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A landslide inventory, statistical analyses and a Geographic Information System 

(GIS) are used to analyze landslide sites and potentially unstable terrain in the 

Oregon Coast Range.  The objectives are to evaluate the efficacy of locating 

landslide sites with topographic variables and discriminate the difference between 

sites where landslides have and have not occurred.  The population of known 

landslides are characterized as up-slope, non-road related, and associated with 1996 

storm events.  Topographic variables are derived from a Digital Elevation Model 

(DEM) for index construction forming six groups; i) slopes, ii) contributing areas, 

iii) ratios of slope and contributing area, iv) curvature v) infinite slope models, and 

vi) functions of slope and contributing area based on statistical models.  Index 

groups employ different algorithms.  Index performance is measured with landslide 

and aerial densities.  Cumulative landslide occurrence is plotted against cumulative 

area on a continuous domain of the index to locate a maximum landslide density on 

equal size areas.  Indices are used to generate model definitions of potentially 

unstable terrain based on similarity to the landslide population.  Aerial densities of 

potentially unstable terrain based on index definitions are determined but no 

common metric is achieved.  Statistical analyses on spatially stratified data suggest 

a significant (α < 0.05) difference between landslides sites and adjoined terrain.  

 



 

The minimum resolution at which a significant difference is achieved based on 

spatial stratification is a three cell radius surrounding the slide population.  

Curvature and area discriminate better than simple slope and topographic ratios.  

The relative performance is mostly a function of DEM error and resolution, and 

spatial correlation.  Hydrologic geomorphic models perform about as well as the 

topographic ratios, and much less than the simple area index.  There is no statistical 

evidence to suggest that the hydrologic geomorphic models accurately describe a 

threshold in the Mapleton slide population.  The lack of significance is likely due to 

limitations on the available parameter sets.  Logistic regression produced an index 

with the highest discrimination performance due to a maximum likelihood 

algorithm.  Regression models have a physical basis in and parallel the behavior of 

linked hydrologic geomorphic and slope stability models. The measured 

differences in performance are a useful assessment of the DEM – index 

combination. 
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Discriminating between Landslide Sites and Potentially Unstable Terrain using 

Topographic Indices 

 

 

 

1.0 Introduction 
 

Mass wasting is the dominant process accounting for most of the total sediment 

moving through Coast Range watersheds [Dietrich and Dunne, 1978; Swanson et 

al. 1982].  Landslides are a natural phenomenon resulting from the dynamic 

equilibrium between slope forming process and the surrounding environment.  The 

effects of changes in the forest environment are likely to impact landslide 

occurrence.  The physical causes are changes in vegetation and hydrology above 

and below ground, with interaction between the two.  It is generally perceived that 

landslides occur due to rainfall events that cause a reduction in the soil strength.  

This loss of soil strength produces the largest change in the overall strength 

equation.  Tree roots are usually considered to add cohesive strength to the soil.  

Loss of soil strength due to a rainfall is much larger than the contribution by tree 

roots.  A portion of the landscape exists near failure during a rainfall and is 

characterized as potentially unstable.  Therefore, an important question that arises 

is when and where will forestry impact the subsurface hydrology and soil strength 

enough to tip the balance toward a landslide?  Further, when and where are forest 

management activities likely to cause change that exceeds natural forest dynamics?  

This thesis makes use of an inventory of non-road related landslides.  Of the main 

forestry activities, roads are generally considered to have the greatest ability to 

impact landslide occurrence and vegetation the least impact.  Thus, the landslide 

inventory used here contains the subtlest of forestry impacts.  The subject of this 

thesis is to develop a process for locating potentially unstable terrain and until this 
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terrain can be delineated and mapped satisfactorily, impacts due to forestry related 

activities cannot be discriminated. 

 

Many attempts have been made to document the effects of forest management on 

the incidence of landslide occurrence and erosion rates using landslide inventories 

[Sidle et. al, 1985].  The majority of these studies show that forestry increases the 

incidences of landslides.  However, interpretation of results is confounded by the 

scale of the project, measurement error, and uncertainty in the application of the 

results of aerial photos to heavily timbered terrain [Pyles and Froelich, 1987].  The 

Oregon Department of Forestry (ODF) carried out a recent landslide inventory in 

the Oregon Coast Range.  ODF carried out a systematic, ground-based landslide 

inventory after two landslide-producing storms.  The data indicates that there is an 

increase in landslide density compared with 100+-year-old forests for the first 10 

years after timber harvest.  This increase is followed by a reduction in landslide 

density compared with 100+ year old forests between 10 and 100 years after 

harvest.”[ODF, 1998]  The erosion rate is estimated to increase from 5.2 to 7.4 

landslides per square kilometer for clear cut and mature forest respectively 

[Skaugset and Keim 2002 in press]. 

 

Forest management activities can impact mass wasting processes resulting in an 

environmental damage, thus managers need to identify and locate potentially 

unstable terrain to make decisions about management-induced risks.  Potentially 

unstable terrain is often equated with areas that have a high likelihood of mass 

wasting or alternately referred to as high hazard areas.  Such qualitative statements 

demonstrate the need for tractable definitions and standards to be included in the 

management plan. 

 

Forest managers try to meet environmental impact goals through the 

implementation of Best Management Practices or BMP’s.  The very nature of some 
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BMPs highlights the scientific uncertainty involved with defining potentially 

unstable terrain and its identification on the ground.  This uncertainty confounds 

and introduces variability in the application of BMPs to forest operations.  Forest 

managers may be lacking time, information and resources to meet a desired level of 

certainty in the application of BMPs.  The design of BMPs for larger-scale 

ecosystem management also contains uncertainty.   The later application may have 

more time and resources available on a unit area basis but the science surrounding 

definitions of potentially unstable terrain and the interaction with forest operations 

and ecosystem management is still highly uncertain.  Therefore, good definitions of 

potentially unstable terrain contain i) known degrees of uncertainty and, ii) low 

relative uncertainty.  Further, potentially unstable terrain should be identifiable on 

the ground, both locally and on a landscape scale.   

 

To discriminate means to perceive the distinguishing features of objects, in this 

case slide versus non-slide sites.  The distinguishing feature of slide sites is their 

location on some continuum of stability. There is a perceived systematic continuum 

of stability that varies with location relative to existing slide sites.  For example, 

this continuum may be described with functional relationships between Factor of 

Safety (FS) and topographic variables, see Figure [1]. 
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Figure1. A conceptual landslide function showing a topographic variable plotted 
versus factor of safety.  Bars indicate sensitivity to changes in other variables. 

 

The FS in Figure [1] is a ratio representing the forces resisting failure divided by 

forces causing failure.  This is referred to as a deterministic approach.  FS is 

determined from model parameters that vary across the landscape.  Therefore, 

parameters are treated here as variables.  If probability is introduced the 

relationship becomes probabilistic.  FS may be a function of topography or just 

correlated to topography. A traditional sensitivity analysis is used to produce a 

functional relationship between FS and changes in the variable of interest, given 

that all other variables are held constant.  However, the range in FS becomes 

obscure if the other model variables are not held constant.  

 

Landslide inventories may be used to analyze functional relationships between FS 

and topographic variables on a landscape scale.  Figure [1] demonstrates the use of 

a conceptual landslide function to contrast sites that failed (FS < 1.0) and sites that 

did not fail (FS > 1.0) for a generic topographic variable.  The bars in Figure [1] 

acknowledge that all other variables in the model are not constant.   Some of the 

variance is due to non-topographic factors.  The over-lap in the range of a 
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topographic variable between slide and non-slide sites makes it difficult to use as a 

discriminator. 
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2.0 Objectives 
 

The objectives of this thesis are to determine the correlation between topographic 

variables and the occurrence of landslides.  Further, define potentially unstable 

terrain by discriminating against sites with recent slide activity, and place those 

sites without landslides in the context of that definition.  The objectives imply a 

calibration of the available data set meaning; determine the uncertainty surrounding 

the definition of potentially unstable terrain, and the efficacy of locating existing 

landslides.  The analyses are limited to topographic variables due to time 

constraints and the data set available.  
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3.0 Hypothesis 
 

The hypothesis tested in this thesis may be stated as; 

 

H1: Slide and non-slide sites possess different probability 

distributions on topographic variables; slope, area, and curvature 

 

H2:Non-slide sites that are topographically similar to slide sites can 

be identified 

 

These hypotheses are simple statements that require a scope to have any real 

meaning.  The scope may vary as a function of 

 

• area used to define slide and non-slide sites 

• variables used to define topography 

• data source and method of measuring topography 
 

A large amount of this thesis effort is spent defining scope. 
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4.0 Literature Review 
 

There is variability in the definitions of some common terms applied to mass 

wasting phenomena.  It is constructive to review some of these terms.  For 

example, in reference to potentially unstable terrain, definition of the term potential 

may be problematic since it can be used as an adjective, or a noun.  Use of the term, 

potentially in the context of mass wasting phenomena, implies a high possibility of 

failure. 

 

A generic reference to potentially unstable terrain implies the following;  

 

• Mass wasting phenomenon is defined 

• probability of occurrence for a mass wasting phenomenon  

• physical characteristics of the site are definable based on a map, visual 

inspection in the field, or possibly in a lab specimen 

• cause and consequence of the mass wasting phenomenon is known 

• spatial and temporal scales are defined 

 

For example, the B.C. Forest Practices Code [B.C. MoF and MoE 1999] defines 

terrain stability on a reconnaissance level map as “the likelihood that landslides 

will occur after logging and/or road construction”.  Further, detailed stability 

mapping breaks the classes down into sub categories based on specific cause and/or 

consequence of that failure (e.g., a road related failure that places debris into a 

stream). 

 

Sometimes a synonym that is preferable to potential is susceptibility. 
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The type of hazard event, i.e., shallow landslides, defines the nature of unstable 

terrain.  The terrain analyzed in this thesis is limited by study area boundaries, and 

slope position of the landslide (see introductory section on landslides). 

 

The scope of any definition for potentially unstable terrain is dependant on the time 

and space scales chosen.  For example; 

 

Scale Definition 

Time On the order of soil profile development on steep slopes in the coast 

range ≅ 100 to 1,000 years ≅ return period defined by the 1996 flood 

event, and 

Space One the order of a gully headwall in size. The minimum resolution 

restricted by the topographic maps available is 30m x 30m. 

 

Therefore, a concise definition of potentially unstable terrain in this thesis is, 

“upslope ground areas with a high probability of shallow landslide occurrence, 

given a landslide producing storm (1996)”. 

 

The terms hazard, risk and consequence are commonly used in discussions on 

landslides.  However, they are not uniquely defined in the literature.  The Terrain 

Stability Mapping Guidelines of British Columbia  [B.C. R.I.C., 1998] offer the 

following discussion on the term hazard;  

 

The word 'hazard' is derived from the Arabic word for 'a die' 
(singular of dice) and is often related to 'chance or probability', as 
in the phrase 'to hazard a guess'. This definition is reflected in the 
United Nations definition of natural hazard: "the probability of 
occurrence of a potentially damaging natural phenomenon" 
(Varnes1984)[4]. In reference to landslides, Fell (1994)[5] defines 
'hazard' as "the magnitude of the event times the probability of its 
occurrence".  In British Columbia, however, 'hazard' is also often 
used to describe the damaging phenomenon, as in 'natural hazard', 
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'geological hazard', 'landslide hazard', or a specific type of 
landslide hazard, such as, a 'debris flow hazard'. 

 

Hazard and risk are sometimes treated as synonyms, and usually related to a 

consequence. 

 

 

4.1 Introduction to Potentially Unstable Terrain 

 

Many shallow landslides originate in a landform known as the bedrock hollow that 

is also referred to as a swale or zero order basins.  Hollows are narrow depressions 

formed in bedrock and can occur on hillsides of varying steepness.  Hollows create 

conditions conducive to shallow sliding  [Benda, 1997].  During storms, hollow 

topography concentrates water flowing down slope through the soil into the center 

of the hollow causing a higher ratio of saturation depth to soil depth saturation than 

adjacent hill slopes.  A qualitative model exists for hollow development [Dietrich, 

1991]. Hollows are sites that experience infrequent, but rapid, evacuation of 

colluvium, primarily by landsliding, followed by periods of slow colluvium 

accumulation.  This is illustrated in Figure [2]. 
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Figure 2. Illustration shows the evolution of a bedrock hollow.  A) After a 
landslide, bedrock is exposed and the risk of additional landsliding is reduced.  B) 
Over a period of centuries to thousands of years, soil from the surrounding hillsides 
slowly fills the hollow.  C) As the sediment thickens in the hollow and approaches 
a depth of 1 to 2 metres, the likelihood of landsliding increases.  Recurrent 
landsliding in the hollow slowly erodes bedrock, maintaining the form of the 
hollow. (Adapted from Benda et. al., 1997[a11]) 
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Each bedrock hollow has a unique failure history because of i) variability in soil 

properties (e.g., soil strength) that resist failure, and ii) probabilistic nature of 

forces causing failure (e.g., catastrophic rainfall event).  This unique failure history 

has an influence on landslide occurrence during a landslide-producing storm.  For 

example, during any landslide producing storm only a small proportion (e.g., 3%) 

of hollows will fail.   

 

This discussion is a simplified view of slope forming processes in bedrock hollows.  

Many of the landslides that occurred during the 1996 storms were not associated 

with topographic features indicative of bedrock hollows. In fact, only 50% of the 

up-slope slides were marked as occurring on concave terrain. 

 

 

4.2 Landslides Defined in the 1996 Storm Impacts Inventory 

 

Mass wasting is divided into several categories based on landslide processes that 

are governed by environmental controls [Benda et al., 1997].  This thesis deals with 

shallow landslides that occur in thin soils, less than 2 metres deep, overlying steep 

bedrock or compacted glacial till.  The depth of the landslide is small compared to 

its length.  Other names for shallow landslides include debris flows, debris 

avalanches, and planar failures.  The first two terms refer to the water and debris 

content of the failed material after movement has started.  The later term refers to 

the shape of the failure surface.  Debris slide – avalanche flow combinations are the 

most common type of soil mass movement on steep forested terrain and on other 

steep (>25o) natural slopes [Sidle at al., 1985]. 

 

This thesis uses landslide data from the 1996 Oregon Department of Forestry storm 

impacts study [ODF, 1997].  Landslides are defined by a Channel Impact Field 
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Protocol (CHIP) intended to identify slides that impact streams.  Landslides defined 

by the CHIP are therefore a reference to; 

 

1. an initiation point for a shallow landslide with a discrete failure surface, 

2. a resultant debris flow impacting a well defined channel downslope, and 

3. located in an upslope position, 

4. in response to a catastrophic rainfall (i.e., 1996 flood) 

5. non-road related. 

 

This thesis uses only the upslope slides in order to limit the scope of the complex 

environmental processes and forest management treatment effects involved. 

