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ERROR ANALYSIS, CONVERGENCE, DIVERGENCE, AND
THE ACCELERATION OF CONVERGENCE

CHAPTER I

INTRODUCTION

%
Given a complex series Zan, we shall write Zan
0

n

e o]
for %an, S = %ak, and, if Zan converges, S = Zan.

n
Similarly, if Zaé converges, then S' =Zal! Given two
convergent seriés Zan and Zaé, the latter is said to
converge more rapidly than the former iff

(S"SA)/(S"Sn) - 0 as n=- o If Za_  converges,
"MR(Zan)" will denote the class of all series Zb_~ which
converge more rapidly to S than Zan, i.e.,

Zb_ € MR(Zan) iff Zb_ = converges more rapidly to S

than Zan. The concept of "acceleration" or Mspeed-up”
can now be defined as the problem of finding a series b,
such that Zb_ e MR(Zan). We will say that Za! con-
verges with the same rapidity as Zan iff there are

numbers A and B such 0 < A <. |s'-s!|/|s-s | <. B.

The notation "<." means that < holds for all suffi-

ciently large n. If "*" denotes any relation, "*."
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will be used in the same manner, while H¥:"  means that
e holds for infinitely many positive integers n. Simi-
larly, f(x) <. g(x) 1iff f(x) < g(x) for all suffi-
clently large values of the real variable x.

Various methods, found in the literature, for ob-

taining a series Zaé € MR(Zan) may be summarized as fol-
lows. A sequence {bn} is proposed, and then the partial
sums Sé are specified by the equation‘ SA = Sn+bn+1

for n > 0. It is immediate that aé = ao+b1, and

|- -
ar an+bn+1 bn for n > 1.

It seems somewhat advantageous to set bn = a @,

for n > 1, and specify the *transform sequence™ {an}.

In doing so, we set ’San = Sn+an+1an+1 for n > O,
80 = Sqo0 T ao+a1a1’_ and.. a; = San_sa(n—1)
= a_ f a041%041 ~ 3%, for n> 1. It follows that 1f

Zan converges, and a, =i 0 or a =i 0,  then

S =: S

an ,» and thus ZTa__ £ MR(Zan). Consequently, we

shall usually consider only series Za, for which
a, #Z., 0. If Ta,, converges, its sum will be denoted by

S .
a

Suppose that £a = converges and a_ #0 for n>0.
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The optimal choice of {an} for acceleration should yield

Sqn = S for n 2> 0. Thus S +'an+1an+1 = § and we must
have a .. = (S-Sn)/an+1 for n > 0. We easily verify that
Sqn = S * 341 %ty = Sp * an+1(S-Sn)/an+1 =8 for n > 0O,
with a = (S'Sn-1)/an for n > 1. Hence this transform

sequence 1s the *exact® solution to our problem of speed-up.
In general we must satisfy ourselves with an approximation
to this solution. We now turn to some of these ™approxi-
mations*, |

For each n such that a_, #Z 0 we write

r, = an/an_t. The notation Q, = n(l-r,), Q = lim Q,

and r = lim r_ = of Lubkin (17, p. 228-229) will be used

(Lubkin uses ®“R# in place of our fr'"),
Aitken's 3®-process will be treated in detail in
this paper and can -be obtained by defining its transform

sequence {bn} as follows:

1.1 5, = l/(l-rn) if #1, 5, = 0 otherwise.

The notation in 1.1 will be adhered to throughout this
paper. Various other processes considered in this paper
can be described by defining their corresponding trans-

form sequence. We enumerate some of them as follows:



1.3 a = (1l-r

n n-1 n
1.4 a_ =n/(Q-1).

1.5 a, = Q/(Q-1)(1-r ) = nQ/(Q-1)Q_ = @ _/(Q-1).
1.6, =s/(s-1)(1-r ), s = lim a_/a, .

Among publications in which 1.1 is found are the
following: Aitken (1,p.301), Forsythe (11, p. 310),
Hartree (12, p. 233), Householder (13, p. 117), Isakson
(14, p. 443), Lubkin (17, p. 228), Pflanz (18, p. 27),
Samuelson (20, p. 131), Schmidt (21, p. 376), Shanks (23,
p. 233), Todd (28, p. 5, 86, 115, 187, 197, 260). We find
1.2 in Lubkin (17, p. 232), Shanks (22, p. 39) and (23, p.
25-26); 1.3 in Lubkin (17, p. 229); 1.4 in Szdsz (26, p.
274); 1.5 in Lubkin (17, p. 232), Pflanz (18, p. 25); 1.6
in Shanks (23, p. 39).

Lubkinkcalls La the T transformation, Xa

on an

of 1.2 the Ratio transformation, and Zaan of 1.3 the W

transformation. The transformation defined by 1.5 is found
in Lubkin's Theorem 8 (17, p. 232). Daniel Shanks calls

Zaan of 1.6 the efs) transformation.

The author suggests the use of the following trans-

form sequences for acceleration.
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-~

(]
)

(n+a)/(Q-1), a some complex number.

’_l

o

2}
i

(n+a)/(Qn—l), a some complex number.

The sequence 1.7 reduces to 1.4, if a =0. A
method for determining the most appropriate value for a
in 1.7 will be indicated by an example at the end of
Chapter V. The sequence 1.8, with a = 0, 1is suggested

for application to power series Zan where

a =b z for n > O.

Given any sequence {xn} we define, for every n,

Axn = X 4y - X, and Azxn = A(Axn) = Axn+1 - Axn

= X4 T 2xn+1 X No use will be made of the higher

order differences Akxn, k > 3.

Aitken's 32-process can be formulated in various
ways. In particular, assuming that division by zero is

excluded, we have:

1.9 Sbn =S, * 841004y T Sn + an+1/(l'rn+1)’ n 2 0.
1.10 Sen = (Sn-1sn+1'si)/(sn-1_28n+sn+1)’ n2 1
| sn-, Sa | \
LM S T las as | T As , As |0 P 2 1.
1,12 s, = . - (AS _ )2/A%S__, n > 1.
1.13 S, =S - (AS _AS )/A%S__ ., n> 1.
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1.14 s, =S - (A8 )B/ARs

dn n+1 n2 L.

-7

Moreover, if we define F(x,vy,z) = (xz-y?)/(x-2y+z),
x-2y+z # 0, we have F(x+a, y+a, z+a) = a + F(x,vy,2),

for every a, and 1.10 becomes,

1.15 S = F(S

on S

n> 1.

n-1’ Sn’ n+1)’ -

The function F also satisfies F(c,x,cy,cz) = cF(x,y,2).
We see that these two properties of F may be of some
use in actual numerical calculations. For example, suppose

that S1 = 15.001418373, S2 = 15.000304169, and

S3 = 15.000065221. Then, 862 = F(S1,SB,SE)==l5.000065221

+ 10—913(1353152, 238948, 0) = 15.000065221

+ (1077)[-(238948)21/[1353152-2(238948)-0] = etc.
The d2-process has the following geometrical inter-

pretation. Suppose that S, S, so that

(Sn’sn+1) -+ (S,S). The points (S,S) and (Sn’sn+1)’

n > 0, are graphed. The straight line through two suc-

cessive points (S ,S_ ) and (Sn’sn+ ) 1is intersected

n-1’"n 1
with the line vy = x. Denoting this point of intersection

by (S ’Sén) yields Aitken's 52-process. This interpre-

dn
tation is found in Todd (28, p. 260), but no mention is
made of the &2-process there. Also, Todd (28, p. 5)

credits the d2-process to Kummer (16, p. 206-214).



Returning to the exact solution for speed-up

a = (S'Sn-1)/an’ n>1l, we have a_ = (an+(S—Sn))/an
=1 + (S-Sn)/an =1+ T, » 1if we set Ty = (S—Sn)/an
for n > 1. Hence 1+ T ., n > 1, 1is the exact solu-

tion.

Suppose that Zan converges and n 1is any in-
teger > 1 such that I # 0. We then formally

define

l.l6 T = (s-5

n-1)/an-1'

Various relations are satisfied by the quantities

T some of which we now state and prove:

n’

1.17 T =1 (4T, ), if a_ _ a 7 O.

1.18 (l-rn)(l+Tn =1+T - T

+1) n+1 AU S N # 0.

1,19 [(1-r)/a d(s-s _ ) = MT . -T, if a _ a 7 O.

n

1.20 T ., = rn/(l-rn)-P(Tn+1-Tn)/(l-rn), if r, # 0 orl.

. = + +o‘-+ c &8 +nto i O
1.21 Tn Tn TnTn+ (rnrn+1 rn+k) , 1f “m 7

for m > n-1.

For 1.17, T = (S-—Sn_1)/an_1 = (an+S-Sn)/an .= an/an_1
+ (a/a,_;)L(s-5)/a ] = ¢ +r T , = r (1+#T_, ). Thus,
(-2 )(1+T ) = 1#T -7 (1+T ) = 14T, -T , i.e., 1.18



)

(1-x )L(S-S__)/a ] = (1-x ) (T /r.) = (1-r ) (1+T.,,)

holds. Consequently, [(l-rn)/an](S—Sn_1

I}

1+T —Tn, and thus 1.19 holds. From 1.18, 1+T

l/(l-rn) + (T, =T )/(l-rn), so that T

n+1 n n+1

I

l/(l—rn) -1+ (T +1—Tn)/(l—rn) = rn/(l—rn)

n

-+

(To4,-T,)/(1-xr ), i e., 1.20 holds. Finally,

n

)/a ;= (agta 4 et a y teee)/a

=a/a _y ta, a e a /e teee= e /Ay

n-1an) oot (anan+1"'an+k)/(an-1aﬁ"an+k—1)

o »

teee= o otror T Y4..., i.e., 1.21 holds.

n - n+1 rnrn+1 Tntk

Given a series za s not necessarily convergent,

we define

1.22 Tn,k = (Sn+k_sn_1)/a for k > -1 and an_17£ 0.

n-1°

We note that Tn oy = 0. Also, if k 1s any integer > O,

and n 1s any integer such that 3, A0 for

n-1<m<n+ %k, then

1.23 T =r +rr +eo+ (1

n, k n n - n+1 nfn+1 rn+k)'

We also define a ~ 8 = iff an/Bn -1 as n = *®,
The abreviation "n.a.s.c.® is used both for "necessary and
sufficient condition®™ and "necessary and sufficient condi-

tions.!

Instead of a convergent series Zan, one may desire



to accelerate the convergence of a sequence of complex

. = +
numbers Sn We then set SOm Sn 8 +1% 41 where

a, = AS__ 7 S-S r, =a/a _,, and {an} is a pre-
scribed transform sequence. If s = lim Sn’ we require

that (s-S_ )/ (S-S ) ~ 0 in order that {S,,} converge

an

more rapidly to S than {Sn}. Thus we may view accele-

ration from either the series or sequential viewpoint.

They are clearly one and the same thing.
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CHAPTER 1II

ACCELERATION, RAPIDITY OF CONVERGENCE, AITKEN'S
&2 -PROCESS, AND DIVERGENCE

All series in this chapter are assumed complex un-

less explicitly stated to the contrary.

Theorem 2.1. The conditions (1) r_ =0, (2) T. = 0,

n n
and (3) Tn/rn - 1 are equivalent.
Proof: If T, = 0, then a, #. 0 so that
r, = Tn/(l+Tn+1) -+ 0. Conversely, assume that r_ - O.
Let 0 < e < 1. Then |r | <. &, so that
Tl = Jr gt rpy, ool < lr I+l llo g, [ < e/(1-¢)

and thus Tn -+ 0.
If T, 0, then Tn/rn = 4T ., = 1. Con-

versely, if Tn/rn -1, then T ., =. Tn/rn - 1 - 0.

Q.E.D.

Theorem 2.2. If T, ™ ¢t for some complex number t,

then:

=
H
I

t/(1+t), |r|l €1, and «r # 1.
(2) t = r/(1l-r) and -% < Ret.

If, in addition, {an} is a sequence of complex numbers
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such that a, > a, for some complex number a then:

09
(3) Sy = S-

(4) Ta . € MR(Zan) if and only if a, = 1/(1-r).

(%) Za , converges with the same rapidity as 3a,

if and only if a A 1/(1-1).

)

Proof: Since {T_ } converges and T, = 1 (14T o

T, #. 0 and T, #. -1. Consequently t # -1, since

otherwise |r | =. |T /(14T -+ + ®©,  which is impossible

n+1)|

since a, »+ 0. Thus, T, = Tn/(l+Tn+1) =+ t/(1+t), i.e.,

r = t/(1+t) # 1. Clearly, |r] < 1 so that (1) holds.
From (1), t = r/(l-r) and |t|/]|(-1)-t] = |t/(1+t)]

< 1. Thus, |t} < |(-1)-t], which is equivalent
to -% < Re t, so that (2) holds. (3) holds since

S = S +a

— = 1 .
on L N S + Oay, S. Ssince T, #. 0, we

li

0, then rn/Tn -+ 1 = 1-1

9

have (S'Sn-q) #. 0. If +t

according to (1), (2) and Theorem 2.1. If +t # 0, +then
rn/Tn -+ r/t = (1-r) from (1) and (2). In either case,
(5-8,,)/(5-5,) =. [5-(s_+a_, a_, )1/(5-5)

= l—an+1an+1/(S-Sn) =, l-ocn+1rn+1/Tn+1 -+ l-a,(1-1).

Hence, (4) and (®) hold, since l—ao(l-r) =0 1is equi-

valent to a_ = 1/(1-r). Q.E.D.
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Corollary 2.3. If {Tn} converges, then Za, e MR(Zan).

Proof: Suppose T_ =+ t. From (1) of Theorem 2.2,

r, ~+ r where T # 1. Thus 5, =- l/(l—rn) -+ 1/(1-1),

so that DEF MR(Zan) according to (4) of Theorem 2.2.

QDE.D.
We inquire if the convergence of {Tn} is also

necessary for Yag . € MR(Zan). In the following chapter,

we shall see that the answer is in the negative. There it

will be proven that Ta, ¢ MR(Zan) if and only if

dn

T —Tn -+ 0.

n+1

Theorem 2.4. If Zan and Zaén are convergent real

series, then S = S&'

Proof: Assume that S # S@' Since ad, =- S&(n—1)_s(n—ﬂ

-+ Sa—S #Z 0, 5, #. 0 and an/(l-rn) =. a5, * S-S 7 0.

Thus a, ~* O 1implies that I-r, ~ 0, i.e., r,+r = 1 so

that 0 <. T and O <. Tn. From 1+Tn+1—Tn

= [(1-rn)/an](5-5n_1) -+ 0, we have 1+T .,-T <. Y% and

0 <. Tn+1 <. T, which implies that {Tn} converges.

From (1) of Theorem 2.2, r # 1, which contradicts r = 1.
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Thus our assumption is false, and S = 56' Q.E.D.

Lubkin (17, p. 230) gave the first published proof
of Theorem 2.4 for real series. The proof of this theorem
for the complex case is given in Theorem 2.6, and to the

author's knowledge is the first such proof.

Theorem 2.5. If (l-rn)/an -+ L # 0, then fa ~ diverges.

Proof: Assume that Za, converges. We may suppose that
L = 1-i;. since otherwise Zag converges where

a! =a L/(1-i) and (l—ré)/aé =, (l—rn)/[anL/(l-i)] -+ 1-i.
Accordingly, (l—rn)/an =. [(Re an)/[a |2 -(Re an )/I nk ]

+ i [(Ima )/l _4[® - (Im a )/|a [?] » 1-i. Conse-

quently, (Re an_1)/]an_1|3 <. (Re an)/lan|2 so that
(Re a )/la [® = L for some L, <+ If L, <+ o,

then Re [(l-rn)/an]-+ L,-L, = 0, which is impossible

il

since = Re [(l-rn)/an]-+ 1. Thus L + o and O <. Re a_.

1 n
Similarly, (Im an_1)/[an_1[2 <. (Im a )/l [ and 0 <.
' i6,
Im a . Hence setting a_ = [a e we may chose O

such that 0 <. en <. m/2. From

—
1!

ay/Bnoq T, /et ra e e

i(e_-o6__ ) i(6 -6 )
lan/an_1|e non-17, [an+1/an_1[e non-1ty

I
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=, [Ianlcos(en—e )RR ICOS(9n+k-9 )

n-1 qn+k n-1

teee]/la |+ (Im T )4
and 0 <. g <. m/2, we have O <. Re T,- Since

LT, =T, = [(l—rn)/an](S-Sn_ ) - 0, we have

n+7 1

1+Re T ., -Re T =. Re (1+Tn+1-Tn) -+ 0. Thus Re T_,,

+

- Re T, < -% for n > N, where N 1is some positive in-
teger. Consequently,

-

] <. Re TN >

— = 0O

n
Re Ty, =- Re T+ 121 Rel Ty s s~ Tyso

as n =+ *©, Hence, Re Tn <. O which contradicts
0 <. Re T,+ Consequently our initial assumption cannot

hold, i.e., Zan must diverge. Q.E.D.

Theorem 2.6. If Zag and Ta both converge, then

&n

Proof: Assume that S # S.. Then a = S5 (n-1) Sn-1

+ S, - S #0 so that I #. 0 and an/(l-rn)

o)

=. ad. =+ S4-S #Z 0. Thus (l—rn)/an - l/(Sé-S) # 0,
which implies, 1in view of Theorem 2.5, that Zan di-

verges, a contradiction. Therefore our assumption cannot

hold, i.e., S =S8 Q.E.D.

6.
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It should be kept in mind throughout the remainder
of this paper that, according to the preceeding theorem,

the statements "Zaén e MR(Za,)" and "Zaén converges

more rapidly than Zan” are equivalent.

Lemma 2.7. Suppose that za, is a convergent series,

a, #. 0, and c, = ¢t Sn - S for n >0 where c¢ 1is

some complex number. Then,

{ (e}
1+ ¢ (— )+ 2L D= 0 (s-S

Proof: We have

Theorem 2.8. If {(l-rn)/an} is bounded, then the com-

plex seriles Za, diverges.

Proof: Assume that »a converges. Since {(l-rn)/an}

is bounded, there is an € > O such that

[ € (l-rn)/anl <. Y. Let c¢ be any complex number satis-

fying |c| = ¢ so that
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(1) -Re c(1-r )/a_ <. 4.

Setting c, = ¢ + Sn—S, for n >0, we have ¢ -+ c.

From Lemma 2.7,

l—rn Chot h l—r_n
Re {1+ ¢ ( )+a -5—-—] =. Re — (S-Sn_1)~—ro
n n-1 n n
and thus,
l-r c
(2) 1+ Re ¢ ( ) + Re == - Re == <. /4
n n-1 n
Using (1) and (2),
c c l-r c_-
% + Re =221 <. Re 22 - Re ¢ (——2) - %4 <. Re 3= ,
n-" n n n

from which it is easily seen that Re cn/an -+ + ® and

Re Cn/an >. 0. Since Re Cn/an > 0 and ¢ —+c, we

conclude that ,
(3) an £. {z: arg ¢ + 31/4 < arg z £ arg ¢ + Sm/4% .
Chosing arg ¢ successively in (3) as O,m/2, 7, and

3r/2, we conclude that an is not in the complex plane

for large n, which is absurd. Hence, our initial assump-

tion cannot hold, i.e., Zan must diverge. Q.E.D.

For the series 3a  where a = 1/An n for

n

v

2, we have (l—rn)/an =, l/an—l/an_1
=. n n-£n(n-1) - 0 so that, from Theorem 2.8, 2an di-

verges. Similarly, with a_ = 1/(ntl) for n > 0, we
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have l/an—l/an_1 = (n+tl)-n = 1 for n > 1, and thus

Zan diverges. For the divergent series DE where

a, = 1/(n 4n n), we have l/an-l/an_1 =. ndnn

- (n-1) In (n-1) =. (n-1)An n-fn(n-1)] + In n o » ,
so that Theorem 2.8 is not applicable, and thus appears to

be a very limited criterion for divergence.

Theorem 2.9. If Zan is a convergent series, then some

subsequence of {Sén} converges to S.

Proof: Suppose Za, is convergent and assume that no sub-

-S

sequence of {Sén} converges to S. Since Sén n

= an+16n+1’ our assumption holds if and only if no sub—
sequence of {anén} converges to zero, and this 1s equi-
valent to [anénf >. B for some B > 0. Thus
l(l-rn)/an[ =. 1/Ian6n[ <. 1/B. From Theorem 2.8, Za_

diverges, a contradiction. Therefore our assumption can-

not be true, i.e., some subsequence of {Sén} converges

to S. Q.E.D.

Theorem 2.9 clearly ylelds a second proof of The-

orem 2.6.

Example 2.10. It is not necessarily true that 1if Zan

converges, Zaan will also converge. In particular,
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Lubkin (1, p. 240) considers the series Ya =1+ 1/2

-1/3 - 1/4 + 1/5 + 1/6 - 1/7 - 1/8 + 1/9 + -+ which

converges while Zaén diverges. However, according to
Theorem 2.9 some subsequence of {Sén} must converge to

S. Hence, of course, this is evident since T, <: 0 and

Sén =, Sn + an+1

/(1-1

n+1). This particular series shows

that the ©&®-process is not regular.

Example 2.11. Lubkin (17, p. 240) also shows that the se-

ries Za = 1+1/(1+1) + 1/2% + 22/(2%4+1) + 1/3% +3%/(34+1)
+ +«++ converges while Zaén diverges. Again, according
to Theorem 2.9, some subsequence of {S, } must converge
to S. This is not so obvious by inspection as was the

case in Example 2.10.

Theorem 2.12. If Zan is a series such that Zaén is

properly divergent, i.e., |S -+ ® , as n =+ o, then

5n!

Zan diverges.

Proof: Assume that Zan is convergent. From Theorem 2.9
some subsequence of {Sén} converges to S, so that

|56n|74 © as n = oo, i.e., 2a is not properly di-

dn

vergent. Q.E.D.
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Theorem 2.13. A n.a.s.c. that {T } converge is that

r, T #Z 1 and T, - T, - 0.

*1

Proof: The necessity follows from (1) of Theorem 2.2 and

the fact that {Tn} converges implies that Tn+1"Tn -+ 0.

For the sufficiency, r # 1 dimplies that

rn(l-rn) #. 0. From 1.20, Tn+1 =. rn/(l-rn)

+ (T4 -T,)/(1-2 ) = z/(1-r). Q.E.D.

Theorem 2.14. If r - r where |r| < 1, then

Tn -+ r/(1-r).

Proof: Since |r| <1, r #1 and Zan converges, soO

‘that T = exists for large n. Let & >0 and p bDe

any number such that |[r| < p < 1. There exists an inte-
ger N such that for n >N and m> N we have

[rnl < p and [;n—rnl < g¢(1-p). Thus, for each n > N

we have lTn+1'Tn[ - H:rn+1_rn] * [rn+1rn+2’rnrn+1]
N T I S IR
T LA R B e E L LN A

< e(l-p) + p e(l-p) ++4 pSe(l-p) +o+ = &.

Hence, [Tn+1—Tn| =0, i.e., T . -T = 0. From
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Theorem 2.13, {Tn} converges. Consequently,

T, = r/(1-r) according to (2) of Theorem 2.2. Q.E.D.

Theorem 2.15. Suppose that r_ - r where [r] <1,

and let {qn} be a complex sequence converging to some

complex number q,- Then Tn -+t for some complex

number t, and conditions (1) through (5) of Theorem

2.2 hold.

Proof: From Theorem 2.14, {Tn} converges. Now apply

Theorem 2.2. Q.E.D.

According to Theorem 2.15, Za; . € MR(Zan) if

r = 0. Nevertheless, the reader should be forewarned in

e ¢]

case r = 0. In particular, let Zan = %(-l)n/nl = 1/e.

We have r = -1/n for n > 1, and 5, = l/(l-rn)

= 1/[1+(1/n)] = n/(n+l) = 1-1/(n+1) = l#r .. for n > 2.

Consequently, S = Sn+an o = Sn+a l+r

én +17 n+ n+1( n+2)

for n > 1. Hence {6n} appears to be a poor selection

for accelerating the convergence of Zan.

Lemma 2.16. If [r[ <1, then T /r = 1/(1-r).

Proof: If r = 0, then Tn/rn -+ 1 =1/(1l-r) according

to Theorem 2.1. If 1 # 0, then T./r, = [r/(l-r)]/r
= 1/(1-r) according to Theorem 2.14. Q.E.D.



Theorem 2.17. Suppos

such that |[r| <1 a

(1) Za! converges
if ar'l/an -+ 0.
(2) Zal converges

and only if th

that 0 < a <.

Proof: From Lemma 2.
Tg/ré -+ 1/(1-r').

If ar'l/an -+ 0,

21

e that Zan and Zaé are series

nd [r'| < 1. Then:

more rapidly than Zan if and only

with the same rapidity as Zan if

ere are numbers a and b such

la!/a | <. b.

16, Tn/rn ~+ 1/(1-r) and

' _ '
S S! a TI"I/rI"l / l-r') B

n-1 n 1
——— T —— — O. = O.
S_Sn-m an Tn7rn i/(1l-r

Conversely, if Zaé

| |
al Tn/rn S

converges more rapidly than Zan,

“Sh1 . 1/(1-1)

o

This proves (1).

Assume that a

0 <ac<. [al/a | <. b.

=+ [ (1-0)/(1-2")| # 0,
such that 0 < ¢ <. |

St-
0 < ac <.

a_ Té/ré 5-5 1/(1-r!

5-5

n-=1

and b are numbers such that
Since [Té/ré)/(Tn/rn)]
there ‘are numbers ¢ and d

(1) /e})/ (T /r )] <. d. Thus,

| 1 |
Sn-1 - an Tn/rn <. bd
L] 7 L] .

n-1 an Tn rn
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Assume that A. and B are numbers such that 0 < A

<. |(s'-S! )/(s.-sn

e )| <« B. As above, there are

-1
numbers ¢ and d such that 0 < ¢ <. I(Tn/rn)/(TH/EQI
<. d. Thus,

a'

n

55y

0 < Ac <. IS'Sn-1|

<. Bd. Q.E.D.

T/
1 ~ T
Tn/rn

Lemma 2.18. If |r_ | <. p < 1/2 for some number p,

then 0 < (1-2p)/(1-p) <. [T /r | <o 1/(1-p).

Proof: We have [T | <. [rn]+]rnrn+1[+"'+[rn"'rn+k[

+o00 <[ [/(1-p) <oop/(1-p) < 1. Thus, | T,/T,l

It

<o 1/(1-p) and [T /v | = (14T 00 2 (1] = [T 4]

It

=0 1-[T 41| 2. 1-p/(1-p) (1-2p)/(1-p) > 0. Q.E.D.

Theorem 2.19. Suppose that Zan, Zaé are series such
that a'/a - 0, and [z | <o py < 1/2, |xl] <oopy <1
for some numbers PyiPye Then %a) converges more Tra-

pidly than DEN

Proof: From Lemma 2.18, 0 < (l-2p1)/(l-p1) <. [Tn/rn[.

Also, [T /z!| =. |l#z! 4+2!,q ol o+ | <0 1/(1-py)-

Thus,
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st-si oyl eyl Ity lafl V(epg)
55 T " Ta.l TT./%,] <- Ta T T1-2p,)/T1-p,)

Q.E.D.

According to the following counterexample, Theorem

2.19 fails to hold if we replace '"p, < %" by "p, < 1"

and sz < ln by np2 S. ln.

Counterexample 2.20. For n > O, define a_ = (-1)"/(n+1)

and a! = 1/(n+1)(n+2). Then aé/aﬁ + 0, z!~>r1' =1,
and r —+r=-1. Since S§'-S! =. 1/(n+2) and [S-S_|
<o lage, | =+ 1/(n+2), we have [S'-Sé[/[S—Sn[ 2.1, and

thus Zaé does not converge more rapidly than Zan.‘
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CHAPTER III

BASIC THEOREMS FOR ACCELERATION, AITKEN:!'S
&2 -PROCESS, AND LUBKIN'S W TRANSFORMATION

All series in this chapter are assumed to be com-
plex. The first two theorems of this chapter, the second
theorem in particular, are basic for a study of accelera-

tion.

Theorem 3.1. Suppose that Zan is a complex series

{b } is a complex sequence, and Za! 1is a series with

partial sums Sé =. Sn+bn .

1 Then Zaé € MR(Zan) if and

only if bn+1~ S—Sn - 0.

