem 8.100 is applicable with $\mathrm{N}=1$. (1) of Theorem 8.98 reduces to $(n+2) /(n+1)(2 n+3) \leq 1 /(n+1)-1 /(n+2)+1 /(n+3)-1 /(n+4)+\cdots$ $=(-1)^{n}\left(S-S_{n-1}\right) \leq 1 /(2 n+1)$ for $n \geq 1$.

Example 8.102. $\pi / 4=1-1 / 3+1 / 5-1 / 7+\cdots$. Here $a_{n}=(-1)^{n} /(2 n+1)$ for $n \geq 0, r_{n}=a_{n} / a_{n-1}=-(2 n-1)(2 n+1)$
for $n \geq 1$, and we set $f(x)=-(2 x-1)(2 x+1)$ for $x \geq N=1$. For $1 \leq x, f(x)<0, f^{\prime}(x)=-4 /(2 x+1)^{2}$, and $f^{\prime \prime}(x)$ $=16 /(2 x+1)^{3}>0$. From Theorem 8.100 and (1) of Theorem 8.98 we obtain, with $N=1,(2 n+3) /(2 n+1)(4 n+4)$
$\leq(-1)^{n}\left(S-S_{n-1}\right)=1 /(2 n+1)-1 /(2 n+3)+1 /(2 n+5)-1 /(2 n+7)+\ldots$ $\leq 1 / 4 n$ for $n \geq 1$.

Example 8.103. $\ln 3 / 2=1 / 2-1 /\left(2 \cdot 2^{2}\right)+1 /\left(3 \cdot 2^{3}\right)-1 /\left(4 \cdot 2^{4}\right)+\ldots$. Here $a_{n}=(-1)^{n} /(n+1) 2^{n+1}$ for $n \geq 0, \quad r_{n}=a_{n} / a_{n-1}$ $=-n / 2(n+1)$ for $n \geq 1$, and we set $f(x)=-x / 2(x+1)$ for $x \geq N=1$. For $1 \leq x, f(x)<0, f^{\prime}(x)=-1 / 2(x+1)^{2}$, and $f^{\prime \prime}(x)=1 /(x+1)^{3}>0$.

From Theorem 8.100 and (1) of Theorem 8.98, we have, with $N=1,(n+2) / 2^{n}(n+1)(3 n+5) \leq(-1)^{n}\left(5-s_{n-1}\right)$
$=\left(1 / 2^{n+1}\right)\left[1 /(n+1)-1 / 2(n+2)+1 / 2^{2}(n+3)-1 / 2^{3}(n+4)+\cdots\right]$
$\leq 1 / 2^{n}(3 n+2)$ for $n \geq 1$.
Example 8.104. (1- $\sqrt{2}$) $z(1 / 2)=1-1 / \sqrt{2}+1 / \sqrt{3}-1 / \sqrt{4}+\cdots$. Here z is the Riemann zeta function, $a_{n}=(-1)^{n} / \sqrt{n+1}$ for $n \geq 0, r_{n}=a_{n} / a_{n-1}=-\sqrt{n /(n+1)}$ for $n \geq 1$, and we set $f(x)=-\sqrt{x /(x+1)}$ for $x \geq N=1$. For $1 \leq x$, we have $f(x)<0, f^{\prime}(x)=-1 /\left[2 x^{1 / 2}(x+1)^{3 / 2}\right]$, and $f^{\prime \prime}(x)=(4 x+1) /\left[4 x^{3 / 2}(x+1)^{5 / 2}\right]>0$. We may now use Theorem 8.100 and (1) of Theorem 8.98, obtaining, with $N=1,[(n+2) /(n+1)]^{1 / 2}(\sqrt{n+2}-\sqrt{n+1}) \leq(-1)^{n}\left(S-S_{n-1}\right)$ $=1 / \sqrt{n+1}-1 / \sqrt{n+2}+1 / \sqrt{n+3}-1 / \sqrt{n+4}+\cdots \leq \sqrt{n+1}-\sqrt{n}$ for $n \geq 1$.

Example 8.105. $\pi^{2} / 12=1-1 / 2^{2}+1 / 3^{2}-1 / 4^{2}+\cdots$. Here $a_{n}=(-1)^{n} /(n+1)^{2}$ for $n \geq 0, r_{n}=-n^{2} /(n+1)^{2}$ for $n \geq 1$, and we set $f(x)=-x^{2} /(x+1)^{2}$ for $x \geq N=1$. For $x \geq 1, f(x)<0$ and $f^{\prime \prime}(x)=2(2 x-1) /(x+1)^{4}>0$. Applying Theorem 8.100 and (1) of Theorem 8.98, with $\mathrm{N}=\mathrm{l}$, we have

$$
\begin{aligned}
& \left(\frac{n+2}{n+1}\right)^{2} \frac{1}{(n+1)^{2}+(n+2)^{2}} \leq(n+1)^{-2}-(n+2)^{-2} \\
& \quad+(n+3)^{-2}-(n+4)^{-2}+\cdots \leq \frac{1}{n^{2}+(n+1)^{2}}
\end{aligned}
$$

for $n \geq 1$. We note that $f(x)=-1+2 /(x+1)-1 /(x+1)^{2}$, suggesting Theorem 8.107 which follows shortly.