 

 

4.3 Site Similarity 

 

There is a common perception that sites with the same surficial data, will behave 

the same.  Thus, if a non-landslide site is surficially the same as a landslide site, 

then the non-landslide site will possess a susceptibility to landslides similar to the 

landslide site.  This assumes that all other factors that cannot be seen are the same 

for both sites.  The first step in facilitating this discussion is to explore what 

features define similarity. 

 

Terrain is assessed starting with maps in the office and then in the field.  Most field 

assessments investigate geomorphology and other terrain attributes.  An example of 

such a field assessment is shown in Figure [3] 
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Figure 3. Form shows the headwall hazard rating for the Mapleton Ranger District 
(After Swanson and Roach, 1987) 

 

This field assessment method is based on expert opinion.  Site similarity is 

achieved when two sites look the same and receive the same score.  However, 

landslides are complex.  Thus, it is highly unlikely that any two sites are the same 

even if they look the same after a field assessment.  

This thesis is limited to an analysis of the topographic variables, local slope 

(slope), upslope contributing area (area), and local plan curvature (curvature). 
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Hence, similarity is achieved in this thesis when sites have the same topographic 

variables or some combination of those variables expressed as an index. 

 

 

4.4 Landslides Viewed from Physical Geography 

 

A view from physical geography provides some useful terms of reference and 

context for topographic variables. 

 

The evolution of a bedrock hollow is complex.  The system encompasses an energy 

and landscape development state.  The system may be classified as open, which 

assumes there is an exchange of both mass and energy with the surroundings.  The 

bedrock hollow system may be classified as a process-response system [Chorely, 

1971] consisting of morphological and cascading sub-systems.  The morphological 

system is a structural relationship between local topographic variables.  Their 

connectivity is revealed by correlation.  The morphological system includes the 

size and geometry of the hollow itself and surrounding soil.  A systematic path of 

energy and mass defines cascading systems.  The cascade system is characterized 

by thresholds having both spatial magnitude and geographic location that are 

dynamically linked by a cascade of mass and energy.  The bedrock hollow is 

assumed to be a function of a hydrologic and debris cascade. 

 

Marcus (1980)  investigated the morphology and distribution of first-order drainage 

basins within the Hubbard Brook Experimental Forest (New Hampshire).  He 

suggests that first-order drainage basin morphology is a basis for first-order 

watershed dynamics.  A loose correlation can be drawn between first order 

drainage basins and potentially unstable terrain.  First order basin morphology is 

illustrated in Figure [4] and consists of two complimentary sub-basins, a headwater 

region or valley head (VHD) and a stream region or channelway (CHW).  The 
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morphology of each sub-basin is represented by a set of factors that includes area, 

length, slope, relief, elongation, and plan curvature. 

 

The CHW region is a morphological unit dominated by a size-shape factor that 

indicates an organized flow system and the presence of a permanent channel.  The 

size-shape factor is made up of length, area, relief, and elongation variables.  The 

magnitude of the size-shape factor is responsible for providing a sufficient volume 

of erosive water and sediment to maintain a channel.  The interpretation is 

supported by the presence of a pronounced plan curvature and permanent channel 

that dominate first order basin morphology.  The VHD region has insufficient 

volumes of water and sediment available to form a permanent channel.  The VHD 

and CHW regions converge at the channel head. 

 

The VHD and CHW definitions are used to classify first-order basins into different 

morphological types; length, side, and head (see Figure. 4b).  The morphological 

type is related to location in the larger drainage network, and this relationship helps 

explain sub-basin morphology.  The channel-way’s morphology is influenced by 

the stream junction location on the network, and the valley head morphology varies 

as a function of basin divide location (Figure.4c).
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Figure 4. First order drainage basin morphology.  a) Distribution 
of first order basin types, b) Basin type description, and c) First 
order sub-basin morphology.  (Modified from Marcus, 1980) 
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Marcus (1980) highlighted a complex set of geomorphic variables associated with 
first order basins, i.e., length, area, slope, relief, plan curvature and elongation.  
Further, there are distinct sub-types of first order basins at a relatively fine scale of 
resolution (≈ 100m2).  These variables are all significant at the first order watershed 
scale.  Marcus does not say how the significance of these variables changes with 
direction up or down the drainage network.  Some variables may be significant at 
one scale and not another.  The geomorphic variables are analog in nature.  This 
thesis uses Digital Elevation Models (DEMs) that discretize all subsequent 
derivatives at a pre-determined resolution.  Thus a relatively coarse resolution of 
digital data may not be able to pick up the significance of some variables or 
differences in basin types. An important question that arises is, what geomorphic 
variables are significant at a sub-first order watershed scale, and can a DEM 
provide enough accuracy, precision and resolution to measure them? 

 

Montgomery and Dietrich (1989) suggests that a bedrock hollow lies in the valley 

head area as shown in Figure [5] 

 
Figure 5. Illustration shows idealized relationships between hollow source areas 
and first order basins. After Montgomery and Dietrich (1989). 
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Montgomery and Dietrich (1989) concluded that channel head locations might be 

controlled by landsliding on steeper slopes and by seepage erosion and saturation 

overland flow on gentler slopes.  The channel head is difficult to distinguish in the 

field, and is sometimes located up inside the hollow itself.  Models on channel 

head initiation demonstrate a variable source Area = A(t, R), where t = time, and R 

= discharge rate.  Many channels do not connect to the drainage network; therefore, 

channel head initiation in humid environments must be due to hill-slope process, 

rather than headward extension of the network.   

 

O’Loughlin (1981) determined that zones of saturation and stability of lower area 

boundaries are inversely proportional to the degree of convergence. 

 

A morphological system may be defined by the slope, area and curvature variables 

measured from the ground surface.  The present landslide inventory occupies sites 

somewhere in the valley head and channel-way of the first order basin.  The 

landslide inventory may also be defining the channel heads, the location of which is 

highly variable over time, and partially a function of the area morphology. 

 

 

4.5 Hazard Mapping and Types of Analysis 

 

Many types of hazard mapping have been proposed.  They differ by the type of 

information that is collected and method that is used to translate the information 

into a hazard rating.  The strong points, weak points, and applicable scales of nine 

different methods of hazard mapping are referenced in Figure [6]. 

 



Method of
Analysis

Map
Scale* Strong Points Weak Points

A-Landslide
distribution

S-D - objective
- useful data base

- qualitative
- no prediction

B-Landslide
activity

M-D - objective
- useful data base

- no prediction

C-Landslide
density

S-L - objective
- quantitative

- no prediction

D-Subjective
geomorphic

S-D - flexible
- makes use of expert skills
- useful data collection

- qualitative
- difficult to review
- requires high skills

E-Subjective rating S-L - flexible
- makes use of expert skills
- work can be delegated and

checked

- qualitative
- danger of oversimplifica-

tion

F-Univariate
susceptibility

M-L - objective
- shows effect of factors

- qualitative
- relies on data quality

6-Univariate
probability

M-L - quantitative
- flexible

- danger of wrong factor
selection

- relies on data quality

H-Multi-variate
probability

M-L - quantitative
- precise

- danger of wrong factor
selection

- high reliance on data
quality

- difficult

I-Stability M-D - quantitative
- can be reviewed
- shows influence of some

factors

- danger of oversimplifica-
tion

-, may conceal lack of
knowledge
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Figure 6. Matrix illustrates different types of hazard mapping.  Map scale listed as 
Small (S), Medium (M), and Large (L), Detailed (D) (After the B.C. Earth Science 
Task Force, 1994). 

 

 

This thesis will focus on the quantitative methods F, G, H, and I.  Note, the 

Mapleton Headwall Rating System falls under category E (see section on Site 

Similarity). 

 

The following are excerpts from the Landslide Hazard Mapping Guidelines for 

British Columbia (B.C. Earth Science Task Force, 1994); 
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Statistical methods produce a quantitative relationship between hazard ratings and 

the performance of slopes.  Two types of correlation exist; 

 

1. A relative correlation (susceptibility) is based on the assumption that units 

of land surface, which are similar in certain critical attributes to areas, 

which failed in the past, are most likely to fail in the future. 

 

2. An absolute correlation (probability) goes one step further in assuming that 

future landslide frequency in similar units can be predicted, based on known 

frequency of occurrence in failed units, over a given time period. 

 

The nature of the term probability will on occasion be characterized as 

retrogressive, since it is calculated based on landslide events that have occurred 

previously.  Therefore, susceptibility has the same connotation as retrogressive 

probability. 

 

Performance data may take two forms; 

 

1. Landslide density, measured in the number of events per unit area. 

 

2. Areal density, expressed as a percentage of the susceptible area to the total 

area. 

 

Univariate probability analysis is a direct statistical correlation between the 

probability of landslide occurrence and a single variable (e.g., slope, and area).  The 

statistical models are commonly factored with indicator variables (e.g., vegetation 

age class, and sub-basin).  The probability of occurrence is usually a spatial 

distribution and may also be a temporal distribution. 
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Multivariate probability analysis uses multiple regression techniques to establish a 

correlation between landslide frequency and a group of attributes.  The method can 

be applied to points or polygons.  “The main disadvantage of the multivariate 

approach is that it removes any possibility of participation of the mapper’s 

experience and judgement in producing correlations. Thus, the results are totally 

dependant on the quality of input data”.   

 

Stability analysis methods may be based on the infinite slope equation, which 

determines the limit equilibrium of a long shallow slope segment of uniform 

description.  The Factor of Safety is used in the engineering sense as the ratio by 

which shear strength of the slope material exceeds the value needed to maintain 

equilibrium.  A ratio of 1 indicates that failure is imminent.  The Factor of Safety is 

spatially distributed, and may be temporally distributed if the ground water table is 

modeled over time. 

 

There are two types of Factor of Safety; 

 

1. Deterministic – single factor of safety given a single set of input parameters 

2. Probabilistic- a probability distribution of factors of safety given probability 

distributions on the input parameters. 

 

 

4.6 Topographic Indices Related to Hydrology 
 

Hewlett and Hibbert (1967) introduced the concept of the variable source area that 

coupled runoff to watershed morphology.  Beven and Kirkby (1979)  developed the 

concept of area density, or Specific Area, a, defined as the area, A, divided by the 

contour width, b (Figure [7]). 
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Figure 7. Illustration of conceptual drainage area with notations for local geometry 

 

 

Their modeling efforts produced an index called the topographic ratio; ln(a/tanθ) 

where tan θ is the local ground slope used to approximate the hydraulic gradient.  

The index is provides an indication of the relative wetness across a landscape that 

refers to the saturated portion of the soil profile above a layer with highly 

contrasting permeability.  Relative wetness is proportional to the area and inversely 

proportional to the sites ability to drain water. 
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O’loughlin (1981) showed that a simplified physical analysis of uniform lateral 

flow in idealized hill slopes leads to predictions of surface saturation using a 

relationship between capacity and drainage flux.  Hillslope capacity, C, is defined 

as the maximum flow that can occur in the profile determined as; 

 

  = sinθ K zcosθ TdzzKC
l

θθ sin)(sin
0

== ∫

 

K is the hydraulic conductivity and zcosθ is the perpendicular depth of the soil 

profile.  T is the transmissivity and θ is the local angle of slope. 

 

The drainage flux (discharge per unit width) is defined as q bAQx /)( = .  The 

contributing area, A, drains through an element with an x-axis measured 

perpendicular to the contour, Q is the discharge per unit area, and b is the unit 

contour width. 

 

The capacity is equated with drainage flux and re-arranged to separate the 

topographic and hydrologic variables.  The resulting equality is; 

 

 
Q
T

b
A

=
θsin

 

 

A criterion for saturation is established where flux exceeds capacity, and notated 

as; 

 

 
Q
T

b
A

>
θsin
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The result is an explicit expression for the topographic effect on the initiation of 

saturated areas.  The right hand term is known as the hydrologic ratio.  The left 

hand term is the topographic ratio and consists of two important factors; 

 

 Factor #1  
θsin

1   and  Factor #2 
b
A   

 

Factor #1 is a vector characterized by a direction perpendicular to the contours.  

Factor #2 is a scalar known as the specific surface area discussed earlier.  Some 

useful inferences on saturation behavior as it relates to these factors are; 

 

• As local angle increases, factor #1 decreases, thus topographic ratio 

decreases.  In other words, the ability to achieve profile saturation is 

inversely proportional to the element’s local angle  

• As the area increases, factor #2 increases, thustopographic ratio increases. 

In other words, the elements ability to achieve profile saturation is 

proportional to the area. 

• It follows that Factor #1 and Factor #2 are inversely proportional to one 

another, and their combined effect on saturation ability could be an increase 

or decrease. 

 

The combined effect of Factor #1 and Factor #2 on the analysis of hillslope 

hydrology is referred to as an equi-finality problem.  Different values of the 

numerator and denominator can result in the same quotient.  Thus, analytical results 

that depend on unique values of the quotient will be confounded. 

 

Dietrich et. al (1986) derived a relationship between a steady state hydrologic 

model and the infinite slope stability model.  The major hydrologic assumptions are 

conservation of mass, steady state rainfall, and uniform lateral flow.  A criterion for 
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the accumulation of flow is determined by equating capacity with rainfall.  The 

resulting equality is qA bT θsin= where q is the effective rainfall after losses.  A 

partial saturation ratio is defined as; 
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Where h is the perpendicular depth of the saturated soil profile.  Note, the uniform 

flow assumption requires this ratio to be less than or equal to 1.0. 

 

Next, a simplified version of the infinite slope model on a partially saturated slope 

is expressed as; 

 

 







′

−= FS
z
h

w

s

φ
θ

γ
γ

tan
tan1  where FS is Factor of Safety 

 

Where γs is the unit weight of saturated soil, γw is the unit weight of water, and φ’ is 

the internal friction angle.  This is the Mohr-Coulomb failure criterion for a 

cohesionless soil when FS is equal to one.  The moist unit weight is assumed equal 

to the saturated unit weight.  When the left side quantity becomes larger than a 

known set of parameters on the right, a failure will theoretically occur.  There is no 

assumption that the ratio be less than or equal to 1.0 like the uniform flow 

approximation. 

 

Finally the partial saturation ratio is equated with the infinite slope equation to 

yield the following expression; 
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When the quantity on the left exceeds the quantity on the right a failure is supposed 

to occur. 

 

The linked hydrologic-geomorphic model is a useful tool to examine the effects of 

topography on slope stability.  However, the physical parameters are presently 

impossible to measure on a landscape scale.  Effective values may be derived on a 

landscape scale through calibration with a landslide inventory.  Variations on the 

linked hydrologic-geomorphic model exist and include such modifications as 

cohesion terms, and probabilistic distributions for physical parameters [R.T. Pack 

et.al, 1988]. 
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4.7 Dimensionless Analysis of Topography 
 

Consider an area draining across a finite element width b shown in Figure [8] 

 

 

Figure 8. Illustrations of converging, parallel, and diverging flow regimes.  Shaded 
zones are areas draining across a section Xd from the stream. After O’Loughlin 
(1981). 

