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Chapter 1: Introduction

3D symmetric tensor fields have a wide range of applications, such as in solid and fluid

mechanics, medical imaging, meteorology, molecular dynamics, geophysics and computer

graphics. There has been much research carried out in tensor fields, yet our knowledge

of the tensor field is still at its initial stage to completely understand the behavior of

3D linear tensor fields. To understand the behavior and to design aforementioned appli-

cations, topology plays an important role. The degenerate points are the most studied

topological feature of symmetric tensor fields. Though several attempts have been made

to effectively visualize tensor field topology, still none of them can completely visualize

all the topological features. This work is an attempt to design and study topological

features of a tensor fields, and in particular, understand their behavior more effectively.

The main theme of this thesis is to design 3D linear symmetric tensor field and ana-

lyze transition points using our interactive interface. The work presented here will help

in understanding the behavior of linear tensor fields and studying tensor field topology

in detail. The term tensor, in general, is a linear relation between scalar, vector, and

other tensors. A tensor field is a tensor valued function in space. It is often difficult to

understand the behavior of tensor fields due to its nine components. As a result, the

visualization of tensor field is cluttered and difficult to understand. To simplify such

visualization and to make them intuitive, we study tensor field topology. Tensor field

topology helps in understanding the behavior of tensor fields by focusing only on the re-

quired information. Usually, researchers are mostly interested in symmetric tensor fields

and sometimes the data is inherently symmetric. A symmetric tensor can be decom-

posed into an isotropic and a deviatoric tensors. We can neglect the isotropic part as it

only provides information about the uniform scaling, whereas deviatoric part provides

the orientation and direction of eigenvector fields. So from here onwards whenever we

are citing tensor fields, the reader should assume that we are talking about symmetric

traceless tensor fields. In this work, we study linear tensor field topology and propose

method for robust extraction of tensor field topology. The first term of Taylor expansion
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of tensor field shows that the behavior of tensor field near the point of interest is dictated

by the linearization at the point [9]. This also means that generic tensor field can be

easily understood by linear tensor fields. The main contributions of this work are as

follows:

• Interactive interface to design any 3D linear tensor fields.

• Observe and analyze 3D linear tensor fields.

• Provide theoretical as well as observed lower and upper bound on the number of

transition points.

1.1 Previous Work

There has been much research carried out on the analysis and visualization of 2D and 3D

linear tensor fields. The detailed survey can be found at [5]. Delmarcelle and Hesselink

[1, 2] introduce the topology of 2D symmetric tensor fields. They point out that there are

two fundamental types of degenerate points in a 2D symmetric tensor field, i.e., wedges

and trisectors, which have a tensor index of 1
2 and −1

2 , respectively. Hesselink et al. later

extended this work to 3D symmetric tensor field [3] and study triple degenerate points,

i.e., all eigenvalues are the same. Zheng et al. [12] point out that triple degeneracy are

not structurally stable features. They further show that double degeneracies, i.e., tensor

with only two equal eigenvalues, form lines in the domain. In this work and subsequent

research [13], they provide a number of degenerate curve extraction methods based on the

analysis of the discriminant function of the tensor field. Furthermore, Zheng et al. [14]

point out that near degenerate curves the tensor field exhibits 2D degenerate patterns

and define separating surfaces which are extensions of separatrices from 2D symmetric

tensor field topology. Tricoche et al. [7] convert the problem of extracting degenerate

curves in a 3D tensor field to that of finding the ridge and valley lines of an invariant of

the tensor field, thus leading to a more robust extraction algorithm. Perhaps the most

relevant research is the work of Zhang et al.[9], which showed that there are at least one

and at most four degenerate curves in a 3D linear tensor field under structurally stable

conditions.
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Chapter 2: Mathematical Background

In this chapter, we review the mathematical background on tensor fields. For the sake of

understanding, we will start with general definition of tensor and tensor fields and then

narrow down our study from general tensor fields to linear symmetric tensor fields, so that

the readers have a better understanding of different mathematical concepts explained in

this thesis. The mathematical definitions and concepts presented below are taken from

the thesis of Kratz [6].

2.1 Tensor

Tensor is defined as an array of numbers whose entries changes in a certain fashion with

respect to the change of basis. Basically, a tensor is a generalization of the concepts

of scalar, vector, and matrix values from linear and multi-linear algebra. The zeroth

order tensor is known as a scalar, whereas the first order tensor is known as a vector.

A two-dimensional matrix is known as a second order tensor. All tensors greater than

second order tensor are higher order tensors. Geometrically, a tensor is a quantity

having magnitude and two opposite directions, which is analogous to a vector having

a magnitude and a direction. The most important feature of tensor which makes it

powerful to study is its invariant property which does not change with the change of

basis.

2.1.1 Tensor definition

Definition 2.1.1 (Tensor as a multilinear map). Let V and V ∗ be n-dimensional vector

space and its dual vector space over R respectively. A multilinear map which takes k

copies of vector space V and l copies of its dual space V ∗ into the space R of real numbers

T : V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k times

⊗V ⊗ · · · ⊗ V︸ ︷︷ ︸
l times

→ R (2.1)
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is known as tensor of order k + l.

Definition 2.1.2 (Second-order tensor). Let V be an n-dimensional vector space over

R. A bilinear map which takes two copies of vector space V onto the space R of real

numbers

T : V ⊗ V → R (2.2)

is known as second order tensor. In other words, it can be said that the tensor T is

a bilinear map which takes a vector v ∈ V and maps onto another vector w ∈ V . In

such a case, T is a map from the vector space V onto itself. Let {e1, e2, . . . , en} be an

orthonormal basis of vector space V , then matrix notation for the second-order tensor

T is given as,

T (v, w) =
[
v1 . . . vn

]
M


w1

...

wn

 , (2.3)

where v =
∑n

i=1 viei , w =
∑n

i=1wiei , M is the n x n matrix representing T . From now

onwards, the term tensor in this thesis will be used for second order tensor.

2.1.2 Tensor properties

This section provides some of the properties of second order tensors.