Example 8.106. $1 / \sqrt{2}=1-1 / 2+(1 \cdot 3) /(2 \cdot 4)-(1 \cdot 3 \cdot 5) /(2 \cdot 4 \cdot 6)$
$+(1.3 .5 \cdot 7) /(2.4 .6 \cdot 8)-\cdots$. Here
$a_{n}=(-1)^{n}[1 \cdot 3 \cdots(2 n-1)] /[2 \cdot 4 \cdots(2 n)]$ for $n \geq 1$,
$a_{0}=1, r_{n}=-(2 n-1) /(2 n)$ for $n \geq 1$, and we set $f(x)$
$=-(2 x-1) /(2 x)$ for $x \geq N=1$. For $x \geq 1, f(x)<0$ and $f^{\prime \prime}(x)=1 / x^{3}>0$. From Theorem 8.100 and (1) of Theorem 8.98 with $N=1$,

$$
\begin{aligned}
\frac{2 n+2}{4 n+3} \frac{1 \cdot 3 \cdots(2 n-1)}{2 \cdot 4 \cdots(2 n)} & \leq(-1)^{n}\left(5-s_{n-1}\right) \\
& =\frac{1 \cdot 3 \cdots(2 n-1)}{2 \cdot 4 \cdots(2 n)}-\frac{1 \cdot 3 \cdots(2 n+1)}{2 \cdot 4 \cdots(2 n+2)} \\
+\cdots & \leq \frac{2 n}{4 n-1} \frac{1 \cdot 3 \cdot \cdots(2 n-1)}{2 \cdot 4 \cdots(2 n)}
\end{aligned}
$$

for $n \geq 1$.

Theorem 8.107. Suppose that Σa_{n} is a series such that $a_{n} \rightarrow 0, r_{n}=\cdot b+b_{1} / n+b_{2} / n^{2}+\cdots$, where $b<0$, and the first non-zero b_{k}, if such exists, is positive. Then $\Delta r_{n} \leq \cdot \Delta r_{n+1}$ and $T_{n+1} \leq \cdot r_{n+1} /\left(1-r_{n+2}\right) \leq \cdot r_{n} /\left(1-r_{n}\right)$ S. $I_{n} \leq r_{n} /\left(l-r_{n+1}\right)$.

Proof: If $b_{k}=0$ for all $k>0$, then $r_{n}=. b$, $-1<b<0$ since $a_{n} \rightarrow 0$, and each inequality in the conclusion of our theorem holds with equality.

Suppose on the other hand that b_{p} is the first non-zero b_{k}, so that $b_{p}>0$ and $r_{n}=. b+b_{p} / n^{p}$
$+b_{p+1} / n^{p+1}+b_{p+2} / n^{p+2}+\ldots$. Setting $f(x)=b+b_{p} / x^{p}$
$+b_{p+1} / x^{p+1}+b_{p+2} / x^{p+2}+\cdots$, we see that f is an analytic function of I / x for large $x, f(x)<0$, and $f(n)$ $=$. r_{n} Differentiating twice, we have $f^{\prime \prime}(x)=\left[p(p+I) b_{p}\right.$ $\left.+(p+1)(p+2) b_{p+1} / x+\cdots\right] / x^{p+2}>0$, since $b_{p}>0$. We may now apply Theorem 8.100. Q.E.D.

Theorem 8.108. Suppose that (1) $\sum a_{n}$ is an N-alternating series such that $a_{n} \rightarrow 0$ and $\Delta r_{n} \leq \Delta r_{n+1}$ for $n \geq N$, (2) $\sum a_{n}^{\prime}$ is a series such that $a_{n}^{\prime} \rightarrow 0$, and (3) f is a function such that $r_{n}^{\prime}=-f\left(\left|r_{n}\right|\right)$, for $n \geq N$, and $f^{\prime}(x) \geq 0$ and $f^{\prime \prime}(x) \leq 0$, for $\left|r_{N}\right| \leq x$. Then, for $n \geq N, \Delta r_{n}^{\prime} \leq \Delta r_{n+1}^{\prime}$ and $I_{n+1}^{\prime} \leq r_{n+1}^{\prime} /\left(1-r_{n+2}^{\prime}\right)$ $\leq r_{n}^{\prime} /\left(1-r_{n}^{\prime}\right) \leq T_{n}^{\prime} \leq r_{n}^{\prime} /\left(1-r_{n+1}^{\prime}\right)$.