 

 

Figure [8] shows three types of area in plan view with the y-axis perpendicular to 

the flow gradient, and tangent to the contour.  The x-axis is shown parallel to the 

flow gradient.  A specific area function g(x) may be examined entirely in a 

dimensionless coordinate system X = x/d, and R = r/d, where x is the coordinate, 

and r is the radius of curvature.  Dimensionless terms shift the focus of the analysis 

onto shape by removing scale.  Analysis of idealized terrain can assist in the 

understanding the shape effects on g(x).  The g(x) functions are listed in Table [1]. 
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Table 1. Expressions for dimensionless area 
Flow Regime g(x) dX/dQ  Approximate dX/dQ for X <<1 
         R =1 R = 2 R = ∞ 

R2-(R-1+X)2 2(R-1+X)2 Sinθ T 2X2 2 Sinθ T 0.4 Sinθ T Sinθ T 
Converging 2(R-1+X) R2+(R-1+X)2 Q2d  Q2d Q2d Q2d 

Sinθ T Sinθ T 
Parallel 1-X  Q2d  - - Q2d 

(R-X)2 - (R-1)2        2(R - X)2      Sinθ T 2 Sinθ T  1.6 Sinθ T Sinθ T 
Diverging 2(R-X) (R-X)2+(R-1)2 Q2d  Q2d   Q2d Q2d 

 

A sensitivity analysis of the g(x) functions is shown in Figure [9]. 

R factor subscripts; C = convergent, D = divergent
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Figure 9. Graphs show sensitivity of the dimensionless area functions.  Area 
function g(x) is plotted against arbitrary values of dimensionless factors a) X and b) 
R. 

Figure [9] shows that the X factor is inversely proportional to g(X) in all types of 

terrain, however, the effect of a change in X is negligible for values of R 

marginally greater than 1.  The g(X) function changes rapidly as X goes to 0, i.e., 

small marginal zone located at the bottom of a drainage.  Thus, curvature measured 

at the bottom of the drainage should be suitable index or surrogate for a true radius 

 



 30

measured across the entire contributing area of non-idealized terrain.  In convergent 

terrain the value of g(X) gets very large as X goes to zero, and R goes to 1 (i.e., 

increase in convergence), therefore saturation is likely.  The g(X) function is the 

same for all types of terrain at high values of R, since they all look planar and the 

value goes to unity. 

 

The hydrologic and topographic ratios may be further normalized with the basin 

length d measured along the x-axis.  The result is a function g(X) = A / bd which is 

a dimensionless ratio.  At the lower boundary of the drainage element the saturation 

criterion becomes g(X) = Sinθ T / Qd.  The derivative of X with respect to Q can 

be examined for each flow regime. The derivatives are also listed in Table[1] along 

with the their approximations as X goes to zero. The value of  QX ∂∂ /  describes 

how a wet area expands or contracts as the drainage flux changes.  Note the value 

of  is XQX ∂∂ / 2 smaller in convergent zones than divergent zones. This means the 

location of the saturation boundary is much more stable in convergent than 

divergent zones.  

 

Next, consider the dimensionless elevation ratio as it relates to the slope position; 

Z = z/H, where z is the vertical coordinate, and H = total height of the slope. 

A function Z(X) can be used to construct a 2 dimensional slope profile.  Further the 

slope for any X may be estimated by )(Xf
d
H

dx
dzSin ==θ .  Where f(X) is a slope 

function not an elevation profile.  The expression may be solved for f(X) and 

placed back into the saturation criterion.  The result is expressed as; 

2)(
)()(

Qd
TH

Xf
XgXh >>  or in words this becomes; 
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A seepage boundary will occur at a distance X from the bottom of the area 

wherever the inequality is satisfied.  The function h(X) is plotted for an arbitrary 

Z(X) profile against the dimensionless distance X in Figure [10] below; 

 

 

Figure 10. Graph shows examples of dimensionless topographic ratios different 
flow regimes.  After O’loughlin, 1981 

 

 

The h(X) curves in Figure [10] show the location of saturated boundaries in 

convergent zones are insensitive to various drainage conditions (i.e., hydrologic 

ratio).  The converse statement is also worth making, i.e., for a given hydrologic 

ratio, the location of a saturation boundary is highly sensitive to the degree of 

convergence. 
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Non-dimensional measurements in empirical model of landslide occurrence are 

unlikely since so much depends on scale and threshold values of dependent 

variables.  However, finite estimates on the degree of convergence measured with 

variables r, and d, may prove useful.  Another example may include weighting the 

area variable with g(x) to produce an effective area.  The added significance (i.e. 

statistical power) of a convergence variable will be proportional to the measured 

degree.  Therefore, convergence should be insignificant in planar and divergent 

flow regimes.  It follows that the area measured in the planar and divergent flow 

regimes will also experience a decrease in significance with decreasing 

convergence.  Thus there is a physical basis for an Area:Curvature interaction.  

Simple measurements of area in any flow regime will always be highly significant 

in a statistical model due to its relative importance as an explanatory variable. 

 

In retrospect, the practical significance of the Area:Curvature interaction is evident 

in a landslide attribute study in the Queen Charlotte Islands of British Columbia. 

(Rood, 1990)  The slope variable was the dominant factor in open slope type (i.e., 

planar and divergent terrain) landslide frequency.  In gullied terrain, the failure 

rates were more sensitive to slope form and position which are crude surrogates for 

an area term weighted with g(x). 
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5.0 Materials and Methods 

 

This thesis uses a landslide inventory because of the power offered by a large 

sample size related to one storm event in an area with homogeneous geology.  

Geographic Information System (GIS) are used to accommodate the large quantity 

of spatial data, and to perform the basic numerical operations.  Topographic data 

are extracted from a Digital Elevation Model (DEM) because the data are freely 

available.  The elevation data is used to directly determine lower order indices and 

then combined to higher order forms. 

 

 

5.1 Digital Elevation Model 
 

Topographic data are extracted from a Digital Elevation Model (DEM) with a 30-

meter square cell resolution.  The analysis begins with grids in a raw state that 

require pre-processing in order to delineate watersheds and remove spurious data.  

The raw grids have map extents equivalent to the common 1:24 000, 7.5 minute 

quad maps.  The USGS publishes the raw grids that can be freely downloaded from 

the internet [O.G.D.C., 2001].  

 

A combination of Geographic Information Systems (GIS) are used to process and 

extract topographic data from the DEMs.  These include the full-featured system 

ARCINFO8.0 and a desktop variety ArcView3.2.  Analyses are carried out inside 

the ARCINFO8.0  with the Arc and Grid modules, and inside the ArcView3.2. 

environment with the Spatial Analyst, SHALSTAB, and SINMAP extensions.  Some 

analyses may be carried out with different procedures inside different systems with 

the same intended result.  Unfortunately, there may be subtle differences in the 

software algorithms that create differences in the analytical output.  Therefore, 

particular algorithms are documented where appropriate in the follow sections.   
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5.2 Preprocessing of Elevation Data 
 

Four grids are merged using the together to cover the entire Mapleton watershed 

area.  Cells outside the watershed area are assigned NODATA values.  Modification 

was completed inside the ARCINFO8.0 Grid module with the MERGE, and  

BASINS command.  An illustration of the Mapleton grid extent is shown in Figure 

[11]. 

 

 
Figure 11. Grid extent constructed from four USGS grids.  The solid shaded area 
classified as NODATA surrounds Mapleton Watershed boundary.  The study area 
boundary is inside the watershed. 

 

 
The large watershed extent shown in Figure [11] is intended to minimize edge 

effects with NODATA.   

 

The raw grids are in a Universal Trans-Mercator (UTM) projection with X,Y, and 

Z units of metres.  Grid processing and topographic data extraction are carried out 

in the UTM  projection.  The output grids are re-projected into the Oregon State 

Centered Lambert Conformal Conic (Lambert) using Grid commands to match the 
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projection used by the ODF landslide inventory.  Statistical analyses are carried out 

on data in the Lambert projection. 

 

Most grids contain sinks which are depressions in a DEM.  Drainage area 

algorithms require that sinks be removed to define a flow direction.  The 

ARCINFO8.0 documentation provides a concise summary of sinks. 

 

To create an accurate representation of flow direction and therefore 
accumulated flow, it is best to use a data set that is free of sinks.  A 
digital elevation model that has been processed to remove all sinks 
is referred to as a depressionless DEM.  Sinks in elevation data are 
most commonly due to errors in the data.  These errors are often 
due to sampling effects and the rounding of elevations to integer 
numbers.  Naturally occurring sinks in elevation data with a  cell 
size of 10 meters or larger are rare except for glacial or karst areas, 
and generally can be considered errors.  As the cell size increases, 
the number of sinks in a data set often also increases. 
 

Sink are removed using the SHALSTAB, and SINMAP extensions, or with Grid 

commands in the ARCINFO8.0 environment.  The software documentation for all 

three programs declares similar algorithms for sink removal[Jenson and 

Dominique, 1988][On-line users Manual at Utah State University][On-line users 

Manual at University of California, Berkely].  Examination of the sink areas offers 

some insight to the elevation errors present and may serve as a partial quality 

control check on slope and area calculations.  One standard deviation of the sink 

distribution is 0.034 to 0.225 m based on the ARCINFO8.0 system.  Most of the 

sinks are located on the valley bottom and none are coincident with the landslides 

population.  Therefore, sinks are not likely to have any deleterious effects on the 

present analysis. 
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5.3 Computation of Low Order Topographic Indices  
 

Indices of slope, area, and curvature are extracted directly from the DEM and 

notated by; 

 

• slope    θ i    [degrees] 

• Up-slope contributing area Ai   [L2] 

• Curvature   Ci   [L] 

 

The subscript i refers to the particular algorithm.   

 

The indices may be referred to as local, since they are based on local data 

surrounding a center cell.  The algorithms extract elevations from raster cells 

forming a 3x3 window surrounding the j’th center cell.  Different algorithms use all 

or some of the data inside the 3x3 window in different ways. 

 

Low order topographic indices and then combined to form higher order indices.  

Two geometric transformations of slope are chosen to help discriminate between 

processes dominated by hydraulic gradients (sine) and friction (tangent).  

Logarithm base ten transforms are carried out on the area indices for convenience 

and to produce  normal distributions..   

 

There are many ways to determine the up-slope contributing area.  The purpose is 

to recognize that various assumptions influence the distribution of the contributing 

area variable across the landscape.  Every contributing area algorithm makes an 

assumption on sink removal, flow directions, and flow portioning.  Sink removal is 

discussed in section 5.1.  Some slopes are intended to represent an area inside a cell 

and others are intended to define a flow direction out of the cell.  Flow directions 

may be defined using different portions of the data inside the 3x3 window and will 
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be discussed individually in the following sections.  Flow portioning is an attempt 

to define flow boundaries at a sub-cell scale.  The importance of the flow 

portioning assumption occurs on divergent terrain where water could follow 

significantly different directions.  Endreny, 2001, offers a thorough review and 

contrast of drainage area algorithms.  A summary of the contributing area 

algorithms and their attendant flow direction algorithms used in this thesis in Table 

[2] 

 

Table 2. Summary of drainage area algorithms 

 

Drainage 

Area Index 

Slope Index Flow Partitioning 

A1 3x3 geometric 

mean (θ 1) 

multiple-flow-direction; proportional to the 

local gradient out of the center cell to each 

adjacent and diagonal cell. SHALSTAB 

A2 3x3 maximum 

drop (θ 3) 

single-flow-direction; area is accumulated in 

the direction of flow. ARCINFO8.0 

A3 Dip slopes 

calculated from 

triangular facets 

multiple-flow-direction; apportioned to two 

down-slope pixels according to flow angle 

(strike) separation from cardinal direction 

relative to the pixel center. SINMAP 

 

 

The algorithms used for calculating slope, area, and curvature are discussed below. 
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5.3.1 Slope Indices 

 

Slope θ1 is calculated as the geometric mean from the surrounding eight cells 

[Montgomery and Dietrich, 1988].  The two directions normal to the cell have a 

spacing of 2 times the grid size, whereas the slopes diagonally across the cell have 

a distance that is 2.83 times the grid size.  Slope θ1 is determined by default inside 

the SHALSTAB extension.  Default units are Tanθ1 x 100 (i.e., percent). 

 

Slope θ2 is calculated from a third-order finite difference estimator of the 

surrounding eight cells [Burroughs and McDonnell, 1988].  The formula is; 
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The deltas dx, dy, and dz are calculated using a 3x3-roving window. The window is 

defined by a through i  

 

a b c

d e f 

g h i 

 

 (dz/dx) = ((a + 2d + g) - (c + 2f + i)) / (8 * x_mesh_spacing) (dz/dy) 

= ((a + 2b + c) - (g + 2h + i)) / (8 * y_mesh_spacing)Slope θ2 is determined inside 

the ARCINFO8.0 environment using the Grid module SLOPE command.  Default 

units are given as Tanθ2  

 

Slope θ3 is calculated relative to a center from the surrounding eight cells [Jenson 

and Dominique, 1988].  The maximum elevation difference from the eight adjacent 
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values is selected for the slope calculation.  The flow direction out of a cell is 

assumed to follow this maximum drop.  The slope is therefore representative of a 

segment located between the grid cells, but the value is assigned to the center cell.  

Index θ3 is determined inside the ARCINFO8.0 environment using the Grid module 

FLOWDIRECTION command.  Default units are Tanθ3. 

 

Slope θ1 smoothes the landscape relative to the local maximum slope θ3.  

Montgomery and Dietrich, 1998 indicate that slope θ 1 is most desirable for 

minimizing grid artifacts and produces a superior index of landslide occurrence.  

Grid artifacts are the result of the relative orientation of the grid.  Montgomery and 

Dietrich did not declare a basis for index superiority.  They also report minor 

differences with slope θ 2.  Burroughs and McDonnell, 1988 tested slope θ2 and 

determined it is best for accurately measuring slopes from rough surfaces.  Slope 

θ 3 is biased towards steeper values that represent inter-cell line segments.  Slope 

θ 3 is the least accurate on rough surfaces (Burroughs and McDonnell, 1988 [39] ).  

The USGS also tested slope θ 3 for defining flow directions and found that it 

accurately matched planimeter estimates of contributing areas 97% of the 

time[Jenson and Dominique, 1988]. 

 

 

5.3.2 Area Indices 

 

A1 is a multiple-flow-direction algorithm [41].  The total area that a grid cell has to 

hand-off is divided in proportion to the local gradient out of the cell to each 

adjacent and diagonal cell.  The gradient is determined using the slope variable θ 1  

(See section 5.2.1).  A1 is determined by default inside the SHALSTAB extension.  

Default units are given as log10(a1/b) then converted over to A1. 
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A2 is a single-flow-direction algorithm [42].  Water is assumed to follow the 

maximum gradient out of each cell.  The flow direction is determined using the 

slope variable θ 3 (see section 5.2.3).  The present cell is not included in the area 

accumulation of cells.  A2 is determined inside the ARCINFO8.0 environment with 

the Grid module using the FLOWACCUMULATION command.  Default units are 

given as the number of grid cells then converted over to A2. 

 

A3 is a multiple-flow-direction algorithm [Montgomery and Dietrich, 1998].  The 

area is defined using a slope variable not defined in the previous section on slopes.  