Definition 2.1.3 (Second-order symmetric tensor). A second-order tensor is said to be

symmetric if T (u, v) = T (v, u) for all u, v ∈ V . In matrix notation, Tij = Tji for all

i, j ∈ {1, . . . , n}.

Definition 2.1.4 (Second-order antisymmetric tensor). A second-order tensor is said to

be antisymmetric if T (u, v) = −T (v, u) for all u, v ∈ V . In matrix notation, Tij = −Tji
for all i, j ∈ {1, . . . , n}.

Definition 2.1.5 (Second-order traceless tensor). The trace tr(T ) of a tensor is defined

as the sum of its diagonal element. A second-order tensor T is said to be traceless if the

trace tr(T ) is zero.

Definition 2.1.6 (Second-order positive (semi-) definitive tensor). A second-order ten-

sor T is said to be positive (semi-) definite if T (v, v) ≥ 0. for any non zero vector v ∈ V .
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This means that all the eigenvalues and the determinant of tensor T are greater than

zero or equal to zero.

Definition 2.1.7 (Second-order negative (semi-)definitive tensor). A second-order ten-

sor T is said to be negative (semi-) definite if T (v, v) ≤ 0. for any non zero vector v ∈ V .

This means that all the eigenvalues and the determinant of tensor T are smaller than

zero or equal to zero.

Definition 2.1.8 (Second-order indefinitive tensor). A second-order tensor T is said to

be indefinite if it is neither positive nor negative definite.

The decomposition of tensors in different parts reveals important information which is

otherwise difficult to understand from the original tensor. A tensor T can be decomposed

into symmetric S and antisymmetric tensor A as follows:

T =
1

2

(
T + T T

)
︸ ︷︷ ︸

S

+
1

2

(
T − T T

)
︸ ︷︷ ︸

A

(2.4)

where T T is transpose of the tensor T .

The symmetric part S of tensor T can further be decomposed into isotropic Iso and

deviatoric part D,

S =
1

3
tr(S)︸ ︷︷ ︸
Iso

+
(
S − Iso)︸ ︷︷ ︸

D

(2.5)

where tr(S) is the trace of the symmetric tensor S.

Zhang et al. pointed that these decomposed part reveals different information in the

context of flow visualization[8]. The isotropic part Iso represents isotropic scaling (di-

lation), deviatoric part D represents anisotropic stretching and antisymmetric part A

represents rotation (vorticity).

2.1.3 Tensor diagonalization

In this thesis, we will always discuss about second-order 3x3 symmetric tensors. The

diagonalization of symmetric tensor is well explained in the thesis by Kratz[6]. Symmetric

tensor T can be represented as diagonal matrices where the basis for such representation
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is given by the eigenvectors of the diagonal matrix.

UTUT =

λ1 0 0

0 λ2 0

0 0 λ3

 (2.6)

The diagonal elements λ1, λ2 and λ3 are the eigenvalues and U is the orthogonal matrix

composed of the eigenvectors. In case of symmetric tensor, all the eigenvalues are real

and all the eigenvectors are orthogonal to each other. The diagonalization of a symmetric

tensor is numerically computed by Singular Value Decomposition method. In this work,

we will assume eigenvalues are ordered as λ1 ≥ λ2 ≥ λ3.

2.1.4 Tensor projection

The projection P (n) of a second order 3D tensor T onto the tangent plane of a given

surface defined by normal n is given by

T̂ = P (n) · T · P T (n) (2.7)

where T̂ is a projected tensor. Zheng et al. also pointed that the projection of 3D

tensor onto the tangent plane results into 2D tensor[14]. The projected tensor has one

eigenvector in the direction of the normal n and other two orthogonal eigenvectors along

the tangent plane. It should be noted here that the eigenvectors of tensor T are, in

general, not the eigenvector of projected tensor T̂ .

2.1.5 Degenerate tensors

A tensor T is called degenerate when it consists of repeating eigenvalues. In 2D case,

a degenerate tensor is simply multiple of identity matrix, whereas in 3D case, there are

two types of degenerate tensors: double degenerate tensor and triple degenerate tensor.

Let λ1, λ2 and λ3 be the eigenvalues of a 3D tensor such that λ1 ≥ λ2 ≥ λ3. λ1, λ2 and

λ3 are known as major, medium and minor eigenvalues respectively.

Definition 2.1.9 (Double degenerate tensor). A tensor T is said to be double degenerate

if two of its eigenvalues are same. In other words, T has two repeating eigenvalues.
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Definition 2.1.10 (Planar degenerate tensor). A tensor T is said to be planar degenerate

if its medium and minor eigenvalues are same.

Definition 2.1.11 (Linear degenerate tensor). A tensor T is said to be linear degenerate

if its major and medium eigenvalues are same.

Definition 2.1.12 (Triple degenerate tensor). A tensor T is said to be triple degenerate

if all three of its eigenvalues are same.

2.2 Tensor Field Topology and Features

A tensor field is a tensor-valued function over some domain. The topology of a tensor

field is defined as the set of degenerate points, i.e., points in the domain where the

tensor field becomes degenerate. The main objective of this section is to make readers

aware of different terminologies and definitions of tensor field topology. The topology of

tensor fields differs based on its dimension. We will give a brief overview of 2D and 3D

symmetric tensor field topology in this section.

2.2.1 2D Tensor field topology

A second-order symmetric tensor field T (x, y) over some domain in R2 is given as,

T (x, y) =

[
T11(x, y) T12(x, y)

T12(x, y) T22(x, y)

]
(2.8)

Tensor field T (x, y) have eigenvalues λi(x, y) and eigenvectors ei(x, y) at every point in

R2 where i = 1, 2. Each of these eigenvectors are orthogonal to each other. To get the

continuous representation of tensor fields, Delmarcelle et al. considered these eigenvec-

tors as a bidirectional vector fields and integrated a series of curves along one of the

eigenvectors [2]. They named these curves as Hyperstreamlines.

Similar to critical points in vector fields, the singularities in tensor field are known as

degenerate points. Delmarcelle et al. gave the definition of degenerate points as follows:

Definition 2.2.1 (Degenerate point). A point P0(x, y) is a degenerate point of the tensor
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(a) Trisector (b) Wedge

Figure 2.1: Trisector (left) and Wedge (right).

field T (x, y) iff the two eigenvalues of T (x, y) are equal to each other at P0(x, y) i.e.,

λ1(x, y) = λ2(x, y)[2].