Proof: Let n be any integer $\geq N$. As shown in the proof of Theorem 8.99, $r_{n+2} \leq r_{n+1} \leq r_{n}<0$, i.e., $0<\left|r_{n}\right| \leq\left|r_{n+1}\right| \leq\left|r_{n+2}\right|$. By the Mean Value Theorem for derivatives there is a u such that
$\left|r_{n}\right| \leq u \leq\left|r_{n+1}\right|$ and $\Delta r_{n}^{\prime}=r_{n+1}^{\prime}-r_{n}^{\prime}=f\left(\left|r_{n}\right|\right)-f\left(\left|r_{n+1}\right|\right)$
$=f^{\prime}(u)\left(\left|r_{n}\right|-\left|r_{n+1}\right|\right)=f^{\prime}(u)\left(r_{n+1}-r_{n}\right)=f^{\prime}(u) \Delta r_{n}$. Simi-
lardy, there is a v such that $\left|r_{n+1}\right| \leq v \leq\left|r_{n+2}\right|$
and $\Delta r_{n+1}^{\prime}=f^{\prime}(v) \Delta r_{n+1}$. Thus from $f^{\prime}(u) \geq f^{\prime}(v) \geq 0$
and $\Delta r_{n} \leq 0, \Delta r_{n}^{\prime}=f^{\prime}(u) \Delta r_{n} \leq f^{\prime}(v) \Delta r_{n} \leq f^{\prime}(v) \Delta r_{n+1}$
$=\Delta r_{n+1}^{i}$ and $\Delta r_{n}^{1} \leq \Delta r_{n+1}^{1}$. We may now apply Theorem 8.99 to complete the proof. Q.E.D.

Corollary 8.109. If Σa_{n} is an N-alternating series such that $a_{n} \rightarrow 0, \Delta r_{n} \leq \Delta r_{n+1}$ for $n \geq N$, and $\sum a_{n}^{\prime}$ is an N-alternating series such that $\left|a_{n}^{\prime}\right|=\left|a_{n}\right|^{p}$ for $n \geq N-1$, where $0<p<I$; then, for $n \geq N, \Delta r_{n}^{\prime} \leq \Delta r_{n+1}^{\prime}$ and $T_{n+1}^{\prime} \leq r_{n+1}^{\prime} /\left(I-r_{n+2}^{\prime}\right) \leq r_{n}^{\prime} /\left(I-r_{n}^{\prime}\right) \leq I_{n}^{\prime} \leq r_{n}^{\prime} /\left(I-r_{n+1}^{\prime}\right)$.

Proof: It is obvious that $a_{n}^{\prime} \rightarrow 0$. Set $f(x)=x^{p}$ for $\left|r_{N}\right| \leq x$. Then for $n \geq N, r_{n}^{\prime}=-\left|a_{n}^{\prime}\right| /\left|a_{n-1}^{\prime}\right|$
$=-\left|a_{n}\right|^{p} /\left|a_{n-1}\right|^{p}=-\left|a_{n} / a_{n-1}\right|^{p}=-\left|r_{n}\right|^{p}=-f\left(\left|r_{n}\right|\right)$. Also
for $\left|r_{N}\right| \leq x, f^{\prime}(x)=p x^{p-1}>0$ and $f^{\prime \prime}(x)$
$=p(p-1) x^{p-2}<0$. We now apply Theorem 8.108. Q.E.D.

Example 8.110. $\left(1-2^{1-p}\right) z(p)=1-1 / 2^{p}+1 / 3^{p}-1 / 4^{p}+\cdots$,
$0<p<1$. Here z is the Rieman zeta function and
$a_{n}^{\prime}=(-1)^{n} /(n+1)^{p}$ for $n \geq 0$. With $a_{n}=(-1)^{n} /(n+1)$
for $n \geq 0$, Example 8.101 and Theorem 8.100 show that $\Delta r_{n} \leq \Delta r_{n+1}$ for $n \geq 1$. Noting that $\left|a_{n}^{\prime}\right|=\left|a_{n}\right|^{p}$ for $n \geq 0$, we may apply Corollary 8.109 to obtain $I_{n+1}^{\prime} \leq r_{n+1}^{\prime} /\left(I-r_{n+2}^{\prime}\right) \leq r_{n}^{\prime} /\left(I-r_{n}^{\prime}\right) \leq I_{n}^{\prime} \leq r_{n}^{\prime} /\left(1-r_{n+1}^{\prime}\right)$ for $n \geq 1$. The case $p=1 / 2$ was previously considered in Example 8.104, but the above procedure, requiring the second derivative of $-x /(x+1)$, is preferable to differentiating $-x^{p} /(1+x)^{p}$ twice, as was done in Example 8.104.

Lemma 8.111. Suppose that f is a function and N is a positive integer such that (1) $f(x)>0,(2) f^{\prime}(x) \geq 0$, (3) $f^{\prime \prime}(x) \leq 0$, and (4) $f^{\prime \prime \prime}(x) \geq 0$, for $N-1 \leq x$. Then the function $g(x)=-f(x-1) / f(x)$ satisfies the conditions $g(x)<0$ and $g^{\prime \prime}(x) \geq 0$, for $N \leq x$.