The steepest flow direction is represented as a continuous quantity between 0 and 

2π and is determined from the eight triangular facets formed in a 3x3 window.  

Each triangular facet defines a plane.  The dip slope is calculated from each plane 

with vectors.  The maximum dip slope defines the flow direction. When the flow 

does not follow one of the cardinal or diagonal directions, area is calculated by 

portioning the flow between the two down-slope pixels according to how close the 

flow angle is to the direct angle formed with the window center.  This flow-

portioning algorithm is part of the SINMAP program.  Default units are given as 

log10(a3/b), then converted over to A3. 

 

 

5.3.3 Curvature 

 

Curvature variable C is measured in plan-form from a DEM using a 4th order 

polynomial using data inside a 3x3 window surrounding each cell.  The unit of 

measure is taken from a second derivative of the polynomial function yielding a 

range of numbers; negative corresponding to convergent, and positive 

corresponding to divergent.  Thus values of curvature near zero are on planar 
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slopes.  Note, this is a local measure of curvature and not necessarily a measure 

reflecting the shape of the whole upslope contributing area that likely extends 

beyond the upper half of a 3x3 window.  Curvature is determined inside the 

ARCINFO8.0 environment with the Grid module using the CURVATURE 

command.  Default units are 1/100 z-units,, then converted over to z units. 

 

 

5.4 Higher Order Indices 

 

Several types of higher order indices are constructed from the basic topographic 

variables of slope and area. 

 

The first higher order index is the topographic ratio and is defined as; 
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The tangent form comes from Beven and Kirkby, 1969 [44] and the sine form 

comes from Oloughlin 1981 [45].  Both topographic ratios were calculated inside 

the ARCINFO8.0 environment with Grid algebra. 

 

A second type of higher order index is the infinite slope type, which comes in two 

varieties, the hydrologic ratio and the SINDEX.  Both are calculated using the 

linked hydrologic geomorphic model (see section 4.6).  The hydrologic ratio is 

defined as; 
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Where T, ρs, ρw, φ’, and b are constants.  The equation has three topographic terms 

that are defined by the DEM; drainage area a, outflow boundary length b, and  

slope angle θ.  There are four parameters that need to be assigned to apply this 

model; soil bulk density ρs, angle of internal friction φ, soil transmissivity T, and 

the effective precipitation q.  Default parameters are used in this analysis, 

specifically; φ = 45o, and γs = 1700 kg/m3.  The hydrologic ratio is determined using 

the SHALSATB program.  The SHALSTAB program is supported by an on-line 

publication of University of California, Berkely[] 

 

The SINDEX is similar to the hydrologic ratio, however, the model is re-arranged 

into a probabilistic form of the factor of safety that uses A3.  The physical 

parameters are assumed to posses a uniform distribution within user-defined limits.  

The graphical user interface allows iteration of distribution limits for the purpose of 

maximizing the number of landslides in a SINDEX bin class.  The SINDEX is 

determined using the SINMAP (Stability Index MAPping) program.  The SINMAP 

program is supported by an on-line publication of Utah State University[46]. 

 

The highest order index is derived from regression analysis on slope and area.  The 

product of the regression is an expected value function or Expected Value Index 

(EVI) defined as; 

 

12110 ATanEVI βθββ ++=  

 

The coefficients are estimated from a maximum likelihood algorithm used in a 

logistic regression with a binary response variable (slide site = 1, non-slide site = 

0).  The maximum likelihood algorithm iterates coefficients until it achieves the 

highest retrogressive probabilities for the slide population.  The result is a 

maximum difference between the EVI distributions for the slide and non-slide 
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populations.  The non-slide sites were randomly selected from the Mapleton study 

area.  The regression output is shown in Table [3]. 

 

Table 3. Logistic Regression Model for the EVI Index 

 

Terms Coefficient  Std. Error Z statistic*  

β0 * (Intercept) -9.27 1.65 -5.64 

β1 * Tanθ1 7.88 1.77 4.46 

β2 * A1 2.18 0.38 5.77 

*Z statistic is from a standard normal distribution.  Absolute values greater than 2 
are significant at approximately the α = 0.05 level. 
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6.0 Results 

 

Empirical modeling and regression analyses are used to examine the behavior of 

higher order indices and their ability to explain variability in the slope and area 

distributions for the landslide population.  Statistical methods are used to analyze 

topographic data to sort out the variability in the data.  Stratification design is used 

to sort out spatial issues while attempting to distinguish between slide and non-

slide sites.  Logistic regression models are developed on spatially stratified areas to 

determine the retrospective odds of landslide occurrence with parameter sensitivity.  

The logistic models are also used to establish topographic definitions of landside 

similarity.  Finally, inter and intra-index performance is measured with the 

landslide and aerial densities (see Section 4.5 for definitions) 

 

 

6.1 Empirical Modeling of the Slide Population  
 

The linked hydrologic geomorphic failure criterion derived in Section 4.6 is tested 

to explain variability in the distributions of slope and area of the landslide 

population.  The model parameters are simplified and the equation rearranged to 

establish a threshold area as a function of slope; 
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The ρs, ρw, T, and q parameters are lumped into a single coefficient C, and tanφ’ is 

assumed equal to one.  The equality holds at FS = 1, thus the C  term is a minimum 

threshold coefficient.  The area function is plotted in Figure [12]. 
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Figure 12. Graph shows conceptual plots of a threshold function 
( ) θθ sintan1−= CA  marked on right axis with threshold coefficients; C = 1 and 

10.  The sine and tangent slope transformations are shown on the left axis. 

 

 

The purpose of the model simplification is to examine the behavior of the failure 

criterion purely as a function of topographic variables.  The Sinθ  variable is the 

hydraulic gradient and proportional to area.  The Tanθ variable defines the failure 

plane and causes the (1-tanθ) term to be inversely proportional to area.  The area 

function starts at zero with slope equal to zero which is hard to understand since 

landslides generally don’t occur on gentle slopes with small contributing areas.  An 

unknown variable must be missing to explain the area function behavior at the low 

end of the slope spectrum.  The area function also equals zero with slope equal to 

45 degrees.  This makes sense since the friction angle is assumed to equal 45 

degrees.  Thus, if the site is already failing due to gravity, no drainage area is 

required.  The first derivative of the area function is equal to zero at approximately 

24.4 degrees.  The existence of an area maximum is more important than the 

location on the slope scale. 
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The behavior of the threshold function beyond the maxima shown in Figure [12] is 

consistent with observations by O’Loughlin (1981) that local slope is inversely 

proportional to the ability of soil to become fully saturated.  Thus, at lower slopes 

landslide occurrence should be associated with high soil profile saturation.  There is 

a wide range in transition where slope takes over and less area is required to 

achieve a lower degree of soil profile saturation. 

 

The area function is tested using real slope and area values from the Mapleton slide 

population.  A value of C is determined for each slide to produce a distribution of 

values.  The mean value of C equals 2.3 ha (95% C.I.; 1.6 to 3.0).  The Mapleton 

landslide data is shown with threshold coefficients in Figure [13]. 
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Figure 13. Plot shows slope versus area for the Mapleton slope slide population. 
Threshold coefficients; C = 1.6 and 3.0 represent the 95% confidence interval, 
based on the function )tan1(sin θθ −= CA fitted to the data set.  Explanatory 
variables are slope (θ1), and area (A3) 

 

 

 

Most of the slides in Figure [13] are on slopes greater than the slope defined by the 

area maxima, therefore landslide occurrence should be dominated by the slope 

factor.  There is significant deviance from the area function for slope values less 
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than the maxima.  The deviance is most likely due to the model assumption that all 

factors are equal across the landscape.  In reality, soil depth and transmissivity 

vary.  Lower slopes should have deeper soils thus larger transmissivity thus larger 

area.  It is also possible that some sites achieved a FS less than one given a constant 

rainfall.  A FS less than one would result in an area larger than the threshold.  The 

width of scatter in Figure [13] is inversely proportional to slope (i.e. possible 

narrowing). This may be a trend in soil depth and transmissivity but variability in 

the other parameters cannot be ruled out. 

 

A least square's regression of the slope transform, sin )tan1( θθ −  against area is 

not significant (p-value = 0.3) with an R2 of 0.02.  Thus, there is no statistical 

evidence to support the application of a single threshold coefficient to the  upslope 

landslides in Mapleton. 

 

Another way to examine the effect of slope on a threshold value of area is to carry 

out a regression on tanθ and sinθ.  A full two-way regression model takes the form; 

 

 θθβθβθββ SinTanSinTanArea :3210 +++=  

 

The coefficients are all significant ( p values < 0.05).  However, an R2 value of 0.11 

suggests that other factors account for most of the variability. 
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6.2 Statistical Analysis of Index Distributions 

 

In this section, the differences in slope, area and curvature distributions between the 

slide and non-slide sites will be addressed.  The first law of geography states that 

near attributes are more similar than attributes far away.  In other words, 

topographic variables possess positive spatial correlation.  The spatial contrast 

between slide and non-slide sites is proportional to the distance between them.  The 

challenge is to determine where non-slide sites are no longer similar to slide sites.  

There is some minimum resolution at which a difference in variable distributions 

can be detected.  The minimum resolution is determined using spatial stratification 

and statistical analyses for testing significant difference.  The minimum resolution 

is a function of measurement error, sample size, and spatial rates of change in the 

variables.  Stratification based on index is one way to examine questions regarding 

similarity. 

 

Non-slide sites are spatially stratified, which limits the scope for sampling to 

specific topographic regions.  A 3x3 window and three, five and ten cell radii 

surrounding a slide site defines the ranges of spatial stratification for the slide 

population.  The spatially stratified regions are further stratified based on the slope 

variable using limits defined by the 95% confidence interval on the mean of the 

slide population.  Spatial and slope stratification is illustrated in Figure [14]. 
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Figure 14. Graphic shows spatial stratification defined by three, five, and ten cell 
radii surrounding slides found in Mapleton.  Slope stratification is defined by the 
95% confidence interval on the mean of the slide population.  Smaller scale section 
shows the intersection of spatial and slope stratification. 

 

Slope and area distributions using only spatial stratification are displayed using box 

plots in Figures [15] and [16]. 
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Figure 15. Box plot show the slope θ1 distributions.  Spatial stratification based on 
cells surrounding slide sites for the Mapleton slide inventory; a) slide population b) 
three cell radius, c) five cell radius, and d) ten cell radius. 
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Figure 16. Box plot of shows log transformations of the area index A1.  Spatial 
stratification based on cells surrounding the Mapleton slide inventory; a) landslide 
population b) three cell radius, c) five cell radius, and d) ten cell radius. 

 

The “box” in a box plot is that shaded portion containing three horizontal lines 

indicating the 25, 50 and 75th percentiles respectively.  The off colored portion of 
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the box, white or black, indicates the 95% confidence interval about the mean.  

Outliers are indicated by circles and defined as 1.5 times the inter quartile range.  

The extreme horizontal lines indicate values that lie within the inter-quartile range. 

 

Figures 15 and 16 suggest that there is a significant difference between the 

distributions of slope, but no significant difference in the area.  Distribution skew is 

proportional to the scope of spatial stratification for both slope and area.  The mean 

value of slope is inversely proportional to the scope of spatial stratification, and the 

mean value of area is proportional to the scope of spatial stratification.  

Logarithmic and inverse transforms do not remove the skew in the area 

distributions; therefore t-tools are limited for testing equal means.  Further, as the 

scope expands it becomes more difficult to justify using t-tools, and larger scale 

variations complicate the search for a significant difference. 

 

A rank transformation is performed on the area distributions.  The results from a 

Wilcoxon-Rank-Sum test are shown in Table [4]. 

 

Table 4. Wilcoxon-Rank-Sum test of area distributions on spatially stratified 

regions. 

 

Population 1 Population 2 p-value 
Slides 3cell 0.43 
Slides 5 cell 0.19 
Slides 10 cell 0.38 
3 cell 5 cell 0.09 
5 cell 10 cell 0.01 

 

 

Interpretation of the p-values suggests that a significant difference exists between 

the five-ten cell radius and three-five cell radius distributions.  Unfortunately, this 

result has little practical significance since the topographic data can barely 
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discriminate basin form on a headwall scale (e.g., 5 to 6 acres).  Thus, there is no 

evidence to suggest a difference in the area distributions for the slide and non-slide 

sites. 

Distributions of area resulting from slope stratification are more similar than the 

distributions of area resulting from spatial stratification.  Another set of random 

samples was taken with no spatial restriction, but with slope stratification still in 

effect and there was still no significant difference in the distributions. 

 

Attempts to discriminate between distributions of area were unsuccessful.  

Inspection of the distributions of area suggests a change in the design of spatial 

stratification.  An area threshold at each slide site requires that all cells down-

stream belong to the slide population.  Therefore data sets tested thus far contain 

response errors.  Further, the down-stream cells are responsible for the extreme 

skew in the distributions of area.  Spatial stratification using a three-cell radius with 

the down stream cells removed (3cell-minus) is shown in Figure [17]. 

 

 

 
Figure 17. Sample area with spatial stratification of non-slide sites defined by a 
three-cell radius surrounding the slides in the Mapleton inventory with the down 
stream cells removed. 
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Removing the down-stream cells removes response errors and most of the skew in 

distributions of area.  Therefore, t-tools can be used with the 3cell-minus data set.  

The test of equal means was used on the 3cell-minus data set.  There is strong 

evidence of a difference between slide and non-slide sites for the distributions of 

slope (p-value = 0.013) and area (p-value = 0.006).  A slope versus area plot for the 

3cell-minus data set is shown in Figure [18]. 
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Figure 18. Scatter plot showing slope, θ1, versus area, A1, for spatially stratified 
regions around landslides in the Mapleton inventory.  Slides sites are shown as 
open circles. 

 

 

Figure [18] illustrates the difficulty in visually determining the difference in the 

slope and area distributions.  
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The distributions of curvature index are examined using the 3cell-minus data set.  

There is a significant difference (p-value < 0.001; rank sum test) in distributions of 

curvature between the slide and non-slide populations.   

 

A scatter plot of slope and area versus curvature is shown in Figure [19]. 
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Figure 19. Scatter plots showing a) slope, θ1, and b) area, A1, versus curvature C1.  
Slides are shown as open circles.  Stratification based on cells surrounding 
landslides in the Mapleton slide inventory.  

 

A trend for curvature with area is shown in Figure [19], however, no trend is 

observed with curvature and slope. 

 

 

6.3 Index Performance 
 

Definitions that are accurate and result in the smallest area delineated as potentially 

unstable is the objective of most land managers.  Indices are used here to define 

potentially unstable terrain.  Indices that define the highest density of existing 

slides will be considered to have the best performance.  Slide density is related to 

index correlation and may be the result of some role the index has in the physical 
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processes producing slides.  However, slide density cannot distinguish between the  

role in physical process and simple correlation. 