In a 2D tensor field, there are two fundamental types of degenerate point i.e., wedges and

trisectors as shown in figure 2.1. These degenerate points are basically local patterns at

a point, determined by taking the gradients of tensor field at that point. The partial

derivative of T (x, y) is given as,

a = 1
2
∂(T11−T22)

∂x b = 1
2
∂(T11−T22)

∂y

c = ∂T12
∂x d = ∂T12

∂y

(2.9)

The degenerate point can be classified based on the invariant δ given as,

δ = ad− bc (2.10)

A degenerate point p0 is a wedge when δ > 0 and a trisector when δ < 0. When δ = 0,

p0 is a higher-order degenerate point, which is structurally unstable. Delmarcelle et al.

also defined degenerate point based on tensor index[2].

Definition 2.2.2 (Tensor Index). The index Tindex at the degenerate point P0(x, y) of a

tensor field is the number of counter-clockwise revolutions made by the eigenvectors when

travelling along a closed path encompassing P0(x, y). The path is chosen close enough to

P0(x, y) so that it does not encompass any other degenerate points.

If the tensor index Tindex is −1
2 , the degenerate point is called trisector point and if
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the tensor index Tindex is 1
2 , the degenerate point is called wedge point. The pattern of

hyperstreamlines in the tensor field is characterized by the tensor index at the degenerate

point. In the neighborhood of the degenerate points, when the hyperstreamlines sweeps

near the degenerate point in both direction, the region is known as hyperbolic sector and

on the contrary, when the hyperstreamlines touches the degenerate point, the region is

known as parabolic sector.

2.2.2 3D Tensor field topology

In order to study 3D symmetric tensor field, we only study deviatoric part of the tensor.

Though isotropic part of symmetric tensor field is important for providing the uniform

scaling information, still it is not considered in study of symmetric tensor field because it

does not provide directional information which is important to study topological behavior

of 3D symmetric tensor field. A 3D symmetric traceless tensor field T (x, y, z) over some

domain in R3 is given as,

T (x, y, z) =

T11(x, y, z) T12(x, y, z) T13(x, y, z)

T12(x, y, z) T22(x, y, z) T23(x, y, z)

T13(x, y, z) T23(x, y, z) −T12(x, y, z)− T22(x, y, z)

 (2.11)

In 3D symmetric tensor field T (x, y, z), a point P0(x, y, z) is known as degenerate point if

the tensor at the point P0(x, y, z) is degenerate. The topology of 3D tensor field consists

of three types of degenerate points: linear degenerate point, planar degenerate point

and triple degenerate point. A degenerate point is said to be linear, planar or triple

degenerate point if the tensor at that point is either linear degenerate, planar degenerate

or triple degenerate. Zheng et al. [9] point out that while triple degeneracies can exist,

they are structurally unstable, i.e., they can disappear under arbitrarily small perturba-

tions. In contrast, linear and planar degenerate points are structurally stable, i.e., they

persist under small enough perturbations in the tensor field. Moreover, under structural

stable conditions such points form curves, along which the tensor field is either always

linear degenerate or always planar degenerate. While it is possible that linear and planar

degenerate points are isolated points or form surfaces and volumes, these three scenarios

do not persist under arbitrarily small perturbation in the field, i.e., structurally unstable.
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A degenerate point can also be classified on the basis of wedge-trisector classification[10].

Given a degenerate point P0, let n be the non-repeating eigenvector at P0. The plane

P that passes through P0, whose normal is n, is known as the non-repeating plane at

P0. The projection of 3D tensor field onto P results in a 2D symmetric tensor field

on the plane P which, under structurally stable conditions, has exactly one degenerate

point, P0. In the 2D tensor field, P0 can be either a wedge, a trisector, or a higher-

order degenerate point which is structurally unstable. By following the convention of

Zheng et al. [9], we will refer to P0 as a wedge or trisector degenerate point in the 3D

tensor field. When P0 is a higher-order degenerate point in the projected tensor field, it

becomes a transition point in the 3D tensor field. Note that while a higher-order degen-

erate point is structurally unstable, a transition point is structurally stable. Moreover,

a transition point is not the same as triple degenerate points. At the transition point,

the non-repeating plane is tangent to the degenerate curve. Figure 2.2 shows the wedge,

trisector and transition point along a degenerate curve.

Palacios et al. also added feature surfaces based on eigenvalue manifold (parametriza-

(a) Wedge (b) Transition point (c) Trisector

Figure 2.2: The degenerate pattern at the degenerate points (blue in color) along the
degenerate curve from left to right is wedge, transition point and a trisector. The design
patterns shown on the nonrepeating plane are well-known visualization technique known
as line integral convolution (LIC) developed by Cabral et al.

tion of 3D degenerate tensor based on eigenvalues) to the topological analysis of 3D

tensor field[4]. They showed that apart from degenerate points or degenerate curves,

feature surfaces, such as, neutral surface and mode surface also help us in understand-
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Figure 2.3: The mode surfaces of the Sullivan vortex. From left to right, the mode values
are 0.8, 0.4, 0 (the neutral surface), -0.4, and -0.94 respectively. Notice that the linear
degenerate curves (green) and the planar degenerate curves (yellow) are separated by
the neutral surface. Moreover, the topology of the mode surface changes. As the mode
increases, the mode surfaces converge toward linear degenerate curves. In contrast, when
the mode decreases, the mode surfaces converge toward planar degenerate curves.

ing the behavior of 3D tensor field. A neutral surface is the special level set surface

when medium eigenvalue becomes zero i.e., the surface which divide the domain into

two halves: planar tensor and linear tensor. A mode surface is the level set surface of

mode of a 3D tensor field. The Figure 2.3 taken from [4] shows neutral surface and mode

surface.