Proof: Let $N \leq x$ Clearly $g(x)<0$ and, differentiating twice, $g^{\prime \prime}(x)=\left\{f(x)\left[f(x-1) f^{\prime \prime}(x)-f(x) f^{\prime \prime}(x-1)\right]\right.$ $\left.+2 f^{\prime}(x)\left[f(x) f^{\prime}(x-1)-f(x-1) f^{\prime}(x)\right]\right\} / f^{3}(x)$. From (2), $f(x-1) \leq f(x)$ and thus $f(x-1) f^{\prime \prime}(x) \geq f(x) f^{\prime \prime}(x)$ according to (3). From (4), $f^{\prime \prime}(x)-f^{\prime \prime}(x-1) \geq 0$, so that $f(x-1) f^{\prime \prime}(x)-f(x) f^{\prime \prime}(x-1) \geq f(x) f^{\prime \prime}(x)-f(x) f^{\prime \prime}(x-1)$ $=f(x)\left[f^{\prime \prime}(x)-f^{\prime \prime}(x-1)\right] \geq 0$, since $f(x)>0$. From (2), $f(x) f^{\prime}(x-1) \geq f(x-1) f^{\prime}(x-1)$. From (3), $f^{\prime}(x-1)-f^{\prime}(x) \geq 0$,
and thus $f(x) f^{\prime}(x-1)-f(x-1) f^{\prime}(x) \geq f(x-1) f^{\prime}(x-1)$
$-f(x-1) f^{\prime}(x)=f(x-1)\left[f^{\prime}(x-1)-f^{\prime}(x)\right] \geq 0$. The inequality $g^{\prime \prime}(x) \geq 0$ is now evident. Q.E.D.

Theorem 8.112. Suppose that $\sum a_{n}$ is a series such that $a_{n} \rightarrow 0$. Suppose that f is a function and N is a positive integer such that: $f(x)>0, f^{\prime}(x) \geq 0, f^{\prime \prime}(x) \leq 0$, and $f^{\prime \prime \prime}(x) \geq 0$, for $N-1 \leq x$; and $r_{n}=-f(n-1) / f(n)$
for $N \leq n$. Then, for $n \geq N, \Delta r_{n} \leq \Delta r_{n+1}$ and
$I_{n+1} \leq r_{n+1} /\left(I-r_{n+2}\right) \leq r_{n} /\left(1-r_{n}\right) \leq T_{n} \leq r_{n} /\left(I-r_{n+1}\right)$.

Proof: Define $g(x)=-f(x-1) / f(x)$ for $N \leq x$. Then $I_{n}=g(n)$ for $n \geq N$. Also $g(x)<0$ and $g^{\prime \prime}(x) \geq 0$ for $N \leq x$ according to Lemma 8.111. We may now use Theorem 8.100 to complete the proof. Q.E.D.

Theorem 8.113. Suppose that $\sum a_{n}$ is an N-alternating series such that $a_{n} \rightarrow 0$. Suppose that if is a function and N is a positive integer such that: $f(x)>0$, $f^{\prime}(x) \geq 0, f^{\prime \prime}(x) \leq 0$, and $f^{\prime \prime \prime}(x) \geq 0$, for $N-1 \leq x$; and $\left|a_{n}\right|=l / f(n)$ for $N-I \leq n$. Then, for $N \leq n$, $\Delta r_{n} \leq \Delta r_{n+1}$ and $T_{n+1} \leq r_{n+1} /\left(1-r_{n+1}\right) \leq r_{n} /\left(1-r_{n}\right) \leq T_{n}$ $\leq r_{n} /\left(1-r_{n+1}\right)$.

Proof: For $N \leq n, r_{n}=a_{n} / a_{n-1}=-\left|a_{n}\right| /\left|a_{n-1}\right|$
$=-f(n-1) / f(n)$. Now apply Theorem 8.112. Q.E.D.
We now apply Theorem 8.113 to some of the series considered previously.

Example 8.114. $\ln 2=1-1 / 2+1 / 3-1 / 4+\cdots$. We have $a_{n}=(-1)^{n}(n+1)$, for $n \geq 0$, and we set $f(x)=x+1$, for $x \geq 0$. Clearly, $\left|a_{n}\right|=1 / f(n)$ for $0 \leq n$. For $0 \leq x, f(x)>0, f^{\prime}(x)=1 \geq 0, f^{\prime \prime}(x)=0 \leq 0$, and $f^{\prime \prime \prime}(x)=0 \geq 0$. Theorem 8.113 is now applicable with $N=1$. This series was previously treated in Example 8.101.