 

Topographic indices are derived from continuous variables with unimodal bell 

shaped distributions, see Figure [20].  A small variance in the index value for the 

slide population will result from a high correlation.  The consequence of a small 

variance is a narrow distribution of index values compared to non-slide sites.  

Therefore, a small variance results in a high density of slides.  Slide index 

distributions located on the extreme ends of the non-slide distribution will also 

produce high slide densities.  The later comment describes the objective of logistic 

regression on topographic indices, see section 6.4.  Non-slide distributions with 

positive spatial correlation and extreme skew possess high rates of change with 

distance across the landscape.  The later type of index is a more precise tool for 

locating slides and also has higher densities.  An ideal conceptual index is shown in 

Figure [20] 
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Figure [20]  Graph shows a conceptual index distribution with ideal shape for high 
performance in locating landslides.  The ideal index has a slide population with a 
small variance resulting in a narrow distribution located on the extreme end of a 
skewed non-slide distribution. 
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Both the slide and non-slide distributions in Figure [20] are assumed to be 

unimodal.  Slide density increases as the slide population moves further to the right 

in Figure [20]. 

 

Two types of index performance are considered here. 

 

1. Landslide density, measured in the number of events per unit area. 

2. Areal density, expressed as a percentage of the unstable (susceptible) area to 

the total area. 

 

Landslide associations with topographic variables are expressed as cumulative 

percent  to allow easy reference between variable range, density, and sensitivity.  

The procedures for determining landslide density on cumulative scales are listed 

below. 

 

1. Calculate the θ, A, and C etc.. for each grid cell within the study area.  

Associate these values with the presence or absence of landslide sites (i.e., 

slide = 1, non-slide = 0). 

2. Rank the grid cells in order of least to greatest value of the variable. 

3. Calculate the percentage of total area and percentage of landslide 

population to produce cumulative area (%) and cumulative landslides (%) 

functions. 

4. Develop a matrix plot of all three variables, cumulative area (%), 

cumulative landslides (%) and topographic variable. 

 

The performance statistic is a density ratio defined as; 
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Density varies with the range therefore each index has a maximum density or 

maximum intra-index performance.  Alternatively, inter-index performance may 

be assessed for maximum values of landslide density measured across equal 

cumulative areas. 

 

Intra-index performance data for slope and area indices are shown in Figure [21] 

and Figure [22] respectively. 
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Figure 21. Matrix plot shows the landslide association with slope index θ1 in the 
Mapleton study area.  Gradients on each curve represent; a) terrain character, b) 
index correlation with slides, and c) landslide density.  Stippled area is an example 
definition for potentially unstable terrain in the θ1 domain.  The width of the 
stippled area measured on the horizontal axis of c) defines the aerial density over a 
continuous range of the index. 
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Figure 22. Matrix plot shows landslide association with area index A1 in Mapleton 
study area.  Gradients on each curve represent; a) terrain character, b) index 
correlation with slides, and c) landslide density.  Stippled area is an example 
definition for potentially unstable terrain for the A1 index.  The width of the 
stippled area measured on the horizontal axis of c) defines the areal density over 
the continuous range of the index. 

 

 

The matrix plots in Figures [21] and [22] provide a means to associate slide density 

with index performance.  Slide density on these plots is defined across a continuous 

range of the index, and the smallest and largest values of the index define the study 

area.  Indices are continuous variables discretized at a 30m scale, while slide 

accumulations create step plots due to their binary values.  Good index qualities 

include a high sensitivity (i.e., steep average slope) to landslide occurrence and 

high landslide density.  

 

A contrast of the density ratios from all indices is shown in Figure [23]. 
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Figure 23. Graphic shows a contrast of the maximum landslide density measured 
from three different normalized areas.  Densities are derived from topographic 
indices in the Mapleton area.  The topographic indices are factored into five distinct 
types ranked from lowest to highest order (left to right). 

 

The performance of an index is a function of the algorithm and the DEM accuracy 

and precision.  Any bias caused by the algorithm should be manifest in the 

distributions.   
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6.3.1  Slope 

The relative performance of the slope indices depends on the normalized area of 

measurement.  Figure [23] shows that in general, slope θ1 and θ2 perform better 

than θ3.  The slope index distributions for the slide population are shown in Figure 

[24] 
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Figure 24. Box plot shows three different slope index distributions for the Mapleton 
slide population.  The white zones represent the 95% confidence intervals of the 
mean. 

 

 

Slope index θ1is significantly (p-values < 0.05) smaller than slope index θ2 and 

slope index θ3.  Given that they both use the same data and are centered inside a 

3x3 window of grid cells, the increase in performance of slope index θ1 over slope 

index θ2 and slope index θ3 may be due to a better model design and not just a shift 

in mean values of the distribution.  The literature claims that the geometric mean of 

the slopes (θ1) around a center cell make a better index of slope and avoids bias 

caused by orientation of the grid [Montgomery and Dietrich, 1998].  Further, any 

algorithm that has a bias towards steeper slopes that would counteract the 
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smoothing caused by the 30m resolution should increase performance.  This is not 

the case shown in Figure [23] and Figure [24].  Slope index θ3 has the steepest 

mean slope, but it represents a line segment in-between two grid cell centers, 

therefore introduces a location bias that may be undermining model performance, 

i.e., the slopes are not being correctly associated with the slides.  It is difficult to 

say anything conclusive about why one index performs better than any other.  This 

necessarily compounds the problem of interpretation since these slopes are 

propagated into higher order indices. 

 

 

6.3.2  Area 

The relative performance of the area indices depends on the normalized area used 

for comparison.  Figure [23] shows that in general, A2 performs better than A1 and 

A3.  The area distributions are shown in Figure [25].   
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Figure 25. Box plot shows three different area index distributions for the Mapleton 
slide population.  The white zones represent the 95% confidence intervals of the 
mean. 
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In spite of the skewed shape in Figure [25], the distributions are all significantly 

different (p-value < 0.007, Wilcoxon Rank Sum Test). 

 

All three area indices use preconditioning to produce a depressionless DEM and 

follow the same sink filling procedure.  Further, every algorithm for generating area 

must make assumptions on defining flow direction and the accumulation of flow.  

Remember that each of these area indices uses a different slope algorithm, 

therefore, the analysis thus far is not a comparison of the later assumptions with all 

other factors being equal.  The bias in the area indices is proportional to the area.  

The major differences are that indices A1 and A3 make attempts at portioning flow 

on a sub grid scale.  The effect should be larger values in small areas.  The area 

index A2 accumulates flow in the direction of the steepest drop only.  Flow 

apportioning does not have an obvious effect on the bias above or below index A2. 

 

A rigorous examination and testing of the code would be required to determine the 

exact nature of the bias, i.e., effects caused by relative grid orientation, 

preconditioning, slope indices used to define flow directions, and finally flow 

accumulation assumptions.  Such testing is beyond the scope of this thesis. 

 

 

6.3.3  Topographic Ratio 

 

Figure [23] shows that in general the topographic ratio performances are 

approximately equal; 
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Given uncertainty in the DEM, differences in the performance cannot be 

distinguished. 

 

 

6.3.4  Hydrologic-Geomorphic Models 

 

Figure [23] shows that in general the SINMAP performs better than SHALSTAB; 

 


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


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>

T
qSHALSTABdexSINMAP critical)(sin  

 

The SINMAP program produces a probability distribution on a factor of safety.  

The SHALSTAB program produces a hydrologic ratio that solves for a critical 

rainfall to reach a factor of safety of one given a constant transmissivity (T).  A 

direct comparison of the distributions is not warranted.  Further, a fair contrast 

against slope and area cannot be made since both have independent algorithms.  

The graphical user interface for the SINMAP program has an option for manual 

iteration of the parameters, that SHALSTAB does not have, and is likely the source 

of increased performance. 

 

 

6.3.5  Expected Value Type 

 

The statistical model was structured as; 

 

12110 ATanEVI βθββ ++=  
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The model used here sampled data from the entire area, not just from stratified 

regions surrounding the slide population.  Section 6.4 on logistic regression draws 

comparison and contrast of several types of models.  There is no direct comparison 

between the statistical performance criteria on regressions to densities. 

 

 

6.3.6  Inter index Performance 

 

Figure [23] shows the inter index performance based on equal-area-densities is 

greatest for the EVI index.  The EVI distribution for the slide population is on the 

high side of the non-slide distribution resulting in higher densities.  Next the area 

indices lead slope indices in performance due the greater amount of skew and rates 

of change across the landscape in the area distributions.  The performance of the 

slope and area indices  propagates through the higher order indices.  Performance 

for the topographic ratio suffers from a division that allows equal outcomes given 

different values of the numerator and denominator.  The hydrologic-geomorphic 

models also contain topographic ratios in their algorithms, and thus experience the 

same equi-finality problem.  The hydrologic-geomorphic model algorithms are 

higher order in the sense that they have additional parameters but do not have an 

objective optimization function. 

 

 

6.4 Logistic Regression on Topographic Indices 

 

Logistic regression was used to determine the odds of landslide occurrence.  These 

odds are used to define the similarity between slide and non-slide sites.  Logistic 

regression was performed using a full-two-way model that included the slope and 

area terms.  This regression will be referred to as the logit {1} model.  The 
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regression was performed on spatially stratified regions defined by a 3x3 window 

surrounding the population of slide sites.  The slope and area terms are not 

significant.  The 3x3 window is smaller than the minimum resolution that 

differences in the variable distributions can be detected.  A regression was then 

carried out on spatially stratified regions defined by the 3cell-minus data set.  The 

results are shown in Table [5]. 

 

Table 5. Logit {1}-model output for a spatially stratified data set  
 
Full Model    Odds = exp (Value) 

Term Value Std. Error Z-stat P-value  L. 95% C.I. Mean U 95% C.I.

(Intercept) -24.1 9.65E+00 -2.49 0.006  2.09E-19 3.42E-11 5.59E-03 

Slope 0.744 0.417 1.78 0.075  0.929 2.10 4.77 

Area 4.84 2.34 2.06 0.044  1.29 126 12400 

Slope: Area -0.169 0.101 -1.67 0.095  0.693 0.845 1.03 

Null Deviance: 452.72 on 1140 degrees of freedom    

Residual Deviance: 438.65 on 1137 degrees of freedom   

 

 

A sensitivity analysis of the odds is performed using the coefficients of the model.  

Back transformation of the coefficients yields the multiplicative effect of a unit 

change in the variable on the odds of landslide occurrence, see Table [5].  The 

relative multiplicative effects on the odds are greatest for the area term and least for 

the slope:area interaction term. 

 

All of the variables in the logit{1}model are significant and the full model explains 

the most variability.  The linked hydrologic geomorphic model presented in section 

4.6 supports the presence of the slope:area interaction term.  The negative value of 

the slope:area coefficient plays an important role in the behavior of logit{1} model.  

A closer look at the full model equation is required to fully understand what it says 
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about the relative contributions of slope and area to the odds and variable 

thresholds that exist. 

 

One way to examine the role of the slope:area interaction term in model behavior is 

with partial functions; 

 

Partial logit (π) = 4.84 (Area) – 0.169 (Slope:Area) 

 

Solving for slope in the equality when the partial logit (π) is equal to zero yields 

 

Area
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A graphical solution for the full logit{1} model is shown in Figure [26] 
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Figure 26. Plot shows slope index versus partial logit {1} with area terms only.  
Contours show lines of equal area ranging from 3.5 to 5.0 that represent the slide 
population in Mapleton.  Arrow indicates direction of increasing area.  
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A root is located at 28.6 degrees where the partial logit(π) is equal to zero.  The 

root is evidence that the logit {1} model behaves similar to the linked hydrologic 

geomorphic model in section 4.6.  The arrow in Figure [26] indicates that on the 

lower side of the root (slopes less than 28.6 degrees), area is proportional to slope 

and on the right side of the root (slopes greater than 28.6 degrees), area is inversely 

proportional to slope.  The size of the interaction term determines the size of the 

root.  Remember the area threshold function, )tan1(sin θθ −= CA  described in 

section 6.1 has a maxima at 24.4 degrees.  The presence of a root marking a change 

in the logit {1} model behavior that is proportional to the physical model is 

important. 

 

The concept of dominant and submissive factors is introduced to help differentiate 

model behavior on either side of the root.  A variable can dominate the logit.  

Dominance indicates that the sum contribution of a variable and its interaction term 

to the logit is relatively high when contrasted to another variable and it’s interaction 

term.  For example, on the lower side of the root, the partial logit (π) = 4.84 (Area) 

– 0.169 (Slope:Area) is greater than partial logit(π) = 0.74 (Area) – 0.169 

(Slope:Area).  It follows that area is dominant on the lower side of the root and 

slope is dominant on the upper side of the root.   

 

Conversion of the logit(π) function to a probability (π) does not change the 

interpretation, however, probabilities are easier to reason with.  All values of 

probability must be within zero or one.  Therefore the graphical display of Figure 

[26] in transformed into probabilities shown in Figure [27]. 
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Figure 27. Plot shows a family of slope index θ1 versus probability curves derived 
from the full logistic{1}model in Mapleton.  Contours show lines of equal area.  
Arrows show direction of increase in the area.  Quadrants are marked Q1, Q2, Q3, 
and Q4. 

 

The trends from the plot in Figure 27 suggest that given equal slopes on the right 

side of the root (quadrants Q2 and Q3) that area is inversely proportional to 

probability and it is the submissive factor.  Conversely, on the left side of the root 

(quadrants Q1 and Q4) the area is proportional to probability and it is the dominant 

factor.  Slope and area interaction are described by the gradient on the curves in 

Figure [27].  The trends from Figure [27] also suggest that given equal areas in 

quadrants Q2 and Q4, the slope is proportional to probability and interaction with 

area is inversely proportional to the magnitude of area.  Conversely for quadrants 

Q1 and Q3 the slope is inversely proportional to probability and interaction with 

area is proportional to the magnitude of area. 

 

 

O’Loughlin’s observations suggest that for quadrants Q1 and Q4 a high saturation 

of the soil profile is required for landslide occurrence.  Alternatively, for quadrants 

Q2 and Q3 a low saturation of the soil profile is required.  A plot of the expected 

probabilities is shown in Figure [28]. 
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Figure 28. Plots of slope versus probability derived from expected values of the 
logit{1} model from spatially stratified regions in the Mapleton area.  Figure a) has 
slides shown as circles and non-slides shown as small crosses.  Figure b) has slides 
only, circles are scaled in size and color proportional to the value of area.  Lighter 
and smaller symbols are smaller values. 

 

Figure 28 indicates there is no terrain present in quadrant Q3. 

 



 70

 

A three dimensional grid surface of expected probability values is shown in Figure [29]. 

 

 

Figure 29. Regression surface for landslide probability derived from the expected 
values of the logit{1} model in spatially stratified regions of the Mapleton area 
surrounding the slide population.  Slides are shown as solid circles. 

 

 

The regression surface in Figure [29] shows that probabilities gradients for slope 

(measured in degrees) are less than area (measured in log10 transformed ha).  This 

follows from the relative size of the coefficients in the full logit{1} model and the 

sensitivity analysis on multiplicative effects.  Thus landslide occurrence is more 

sensitive to the area than the slope. 