2.3 3D Linear Symmetric Tensor Fields

In this section, we present an overview of 3D linear symmetric tensor fields and their

important properties. These properties helps us in studying the topology of 3D linear

tensor field. The topology of 3D linear tensor field consists of degenerate points which

eventually forms degenerate curves. The brief review provided in this section is the work

of [9, 11]. The behavior of tensor field near the point of interest is mostly dictated by

the linearization of the tensor field. As a result, it is intuitive to study the linear terms

of Taylor expansion of tensor fields. Given a tensor LT (x, y, z), the taylor expansion of
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LT (x, y, z) is given as,

LT (x, y, z) = T (x0, y0, z0) + (x− x0)
∂T (x0, y0, z0)

∂x
+ (y − y0)

∂T (x0, y0, z0)

∂y

+(z − z0)
∂T (x0, y0, z0)

∂z
+ . . .

(2.12)

Since the behavior only depends on linear terms, we neglect the higher order terms in the

expansion. ∂T (x0,y0,z0)
∂x , ∂T (x0,y0,z0)

∂y and ∂T (x0,y0,z0)
∂z are the gradient of tensor field along

x, y, and z axes, and is given as Tx, Ty and Tz respectively. (x0, y0, z0) is the origin.

LT (x, y, z) = T (x0, y0, z0) + (x− x0)Tx + (y − y0)Ty + (z − z0)Tz (2.13)

⇒ LT (x, y, z) = T (x0, y0, z0)− x0Tx − y0Ty − z0Tz︸ ︷︷ ︸
T0

+xTx + yTy + zTz (2.14)

where T0 is the 3D symmetric tensor at the origin (x0, y0, z0).

Therefore, a 3D linear symmetric tensor field is given as,

LT (x, y, z) = T0 + xTx + yTy + zTz (2.15)

2.3.1 3D Linear symmetric tensor field overview

A 3D symmetric traceless tensor field have following form LT (x, y, z) = T0+xTx+yTy+

zTz where, T0 =

a0 b0 c0

b0 d0 e0

c0 e0 −a0 − d0

 , Tx =

ax bx cx

bx dx ex

cx ex −ax − dx

, Ty =

ay by cy

by dy ey

cy ey −ay − dy


and, Tz =

az bz cz

bz dz ez

cz ez −az − dz

 are symmetric traceless matrices. A 3D linear symmetric

traceless tensor field is preserved under change of basis and also when projected over a

plane. This property helps us to understand the topological behaviors of linear tensor

fields.

Lemma 2.3.1. Given a linear symmetric tensor field LT (x, y, z) = T0+xTx+yTy+zTz,

its linearity is preserved under change of coordinate systems[9]
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Proof. The proof can be found in [9]. In this work, we borrow part of it for our use.

Let C = (o, e1, e2, e3) and C
′

= (o
′
, e

′
1, e

′
2, e

′
3) be two coordinate systems where o and o

′

are the respective origins and the ei’s and e
′
i’s are the basis vectors. Let (x, y, z) and

(x
′
, y

′
, z

′
) be the coordinates of a point p under C and C

′
, respectively. The two sets of

coordinate are related by x− x0y − y0
z − z0

 = M

x
′

y
′

z
′

 (2.16)

where

x0y0
z0

 is the origin of C, and M is the unique linear transformation such that

M(e
′
i) =

∑3
j=1Mije

′
j = ei for 1 ≤ i ≤ 3.

Given a tensor field LT (x, y, z) = T0 + xTx + yTy + zTz under C, its formula under

C
′
:

LT (x
′
, y

′
, z

′
) = T

′
0 + x

′
T

′
x + y

′
T

′
y + z

′
T

′
z (2.17)

where,

T0 = M−1(T0 + xTx + yTy + zTz)M (2.18)

T
′
x = M−1(M11Tx +M12Ty +M13zTz)M (2.19)

T
′
y = M−1(M21Tx +M22Ty +M23zTz)M (2.20)

T
′
z = M−1(M31Tx +M32Ty +M33zTz)M (2.21)

Now, we consider the projection of a linear tensor field onto a plane. The following proof

is taken from [9].

Lemma 2.3.2. Given a linear symmetric tensor field LT (x, y, z) = T0+xTx+yTy+zTz,

its projection onto a plane is a 2D symmetric, linear tensor field inside the plane[9].

Proof. Let N be a normal to the plane and p0 = (x0, y0, z0) be a point on the plane. We

construct a new coordinate system (p0, X, Y,N) such that p0 is the new origin and X

and Y form a basis for the plane. Based on Lemma 2.3.1, the linear tensor field under



14

the new basis has the form (Equations 2.18 - 2.21).

Given a point p in the plane. Under the new coordinate systems, p has the form

LT
′′
(x

′
, y

′
) = T

′′
0 + x

′
T

′′
x + y

′
T

′′
y (2.22)

where LT
′′

is the projected tensor of LT on the plane, and T
′′
0 , T

′′
x , and T

′′
y are respectively

the 2x2 subblock of T
′
0, T

′
x and T

′
y corresponding to the plane. It is clear that T

′′
remains

a symmetric linear tensor field.

2.3.2 3D Linear symmetric tensor field topology

The topology of 3D linear tensor field consists of degenerate points. The degenerate

points are the point in space where the tensor is degenerate. In this thesis, we will study

about different types of degenerate points and curves, their numbers and the location

in the linear tensor fields. In 3D linear symmetric tensor field, a degenerate points is

classified into double degenerate points and triple degenerate points. Double degenerate

points are classified into linear and planar types based on the eigenvalues, whereas Triple

degenerate points are the points where all the eigenvalues are same. Double degener-

ate points are said to occur in structurally stable conditions, whereas triple degenerate

points are said to be structurally unstable.