Example 8.115. $\pi / 4=1-1 / 3+1 / 5-1 / 7+\cdots$ (see Example 8.102). We have $a_{n}=(-1)^{n} /(2 n+1)$, for $n \geq 0$, and we set $f(x)=2 x+1$, for $x \geq 0$, so that $\left|a_{n}\right|=1 / f(n)$, for $n \geq 0$. If $x \geq 0$, then $f(x)>0$, $f^{\prime}(x)=2 \geq 0$, $f^{\prime \prime}(x)=0 \leq 0$, and $f^{\prime \prime \prime}(x)=0$. We may now apply Theorem 8.113 with $N=1$.

Example 8.116. In $3 / 2=\Sigma a_{n} ; a_{n}=(-1)^{n} /(n+1) 2^{n+1}$ for $n \geq 0$. Setting $f(x)=(x+1) 2^{x+1}$, for $x \geq 0$, we find $f^{\prime \prime}(x)=2^{x+1}[2+(x+1) \ln 2] \ln 2>0$, for $x \geq 0$, so that Theorem 8.113 is not applicable. In Example 8.103, Theorem 8.100 was shown to be applicable.

Example 8.117. $\left(1-2^{1-p}\right) z(p)=\Sigma a_{n} ; a_{n}=(-1)^{n} /(n+1)^{p}$, for $n \geq 0$, where $0<p<1$. Setting $f(x)=(x+1)^{p}$, for $x \geq 0,\left|a_{n}\right|=l / f(n)$ for $n \geq 0$. For $x \geq 0$, $f(x)>0, f^{\prime}(x)=p(x+1)^{p-1}>0, f^{\prime \prime}(x)=p(p-1)(x+1)^{p-2}$ <0, and $f^{\prime \prime \prime}(x)=p(p-1)(p-2)(x+1)^{p-3}>0$. Theorem 8.113 is thus applicable with $\mathrm{N}=1$. This series was also considered in Example 8.110.

The function f in Theorem 8.113 satisfies the condition
(A)

$$
\begin{aligned}
& f(x) \rightarrow \infty \text { as } x \rightarrow \infty, f^{\prime}(\dot{x}) \geq .0, f^{\prime \prime}(x) \leq 0, \\
& f^{\prime \prime \prime}(x) \geq 0 .
\end{aligned}
$$

We now prove that if f and g are functions satisfying condition (A), then so does the composite function h where $h(x)=f(g(x))$. This will allow us to build up, or easily recognize, a wide variety of series Σa_{n} for which Theorem 8.113 is applicable.

Theorem 8.118. If f and g are functions which satisfy condition (A), then the composite function $h=f \circ g$ also satisfies condition (A).

Proof: Clearly $h(x)=. f(g(x)) \rightarrow \infty$ as $x \rightarrow \infty$. Also $h^{\prime}(x)=. f^{\prime}(g(x)) \cdot g^{\prime}(x) \geq$. 0 since $g(x) \rightarrow \infty$ as $x \rightarrow \infty$, $f^{\prime}(x) \geq .0$, and $g^{\prime}(x) \geq$. 0 . Moreover, $h^{\prime \prime}(x)$ $=. f^{\prime \prime}(g(x))\left[g^{\prime}(x)\right]^{2}+f^{\prime}(g(x)) \cdot g^{\prime \prime}(x) \leq .0$ is quite evident.

Finally, $h^{\prime \prime \prime}(x)=. f^{\prime \prime \prime}(g(x))\left[g^{\prime}(x)\right]^{3+f^{\prime \prime}}(g(x)) \cdot 2 g^{\prime}(x) g^{\prime \prime}(x)$ $+f^{\prime \prime}(g(x)) g^{\prime}(x) g^{\prime \prime}(x)+f(g(x)) \cdot g^{\prime \prime \prime}(x) \geq$. O. Q.E.D.

Corollary 8.119. Suppose that f and g are functions satisfying condition (A), and that Σa_{n} is a series for which $a_{n}=.(-1)^{n} / f(g(n))$. Then $\Delta r_{n} \leq \Delta r_{n+1}$ and $r_{n+1} /\left(1-r_{n+2}\right) \leq \cdot r_{n} /\left(1-r_{n}\right) \leq \cdot T_{n} \leq \cdot r_{n} /\left(1-r_{n+1}\right)$.

Proof: Defining $h(x)=. f(g(x))$, h satisfies condition (A), according to Theorem 8.118. Thus $f(x)>0$ and $\left|a_{n}\right|=.1 / h(n) \rightarrow 0$. We may now apply Theorem 8.113. Q.E.D.