 

These are subtle distinctions because it is difficult to say which variable is more 

important given their similar p-values.  Area terms should have lower p-values 

relative to slope due to a smaller relative uncertainty in the DEM.  This would put 

slope at a disadvantage in the regression.  However, the multiplicative effect for 

slope seems to have a much smaller confidence interval than area.   
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Figure [30] shows a contrast of the logit {1} model probabilities classified by 

quadrants in a thematic map. 
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Figure 30. Thematic map shows slide probability classified into quadrants based on 
the roots of the logit {1} model in Mapleton.  A three-cell radius surrounding 
Mapleton slide inventory with down stream cells removed defines spatial 
stratification. 
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Next, the curvature variable is added to the analysis.  The logit {2} model is the 

result of a backward selection of significant terms using three-way saturation by 

slope, area and curvature.  The results of the logit {2} model are shown in Table 

[6]. 

 

Table 6. Logit {2} model output for spatially stratified data set 
 
Term Coefficient Std. Error Z-stat P-value 
Intercept -24.9 7.03 -3.54 0.0002 
Slope 0.828 0.317 2.61 0.0045 
Area 5.50 1.72 3.19 0.0007 
Curvature -0.727 0.444 -1.64 0.0507 
Area:Curvature -0.147 0.104 1.42 0.0774 
Slope:Area -0.213 0.078 -2.74 0.0031 
 

 

The logit {2} model explains more variability than the logit {1} model.  Addition 

of a curvature term produces a better model.  However, little change took place in 

the magnitudes of the coefficients for the intercept, slope, area and slope:area.  The 

curvature and area:curvature interaction are significant to the model but of lesser 

importance than the other terms.  The area:curvature term is positive and the 

slope:area term is negative.  The increase in convergence in the formation of 

hollows results in negative values of curvature and divergent terrain has positive 

values of curvature.  The area:curvature term reduces the magnitude of the logit(π), 

which is similar to the behavior of the slope:area term.  Both interaction terms work 

together to reduce the logit in convergent terrain and in opposition to one another in 

divergent terrain.  Basically, the curvature terms says convergent terrain looks like 

a slide, and the area:curvature slightly reduces the strength of that argument. 

 

The distributions of logit{2} with each main effect variable are shown in Figure 

[31]. 
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Figure 31. Matrix of scatter plots show the explanatory variables versus the 
Logit{2}model derived from spatially stratified regions in the Mapleton area.  
Slides are shown as circles and non-slides as triangles.  Symbols are colored on a 
gray scale from low (light) to high (dark) for a) slope,  b) area c) area, d) curvature, 
e)slope, f) curvature.  Indices are A1, θ1 and C1. 
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Figure [31a] and [31b] show the relationship between logit{2} and curvature is 

linear with a steep gradient and constant variance.  The logit{2} versus slope plot in 

Figure [31c] and [31d]  is non-linear.  The logit{2} versus area plot in Figure [31e] 

and [31f] has non-linear tails separated by a potential threshold that is characterized 

by a segment with zero gradient. 

 

Figure [31] suggests there is some distinctions on the gray scale, which indicate the 

ability of a variable to define a threshold.  The curvature distinction is most visible 

on the slope and area plots.  A contrast of a full and partial logit{2} model with and 

without curvature and area:curvature terms is shown in Figure [32] 
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Figure 32. Scatter plot shows area versus full and partial logit{2}derived from 
spatially stratified regions surrounding the Mapleton slide inventory, a) full logit 
with symbols colored on a gray scale for curvature from low (light) to high (dark) 
and, b) partial logit without curvature terms and no gray scale. 

 

 

A visual inspection of Figure [32] shows how the curvature terms account for a lot 

of variability in the upper range of the logit. 
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Similarity based on the logit{2} between the slide and non-slide sites is shown in 

Figure [33].  
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Figure 33. Box plot shows distributions of the Logit{2} model factored by response 
in the Mapleton area,  a) slides and b) non-slide sites. 

 

 

A contrast of the logit in Figure [33] is used to make observations regarding slide 

and non-slide sites.  Non-slide sites have a lower mean value of the logit{2} than 

slides sites, thus indicating higher odds (lower probabilities) of slide occurrence.  

On average, slide sites are 1.5 times (95% C.I., 1.3 to 1.9) as likely to have a 

response of one as non-slide sites.  Non-slide sites have a logit distribution with 

long tails and a lot of overlap with slides sites.  Therefore the slope, area and 

curvature variables play a small but significant role in the response. 

 

 

The interaction terms make it difficult to  interpret the effects of a unit change in 

the explanatory variables.  A sensitivity analysis was performed using calculated 

changes in the logit centered on mean values of the explanatory variables from the 

slide population.  The multiplicative effect of a unit changes are slope 1.06, area 

1.49 and, curvature 1.54. 
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Logistic regression indicates those variables of slope, area, and curvature, and the 

interactions between Slope:Area, and Area:Curvature are all significant terms in the 

odds function.  In general, the slide sites are steeper, more convergent and have a 

larger area. 

 

The scope of these statements is limited to topographic variables derived from a 

USGS 30m DEM using the particular algorithms for slope (θ1), Area (A1), and plan 

form curvature (C1).  The spatial scope is limited to spatially stratified areas within 

a three-cell radius adjoined to the slide sites in the Mapleton area with cells down 

stream of the slides removed.  If the spatial scope defines the morphologic system, 

then the temporal scope is defined by the process response system (see section 4.4 

on physical geography).  Strictly speaking the odds are retrospective.  However, the 

retrospective odds may be treated like prospective odds if the temporal scope 

encompasses the process response e.g., a geologic time scale. 

 

In terms of assigned hazard ratings where life and property are at risk, the 

difference in odds are likely not practical for a land manger.  In terms of research 

questions on where landslides occur, the difference in odds may be practical. 

 

The odds may also be phrased in terms of site similarity.  The similarity assumption 

means that similar odds are equivalent to similar topography.  Sites that possess the 

same odds as the slide population but did not fail, likely have some other first 

order-confounding variable that was not measured.  Non-slide sites cannot be 

interrogated for confounding variables without more information.   

 

Logistic models may be extrapolated outside the spatial scope given restrictions on 

the range of the topographic variables inside the source area.  This assumes that 

source areas are representative of the other terrain under similar conditions.  The 
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logistic regression models presented here have not been tested outside the source 

areas. 

 

 
6.5 Discrimination by Definition  

 

Discrimination between slide and non-slide sites is facilitated by an examination of 

the definitions on topographic similarity with the slide population.  The analysis 

presented here is a variation on the assessments of index performance in Section 

6.3.  The primary metric of interest is areal density calculated from definitions of 

site similarity extrapolated across the Mapleton study area.  An example includes 

using a map with arbitrary boundaries on a slope index to define non-slide sites that 

are similar to the existing slide population.  Arbitrary boundaries are set on each 

index using the 95% confidence interval about the mean calculated from the slide 

population. Application of these boundaries is index stratification.   

 

A combination of indices used in a definition of similarity may involve logical 

operators such as an; 

 

• IF statement used to define arbitrary boundaries set on an index.  When 

statement is true, the non-slide site is similar to slide site 

• AND statement used for variable intersection (i.e. common domain and 

cumulative area).  The intersected area defines non-slide sites that are 

similar to slide sites. 

• OR statement used for variable union (i.e., overlapping domain and 

cumulative area).  The union of areas defines non-slide sites that are 

similar to slide sites. 
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Performance for a group of low order indices using domain stratification for the 

entire Mapleton study area is shown in Table [7].   
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Table 7. Slide and areal densities using domain stratification 
 

 
Slide Limits1

Areal 
Density2 Slide Population3 Density Ratio4

  LCL UCL (%) (%) (%) 
Single Variable5      
Slope (degrees) 25.7 27.6 11.7 22.4 2.1 
Area log10(ft2) 4.10 4.25 13.7 32.8 2.4 
Curvature (ft) -2.57 -0.46 13.6 46.6 3.4 
      
Variable Intersection6      
Slope & Area   2.4 3.7 1.5 
Slope & Curvature   1.8 5.5 3.0 
Area & Curvature   1.8 1.8 1.0 
Slope & Area & Curvature   0.4 0.0 0.0 
      
Variable Union7      
Slope or Area   23.1 43.1 1.9 
Slope or Curvature   23.5 62.1 2.6 
Area  or Curvature   25.3 63.8 2.5 
Slope or Area or Curvature   33.0 72.4 2.2 
      
Optimization of Variables8      
Logit {1} -2.75 -2.59 13.6 44.8 3.3 
Logit {2} -3.59 -3.26 18.2 39.7 2.2 
Notes: 
1) 95% confidence limits for each variable based on Mapleton upslope slide 

inventory 
2) Percentage of Mapleton red zone that falls within the domain of the variable 
3) Percentage of the upslope slide population that falls within the domain of the 

variable 
4) Density ratio = percent slides / percent total area 
5) Algorithms are slope = θ1, area = A1, and curvature = C1. 
6) Intersections include common areas only.  Same domain limits as the single 

variables. 
7) Unions include intersected areas and non-intersected areas. Same domain limits 

as the single variables. 
8) Regression models based on stratified areas surrounding Mapleton slides. 

Expected values extrapolated to entire Mapleton red zone, therefore models are 
valid within the domain limits of the explanatory variables only. 
logit {1}= β0 +β1Slope+β2Area+β3Slope:Area 
logit {2}=β0+β1Slope+β2Area+β3Curvature+β4Slope:Area + β5Area:Curvature 
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The data in Table [7] have fixed domains and variable areas, where as the data in 

Figure [23] have fixed areas and variable domains.  Therefore a direct comparison 

is possible.  However, it highlights the need for an objective such as fixed area or 

proportion of the slide population.  For example, a high-density ratio is worthless if 

the variable regime captures an unacceptable number of slides.  Ideally, the domain 

limits could be iterated until an objective was achieved. 

 

 

6.5.1 Single Variable Performance 

 

Table [7] shows the relative performance of the single variable definitions based on 

slide densities is; 

Curvature > Area > Slope 

 

The domain limits were arbitrary, but all three had similar representative areas, 

therefore, this is a fair comparison.  There are thresholds in all three indices 

facilitating failure and the order of arrangement highlights their importance in 

physical process.   

 

 

6.5.2 Variable Intersections and Unions 

 

Variable intersections based on the slide populations should define the most similar 

sites and produce the highest performance.  However, the arbitrary limits on the 

definitions yielded such small representative areas that conclusions on the 

performance cannot be drawn.   
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Table [7] shows the performance of the variable unions based on slide densities is; 

 

Slope or Curvature >Area  or Curvature>Slope or Area or Curvature>Slope or Area  

 

These definitions occupy the largest area and are therefore the most thoroughly 

tested of all the definitions.  Variable unions have lower density ratios than the 

single variable definitions.  Variable unions represent the most conservative 

definitions of site similarity.  

 

 

6.5.3 Optimization of Variables 

 

Iteration of the domain limits on variables for an objective is known as 

combinatorial optimization (pers. Comm. John Session, 2002).  Combinatorial 

optimization would produce a set of logical rules (IF, AND, OR) with domain 

limits.  Future research efforts using this type of analysis is within the scope of the 

thesis objectives. 

 

A specific type of optimization is the maximum likelihood algorithms employed in 

logistic regression.  The expected value is the log odds (logit) of landslide 

occurrence.  The product is a distribution of the logit generated from a combination 

of variables with linear coefficients.  This is distinctly different from a union or 

intersection of variable domains.  The coefficients are generated such that the slide 

population has the largest and most extreme values of the logit.  Given domain 

limits on the logit, non-slide sites that are similar to slide sites can be selected.  

However due to extrapolation, blatant use of logit values on the extreme ends of the 

slide population will pick up terrain that has explanatory values outside the domain 

of the model. 
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For example, the logit{2} model was defined as;  

 

logit {2} = β0+β1Slope+β2Area+β3Curvature+β4Slope:Area+β5Area:Curvature 

 

A sample definition of site similarity is given by the 95% confidence interval about 

the mean of the logit {2}from the slide population.  Table [7] shows the 

performance stats for two logistic models.  Next, the explanatory variable 

distributions from cells that fit the definition are presented in Figure [34]. 
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Figure 34. Box plots show the explanatory variable distributions based on 
systematic range limits of the logit{2} model, a) slope, b) area, and c) curvature.  
Box plots on left are coincident (in) with a 95% C.I. on the logit{2} model defined 
by the Mapleton upslope slide population.  Box plots on the right are not coincident 
(out).  There are 4,343 cells classified as “in” and 19,511 cells classified as “out”. 
Indices are A1, θ1, and C1. 

 

Figure [34] shows that extrapolation of the logit outside the stratified areas (defined 

by the slide population) has violated one of the basic requirements, i.e. explanatory 

values must be inside the domain limits defined by the slide population.  Next, the 

logit{2} data are intersected with the domain limits defined by the explanatory 

values in the 3cell-minus data set.  The result is 188 cells are removed from the 
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“in” tails in Figure [34].  This translates into 17.4% of the total area defined as 

being similar to slides. 

 

The challenge here is to determine what makes a good definition on site similarity.  

Recall from Section 5.0 the reduced model logit{1} was defined as; 

 

logit {1} = β0 + β1Slope + β2Area + β3Slope:Area 

 

The logit{1} model demonstrates better performance (defined by the density ratio) 

in Table[7] than does logit{2}.  The logit{1} model also has similar density ratios 

as the single variables.  Further, it is remarkable that the logit{1} model has the 

same density ratio as the single curvature variable.   

 

Drop in deviance testing suggests the logit{2}is a better model than logit{1}.  The 

logit{2} was derived from stratified areas characterized as being mostly 

convergent.  Thus terrain outside the stratified regions may be characterized as 

more planar and even divergent.  The curvature distributions for slide headwalls 

and non-slide headwalls have not been examined because there is no definition of a 

headwall.  The “in” and “out” terrain in Figure[34] contains a mix of headwalls 

with and without slides.  Extrapolation of the logit{2} to terrain with different 

curvature distributions may weaken the model. 

 

Inspection of the logit{1} and logit{2} formulae highlights an essential behavioral 

difference between the two.  Logit{2} should pick up more convergent terrain and 

less divergent than the logit{1} model.  Basically, the logit{1} model is looking for 

convergent terrain and cannot find it all, but the logit{2} model can.  The only 

evidence available is from drop in deviance testing, therefore, the later 

interpretation is accepted.  
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In spite of the low performance in the single variables the slope index is still the 

“gold standard” for comparison.  Therefore, the explanatory variable distributions 

based on a slope index definition are shown in Figure[35]. 
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Figure 35. Box plots show explanatory variable distributions systematically defined 
by a simple slope model, a) slope, b) area, and c) curvature. Plots on left are 
coincident (in) with a 95% C.I. on the slope index θ1 model defined by the 
Mapleton slide population.  Box plots on the right are not coincident (out).  There 
are 2,941 cells classified as “in” and 20,913 cells classified as “out”.  Indices are 
A1, θ1, and C1. 