It is to be noted here that the set of all traceless, symmetric tensors with configu-

ration

a b c

b d e

c e −a− d

 forms a five-dimensional linear space T spanned by the basis

Ta =

1 0 0

0 0 0

0 0 −1

, Tb =

0 0 0

0 1 0

0 0 −1

, Tc =

0 1 0

1 0 0

0 0 0

, Td =

0 0 1

0 0 0

1 0 0

, and , Te =

0 0 0

0 0 1

0 1 0

. Any tensor in the linear space T can be expressed as taTa+tbTb+tcTc+tdTd+

teTe for some ta, tb, tc, td, te ∈ R. It can also be written in the vector form (ta, tb, tc, td, te).
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T0, Tx, Ty and Tz are linearly independent vector in T under structurally stable condi-

tions. LT (x, y, z) leads to the injective mapping LT : R3 → T. The image U of LT is

given as,

U = {xTx + yTy + zTz|x, y, z ∈ R}

is a linear three dimensional space of T. Further it can be said that LT is isomorphism

between R3 and U . As a consequence of this isomorphism, LT is also isomorphism

between the set of degenerate points of LT (x, y, z) and U
⋂
D where D ⊂ T is the set

of all degenerate tensors. Since U is a three dimensional (codimension two) subspace

of T, there exists two linear homogeneous functions F and G such that F (a, d, b, c, e) =

F (a0, d0, b0, c0, e0) and G(a, d, b, c, e) = G(a0, d0, b0, c0, e0). In fact, F and G are vector

in the space R and are perpendicular to the space spanned by the vector corresponding

to Tx, Ty and Tz. Also, F and G are linearly independent and together with Tx, Ty

and Tz they form basis in T. D is a non-linear subspace of T consisting of tensors of

the following format k

αβ
γ

[α β γ
]
− k

3I − T0 for some k ∈ R and some unit vector

[
α β γ

]
which is equivalent to

k

α
2 − 1

3 αβ αγ

αβ β2 − 1
3 βγ

αγ βγ γ2 − 1
3

− T0, (2.23)

where α2 + β2 + γ2 = 1. When k < 0, the tensor T is linear i.e., one repeating positive

eigenvalue and one non-repeating negative eigenvalue. When k > 0, the tensor T is

planar i.e., one repeating negative eigenvalue and one non-repeating positive eigenvalue.

A degenerate tensor in U therefore must satisfy:

F

(
k
(
α2 − 1

3

)
, k
(
β2 − 1

3

)
, k
(
αβ
)
, k
(
αγ
)
, k
(
βγ
))

= F (a0, d0, b0, c0, e0) (2.24)

G

(
k
(
α2 − 1

3

)
, k
(
β2 − 1

3

)
, k
(
αβ
)
, k
(
αγ
)
, k
(
βγ
))

= G(a0, d0, b0, c0, e0) (2.25)

α2 + β2 + γ2 = 1 (2.26)
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Let f0 = F (a0, d0, b0, c0, e0) and g0 = G(a0, d0, b0, c0, e0). Then above equations are

written as,

F

(
k
(2α2 − β2 − γ2

3

)
, k
(2β2 − α2 − γ2

3

)
, k
(
αβ
)
, k
(
αγ
)
, k
(
βγ
))

= f0 (2.27)

G

(
k
(
α2 − 1

3

)
, k
(
β2 − 1

3

)
, k
(
αβ
)
, k
(
αγ
)
, k
(
βγ
))

= g0 (2.28)

α2 + β2 + γ2 = 1 (2.29)

since both F andG are homogeneous polynomial of degree one, they satisfy following con-

ditions: F (ka, kd, kc, kd, ke) = kF (a, d, b, c, e) and G(ka, kd, kc, kd, ke) = kG(a, d, b, c, e)

for any k ∈ R. Therefore, above equations are equivalent to,

kF

(
2α2 − β2 − γ2

3
,
2β2 − α2 − γ2

3
, αβ, αγ, βγ

)
= f0 (2.30)

kG

(
2α2 − β2 − γ2

3
,
2β2 − α2 − γ2

3
, αβ, αγ, βγ

)
= g0 (2.31)

α2 + β2 + γ2 = 1 (2.32)

or,

F

(
2α2 − β2 − γ2

3
,
2β2 − α2 − γ2

3
, αβ, αγ, βγ

)
=
f0
k

(2.33)

G

(
2α2 − β2 − γ2

3
,
2β2 − α2 − γ2

3
, αβ, αγ, βγ

)
=
g0
k

(2.34)

α2 + β2 + γ2 = 1 (2.35)

Let us define f and g to make the above equation simple enough for our further study,

f(α, β, γ) = F

(
2α2 − β2 − γ2

3
,
2β2 − α2 − γ2

3
, αβ, αγ, βγ

)
(2.36)

g(α, β, γ) = G

(
2α2 − β2 − γ2

3
,
2β2 − α2 − γ2

3
, αβ, αγ, βγ

)
(2.37)
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The above definitions lead us to following equations,

f(α, β, γ) =
f0
k

(2.38)

g(α, β, γ) =
g0
k

(2.39)

α2 + β2 + γ2 = 1 (2.40)

Above equations lead to the following equation which characterize degenerate points in

the form of its non-repeating eigenvector (α,β and γ).

h(α, β, γ) = 0 (2.41)

α2 + β2 + γ2 = 1 (2.42)

where h(α, β, γ) = g0f(α, β, γ)− f0g(α, β, γ). The solution to above system of equations

are degenerate points which eventually form degenerate curves [11].

Another result given by Zhang et al. [9] is as follows:

Theorem 2.3.3. Given a linear symmetric tensor field LT (x, y, z) = xTx + yTy + zTy,

a point (x0, y0, z0) is degenerate if and only if (kx0, ky0, kz0) is also degenerate for any

k 6= 0. Moreover, k(x0, y0, z0) is triple degenerate if and only if (x0, y0, z0) is triple

degenerate. If (x0, y0, z0) is a degenerate point, then k(x0, y0, z0) is linear if k > 0 and

planar if k < 0.[9]

Proof. The proof can be found in [9].

Zhang et al. further gave corollary 2.3.3.1 and proved that all degenerate curves ends at

infinity[9].

Corollary 2.3.3.1. Given a numerically stable linear tensor field LT (x, y, z) = xTx +

yTy + zTy, there are no degenerate loops.

Proof. We will present the same proof as presented in the work of [9]. If a point p0 =

(x0, y0, z0) is degenerate, then all the points on the line passing through p0 and the origin.
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So if there is a loop of degenerate points, the each point on the loop will lead to a line of

degenerate points. As a result, the loop will lead to a cylindrical surface of degenerate

point which is structurally unstable.

The above corollary proves that all degenerate curves in such a tensor field must end at

infinity.