Theorem 8.120. Suppose that Σa_{n} is an N-alternating series, $a_{n} \rightarrow 0$, and $\Delta r_{n}+r_{n} \Delta r_{n+1} \leq 0$ for $n \geq N$. Let Σa_{n}^{\prime} be the power series defined by $a_{n}^{\prime}=a_{n} x^{n+p}$, where p is some fixed real number. Then, for $0<x \leq I$ and $n \geq N, \Delta r_{n}^{\prime}+r_{n}^{\prime} \Delta r_{n+1}^{\prime} \leq 0$ and $T_{n+1}^{\prime} \leq r_{n+1}^{\prime} /\left(1-r_{n+2}^{\prime}\right)$
$\leq r_{n}^{\prime}\left(1-r_{n}^{\prime}\right) \leq I_{n}^{\prime} \leq r_{n}^{\prime}\left(1-r_{n+1}^{\prime}\right)$.

Proof: Let x be any number satisfying $0<x \leq 1$ and n be any integer $\geq N$. Clearly, $a_{k}^{\prime}=a_{k} x^{k+p} \rightarrow 0$ as $k \rightarrow \infty$. From Theorem 8.97, $\Delta r_{n+1} \leq 0$ so that $x^{2} r_{n} \Delta r_{n+1} \leq x r_{n} \Delta r_{n+1}$. Thus $r_{n}^{\prime}=a_{n} x^{n+p} / a_{n-1} x^{n-1+p}=x r_{n}$,
$\Delta r_{n}^{\prime}=r_{n+1}^{\prime}-r_{n}^{\prime}=x r_{n+1}-x r_{n}=x \Delta r_{n}$, and $\Delta r_{n}^{\prime}+r_{n}^{\prime} \Delta r_{n+1}^{\prime}$
$=x \Delta r_{n}+x^{2} r_{n} \Delta r_{n+1} \leq x \Delta r_{n}+x r_{n} \Delta r_{n+1}=x\left(\Delta r_{n}+r_{n} \Delta r_{n+1}\right) \leq 0$.
Now apply Theorem 8.97 to Σa_{n}^{\prime}. Q.E.D.

Theorem 8.121. Suppose that Σa_{n} is an N-alternating series, $a_{n} \rightarrow 0$, and $\Delta r_{n} \leq \Delta r_{n+1}$ for $n \geq N$. Let Σa_{n}^{\prime} be the series defined by $a_{n}^{\prime}=a_{n} x^{n+p}$, where p is some fixed real number. Then, for $0<x \leq 1$ and $n \geq N$, $\Delta r_{n}^{\prime} \leq \Delta r_{n+1}^{\prime}$ and $T_{n+1}^{\prime} \leq r_{n+1}^{\prime} /\left(l-r_{n+1}^{\prime}\right) \leq r_{n}^{\prime} /\left(l-r_{n}^{\prime}\right) \leq T_{n}^{\prime}$ $\leq r_{n}^{\prime} /\left(1-r_{n+1}^{\prime}\right)$.

Proof: Let x be any number satisfying $0<x \leq 1$ and n be any integer $\geq \mathrm{N}$. Clearly, $a_{k}^{\prime} \rightarrow 0$ as $k \rightarrow \infty$. Also, $\Delta r_{n}^{\prime}=x \Delta r_{n} \leq x \Delta r_{n+1}=\Delta r_{n+1}^{\prime}$. We now apply Theorem 8.99 to Ean. $_{n}^{\prime}$ Q.E.D.

Example 8.122. In $(1+x)=x-x^{2} / 2+x^{3} / 3-x^{4} / 4+\cdots$, $0<x \leq 1$. We have $a_{n}=(-1)^{n /(n+1)}$ ánd $a_{n}^{\prime}=a_{n} x^{n+1}$ for $n \geq 0$. As shown in Example 8.101 or 8.114, $\Delta r_{n} \leq \Delta r_{n+1}$ for $n \geq 1$, so that Theorem 8.121 is applicable to $\sum a_{n}^{\prime}$, where $N=p=1$.

CHAPTER IX

SUMMARY

In Chapter I, definitions and notations are introduced. In particular, the quantities I_{n} are defined by the equation $T_{n}=\left(S-S_{n-1}\right) / a_{n-1}$, if. Σa_{n} converges to S and n is any integer such that $a_{n-1} \neq 0$. Various algebraic properties of I_{n} are proven. A geometrical interpretation of Aitken's δ^{2}-process is given, and several formulas are set forth, each of which yields this method of acceleration. Also, the notion of "transform sequence" is introduced to set up a unifying framework for investigating various methods of acceleration.