 

 

A contrast of the logit{2} model in Figure [34] with the simple slope model in 

Figure [35] indicates there is a significant shift in the curvature distribution.  The 

slope index definition of similarity has a bias toward higher values of curvature 

(i.e., planar terrain).  Conversely the logit{2} model has a bias toward convergent 

terrain (negative curvature).  A visual comparison is made in Figure [36]. 
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Figure 36. Box plot shows a contrast of Curvature index C1 distributions for the 
logit{2} and slope θ1 models in the Mapleton area. 

 

 

The mean difference in the curvature distributions of Figure [36] is 0.9ft 

(95% C.I. equal to 0.7 to 1.0 ft).  The slope model has 36% of the cells 

classified as convergent (curvature < 0), and the logit{2} model has 44% 

classified as convergent.  This difference in classification accounts for 830 

cells or 4% of the total area inside the Mapleton study boundaries. 

 

Analysis of densities and index domains does not tell the whole story.  The location 

of sites defined as similar to slide sites is the next item of interest.   

The difference in the explanatory variable distributions hints at a shift 

toward a uniquely different set of cells.  An aerial intersection on the 

logit{2} and slope models is carried out to examine this shift. The 

proportions from an aerial intersection are shown below; 
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 Number of cells

Slope θ1 2941 

Logit{2} 4155 

Difference 1214 

Area intersection 1060 

 

The logit{2}-model definition of site similarity is mapped out in Figure [37].  A 

picture of the slope and logit{2} models with aerial intersection is mapped out in 

Figure [38]. 
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Figure 37. Thematic map for a systematic definition of the logit{2} model.  Theme 
indicates expected logit{2} values within the 95% C.I. of the Mapleton slide 
population.  The similar sites are sub-classified based on curvature.  Planar terrain 
is defined as +/- 1 ft.  The extent of convergence is defined by the data minimum 
and divergence by the data maximum. 
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Figure 38. Thematic map for an intersection of the logit{2} and simple slope 
models.  Logit{2} and slope models show arbitrary definitions of site similarity 
based on the 95% C.I. of the slide population in the Mapleton area.  The similar 
sites are sub-classified based on model type and their aerial intersection.  
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A fair comparison is difficult to make between the logit{2} and slope models 

because the representative areas have not been normalized as they were for 

different model comparisons made in Figure[23].  The portion of the landslide 

population captured may best normalize aerial density performance.  The 

discrepancy in coincidentally classified cells created by the aerial intersection of 

the logit{2} model and the slope θ1 model of site similarity is disconcerting and is 

worthy of future research. 

 

The data in Table [7] are derived from confidence intervals about the mean 

index value measured from the slide population.  Land managers want 

prediction intervals that are necessarily wider than a confidence interval on 

the mean.  Further, the expected values from logistic regressions are mean 

values and have standard errors attached to them.  Thus there are actually 

two distributions of any given logit model that define the desired prediction 

interval, i.e. a lower and upper 95% bound of the mean logit.  Extrapolation 

of the logit model is worthy of further research. 

 

Given the following assumption; 

 

• Topographic similarity is achieved by a 95% confidence prediction interval. 

about the mean of the index for the slide population, i.e., some function of 

slope, area, and curvature. 

 

The following inferences from the evidence in Table [7] 

 

• The portion of the landscape that looks like a landslide ranges from 13.6 to 

17.4 % depending on which regression model is examined, and 

• The portion of the landscape that looks like a landslide ranges from 11.7 to 

13.6 % depending on which single variable model is examined, and 
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• The portion of the landscape represented by the more conservative 

regression models exceeds the single variables models by 4%. 

 

The later inference is important because a simplified view of slope stability hazard 

ratings (e.g. slope theme only) could systematically ignore potentially unstable 

terrain. 

 

 

6.5.4 Performance in Spatially Stratified Areas 

 

The proximity of non-slide sites to slide sites is yet another way to define 

similarity. The regression analyses in Section [6.0] defined stratified areas 

surrounding the Mapleton upslope slide population.  Index performance for a select 

group of low order variables using domain and area stratification is summarized in 

Table [8] and displayed graphically in Figure [39]. 

 



  

Table 8. Slide and areal densities with spatial and domain stratification for the Mapleton slide population 
Fraction Sample Size Population Proportions Density Ratio5   Site Stratification 

  In Domain Slide2 Proximity3 Domain4 Slide-Slide Density6 Proximity7,8 95% C.I. on Domain
  (n)1 (n / 58) (n / 1377) (n / Total) Proximity -Total (slides/acre)     

Slide 11 0.19 0.01 0.06         
Non-slide        176 3.03 0.13 0.94 1.40 0.26 Slide Slope9 
Total 187   0.14 1.00     population   
Slide 18 0.31 0.01 0.08     (N = 58)   
Non-slide         211 3.64 0.15 0.92 1.87 0.35 Area10 
Total 229   0.17 1.00     Three cell   
Slide 3 0.05 0.00 0.08     radius of - Intersection - 
Non-slide         36 0.62 0.03 0.92 1.83 0.35 slides Slope & Area
Total 39   0.03 1.00     (N = 1377)   
Slide 26 0.45 0.02 0.07       - Union - 
Non-slide 351 6.05 0.25 0.93 1.64 0.31   Slope OR Area 
Total 377   0.27 1.00         
Notes:         
1) 30m-USGS-DEM        
2) Fraction of landslide population      
3) Fraction of total area stratified by proximity to the slide population   
4) Fraction of total area further stratified by 95% C.I. on variable domains of slide population 
5) Density Ratio is a measure of efficiency      
6) Density of slides per unit of similar terrain      
7) The three cell radius is intended to be an approximation of total area in the associated zero order basin 
8) Cells down stream of the landside population are included, representing an additional 290 cells 
9) Slope variable θ1        

        10) Area variable a1

  

92 
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a) Areas of Slide and Non-slide sites Stratified on 
Proximity to and Domain of Slides
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Figure 39. Performance data inside spatially stratified areas.  Slide and non-slide 
sites in spatially stratified areas surrounding the Mapleton slide population.  
Systematic definitions of domain similarity based on a 95% CI of the slide 
population.  a) areas sub stratified by domain, b) Proportions only  and c) 
Proportions sub stratified by domain. 
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A couple of inferences from Table [8] and Figure [39] are; 

 

• The most efficient definition of slide site similarity is given by the area 

variable.  The least efficient is given by the slope variable.   

• Efficiencies defined by intersections and unions of the slope and area 

variables fall in between these two extremes. 

 

Given the high similarity of cells inside the stratified regions the performance of 

the indices is lower and less variable than for the total study area data shown in 

Table[8].  
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7.0 Conclusions 
 

 

Single topographic variables and higher order indices have been contrasted for slide 

and aerial density (performance) with varying degrees of success depending on the 

metric of performance.  Interpretation of performance of all types and indices is 

confounded by measurement uncertainty and GIS technique. 

 

Inter index performance based on equal-area-landslide-densities measured across a 

continuous domain is 

 

EVI > Area > Slope > Infinite Slope > Topographic Ratio 

 

The EVI index performs best because of optimization routines. The area index 

performs better than slope because area has a high spatial correlation of high 

landslide probability sites caused by convergence.  The hydrologic-geomorphic 

model indices worked marginally better than the topographic ratios due to a modest 

amount of manual calibration.  The topographic ratio performed least of all due to 

an equi-finality problem brought on by division. 

 

The intra-index performance based on equal-area-densities for the area and slope 

index groups is also different.  The numerous assumptions made in each one of the 

algorithms and lack of rigorous testing present makes it difficult to interpret why 

these differences exist. 

 

There are significant differences (α < 0.05) between mean values of the slope, area, 

and curvature index distributions for slide and non-slide sites in spatially stratified 

areas adjoined to the existing Mapleton slide population.  The minimum resolution 

on this statement is approximately a 90m radius surrounding the landslides (three 
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cells).  The differences are small but increase proportional to the scope.  There is no 

significant difference between mean values of the area distribution in areas further 

stratified by a 95% confidence interval on slope defined by the slide population.  

However, given the highly skewed nature of the area distribution there are sites 

with extreme values of the logit representing much higher odds of failure. 

 

Empirical modeling was unsuccessful and provided no evidence (p-value = 0.3) of 

an area threshold on landslide occurrence.  Regression analyses of slope against 

area for the slide population suggests there is mild evidence (p-value of 0.1) of an  

area threshold on slide occurrence in Mapleton, but it was not distinct.  Logistic 

regression analyses match the behavior suggested by the hydrologic-geomorphic 

model.  Subsequent experiments suggest that such a simple view of the area 

variable is not appropriate.  Other factors such as curvature and interaction with 

slope have to be factored in.  The logistic regressions are an improvement over the 

geomorphic-hydrologic model in that they take advantage of curvature in the 

landscape, and optimize the data set.  The hydrologic-geomorphic model does not 

have a curvature variable nor does it have an effective area weighted for 

convergence as demonstrated by O’loughlin, 1981. 

 

The logistic regressions suggest that the relative multiplicative effect of 

topographic variables on the logit is; 

 

Area (5.5) > Slope (0.83) > Curvature (-0.72) 
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Further the variable interactions act; 

 

Area:Curvature (1.5) acts positively > Slope:Area (-0.21) acts negatively 

 

The biggest obstacle to discrimination between slide and non-slide sites is the 

definition of similarity.  An examination of domain limits on single variables, 

domain intersections and unions, and area intersections produced significantly 

different results.  Performance measured by areal densities across the Mapleton 

area suggest the relative performances of the single variable definitions  normalized 

for the slope index are; 

 

Curvature (1.6) > Area(1.1) > Slope (1.0) 

 

The variable intersections and unions using domains are a confusing mixture, but 

crudely parallel the performance already stated above.  Further analysis in spatially 

stratified regions surrounding the slide population suggests the same pattern.  

Performances measured by areal densities in spatially stratified regions normalized 

for the slope index are; 

 

Area(1.3) >[Domain Intersections and Unions] >Slope (1.0) 

 

The number in brackets is density ratio normalized for slope.  The optimized 

definition of topographic variables have areal densities that are less than or equal to 

single variables.  More research is required to determine if these definitions are 

conservative with respect to future susceptibility of landslides. 

 

Optimized definitions of site similarity using logistic regression may be 

extrapolated spatially beyond the sampling area.  These definitions may not be 

extrapolated beyond the domain of the sample distributions. 
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Non-slide sites similar to slide sites, may be predicted and located correctly with 

known confidence using statistical definitions of site similarity based on a slide 

inventory.  However, location DEM derived variables cannot be confused with 

ground measurements, thus similar terrain may only be located via X and Y 

coordinates. 

 

The logit definitions may be transformed into odds and probabilities and are strictly 

defined as retrogressive in nature.  The logit definitions may be extrapolated into 

the future if a carefully designed scope is carried with it.  The physical processes 

suggest that this scope should include a specified time scale such as the cycle time 

on bedrock hollow filling and evacuation and the return periods on the 1996 

storms.  For example, X percentage of the landscape is susceptible to landslide 

occurrence on a forest management time scale, or DEM derived slopes within X 

and Y domain limits are Z times as likely to be susceptible to landslide occurrence. 

 

Finally, good definitions of topographic similarity could allow slope stability 

assessors to invest more time into studying non-topographic factors. 
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Equations to predict the occurrence of landslides in the Oregon 
Coast Range  

 
Project #:  C0102-62 
Client:   Jeremy Appt, MS student, Forest Engineering (Maj. Prof.: 
Arne Skaugset) 
Statistics classes: ST511, ST512, ST513. 
Consultants:  Vicente Monleon, Cynthia Cooper 
Statistical consulting: This is the fourth time that Jeremy uses the Consulting 
Services. 
 
Background and objectives: 
 
Jeremy is trying to predict the occurrence of landslides in an area around Mapleton 
using slope and drainage area measurements derived from maps. The ultimate 
objective is to produce a map of risk of landslides, and identify areas of higher risk 
 
Sampling / response design: 
 
Following two large landslide-producing rainfall events in 1996, the Oregon 
Department of Forestry identified as many landslides as they could find in four 
pilot sites in the Coast Range. The main objective of that study was to determine if 
there was a link between specific forest management practices and landslide 
frequency. Personnel from ODF visited each site and determined the coordinates of 
the point of origin of the landslide using GPS. Jeremy is using data from one of 
those sites (Mapleton, an area about 3x10 km2). Only landslides that were not 
started by roads were included in the sample (total 92). There are 3 types of 
landslides – upslope, in stream channel, and adjacent to stream channel. Jeremy is 
only interested in upslope landslides – total 56. 
 
The two explanatory variables, slope and drainage area, were derived using the 
30m USGS Digital Elevation Model. A DEM is an array of x, y and z coordinates 
in a 30m grid. He used this grid to divide the study area into 30x30 m2 cells (about 
24,000). Then, he computed the slope of each cell based on the elevation of that 
cell and that of the eight adjacent cells. He computed the drainage area of each cell 
by determining the cells that ‘flowed’ into it. The errors associated with the DEM 
and the derived slope and drainage area were discussed at length in previous 
consulting sessions. 
 
In summary, for each of the 24,000 cells that comprise the whole study area, 
Jeremy has an indicator variable of whether that cell was the point of origin of a 
landslide, and an estimate of its slope and drainage area. 
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Modeling 
 
Jeremy has used logistic regression to estimate the probability of presence of a 
landslide in a cell. He transformed the explanatory variables to the tangent of the 
slope angle and the log of the drainage area. He has used a retrospective sampling 
design to select the cells used to develop the models: he included all the cells with 
landslides, and randomly chose 3 times as many cells without landslides. In 
addition to sampling non-landslide cells from the whole population, he also 
restricted the areas from which he sampled. Domain restrictions were based on 
values of the slope and drainage area, selected from the range in which the 
landslides in the dataset occurred.  Location restrictions limited the cells available 
for selection to a 5- or 10-grid cell radius around a cell with a landslide. He then 
used a likelihood ratio test of whether the coefficients for slope and drainage area 
are both 0. When using a location restriction, he did not account for the ‘pairing’. 
 
Assistance needed: 
 

1. Slope stability theory predicts that a landslide will occur when: 
 

tan1
sin tan

s

w

qA
Tb

γ θ
θ γ φ


> −

 


 ,  where: 

 
A  = upslope drainage area 
θ = slope angle 
b = unit contour width (known constant) 

wγ  = unit weight of water (known constant) 
q = effective rainfall after losses 
T  = depth integral of the saturated hydraulic conductivity 

sγ  = unit weight of saturated soil 
φ = internal friction angle 

 
Of those variables, Jeremy obtained surrogates of A and θ from the DEM, and b 
and wγ  are known constants. The rest are parameters of “great theoretical 
importance, but impossible to measure in the field”.  Jeremy re-arranged the terms 
of the equation to get: 
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> − = + θ  

 
He wants to know if he can use this information to improve his models. 
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2. Jeremy wants general assistance with the logistic regression and model 

development. He has spent a lot of time calculating NPP for the explanatory 
variables, trying to find a normalizing transformation; he wants to find a 
transformation to stabilize the variance of the response…He wants to know 
how to deal with the possible spatial dependence in the data, and how to 
estimate the uncertainty in the prediction. 