Proof: If either cenditlion holds, then S-Sn =.S-Sr'1+bn+1

#. 0, so that bn+1/(5-sn) + (S-Sé)/(S-Sn) =. 1. Thus
(S—Sé)/(S-Sn) + 0 and S-S -+ 0 if, and only if,
bn+1/(5'5n) + 1 and S-S -+ 0; but this is equivalent
to bn+1 ~ S-Sn —+ Ou QoEuD-

From Theorem 3.1, we see that the class of all se-

quences {cn} such that Za! & MR(Sa_ ), where S|
is completely determined by one such sequence

{bn}; the required condition being that ¢ ~ b_.
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Similarly, we now show that if =a € MR(Zan), then

an

ZaBn € MR(Zan), if and only if B, ~«a

n'

Theorem 3.2. Suppose that Zaan e MR(Za ). Then

ZaBn € MR(Zan) if and only if B~ ap

Proof: From Theorem 3.1, ~ 5-5n =+ 0. Hence,

an+1 an+1

from Theorem 3.1, ZaBn £ MR(Zan) if and only if

an+18n+1 ~ S-Sn, and this is equivalent to

Q.E.D.

B+t ™ G4

3nt1Pntr 7 3nsrPpgq o that is,

Lemma 3.3. If (l—rn)(l—rn+1) #Z 0, then aén/an

= /(lor,) - Y/(er) = /(ler ) - 5 /(1er)

n+1

= (rn+1—rn)/(l—rn)(l-rn+1).

Proof: Since r_ # 1 and # 1, we have &

Tn+

n
= l/(l-rn) and ® ., = l/(l—rn+1). Thus, aén/an

- (ah+an+16n+1_an6n)/an - l+rn+16n+1f§n - rn+1/(l_rn+1)
+ l—l/(l—rn) B rn+1/(l-rn+1) - rn/(l—rn) = [rn+1(l-rn)

r (1t )1/(1-r ) (Lor ) = (x4, -1,)/(1-r ) (1or )

l/(l-rn+1) - l/(l—rn). ‘Q.E‘D.

Theorem 3.4. Suppose that a&n/an -+ 0. Then
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Ta, € MR(Zan) if and only if Za € MR(Zan) where

on n

a, = (l—rn+1)/(l—2rn+1+rnrn+1).

Proof: Suppose that Ta, ¢ MR(Zan). From Lemma 3.3,

dn

l-2rn+1+rnrn+1 =, (l—rn)(l-rn+1) - (rn+1-rn)

= (l_rn)(l-rn+1)El_(rn+1'rn)/(l—rn)(l_rn+1)]

=. (l—rn)(lrrn+1)(l-a6n/an) #. 0. Hence, qn/én

Ja ) — 1.

= (1-r ) (1-x_,,)/(1-2r +r x o, ) = 1/(1-a; /a

17" n n+1
From Theorem 3.2, Zaan £ MR(Zan).
Suppose that Zaan € MR(Zan). Then 1 #A. 1, so

that qn/bn =, l/(l—aén/an) + 1 and, from Theorem 3.2,

Za € MR(Zan). Q.E.D.

on

Theorem 3.5. Suppose that a&n/an -+ 0. Then

Zaén € MR(Zan) if and only if Zaan £ MR(Zan), where

a, =- (l—rn_1)/(l—2rn+rn_1rn).

Proof: Suppose that Za, e MR(Zan). As in the proof of

)/;'

n=1)" n-1

o)

Theorem 3.4, 1-2r +r . r =. (1-r

n-1 )(l—rn)[l_aé(

n-=1

#. O. Hence, a /3% _ =. (l-r

" °n 1)(l-rn)/(l-2rn+rn_1rn)

n-

/a ) - 1. From Theorem 3.2,

- l/(l~a6(n—1) n-1

2ag, e MR(Ta)).
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Suppose that Za e MR(Zan). Then T #. 1, and

thus an/én =, l/(l-aa( /a_ .) = 1. From Theorem 3.2,

n-1)" “n-1

Zaén € MR(Zan) .

Theorem 3.6. Zaan € MR(Zan), a ~ Tn/rn, and

~ + 2 .
a, 1 Tn+1 are equivalent

Proof: From Theorem 3.1, za_, € MR(Zan) if and only if

an+1an+1 ~ S-Sn -+ 0; and this is equivalent to

@y, ™ (S—Sn)/an+1 =, Tn+1/rn+4. Moreover, a_ ~ Tn/rn

is equivalent to a  ~ 4T since Tn/rn = I+T . .

+1°?

Q.E.D.

Lemma 3.7. If Zan is a convergent series and n 1is a
positive integer such that T _, -T_ # -1, then

= (o, -Tp)/ (14T, -Tp) -

(5-56( n+1

n-1)

Proof: From (l_rn)(l+Tn+1) = l+Tn+1-Tn # 0, Tn+1 # -1

and T # 1. Thus SEEIE an(l+Tn+1) # 0. We then have
(S_Sé(n-1))/(s_sn-1) - (S'Sn—1'an6n)/(s_sn-1)
= 1-a.3 /(S-S )
=l- S-Zn e =1l-7 1f? =1 -z iTé(;;ii¥1) ]
n-1 n n n n n nt+1
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=1 - l/(l+Tn+1—Tn) = (T Tn)/(l+Tn+1—Tn). Q.E.D.

n+1 -

Theorem 3.8. Zay ¢ MR(Zan) if and only if

Tn+1_Tn -+ 0.

lst Proof: From Theorem 3.6, Zay € MR(Zan) if and

only if 6n ~ l+Tn+1, and this is equivalent to

(14T ) (l—rn) -+ 1, since &_ =. l/(l—rn). Finally,

n+1 n

(l+Tn+1)(l—rn) -+ 1 if and only if T_,,-T —+ 0, since

T -T, =- (1+Tn+1)(15rn) - 1. Q.E.D.

2nd Proof: If Tn+1'Tn -+ 0, then T+, Th #. -1. Thus,

from Lemma 3.7, (S—Sé(n_1))/(5-5 )

n-1

=. (Tn+1~Tn)/(l+Tn+1—Tn) -+ 0. Conversely, suppose that

(S_Sé(n—1))/(s'5 ) = 0. Then a, Z. 0 and r_ #A. 1,

n-1 n

since & #. 0. We must have 1+T ., -T_ #. 0, since

otherwise (l—rn)(Tn/rn) =. 4T, -T =: 0, T  =:0,

and S—Sn_1 =: 0; a contradiction. From Lemma 3.7,

(T

n+1 -

Tn)/(l+Tn+1'Tn) =. (S_Sé(n—1))/(s_sn—1) -+ 0, and

thus Tn+1—Tn -+ 0. Q.E.D.

The preceeding theorem immediately yields the co-

rollary, also proven in the previous chapter, that the
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convergence of {Tn} implies Zaéne MR(Zan).

Lemma 3.9. If Za, 1s a convergent series and n is

a positive integer such that a ,a # 0, then

a
n-1 n n+1

T -r‘ - (Tn+2'Tn+1)(l_rn)(l_rn+1)_(Tn+2_Tn+1)(l-rn)

i TT) (1)

Proof: We have (l_rn)(l+Tn+1) = L-r T =TTy,

= l+Tn+1—rn(l+Tn+1) = 1+T .. -T, so that T, T

+1 n

= (l-rn)(l+Tn+1)—l. Similarly, Tn+2_Tn+1

= (1l-r 1)(l+Tn+2)-l. Thus, (Tn+2-Tn+1)(l-rn)(l-rn+1)

- (Tn+2'Tn+1)(l—rn) + (T T ) (1-x,

nt1 - +1)

= (Tn+2—Tn+1)(l-rn)(l-rn+1) - (L-r ) Q-7 ) (14T, ) -1]

J(1-v ) (1-r

JI(1-z ) (1+T , )-1] = (T A1 . 1)

n+2'T

+ (1-r) - (lor)(1-z, )(14T_, ) - (1-t

n+2)

+ (l-rn)(l—rn+1)(l+Tn+1) = (l-rn)(l—rn+1)[(Tn+2—Tn+1)

- (l+Tn+2) + (l+Tn+1)] + T -r_=r -r . Q.E.D.

n+1 n n+1

Lemma 3.10. If Zan is a convergent series and n 1is

a positive integer such that (1-x )(1-v . Ja.,. # 0, then
aén/an = (Tn+2-T ) - (T _,.-T

+ (T

n+1-Tn)/(l—rn).
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Proof: We have a a

11208041 # 0, and aan/a

n

= (r_, -r )/(l-rn)(l—rn+1) according to Lemma 3.3. Now

n+1 n

apply Lemma 3.9. Q.E.D.

Lemma 3.11. If Za, ¢ MR(Za ) and 0 < B <. [1-z | for

on

some number B, then aén/an -+ 0.

Proof: From Theorem 3.8, Tn+1'Tn =+ 0. Using Lemma 3.10
and 0 < B <. [l—rn[, it is obvious that a&n/an -+ 0.

Q.E.D.

Theorem 3.12. Suppose that Zay e MR(Zan) and

n

0 < BXK. |l-rnl. Then Zaan € MR(Zan), where a

1l

(l-rn+1)/(l—2rn+1+rnrn+1) or a,

i1

. (l-rn_1)/(l—2rn+rn_1rn).

Proof: From Lemma 3.11, a&n/an + 0. We now apply

Theorem 3.4, if a_ =. (l—rn+1)/(l-2rn+1+rr or

n n+1);

Theorem 3.5, 1if a_ =. (l-x r ). Q.E.D.

n-=1n

)/(l-2rn+r

<. B for

Theorem 3.13. If Za, ¢ MR(Zan) and |r

o n[

some number B, then =r -r_ =+ 0.
n+t1 n

Proof: From Theorem 3.8, Lemma 3.9, and |r



is obvious that

Theorem 3.14.

number

rn+1

Proof:

-
n

P

The

4 O.

Since

- -
LR 0.

Suppose that [rn

n a n.a.s.c. th
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Q.E.D.

| <. p <1 for some

at Za6

Zan converges.

The necessity follows from Theorem 3.13.

For the sufficiency, let

T -r, 0, |

e = e'/(1-p)?,

ITn+1

-T

n

I

lrn+1—

<. g + 2¢]lr

Fooot
T |+]r
n

1|

<ooet/(

r

Thet ™ n[

oot kslrn+1..

.rn+k-1l

e!' > 0. Since

1-p)®. With

I(rn+1"rn)+rn+1(rn+2_rn)+rn+1rn+2(rn+3-rn)
(rn+1”'rn-l-k-1)(rn+k-rn)+”'I
n+1'lrn+2—rnl+...+|rn+1'.‘rn+k-1llrn+k_rn

+oon

_<__. € [l+2p+3p2+...+kpk-1+,,.] = 8/(l-p2) = e,

Hence

T

n

+17T, 7 0, and thus,

Ya, € MR(Zan).

dn

Corollary 3.15.

number
that ¢
Then Za!

p, and
is an
&n € MR

Q.E.D.

Suppose that

Ta, € MR(Zan).

dn

integer and a)

(Zaé), for each

from Theorem 3.8,

|z | <o p<1 for some
Suppose, in addition,
= anzn+q for every n.

complex number =z

€ MR(Zan) is that

‘+'"
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satisfying 0 < | z | < 1/p.

Proof: From Theorem 3.14, T~ Th 7 0. Let =z be any

complex number such that 0 < [z| < V/p. Then

x| =. |rzl <o plz] <1 and ¢!, . -v! =71 4, n

= z(r -rn)—*O. Thus Za/ sMR(ZaA), according to

nt+1 3n

Theorem 3.14. Q.E.D.

Corollary 3.16. Suppose that [r | <. p < 1 for some

number p, and r_, -r —* 0. Suppose, in addition, that

. . +
g 1s an integer and aé = anzn 9 for every n. Then

Zaén £ MR(ZaA), for each complex number z satisfying

0 < |z| < 1/p.

Proof: From Theorem 3.14, Ya € MR(Zan). We now apply

on

Corollary 3.15. Q.E.D.

Lemma 3.17. If 0 < A<, [l-r | <. B, then a5 /a,

= (rp4,-1y)/(L-z ) (1-v ,,), and & /a —~+ 0 if and only

i - -
if Thet~Th 0.

Proof: Since 0 < A <. |1-r | <. B,
0 < A% <. I(l'rn)(l-rn+1)| < B?, Hence from Lemma 3.3,

azm/an =, (rn+1—rn)/(l-rn)(l-rn+1). Thus, from
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0 < AR <. |(l-rn)(l-r <. B®, aén/an-+ 0 if and only

n+1)I

if S 0. Q.E.D.

/a

Lemma 3.18. If |r o n’ “n

al &op <1, then a

(rn+1-rn)/(l-rn)(l—rn+1), and a&n/an -+ 0 if and only

if L 0.

Proof: From |[r | <.

p<1l, 0<1-p<. |l-v | <. 2. We

now apply Lemma 3.17. Q.E.D.

Theorem 3.19. Suppose that |rn| <. p < 1l. Then

/a_ =+ 0.

Za £ MR(Zan) if and only if asn /2n

on

Proof: Lemma 3.18, a&n/an —+ 0 if and only if

r +,-T, = O. From Theorem 3.14, Za, ¢ MR(Zan) if and

n+1 on

only if LS O. Consequently, Zaén € MR(Zan) if

and only if a&n/an -+ 0. Q.E.D.

Theorem 3.20. If |r | <. p < 1 and a&n/an ~+ 0, then

n
Zaan £ MR(Zan), where a_ =. (l—rn+1)/(l-2rn+1+rnrn+1) or
a = (1-r _1)/(1-2rn+rn_ T )

Proof: From Theorem 3.19, Zaén £ MR(Zan). From Theorem

3.4, Zaan € MR(Zan) if o =. (l—rn+1)/(l-2rn+1+rnrn+1)-
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‘)/(l-2rn+rn

n-1 rn)’ we may apply Theorem

-1

3.5 to obtain Zaa e MR(Zan). Q.E.D.

n

Theorem 3.21. If jr |l <o p <1 and r.,-r 70, then

Zaan € MR(Zan), where  a_ =. (l—rn+1)/(l—2rn+1+rnrn+1)

or q. =.(l-r

n _1)/(1-2rn+rn_1rn).

Proof: From Lemma 3.18, aén/an -+ 0. We now apply

Theorem 3.20. Q.E.D.
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CHAPTER 1V

RAPIDITY OF CONVERGENCE AND VARIOQUS METHODS
FOR ACCELERATING CONVERGENCE. A VACUOUS THEOREM
In this chapter, both real and complex series will
be considered. Various methods for accelerating conver-
gence will be treated. That part of Lubkin's Theorem 6
(17, p. 231) concerning acceleration will be shown to have

no application if r =+ 1. That part of his Theorem 7 (17,

o 232) concerning acceleration will be proven to be va-
cuous.

If a,p are real numbers and 0 < B < m/2, the no-
tation <a,B> will be used to denote the set of coﬁplex
numbers z such that Jarg z - al < B for some arg z.
Thus <a,B> 1s the infinite sector in the complex plane,
subtending the angle 2B and bisected by the ray 6 = a.

If B =0, <a,B> degenerates to the ray 0 = a.

The following theorem appears to be the only one of

general character, concerning rapidity of convergence, which

is found in Knopp (15, p. 279-280).

Theorem 4.1. Suppose that Za, and an are convergent

series of positive terms. Then Za, converges more ra-

pidly than Tb_ =~ if an/bn -+ 0.
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According to Counterexample 2.20, Theorem 4.1 falls

to hold for arbitrary convergent complex series fa , ZIb_

The converse of Theorem 4.1 is false. That 1is, if

Zan and an are series of positive terms, and Za, con-
verges more rapidly than an, then it is not necessarily
true that an/bn ~+ 0. This is made obvious by the follow-

ing theorem.

Theorem 4.2. Suppose that Za,  and Zb, are series of
positive terms, and that Zan converges more rapidly than
an. Then a ta ta,+a +...+a +a +... converges more rapid-

ly than ao+bo+a1+b1+...+an+bn+,,,

Proof: We have

+a + + s
an an an+1 an+1+ _ 2(an-i-an+1

+b + +b . P T .o
an bn an+1 bn+1+ (an+an+1+ n n+i

as n =+ %, and

+ + + + ) « o o0
4nte 1 qn+1 an+% an+2+ 2(a,*a * )

<
TansetP et JEr

n+

bn+an+1+bn+1

as n —+ >~ ., Q.E.D.
As previously noted, Theorem 4.2 shows that the con-

verse of Theorem 4.1 is false; however, we do have the
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following theorem.

Theorem 4.3. Suppose that Zan and an are convergent
series of positive terms. Then an/bn -+ 0 1if, and only
if Zan, converges more rapidly than an,, for each

subsequence {n'}f of {n}.

Proof: If .a /b =+ 0 and {n'} is any subsequence of
{n}, then a /by * 0 and, according to Theorem 4.1,
Zan, converges more rapidly than an,.

Assume that an/bﬁfk 0. Then there is an ¢ > O
and a subsequence {n'} of {n} such that a1/bor 2. €.

Consequently,

Mg

3y 2. €

b and thus Za_,
n
n k

Kkt

i ™M8

k n

does not converge more rapidly than an,. Q.E.D.

Lemma 4.4. If Xa = 1s a convergent complex series such

that a  e.<e,p> for some set <a,B>, then I |a]
k=n

<. |k§ ay|/cos B.
=n
Proof: We may assume that a« = O, since with b 7 ane’la
for n 2> 0, we have b  e. <0,8>, | z al =. | z by |
k=n k=n

o0
and %

la,| =« £ |b,|. Since a_ e. <0,B>, we may
k K k=n K a

n
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set a_ = lanleien wheré |9n| <. B < m/2. Thus,
cosf ~ >. cosp  and |k§n a | =. |koZ:on|ak|cosek
+ 1 kgn |a, Isind | >. [kgnlaklcosek| =, kgn[aklcosek
> 5 laylcosp =. (cosp) 5 |al. Q.E.D.

k=n k=n

Theorem 4.5. Suppose that Zag an are complex series
such that Za  converges and a, €. <a,B> for some set
<a,p>. Then bn/an + 0 1if and only if Zb . converges

more rapidly than Zan, for every subsequence {n'} of
{n}.

Proof: If a =: 0, then ayr =+« 0 for some subse-

quence {n'} of {n}, and both conditions in the con-
clusion of our theorem fail to hold. Thus we may assume
that a, #. 0.

Suppose that b /a =0, € >0, and {n'} is

any subsequence of {n}. Then o o] <o & fa i lcosB,

and % lbn'l’ by lan,l both converge, since = |a | con-
verges according to Lemma 4.4. Hence, lkZ Py |
=n
<o Z o fbpil < (€cosB) = lap,| <. € | 5 a |, the last
k=n < 7 k=n = &~ k=n X

inequality following from Lemma 4.4. Thus an, converges
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more rapidly than Zan,.

Suppose that bn/anfg 0. Then there is an & > O

and a subsequence {n'} of {n} such that ]bn,l

>. ¢ ]an,l. Since b_, g: <a',m/4> for some real a',

there is a subsequence {n*} of {n'} such that

b« €. <a', /4> and |b .| >. ¢ |a,

. If Zb does
n*

not converge, there is nothing to prove. Hence, assume

that an converges. From Ibn >. € lan*‘ and

* *l

Lemma 4.4,

| g byl >. (cos m/4) gn |b 4l 2. (& cos m/4)k§n ET

>. (e cos m/4)| = a

and thus 2b " does not con-
k=n n

o

verge more rapidly than Zan Q.E.D.

*-

Corollary 4.6. Suppose that Zan is a convergent series

such that a €. <a,B> for some set <a,B>. Then a

n.a.s.c. that Zabn' ~converge more rapidly than Zan,v

for each subsequence {n'} of {n}, 1is that

abd/an -+ 0.
Proof: Set B T bn and apply Theorem 4.5. Q.E.D.
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Theorem 4.7. Suppose that Zan is a convergent real se-

ries such that T <. r and Zaén 3 MR(Ean). Suppose,

- n+1

in addition, that g 1is an integer and al! = anzn+q for

every n.

Then Za) e MR(ZaA) for each complex number

z satisfying 0 < [z| < 1.

Proof:

Let

0< |z| < 1. Since Ta_  converges and

r.+r where -1 <r < 1. If r < 1, then

lr | <. p <1 for some number p, and O < lz| < 1/p.

-, 0, Corollary 3.16 implies

Tal e MR(ZaA). Suppose that r = 1. We note that

b <. r_,
n

S

o that 0 <, a, or a, <, 0. In either case,

Zla | converges. Also, lré[ =. |zl <o |z |, and

thus Xa

Tn+

+ (rv...

n

Thus, |T

+ (rn+1

< Irn+1

= (rn+1

!
n

-T = 0. Sin r'! =, r z ' = r
1. 'n ce n ! Tn

r'

!
nt1

o'or

-
n

converges absolutely. 'In view of Theorem 3.8,

' 4+ pip! 4o
n n nt+y

e s 8 = 2..- e o
k)+ T z+ 1 1, zR+e-et(r rn+k)z

_TAI T '(rn+1 n n+1

n+k-1)(rn+k"rn)Z

|+|rn+1(rn+2‘rn)| +|(rn+1"°rn+k—1)(rn+k'rn)|

+ e o o

n+1(rn+2' n/*" a1 Toaker ) (FpppmTp) e
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=. T -T =0
n

n+1

as n =, Hence T! - T! = 0, and thus zal € MR(za})
n+1 n . on n

according to Theorem 3.8. Q.E.D.

n’

Theorem 4.8. If Za, is a real series, O <. r and

Ta € MR(Zan), then r <. 1 and 0 <. Q..

dn n

Proof: Since 0 <. r Tn >. 0. From Theorem 3.6,

n!

5. =- L/(l-rn) ~ Tn/rn >. 0, so that 1 - r, >« 0. Thus,

r, <. 1 and 0 <. n(l-rn) = Q,- Q.E.D.

Lemma 4.9. Suppose that Zan is a real convergent series

such that aén/an - 0 and O <. - Then T, <. 1,

T4, = Tp ™ Q, gnd Tag € MR(Zan).

a_ €. <0,0>‘ or a._ €. <mr,0>.

Proof: Since 0 <. r A

n’ n

From Corollary 4.6 and Theorem 2.6, Zag € MR(Zan) since

aén/an —+ 0. Thus, according to Theorem 4.8, .r <. 1, so

that |r | <. 1. Hence r_, - r =+ 0 in view of Theorem

3.13. Q.E.D.

Theorem 4.10. Suppose‘fhat Zaﬁ is a convergent

real series such that r <. r .. and a&n/an -+ 0. Suppose,

in addition, that g 1is an integer and a/ = anzn+q for
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every n. Then ZXa/ ¢ MR(ZaA) for every complex number

z such that 0 < [z| < 1.

Proof: Since f£a, converges, r * T where -1 < r < 1.

If r <1, we may complete the proof in the same manner
as in the proof of Theorem 4.7. If r =1, then

0 <. r

£ory, and Za e MR(Zan) according to Lemma 4.9. We

may now apply Theorem 4.7 to complete the proof. Q.E.D.

Theorem 4.11. Suppose that Zan is a convergent series

such that a, €. <a,B> for some set <a,B>. Then a
- n.a.s.c. that Zaén' converge more rapidly than Zan,i

for each subsequence {n'} of {n}, is that

(r —rn)/(l—rn)(l—r -+ 0.

n+1 n+1)

Proof: For the sufficiency, &  =. 1/(1-r,) since

T )/(l-rn)(l

(rn+1" n/ exists for large n. Thus

T

r )/ (l-ty)(l-Tn4q9) = 0. From Corollary

aén/an =, (rn+1- .

4.6, Za converges more rapidly than Zan' for each

on'
subsequence {n'}{ of {n}.

For the necessity, & #. 0; since if 5, =t 0,

then S&n =3 Sn’ and thus, Zaén does not converge

more rapidly than Zan, a contradiction. Hence,




43

o, =- L/(l-rn) and, from Corollary 4.6,

(rn+1-rn)/(l-rn)(l-rn+1) =, abn/an -+ 0. Q.E.D.

Theorem 4.12. If Zan is a real series such that r=1

and |n(n+l)(r r )] <. 1, then Za  ~diverges.

nt1 " n

Proof: By hypothesis, l-r -+ 0 and |rn+1—rn|

<. 1/n(n+l). Thus,
l-r =, b [(l-r, )-(1-r )1 <. E |z, -1, |
n k=n k k+1 =" k=n k+1 “k
<o 2 V/k(k+l) =. /n,
k=n

from which 1-1/n <. r . Since Zaé, al =. Vn, di-

verges and r! =. (n-1)/n =. 1-1/n <. T, Za, must

n

diverge. Q.E.D.

Corollary 4.13. If Ean is a real series such that r =

and n?®( r ) - 0, then Za  diverges.

r -
n+1 n

-r ) =+ 0 so

-r ) =+ O, n(n+l)(rn+1 n

. 3 2
T :
Proof: Since n (rn+1 n

that |n(n+l)(r_, -r )| <. 1. We now apply Theorem 4.12.

nt1 "n’t =
QoEoDo
Lubkin (17, p. 231-232) has proven the following

two theorems.

1



44

Theorem 6. If Za, 1s a convergent real serles, 1, >. 0,

Q, > K >0, and n?(r -r ) + 0, as n = *°,  then

Zay, € MR(Za ).

Theorem 7. If Zan is a convergent real series, Q

r ) = 0, then

exists (as a finite limit), and n®(r _,,-T

Tag, € MR(Zan).

. . 2 -
It Za  is a real series such that {n (rn+1 rn)}

is bounded, then Z]rn+1—rn| converges since T

lrn+1_ nl

<. B/n?® for some number B. Thus Z(rn+1-rn) converges,
from which r,or for some number . In view of Corol-

lary 4.13, it is now evident that O < r < 1, 1if the
hypothesis of Theorem 6 is satisfied. Consequently if r=1,
the hypothesis of Theorem 6 cannot be satisfied. On the
other hand, r=1 1if Q exists. Hence, according to
Corollary 4.13, the hypothesis of Theorem 7 can never be
fulfilled.

Theorem 4.14.

(1) If Re Q, -+ Q' and Re n®(r_, -r )+ P', then P'=Q'.

n+1

r ) = P", +then P"=Q".

(2) If Im Q —~ Q" and Im nz(rn+1- n

r ) - P, then P =Q.

2
(3) If Q,~» Q and @ (rn+1- n
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Proof: We first note that Qut,-Q, =- (n+l)(l-1h+9-nﬂ—rn)

)-n(l—rn) = (l-rn+1)-n(rn+1-rn) and

)-n% ( r )=.(n+1l)(1l-r

n+1 “n “Th+ Th+1 Th n+1)_(l_rn+1)

-T ).

_nR
n (rn+1 n

Assume that P' # Q'. Set Q! =. Re Q.. Since

)

Re n(l—rn) - Q', Re(l-rn) -+ 0. Thus, h(Qé+1-QA

=, Q'

n+1-Re(l—r

T ) =+ Q'-0-P'=Q'-P'£0. Let

- 2 -
Re n®(r . ,-1,)

n+1)
L =(Q-p")/2. If L'>0, then nA Q' > L. Hence there

is a positive integer m such that Qlin =+ QL tAQY

+ AQ!

40 ' 1 -
m+1 +AQL, _, * +°, so that Q! —+ +°, a contra

diction. If L < O, then nA Q} <. L. Hence there is

a positive integer m such that Q$+n =, Q$ + AQ& + e

+AQ L, * -®, so that Q! - -©, a contradiction. Thus

we must have P' = Q'. This proves (1). The proof of (2)
follows in a similar manner, and (3) is an immediate con-
sequence of (1) and (2). Q.E.D.

Theorem 4.14 again shows that the hypothesis of
Lubkin's Theorem 7, previously mentioned, can never be ful-

filled, since we would have Q=0 and Zan would diverge.

)] —+0,

r o9 _
Theorem 4.15. If 0 < K <. Re Q, and Re [n (rn+1 T

then Re Qn <. Re Qn+1 and Re Qn - 4o
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Proof: Since Re n®(r r_ ) - 0, Re n(n+l)(r

n+t1 n

Also, (n+l)(Qn-Qn+1) =. -Q

n+1-rn) -+ 0.

ner T (0*1) Q -nQ

= -Qn+1+ n(n+l)(rn+1-rn). Thus, with Q! =. Re Q,
(n+l)(Qé-‘é+1) = -Q ,* Re n(n+tl)(r , -7 ) < - K
+ Re n(n+l)(rn+1—rn) <. 0 from which Q) <. Qé+1. Hence,

Ql - Q' where K< Q'<+w, If Q' <+o Q' =0 ac-

cording to (1) of Theorem 4.14; this is a contradiction.

Thus, Q' = + ., Q.E.D.

Theorem 4.16. Suppose that Zan 1s a convergent series

such that (1) a €. <a,8> for some set <a,8> and (2)

‘Qn -+ o, Suppose further that {Pn} is a sequence such

that (3) Pn/Qn+1 + 0 and (4) n|Q <. |ann|. Then

n+1'in
aén/an + 0 and Za; e MR(Za ).