From our earlier discussion, we know that a degenerate point can be also classified as

either a wedge, a trisector, or, a transition point. This classification is based on the 2D

degenerate pattern around the degenerate point inside the repeated plane. Zhang et al.

showed that the choice of the normal of a repeated plane does not change wedge/trisector

classification.

Theorem 2.3.4. The wedge/trisector classification of a degenerate point p in a 3D

linear, symmetric tensor field T is independent of the choice of the normal in the repeated

plane and the coordinate systems for the repeated plane.

Proof. The proof can be found in [9].

The above theorem establishes the fact that wedge/trisector classification is well defined.

As a result, a degenerate point can be classified as a Linear-Wedge (LW), a Linear-

Trisector (LT), a Planar-Wedge (PW) and a Planar-Trisector (PT). Zhang et al. in their

work in [9] gave another important result (Theorem 2.3.5) about linear tensor fields.

Theorem 2.3.5. Given a linear symmetric tensor field LT (x, y, z) = T0 + xTx + yTy +

zTy, a point p0 = (x0, y0, z0) is a wedge if and only if p
′
0 = (kx0, ky0, kz0) is also a

wedge for any k 6= 0. Similarly, a point p0 = (x0, y0, z0) is a trisector if and only if

p
′
0 = (kx0, ky0, kz0) is also a trisector for any k 6= 0. Moreover the orientations of the

degenerate patterns remain constant regardless of k. [9]

Proof. The proof can be found in [9].

Above theorem says that the local orientation of degenerate patterns does not change

along the degenerate curve. This means that if a point p = (x, y, z) is a degenerate point,

then any point on the ray emanating from origin and containing p is also degenerate.



19

This gives us an important fact that the wedge/trisector and linear/planar classification

does not change along the ray. Also, the rays in opposite direction from the origin has

the same wedge/trisector but opposite linear/planar classification.

Based on the discussion above, it can be said that the linear/planar classification does

not change along the degenerate curve when T0 6= 0 and wedge/trisector classification

does not change along the degenerate curve when T0 = 0. Another fact given by Zhang

et al. needs to be mentioned here:

Theorem 2.3.6. Given a linear symmetric tensor field LT (x, y, z) = T0+xTx+yTy+zTy

where T0 = 0, there are same number of LWs as PWs and same number of LTs as PTs.

Proof. When T0 = 0, all the curves pass through the origin which is also a triple de-

generate point. At triple degenerate point, the degenerate curve changes from linear to

planar and vice versa. As a result, we always have same number of LWs as PWs and

same number of LTs as PTs.



20

Chapter 3: 3D Linear Symmetric Tensor Field Design

This chapter provides an overview of tensor field design both algebraically and geomet-

rically, and presents the strength of new interface compared to the interface provided

in the work of Zhang et al.[9]. The interface presented in this research has been built

over the interface provided by Dr. Jonathan Palacios. The interface has been built using

wxWidget framework.

3.1 Different Tensor Field Design Approaches

In this section, we will discuss algebraic and geometric approach for designing linear

tensor fields. These approaches also help in creating simple, but interactive interfaces to

study linear tensor fields with better controls.

3.1.1 Algebraic approach

A linear tensor can be algebraically represented as a degree-one polynomial where the

entries of the polynomial are the coefficient of the tensor. In order to change the tensor,

we need to change each of its entries. Since this thesis is about 3D linear symmetric

traceless tensor field, we will adhere our discussion to 3D linear symmetric traceless

tensor field for our further discussion. The tensor in this case is traceless and symmetric.

As a result, we have five degrees of freedom to change individual tensor T0, Tx, Ty and Tz

by changing their entries. For each entries, both our interface and the interface developed

by Zhang et al. have text boxes. To design linear tensor field, the user just needs to

change the entries corresponding to individual tensor.

3.1.2 Geometric approach

A tensor can be geometrically represented by its eigenvalues and eigenvectors. Since the

tensor in our case is traceless and symmetric, we can change two of its eigenvalues and

third will be negative of the sum of the first two eigenvalues. Also the eigenvector will
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form an orthogonal basis. So if we know the first eigenvectors, we can find other two

eigenvectors of tensor. To find second and third eigenvector, we can follow steps below:

• Pick a vector V from the standard basis which is not the first eigenvector E1

• Compute the second eigenvector E2 , E2 = V × E1

• Compute the third eigenvector E3 using E1 and E2, E3 = E1 × E2

So, in order to change the tensor, we just need to know the eigenvector and the angle

formed by the eigenvector. In the interface designed by Zhang et al., they have provided

six text boxes for changing the tensor geometrically [9]: Two text boxes for eigenvalues,

three text boxes for eigenvector and one text box for the angle formed by the eigenvector.

The interface developed by Zhang et al. is shown in Figure 3.1.

Figure 3.1: Linear tensor field design interface developed by Zhang et al.[9].

We believe that our interface provides more intuitive geometric design for linear tensor

fields than the interface provided by Zhang et al. [9]. With our interface, user have more

control over how the eigenvalues and eigenvectors changes relative to one another. The

eigenvalues of tensor can also be changed using mode of the tensor. Mode is one of the
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invariant quantity of tensor and the value of mode provides the relative strength of eigen-

values. The magnitude of eigenvalues can also be changed using tensor magnitude. The

change in magnitude scales both the tensor and eigenvalues without changing its basis.

Therefore, we have two controls to change the eigenvalues i.e. mode and magnitude.

There are same number of controls in our interface compared to the interface provided

by Zhang et al. [9], we believe that our method provides better control in changing the

eigenvalues. The user can control the relative strength of the eigenvalues without wor-

rying about how these changes will make the tensor degenerate or non degenerate. The

orientation of tensor is given by eigenvectors. There have been much study over tensor

field visualization based on its orientation. The tensor glyph was always supposed to

be one of the choice. The orientation and shape of glyph represents the eigenvector and

eigenvalues of tensor respectively. In our study, we have used the glyph visualization

developed by Palacios et al.[4] shown in figure 3.2. The eigenvectors of tensor can be

Figure 3.2: Tensor glyph corresponding to mode values -1 (left most), zero (middle) and
1 (right most).

changed by rotating the glyphs. This approach is more intuitive to user as user always

knows how the orthonormal basis of tensor is changing given the orientation of glyph

after rotation. It is rather difficult to precisely change the entries of eigenvector and

angle to desired orthonormal basis using text boxes. Zhang et al. interface shows text

boxes(figure 3.1) to change the basis[9]. Based on our analysis above, we feel that our

interface has better tensor field design approach with fewer control and better precision.