In Chapter II, the convergence of $\left\{T_{n}\right\}$ is treated and corresponding n.a.s.c. for $\sum a_{a n} \varepsilon M R\left(\Sigma a_{n}\right)$ are proven. Divergence theorems are proven, which are used to prove that if $\sum a_{n}$ and $\sum a_{\delta n}$ are convergent complex series, then $S=S_{\delta}$. This fact was first published by Lubkin (17, p. 230) for real series. We are then led in a natural manner to some theorems on rapidity of convergence. In Chapter III, n.a.s.c for $\Sigma a_{\alpha n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ are
established. It is shown that any sequence $\left\{\alpha_{n}\right\}$ such
 by the simple condition $\beta_{n} \sim \alpha_{n}$. This is then used, along with algebraic properties of T_{n}, to prove that $\Sigma a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $\mathrm{T}_{\mathrm{n}+1}{ }^{-\mathrm{T}_{\mathrm{n}}} \rightarrow 0$. With the added condition $\left|r_{n}\right| \leq . \rho<1$, it is proven that $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if and only if $r_{n+1}-r_{n}+0$. It is also proven that if $\left|r_{n}\right| \leq . \rho<1$ and $r_{n+1}-r_{n} \rightarrow 0$, then Lubkin's W transformation and a slight variant of the W transformation may be used for accelerating the convergence of Σa_{n}. The relationship between the δ^{2}-process and the W transformation, as concerns acceleration, is shown under the restriction $a_{\delta n} / a_{n} \rightarrow 0$; in particular, $a_{\delta n} / a_{n} \rightarrow 0$ implies that $\sum a_{\delta n} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$ if, and only if, $\sum a_{\alpha_{n}} \varepsilon \operatorname{MR}\left(\Sigma a_{n}\right)$, where $a_{n}=.\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right)$. The application of the δ^{2}-process to power series is also considered.

In Chapter IV, rapidity of convergence is again considered. Methods for accelerating convergence published by various authors, previously cited, are extended to complex series. In extending Lubkin's Theorems 8 and 9 (17, p. 232-233), it is shown that part of each hypotheses may be omitted. Pflanz (18, p. 25) established this fact for
the former theorem where Σa_{n} is real.
If Σa_{n} is a convergent series such that
$\left|r_{n}\right| \rightarrow 1$, the application of Aitken's δ^{2}-process becomes critical. In particular, that part of Lubkin's Theorem 6 (17, p. 231) concerning acceleration is shown to have no application if $r_{n} \rightarrow$. Similarly, that part of his Theorem 7 (17, p. 232) concerning acceleration is proven to be vacuous. The letter ${ }^{\text {th }} C^{\text {sin }}$ in Theorem 7 is in error and should be replaced by "Q". At this point, one wonders if the δ^{2}-process is ever practicable if $\left|r_{n}\right| \rightarrow$. The answer is in the affirmative, as is shown by Theorem 4.17, Theorem 4.20, and the discussion following the former theorem. Theorems on the acceleration of power series are also established.

Kummer's criterion, known to be sufficient for the convergence of a series $\sum a_{n}$ of positive terms, is proven to also be necessary in Chapter V. The necessity was first published by Shanks (24, p. 340). The criterion is that there exists a sequence $\left\{\beta_{n}\right\}$ and a positive number c such that $\beta_{n}>0$, for $n>0$, and $\beta_{n} \geq c$ $+r_{n+1} \beta_{n+1}$ for $n \geq 1$. It is proven in this paper that " $\beta_{n}>0$ " can be replaced by any one of the conditions " $\beta_{n} \geq 0 ", ~ "\left\{a_{n} \beta_{n}\right\}$ converges", or "some subsequence of $\left\{a_{n} \beta_{n}\right\}$ is bounded below". Proofs of the sufficiency of
the comparison test, ratio comparison test, root test, ratio test, and Raabe's test, are given by exhibiting a sequence $\left\{\beta_{n}\right\}$ such that $\beta_{n} \geq .0$ and $\beta_{n} \geq \cdot 1+r_{n+1} \beta_{n+1}$. At the end of Chapter V, a method for applying the previously developed error analysis is indicated by one example.

Chapter VI gives the analogues of some of the theorems of Chapter V for real series, and Chapter VII does likewise for complex series.

In Chapter VIII, theorems, similar to Kummer's criterion for the convergence of series of positive terms, stating n.a.s.c. for an alternating series to converge are proven. Some of these theorems lead to fairly sharp bounds for the quantities I_{n}. In many such theorems, it is proven that all inequalities, excluding those between indices, may be reversed. Calling any such theorem and the derived theorem duals, we encounter a duality structure, which unhappily fails in at least one case.

The theory of alternating series in this paper resulted from an initial study of Aitken's δ^{2}-process in the critical case $r_{n} \rightarrow-1$ Lubkin's Theorem 5 (17, p. 231) states that if Σa_{n} is a real convergent series, $r=-1$, and $\left(1+r_{n+1}\right) /\left(1+r_{n}\right) \rightarrow 1$, then $\sum a_{\delta n} \varepsilon M R\left(\sum a_{n}\right)$. Generalizations of this theorem are proven; one involves
$\lim \inf \left(1+r_{n+1}\right) /\left(1+r_{n}\right) \rightarrow 1$, while another involves $\lim \sup \left(I+r_{n+1}\right) /\left(I+r_{n}\right)=1$. Another theorem along this line involves the inequality $1 / 2 \leq 1+r_{n+1}+r_{n+1} r_{n+2} / 2$, actually the first theorem discovered by the author. A detailed analysis of bounds for T_{n} is considered throughout, which immediately yield bounds for $S-S_{n-1}$. Calabrese (10, p. 216) appears to be the only one to publish any result along the lines developed in our chapter on alternating series. His theorem is true, but the proof which he gives contains an error. The final part of Chapter VIII is devoted to finding simple tests for applying the developed error bounds for I_{n}.