Proof: From (2), 5, = L/(l-rn) and a&d/an

= n(Qn-Qn+1)/Q Q + l/Qn+1. From (2), l/Qn -+ 0. From

n nt+4

|

=, an/Qn+1l -+ 0. Thus aan/an + 0. Hence Za e MR(Za )

(3) and (4), In(Q-Q.,,)/Q@Q.,, | < [PQ/QQ

n n+1) n-n+1 nt1

according to Ceorollary 4.6 and Theorem 2.6. Q.E.D.
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Theorem 4.17. Suppose that Zan is a real series such

that -1 <. r <. To4q? QH-S'Qn+1’ and Qn -+ + ©, Then

a&ﬁ/an -+ 0 and Ta, € MR(Zan).

Proof: Since Q  =. n(l—rn) -+, r <. 1. Hence

-1 < r <ooro.. <o 1 and thus r,» r where -1<r1 <l
If r <1, it is-obvious that |r | <. p < 1 for some

number p. Also r ., -r -+ O. Thus from Theorem 3.14,

Ta £ MR(Zan). Suppose that r=1. Then

on
O<K<. r <. r <. 1l, and a, €- <0,0> or a €. <m,0>.
Also, aan/an =, L/(l-rn+1) -L/(l-rn) >. 0 and OK. aén/an
= n(Q-Q,)/QQ,,, + 1/Q . Hence, with P_=.1, we

have O <. n(Qn+1-Qn)/QnQ <. L/Qn+1’ n|Qn+1-Q

n+1 nl

<. IPnQnI’ and Pn/Qn+1 -+ 0. Since Q - + ®, Ta  con-
verges. Thus, from Theorem 4.16, a&n/an - 0 and
Tag, € MR(Zan). Q.E.D.

As previously noted, Lubkin's Theorem 6 is not

applicable if r, = 1, and his Theorem 7, in which
r, 1, is vacuous. This is not the case with Theorem

4.17. In particular, if Q  =. anP where a > 0 and

0 <p<1l, it can be verified that r -+ 1 and Theorem
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4.17 is applicable., The same is true with Q, =- an/(n n)P

where a > 0 and p > 0. Moreover, the proof of Theorem
4.17 shows that the theorem itself is a special case of
Theorem 4.16. Consequently, Theorem 4.16 is also applicable

with r -~ 1.
n

Theorem 4.18. If Zan is a complex series such that

Ta C . =, h/(Qn-l), and Ta, both converge more rapidly

to S +than Za , then Q_ = o,
n n

Proof: From Theorem 3.2, a_ ~ 3, i.e., n/(Qn—l) ~ n/Qn.

Hence, (Qn'l)/Qh =, l--L/Qn -+ 1, and thus Q = *. Q.E.D.

Theorem 4.19. Suppose that Za, is a complex series such

that Q =+ *. Then Za ., G = m/(Qn-l), converges more

rapidly to S than 2a  if and only if Za, e MR(Zan).

-, 5 /a = /o ll(Q,-1)/n]

n

=, l-L/Qn -+ 1, i.e., 6n ~oap. Thus, from Theorem 3.2,

Ta € MR(Zan) if and only if =a

e MR{Za_). Q.E.D.
an n

on

Theorem 4.20. Suppose that Zan is a real series such

that -1 <. r_ <.r

n , Qn <. Qn+1’ and Qn -+ + . Suppose,

in addition, that g 1is an integer and a! = anzn+q for
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every n. Then for each complex number z satisfying

0< | z |<1, Za; & MR(Za!) and nal € MR(Za!), where

= -t ! - = -
an, =+ (L-z)_)/(l-2r!+z! ') or o, = n/(Q!-1).

e MR(Za_).

Proof: From Theorem 4.17, ay, /a, = O and 2a, n

Let =z be any complex number such that 0 < | z | < 1. Fom

Theorem 4.7, Ta!

in E MR(Za%).

H

(l—r%_1)/(l-2r$-r6_1r6). If z=1,

aSn/aﬁ =, a&n/an -+ 0. If =z #1, aén/ag

=, (r%+1-rg)/(l—r6)(l—r$+1) =, (zr

Suppose Gn

n+1~z§]L/(l-zrn)(l-zrn+1)
-+ 0/(l-zr)(l-zr) = 0, since r, >t where -1 < < 1.
In either case, Theorem 3.5 implies Za&n € MR(Za%).
= - = -r!
Suppose that q_ =. n/(QA 1). Then Q! =. n(l rn)

=, n(l-zrn) <+ @. From Theorem 4.19 and Zaf MR(Za%),

Tal, € MR(Za%). Q.E.D.

Lemma 4.21. If Za, 1s a complex series such that Q +Q

where Re Q > 1, then n(l-|r [}+ Re Q, Za  converges

absolutely, na -* 0, and Zaan = S where a, = n/(Q-1).

Proof: Let a,b be any numbers satisfying 1< a < Re Q<b.

Geometrically, it can be seen that |n-b| <. [n-Q | <. In-a|

so that 1-b/n <. Il-qy/n] = |r | <. 1-3/n, and thus
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a < n(l-Jr [)<. b and |Re Q-n(l-[r )] & [|b-a]. With

|b-a] > 0 taken arbitrarily small, we thus conclude that

n(l-]r |)+ Re Q. Since x| £ 1-a/n, Za = converges ab-
solutely. sSince |r | <. 1 and Z[a | converges,
”lanl =+ 0, i.e., na -+ 0 (1%, p. 124). Consequently,

S =. S -a

an n”%n+1 < =3 -an+1(n+l)/(Q-l) -+ 5, i.e.,

n+1 n

Zaan = S. MN.E D.

Theorem 4.22. If Zan is a complex series such that

a, €. <a',B> for some set <a',B> and Q=+ Q where

Re Q > 1, then Tn/n -+ 1/(Q-1) and Za,, € MR(Za ) where

@, = n/(Q-1).
Proof: From Lemma 4.21, JTa = S. Also, a_/a

an an n

= Mroapgg e, = 1[1-Q S (n+ 1) 1[(n+1)/(Q-1) ] -0/ (Q-1)

n

= +(n+1)/(Q-1)-Q . /(Q-1)-n/(Q-1) = 1+1/(Q-1)-Q,, /(Q-1)

=. (Q-Q_,.)/(Q-1) = 0. Thus, from Theorem 4.5, Zaan con-

n+1
verges more rapidly than Zan. From Theorem 3.6, n/(Q-1)
= a, qy/rn, so that Th/n ~ ﬁv/(Q‘l) - L/(Q-i) and
T/n = 1/(Q-1). Q.E.D.

Szdsz (26, p. 274) has proven Theorem 4.22 in the

following form for real series: If u, > 0O, a>1l, and
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‘un/un_1 = l-a/n + Yn-1/n where vy - 0, then the trans-

form t_ = s + (n+l)un+1/(a-l) converges more rapidly than

Sy = Ugtu tu t...4u ,  and Is-tnl < ?n+1(s-sn)/(a-l) where

?n = max Ika. A slight error is evident here, since strict
k>n

equality cannot hold if Yn =° O. We now generalize The~

orem 4.22 by removing the condition a, €. <a',B>.

Theorem 4.23. If Qn -+ Q where Re Q > 1, then Tn/n

-+ 1/(Q-1), and Sag, € MR(Zan) where a_ =. n/(Q-1).
Proof: We have r, = l-Qn/n =, l-Q/n—(Qn-Q)/n. Setting
Yooy = Q -Q, r, = l—Q/n-Yn_1/h where vy = 0. Hence,
na, =. na,_,-Qa,_,-v,_,3n.y = (n'l)an-1+(l‘Q)an-1_Yn-1 qn-1
and, replacing n by n+l, (n+1)an+1 =, nan+(l-Q)an-Ynan.
Consequently nan-(n+l)an+1 =. (Q-1)a_ + y,a,. From Lemma
4.21, na - 0 and Zan converges. Thus na
£ [ka-(kfl)ay, ] = (@-1) = z
=. I a,-(k+tl)a =. (Q-1) = a, + ¥ wv,a From
o H% k+1 on kT E Yk
[o0]
Lemma 4.21, Zfanl converges, so that lﬂan-(Q—l) % akl
k=n
| = &2 yeald a7, = lal Y
=. Lovpai L0020 dvpaLg <. z a where v
con KK ken KTk S Yoo 2 Tk n
=. max |Yk] + 0. Dividing by [na [, Ir -(Q-1)T /n|
k>n - n n
<. ﬁl X lakf/lnan_1|. Setting a! =. lanl,

k=n
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ré :_ag/éé_1=.lrnl, Qé =, n(l-ré) =. n(l-lrnl), and

T = 5 la 1/]a

|, we have Q' = Q' = ReQ from
k=n n

-1

Lemma 4.21, and

x
g s

lak|/|nan_1l =. Té/n -+1/(Q'-1) from
n .

Theorem 4.22. Thus, |r -(Q-1)T /n| <. ¥y, T!/n -0, so
that (Q-1)T /n = 1 since r, = 1. Hence T /n - 1/(Q-1),
and n/(Q-1) ~ Tn ~ Tn/rn, i.e., a, ~ Tn/rn' From

Theorem 3.6, Ta ., € MR(Zan). Q.E.D.

Corollary 4.24. If Qn -+ Q where Re Q@ > 1, +then

Tn+1—Tn -+ 1/(Q-1).

Proof: Using Theorem 4.23, T _, -T =. T_ —rn(l+Tn

nt1 "n n-+1 +1)

=, (l-rn)Tn+1-—rn =, QnTn+1/n_rn - Q/(Q-1) - 1 = 1/(Q-1).
Q.E.D.

Suppose that Q, » Q where Re Q > 1. Recalling
that o = +T 4,» n 2 2, ylelds the best transform for

accelerating convergence, we are led quite naturally to the

transform sequence 1.5 in the Introduction by Corollary 4.24

and the following estimate: l+Tn+1 =. l/(l-rn)

(Tpay T/ (1-r) = V/(1-r)) + [1/(Q@-1)1/(1-1,)

= 0/(Q-1) (1-x,).
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Theorem 4.25. Suppose that Qn -+ Q where Re Q > 1. Then

Zaan £ MR(Zan) if and only if an/n - 1/(Q-1).

Proof: From Theorem 4.23, ZaBn £ MR(Zan) where B
=. n/(Q-1). Thus, from Theorem 3.2, Zaan € MR(Zan) if
and only if a, ~ B, i-e-, a, n/(Q-1). But this is

equivalent to an/n -+ 1/(Q-1). Q.E.D.

Corollary 4.26. Suppose that Qn -+ Q where Re Q > 1,

and that o  =. n/(Qn-l). Then Zaan £ MR(Zan).

Proof: We have an/n =, l/(Qn—l) -+ 1/{(Q-1). Thus, from

Theorem 4.25, Zaan £ MR(Zan). Q.E.D.

Theorem 4.27. Suppose that Qn -+ Q where Re Q > 1, and

a, =- bén where b 1is any complex number. Then:

(1) Zaan £ MR(Zan) if and only if b = Q/(Q-1).

(2) La_, converges to S with the same rapidity as

Za, if, and only if, b A Q(Q-1).

Proof: Part (1). From Theorem 4.25, Zaan € MR(Zan) if
and only if bbn/n -+ 1/(Q-1), i.e., b/Qn - 1/(Q-1). But

this is equivalent to b/Q = 1/(Q-1), i.e., b = Q/(Q-1).
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Part (2). Suppose that b # Q/(Q-1). From Lemma

4.21, 2a ~ converges. From Theorem 4.23, n/Tn -+ Q-1.

)

Th ’ i H -
us, since r_ =1 (s Sa(

))/(S—S

n-1 n-=1

=, (S-S -a ¢ )/(s-5

n-1_ °n%n n-1) = l_rnOLn‘/Tn - l"brn&n/Tn

l—(bnrn)/(TnQn) -+ 1-b(Q-1)/Q # 0. Consequently Zaan

converges to S with the same rapidity as Zan.

The converse follow from (1). Q.E.D.

Corollary 4.28. If Qn -+ Q where Re Q > 1, then Zaan

converges to S with the same rapidity as Zan.

Proof: Setting b=1, we have &_ =. by and b 7# Q/(Q-1).

n

Now apply (2) of Theorem 4.27. Q.E.D.

Corollary 4.29. Suppose that Za, is a real series such

that -1 <. r. <. rn+1 and 'Qn <. Qn+1' Then a n.a.s.c.

that Za, ¢ MR(Zan) is that Q =+ =.

Proof: The sufficiency is a restatement of Theorem 4.17.

For the necessity, since Za, converges and

Q. <. Q

n we see that Qn -+ Q where 1< Q<K + .

n+1 ’

From Corollary 4.28, we cannot have Q < + «. Thus,

Q =+ *° Q.E.D.
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Lubkin (17, p. 232) has proves the following theorem.

Theorem 8. If Za, 1s a convergent real series, Q exists

# 1, and n(Q_-Q

n n-1) + 0 as n -+ o, then the series

U = Zun converges more rapidly to S than Zan, where

u_ = (Qa

n /(Q-1) for n > O.

6n-an)

In Theorem 8, the convergence of 2a, and the exist-

ence of Q #£ 1 implies that Q > 1. With this in mind, we

presently show that the condition n(Qn-Qn—1) -+ 0 can be

omitted from the hypothesis of Theorem 8 and, at the same
time, generalize into the complex plane. Pflanz (18, p. 25)
proved this fact for real series.

Before extending Theorem 8, we note that Shanks

(23, p. 39) suggests the transform e(s)(An)
1

= (s Bn-An)/(S—l), where s = lim (AAn)/(ABn) and

n -+

B =¢e (A ), be applied for acceleration in the critical

case r - 1. In our notation, this transform becomes

e (S)(S ) =S = (s S, -5 )/(s-1) = [s(Sn+an+16n+1)—§jLﬂs-l)

5n “n

[(s-1) Sn+san+16n+1]/(s—l) =5, *a s &5 . /(s-1)

n+1

=S + a

n Nt %nd g where a = s 6n/(s-l) and

s = 1im an/aén' Shanks (23, p. 40) appears to be unaware

of Lubkin's transform given in Theorem 8, or, at least, that
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the two transforms are identical, if n(Qn-Qn_1) -+ 0 and

Q exists with Re Q > 1. 1In fact, we will see in Theorem

4.32 that if Q exists with Re Q > 1, then efs)(sn)
converges more rapidly to S than Sn if and only if

) -+ 0; consequently Lubkin's transform, given

in Theorem 8, has a broader applicability if Re Q > 1,

since the condition n(Qn-Qn_1) -+ 0 1is irrelevant.

We now extend Lubkin's Theorem 8.

Theorem 4.30. If Za  1is a series such that Q - Q

where Re Q > 1, and u = (Qa -an)/(Q-l) for n>O0,

dn

then ZXu_ e MR(Zan).

Proof: Set o = an/(Q—l) for n > 1. Then

n n
Uy == 2 u =. I
k=0 k=

)/(Q-1) =. [Q(s +a , & .. )-5 1/(Q-1)

. (Qay -2,)/(Q-1) =. (Q T a;,-S )/(Q-1)

= (Q S5n~°n

1l

[(Q'l)sn *Q an+16n+1]/(Q'l) = Syt an+1[Q6n+1/(Q—l)]

=. S5, * a From (1) of Theorem 4.27, Zaan £ MR(ZanL

n+1%n+q

so that (s-Un)/(s-sn) =, (s-san)/(s-sn) -+ 0. Q.E.D.

Lemma 4.31. Suppose that Qn + Q for some complex number

Q # 0. Then an/abn + Q if and only if n(Qn-Qn_1) -+ 0.
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Proof: Since Q, #. 0,

(1) a&n/an - (n+l)(Qn-Qn+1)/QnQn+1 ¥ l/Qn
and
(2) (nt1)(Q-Quy ) =+ QQ 4, 3/ 3, = Q-

Thus, if n(Qn-Qn_1) -+ 0, then from (1), a&n/an -+ 1/Q.
Hence, an/aén -+ Q. Conversely, if a_/a, — Q, then

a /an -+ 1/Q. Thus from (2), n(Q -Q

on

Theorem 4.32. Suppose that Qn -+ Q where Re Q > 1,
s = lim an/aEm # 1, and a, =+ S 6n/(s—l). Then

Ta ., € MR(Zan) if and only if n(Q_-Q ) + 0.

Proof: From Theorem 4.27, Zaan € MR(Zan) if and only 1if
s/(s-1) = @/(Q-1), i.e., Q= s = lim an/aén' But, from
Lemma 4.31, Q = lim an/abn if and only if n(Q_-Q

Q.E.D.

It is very easy to construct a series Ta, satis~-

fying the hypothesis of Theorem 4.30, while

n(Q,- Qn_1)f#* 0. In particular, we mention the following

example.

Example 4.33. Let Q be any number such that Re Q > 1.

Set vy, - 0, Yan-q _° 14/n, and Q, =+ Q1 v, Then
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n(Q,-Q, ) =+ nl(@v) - (@+y )] = nly-v,_, )
2n(szn-Q2'n—1) =, 2n(Y2n—Y2n-1) =. -2/n =+ - ©, and

)

= (2n-1)/y/n =+ + ©. Clearly, Q =+ Q so that the hypo-

(2n-1)(Q -Q ) = (2n-1)(

2n-1 2n-2 Yan-1 Yzan-2

thesis of Theorem 4,30 is satisfied while n(Qn-Qn_1)-7‘+ 0.
Thus, Lubkin's transformation DEN given in Theorem 4.30,
converges rapidly to S than Zan. However, as we have

just observed, |n(Q_-Q

-+ oo .
n n-1‘ ; thus, according to

Theorem 4.32, Daniel Shank's transform efs)(Sn)

=. 5§ + s

n n+1/(s-l) must fail to converge more rapidly

to S than S . Here, s = lim an/aén = 0 since

lim|ay /a | = 1lim | (n+1)(Q -Q 4. )/QQu, *+ 1/Q,| = + =.

n+1

Hence, we have in fact e(s)(s ) =. e(O)(S ) =S , and
1 n 1 n n

thus efs)(Sn) clearly converges with the same rapidity

as Sn' We could have also applied Theorem 4.27 to arrive

at this conclusion. If we carry our analysis a little

deeper in this example, a very surprising phenomenon arises.

/a, =-l/Qn

In particular, u/a_ =. (Q gy /a - 1)/(Q-1), ag,

- (n+1)(Qq,, -Q)/Q,Q

, Q, * Q, and, as shown above,

n ntq

(n+l)lQn+1-in—*+ ., Consequently, lun/anl—*+ © eyven

though ZTu_ e MR(Zan).
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Lubkin (17, p. 232-233) has proven the following

theorem.

Theorem 9. If Za  is a convergent real series, Q

exists # 1, n(Q -Q ) =+ 0, and n[(n+l)(Qn+1-Q )

n. n-iq n

- n(Qn-Qn_1)]‘* 0, then the transform Zw_  converges

more rapidly to S than Zag, where WO = 0 and
= do0e = - -
w w +w.= S + an+1(l rn)/(l 2rn+1+rnrn+1) for

n 0 n n

As previously noted, we must have Q > 1. With
this in mind, we will show in Theorem 4.35 that the con-

dition n[(n+l)(Qn+1—Qn)-n(Qn-Qn_1)] ~+ 0 can be omitted

from the hypothesis of Theorem 9 and, at the same time,

generalize into the complex plane.

Lemma 4.34. Suppose that Qn+ Q for some complex number

Q#0 or 1, and a  =. (l-r, )/(l—2rn+rn_1rn). Then

an/n -+ 1/(Q-1) if and only if n(Qn-Q

Proof: From Lemma 4,31, n(Qn'Qn-1) -+ 0 if and only if

aén/an -+ 1/Q. As shown in the proof of Theorem 3.4,

- + =
1 2rn+1 rr

nn+ )(l'aén/an)‘ Thus,

)]

(l—rn)(l—rn_l_1

g,/ (0t1) = [1/(nt2)]0(1-2 )/ (1-2r , *o T,

= l/[Qn+1(l—a6n/an)], sq that aén/an -+ 1/Q if and only
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if o:n+1/(n+l) -+ 1/(Q-1). Q.E.D.

Theorem 4.35. Suppose that Qn -+ Q where Re Q > 1, and

a, =. (l—rn_1)/(l-2rn+rn_1rn). Then Za € MR(Za ) if

and only if n(Q_-Q

Proof: From Theorem 4.25, Zaan > MR(Zan) if and only if

an/n -+ 1/(Q-1); and according to Lemma 4.34, this is equi-

valent to n(Qn—Q ) - 0. Q.E.D.

n-1
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CHAPTER V

NONALTERNAT ING' SERIES

A real series Za, will be called nonalternating
iff r, > O for every n, and N-nonalternating iff
r, >0 for n >N, where N 1is some integer.

Shortly, it will be shown that E. E. Kummer's cri-

terion for the convergence

not only sufficient, but

slight generalization of

Theorem 5.1. Let L be

sitive number. Then a n.

series Zan converge is

such that,

(1) L,

aan -
and
(2) B,

Moreover, if (1) and (2)

zct The1Bneqo

of a nonalternating series 1is

also necessary. We now prove a

this fact.

any real number and ¢ be any po-

a.s.c. that an N-nonalternating

that there exist a sequence {Bn}

n > N.

hold, then for n > N,

(a) 0<r <T £ rnﬁn/c - L/can_1.
And in general, for n >N and k > 1,
(b) Tn,k-z < Tn < Tn,k—g * (rn. rn+k-—1')Bn+k—1/C
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+L/a

Proof: For the necessity, define B_=c + ¢ T, n

for n > N. Consequently, a = , +L =
> q ly nPn . ca tca T . *L=.ca,

+ c(S—Sn) +L-+L1L as n—+® For n2>N, c+r . B,

Sct rn+1(C+CTn+2+L/an+1) =ct Crn+1(l+Tn+2) * L/an
= c+T , + L/a =B, so that (2) hold with equality.

For the sufficiency, assume that (1) and (2) hold.

Let n Dbe any integer > N, and define Pk = Tn,k—g

for k > 1. From (2), P . - Py

n'”rn+k-1)Bn+k-1/C kt1

= (rn"'rn+k-1)(l+rn+an+k/C—Bn+k-1/C) < 0 for k> 1.

Also, P >.

k ca - L/can_1 as k = o. Thus

an+k-1 Bn‘l'k-1/ n-1

{Pk} is a monotone bounded sequence, so that Pk -+ P as

k - o, for some number P. Consequently, Tn keg

=, p -

K an+k-1Bn+k-1/can_1 -+ P - L/ca_ as k = «. Hence

=1

T =P - (L/can_1) <Py - (L/can_1) for k > 1. Obviously,

T < T. for k> 1. Thus (b) holds, and (a) follows

from (b). Q.E.D.
Condition (1) of Theorem 5.1 can be somewhat weakened,

as is now proven.

Corollary 5.2. Let ¢ be any positive number. Then a

n.a.s.c. that an N-nonalternating series Za, converge is

that there exist a sequence {B_} such that,



63
(1) some subsequence of {anﬁn} is bounded,
and
(2) Bn Z c* rn+1Bn+1’ n > N.

Moreover, if (1) and (2) hold, then {aan} converges.

Proof: The necessity follows from Theorem 5.1.

For the sufficiency, we may assume that a, >0 for

n 2> N-1. From (2), ap > c a  t >

an+1Bn+1 an+1Bn+1

for n > N. Thus {a B } converges because of (1). Now

apply Theorem 5.1. Q.E.D.

Corollary 5.3. Let ¢ Dbe an? positive number. Then

a n.a.s.c. that a series za, of positive terms converge
is that there exist a sequence {B,} such that,
(1) some subsequence of {aan} is bounded below,

and
(2) ﬁn Z' c + rn-l-‘l'Bn-l-‘l.. .

Moreover, if (1) and (2) hold, then {aan} converges.

Proof: 'The necessity féllows from Theorem 5.1.

For the sufficiency, from (2) we have a B, > ca

tay B, 2 an+1Bn+1'_ Thus {a B} converges because

of (1). From Theorem 5.1, Ta, converges. Q.E.D.
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Corollary 5.4. Let L Dbe any real number. Then a

n.a.s.c. that an N—nonélternating LZa =~ converge is that

*

there exist a sequence {B_} such that,
(1) a p, =L

and

(2) By 21+ Ty By, 02N

Moreover, if (1) and (2) hold, then for n > N,
(a) 0K r, <T, < rf, - (L/an_1).

And in general, for n >N and k > 1,

(b) T <T LT,

n, k-2 y k-2 * (rn°°°rn+k-1)Bn+k-1 - (L/an_1)-

Proof: Choose é = 1 in Theorem 5.1. Q.E.D.

Let Za, belany divergent nonalternating series such

that a = 0. Let B , be any real number, and define{Bn}

i

recursively by Bn 1+ Then a B -

rn+1Bn+1' an+1Bn+1

= a_ =0, and P21t

n for n > 1. Thus, we

rn+1Bn+1
cannot replace (1) of Corollary 5.4 by the condition that

aan - an+1Bn+1 =+ 0.

Theorem 5.5. (Kummer's criterion) Let ¢ be any positive

L

number. Then a n.a.s.c. that an N-nonalternating series

za  ~converge is that there exist a sequence {Bn} such

that,
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and
(2) Bn zc+ rn+1Bn+1’ n 2 N.

Moreover, if (1) and (2) hold, then for n >

N,
(a) 0K r, <T < ran/c - (lim akBk)/can < ran/c,

ko B

() {ap,} converges.

Proof: We may assume throughout that aho, 2 O for n > N.

For the necessity, choose L > O in Theorem 5.1.

From (a) of Theorem 5.1, By >0 for n > N.

For the sufficiency, according to Theorem 5.1 we need

only show that af -+ L1 for some number L > O. From (1)
and (2) above, aB,2ca, ta By, > apeq Py 20 for

n > N, which implies the existence of the required number
L. Q.E.D.

The fact that Kummer's criterion, Theorem 5.5, 1is
also necessary was first published by Shanks (24, p. 338-
341). 1In (24, p. 338-341), Shanks employs Theorem 5.5 in
an equivalent form to serve as a general framework for short
proofs of the sufficient conditions of many of the known
tests for convergence or divergence of series with positive

terms. On the other hand, we are interested in Theorem 5.5
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also as furnishing bounds for Tn and S'Sn—1’ and con-
sequently exhibiting the convergence of {Tn} under cer-

tain conditions.
It should be noted that Theorem 5.1, as a criterion

for cohvergence of Zan, is more general than Theorem 5.5

in the sense that for every convergent non-alternating se-

ries Za_  there is a sequence {Bn} satisfying (1) and

(2) of Theorem 5.1 with N="1, while condition (1) of

Theorem 5.5 fails to hold for the same sequence {Bn}. In
particular, let Zan be a convergent non-alternating series
and {Bn} be any sequence satisfying (1) and (2) of Theo-

rem 5.1 with N=1. Let L' be any number such that
(L-L')/a < 0 for n > 0, and define B! =B - L/a_.

Then a = ap, -L'=L-L', so that B! = - and

'
an

B, <- 0. Moreover, for n> 1, B! =B -L"a >c

* rn+1Bn+1 - L'/an =ct rn+1(Bn+1-L'/an+1) =c+ rn+1Bn+1'
_ ' ' ;
Thus, (1) apBl =~ L-L' and (2) B! >c+ r . Bly » while

the condition B! > O fails for large n.

Theorem 5.6. A n.a.s.c. that éh N-nonalternating series

Zan converge 1is that there exist a sequence {Bn} such

that,
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—
P
N
W
o’
v
@]
o]
v
=2

(2) Bnkz 1+ rn+1Bn+1’ n > N.
Moreover, if (1) and (2) hold, then for n > N,
(a) 0<x <T, <rpB. - (iiPm aBy)/a <o By

Proof: Choose c¢=1 1in Theorem 5.5. Q.E.D.

Example 5.7. Let za = 1+ 1/22 + 1/3% + +++ . Then,

a = 1/(nt1)® for n > 0, and r, = [n/(n*t1)]2® for

n > 1. Defining B_ = (n+2)® for n

v

1, B 21

for n>1, and, for k > 1, a1 By

* rn+1Bn+1

= [(k+2)/(k*+1)]® =+ 1. From Theorem 5.6, Ta  converges.

Some of the known tests for convergence are now

proven by exhibiting a sequence {Bn} satisfying the con-

ditions of the preceeding theorem.

Theorem 5.8. (Comparison test) If O < al <. a, and

Zan converges, then Zaé converges.