The next section provides the detailed computation of tensor based on magnitude, mode

and glyph rotation.

3.2 Tensor Field Design using Mode and Magnitude of Tensor

The mode µ of a tensor T is given as,

µ = 3
√

6
|T |
||T ||3

(3.1)
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where |T | is determinant of the deviatoric tensor and ||T || is the frobenius norm, also

known as magnitude of the tensor.

The magnitude ||T || of a tensor T is given as,

||T || =

√√√√ 3∑
i=1

3∑
j=1

T 2
ij (3.2)

A new tensor T
′

can be created by changing either the mode or magnitude of a tensor

individually. T can be diagonalized as follows:

T = RDRT (3.3)

Where R is the 3 x 3 matrix containing eigenvector as columns and D is the the diagonal

3 x 3 matrix containing eigenvalues λ1, λ2 and λ3.

When tensor mode µ is changed to µ
′
, the eigenvalues change relative to one another while

keeping the eigenvector same. The eigenvalues for the new tensor mode are calculated

as follows:

λk =
2√
6
||T ||cos

(
1

3
acos(µ

′
)− 2πk

3

)
(3.4)

Where 1 ≤ k ≤ 3 for 3 x 3 symmetric traceless matrix. As a result, diagonal matrix D

changes to D
′
. D

′
contains new eigenvalues along the diagonal. The new tensor T

′
is

then calculated as shown below:

T
′

= RD
′
RT (3.5)

Similarly, when magnitude changes from ||T || to ||T ′ ||, the eigenvalues are calculated

using the same formula as 3.15,

λi =
2√
6
||T ′ ||cos

(
1

3
acos(µ)− 2πk

3

)
(3.6)

The 3D linear tensor field can be changed by changing the mode or magnitude of either

of the tensors T0, Tx, Ty and Tz. The interface (shown in figure 3.3) provides slider as

well as spinbox for the said operations.
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Figure 3.3: Snapshot showing the controls for changing tensor field using mode and
magnitude.

3.3 Tensor Field Design using Eigenvectors of Tensor

A new tensor field T
′

can be created from the original tensor field T by rotating the

glyphs (shown in figure 3.2) corresponding to the particular tensor. The shape and ori-

entation of glyph are represented by the eigenvalue and eigenvectors of the glyph. For

more details, readers can refer to [4].

A tensor T can be diagonalized as PDP T . Where P is the matrix containing eigen-

vectors as column vector and D is the diagonal matrix containing eigenvalues. If the

matrix containing eigenvectors changes from P to Q, then T can be written as QDQT .

In our work, we change the eigenvector by rotating the glyph corresponding to the tensor.

All the above methods provide user with a flexibility to create as many tensor field

as needed, to study behavior of tensor field, using the controls shown in the figure 3.4.
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Figure 3.4: 3D Linear Symmetric Traceless Tensor Field Design Interface.
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Chapter 4: Transition Point Overview, Analysis and Observation

This chapter provides detailed study of transition points, its analysis, and the upper and

lower bound on the number of transition points under different 3D linear tensor field.

Some of the relevant results and observations related to the number of transition points

are also provided to facilitate the analysis of transition points under different linear ten-

sor field.

Based on the type of classification of degenerate points, a degenerate curve can be

divided into different segments:

• Linear-Wedge (LW) i.e., k > 0 and δ > 0 (Green in color)

• Planar-Wedge (PW) i.e., k < 0 and δ > 0 (Yellow in color)

• Linear-Trisector (LT) i.e., k > 0 and δ < 0 (Blue in color)

• Planar-Trisector (PT) i.e., k < 0 and δ < 0 (Red in color)

Where k is mode of tensor and δ is the discriminant of projected tensor on the plane

whose normal is non-repeating eigenvector of the degenerate tensor (discussed in section

2.2.2).

A degenerate curve can be classified as three different types of curves based on their

ends being on wedge or in trisector.

Definition 4.0.1 (Wedge-Wedge (WW) Curve). A degenerate curve is said to be WW

curve if the ends of the curve are in wedge region.

Definition 4.0.2 (Trisector-Trisector (TT) Curve). A degenerate curve is said to be TT

curve if the ends of the curve are in trisector region.

Definition 4.0.3 (Wedge-Trisector (WT) Curve). A degenerate curve is said to be WT

curve if it has one end in wedge region and the other end in trisector region.
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In addition to above definitions, we have following result:

Theorem 4.0.1. Under structurally stable conditions, a WW curve or a TT curve have

an even number of transition points.

Proof. The transition points are defined by δ = 0. The δ is continuous function along

the curve and have same sign at the ends in case of WW and TT curves. In order to

have the same sign on both ends, the δ have to cross an even number of times. This

proves that a WW curve or a TT curve have an even number of transition points.

Theorem 4.0.2. Under structurally stable conditions, a WT curve have an odd number

of transition points.

Proof. As the transition points are defined by δ = 0 and δ is continuous function along

the curve. In case WT curves, both the ends of WT curve have different signs. In order

to have different signs on different ends, the δ have to cross odd number of times. Thus,

a WT curve have an odd number of transition points.

Theorem 4.0.3. Under structurally stable conditions, there are an even number of WT

curves in a linear symmetric tensor field.