BIBLIOGRAPHY

l. Aitken, A. C. On Bernoulli's numerical solution of algebraic equations. Proceedings of the Royal Society of Edinburgh 46:289-305. 1926.
2. Aitken, A. C. Further studies in algebraic equations and matrices. Proceedings of the Royal Society of Edinburgh 51:80-90. 1931.
3. Aitken, A. C. Studies in practical mathematics. Proceedings of the Royal Society of Edinburgh 57: 269-304. 1937.
4. Aitken, A. C. Studies in practical mathematics. V. On the iterative solution of a system of linear equations. Proceedings of the Royal Society of Edinburgh 63:52-60. 1950.
5. Apostol, Tom M. Mathematical analysis. Reading, Massachusetts, Addison-Wesley, 1957. 553 p.
6. Bickley, W. G. and J. C. P. Miller. The numerical summation of slowly convergent series of positive terms. Philosophical Magazine 22: 754-767. 1936.
7. Blanch, G. and L. K. Jackson. Computation of harmonic measure by L. Ahlfor's method. National Bureau of Standards Applied Mathematics Series 42: 53-61. 1955. (Experiments in the Computation of Conformal Maps).
8. Bradshaw, J. W. Modified continued fractions for certain series. American Mathematical Monthly 45: 352-362. 1938.
9. Bradshaw, J. W. Modified series. American Mathematical Monthly 46:486-492. 1939.
10. Calabrese, Philip. A note on alternating series. American Mathematical Monthly 69:215-217. 1962.
11. Forsythe, George E. Solving linear algebraic equations can be interesting. Bulletin of the American Mathematical Society 59:299-329. 1953.
12. Hartree, D. R. Notes on iterative processes. Cambridge Philosophical Society 45:230-236. 1949.
13. Householder, Alton S. Principals of numerical analysis. New York, McGraw-Hill, 1953. 274 p.
14. Isakson, Gabriel. A method for accelerating the convergence of an iterative process. Journal of the Aeronautical Sciences 16:443. 1949.
15. Knopp, Konrad. Theory and application of infinite series. 2d. ed. New York, Hafner, n.d. 563 p.
16. Kummer, E. E. Eine neue Methode, die numerischen Summen langsam convergirenden Reihen zu berechnen. Journal für die Reine und Angewandte Mathematik 16: 206-214. 1837.
17. Lubkin, Samuel. A method of summing infinite series. Journal of Research of the National Bureau of Standards 48:228-254. 1952.
18. Pflanz, Erwin. Über die Beschleunigung der Konvergenz langsam konvergenter unendlicher Reihen. Archiv der Mathematik 3:24-30. 1952.
19. Rosser, J. Barkley. Transformations to speed the convergence of series. Journal of Research of the National Bureau of Standards 46:56-64. 1951.
20. Samuelson, Paul A. A convergent iterative process. Journal of Mathematics and Physics 24:131-134. 1945.
21. Schmidt, R. J. On the numerical solution of linear simultaneous equations by an iterative method. Philosophical magazine 32:369-383. 1941.
22. Shanks, Daniel. An analogy between transients and mathematical sequences and some nonlinear sequence-to-sequence transforms suggested by it. White Oak, Md., 1949. 42 p. (Naval Ordnance Laboratory Memorandum 9994. Part I. Project NOL-4-Re 9d-21-2. 26 July 1949).
23. Shanks, Daniel. Non-linear transformations of divergent and slowly convergent sequences. Journal of Mathematics and Physics 34:1-42. 1955.
24. Shanks, E. Baylis. Cormvergence of series with positive terms. American Mathematical Monthly 64: 338-341. 1957.
25. Shohat, J. A. On a certain transformation of infinite series. American Mathematical Monthly 40:226229. 1933.
26. Szász, Otto. Summation of slowly convergent series. Journal of Mathematical Physics 28:272-279. 1950.
27. Thielman, Henry P. Theory of functions of real variables. New York, Prentice-Hall, 1953. 209 p.
28. Todd, John. (ed.) Survey of numerical analysis. New York, McGraw-Hill, 1962. 589 p.
29. Todd, John and S. E. Warshawski. On the solution of the Lichtenstein-Gershgorin integral equation in conformal mapping: II. Computational experiments. National Bureau of Standards Applied Mathematics Series 42:31-44. 1955. (Experiments in the Computation of Conformal Maps).
30. Wynn, P. On a device for computing $e_{m}\left(S_{n}\right)$ transformation. Mathematical Tables and Other Aids to computation 10:91-96. 1956.