Proof: From Theorem 5.6, there is a sequence {Bn} such

that Bn > 0 and Bn >. 1+« Accordingly,

n+WBn+1'

1 .
a B/l >.a /a! + (ar'1+1/ar'l)(an+1ﬁn+1 aé+1) >. 1

+ r!

n+1(an+1Bn+1/aé+1) >. 0. Now apply Theorem 5.6. Q.E.D.
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Theorem 5.9. (Ratio comparison test) If 0 <. r! <. T,

and Zan converges, then Zaé converges.

Proof: From Theorem 5.6, there is a sequence {Bn} such

that By >. 0 and Bn >. 1+ Accordingly,

n+1Bn+1'

Bn >, 1 + rn+1Bn+q >, l+'r'+1Bn+1, since 0 <. r

<. T
— — n —

1
n n

and Bn >. 0. Now apply Theorem 5.6. Q.E.D.

Theorem 5.10. (Root test) If a, >.0 and

lim sup 3/§; <1, then Xa_  converges.

n ,——
Proof: Let t be any number satisfying 1lim sup V/an <1<l

Then a_ <. "

- _ N
N Defining B =. t /an(l-t), BnTh+1Pn+q

]

ctVa (1-t) -, t"/a L (1-t)

n+1 n+t1

. tn/an(l—t)-tn+1/an(l—t) =, [tn/an(l—t)](l—t) =, tn/anz.l.

Thus By >. 0 and Bn >. 1+ Now apply Theorem

n+1Bntq

5.6. Q.E.D.

Theorem 5.11. (Ratio test) If 0 <. r, and

lim sup T <1, then Za  converges.

Proof: ©Let t be any number for which 1lim sup T, < t<l.
Defining B =. 1/(1-t), we have B_=. 1 + tp_

2« 1+ r B+, since 0 <. r, <. t. Now apply
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Theorem 5.6. Q.E.D.

Theorem 5.12. (Raabe'é test) If 0 <. r_ <. l-a/n where

n

1 < a, +then Zan converges.

Proof: Set B n/(a-1). Then B, >+ 0 and

L+ Bty S 1‘+ [1-a/(n+1)1B 4, =+ 1 * (n*1)/(a-1)
- /(a-1) =. n/(a-1) =. B, so that B >. 1+ r . B ...

Now apply Theorem 5.6. Q.E.D.

Theorem 5.13. Let L be any real number and ¢ be any

positive number. Then a necessafy condition that an

N-nonalternating series Za, converge is that there exist

a sequence {ah} such that,

(2) a,<c+r

n n > N.

n+t1%n+1°
Moreover, if (1) and (2) hold, then for n > N,

(a) rpay/c - Lea, _, < T,

-1
and in general, for n > N and k > 1,
(b) T + (r

n"'rn+k—1)0“n+k-1/C - Llea, ST

n, k-1 1 — "n’

Proof: For the necessity, we may use the proof of the ne-

cessity of Theorem 5.1, replacing "B" by "q" throughout.
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Next, assume that (1) and (2) hold. Let n be any

integer > N, and define P, =T

k n,k-2
+ (- "Toakeq) an+k-1/c for k > 1. From (2), P 4, -Py
- (rn.'°rn+k—1)(l+rn+1an+k/c_an+k-1/c) 20 for k2l

Also, P, =. T

‘ +
k c =+ T, L/can_1

Thus, P - L/ca, < T, for k>1, i.e., (b) holds.

n

-

With k = 1, (b) reduces to (a). Q.E.D.

Theorem 5.14. Let L be any real number. Then a neces-

sary condition that an N-nonalternating series Zan con-

verge is that there exist a sequence {an} such that,

(l) anan -+ 1,

(2) oy <1+, n > N.

n +1%n+ 92

Moreover, if (1) and (2) hold, then for n > N,
(Va,

(a) = ) ST,

n%n "~ -1
and in general, for n >N and k > 1,
(b) Tn’k_a + (rn"‘rn+k_1)an+k_1 - (L/an_1) S Tn'

Proof: Choose ¢ = 1 in Theorem 5.13. Q.E.D.

Theorem 5.15. Let ¢ be any positive number. Then a

n.a.s.c. that an N-nonalternating series Za, diverge 1is

that there exist a sequence {an} such that,
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and

(2) a <c+r < ¢+ a., n>N.

n+1an+1 — n -

Proof: We may assume that an-, > 0 for n > N.

For the necessity, let «a be any real number, and

N

define {an} recursively by the equation a, = c+rn+1an+1.

Accordingly, a, = ¢ +r < c t a for n > N, i.e.,

n+1an+1

(2) holds. For k > 1, ANtk T AN
-+ - oo as k -+ oo, i.e., (1) holds.

b

- + oot
c(aytayy, TR

For the sufficiency, from (2) we have CHIA S

< ap@, for n 2> N. Thus, (1) implies that a a —~ -=.

= n n n

From (2 (oS ‘c <. + Fre ot ¥ o
(2), (ayoyragendyen)/c ooy + ayy, qN+n-1 7

as k —+ «~ , since -aa ~+ *© as n-e . Thus Za

diverges. Q.E.D.

Corollary 5.16. Let ¢ be any positive number. Then a

n.a.s.c. that a series Za, of positive terms diverge is
that there exist a sequence {an} such that,
(1) some subsequence of {anan} is unbounded,

and



Moreover, if (1) and (2) hold, then a a, - o .

Proof: The necessity follows from Theorem 5.15.
For the sufficiency, from (2) we have

8 9p+, L 2pay for n > 1. Thus from (1), aa ~+ -=.

Hence |anan| -+ +o and, according to Theorem 5.15,
Zan diverges. Q.E.D.

Clearly, (1) of Corollary 5.16 may be replaced by

the condition a.a. -+ -w.

n-n

Theorem 5.17. If Zan is an N-nonalternating series such

that O < p<r <qg<1 for n>N, where p and q

are constants, then

(1) »/(1-p) <z /(1-p) < T <1 /(1-q) < o/(1-q),

for n > N.

Proof: Set a_ = 1/(1-p) and B, = 1/(1-q) for n>N.
For n>N, a =1+ pa < 1+ L S and B =1+ an+1
> 1+ rn+1Bn+1' From Theorem 5.6, Za, converges, so that

= 0. From (a) of Theorems 5.6 and 5.14,

we obtain (1). Q.E.D.

Theorem 5.18. If Zan is an N-nonalternating series and

O<r <1, then T = r/(l-1).
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Proof: We implicitly restrict n to large values through-

out. There is a monotone increasing series {pn} such

that 0 < p, < r, and p, T Define a monotone in-

).

creasing sequence {an} by the equation a_ = l/(l—pn+1

Accordingly, a =1+ p ,,a < 1+ i.e.,

n n+t1-n n+1 %+

a < 1+

n < n+1%n+y e Similarly, there is a monotone deaeas-

ing sequence {qn} such that r, £9, <1 and qy —* T-

Define a monotone decreasing sequence {Bn} by the equa-

tion B = l/(l'qn+1)° We then have B = l+q ., .B_

> l+rn+13n+1’ leee, B 2 tr 44Bpey 2 0. From Theorems 5.6

and 5.14, Ty T, < B+ Also lim rpa, = limr B

= r/(l-r), so that T, r/(l-r). Q.E.D.

We now turn to the critical case T, 1. Suppose
that Zan is a positive term series and Qn -+ Q> 1.
According to Theorem 4.25, Za . € MR(Zan) if and only if
a ~ n/(Q-1). As we have seen, Szdsz suggests a, = n/(Q-1)

for n > 1. Now for a fixed number k, (n+k)/(Q-1)
~n/(Q-1), so that, with B, = (ntk)/(Q-1) for n >1,

Za, € MR(Zan). Thus, why should we restrict ourselves

to k=0? We shall see that we should not make this re-

striction.
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Suppose that {an} and {Bn} have been determined

such that

(1) aja~+ 0 and 0<a < tr .0 gy

and

(2) aB,~*0 and 0K Hr 1 Bty < Bn» N 2> N.

From Theorems 5.4 and 5.14,

(3) a < Tn/rn = 14T 4, < B, for n >N.

From (3), it is clear that we wish to maximize the a

and minimize the Bn’ in order to obtain sharp bounds

for 1+T Also, we desire a, ~ Bn ~n/(Q-1). Multi-

n+1°

plying (3) by a,, we obtain

= + + .
a(n-1) ShopTedy £5 <& SB(n-1) 3P D 2N

From (1) and (2), for n > N, aom/an = ltr 0 4,70, > 0
and aBn/an = tr LB 41-B, £ 0. Hence for n >N,

a__ > 0, aBn < 0, S < S In

an = a(n-1) = and SBD S SB(

an’ n-1)°
order to obtain fairly sharp bounds by (4), we will give

only one examplé to show the general procedure.

Example 5.19.

[ve)
noa._ =
0

n 1/(4n+1)(4n+3) = 1/(1-3)+1/(5.7)+-++ = /8.

olM§
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This series is considered by Szdsz (26,p.275). He takes
k=0 1in aﬁ = (ntk)/(Q-1), and sets tn = Sn+an+10tljl+1

for n>0. Thus, t_=S

n a'n for n>0. The numbers tn’

2<n<7, in (26,p.275) are in error. They should read:

il
It

. 38992, t
3 4

t = .39116, t . 39153, t
5 6 7

Now .39269908 < /8 < .39269909. Setting m/8 = .39270,

tz = .38739, t . 39056

Il
Il

.39183.

/8 - t, = .00087.
We have a_ = 1/(4n*1)(4nt3) for n>0, and for
n>1, r = an/an_1 = (4n-3)(4n-1)/(4n+1) (4n+3)

=1 - 32n/(4n+1)(4n+3) = 1 - Qn/n. Thus

Q. = 32n%/(4nt1) (4n+3) » Q=2 and al = (ntk)/(Q-1) = n+k.

We have, for n > 1,

(6) agi/a,=1tr  a!, -a'=[32n(1-k)-32k+38]/(16n2+48n+35).

From (6), it is obvious k=1 yields the best sequence

{aé} for the acceleration of Ta . Thus, setting

a, = ntl for n > 1,

(7)) ag, = agta,a, = 1/3 + 2/(5°7) = 1/3 + 6/(1:3-5:7)

and from (6), for n > 1,

(8) a,, = [6/(4n+5)(4n+7)]an = 6/(4n+1) (4n+3) (4n+5) (4n+7).

Thus,
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(9)

oM §

a, = [1/3+6/(1-3-5-7)] + 5 6/(4n+l) (4n+3) (4nt5)
| ° x (4n+7)

or

(10) %aan=l/3+%6/(4n+l)(4n+3)(4n+5)(4n+7)=l/3+%bn.

In (10) we have absorbed part of a into the summation,

o0

i.e., a,, = 1/3tb  and a,, = b, for n>1l. No use

will be made of (10), although it is suggestive for applic-
ation of the above procedure to Zb -

At this point we have the following alternatives:
n
(11) Sqn = Sn+an+1an+1=%l/(4i+l)(41+3) + (n+2)/(4nt5) (4nt7)

or
n n n

(12) s, == ai=aao+§aai=[1/3+2/35]+§6/(4i+1)(4i+3)(4i+5)
x (4i+7).
Clearly, (1) is preferable for actual numerical calculation.
Leaving %a__ in the form (11), we have a so-called "modi-
fied series" of Bradshaw (9,p.486-492). 1In applying (11)
as an approximation to S, we have no information, assum-
ing no previous calculations for #/8 as known, as to the
error involved, i.e., S-San. We now turn to the resolu-
tion of this problem.

Comparing (1) with (6), we require

(1.3) l+rn+1ar'1+1-ar'1 >0 for n > N.

From (6), (13) is .seen to be equivalent to
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(14) k < 1+3/(1lé6ntl6), n

v

N.

From (14), we must have k < 1, since 1+3/(léntl6)-—1

as n—+w. Thus, we are led to set k=1 and a% = n+k
= ntl = a_, a, as defined for (9) and (11). We now see

from (4) that

(15) aga < s-s _, for n>1, a=nfl for n>l.
Comparing (2) with (6), with Bn = al, we re-

quire

(16) 1 +r 4B 4B, <0 for n> N

From (6), (16) is seen to be equivalent to
k

(17) > 1+3/(1én+16), n > N.

Recalling that Bn = ntk 1is to be minimized and noting

that {1+3/(16n+16)} is monotone decreasing, we set
k = 1+3/(16N+16) as the optimal choice satisfying (17).
From (4), we then have,

(18)  s-S,_ <a B, and B, =n+1+3/(16N+16), n > N.

Setting n=N in (18) and noting that (18) holds for
N > 1, we have

(19) s-s,_, < apB, and B = ntl+3/(1lén*l6), n> 1.

From (15) and (19), we obtain the desired bounds for

S-S i.e.,
a

n’

(20) 0 < s-sa(n_1)g an(Bn-an)=3/(4n+l)(4n+3)(16n+16),

n > 1.
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With n =1 in (20), 0 < s-sCIO < 3/(5-7-32) < .0027.

With n=8 1in (20), 0 < §-5_ . < 3/(33°35.144) = 1/55440
- - - : + +
< .000019. Using a iff a < a and a ift a < a,

we have S~ = .3848938, s: = .3848946, (a_a )™ =.0077922,

and (a a )7 = .0078102. Thus, S™ + (a a )~ = .3926860
8 8 7 8 8
+
<5< .3927050 = S, + (aga,)’. Letting S' be the average
of these two bounds for S =mw/8, we find S' = .3926955
and we must have [S-S'| = [7/8 - .3926955]

< (3927050 - .3926860)/2 = .0000095.
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CHAPTER VI
CONVERGENCE AND DIVERGENCE OF REAL SERIES

Throughout this chapter, all series are assumed
to be real. We now state and prove some of the theo-

rems, corresponding to those of Chapter V.

Theorem 6.1. Let L be any real number and c¢ be any

positive number. Then a n.a.s.c. that a series La
converge is that there exist a convergent series an
and a sequence an} such that,

(1) (a +b ) - L,

(2) 0 <. (a 4,*b 4 )/ (a +b ),

(3) B 2o o * Llany,*Phy, )/ (3#00) By -

Proof: For the necessity, let zén be any convergent non-

alternating series, and define b, = c -a for n > 0. The
series E(an+bn) = Zc, 1is a convergent nonalternating

series, so that (2) holds. According to Theorem 5.1, there

is a sequence {Bn} which satisfies conditions (1) and
(3) above. Clearly, Tb converges.
For the sufficiency, we see that Z(an+bn) con-

verges according to Theorem 5.1. Consequently, Za,
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converges since an converges. Q.E.D.

Theorem 6.2. Let L Dbe any real number and c¢ be any

positive number. Then a n.a.s.c. that a series Zan di-
verge 1s that there exist a divergent series an and a
sequence {Bn} such that,

(1) (ajtb )~ L,

(2) 0 < (an+1+bn+1)/(an+bn)’

(3) By 2 o [(agy,*b 4, )/ (a +b V1P, .

Proof: For the necessity, let ch be any convergent non-
alternating series and define b, = c,-a, for n > 0. The
series Z(an+bn) = ch is a convergent nonalternating se-

ries so that (2) holds. From Theorem 5.1, there is a se-

quence {Bn} such that (1) and (3) hold. Also, Zb, must

diverge.

For the sufficiency, Za, must diverge, since

otherwise b, would converge according to Theorem 6.1.

Theorem 6.3. Let ¢ be any positive number. Then a

n.a.s.c. that a series Za, converge is that there exist

a convergent series an and a sequence {Bn} such that,
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+bn+1)/(an+bn)’

(3) Bn _>_° c + [(an+1+bn+1)/(an+bn)}5n+1‘

Proof: For the necessity, let Zc, be any convergent
nonalternating series, and define bn = chm8p for n> 0.

The series z(an+bn) = ¥c  1is a convergent nonalternating

series so that (2) holds. According to Theorem 5.5, there

is a sequence {Bn} satisfying conditions (1) and (3)
above. Also, an converges.

For the sufficiency, Theorem 5.5 implies that

Z(an+bn) converges. Thus, Ta, converges since an con-

verges. Q.E.D.

Theorem 6.4. Let ¢ be any positive number. Then a

n.a.s.c. that a series za, diverge is that there exist

a divergent series an and a sequence {Bn} such that,

(3) B2 ¢+ [(a, +b, )/(a+b )IB_, .

Proof: For the necessity, let ch be convergent
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nonalternating series and define bn = chmep for n > 0.
The series Z(an+bn) = ¥c, 1s a convergent nonalternating

series so that (2) holds. From Theorem 5.5, there is a

sequence {Bn} satisfying conditions (1) and (3). More-
over, an must diverge.
For the sufficiency, Za, must diverge since other-

wise b~ would converge according to Theorem 6.3. Q.E.D.

Theorem 6.5. Let ¢ be any positive number. Then a

n.a.s.c. that a series Za, converge is that there exist

a convergent series an and a sequence {Bn} such that,

(2) B, > c ¥ )(an+1+bn+1)/(an+bn)lﬁn+1.

Proof: The necessity follows from Theorem 6.3.
For the sufficiency, Theorem 5.5 implies that

Zfan+bn! converges. Consequently, Z(an+bn) coriverges,

so that %a  ~converges since an converges. Q.E.D.

Theorem 6.6. Let ¢ be any positive number. Then a

n.a.s.c. that a series za, diverge is that there exist

a divergent series an and a sequence {Bn} such that,
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(1) B, >. 0,
and

(2) Bn2- ot ](an+1+bn+1)/(an+bn)]Bn+1'

Proof: The necessity follows from Theorem 6.4.

For the sufficiency, Zan must diverge, since

otherwise an would converge according to Theorem 6.5.

Q.E.D.

Theorem 6.7. Let ¢ be any positive number. Then a

n.a.s.c. that a series Za,  ~converge is that there exist

a convergent series an and a seguence {Bn} such that,

(3) o2 ot [(an+1+bn+1)/(an+bn)]Bn+1'

Proof: For the necessity, let Zc, be any convergent se-

ries of positive terms, and define bn = ¢ 8, for n> 0.

Clearly, an converges and (2) above holds. The exist-

ence of a sequence {Bn} satisfying (1) and (3) follows

from Theorem 5.5.

The sufficiency follows from Theorem 6.3. Q.E.D.
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CHAPTER VII
CONVERGENCE AND DIVERGENCE OF COMPLEX SERIES

Throughout this chapter, all series are assumed to

be complex.

A complex series La, will be called restricted
iff # 0 for every n, and N-restricted iff r, # 0
for n > N, where N 1is some integer. We now general-

ize some of the theorems in Chapters V and VI.

Theorem 7.1. Let L Dbe any real number and c¢ Dbe any

positive number. Then a n.a.s.c. that an N-restricted

series Za, converge absolutely is that there exist a se-
quence {Bn? such that

(1) la I8, ~ L,
and

(2) Py ct |r n > N.

n+1an+1’ =

Proof: Apply Theorem 5.1 to Zlan[. Q.E.D.

Theorem 7.2. (Kummer's criterion) Let ¢ be any positive

number. Then a n.a.s.c. that an N-restricted series Zan
converge absolutely is that there exist a sequence {Bn}

such that
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(2) B, > ct lrn+1an+1’ n > N.
Proof: Apply Theorem 5.5 to Zlanl. Q.E.D.

Theorem 7.3. Let ¢ be any positive number. Then a

n.a.s.c. that a series La, converge is that there exist

a convergent series an and a sequence {Bn} such that,

(2) Bn 2. ¢c* l(anvl-1+bn+1)/(an-l-bn)an+1'

Proof: For the necessity, let ze, be any restricted se-
ries which converges absolutely and define bn = c ey

. _ N )
for every n. Since a tb_ c, for all n, Z(an bn) is

a restricted series which converges absolutely. From Theo-

rem 7.2, there is a sequence {Bn} satisfying conditions
(1) and (2) above. Clearly, Sb,  ~ converges.

'For the sufficiency, Zlan+bn| converges according
to Theorem 7.2 so that Z(an+bn) converges. Thus, 3Za_

converges since an converges. Q.E.D.

Corollary 7.4. Suppose that ¢ > O and {Bn} is a
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sequence such that,

(1) B, 2+ 0,

(2) Bn 2 ¢ I(an+1+bn+1)/(an-l-bn)]Bn+1'

Then Zag converges if and only if an converges.

Proof: Apply Theorem 7.3. Q.E.D.

Theorem 7.5. Let ¢ be any positive number. Then a

n.a.s.c. that a series DE diverge 1is that there exist
a divergent series an and a sequence {Bn} such that,
(1) B >. 0,

(2) Pp2- ot [(an+1+bn+1)/(an'an)an+1.

Proof: For the necessity, let e, be any restricted se-
ries which converges absolutely and define bn = c -3, for
n > 0. The series %(a *b ) = Zc, 1s a restricted series

which converges absolutely. From Theorem 7.2, there is a

sequence {Bn} satisfying conditions (1) and (2) above.
Clearly, an diverges.
For the sufficiency, Zlan+bn| converges according

to Theorem 7.2. From Theorem 7.3, Za, must diverge since

otherwise an would converge. Q.E.D.



87
CHAPTER VIII
ALTERNATING SERIES

A real series Za, is called alternating iff

T, < O for every n, and N-alternating iff r, < O

for n > N, where N 1is some integer.

Various theorems stating necessary and sufficient
conditions for the convergence of an NQalternating series
will be proven, along with corresponding error bounds for

the quantities T In many such theorems, it will bepro-

ne
ven that all inequalities, excluding those between indiess,
may be reversed. Calling any such theorem and the derived
theorem duals, a duality structure become apparent, but

fails in at least one case. In particular, Theorem8.2 has

no dual according to Counterexample 8.10. Because of this

duality, if the sequence {rn} is fairly smooth, the dif-

ficulty in satisfying the required inequalities involving

{an} or {Bn} is reduced considerably. Of coursé, the

more judicious the choice of {an} or {Bn}, the better
the resulting bounds for the quantities T,

Several theorems proven in this chapter will coentain

explicitly, or implicitly, in their conclusion that {Tn}

converges. As we have previously seen, this implies
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Say, € MR(Sa ), but this will usually be omitted from the

conclusion.

Lemma 8.1. If {P is monotone decreasing, {pzn} is

;

}  both converge.

an-1)

monotone increasing, and some subsequence of {pzn—1'P2n

is bounded below, then {P } and {P

2N-1 2n

Proof: Suppose that L 1s a lower bound of some subse-

P { o of {P -P_}. It is easily seen

uence P -
9 { an'-1 “an' 2n-1 ~2n

that {P P } is monotone decreasing. Consequently,

an-1 " 2n

<P

n' = 2n-1_P2n for n Z 1. We then have

LS Ponioy7Py

+ - -
L+P, < L+P <P <P and P, <P, L <P -L,

<P
n-1 n — 2n-1

for n > 1. Accordingly, {P } and {Pzn} are bounded

2n-1

monotone sequences, and thus converge. Q.E.D.

Theorem 8.2. Let L1 and . Lz be any real numbers. Then

a n.a.s.c. that an N-alternating series za, converge is

that

(0) a — 0,
and there exist a sequence {an} such that,

(1) ~+ L  and - L

a a a__«a
an-1 2n-1 1 2n 2n 2

(2) o < l+rn+1+r n > N.

r ., a
nt1 nt2 nta’ =
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Moreover, if (0), (1), and (2) hold, then, for n > N,

rtr r o« +1-(L2/an_1) LT, & an-(L1/an_ )

n nn+t1n n 1
(a) or
rn+rnrn+1an+1‘(L1/an-1) < Tni rnan‘(Lz/anﬂ)’

accordingly as n is odd or even, respectively. And in
general, for n > N and k > 1,

r Tn,Zk-z+(rn”'rn+2k-1)an+zk-1 (Lz/an-1) T

n
L L R PP L PP VL Y
(b) J or
Th,2k-2 (rn"'rn+zk-1)an+zk—1—(L1/an—1) <14
\ < Tn,zk-3+(rn'.'rn+zk—z)an+zk—z'(Lz/an—1)’

accordingly as n 1is odd or even, respectively.

Proof: Assume that Zan converges. Accordingly (0) holds.

Define L = L and L = L for every n, and
2n-1 1 2n 2
= + +
a, = T 4, F L /a, for n > N. We then have a a,
= antapTne Ly = ap*(S-Sp)+L, = S-S, +L . Thus &, o, |
= - + = - +
- S Szn~z LG—1 - L1 and 5n%n - S Szn—1 LG - Lz’ S0

that (1) holds. For n > N, @ =1-T 4 =Tt ThtaCnta

l+Tn+1+Ln/an—l-rn+1—rn+1rn+2(l+Tn+3+Ln+2/an+2)

= + -
T+, tL /3 T To+sLnts’ 3,

n nt1 Tnt1Tnte Tn+1fnt+s ‘n+s”

i

T, tLy/8, Ty -L/a = 0, so that
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o = l+rn+1+rn+1rn+2an+2 for n > N. Thus (2) holds with

equality. This proves the necessity.
For the sufficiency, assume that (0), (1), and (2)
hold, and let n be any integer > N. We now define

= + o v e .
Py Tn,k—z (rn rn+k-1)an+k-1 for k > 1. Accordingly

(3) Pr-Prag

= (o) epn - (I T T D) 1

k> 1.

From (2) and (3) it can be seen that Py P < 0 and

2k+2

> 0 for k > 1, so that {sz} is monotone

increasing and {P } is monotone decreasing. Moreover,

2k-1

P, -P = (r

k "kt n...rn+k—1)[an+k-1_(l+rn+kan+k)] - [an+k—1an+k-1

- an+k-1—an+kan+k]/an-1’ so that, by (0) and (1), the se-

guence {Pk"Pk+1} is bounded. Consequently {sz_1—P2k}

is bounded. By Lemma 8.1, P -+ P' and Pgig =+ P", for

2k-1
some numbers P' and P" . We then have Tn,zk—z
= rpteet (o n) T P (et )
- p2k_an+2k—1an+2k-1/an-1 -+ P (Lz/an—1) or
P" - (L1/an_1), accordingly as n 1is odd or even. Simi-
larly, Tn,zk-1:a rn+rnrn+1+'"+(rn"'rn+2k—1) = Poy

- P = - L.
(rn rn+2k)an+2k ’ p2k+1 an+2kan+2k/an—1 =P (L1/an-1)
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or P'-(Lz/an_1), accordingly as n 1is odd or even. Also,

(r -+ 0 as

Tn,zk-—1_Tn,zk—z n'°'rn+zk-1) = an+zk-1/an-1

k + = , so that T T, as k + o . Using the mono-

H

toneity of {sz_1} and {P,,}, we have, for k> 1,

sz-(Lz/a ) KT <P k_1—(L1/an ), if n is odd, or

n-1 n— 2 -1

sz—(L1/an_1) <T, & sz_1—(L2/an_1), if n 1is even.

With k =1, we obtain (a), and with k > 1, we obtain

(b). Q.E.D.
The dual of Theorem 8.2 is Theorem 8.25.
Choosing L1 = Lz = 0 in Theorem 8.2, we obtain

the following theorem.

Theorem 8.3. A n.a.s.c. that an N-alternating series Za

converge is that

(0) a =0,

and there exist a sequence {an} such that,

(2) oy < Vbry tr

+1Tn+2%n4g D2 N

Moreover, if (0), (1), and (2) hold, then

(a) rtrte Oy, LT <rpa, 0> N
And in general, for n > N and k > 1,
() Tn,zk-z+(rn'”rn+zk-1)an+zk—1 < Tn < Tn,zk-3

+ (rn"'rn+2k-2)an+2k—z
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The dual of Theorem 8.3 is Theorem 8.27.

The following example shows that condition (2) of
Theorem 8.3 cannot be replaced by the condition

(21) a - octr , tr

T
nt n+zan+2’

Example 8.4. Let 1 < c. Define a = (l+c)/2, so that

1 < a< c. Define a,, = 1/(n+l) and 854y = -a/{ntl)

= -aa for n > 0. Clearly a, 0. Also, S

2N 2n-1

)

(ao+a1)+(a2+a3)+~~-+(a ) =. (l-a)ao+(l—a)a2

+a
2Nn=-2 2n-1

teret(l-a)a, o =. (1-2)[141/241/3+--++1/n] =+ -, i.e.,
Za, diverges. We have 1, =. -n/a(n+l) ~+ -1/a, r, .
T 7% TonTanty n/(nt1), Tont1Tants (nt1)/(nt2),

ctr., =+ c-1/a > 0, and c+

an -+ ¢c=a > 0. Thus,

r2n+1

(C+rn+1)/(l—rn+1rn+2) + +o and a <. (C+rn+1)/(l'rn+1lh+z)
for any real number a. Consequently, a(l-rn+1rn+2)

. + . j =,
<. (¢ rn+1) and a < c+rn+1+r With a a,

nt1tn+ta %
condition (2') holds. We conclude that conditions (0) and
(1) of Theorem 8.3, and (2') are necessary, but not suf-

ficient, for the convergence of Za,

Theorem 8.5. Let ¢ be any number < l. Then a n.a.s.c.

that an alternating series Za, converge absoelutely is

that
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(0) a_ -+ 0,

and there exist a sequence {an} such that,

(1) aa, =+ 0
and
(2) Ih < C+rn+1rn+1rn+2an+2’ n> 1.