 
3. Measurement error problem: Since the elevations from the DEM are not 

exact, he has performed a stochastic simulation of the elevation error by 
adding ‘spatially correlated random error fields with a N(0,15m)’. 
Somehow, he added noise to each cell, and re-calculated the slope and 
drainage area for the whole dataset. He repeated this process 30 times. He 
wants to know what to do next. 

 
 
Recommendations 
 
I. Theoretical model: 
 
We do not know how you could use the theoretical model to improve your 
regression equation. The model identifies both slope and drainage area as 
important, and you are already using them.  
 
We recommend that you try some data visualizations rather than focus on modeling 
– this way you may be able to explore your theoretical model. For example, you 
may want to draw scatterplots of log(area) vs. tan(theta) and use two symbols, one 
for landslide and the other for the rest (if there is too much clutter, you may want to 
use a random sample of the points without landslides). Then, you can choose some 
values of beta1 and beta2 and display curves of the form A = beta1*sin(theta) + 
beta2*sin(theta)*tan(theta) on those graphs. You can check whether the landslide 
points group together on one side of those curves. 
 
 
II. Model fit and assumptions 
 

1. The constant variance assumption only applies to normal regression. When 
the response is binary and you use logistic regression, there is no variance 
assumption to worry about. 

 
2. You do not need to worry about the distribution of the explanatory variables 

– no need to check NPP or to try to attain normality. In regression, the 
explanatory variables are assumed to be known constants. You transform 
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the explanatory variables so that the response meets the assumptions of the 
kind of regression that you are using. 

 
3. You need to worry about additivity and linearity. You are assuming that the 

log of the odds of landslide is linear and additive in the tan(theta) and 
log(area) scales. You may want to do some visualization of the data so find 
out is it is true. You may want to look at books that deal with discriminant 
analysis to find out useful plots (such as those described in Johnson and 
Wicherin, chapter 11), or to the book by Cleveland (1993). Since the data is 
binary, you may want to use binning or smoothing to be able find out 
whether the assumptions are met. Another option is to include squared 
terms (test for linearity) or interactions (additivity) in the regression, and 
test whether they are significant. 

 
4. We do not know why you would want to use the location restrictions in his 

retrospective sample. You will not be able to use the resulting equation for 
prediction, since it is only valid for the domain restriction where they were 
developed. In any case, you should treat the paired cells with and without 
landslide as a block.  

 
5. You may have to do some kind of restriction of the study area, since you are 

not including landslides that originated in roads or streams. For example, 
creeks and areas adjacent to creeks should not be included, same with roads. 

 
6. Restricting by the range of slopes and drainage areas in which you observed 

landslides does not seem very appropriate. Are you saying that there cannot 
be landslides when the slope is greater than 65 degrees? You should decide 
domain restrictions before looking at the data. 

 
7. There is some concern with the eastern boundary of the study area. It looks 

like it is a straight line – how did you calculated drainage area for those 
plots in the boundary? It may be a source of error. 

 
 
III. Interpretation of the model 
 
You are using logistic regression to get a measure of similarity to the locations 
where landslides occurred in 1995-1996. The measure of similarity is based only in 
the slope and drainage area, and assumes linearity and additivity in whatever scales 
you choose. When you get your prediction, a number closer to one would indicate a 
greater similarity to the landslide sites. The study is totally observational, so you 
can only find associations, not probabilities or risks of landslides. From a statistical 
point of view, we cannot say that areas more similar according to the measure that 

 



 107

you developed are more likely to have a landslide. So, any reference to probability 
or risk of landslide cannot be based on statistical principles. The observational 
nature of the study makes it such it could only be applied to the study area and to 
conditions similar to those of the 1995-1996 storms. 
 
You are using a retrospective sampling scheme to develop your models. Therefore, 
you can only describe odds ratios, not probabilities. You may want to read 
McCullagh and Nelder (1989), p. 111, for some comments on this problem and 
possible remedial measures.  
 
IV. Model validation 
 
There is a general consensus that you should try an external validation of the 
model, specially given the limitations of an observational study. This seems 
specially feasible here, since there are other sites available. You could find out if 
the model developed in Mapelton could predict the locations of landslides at the 
other sites. Then, you could have an estimate of the false alarm and detection 
failure rates that is independent of the data used to develop the model and, 
therefore, more credible. 
 
V. Measurement error 
 
We can see problems with the approach that you are using. First of all, if your aim 
is to create a map of probabilities of landslide occurrence, using the same DEM 
data that you used to develop the logistic regression, there is no measurement error 
problem. There may not be any pattern either, but that is not going to improve by 
adding noise. 
 
If you want to explore the relationship between some ‘true’ measurement of slope 
and drainage area, instead of those derived from the DEM, I would recommend that 
you go to the field and takes better measurements of those variables. Adding noise 
to the elevation data from the DEM according to some assumed model only 
accounts for one source of the many possible errors in the explanatory variables. 
For example, even if the DEM was known exactly, the algorithm that you used to 
calculate slopes tends to flatten the stepper areas significantly. Then, there is the 
problem of scale: given how variable is the topography in the Coast Range, 
averaging the slope over 30m does not seem reasonable. Also, drainage area is 
calculated in increments of 900 m2 – quite a large area. 
 
If you decide to pursue his approach, I guess that you would develop regression 
equations for each of the 30 DEM that you generated, carry the process to the end, 
and find a final ‘envelop’ for the CI. 
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Assumptions in Statistical Models and Logistic Regressions 
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1. The natural link for a binary variable (i.e., slide = 1, and non-slide = 0) is 

the logit or log Odds function; pp XXit βββπ +++= ...)( 110log , where π 

is the population mean of responses equal to one.  This leads to logistic 

regression.  The logit may be back transformed into the odds (ω) where 

.  The odds may be back transformed into the probabilities(π) 

where 

)(log πϖ ite=

ϖ
ϖπ =

1+
.  The range of possible probabilities is 0 to 1.  The 

coefficients are determined by a maximum likelihood algorithm that 

maximizes the probabilities for the sub-population with response values 

equal to one. 

 

2. Non-constant variance.  Logistic regression is non-linear in the β’s 

however, all of the non-linearity is contained in the link function.  The 

regression structure may be used like normal regression 

 

3. Linearity in explanatory variables.  The statistical model should match 

assumptions based on physical process.  The hydrologic-geomorphic model 

does not suggest any non-linear explanatory variables.  

 

4. Additivity in the expected values based on interactions between explanatory 

variables. The statistical model should match assumptions based on the 

physical process.  The hydrologic-geomorphic model does suggest 

Slope:Area and Area:Convergence interactions. 

 

5. Explanatory variables are constants. Therefore transformations like Sine, 

Tangent and Log10 are just matters of convenience. 

 

6. Independence of Response 
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Response values equal to one in cells down stream of one another are not 

independent.  If I remove response errors down stream of the landslides 

then I also further limit the scope of the analysis.   

 

Response values equal to zero in the Area (converse of above) of a slide 

cell are not 100% independent of one another.   The level of independence 

increases with the distance of separation.  

 

Response values of zero that are not in the Area of the slide are by 

assumption of the DEM calculations assumed to be independent of the 

response in the slide cell, but still partially dependent on one another. 

Lack of independence causes no bias in least squares estimates of the 

coefficient, but standard errors are seriously affected (Sleuth, pg.203).    

Regression analyses require that after accounting for the effects of the 

explanatory variables, the responses be independent (Sleuth, pg.427). Is one 

slide causing another? This answer is not available.  The severity of the 

consequences is a function of the severity of the violation. 

 

7. Representative Sampling 

Response values of zero that are not in the Area are by virtue of the GIS 

algorithm assumed independent of the landslide, therefore cannot be 

playing a role in the response.  The selection of a sampling radius in lieu of 

a contributing area significantly changes the scope of analysis.  The primary 

purpose of this analysis is to carefully distinguish between slide and non-

slide sites within some useful scope of application.  This does not 

necessarily include testing theory on Area thresholds in landslide 

occurrence.  Including values outside the Area, confounds interpretation of 

regression output for potential thresholds.  The data, which are non-
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representative of threshold theory, may mask or create patterns in the fitted 

data that are unrelated. 
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Appendix C 
 
 

Regression Analysis of Soil Depth at Slide Sites in Mapleton 
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Regression Analyses 
 
Source: 1996 ODF Landslide report 
Location: Mapleton core study area 
Data: up-slope landslide subset population 
 
The proposed regression model includes; 
 
Response: ls_maxd (landslide maximum depth, units are in feet) 
 
Explanatory variables: slp_blw, ls_width, drain_area (slope below the landslide 
headscarp in percent, landslide width in feet, and landslide drainage area in acres) 
 
Factors:  the data is factored by sub-basin (five in total) 
 
Methods:  A fully saturated two way interaction model was analyzed using least 
squares regression techniques.  Backward selection was employed to simplify the 
model.  Tabulated results are presented below;  

 



  

 

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10 Round 11 Round 12 Round 13 Round 14 Round 15 Round 16 Round 17

Intercept 0.04594 0.0451 0.04466 0.07655 0.07294 0.05261 0.14572 0.51541 0.59241 0.75938 0.35585 0.99379 0.73576 3.61235 2.96584 3.28021 0.07344

Main Effect Slope below 0.409 0.42275 0.42829 0.54284 0.54753 0.56634 0.61709 0.96591 1.03722 1.13617 0.85501 1.56197 1.36377 2.44808 1.55869 1.6059 0.45091

Main Effect Drainage Area 0.1732 0.17826 0.1815 0.43929 0.48667 0.49469 0.43075 0.25775 0.11966 1.22037 0.97964 0.98423 1.031 0.73746 0.41168 0.02702 0.46748

Main Effect Slide Width 1.5547 1.62384 1.66089 1.7606 1.78255 1.87331 2.07203 2.96395 3.4627 3.41684 2.9689 3.18124 2.85338 2.31134 2.05065 2.65606 1.15424

Indicator 1 Bridge 1.42475 1.45601 1.50562 1.52677 1.54645 1.60111 1.60347 1.48178 1.58348 1.8303 0.6159 0.67689 1.08183 1.88242 1.90356

Indicator 2 Brush 1.57548 2.18302 2.21724 2.303 2.34966 2.38016 2.38456 2.47396 2.84823 2.66397 2.6287 2.31513 2.25696 1.66823 1.70722

Indicator 3 Siuslaw 1.14118 1.1576 1.1831 1.20729 1.22396 1.2371 1.17036 1.4408 1.77111 1.27887 1.11494 2.4589 2.47359 2.69531 2.48996

Indicator 4 Turner 0.2708 0.27466 0.27795 0.27983 2.31678 2.3702 2.70275 2.66254 2.83445 2.99288 2.52995 2.34119 1.78642 1.54747 0.49598

Two Way Interaction Drainage Area Slope below 0.03682 0.0386 0.03888 0.40795

Two Way Interaction Slide Width Slope below 1.44463 1.50999 1.54015 1.64567 1.66754 1.79426 1.90385 2.58139 3.05365 2.9952 2.6215 2.85666 2.58713 0.94825

Two Way Interaction Bridge Slope below 1.11416 1.13818 1.18564 1.20527 1.22012 1.25471 1.2218 1.07932

Two Way Interaction Brush Slope below 1.85856 2.25139 2.28483 2.42338 2.46366 2.79717 2.8067 2.91622 3.35106 3.1874 3.12849 2.7962 2.72831 2.06345

Two Way Interaction Siuslaw Slope below 1.33641 1.35533 1.38393 1.43937 1.45874 1.48075 1.52762 1.7856 2.12197 1.7359 1.5739

Two Way Interaction Turner Slope below 0.06127 0.06218 0.06184 0.06034

Two Way Interaction Slide Width Drainage Area 0.56456 0.5791 0.61729 0.62521 0.68731 0.69976 0.64148 0.3734

Two Way Interaction Bridge Drainage Area 0.01711 0.01688

Two Way Interaction Brush Drainage Area 0.0116

Two Way Interaction Siuslaw Drainage Area 0.71168 0.72373 0.75468 0.76378 0.77144 0.77783 0.83559 1.25158 1.36477

Two Way Interaction Turner Drainage Area 1.72989 1.75444 1.78687 1.81082 2.24885 2.28744 2.31294 2.24496 2.40407 2.70815 2.44646 2.37726 3.10301 2.00587

Two Way Interaction Bridge Slide Width 1.05816 1.0731 1.2382 1.25956 1.28156 1.33793 1.70517 1.63537 1.5723 1.73532

Two Way Interaction Brush Slide Width 0.05859 0.06262 0.06332 0.07179 0.07636

Two Way Interaction Siuslaw Slide Width 0.42218 0.42808 0.4348 0.46201 0.47027 0.47071

Two Way Interaction Turner Slide Width 1.44908 1.47023 1.49079 1.5136 1.66438 1.71357 2.09775 2.09013 2.24871 2.25453 1.72961 1.61946

Additional stats

min 2 way  t  value 0.0116 0.01688 0.03888 0.06034 0.07636 0.47071 0.64148 1.07932 1.36477 1.73532 1.5739 1.61946 2.58713 0.73746 0.41168 0.02702 0.07344

RSD 1.3594 1.3403 1.3221 1.3406 1.2879 1.2717 1.2596 1.2508 1.2532 1.6254 1.2934 1.314 1.3364 1.4135 1.5001 1.5695 1.5998

R 2 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.58 0.57 0.55 0.52 0.5 0.47 0.39 0.29 0.16 0.17

d.f. 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 54 51

We eliminated all two way interactions involving lswidth,

Notes: but, the lswidth main effect still has t-value greater than 2,

therefore we can keep.

1 Backwards selection routine using MLR on Mapleton upslope landslides Arbitrary cutoff. All two way interactions

2 The minimum t value from the set of two way interaction variables was selecetd for subsequent deletion have t value greater than 2.

Minimum t value search extended

to all variables

Dropping two way interaction variables

by  t value no longer makes sense since

some of the main effects

are lower.

Explanatory variables

Absolute value of t value

Mapleton Core Study Area Up slope Landslide data Backward Variable Selection
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The fully saturated model has an R2 of 0.59.  Backward selection was carried out 
by dropping the interaction with the lowest absolute value of the t-statistic.  The R2 
term rapidly decreases after approximately 9 rounds of backward selection .  Round 
nine defines the simplest accurate model.  The model still has some significant 
interaction with sub-bains, drainage area, landslide width, and slopes below 
landslides.  This may cause speculation as to physical significance of some 
explanatory variables in some sub-basins and not others.  Conversely, there may be 
confounding variables.  Treating the sub-basins purely as main effects (i.e., no two 
way interaction in round 15), the R2 drops to 0.29.  Two-way interaction of the 
main effects (i.e., round 17), the R2 drops to 0.17 Without any sub-basin 
interaction, the R2 drops to 0.16.   
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