Proof: For the necessity, define « n > 1, by the

n’

i = + +eoo )4 + +eoo),
equation a a_ c(an R ) (an+1 245 ). Then

a =+ 0. = + + u
n%n 0 Also a o ca ta . ta 4a , and thus

= ot + .
a. ctr 4, tr n>1

n+1rn+2an+2 for

For the sufficiency, we first note that Za,  con-

verges according to Theorem 8.3. Define aé = l+Tn+1 and

By = (aé-an)/(l-c) for n > 1. Then af = Hro, .

tr for n> 1, and a a' =+ 0, so that

|
n+1rn+2an+2’ nn

lanlﬁn =. Ianl(aé-an)/(l-c) -+ 0. Also, (l—c)[l—Bn
* Boeadnee 2] = (1-c)[1-(al-a )/ (1-c)

t - - = N | t -
+(an+2 an+2)rn+1rn+2/(l c)] 1-c an+an+(an+2 an+2)rn+1rh+2

a_-=c

= _q'+1+ + ' +q -c- - =
“n 1 Tn+q rn+1rn+2an+2 I C " Thty rn+1rn+2an+2 n

Tt Tt Tntelate £ O for n> 1. Thus, B >1

nt1

+(an+2/an)Bn+2 = l+(|an+2‘/|an|)ﬁn+2 for n> 1. From

Theorem 5.1, Z|a2n| and T]a converge, and thus

2n+1I
Zan is absolutely convergent. Q.E.D.
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The dual of Theorem 8.5 is Theorem 8.29.

Theorem 8.6. Let ¢, L L be any real numbers where

17 2

c < 1. Then a n.a.s.c. that an alternating series Zan

converge absolutely is that

(0) a, ~ 0,

and there exist a sequence {an} such that,

a o -
(1) an-1%2n-1 H and 32n%2n Ly
and
+ + .
(2) U £ T Tt TaeeOnter N2 1

Proof: For the necessity, there is a sequence {an} sa-
tisfying (1) and (2) of Theorem 8.5. Define {aé}  by the

equation ! = a4 + and !
qu ons n-1%2n-1 n-1%2n-14 L1 n 32n%2n

= a,,0,,tL . It may be seen that {aé} satisfies (l)
and (2) above.

For the sufficiency, define {aé} by the equations

a a!l = 3 - an ' = 3 o  -L.. It
2n-1 2n-1 2n—1a2n—1 L1 d 4n%2n 2an 2n Lz

may be seen that {aé} satisfies (1) and (2) of Theorem

8.5, and thus Ta_ converges absolutely. Q.E.D.
The dual of Theorem 8.6 is Theorem 8.30.

Theorem 8.7. Suppose that Zan is an N-alternating series

such that a, - 0, r <1 for n>N, and a 1is

nt1Tn+tz

a real number such that a ¢ (l+rn+ )/(l'rn+1rn+2) for

1
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. + | *
n.> N. Then Tt Ty, @ < Tn Lrpa for n > N

Proof: For n > N, a(l-r

+ + . ' =
rn+1 r rn+2a Setting an a for n > N, we may

nt 1
use (a) of Theorem 8.3 to complete the proof. Q.E.D.
Taking N =1 in Theorem 8.3, we have the fol-

lowing theorem.

Theorem 8.8. A n.a.s.c. that an alternating series

Zan converge is that
(0) a_ =0,

and there exist a sequence {an} such that,

(1) aa =0
and
(2) % L l+rn+1+rn+1rn+2an+2’ n> 1.

Moreover, if (0), (1), and (2) hold, then

(a) rn+rnrn+1an+1

LT < TGy D > 1.
And in general, for n >1 and k > 1,

(b) T +(r_*--r < T KT

n,2k-2 n n+2k~1)an+2k-1 = "n-= "n,2k-3

* (rn"'rn+2k-2)an+2k—2

The dual of Theorem 8.8 is Theorem 8.31.

Remark 8.9. We will show that if any of the three condi-

tions (0), (1), or (2) of Theorem 8.2 are omitted, the



. 96
remaining two are not sufficient for the convergence of

23, . We may do this by making the same considerations of

Theorem 8.8, since condition (0), (1), or (2) of Theorem

8.8 implies the corresponding condition of Theorem 8.2.

We will show even more. In particular, condition (a) of
Theorem 8.8 implies that o, < Hr ey, for n > 1.
We thus consider the four conditions:

(0) a =+ 0,

(1) aja, ~+ 0,

(2) % < l+rn+1+rn+1rn+2an+2’ n2 1

(3) ay < Top,Gnp,, D21

We will show if (0), (1), or (2) is omitted, the remaining
three conditions are not sufficient for the convergence of

Ta . We will also show that if (1) is replaced by the two

weaker conditiens that aa, -2 -+ 0 and that

nt1%n+1

{anan} be bounded, the resulting four conditions are not

sufficient for the convergence of La,

Counterexample 8.10. Let Zan be the divergent series

1-1+1-14--++ . We have a, = (—l)n for n > 0, and

r, = -1 for n > 1. Defining a, =0 for n > 1, the

following three conditions obviously hold:



(1) a_a
(2) a,
(3) a

We have shown that conditions (1),

n 0,
+ + n

<1 rn+1 rn+1rn+2an+2, > 1,
+ .

<1 Tot1%4q0 N > 1

sufficient for the convergence of Zan.

Counterexample 8.11. Let Ta, = 1-1/2+1/2-1/(2.2)

treet 1/(ntl)-1/2(n+1)+

This series is divergent, since for n > 1,

S

2n-1

(1-1/2)+(1/2-1/(2.2))++++(1/n-1/2n)

Il

(1/2)(1+1/2+1/3+++++1/n).
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(2), and (3) are not

Let a, be any real number, and define the sequence {an}

recursively by the equation a, = 1+

nt1%n+1°

lowing conditions are seen to hold:

(0) a_
(2) o«
(3) a

We conclude

ficient for the convergence of Zan. Moreover, a_a

" n+ 1%+

-+ 0,
+ +:

<1 rn+1 rn+1rn+2an+2, n>1,
+r | n .

<1 nt 1%+ > 1

that conditions (0), (2), and (3) are not

nn

a, — O, so that the four conditions a

The fol-

suf-

a

nn

" an44%+q 7 O, (0), (2), and (3) are not sufficient for

the convergence of Zan
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Counterexample 8.12. Let Zan be the divergent series
given in Counterexample 8.11. Defining a, = 0 for

n>1l, it is obvious that the following conditions hold:

(1) aa =+ 0,

(3) a, £ Fr i

n> 1.
Thus conditions (0), (1), and (3) are not sufficient for

the convergence of Za,- Also, Theorem 8.8 implies that

the condition

n> 1,

2 + +
(2) an <1 rn+1 rn+1rn+2an+2’ <

is false. 1Indeed, (2) must fail to hold for infinitely

many values of n according to Theorem 8.3.

Counterexample 8.13. Let Za, be any divergent alternat-

ing series whose partial sums are bounded, and such that

a, ~ 0. Let a, be any real number, and define the se-

quence {an} recursively by the equation a_ =1

+r . ‘ i ‘ : =
nt 1 %0+ 1 We easily see that 8+ 1%+ a o,

- (a1+a2+---+an) for n > 1. Consequently, the sequence

{a,a,} 1s bounded, since the partial sums S, are bounded.

Conditions (0), (2), and (3) of Remark 8.9 are easily seen

to hold. Consequently, these three conditions along with
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the condition that {anan} be bounded are not sufficient
for the convergence of Zan. Moreover, it is of no avail
to also reguire that CIN o P 0, since

=, a_ -+ 0 1in

ield -a a
yields anan nti nt1 n

n ° n+1an+1

the present counterexample.

Theorem 8.14. ILet L be any real number and Zah be

any N-alternating series such that Ay 7 O. Then a

n.a.s.c. that Zan converge is that

(0) a =+ 0,

and there exist a sequence {an} such that,
(1) some subsequence of {azn—1azh-1} is bounded below

and a ~+ L

a
2n 2n

(2) a_ < 1l+r

+ .
n — nty T n2 N

nt1inta%n+a’
Moreover, if conditions (0), (1), and (2) hold, then

{

a a onverges.
an-1 2n-1} ¢ ges

Proof: The necessity is immediate from Theorem 8.2.
For the sufficiency, let m be any odd integer

> N+t1. Define P, = Tm,k-a+(rm...rm+k—1)am+k-1 for k>1.

Then,
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kPr+a = (rm"'rm+k-1)[“m+k-1'(l+rm+k

¥ rm+krm+k—1am+k-1)]’ k21

From (2) and (3), we see that P_,-P < 0 and

2k “a2kte

P -P2k+1 >0 for K> 1, so that {sz} is mono-

2 k-1

tone increasing and {sz_1} is monotone decreasing.

Also,

(4) pzk-1-p2k - (am+2k—2am+2k-2~am+zk-z

- am+2k—1am+2k—1)/am-1
for k > 1, so that by (0), (1), and the fact that

Anoy > O, some subsequence of {sz_1-P2k} is bounded

below. By Lemma 8.1, P -+ P' and P2< -+ P" for

2k-1 k

some numbers P' and P". Also, according to (1),

am+2k—1am+2k-1 + L as k-e«. From (4), qmtak-2%mtak-2

+a (P

a +
mta2k-2 am+2k-1am+2k—1 m-1 P

-+ 1 + am_q(pv_pn)

2k~1" 2k)

as k + o ., Consequently, m being odd, we see that

{

Zan converges. Q.E.D.

azn_1a2n_1} converges. Theorem 8.2 now implies that

The dual of Theorem 8.14 is Theorem 8.40.

Theorem 8.15. Let L be any real number and Za, be
any N-alternating series such that a <. 0. Then a

2N

n.a.s.c. that Za, converge is that
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and there exist a sequence {an} such that,

b B i ded
(1) some subsequence of {azn-1azn-1} is bounde
above and 3% L
and
+ + )
(2) oy & M Fr L T aa e, n > N

Moreover, if conditions (0), (1) and (2) hold, then

{a

a converges.
2Nn-1 2n'1}» 9

Proof: The necessity follows from Theorem 8.2.

For the sufficiency, define ay = -3, for n> 0.

1 1t = ! t = =
Accordingly, r! an/an_1 an/an_1 r, for n > N.

It is obvious that Theorem 8.14 is applicable, yielding

the convergence of Xa' and {a' . a }. Thus, Za
n 2n-1-2n-1 ' n

and {a } both converge. Q.E.D.

2n_1d,2n_1
The dual of Theorem 8.15 is Theorem 8.39.
It has been shown that (1) of Theorem 8.2 cannot be

omitted, or replaced by the weaker condition that {anan}

be bounded and a o -a -+ 0. The following theorem

n+ 1% nt 1
shows that (1) can be replaced by the weaker condition that

some subsequence of } be bounded and

{

{azn—1azn-1

a a converge.
2n ZD} 9
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Theorem 8.16. Let L be any real number. Then a n.a.s.c.

that an N-alternating series Zan converge is that
(0) a —~ 0,
and there exist a sequence {an} such that,

(1) some subsequence of {a } is bounded and

a_
2Nn-1 2n-1

a —+
an®zn ~ L
and
+ + .
(2) O T T Tae%negr D2 N

Moreover, if conditions (0), (1), and (2) hold, then

{azn-1azn-1} converges.

Proof: The necessity follows from Theorem 8.2.
For the sufficiency, we need only note that

an >- O or ayn < O, and then apply Theorem 8.14 or

Theorem 8.15, respectively. Q.E.D.

The dual of Theorem 8.16 is Theorem 8.41.

The following counterexample shows that (1) of
Theorem 8.14 or Theorem 8.16 cannot be replaced by the
condition

(1Y) {a a } is bounded above and

a -
2n-1 2n-1 azn 2n

Counterexample 8.17. Let E be the divergent series

given in Counterexample 8.11. We have a, = 1/(ntl)

= -1/2(n*+l) for n > O. Define a, =0

and a2n+1 - 2n
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for n > 1. Define {azn—1} recursively by the equation

= 1+r n > 1, where a, is any

a_. +
2= 1 2n r2nr2n+1azn+1’

real number. It can be seen that (O) a, * 0, (1) 0,

—
32n%an

and (2) a_ < IR S 5

n < for n > 1. Also,

n+1Tn+2%n+2 =

a1a1-(a1+a2+~--+ a__ ) =+ -, so that

a a =
antq gnt1 2n

a a is bou .
{ 2n-1 2n—1} s bounded aboye

The following counterexample shows that (1) of The-
orem 8.15 or Theorem 8.16 dannot be replaced by the condi-
tion |

1 .
(1v) {azn_1a2n_1} is bounded below and -+ L.

a2 nCLZ n

Counterexample 8.18. Let Zan be the divergent series

whose terms are the negatives of those of the series given

in Counterexample 8.17, i.e., CH = -1/(n*+l) and 35 11

= 1/2(ntl) for n > 0. Define a,, = 0 for n > 1.

Define {azn-1} recursively by the equation Gy = 1

+ + i .
Ton rznr2n+1q2n+1’ n > 1, where a, is any reéal number

Then (0) a_ -+ 0, (1)

n - 0, and (2) a < ltr

aznazn +1

+ r for n > 1. Also, a.,a

nt1Tn+2%nte Gant1%ant+1 ¢ #1%y

- $a 4ot .
(a ta, a, ) *+2, so that {azn-1azn—1} is bounded

2N

below.

Theorem 8.19. Let L be gny real number and Zan be
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any N-alternating series such that a5 > O. Then a
n.a.s.c. that Zan converge is that

(0) a_ =+ 0,

and there exist a sequence {a } such that,

(1) some subsequence of {aznazn} is bounded above
and 8n-1% oy L

and

(2) a & Mr T L T . 4., 0> N

Moreover, if conditions (0), (1), and (2) hold, then

{aznazn} converges.

Proof: The necessity follows from Theorem 8.2.
According to Theorem 8.2, for the sufficiency we

need only show that {aznazn} converges. Define

aa = a for n > 0, and qé = a for n > N. Then

n+1 n+1 Z

aé =+ 0 and a!' a! = =+ .. Since some subse-

a a
B0 2N 2antq 2ant,

uence of a i and ! !
q c { 2nazn} is bounded above n-1%n-1

=. a__a it f uence of ! a
an%an’ ollows that some subsequence of {al _. 2n-1}

is bounded above. We have a'_ =. <. 0. Also,

a
2n ant

r!| = aé/aé_1 = an+1/an-= r.+; for n>N. From (2), for

1= + = 1+r!
n >N, “n O[n+1 < 1 rn+2+ rn+2rn+3an+3 1 Th+1

+ ré+1ré+2aﬁ+2. Applying Theorem 8.15, {aén_1aén_1}
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converges. Thus, {aznazn} converges. Q.E.D.

The dual of Theorem 8.19 is Theorem 8.43.

Theorem 8.20. Let L be any real number and Zan any

N-alternating series such that 3, < 0. Then a

n.a.s.c. that Za, converge is that

(0) a, = 0,

and there exist a sequence {an} such that,

(1) some subsequence of {aznazn} is bounded below and

a -+
2n-1a2n—1 L

and

(2) a <1l +r n > N.

n+1+rn+1rn+2an+2’
Moreover, if conditions (0), (1), and (2) hold, then

{aznazn} converges.

Proof: The necessity follows from Theorem 8.2.

For the sufficiency, define a! = -a ~ for n > 0.

1 t = 1 1 - . - - . .
Accordingly, r! an/an_1 an/an_1 r,~ for n > N.

It is easily seen that Theorem 8.19 is applicable, yielding

t
the convergence of Zan and {aénazn}' Thus, 2a  and

{aznazn} both converge. Q.E.D.

The dual of Theorem 8.20 is Theorem 8.42.
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Theorem 8.21. Let L be any real number. Then a n.a.s.c.

that an N-alternating series Zan converge 1s that

(0) a, * 0,

and there exist a sequence {a } such that,

(1) some subsequence of {aznazn} is bounded and
%n-1%n-y L
and
+ + :
(2) a < 1 Tt Tt TragOntge N 2 N

Moreover, if conditions (0), (1), and (2) hold, then

{aznazn} converges.

Proof: The necessity follows from Theorem 8.2.
For the sufficiency, we need only note that

2 n >. 0 or a8,n <~ O, and then apply Theorem 8.19 or

Theorem 8.20, respectively. Q.E.D.

The dual of Theorem 8.21 is Theorem 8.44.

The following counterexample shows that (1) of
Theorem 8.19 or Theorem 8.21 cannot be replaced by the
condition

(1v) {aznazn} is bounded below and -+ L.

azn—1a2n-1

Counterexample 8.22. Define a,, = 1/2(n+1) and

= -1/(n*l) for n > O. Since a_ _+a = 1/2(n+1)

a2n+1 = 2n ~2nt1



for n> 0, S =+ -w. Define «a =0 for n > 1l. De-
= n an-1 =

fine {agn} ‘recursively by the equation = l+r

+r T i number.
ant1Tant2%anta’ n > 1, where a, 1s any real numbe

We then have (0) a_ =0, (1) a -+ 0, and (2)

2n-1a2n—1

a < 1 +r

+
n — nt+1 r

n > 1l. Also,

n+1rn+2an+2 tor dan%an

=, —(a_+a +e.ot +
a,a, (a_ta - + o

otag azn-1) , so that {aznazn} is

bounded below.

The following counterexample shows that (1) of
Theorem 8.20 or Theorem 8.21 cannot be replaced by the
condition

. .
(1) {aznazn} is bounded above and a -+ L.

2n-1a2n-1

Counterexample 8.23. Let zan be the divergent series

whose terms are the negatives of those of the series given

in Counterexample 8.22, i.e., a,, = -1/2(n*+1) and

= 1/(n*l) for n > 0. Define a = 0 for

a
ant+ an-1

n > 1. Define {azn} recursively by the equation

= l+4r + here is an
%on ant1 Tant Tanta®antgr N2 1, whe %y Y

real number. Accordingly, (Q) a_~ 0, (1) -+ 0,

azn-1a2ﬁ-1

+r

+9 for n> 1. Also,

and (2 +r
( ) “n <1 n n+1rn+2an+2 =

=, a.q -(a2+a3+"'+ —+ -, and thus

a —
an%an 2%2 azn-1)

{aznazn} is bounded above.
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Lemma 8.24. Let za, be an N-alternating series and
{Bn} be a sequence such that

(0) a_ —+ 0,

n
(1) azn—152n-1 + L, and aanzn =+ L,, for some L,
and L ,
2
and
(2) Bn 2 17 rn+1+rn+1rn+2Bn+2’ n 2 N.
Defining a, = l+rn+1Bn+1’ for n > N, we have
(3) 8n-1%n-1 7 Ly and aja,, L
and
(4) an £ l+rn+1+rn+1rn+2an+2’ n 2 N.

Moreover, for n > N and k > 1,

(5) Tn,zk-2+(rn'"rn+2k-1)Bn+2k-1

- Tn,zk—3+(rh°“rn+2k-2)an+2k-2
and
(6) Th,2k-3 (rn e Trigyoa Brsak-z

< Tn,zk—2+(rn'”rn+2k-1)an+2k—1

Proof: Since a,

-+ L and

. 350%,n -+ L.. Using (2),

a +a ‘
an zn+152n+1 1

+ =. a +a
1 rn+1Bn+1’ azn-1a2n-4; an-1 2nan
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-(1+ + = 1+ -(1+ +
%h (1 Thti rn+1rn+2an+2) 1 rn+1Bn+1 (1 rn+1 Th+t1inte

+ = —
rn+1rn+2rn+3Bn+3) rn+1[Bn+1 (l+rn+2+rn+2rn+3Bn+3)]s O,

so that (4) holds. Next, T (r_ -«

+ . o
n,2k-3 n rn+zk-z)“n+zk-z

=1 +(rn°°°rn+2k—2)(l+rn+2k-1Bn+2k-1) =T

n,zk-3 n,2k-2
+ (rn"°rn+2k—1)Bn+2k—1' Thus (5) holds. Again using (2),
n,zk-3+(rn'°°rn+2k—2)Bn+2k—2 LY Tn,2k~3‘
* (rn"'rn+2k-2)(l+rn+2k—1+rn+2k—1rn+2an+2k)] B Tn,zk—z

l+rn+2an+zk) - Tn,zk—z'

n.°°rn+2k-1)(

0 "Thtzke1)Gptakoq+ Consequently (6) holds. Q.E.D.

Theorem 8.25. Let L1 and L, be any real numbers. Then

a n.a.s.c. that an N-alternating series Zan converge 1is

that
(0) a_ =+ 0,

and there exist a sequence {Bn} such that,

a - and a -
2n—132n—1 L1 2n32n Lz

(1)

(2) B, > ltr ., *r n > N.

n+1rn+2Bn+2’
Moreover, if (0), (1), and (2) hold, then, for n > N,

rn+rnrn+15n+1—(L2/an-1) 2T, 2 ran—(L1/an_,)

(a) / or

rn+rnrn+1Bn+1-(L1/an—1) 2Ty 2 ran—(Lz/an )y

n -1
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accordingly as n 1is odd or even, respectively. And in

general, for n > N and k > 1,

( Tn,zk—2+(rn“'rn+2k—1)Bn+2k—1-(L2/an—1)

2 Tn,zk—3+(rn°.'rn+2k—2>Bn+2k—2-(L1/an—1)

rn'..rn+2k-1an+2k—1_(L1/an-1) 2 T,

3§ 2 Tn,zk—3+(rn"°rn+2k—2)Bn+2k-2'(L2/an-1)’

accordingly as n 1is odd or even, respectively.

Proof: For the necessity, we may use the proof of the ne-
cessity of Theorem 8.2, replacing "a' by "B'" throughout.
For the sufficiency, assume that (0), (1), and (2)

hold, and define a, = l+r for n > N. According

n+1Bn+1
to Lemma 8.24, conditions (0), (1), and (2) of Theorem

8.2 hold, with L and L, interchanged. Using (b) of

Theorem 8.2, and (5) and (6) of Lemma 8.24, we obtain (b)
of the present theorem, from which (a) follows with k=1.
Q.E.D.

The dual of Theorem 8.25 is Theorem 8.2.

Choosing L1 = L2v= L in Theorem 8.25, we obtain the fol-

lowing theorem.

Theorem 8.26. Let L be any real number. Then a n.a.s.c.

that an N-alternating series Zan converge 1is that
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and there exist a sequence {Bn} such that,

(1) a B, L
and
(2) B> Itr . tr T oBi,s n 2N

Moreover, if (0), (1), and. (2) hold, then, for n > N,

(a) rn+rnrn+1Bn+1—(L/an—1) 2Ty 2 ran—(L/an_1)-

And in general, for n > N and k > 1,

(b) Tn,zk—z+(rn"'rn+2k-1)Bn+2k-1—(L/an—1) 2 Tn

2 Tn,zk-3+(rn"'rn+2k—z)Bn+2k-2'(L/an-1)‘
Theorem 8.26 can be seen to have a dual by setting

L, = L2 = L in Theorem 8.2.

The following example shows that condition (2) of
Theorem 8.27 cannot be replaced by the condition

(21) B > ctr, +r

n+ 1 n+1rn+2Bn+2’ c < L.

Example 8.28. let 0 < ¢ < 1, so that 1< 1/c. Let

Za, be the divergent series defined in Example 8.4.
According to that example, a, ~ 0, and there is a sequence

{an} such that aa —+ O and a, L. l/c+rn+1+rn+

Defining B_ =. c(l+rn ) -+ O.

+
+1an+1)’ aan C(an an+1an+1

From the preceeding inequality it is easily seen that

1rn+2an+2'
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(2') holds. We conclude that (0) and (1) of Theorem 8.27
and (2') are necessary, but not sufficient, for the con-

vergence of Zan
Choosing L1 = L2 = 0 in Theorem 8.25, we obtain the fol-

lowing theorem.

Theorem 8.27. A n.a.s.c. that an N-alternating series
2a, converge is that

(0) a -+ 0,

and there exist a sequence {Bn} such that,

(1) éan -+ 0

and

(2) Bn > 1T 4 T Theabegr D 2 N

Moreover, if (0), (1), and (2) hold, then, for n > N,

(a) rn+rnrn+15n+1 2Ty 2 ran.

And in general, for n > N and k > 1,

(o) Th,ek-2 7 (on e Traa o Bsao12 Tn 2 T ages
* (rn."rn+2k—2)5n+2k-2'

The dual of Theorem 8.27 is Theorem 8.3.

Theorem 8.29. Let ¢ be any number > 1. Then a

n.a.s.c. that an alternating series Za, converge ab-

~solutely is that
(0) a =0,




and there exist a sequence {Bn} such that,

(1) aB,+ 0

(2) Bn >c t rn+1+rn+1rn+2Bn+2’ n > 1.

necessity of Theorem 8.5, replacing " a'' by "B"

out.

For the sufficiency, define ¢, N > 1,

equation ca = l+r_,

T (an+an+1Bn+1

clay - (Vetr T e Thea®nee )] = e [Py

- + +
(C rn+2 rn+2rn+3Bn+3)

+r for n > 1, where 1/c < l.

n+1rn+2an+2

Theorem 8.5, Zlanl converges. Q E.D.

Then a, -+ O and anan

1 <0, sothat o < 1l/c+r

The dual of Theorem 8.29 is Theorem 8.5.

Theorem 8.30. Let ¢, L, L be any real numbers

1 2
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Proof: For the necessity, we may use the proof of the

through-

by the

nt1 -

According to

where 1 < c. Then a n.a.s.c. that an alternating series

Za, converge absolutely is that

(0) a, * 0,

and there exist a sequence {Bn} such that,

(1) N L, and a B, 7 L,
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(2) By>ctr n> 1.

+
= nt+1 rn+1rn+2Bn+2’

Proof: For the necessity, there is a sequence {Bn} sa-
tisfying (1), (2) of Theorem 8.29. Define {Bé} by the

equations a ! = + L and a !
9 an-17gn-1 azn-152n-1 1 2n52n

a, By ¥ Lo It is easily seen that {Bé} satisfies

(1) and (2) above.

For the sufficiency, define {Bé} by the equations

a - an ' = 3 - L .
2n—152n-1 LT d azn 2n 2n52n 2

t
a2n-1B2n—1

We easily verify that {Bé} satisfies (1) and (2) of
Theorem 8.29, and thus Ta  converges absolutely. Q.E.D.

The dual of Theorem 8.30 is Theorem 8.6.
With N = 1 in Theorem 8.27, we obtain the following theo-

TeMm.

Theorem 8.31. A n.a.s.c. that an alternating series Zan

converge is that

(0) a, * 0,
and there exist a sequence {Bn} such that,

(1) ap, 0



115
Moreover, if (0), (l), and (2) hold, then, for n > 1,

(a) rn+rnrn+1Bn+1 2 Tn 2. ran.

And in general, for n > 1 and k > 1,

(b) T +(r T >T

n,zk-2 0’ Totak-1Potak-1 2 Tn n,2k-3

LG P O L  HF

The dual of Theorem 8.31 is Theorem 8.8.

Theorem 8.32. Let L be any real number. Then a n.a.s.c.

that an N-alternating series Za, converge is that there
exist a sequence {Bn} such that

(1) a B, L

(2) Bn 2 l+rn+1+rn+1rn+2Bn+z’ n 2 N,
and
(3) Bn 2 l+rn+1Bn+1’ n 2 N.

Moreover, if (1), (2), and (3) hold, then, for n > N,

(a) r tr T Bn+1— (L/an_

n n+ 1 ) 2 Ty 2 1By - (L/an—1)'

]
And in general, for n > N and k > 1,

(o) Tn,zk-z+(rn'°'rn+zk-1)Bn+zk—1—(L/an-1) 2 Tn

2 Tn,zk—3+(rn'.°rn+2k-2)Bn+zk—2'(L/an—1)'

Proof: For the necessity, Theorem 8.26 implies the exist-

ence of a sequence {Bn} such that conditions (0), (1),

and (2) are satisfied. Also, by (a) of Theorem 8.26, we

have r +r (L/an_1) > r. B, - (L/an-1) for

n n n+1Bn+1
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n > N, from which (3) follows.

For the sufficiency, assume that (1), (2), and (3)

hold. Using (1), (3), and the fact that [an[/an, n > N,

is bounded, we have 0 <, |a | <. ]an|(Bn-Bn+1rn+1)
=. (Ja[/a ) (a B -a 4 Boy,) + O, so that [a | =+ 0, i.e.,

a, * 0. Now apply Theorem 8.26. Q.E.D.

According to Counterexample 8.10, Theorem 8.32 has

no dual.

Remark 8.33. We now consider the four conditions:

(0) a_ ~+ 0,

(1) aan -+ 0,

(2) Bn 2 l+rn+1+rn+1rn+2Bn+2’ n2 1
(3) Bn 2 l+rn+1Bn+1’ n > 1.

We have seen that if (0) or (3) is omitted, the remaining
three conditions are necessary and sufficient for the con-

vergence of an alternating series Zan. It will be shown

that if condition (1) or (2) is omitted, the remaining

three are not sufficient for the convergence of Zan. We

will see that conditions (1) and (2) are not sufficient

for the convergence of Zan. It will also be seen that if

(1) is replaced by the weaker conditions that
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3 P 2 44Ppe O and that {a B} be bounded, the result-

ing four conditions are not sufficient for the convergence

of Ya .
n

Gounterexample 8.34, We use Counterexample 8.11 with

¢ n 21, as defined there. Defining P, = a, for

n > 1, the following conditions are obvious:

(0) a =+ 0,

n
(2) Bn 2 l+rn+1+rn+1rn+2Bn+2’ n2 1

(3) B2 M4 L B 4,s n 2> 1.

Also, aan—an+{Bn+1 =. a, » 0 so that the four conditions

aan-an+1Bn+1 -+ 0, (0), (2), and (3) are not sufficient

for the convergence of Zan.

Counterexample 8.35. Let Zan be the divergent series

-— ’

giver in Counterexample 8.11. Defining P =1 for n>1

it is obvious that the following conditions hold:

(0) a ~+ 0,

(1) ~+ 0,

aan
(3) B, > l+r B .., n2>Ll.

Thus conditions (0), (1), and (3) are not sufficient for

the convergence of Zan.
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Counterexample 8.36. Let Zan be the divergent series

in Counterexample 8.10 and {Bn} be any monotone decreas-
ing sequence such that §_—+ 0. We then have

(1) ap, 0

and

(2) Pn 2 1T ¥ 1T 4B, 0 2 1o

Thus conditions (1) and (2) are not sufficient for the

convergence of Zan.

Counterexample 8.37. Let za, be the divergent series in

Counterexample 8.10, L be any number > 1/2, and {Bn}

be any monotone decreasing sequence converging to L.

We then have

(1) -+ -1 and B —+ L,

a a
ZD—TBZD—‘I 2n an

(2) Bn > r,

+1+rn+1rn+2Bn+z’ o2 L

(3) Bn 2 l+rn+1Bn+1’ nz 1.

Consequently, (1) of Theorem 8.32 cannot be replaced by

—+ L and

the weaker condition that a B
an-1"2an-1 1

a - for m m and . The corres-
onPan ™ Lyo or some numbers L, L, c

ponding replacement in Theorem 8.26 was valid according to

Theorem 8.25.
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Counterexample 8.38. We use Counterexample 8.13 with a s

n > 1, as defined there. Defining Bn = qa

, for n > lr
n ——

the following conditions hold:

(0) a, 0,

+
(2) Bn 21 rn+1+rn+1rn+25n+2’ -~

(3) B, > 1tr n> 1.

n+1Bn+1’

According to Counterexample 8.13, the sequence {aan} is

bounded and -+ 0. Thus, replacing (1) of

aan_an+1Bn+1
Remark 8.33 by these two conditions, the resulting condi-

tions are not sufficient for the convergence of Zan

Theorem 8.39. Let L Dbe any real number and Zan be

any N-alternating series such that ayq 7t 0. Then a

n.a.s.c. that Zan converge is that

(0) a, + 0,

and there exist a sequence {Bn} such that,

(1) some subsequence of {azn-162n-1} is bounded
above and aznﬁzn -+ L

and

(2) Bn 2 l+rn+1+rn+1rn+2Bn+2’ n 2> N.

Moreover, if conditions (0), (1), and (2) hold, then

{azn—1ﬁan-1} converges.
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Proof: The necessity follows from Theorem 8.25.

For the sufficiency, define a, = l+4r for

n+1Bn+1

n > N. Then a a = -+ L. Since

. a +a
2n-1 2n-1 2n-1 ZDBBD

a = a_ _+a
2n%n 2n 2n+152n+1’

}

f a
some subsequence o { an%zn

is bounded above. Also, a, = 1t < MHr,

rn+1Bn+1 +1

+ + = 14 + T .
rn+1rn+2(l rn+35n+3) 1 Tnt1 Tnt1 nt2%nte for n> N

From Theorem 8.19, both EN and {aznazn} converge.

-+ lim a_ a _, 1i.e.,

Conseqguentl a a -a
q Yo 2n 2n 2n 2n 2n

{a

a2n+152n+1

3 converges. Q.E.D.

B

2n-1"2n-1

The dual of Theorem 8.39 is Theorem 8.15.

Theorem 8.40. Let L Dbe any real number and Za, be

any N-alternating series such that ag, < O. Then a
n.a.s.c. that za = converge is that

(0) a_ -+ 0,

and there exist a sequence {Bn} such that,

(1) some subsequence of {azn-152n-1} is bounded below
and aanzn + L

and

(2) By > Mr, +r T B oo, n >N

Moreover, if conditions (0), (1), and (2) hold, then

{azn-1an_1} converges.
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Proof: The necessity follows from Theorem 8.25.

For the sufficiency, define a' = -a_ for n > O.

\
n n

3 t = 1 ! = -
Accordingly, r! = al/a! = a/a =71  for n>N. It
is easily seen thaf Theorem 8.39 is applicable, yielding
B

the convergence of _Zaé and {a

Thus, 2a and
2N-1 n

2n—1}'
{azn-1ﬁzn—1} both converge. Q.E.D.

The dual of Theorem 8.40 is Theorem 8.14.

Theorem 8.41. Let L  be any real number. Then a n.a.s.c.

that an N-alternating series Zan converge is that

(0) a, = 0,

and there exist a sequence {B_} such that,

(1) some subsequence of {azn-152n-1} is bounded and
aznﬁzn - L

and

(2) Pr 2 Y Tae TeeP g 2 N

Moreover, if conditions (0), (1), and (2) hold, then

{a

gn—1Bgn—1} converges.

Proof: The necessity follows from Theorem 8.25.

For the sufficiency, we need only note that 3n >. 0

or a,. <. 0, and then apply Theorem 8.39 or Theorem 8.40,

respectively. Q.E.D.
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The dual of Theorem 8.41 is Theorem 8.16.

Theorem 8.42. Let L Dbe any real number and Zan_ any

N-alternating series such that an >e O. Then a n.a.s.c.

that Zan converge is that

(0) a =0,

and there exist a sequence {B_} such that,

(1) some subsequence of {a, B, } 1is bounded below
and 3y n-Panoy 7 L

and

(2) , Bn 2 l+rn+1+rn+1rn+28n+2’ n 2 N.

Moreover, if conditions (0), (1), and (2) hold, then

{aanzn} converges.

Proof: The necessity follows from Theorem 8.25,

For the sufficiency, define a, = l+rn+1Bn+1 for
n > N. Then q2n%n " a2n+a2n+1B2n+1 =+ L. Since
qon-1%n-1 = azn-1+azn82n’ some subsequence of
{azn_1a2n_1} is bounded below. Also, a = Mo Pty
ST T T (1T 9B vg) = Ibr ¥y ey, for

n > N. From Theorem 8.14, both Zan and {azn_1a2n_1}

converge. Consequently,

a a a -3
ZDBZD 2n-1 2n-1 2n-1

-+ lim a a i.e. a converges. Q.E.D.
2N-1 2n-y’ A 2n82n} 9
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The dual of Theorem 8.42 1s Theorem 8.20.

Theorem 8.43. Let L be any real number and Za, be

any N-alternating series such that an <, O, Then a
n.a.s.c. that Za,  converge is that
(0) a =+ 0,

and there exist a sequence {Bn} such that,

(1) some subsequence of {aanzn} is bounded above
and a,n_ Pany 7L

and

(2) By 21+ oty T B, N> N

Moreover, if conditions (0), (1), and (2) hold, then

{aanzn} converges.

Proof: The necessity follows from Theorem 8.25.

For the sufficiency, define aé = -a for

t = t t - =
n> 0. Then =t/ an/an_1 a/a _, =71, for n>N.

From Theorem 8.42, both Za! and {aénB converge.

an!
Thus, Zan and {aznﬁzn} converge. Q.E.D.

The dual of Theorem 8.43 is Theorem 8.19.

Theorem 8.44. Let L Dbe any real number. Then a n.a.s.c.

that an N-alternating series Zan converge is that
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) a_ =0,

and there exist a sequence {Bn} such that,

(1) some subsequence of {aanzn} is bounded and

+ .
Z ntt Tnt1Tn+ePptzs D2 N

Moreover, if conditions (0), (1), and (2) hold, then

{aznﬁzn} converges.

Proof: The necessity follows from Theorem 8.25.
For the sufficiency, we need only note that

3,y > 0O or 3, <o 0O, and then apply Theorem 8.42 or ;

Theorem 8.43, respectively. Q.E.D.

The dual of Theorem 8.44 is Theorem 8.21.

Theorem 8.45. (Leibnitz's Theorem for alternating series.)

Let Zan be an alternating series such that -1 < T
for n> 2, and a_ - 0. Then Zan converges, and more-

over IS-S

lst Proof: Choosing a = 0 for n > 1, we may use (a)

of Theorem 8.8 to obtain

r +r r

n “n nty £ryt0, n 2 1,

*0 < (8-S,

and this immediately yields the desired inequality. Q.E.D.
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2nd Proof: Choosing Bn =1 for n > 1, we may use

(a) of Theorem 8.31 to obtain

+ . -
0> Tt T, 1> (s Sn—1)/an-1

from which the desired inequality follows. Q.E.D.

Lemma 8.46. Suppose that p,x,y, and g are numbers

such that -1<p<q<0, p<x<g, and p<y<g. Setting
a = (1+p)/(l-pg) and B = (1+q)/(l-pg), we have
(1) PP < xB < xtxya < x*+xyB < xa < qa,

(2) ¢ < ltxtxya and B > l+x+xyB,

(3) pB < x/(1-x) < qa.

Proof: It is easily seen that 0 < a = l+pB < B = l+qa.
Accordingly pf < xB = x(l+ga) < x(l+ya) < x(1+yB)

< x(1tpp) = xa < ga, « = 1+pB < l+x+xye, and B = lt+qa
2 l¥xtyB. This proves (1) and (2). For (3), we have

[x/(1-x)] - pB = [(x-p)+p(x-9)1/[(1-x)(1-pg)] > O and
ga - [x/(:x)] = [(g-x)+q(p-x)1/[1-x)/(1-pq)] > O. Q.E.D.

Theorem 8.47. Suppose that Zan is an N-alternating se-

ries such that —l<;agxh £g< 0 for n >N, where p

and g are constants. Setting a = (l+p)/(l-pg) and
B = (1*a)/(1-pa),

(1) PP <r B <rfr T a< T, Srfryr 48 < 1@

I~

gqa, n > N.
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Proof: Define @, =« and B8 =8 for n > N. Since

lrnl <lel <1 for n> N, a, > 0, aja —~+ 0, and

a8, 0. By Lemma 8.46, a, < l¥r, and

+ ‘
+1" Tnt1Tn+2%nte

+r

+1 8

+
Bp 21 Tn n+t1 n+2nts

n for n > N. Let n be any in-

teger > N. Using (1) of Lemma 8.46, pB < rB <,

trr a L{r+tr r B < r,@ £ ga. Also Theorem 8.8 and

n nt4 n nnt1s =
Theorem 8.27 yield the respective inequalities

r +r

+
n nrn+1a < Tn and Tn < T, rnr

ntq3e (1) of the present

theorem is now evident. Q.E.D.
Suppose that p,q are constants such that

-1 < p<g< 0. We now exhibit a series Zan satisfying

the hypotheses of Theorem 8.47, and for which pB and qga

are the corresponding largest and smallest constants such

that pg < T.,<Qqa for n>N= 1. In particular, let

I

2a, = l¥ptpatp2qtp2q®+p3gR+-.. . Then =1 = p and

2n-1

I

T g for n > 1, so that T =

+r T+
2n - 2Nn-1 rzn—1 2Nn-1 2n

= pB8 and Toh™T

+ +o e = T l.
n an' TanTant e, for n >

Lemma 8.48. If -1< x, a <1, and a < x(1+y)/(1+x),

then 1/(l-a) < l+x+xy/(l-a).

Proof: We have 0 < l-a and O < 1+x. Thus, a(l+x)
< x(1ty), 1 < (l-a)tx(l-a)*xy, and 1/(l-a) < ltxtxy/l-a).
Q.E.D. |
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Lemma 8.49. If -1<x and 1>B>x(1+y)/(1+x), then
1/(1-8) > l+xtxy/(1-B).

Proof: We have O < 1-B and O < l+x. The following
inequalities are now obvious: B(1l+x) > x(1l+y),
1> (1-B)+x(1-B)+xy, L/(1-B) > l+x+xy/(1-B). Q.E.D.

We give three proofs of the following theorem.

Theorem 8.50. If r, T, -1 < r <0, then Tn -+ r/(1l-7).

lst Proof: Let € > 0. Since (y-x)/(l-xy) —+ O as
(x,y) =+ (r,r), there are numbers p,g such that

—lv< p<r<qg<O0 and (g-p)/(l-pg) < €. Using (3) of
Lemma 8.46, pB < r/(l-r) < ga where a = (1+p)/(1-pq)
and B = (1+qg)/(l-pg). Also, there is a positive integer
N such that p < r < g for n > N. By Theorem 8.47,

n
pp < T, < ga for n > N. Hence, [Tn—r/(l—r)[ < ga-pf

= (Q-p)/(l—pQ) < e for n>N. Q.E.D.

2nd Proof: Since r l+rn+1)/(l+rn) -+ r, there is a po-

ol
sitive integer N and a monotone increasing sequence

{an} such that o *r and, for n >N, -1K T < 0

and a < T4, (1fr )/(l+rn+1). We now use Lemma 8.48

n+ea

and the inequality l/(l—an) < l/(l—an+2) for n > N to

obtain
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1 1
+ + — +
<1 rn+1 rn+1rn+2 l—an <1 rn+1

1

+ i — -
rn+1rn+2 l-ao +
ntz

for n > N. Since |r| < 1, a, ~+ 0 and an/(l-an) -+ 0,

According to Theorem 8.3, rn+r T

n n+1/(l-an+1) <7

n
< rn/(l—an) for n > N. The conclusion now follows

since rn+r r

n n+1/(l—ocn+1) -+ r+r?/(1-r) = v/(1-1) and

rn/(l—an) -+ r/(1-r). Q.E.D.

3rd Proof: Since rn(l+rn+1)/(l+rn) -+ r, there is a

positive integer N and a monotone decreasing sequence

{Bn} such that Bn - r and, for n >N, -1¢< r < 0
and 1 > Bh > rn+1(l+rn+2)/(l+rn+1). We now use Lemma

8.49 and the inequality 1/(1-8_ ) > 1/(1-B , ) for n3N

nte
to obtain
l/(l_gn) 2 l+rn+1+rn+1rn+2/(l_ﬁn)
2 l+rn+1+rn+1rn+2/(l'5n+2)

tor n > N. Since |r| < 1, a_ 0 and an/(l-ﬁn) -+ 0,
According to Theorem 8.27, rn+rnrn+1/(l-ﬁn+1) > T,
> rn/(l—Bn) for n > N. The conclusion now follows since
rn+rnrn+1/(l—§n+1) -+ rtr¥(1-r) = r/(1-r) and rn/(l—ﬁn)

-+ r/(l-r). Q.E.D.
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Theorem 8.51. If Zan is an N-alternating series,

-1 <r <0, and 1/(l-r) ¢ Mr , +r . v .. /(l-1r) for

n+g

n >N, then r +r r /(1-1) < T, < rn/(l—r) for n > N.

nt1

Proof: Since |r| < 1, a =+ 0 and an/(l—r) -+ 0. Now

apply Theorem 8.3 with « = 1/(l-r) for n > N. Q.E.D.

Theorem 8.52. If Zan is an N-alternating series,

for n > N, then

-1 <r <0, and r ., < T4, >

rn+rnrn+1/(l—r) <T, < rn/(l—r) for n > N.

< , so that

Proof: Let n > N. Then -1<r<r ., <.,

r<r g, <ry (b )/ (14 ). By Lemma 8.48, 1/(1-r)

nt1

< l+rn+1+rn+1rn+2/(l—r). Now apply Theorem 8.51. Q.E.D.

<r <0 for n >N,

Theorem 8.53. If -1 <r< rn+1 < Ty

n+1(l+r)/(l—rrn) < T,

I
H

then, for n > N, rn+rnr

).

+r (l+rn)/(l-rr

r
n n+1 n

Proof: Let m be any integer > N, p = r, g =T

m’

a = (l+p)/(1-pg), and B = (1*q)/(l-pg). Then
-1 <p<r <£g<0 for n>m. From (1) of Theorem 8.47,

+ i =
Tt T4, T, Loy B for n > m. Setting n = m,

the desired inequality obtains. Q.E.D.
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Assuming the hypotheses of Theorem 8.53, the lower
bound given there for Tn and that given by Theorem 8.52
will now be compared. No comparison of upper bounds appears
evident.
The following inequalities are equivalent:

rn+rnrn+1/(l-r) > rn+rnrn+1(l+r)/(l—rrn), 1/(1-1)

> (l+r)/(l-rrn), l-rr_ > 1-r®, r > r. Consequently, the

n

lower bound for Tn given by Theorem 8.52 appears better.

It is also simpler in form.

Theorem 8.54. Let Zan be an N-alternating series. Then
a n.a.s.c. that Tn + -1/2 is that a O, r= -1, and
there exist a sequence {an} such that

(1) @ - 1/2,

+ + .
(2) o <1 ot Tt Tntefnigr D2 N

Proof: For the necessity, assume that T - -1/2. Ac-
cordingly, Zan converges and a, - 0. Thus, T,

= Tn/(l+Tn+1) ~+ (-1/2)/(1-1/2) = -1, i.e., r = -1, De-
fining a, = l+Tn+1 for n > N, a, = 1-1/2 = 1/2  and
a, = l+rn+1+rn+1rn+2an+2 for n > N.

For the sufficiency, Theorem 8.3 yields
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+
T Tt 1 %+, ST < r,¢, for n > N. Also,

lim (rn+rnrn+1an+1) = lim ra = -1/2, which implies

that Tn -+ -1/2. Q.E.D.

Theorem 8.55. Let Zan be an N-alternating series. Then

a n.a.s.c. that T, - -1/2 is that a,+0, r=-1,

and there exist a sequence {Bn} such that

(1) B, + 1/2

(2) Pn 2 g, fr n > N.

n+1rn+2Bn+2’

Proof: TFor the necessity we may use the proof of the ne-

cessity of Theorem 8.54, replacing "g" by "B" through-
out.
For the sufficiency, we use Theorem 8.27 to obtain

By ST, Lrpfrr 4By, for n > N. Also, rf, > -1/2

and T dr.r . B ., -1/2, so that T, — -1/2. Q.E.D.

Lemma 8.56. If x_ -+ x, -w< x < O, and 1lim sup Yo = Yo

n

-®L y < tw, then lim inf XaYg = (1im xn)(llm sup yn).

Proof: Suppose that y = +w . Then Y.y + to for some

n'

subsequence {n'} of {n}, X 1¥pt * X (+®)= -w, and

lim inf x y = -w. Also (lim xq) (1im sup Yo =x(+®)= -,
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and thus 1lim inf X Y = (1im xn)(lim sup yn).

Suppose that y = -e. Then lim Vg = m®,

lim inf x y = +®, and (lim x_)(lim sup y) = x(-e)

= 4+, Hence 1lim inf X Yo = (1lim xn)(llm sup yn).
Suppose that -w< y <+« and let 1lim inf x. ¥, L.

Then -o©< L < +» and Ypr Y for some subsequence

{n'} of {n}: Hence x -+ xy, and thus L < xy.

n'’nt
Since lim i"n"fonyn = L, there is a subsequence {n*}

of {n} such that X #Y % ~* L, and thus Y

xn*yn*/xn* 4;L/x < y. Consequently, L > xy. Hence,

L = xy. Q.E.D.

Theorem 8.57. If -1 <o and lim sup (l+rn+1)/(l+rh)
<1, then r ~+r= -1, Ja | =+ a for some a > 0,

n ‘ n :
Zan diverges, and there is a positive integer m such v 

[e o]
that 1 |r | converges.
m

Proof: By hypothesis, 0 <. l+r_ and (l+rn+1)/(l+rn)<. 1.

Thus -1<. r <. r and T - T where -1 < r. We

n+1 n .
must have r = «1; since otherwise, lim sup (l+rn+1)/(l+rn)

-—

= lim (l+rn+1)/(l+rn) = 1, a contradiction. Since r = -1,

we have -1<. r <. 0, [r | =. lan/an_1| <. 1, and
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la | <. lan_1{. Consequently, [a [ =+ a for some a > O.

Assume that a = 0. Setting L = lim sup (l+rn+1)/(l+rn),
O < L< 1. From Lemma 8.56, 1im inf rn(l+rn+1)/(l+rn)
= (lim r ) [1im sup (l+rn+1)/(l+rn)] = -1, -1 < -L <O,

Hence, there is a positive integer N and a monotone in-

creasing sequence {an} such that a, + -L and, for

n>N, -1¢< §1< 0 and an <r +1(l+rn+2)/(l+rn+1). From

n

Lemma 8.48 and the inequality l/(l-an) < l/(l—an+2) for

n >N, 1/(l-a ) < Itr 4 4r v o /(l-a ) < Hr ..

) for n > N. Also, a /(l-a_ ) = O.

+ -
r rn+2/(l ocn+2 < n n

n+ 1

From (a) of Theorem 8.3, rn+rnrn+1/(l—an+1) < rn/(l-an)

for n > N. Letting n =+ =, we obtain -1+1/(1+L)
< -1/(1+L), -(1+L)+1 < -1, and 1 < L; a contradiction.

Thus, a > 0 and Zan must diverge. Since r, <. g,

there is a positive integer m such that rn# O for

n > m, and thus lrmllrm+1l---lrm+n] = lanl/lag ;|
[e 0]

- a/[am_1! >0 as n-«. Hence I |r [ converges to
m

a/| ap-, |+ Q.E.D.

The preceeding proof of Theorem 8.57 involved only
the theory of N-alternating series. By use of known theo-
rems for series of positive terms, and alternate proof is

now given.
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Froof: By hypothesis, 0 <. l+r  and (l+rn+1)/(l+rn)
<. 1. Thus -1 <. T4y <+ T, and r -1 where -1 <.
We must have r = -1; since otherwise,

1im sup (l+rn+1)/(l+rn) = 1lim (l+rn+1)/(l+rn) =1, a
contradiction. Since r = -1, -1 <. T <. 0 and there
is a positive integer m such that -1 < T <0 for n>m,

(o8]
Consequently, ¢ (l-lrnl) =

(l+rn) is a series of posi-
m

3 ™8

tive terms, which converges since lim sup (l+rn+1)/(l+rn)
< 1. Thus l+rn -+ 0 and r,*T = -1. Also with
l—lrn[ >0, for n>m, it is known (5, p. 382) that

% (1-]r_|) converges if and only if T [1-(1-[r_ )]

m m
© o
=1 |z | converges; thus I |z, | = a for some a > O.
m m
Hence, for n > m, |an| = Iamllrm+1rm+2"'rnl
[ee]
g Iaml ( g lrkl) = laml(a) > 0. Consequently, REW di-

verges. Q.E.D.

Corollary 8.58. If a, 0 and -l<..rn, then

lim sup (l+rn+1)/(l+rn) > 1.

Proof: Assume that 1im sup (l+rn+1)/(l+rn) < 1. Then

from Theorem 8.57, |a | - a > O which contradicts
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a_—+ 0. Thus, lim sup (l+rn+1)/(l+r ) > 1. Q.E.D.

n

-+ 0, r = -1 <. ro and

Theorem 8.59. If a,

lim sup (ltr_,.)/(l+r_ ) = 1, then T_ - r/(l-r) = -1/2.

Proof: From Lemma 8.%6, lim inf rn(l+rn+1)/(l+rn

)
= lim r_-1lim sup (l+rn+1)/(l+rn) = r.] = r., Consequently,

there is a positive integer N and a monotone increasing

sequence {ah} such that a, * T and, for n > N,

-1 <r <0 and « < rn+1(l+rn+2)/(l+rn+ ). Using Lemma

n 1

8.48 and the inequality 1/(l-a ) < V/(l-a 4 ) for n >N,

V(l-ag) & Ty trp, o,/ (1-a)) < l+rn+1+rn+1rn+z/(l_an+2)

for n > N. Also, l/(l—an) %+ 1/2. Now apply Theorem

8.54. Q.E.D.

Corollary 8.60. If a, 0, r = -1 <. T and

lim sup (l+rn+1)/(l+rn) < 1, then 1lim sup (l+rn+1)/(l+rn

=1 and T = r/{1l-r) = -1/2.

Proof: From Corollary 8.58, lim sup (l+rn+1)/(l+r ) > 1,

n

and thus 1im sup (l+rn+1)/(l+rn) = 1. Now apply Theorem

8.99. Q.E.D.

Lemma 8.61. If a  ~ O and 1lim inf (l+r_, )/(1*r ) = L,

O <L+, then -1 <. r.
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Proof: Since 0 < L, O <. (l+rn+1)/(l+rn). Hence

I+r <. 0 or O0K. l+r , If 1+r <. O, then r_ <. -1,
n n n n

<. [an[. This is impossible since

a, 0. Thus 0 <. l+rn and -1 <. T Q.E.D.

Lemma 8.62. If Xq ™+ X, < x <0, and lim inf Yo T Yo

-e<y < te, then lim sup x y = (lim x_)(1lim inf y ).

Proof: Suppose that y = +w. Then lim Yy = +o0 |

lim sup x_y_ = -=, and (lim x_)(lim inf y,) = x(+ o) ==00
Suppose that y = -« . Then Yor > - for some
subsequence {n'l of {n}, XptYgr = x(=0) =+ and

lim sup «x =+, Also, (lim xn)(lim inf yn)

nyn

Suppose that -«< y < +w and let lim sup XnYn

L. Then -o< L < +o and Yor Y for some subse-
quence {n‘} of {n}. Hence XY XY, and thus

xy < L. Since 1lim sup X ¥y = L, there is a subsequence
{n*} of {n} such that Xk Yok = L, and thus Yk

Te XowYow/ Xk > L/x > y. Thus L < xy. Hence L = xy.

Q.E.D.

Theorem 8.63. If a, ~* 0, r= -1, and
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lim inf (l+rn+1)/(l+rn) =1, then -1<. r  and

T, = r/(l-r) = -1/2.

Proof: Using Lemma 8.61 and the fact that r,*r = -1,

-1 <. T <. O. From Lemma 8.62,

lim sup rn(l+rn+1)/(l+rn) = (lim r)[1lim inf
(l+rn+1)/(l+rn)] = r.1 = r. Consequently, there is a

positive integer N and a monotone decreasing sequence

{8,} such that B ~r and, for n> N, -1<r <O

and 1> 8 > rn+1(l+rn+2)/(l+rn+1). Using Lemma 8.49

and the inequality l/(l—Bn) > 1/(1-8 ) for n > N,

ntza

V(1-p ) > Yrrp Fropox o /(1-8 ) > 1r
b Thee’/ (1-B4g) for n > N. Also, 1/(1-p.) = 1/2.

Now apply Theorem 8.55. Q.E.D.

Theorem 8.64. If a, O, r= -1, and

Lim (l+rn+1)/(l+rn) =1, then -1<. r_  and

lim T = r/(1l-r) = -1/2.

Proof: Since 1lim inf (l+r . )/(1tr )= lﬁn(l+rn+1)/(l+rJFL

the conclusion follows from Theorem 8.63. Q.E.D.

Pflanz (18, p. 27) has proven that if “a is- an

alternating series such that r_ = -1ta/nty /n, where a>0
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and vy_ - 0, then Tag e MR(Za,). We now give a short

proof of this fact.

Theorem 8.65. If r = -l+a/n+Yn/n where a > 0 and

Yn =+ 0, then T - -1/2 and Za, € MR(%a,).

dn

Proof: By hypothesis, r = lim r, = -1 and -1 <. r
<. 0. Thus, [rn] =. [an/an_1[ <. 1, Ja | <. ]a
and fa_ | - ¢ for some ¢ > 0. Also, x| =+ 1-(aty_ Vn,
(a+Yn)/n >. 0, and g (a+Yn)/n diverges. Con-

sequently, from Apostol (5, p.238), H[rn] diverges to

zero so that ¢ = 0, i.e., a, O. Moreover,

t

(1vr, )/(142) = [{aty_, )/ (2+1)1/[(a_*+y_)/n]

nt1
=. [n/(n+l)][(a+Yn+1)/(a+Yn)] —+ 1, From Theorem 8.64,
T, ~ -1/2, and thus To+1-T, = O. We now apply Theorem

3.8. Q.E.D.

Lemma 8.66. If -1 <. r, <. a for some number a, then

0 < lim inf (l+rn+1)/(l+rn) < 1.

a0 0 <. (l+rn+1)/(l+rn). Thus set-

ting L = lim inf (l+rn+1)/(l+rn), 0 < L<+x. Suppose

1< L. Then 1 <. (l+rn+1)/(l+rn), -1 <. r_ <. r

<. a
n nt1 ’

and r exists with -1 < r < a. Hence



L = lim inf (l+rn+1)/(l+rn) = lim (l+rn+1)/(l+rn) =1, a

contradiction. Thus O <L

[ WA
!,__I
j o
ay]
)

Theorem 8.67. If a - 0, r = -1<. 1, and

lim (14r_, )/(1#r ) = L where -w< L < +e, then L=1

and T - r/(l-r) = -1/2.

Proof: Since r = -1 <. r -1 <.r <. 0. From Corollary

n’
8.58 and Lemma 8.66, L > 1 and L £ 1, respectively.
Hence L = 1, and thus, from Theorem 8.64,

T, - r/(l-r) = -1/2. Q.E.D.

Theorem 8.68. If a_ - 0, r = -1, and lim

(l+rn+1)/(l+rn) = L where -o< L < 4+, then exactly
one of the following statements is true:
(1) -1 <. r  and L= 1.

(2) l*r ~ is alternately positive and negative, for

large n, and L = -1.

Proof: Since r, - -1 we may assume that -2 < T, <0

for n > 1. Exactly one of the following statements is
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If (i) holds, then L = 1 according to Theorem
8.67.
Suppose that (ii) is true. For each integer n>1,

1 LI 3 - = .0 i -
define rl T, if 1< r,» or ré 2 T if T < -1,

Accordingly, for n > 1 we have -2 < L < ré < 0 and

0 < l+ré . Define aé = 1 and aé = r;ré---ré for
n>1l. Since 0 < |r'| < |r | for n> 1,

Z nt > n z
latl = fefdegl ooyl < e din, el ] = la/ag) = O,
i.e., aé -+ 0. Also, l+ré = l+rn or l+ra = —l—rn,
i.e., +r! = [l+rnl for n > 1, so that
Lim (1+r!y)/(+z!) = 1im [(1+r . )/ (14 )| = |L].
Moreover, l+r! =. |l+r | -+ O, i.e., ' = -1. We now

n n n

have al 0, " =1limzr! = -1, -1 <. r!, and
lim (l+r%+1)/(l+ré) = |L|. From Theorem 8.67, |L| = 1,

i.e., L =-1 or L= 1. Assume that L = 1. Then

l+rn 1s of constant sign for large n. Hence, according

to (ii), Hr <. 0, i.e., r, <. -1. This contradicts

a, *0; thus L= -1 and 1+r  1is alternately positive

and negative for large n. Q.E.D.

Corollary 8.69. If a -+ 0, r = -1, and lim

(Itr ,)/(1#r ) = L where -o< L <w and L # -1, then
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-1 <, r,» L=1, and T, -+ r/(1-r) = -1/2.
Procf: From Theorem 8.68, -1 <. T, and L = 1. We may
now apply Theorem 8.64 or Theorem 8.67 to complete the
proof. Q.E.D.

Lemma 8.70. If (l+rn)(l+rn+1) <. 0, some subsequence

of {rzn—1} converges to -1, and some subsequence of
{rzn} converges to -1, then -1 < lim sup

(1+r 4. )/ (1+r ) < O.

Proof: By hypothesis, (l+rn+1)/(l+rn) <. 0. Thus, set-
ting L = lim sup (l+rn+1)/(l+rn), we have -«< L <0,
Suppose that L < -1. Then (l+r_, )/(ltr ) <. -1 and
(trz /(1) = (e, )/ (b, )I0(e,, )/ (142,

>. 1. Either I1+r <. 0, or 1t <. 0. In the

T
2n 2Nn-1

<. r

+ L1t
former case, l+r <. ltr, , so that r ., 50

2nta
<. -l. This is impossible since some subsequence of

{rzn} converges to ~-l. In the latter case, ltr, ..

<. l+r , S0 that =~ <. <., ~-1. This 1s im-

T
2n-1 2nt1 an-1

possible since some subsequence of {an_1} converges

to -1. Thus, ~-1< L <O0O. Q.E.D.



142

Lemma 8.71. If a, =0, Topeq * 71 <o T and
lim sup (l+r2n)/(l+r2n_1) = L where -« <L < -1,
then Ton <. -1, some subsequence of {rzn} converges

to -1, and L = -1,

Y <. 0<. 1

° 1 +
Proof: By hypothe31s, (l+r2n)/(l Ton-s

)

+ r

ano 1’ and thus, r__ <. -1. Clearly, (l+rn)(l+r

2n n+1

<. 0. Assume that no subsequence of {rzn} converges

to -1. Then there is a number « such that Ton

|

>. |a

<. ¢ < -1. Since r a—+ -a> 1, iazn/a

2N-1 2Nn-2

I

which contradicts azn -+ Q. If follows that some subse-

>. 1. Thus, Ja

r r « T a
2N~1 2N > 2N~-1 an 2Nn-=2

guence of {rzn} converges to -1l. From Lemma 8.70,

-.]. < L < O, and thUS L = "]_o Q.E.D.

Theorem 8.72. If Za, converges, Ton-; -1, -1

<. Toney’ and lim sup (l+r2n)/(l+r2n_1) = L where

-w< L <1, then r, <. -1, some subsequence of {rzn}
converges to -1, L = -1, Tzn-1 -+ t oo,

Proof: From Lemma 8.71, TN <. -1, some subsequence of
{rzn} converges to -1, and L = -1. Let a be any

. +
number < 1. From Lemma 8.56, lim inf rzn_1(l+r2n)/(l r,
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= lim Ton-, 1im sup (l+r2n)/(l+r2n_1) = 1. Thus, a
<. rzn_1(l+r2n)/(l+r2n_1). From Lemma 8.48, 1/(l-a)
<. l+r2n_1+r2n_1r2n/(l-a). Defining a, = 1/(1-a) for
n> 1, %on-g <. l+r2n_1+r2n_1r2nazn. Clearly, 3n%n

-+ 0. From Theorem 8.3, there is a sequence {qzn 1}

such that a -+ 0 and <., l+r

a
2N-1 2n-1

- .14 +
We now have an%n 0 and a, < 1 T+t Tt 1 Tt Fntg

From Theorem 8.3, -l-r . T +r r
’ 2n-1azn§- 2n-1 “an-172n%n

T

<o T, ¢ Accordingly, 1lim inf (-1

"rzn-1azn)

= -1+ 1/(l-a) = a/(1-a) < lim inf Ton-,+ Since o/(1l-a)

“+ +two as g -+ 1-, lim inf T = 4+ ; thus, T -+ + o
2n-1 2n-1

Since r_ <. -1, T__ =, r_ (1+T
2n

2n 2n <- —(1+T2

)—)-oo,

2n+1) nt

which yields Tzn -+ - o , Q.E.D.

The series Za  ~defined in Example 8.82 satisfies

the hypothesis of Theorem 8.72.
According to the following counterexample, we cannot

replace "-o < L ¢ -1" in Theorem 8.72 by "-w < L < 41,

Counterexample 8.73. Set 8, = 1/(n+l) and 34t 1
= -1/(nt3) for n > 0. Then S = 3/2, r = -1, r,, <o -1
<o Topoye Mm (fr, )/ (1tr, ) = -1/2,

+r T a. .
OE2n—1 - 2n “g2n gntr2ndt
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lim (l+r, o )/(l+r, ) = -2, T, = -(2n*3)/(n*1) - -2, and
T2n+1 = (ntl)/(n+2) -+ 1.
According to the following counterexample, we can-
n -] 15— " 3
not replace Ton-q = 1 and 1 <. Ton-1 in Theorem
1 ] n - 1" 3
8.72 by r2n -+ -1 and " -1 <. Ton'o respectively, and
obtain as a conclusion that L = -1, Toneq ™ too, or
Tzn - Ee
Counterexample 8.74. Set a' = a ., for n > O, where

a, 1s defined as in Counterexample 8.73. Accordingly,

L L, ! = - | ——
S /2, r 1, T LT, < L <o) = Ty,

lim (l+r;n)/(l+r‘

2n- ) = -2

1)=1im (Itr, 4 )/ (1

a2n an

lim (1l+zr! )/(l+rén) = lim (l+r

ant1 )/(l+r2n+1) = -1/2,

2nt2

1 = 1 = -
Tzn . Tzn+1 -+ 1, and Tzn—1 . Tzn = =2,

Theorem 8.75. If Zan converges, T -+ -1, -1 <. r__,

an 2n
and 1lim sup (l+r2n+1)/(l+r2n) = L where -«< L < -1,
then Ton-q < -1, some subsequence of {ran—1} con-
verges to -1, L = -1, Tzn-1 -+ -, and Tgn -+ t oo,
Proof: Define al = a4, for n> 0. Then -l
<. 1! =, r r! -+ -1, and

an-1 an’ Tan-q
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)/(l+rén_1) = lim sup (1+r

lim sup (l+r! ant 1)/ (1+T5)

= L < -1. We may apply Theorem 8.72 to Zaé, obtaining

= 1
ant1 © I

I

<. -1, some subsequence of {rén} {r2n+1}

converges t - = ' s nd
g o) 1, T Tan , a Tan

1
ant1 T

an-1

1

+ +o, Q.E.D.

Theorem 8.76. If Zan converges, r = -1, and

lim sup (l+rn+1)/(l+rn) = L where -o< L < -1, then

L = -1, and exactly one of the following statements 1is

true:

(1) Ton <o -l <eor, o Ty, P te, and T2 -
- - o T oo

(2) Tono, <o "l <oz, Tono, ™ , and T, -

Proof: Exactly one of the following statements is true:

(1) rop <oo-1 < Tono g

(11) Tonog <o -1 <o,

Suppose that (i) is true. Then

lim sup (l+r2n)/(l+r ) < lim sup (l+rn+1)/(l+rn)

2Nn-1

< L £ ~-1. From Theorem 8.72, L = -1, Tzn-1 + + o, and

T -+ - .
2n ®

Suppose that (ii) is true. Then

lim sup (1l+r

—-—

)/(l+r2 ) < lim sup (l+rn+1)/(l+rn) < L

ant n

< -1. From Theorem 8.75, L= -1, T, _ = -w, and
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Tzn =+t ., Q.E.D.

Lemma 8.77. If x < -1, 1< B8, and B > x(lty)/(1l+x),
then 1/(1-8) > l+xtxy/(1-B).

Proof: By hypothesis, 1+x < O and 1-8 < 0. Thus,
B(1tx) < x(1l+y), 1 < (1-B)+x(1-B)+xy, and 1/(1-B)
> l+x+xy/(1-B). Q.E.D,

Theorem 8.78. If %a, converges, Ton- -+ -1, rzn_1<. -1
. L N _ _

<. r,., and lim inf (l+r2n)/(l rzn-1) L > -1, then

r= -1, Tzn-1 —+ -0, and Tzn -+ + oo,

Proof: Let « be any number < -1. By hypothesis,
)/ (1+r

a <. (l+r ), a(l+r ) >.1+r__, and

2n 2n-1 2n-1 2n

-1 <. Ton S —l+a(l+rzn_1). Also, lim [-l+a(l+r2

)]

n-1

= -1, so that 1lim r2n = -1. Thus, = -1.

Let B8 be any numpber > 1. From Lemma 8.62,

)

)] = (-1)(L) = -L where

) = (lim

lim sup.rzn_1(l+r2n)/(l+r2n_1 2n-1

[1lim inf (l+r2n)/(l+r2n_1

- . . + + .
0 < -L < 1. Consequently, B > rzn_1(l rzn)/(l rzn_1)

From Lemma 8.77, 1/(1-B) >. o n-1TTan-1Tan

/(1-B).

Defining ﬁzn = 1/(1-B) for n> 1, B_ >. 1+

r
= “an 2nt1

B

+r . . ’ nce
2n+1r2n+2i2n+2 From Theorem 8.27, there is a sequenc



B such that a —+ 0 and 8 . 1+r
{‘2n—1} zn—152n—1 “an-1 2 an
r . W B =+ 0 and .
gnrzn+152n+1 e now have a By n ﬁn >
+r +1 f . . +r r B
g n+1rn+25n+2 From Theorem 8.27, Ton-1 Tan-1%anlan

>. T2n-1‘ Accordingly, 1lim sup (r

+1/(1-B) = B/(1-B) > lim sup T2

) = -1

+7 r B
2n-1 ~2n-1-2n‘2n

no,+ Also, B/(1-8)

+ -« as B =+ 1-, so that lim sup Tzn—T = -o. Thus,

+ - o . Consequently, Tzn =, rzn(l+T

)

an-1 ant

<+ (-1)(l-w) = +». Q.E.D.

Theorem 8.79. If Za ~ converges, Ton ™ -1, Ton <o -1

<. r , lim inf (l+r2n+1)/(l+r

2n- 1 ) =L >-1, then r = -1,

2n

-+ + oo and —-+ -0 ,
Tzn-1 ’ Tgn

Proof: Define al = A+, for n > 0. Then rh = Tt
Thus, rén_1 < -1 < rén, rén_1 =+ -1, and

lim inf (l+rén)/(l+rén_1) = lim inf (l+r2n+1)/(l+r2n) = L.
Applying Theorem 8.78 to Zaé, Tont, rén -+ -1, T2n+1

= Tyn o te, and T, =0T s - QUE.D.

Theorem 8.80. If La, converges, 1 = -1, (l+rn)(l+rn+1)

<. O, and 1lim inf (l+rn+1)/(l+rn) > -1, then exactly

one of the following statements is true:
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(l) r <b "l <- r

o, T -+ -0, and T _—+to,
2n-1 z2n 2n-1 2

n

(2) Ton <. -1 <. L Tzn—1 + +w, and T, +-w.

Proof: Exactly one of the following statements 1s true:

(l) l‘zn_1 <- "'l <u l‘zn.

(i1) ro, <o -1 <. L

Suppose that (i) is true. By hypothesis,

-1 < lim inf (l+rn+1)/(l+rn) < lim inf (l+r2n)/(l+r2 ).

n-1

From Theorem 8.78, Tzn—1 -+ -~ and Tzn -+ 4o .

Suppose that (ii) is true. Then
)‘

-1 < lim inf (l+r )/(l+rn) < lim inf (l+r2n+1)/(l+r

nt1 2n
From Theorem 8.79, Tzn—1 -+ + o and Tzn -+ -, Q.E.D.
Theorem 8.81. If Ya,  converges, T = -1, and
lim (l+rn+1)/(l+rn) = L where -o < L<+tw and L 7# 1,

then L = -1, and exactly one of the following statements

is true:
(1) Tonoy <o =l <oy, T, o+ -2, and T, = +te.
(2) Ton <o -l <o T, e, and T o -

Proof: From Theorem 8.68, L = -1 and (l+rn)(l+rn+1)<~0-

Now apply Theorem 8.76 or Theorem 8.80. Q.E.D.

If Zan is a series satisfying the hypothesis of

Theorem 8.68 with L = 1, according to Theorem 8.64,Zan
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converges and T _ -~ -1/2. With L = -1, La, may or may

not converge, as is shown in the following two examples.
Consequently, we cannot replace the requirement in The-

orem 8.8l that 2a ~ converge by the condition that

a_ —+ 0,
n

Example 8.82. Set 8,4 = 1/(n*+2) and

a2n+1

= l/(n+2)3/2 - 1/(n*2) for n > 0. Then a_ —+ O and,

for n = l/(n+2)3/2. Thus,

v

+
0, 92n a2n+1

S = % l/(n+2)3/2 = z(3/2) - 1, where =z(s) = § 1/n%,

s > 1, 1s the Riemann zeta function. It can be verified

that r© = -1, (l+rn+1)/(l+rn) ~+ -1, and r, < -1

Tyn-, for n > 1. Thus, Za, 1s a convergent series

satisfying the hypothesis of Theorem 8.68 with L = -1.

From Theorem 8.81, Tzn -+ - and Tzn—1 -+ + oo,

Example 8.83. Set a, = 1/(n+1)1/2 and

a2n+1
= [1-(n+2)"2]/[(n+1) (n+2)]"2 for n > 0. We have
= /[ (n+1) (n+2) "3

— +
a, O and, for n > O, CH YR

> 1/(n+2). Thus fa  diverges. Also, r = -1 and

(l+rn+1)/(l+rn) =+ ~1. Consequently, the hypothesis of

Theorem 8.68 is satisfied by the given divergent series
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where L = -1. Moreover, we see that the requirement in

Theorem 8.81 that Zan converge cannot be replaced by

the condition that a, 0.

Theorem 8.84. If Zan is an N-alternating series,

a,* 0, and 1/2  I+r +r r .. /2 for n >N, then,

for n> N, -1« T -1/2 < r tr T

0,72 < T < /2, and

]anf/2 < IS-S ] < [an_1[/2. If, in addition, r = -1,

n-=1

-1/2.

f

then T_ - r/{1l-r)

I

l+rn+rnrn+1/2 for n > N, we have
-1/2 < rn+rnrn+1/2; For n > N, we use Theorem 8.3 with

. = 1/2 to obtain -1/2 < r *

n Frore,/2 < T <r/2 and

-1 <r . For n>»N, -1/2 ¢ T, < rn/2 < 0, from which

n

Iz 172 < It ] < /2 and fa_|/2 < |s-s .| <la,_,1/2.

Suppose that r_ = -1 for some integer m > N. Assume that
n 1is any integer > m such that r_ = -1. Then

1/2 & M bror /2 = -r 4. /2 and r . < -1. Consequent-
1y, ’rn+1= -1 since -1 < rn+1. By induction, r, = -1
for n > m which contradicts a, » 0. Thus, -1 <1,

for n > N. 1If, in addition, r = -1, +then from

-1/2 <. T, < rn/2 -+ -1/2, we have lim T, = -1/2. Q.E.D.
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Corollary 8.85. If Zan is an N-alternating series,

a - 0, and T+ < T for n > N, then, for n > N,

-1 <, -1/2 <1 +rnrn+1/2 <T, & rn/2, and

n

la /2 < Is-s .| < la _. 1/2. 1f, in addition, 1 = -1,

n-1

then T_ - r/(1-r) = 1/2.

Proof: The inequality 1/2 < 1+x+x?®/2 holds for all

real x. Consequently, since r <r <0 for n >N,

nt1 n

i 2
it follows that 1/2 < l+r +r2/2 < l4r +r r , /2 for

n > N. Now apply Theorem 8.84. Q.E.D.

Corollary 8.86. If Zan is an N-alternating series,

a_ =+ 0, and A?|a

n [ >0 for n >N, then, for n > N,

n-1

-l<r, -l/2¢<r +rnrn+1/2 <T, < r/2, and (ah{/Q

n

< Is-s_ ] < a

noq! £ n_1[/2. If, in addition, 1 = -1, then

T, - r/(l-t) = -1/2.

Proof: Let n > N. Then l+rn+rnrn+1/2—l/2

]

(#2r v e L )/2 = (1-2]a | /la,_ I*lag, /15, 1)/2

il

(fa,_,1-2la I+la  1)/2la | = (a%]a _,1)/2]a _,] > O,
and thus 1/2 < l+rn+rnrn+1/2. We now apply Theorem 8.84.

Q.E.D.
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Calabrese (10, p.215-217) appears to be the first
to publish a result similar to our Corollary 8.86. 1In
o0
particular, he states that if DEN is a convergent al-
1
ternating series, [an[-[an+1| > [an+1[-[an+2[, i.e.,
Azlan[ > 0 for al n, and [ak[ < 2e for some integer
k, then [sS -S| < e. His proof is incorrect since he

uses the fact that in '"every' convergent alternating se-

ries the sum S must lie between any two successive sums
Sn_1 and Sn'

It would be very convenient if the conditions
a,+0 and r = -1c<. r, implied that T - f(1-1)
= -1/2, but the following counterexample shows that this

is not the case.

Counterexample 8.87. Let 'S'= aé+a;+aé+'~- be any al-

ternating series such that ag <+ 0 and 1r' = -1K r$+1

' t - = 1

<1l < 1/2 for n > 1. For n > 1, set LI o
= 14 3 = 1

and 1 2(l+r2n_1). Define a_ al and

a, = a T, T T for n > 1. It can be verified that

Za is a convergent alternating series such that

r=-1<r,  for n> 1. Defining Ban = 2Tope, Tfor

-1+
Irr r2n+4 “ant2

-1 4
2n ant2 > -1

1

n> 1, we have 38



)/ (1+ ) for

)

for n > 1. Also, = (1+

T T
ant1 ant

/(1-8

an r2n+2

- = +
n> 1, so that 1/(1 gzn) T Tants

> ltr /{1-8 ) for n > 1. Consequently,

+r r
antq “2anti 2nte “antz =

it can be seen that 1/(1-B, ) > 14T i.e.,

antq’ T2n+1

< Szn/(l-an) for n> 1. For n>1, -2 <B

= Tonas (WTanep)/ (#7040 ),  from which 1/3 < ltr, o,

/3. Consequently, 1/3 < 14T for n > 1,

+r
2n+1r2n+2 2nt

and thus =-2/3 < T < an/(l—g ) for n > 1. Since

ant1 an -

B/ (1-Byn) = -2/3, T . = -2/3 and T, (1+T )

i
H

2n 2ntq

~+ -1/3. An example of such a series Xa! 1is 1/3-1/5%

+ 1/7=1/9+++ = 1-1/4.

Theorem 8.88. Let Zanbe a convergent series and n be

any positive integer such that r, < O. Then we either

have

(1) T4, < rn/(l—rn), Toty < T and rn/(l_rn)'< T
(2) Toe, =1 /(l-x)), T, =Ty, and z/(l-r)) =T,
or

(3) T 44 >-rn/(l~rn), Ty > T and rn/(l—rn) > T,
Proof: Since T = rn(l+Tn+1) and Tn+1 = Tn/rn -1,

the following inequalities are equivalent:
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T4, < T /(-1 ), Tt 1 Tnlnt < T Thg < r (14T 4. )

Tn+1 <Tps Tn/rn_l < Tn’ Thth ? N ThThln 2 Tpe

T, > rn/(l—rn), rn/(l-rn) < T .

n Consequently, the in-

equalities in (1) are equivalent. Similarly, the equa-
lities in (2) are equivalent and the inequalities in (3)

are equivalent. Q,E.D.

Theorem 8.89. Let Zan be an N-alternating series.

Then the following three conditions are equivalent:

(1) Toe, ST 2N,

(2) Tn+1 < rn/(l'r )’ n > N,

(3) rn/(l-rn) < T, n2N

Moreover, if (1), (2), or (3) holds, then
(4)  rpp, <Tpeon 2N,

and

Proof: According to Theorem 8.88, i1f eguality holds in
(1), (2), or (3), it also holds in the other two, and like—
wise for inequality. Thus, (1), (2), and {(3) are equiva-
lent.

Assume that (1), (2), or (3) holds, and let n be

any integer > N. From (3) and (2), r /(l—rn+ ) LT

nt1 1

< rn/(l—rn). Then rn+1(l—r ) <r (l—rn+1) and

n n
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T <r_ , i.e., (4) holds. Finally, since

nt n

rn+1/(l-rn+1) SThe, = Tn/rn-l, we have Tn/rn > 1

trop/(l-r 4y ) = 1/(l-r 4 ) and T < /(l-r . ). Q.E.D.

Theorem 8.90, Let Zan be an N-alternating series. Then

a n.a.s.c. that Tn+1 < Tn for n > N is that

(0) a0,

and there exist a sequence {5n} such that

(1) a8, ~ 0,

(2) 5n 2 l+rn+1+rn+1rn+2?’n+2’ n2 N,
and
(3) Tt e TneaPes £ TPy n 2 N

Moreover, if (0), (1), (2), and (3) hold, then for n> N,

(4) T4, < /(l-v) <T <t /(l-v4,)

) S By £ rpey/Tn(lor).

Proof: For the necessity, define § = I+T .., n > N.
Then a B = a*a T . = an+(S-Sn) - 0. Also, (B = 4T .,
e T T (T ) = 1 P70 TheaPrey 0T

= l+r
n

n >N, so that (2) holds with equality. Moreover,

+ = = + =
rn+1 rn+1rn+2Bn+2 Tn+1 < Tn rn(l Tn+1) rngn for
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n>N, i.e., (3) holds.
For the sufficiency, according to (a) of Theorem

8.27 and (3) of the present theorem, we have T < T

nt1 = “nt1

+rn+1rn+2'8n+2<r Bn <7 for n >N, so that Tn+1 <t

= n n n

for n > N. Theorem 8.89 implies (4) of the present the-

orem. We now have rn+1/(l-rn+

) < Ther £ rnﬁn <ty

1 1

< rn/(l—rn+1) for n > N, from which (5) of the present

theorem is immediate. Q.E.D.

Theorem 8.91. Llet Zan be an N-alternating series. Then

a n.a.s.c. that Tn+1 < Tn for n > N 1is that

(0)  a -0,

and there exist a sequence {ﬁn} such that
(1) a8~ 0,

(2) 8. > Itr 4 fr

n n+1Tnta nta’

(3) By < /(1-r ), n > N.

Moreover, if (0), (1), (2), and (3) hold, then, for n > N,

v

(4) T B

<r/(l"r)§r?’ Pt

+
nti1 = "n n nn < Tn £r

rr
n nnt1
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Proof: Define By = WT 4, for n > N. As in the proof

of the necessity of Theorem 8.90, conditions (0), (1), and
(2) hold. Using Theorem 8.89, f = 4T , < l+r /(l-r )

= l/(l—rn), n >N, so that (3) holds.

For the sufficiency, assume that (0), (1), (2), and

(3) hold. Using (3), we have for n > N, (l—rn)Bn <1,

Bn -rB <1, and Bn—l < ran. Consequently, from (2),

Tt ThtePrtg £ By~ < v B, for n > N. From Theorem

8.90, we obtain, for n > N, T T < rn/(l—rn),

nt1

and l/(l—rn+1) < Bn. From (3), for n > N, we have

)

nt1

rn/(l—rn) <rBy and ro4rr B < rptroro, /(l-r

= rn/(l_rn+1). Applying (a) of Theorem 8.27, ran < T,

< rn+rnrn+1[3n+1 for n > N. Q.E.D.

Theorem 8.92, If Zan is an N-alternating series, then a

n.a.s.c. that Tn+ < Tn for n > N is that

1
(0) a. —~ 0,

and there exist a sequence {pn} such that, for n > N,

(1) 1/ (1-p) > Mr v oo /(1-py )

Moreover, if (0), (1), and (2) hold, then for n > N,
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(3) T < /(l-r ) <r /(l-p)) T

)

n+1

+rnrn+1/(l_pn+1) < rn/(l'rn’l-

(4) Toty £ Ppe

Proof: For the necessity, there is a sequence {Bn}

satisfying (1), (2), (3), and (5) of Theorem 8.91. De-

fining p, = l-l/Bn for n > N, we easily verify that
p, < T, for n > N. Also, for n > N, Bn = l/(l—pn),

so that (2) of Theorem 8.91 reduces to (1) above.

For the sufficiency, define f = l/(l-pn) for

n > N. Condition (1) above thus yields (2) of Theorem

8.91. From (2) and r, <0 for n>N, we have
0 < l/(l—pn) = Bn < l/(l-rn)‘<l for n > N, and thus

a B, —» 0, i.e., (1) and (3) of Theorem 8.91 hold.

Fihally,’(é) and (4) above follow respectively from (4)

and (5) of Theorem 8.91. Q.E.D.

Theorem 8.93. Let Zan be an N-alternating series. Then

< T for n > N 1is that

a n.a.s.c. that Tn+1 <1, 2

(0) a_ -+ 0,

and there exist a sequence {an} such that
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(1) aa -+ 0,

(2) o < l+rn+1+rn+1rn+zan+2’ n 2 N*L,
and

(3) ry/ T4, (l-t)) < @ 4,0 02N

Moreover, if (0), (1), (2), and (3) hold, then for

n > N,

(4) Tn+1 < nt1%+1 S rn/(l_rn) < rn+rnrn+1an+1§ Tn
< rn/(l rn+1)

and

(D) a4, < l/(l—rn+1).

Proof: For the necessity, define < = l+Tn+1, n > N
Then a a = ata T 4, = an+(S-Sn) + 0. Also, a =1
+ = i =

Tn+1 l+rn+1+rn+1rn+2(l+Tn+3) l+rn+1+rn+1rn+2an+2

for n > N so that (2) holds with equality. Moreover,

+ = = 1+
(1 Tn+2) Tn+1 < Tn Tt T, e for

nt1%n+ 1 - Tnt
n > N, from which (3) is immediate.

For the sufflciency,.deflne ay = l+rN+1

+r From (3), r

N+ IN+2 ONt g

tr Th+4%4+, for n > N. From (a) of Theorem 8.3,

T for n > N. From

+
Tn+1 < rn+1(xn+1 < Tn rnrn+1an+1 < n =

(5) of Theorem 8.89, T, < rn/(l—rn+1) for n > N.
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Consequently, (4) holds. (%) is a consequence of (4).
QOEOD.

r are any real numbers

Lemma 8.94. If r, T Ntz

nt1’
such that (l-rn)(l-rn+2) # 0, then

)-l/(l—rn) = r

)1

Mr g oo /(1-r #,/ (Lerpy )2 /(1-r )

ntza n

= (Arn+rnArn+1)/[(l—rn)(l—rn+2

Proof: We have l+rn+1+rn+1rn+2/(l-rn+2)—l/(l—rn)

= [l-l/(l—rn)]+rn+1[l+rn+z/(l-r )] = —rn/(l-rn)

ntg

+rn+1/(l'rn+2) =[x (l-rn)—rn(l—rn+2)]/(l-rn)(l—rn+2)

n+ 1

= [(rn+1'rn)+rn(rn+2‘rn+1)]/(l'rn) (l’rn+2)

1

[Arn+rdﬂrn+1]/(l~rn)(l—rn+2). Q.E.D.

r r are any real numbers,

n’ nt1’ "nt2

then the following inequalities are equivalent:

)

(1) l/(l_rn) 2 l+rn+1_+rn+1rn+2/(l-rn+2

(2)  r/(l-r) > v, /(1-r )

(3) 0> [Arn+rdérn+1]/[(l—rn) (1-r 4501

Proof: The quivalence follows immediately from Lemma

8.94. Q.E.D.

Theorem 8.96. If Zan is an N-alternating series, an—+0,
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and T +1»/(l-r

n ) £ rn/(l-rn) for n > N, then, for

ntg

n >N, (1) Ar S 0 and (2) T4, < rn+1/(l-rn+2)

<r /(l-r ) < T X< r /(1-T 4,)-

n

i

lst Proof: Defining B8 l/(l—rn) for n > N, we see

that 0 < B <1 for n >N and thus af -+ O. From
(1) and (2) of Lemma 8.95, 8 > l+r , . +r .. r...B 4, for

n > N. From (4) of Theorem 8.91, (2) of the present theo-

rem holds. (1) follows from (2). We could also obtain

(1) from (4) of Theorem 8.89. Q.E.D.

2nd Proof: Define p_ =1 for n> N. From (1) and (2)
of Lemma 8.95, 1/(1-p ) > l+r_, +r_ . v . /(l-p 4, ) for

n > N. Now apply Theorem 8.92 and Theorem 8.89. Q}E.D.

Theorem 8.97. If Ta is an N-alternating series,

a_ —+ 0, and Arn+rnArn+1 <0 for n >N, then, for

< +1/(l—r

nt1 = "n ) < rn/(l-rn)

ntz2

Propf: If n > N, then Arn+rnArn+ < 0, (l—rn)(l—rn+2)

1

> 0, and (Ar +rnArn+1)/(l-rn)(l—rn+2) < 0. Thus from

n

Lemma 8.95, 1 +1/(l—r

n ) < r /(l-r ). We now apply

nt+2

Theorem 8.96. Q.E.D.
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Theorem 8.98. If Zan is an N-alternating series and

rn/(l—rn) <T & rn/(l-rn+1) for n > N, then

(1) 0 < (_1)“an/(1-rn+1) < (-1)"(s-s

IN
Ve
i
P
N
>
[}
o
\
Py
P
!
=
o}
>
\Y%
=

or

(2)  (-1)%/(1-r)) < (-1)"(s-5__)

I

(—l)nan/(l—rn+1) < 0, n>N,

according as 3y 7 0 or az, < O, respectively.

Proof: Multiplying the inequality rn/(l—rn) <T,
< rn/(l—rn+1) throughout by lan_1],
la .| a la 1 la_, |
an : l-; < an~1 (S_Sn-1) N an : l-rn <0,
n-1 n n-1 n-1 nt1

and this reduces to (1) if a >. 0, or (2) if

2, <. 0. Q.E.D.

Theorem 8,99. If Zan is an N-alternating series such

that a, 0 and Arn < Arn+1 for n > N, then, for

n > N, Arn < 0, Arn+rnArn+1 <0, and T_,,

< rn+1/(l—rn+2) < rn/(l—rn) < T. < rn/(l—rn+1).

Proof: We first show that Ar < O for n > N. In par-

ticular, assume that O < Arm for some m > N. Then
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Ar < Ar  for n > m, and thus r ., = r ¥Ar ¥Ar . tee-

+ Arm+k—1 >r * k&rm —“+o0 as k-—+; hence rnﬂwn.This contra-

m
dicts an-rO, so that Ar <0, i.e., rn+1§rh<0 for n>N.

Consequently, =1 < T for n > N, since a, ~* 0. There-

fore, Ar +r Ar . <Abr g trAr o= (l+rn)Arn+T < 0 for

1

n > N. We may now apply Theorem 8.97. Q.E.D.

—

Theorem 8.100. Suppose that RET is a series such that

a, O, and that f 1is a function and N 1is a positive

integer such that:
(1) f(x) < 0 for N < x,

(2) f' is increasing on [N, ® ), or f"(x) > O

Then, for n > N, Ar < Ar ,

< rn/(l—r ) < T, < rn/(l-r

n n+1)'

Proof: Let n be any integer > N. By the Mean Value
Theorem for derivatives there exist wu,v such that

n < u:< ntl < v < nt2 and Ar = f(ntl)-f(n)

= £'(u)[(nt1)-n] = £'(u) < £'(v) = £'(v)[(nt2)-(nt1)]

= f(nt2)-f(n+l) = Ar_i,. We now apply Theorem 8.99 to com-

plete the proof. Q.E.D.
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We now illustrate Theorem 8.100 with some examples.

Example 8.101. 1n 2 = 1-1/2+1/3-1/4++++ . Here

a, = (-1)"/(n+1) for n 20, r 7 an/an_1 = -n/(ntl) for

n>1, and we set f(x) = -x/(xt1) for x> N = 1.
Accordingly, for 1 < x, we have f(x) < 0, f'(x)
= -1/(x+1)®, and f"(x) = 2/(x+1)3 > 0. Thus

, for n > 1, and Theorem 8.100 is applic-

Arn < Arn+1 >

able with N = 1. (1) of Theorem 8.98 reduces to
(n+2)/(nt1)(2n*+3) < 1/(nt1)-1/(nt2)+1/(n*+3)-1/(n+4)+---

= (-1)7(s-s__ ) < 1/(2n%1) for n > 1.

Example 8.102. w/4 = 1-1/3+1/5-1/7++++ . Here

a, = (-1)%/(2n+1) for n > O, r, = an/an_1 = -(2n-1)(2n+1)

for n 1, and we set f(x) = -(2x-1)(2x+1) for x > N=1l

v

For 1 < x, f(x) < 0, £'(x) = -4/(2x*+1)?, and f"(x)

= 16/(2x+1)® > 0. From Theorem 8.100 and (1) of Theorem
8.98 we obtain, with N = 1, (2n+3)/(2n+1)(4n+4)
(-1)“(s-sn_]) = 1/(2n+1)-1/(2n+3)+1/(2n+5)-1/(2n+7)+. . .

VAN

< 1/4n for n > 1.

Example 8.103. 1n 3/2 = 1/2-1/(2-228)+1/(3:23)-1/(4-2%)+-.. .

Here a = (—l)n/(n+l)2n+1 for n> 0, r_ = a/a

n n” “n-1
= -n/2(n*tl) for n > 1, and we set f(x) = -x/2(x+1)
for x > N = 1. For 1< x, f(x) <0, £f'(x) = -1/2(x+1)%3,
and f"(x) = 1/(x+1)2 > O.
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From Theorem 8.100 and (1) of Theorem 8.98, we have, with

N =1, (n+2)/27(nt1) (3n%5) < (-1)7(S-5_ )

(1/277 Y[ 1/ (n+1) -1/2(n+2)+1/22 (n+3) -1/28 (n+4 )+« - + ]

i

1/2%(3n+2) for n > 1.

Example 8.104. (1-#2)z(1/2) = 1-14/2 + 1AW3 - 1LAW4+- -

Here =z is the Riemann zeta function, a_ = (-1)%/ J/n¥FI
for n >0, r_ = an/an_1 = -#/n/(ntl) for n > 1, and
we set f(x) = - ¥x/(xfI] for x > N= 1. For 1 < x,

we have f(x) < 0, f'(x) = —l/[2x1/2(x+l)3/2], and

" - 3/2 5/2
f"(x) = (4x+1)/[4x (x+1) 1 > 0. We may now use
Theorem 8.100 and (1) of Theorem 8.98, obtaining, with

)

= 1Wn¥l - 1A/nF2 + LA/NF3 - 1A4/MnF4 £ <W/n¥l - W/n

N =1, [(n+2)/(n+1)]’/2Q/E?§ - v?ﬁi)g_(~1)“(s-sn_1

for n > 1.

Example 8.105. 72/12 = 1-1/22+1/32-1/4%+... |, Here

a, = (-1)%/(n+1)2 for n >0, v, = -n?/(n+1)® for

n>1, and we set f(x) = -x®/(x*t1)® for x > N = 1.

For x > 1, f(x) ¢ 0 and f"(x) = 2(2x-1)/{(x+1)%* > O.

Applying Theorem 8.100 and (1) of Theorem 8.98, with

N =1, we have

n+2, 2 1 -2 -2
&) Terays S (T (2)
+ (n+3)72 - (nta) B+ -e. < L

‘ T n2+(n+tl1)?
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for n > 1. We note that f(x) =. -1+2/(x+1)-1/(x+1)%3,

suggesting Theorem 8.107 which follows shortly.

Example 8.106. 142 = 1-1/2+(1+3)/(2°4)-(1-3-5)/(2:4+6)

+(1:3:5.7)/(2.4.6.8)- «++ . Here
a = (-1)°[1-3++-(2n-1)1/[2-4+--(2n)] for n > 1,
a =1, r = ~-(2n-1)/(2n) for n > 1, and we set f(x)

= —(2x-1)/(2x) for x >N =1. For x> 1, £(x) < 0 and

f"(x) = 1/x% > 0. From Theorem 8.100 and (1) of Theorem

8.98 with N = 1,
2nt2 13-+ (2n-1) n
In¥3 T o-a - (2n) < (-1) (S-Sn_1)

for n > 1.

Theorem 8.107. Suppose that Zan is a series such that

a, = 0, r_=. b+bﬂ/n+b2/n2+~--, where b < 0, and the

first non=-zero bk’ if such exists, is positive. Then

Ar <. Ar /(1l-1

and T
n nt1’

i 4, S n+2> <. rn/(l—rn)

_<_s 1‘ is l”n/(l-rn_‘“!).

Proof: If b, = 0 for all k > 0, then T, =. b,

e K

-1 < b <0 since a, 0, and each inequality in the con-

clusion of our theorem holds with equality.
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Suppose on the other hand that bp is the first

non-zero b so that bp > 0 and T, =, b+bp/np

k?

+b /np+?+bp+2/np+2+--' . Setting £(x) = brb /xP

pFi
+ +2 A )
+bp+1/xp 1"?“bpﬁ_g/xp te++, we see that f 1s an analytic

function of 1/x for large x, f(x) <. 0, and f(n)

=. r_ . Differentiating twice, we have fh{x)=. [p(p+l)bp

+(p+l)(p+2)bp+1/x+--~]/xp+2>. 0, since bp > 0. We may

now apply Theorem 8.100. Q.E.D.

Theorem 8.108. Suppose that (1) Zan is an N-alternating

series such that a - 0 and Ar < Ar . for n >N,

(2) Za is a series such that aé -+ 0, and (3) f 1is a

1
n
function such that =r! = -f(|{r_ [), for n >N, and

f1(x) > 0 and £"(x) <0, for |ry| < x. Then, for

n> N, Ar] < Ar]

1
nt 1 and Tn+

S r8+1/(l—rg+2)

<r}/(l-vl) < T! < r!/(1-x', ).

Proof: Let n be any integer > N. As shown in the

oroof of Theorem 8.99, rn+2§§rn+1 < r < 0, 1i.e.,

0 < Irnf < | < |r By the Mean Value Theorem

rn+1 n+2]'

for derivatives there is a u such that



{rn[ < u < [rn+1[ and Ar! = x!. -v! = f([rn[)—f([rn+1[)
= f”(u)([rn[—]rn+1{) = f”(u)(rn+1—rn) = f'{u)Ar Simi-
larly, there is a v such that [rn+1[ < v < [In+2[

and Ar!,, = f’(v)Arn+1. Thus from f'(u) > f'(v) > O

1

and Ar_ < 0, Ar! = f‘(u)Arn < f‘(v)Arn < f‘(v)Arn+a

i

= Arv

ot 1 and Aré < Ar! We may now apply Theorem 8.99

n+1°

to complete the proof. Q.E.D.

Corollary 8.109. If Zan is an N-alternating series such

L
that a, o, Arn _<__Arn+1 for n > N, and Zan is an
N-alternating series such that ]aé[ = ]a | for n > N-1,

where O < p < 1; then, for n > N, Ar’ < Ar! and

Tley Solp /lerl ) <op/(1-p)) <7

Proof: It is obvious that a! = O. Set f(x) = x° for

er{ < x. Then for n > N, r% = —laél/laé_qi
= —]anlp/]an_1lp = —]an/an_1lp = —’rnlp = -f(]rnl). Also
for {rN] < x, £'(x) = pxP7T > 0 and  £M"(x)

= p(p-1)x""® < 0. We now apply Theorem 8.108. Q.E.D.

Example 8.110. (1_21-p)2(p) = 1-1/2P+1/3P-1/4P+. .. |

O <p < 1l. Here 2z 1s the Rieman zeta function and
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al = (-1)/(nt1)? for ny 0. wWith a_ = (-1)"/(n+1)

for n > 0, Example 8.101 and Theorem 8.100 show that

Ar < Ar .. for n > 1. Noting that [aé[ = {an[p for

n > 0, we may apply Corollary 8.109 to obtain

J(l-v', ) < r'/(l-v') < T!' <!/ (1l-1!

for
nt2’ = "n n’ - n-="n n+1)

T Tt
nt1 < n+ 1

n> 1. The case p = 1/2 was previously considered in
Example 8.104, but the above procedure, requiring the
second derivative of -x/(xtl), 1is preferable to

differentiating -x/(1+x)® twice, as was done in Ex-

ample 8.104.

Lemma 8.111. Suppose that f 1is a function and N is a

positive integer such that (1) f(x) > 0, (2) f'(x) > O,

(3) f"(x) < 0, and (4) £'"(x) > C, for N-1 < x. Then

the function g(x) = -f(x-1)/f(x) satisfies the condi-

tions g(x) < 0 and g"(x) > 0, for N < x.

Proof: Let N < x. Clearly g(x) < O and, differenti-
ating twice, g"(x) = {f(x)[f(x-1)"(x)-f(x)f"(x-1)]

+2f 1 (x)[F(x)f (x-1)-f(x-1)f"(x)]}/£3(x). From (2),
f(x-1) < f(x) and thus f£(x-1)f"

)
ing to (3). From (4), f"(x)-f"

}
"(x) > f(x)f"(x) accord-
(x-1) > 0, so that

"

Fx=1)f"(x)-f(x)f"(x-1) > f(x)f!

x)-f(x)£"(x-1)
= f{x)[f"(x)-£f"(x-1)] > 0, since f(x) > 0. From (2),
fx)fr(x-1) > f(x=-1)f*(x-1). From (3), f'(x-1)-f'(x) >0,



170
and thus £ (x)f'(x-1)-f(x-1)f"(x) > f(x~-1)f"(x-1)
~f(x-1)f'"(x) = f(x-1)[f'(x-1)-f'(x)] > 0. The ineqguality

g"(x) > 0 is now evident. Q.E.D.

Theorem 8.112. Suppose that Za, is a series such that

a, ~ O. Suppose that f. is a function and N 1is a po-

sitive integer such that: f(x) > 0, £'(x) > 0, £"(x) <O,

and £'"(x) >0, for N-1< x; and r = -f(n-1)/£(n)

’

for N < n. Then, for n > N, Arn < Arn+1 and-

T <r

pbr S Top,/(Ier ) <x /(1-r ) T

Proof: Define g(x) = -f(x-1V/f(x) for N.< x. Then

T, = g(n) for n > N. Also g(x) < 0 and g"(x) >0

for N < x according to Lemma 8.111. We may now use

Theorem 8.100 to complete the proof. Q.E.D.

Theorem 8.113. Suppose that Ta, is an N-alternating se-
ries such that a, > 0. Suppose that .f 1is a function

and N 1s a positive integer such that: f(x) > O,
f'(x) >0, £"(x) < 0, and £™(x) > 0, for N-1 < x;

and |a_| = 1/f(n) for N-1 < n. Then, for N < n,

ol

Ar < Ar o

n and T ., <r

1 n+1/(l'rn+1) < rn/(l_rn) < Ty

< rn/(l—rn+1).
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Proof: For N<n, r =a/a . = —lan[/[an_1[

= -f(n-1)/f(n). Now apply Theorem 8.112. Q.E.D.
We now apply Theorem 8.113 to some of the series

considered previously.

Example 8.114. 1n 2 = 1-1/2+1/3-1/4++++ . We have

a = (—l)n(n+l), for n > 0, and we set f(x) = xt1,

for x > O. Clearly, [an[ = 1/f(n) for 0 < n. For
0<%, £(x) >0, f'(x) = 1> 0, f"(x) = 0< 0, and
ft"(x) = 0 > 0. Theorem 8.113 is now applicable with

N = 1. This series was previously treated in Example

8.101.

Example 8.115. w/4 = 1-1/3+1/5-1/7++++ (see Example

8.102). We have a, = (-1)"/(2nt1), for n > 0, and

we set f(x) = 2x+1, for x > 0, so that {an[ = 1/f(n),

for n > 0. If x> 0, then f£(x) > 0, £'(x) =2>0,
f"(x) = 0< 0, and f'"(x) = 0. We may now apply The-

orem 8.113 with N = 1.

n+1

= (-1)"/(n+1)2 for

Example 8.116. 1n 3/2 = Ra s a,

n > 0. Setting f(x) = (x+l)2X+1, for x > 0, we find
U (x) = 2X+1[2+(x+l)ln 2]1ln 2 > 0, for x > 0, so that

Theorem 8.113 is not applicable.  In Example 8.103, Theo-

rem 8.100 was shown to be applicable.



Example 8.117. (1-2'"P) z (p) = %a_; a =(-1)"(n*1)P,

for n > 0, where 0 < p< 1. Setting f(x) = (x+1)P,
for x> 0, |a | = /f(n) for n > 0. For x > O,

f(x) > 0, f'(x) = p(X'*‘l)p“1 > 0, f"(x) = p(p—l)(x-*'l)p"2

<0, and f'"(x) = p(p-1)(p-2)(x*+1)P™% > 0. Theorem
8.113 is thus applicable with N = 1. This series was

also considered in Example 8.110.

The function f in Theorem 8.113 satisfies the con-
dition
(A) f(x) o as x —+o, f'(x) >. 0, f"(x) <. O,

£ (x) > O.
We now prove that if f and g are functions satisfying
condition (A), then so does the composite function h

where h(x) = f(g(x)). This will allow us to build up, or

easily recognize, a wide variety of series ra, for which

Theorem 8.113 is applicable.

Theorem 8.118. If f and g are functions which satisfy

condition (A), then the composite function h = feg also

satisfies condition (A).

Proof: Clearly h(x) =, f(g(x)) => as x +x. Also
h'(x) =. f'(g(x))-g;(x) >. 0 since g(x) =+® as x —=+«,
f'(x) >. 0, and g'(x) >. 0. Moreover, h"(x)

=, f"(g(x))[g'(x)]28+f'(g(x))-g"(x) <. O 1is quite evident.
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Finally, h"'(x) =. £" (g(x)) [g'(x)]3+f"(g(x))-2g"(x)g"(x)
T £"(g(x))g' (x)g"(x)+£'(g(x)).g" (x) >. 0. Q.E.D.

Corollary 8.119. Suppose that f and g are functions

satisfying condition (A), and that Za, 1is a series for
. _ n
which a_=. (-1)"/f(g(n)). Then Ar, <. Ar ., and

rn+1/(l—rn+2) <- rn/(l_rn) <- Tn <- rn/(l'rn+T);
Proof: Defining h(x) =. f(g(x)), h  satisfies condition
(A), according to Theorem 8.118. Thus f(x) >. 0 and

lan{ =. 1/h(n) -+ 0. We may now apply Theorem 8.113.

Q.E.D.

Theorem 8.120. Suppose that Zan is an N-alternating

series a =+ 0 and r +tr Ar
’ ’ A n nA nt

n < 0 for n > N. Let

1

Zaé be the power series defined by a' = a Xn+p where

n n ’
p is some fixed real number. Then, for 0 < x < 1 and

)

n 2 N, ArpFriAr), . <0 end T!p, <zl /(1-x),

< r%(l-ré) < Tg < ré/(l-r5+1).

Proof: Let x be any number satisfying 0 < x < 1 and

ktp

n be any integer > Nv <Clearly, ai = apx -+ 0 as

k ==. From Theorem 8.97, Ar ., £ 0 so that

1

- ntp n-1+p _
t = =
A Thus T a X /an_1x XT_,

2
X
rhr o, < xr AT, n
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t = 1 - t = - = '+ 1 1

Arn RIS XT 4 =XT, xﬁrn, and Arn rnArn+1

= +x?3 + = + 0.
xAr +x*r Ar .. & xAr txr Ar .. x(Ar tr Ar ) <

Now apply Theorem 8.97 to Zaé. Q.E.D.

Theorem 8.121. Suppose that Zan is an N-alternating

i —
series, a, Q, and Arn < Arn+1 for n

v
2
g
®
‘_*.

. . + .
Zaé be the series defined by aé = anxn P where p 1s

some fixed real number. Then, for 0 < x <1 and n > N,

Ar' < Ar! and T!

n n+1 nt £ r5+1/(l-r' ) < op/(l-x)) < T

L ré/(l-r$+1).

Proof: Let x be any number satisfying O < x < 1 and

n be any integer > N. Clearly, a& -+ 0 as k —owo.

Also, Aré = xArn < xArn+ = Ar5+1. We now apply Theorem

1

8.99 to Zah. Q.E.D.

Example 8.122. 1n (1l+x) = x-x8/2+x3/3-x%/4 ++*+ |

. +
0 < x < 1. We have a, = (-1)"/(n+1) and a) = anxn !

for n > 0. As shown in Example 8.101 or 8.114,

Ar < Ar

n for n > 1, so that Theorem 8.121 is

nt1

applicable to Zaé, where N = p = 1,
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CHAPTER IX
SUMMARY

In Chapter I, definitions and notations are in-

troduced. In particular, the quantities Tn are de-

fined by the equation T, = (s-5__,)/a if Tag

n-1 n-1’
converges to S and n 1is any integer such that

CH # 0. Various algebraic properties of Tn are proven.

A geometricgl interpretation of Aitken's &%2-process is
given, and several formulas are set forth, each of which
yields this method of acceleration. Also, the notion of
"transform sequence is introduced to set up a unifying
framework for investigating various methods of accelera-
tion.

In Chapter II, the convergence of {Tn} is treated
and corresponding n.a.s.c. for Ta € MR(Zan) are proven,

Divergence theorems are proven, which are used to prove

that if za,  and Zaén are convergent complex series,
then S = 56' This fact was first published by Lubkin

(17, p. 230) for real series. We are then led in a natu-
ral manner to some theorems on rapidity of convergence.

In Chapter III, n.a.s.c for Ta € MR(Zan) are

n
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established. It is shown that any sequence {a_} such
that 2a__ & MR(Za ) determines all such sequences {B,}

by the simple condition B _ ~a_ . This 1s then used,

along with algebraic properties of Tn’ to prove that

Sa, e MR(Zan) if and only if Tn+1_Tn -+ 0. With the

on

added condition Irnl <. p <1, it is proven that

Ta, € MR(Zan) if and only if r

5n -T, -+ 0. It is also

nt1

proven that if |[r [ <. p <1 and r , -t =+ 0, then

nt1
Lubkin's W transformation and a slight variant of the
W transformation may be used for accelerating the conver-
gence of Zan. The relationship between the 32 -process:
and the W transformation, as concerns acceleration, 1is

shown under the restriction a&n/an -+ 0; 1in particular,

a&n/an ~+ 0 implies that Zay € MR(Zan) if, and only if,

o)

r ).

Ya. € MR(Zan), where a  =. (1-r n-1Tn

an 1)/(l—2rn+r

n-
The application of the 82-process to power series is also
considered.

In Chapter IV, rapidity of convergence is again
considered. Methods for accelerating convergence published
by various authors, previously cited, are extended to com-
plex series. In extending Lubkin's Theorems 8 and 9 (17,
p. 232-233), it is shown that part of each hypotheses may
be omitted. Pflanz (18, p. 25) established this fact for
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the former theorem where Zan 1s real.

If Zag is a convergent series such that
| =+ 1, the application of Aitken's 32 .process becomes
critical. In particular, that part of Lubkin's Theorem
6 (17, p. 231) concerning acceleration is shown to have

no application if r, 1. Similarly, that part of his

Theorem 7 (17, p. 232) concerning acceleration is proven
to be vacuous. The letter "¢c"™ in Theorem 7 is in error
and should be replaced by *Q". At this point, one
wonders if the d%-process is ever practicable if
\rn§ -+ 1. The answer 1s in the affirmative, as is shown
by Theorem 4.17,. Theorem 4.20,and the discussion fol-
lowing the former theorem. Theorems on the acceleration
of power series are also established.

Kummer's criterion, known to be sufficient for the

convergence of a series Zay of positive terms, 1is

proven to also be necessary in Chapter V. The necessity
was first published by Shanks (24, p. 340). The criterion
is that there exists a sequence {Bn} and a positive
number ¢ such that Bn > 0, for n > 0, and Bn > cC
+rn+ﬁBn+1 for n > 1. It is proven in this paper that
”Bn > 0" can be replaced by any one of the conditions

”Bn > on, ”{anﬁn} converges', or '"some subsequence of

{a B} 1is bounded below". Proofs of the sufficiency of
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the comparison test, ratio comparison test, root test,
ratio test, and Raabe}s test, are given by exhibiting a

sequence {Bn} such that Bn >. 0 and Bn >. l+rn+1Bn+1'

At the end of Chapter V, a method for applyihg the pre-
viously developed error analysis is indicated by one
example.

Chapter VI gives the analogues of some of ‘the the-
orems of Chapter V for real series, and Chapter VII does
likewise for complex series.

In Chapter VIII, theorems, similar to Kummer's
criterion for the convergence of series of positive terms,
stating n.a.s.c. for an alternating series to converge are
proven. Some of these theorems lead to fairly shazrp
bounds for the quantities Tn. In many such theorems, it
is proven that all inequalities, excluding those between
indices, may be reversed. Calling any such theorem and
the derived theorem duals, we encounter a duality struc-
ture, which unhappily fails in at least one case.

The theory of alternating series in this paper re-
sulted from an initial study of Aitken's d®-process in
the critical case r_  — -1. Lubkin's Theorem 5 (17, p.

n

231) states that if Zag is a real convergent series,

r = -1, and (l+r

qb,)/(1Fr ) =+ 1, then za, & MR(Za_).

Generalizations of this theorem are proven; one involves
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lim inf (l+rn+1)/(l+rn) —+ 1, while another involves

lim sup (l+rn+1)/(l+rn) = 1. Another theorem along this
line involves the inequality 1/2 <. l+r . +r ..r ../2,

actually the first theorem discovered by the author. A
detailed analysis of bounds for Tn is considered
throughout, which immediately yield bounds for S-Sn_1.
Calabrese (10, p. 216) appears to be the only one to
publish any result along the lines developed in our chap-
ter on alternating series. His theorem is true, but the
proof which he gives contains an error. The final part

of Chapter VIII is devoted to finding simple tests for

applying the developed error bounds for Tn
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