Proof. In case of two or four curves when T0 = 0, each of the curves passes through the

origin which is also a triple degenerate point. At triple degenerate point the degenerate

curve changes from linear to planar and vice versa but does not change from wedge to

trisector. As a result, we always have same number of LWs as PWs and the same number

of LTs as PTs on a degenerate curve. Since for each curve there are an even number

of wedges and trisectors, the total number of wedges and trisectors are also even (i.e,

an even number of curves multiplied by an even number of wedge/trisector is always

even). This mean that there are even number of wedges and trisectors in a linear tensor

field. When T0 6= 0, they form WW, TT and WT curves. WW curve contributes to

even number of wedges and TT curves contributes to even number of trisectors. If even

number of wedges is taken by WW and even number of trisectors by TT curves, then

there must be an even number wedge/trisector left. Since, WT curve have odd number

of wedges and odd number of trisectors, then there should be even number of curves to

satisfy the left over wedges and trisectors. This proves that there are an even number of

WT curves and they always occur in pairs.
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We would like to present another important result:

Theorem 4.0.4. Under structurally stable conditions, a linear 3D tensor fields has an

even number of transition points.

Proof. Under structurally stable conditions, there are either two or four curves. WW

and TT curves always have an even number of transition points and WT curves have an

odd number of transition points. Also, WT curve always occurs in pairs (i.e., in even

number). If we take any two or four curves, such that WT if exists, are in pairs, we will

have an even number of transition points.

4.1 Transition Point Overview

This section provides methodology to find the transition point and also comment on

maximum number of transition points possible in a linear tensor field. The same equa-

tion which were used for characterizing degenerate points along with one more constraint

ie., δ = 0 can be used to locate the transition points. The study in this section starts

with the previous work of [11, 10] and then move onto finding theoretical bound on the

number of transition points in a 3D linear symmetric tensor field[10]. Before we go any

further, let us discuss some results obtained from the work of [11, 10] which will eventu-

ally lead us to the equation satisfying our constraint δ = 0.

Based on lemma 2.3.2, under structurally stable condition, the projection of a tensor

onto a plane can have at most one degenerate point. This degenerate point, if exist, can

be classified as a wedge, or a trisector, or a higher order degenerate point. It should be

noted that in a 2D linear tensor field, the δ function characterizing a degenerate point

is always constant.

Another lemma given by Zhang et al., in their work [10] describes that the normal

of the projection plane classifies the type of degenerate point i.e., wedge or trisector.

Lemma 4.1.1. The wedge/trisector classification of a degenerate point p in the projec-

tion of a 3D linear, symmetric tensor field T onto a plane P is independent of the choice

of normal of P and the coordinate system of P .
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The proof of this lemma is essentially the same as that to Theorem 2 in [9]. The only

difference is that this time the proof is based on computing the δ and showing that the

value of δ is constant. Under structurally stable conditions, the projected tensor field can

have at most one degenerate point and if there is one, then it must be wedge, trisector

or transition point if δ > 0, δ < 0 or δ = 0 respectively.

4.1.1 Lower bound on the number of transition points

The theorem 4.0.2 provides us an important results on the lower bound on the total

number of transition points.

Theorem 4.1.2. Under structurally stable conditions, the number of WT curves in a

linear tensor field provides the lower bound on total number of transition points in a

linear tensor field.

In our observation, we are able to achieve this lower bound. The results are presented

in the observation section.

4.1.2 Upper bound on the number of transition points

This section presents the theoretical upper bound on the number of transition points in

a 3D linear tensor field. Zhang et al. proved that there are maximum of 20 transition

points in a 3D linear tensor field[10]. They followed the theorem 2 in [9] and deduced the

corollary 4.1.3.1 [10]. We will present the proof of corollary here to show the formulation

of δ function. The theorem and corresponding corollary is given below:

Theorem 4.1.3. Given a 3D linear tensor field LT = T0 +Tx +Ty +Tz and a plane P ,

the discriminant function δ of the projection of LT onto P , is a function of Tx, Ty and

Tz.

Proof. The proof of the theorem can be found in [9].

Corollary 4.1.3.1. Given a 3D linear tensor field LT = T0 + Tx + Ty + Tz and two

parallel planes P1 and P2, the discriminant function δ of the projection of LT onto P1

and P2 are identical [10].
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According to the above corollary, the function δ is a function of possible plane normals

in R3, which can be modelled on to the space of RP2, the two dimensional real projective

space. Let (α, β, γ) be unit vector, it is sufficient to compute δ in the plane P given as,

αx+ βy + γy = 0 (4.1)

Without loss of generality, we can compute a basis for P using the column vector of

the matrix M =


−β√
α2+β2

−αγ√
α2+β2

α

α√
α2+β2

−βγ√
α2+β2

β

0 α2+β2√
α2+β2

γ

. Under this basis, a 3D linear tensor field

LT (x, y, z) becomes LT (x
′
, y

′
, z

′
) = T

′
0 + x

′
T

′
x + y

′
T

′
y + z

′
T

′
z, where

T
′
x =

1√
α2 + β2

MT (−βTx + αTy)M (4.2)

T
′
y =

1√
α2 + β2

MT (−αγTx − βγTy + (α2 + β2)Tz)M (4.3)

Recall the definition of δ,

δ = (a
′
x − d

′
x)b

′
y − (a

′
y − d

′
y)b

′
x (4.4)

The calculation shows that,

a
′
x = pa(α,β,γ)

(α2+β2)
3
2

b
′
x = pb(α,β,γ)

(α2+β2)
3
2

d
′
x = pd(α,β,γ)

(α2+β2)
3
2

a
′
y = qa(α,β,γ)

(α2+β2)
3
2

b
′
y = qb(α,β,γ)

(α2+β2)
3
2

d
′
y = qd(α,β,γ)

(α2+β2)
3
2

(4.5)

where pa(α, β, γ), pb(α, β, γ) and pd(α, β, γ) are polynomial of degrees 3, 4 and 5 re-

spectively. qa(α, β, γ), qb(α, β, γ) and qd(α, β, γ) are polynomial of degrees 4, 5 and 6

respectively. As a result of these polynomial, δ(α, β, γ) is a polynomial of degree 10.

A transition point thus satisfy following system of polynomial equations:

h(α, β, γ) = 0 (4.6)

δ(α, β, γ) = 0 (4.7)
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α2 + β2 + γ2 = 1 (4.8)

The solution of above system of equation gives the location of a degenerate point which is

also a transition point in the form of non-repeating eigenvector. Recall that h(α, β, γ) = 0

is a degree two polynomial, δ(α, β, γ) is a degree-ten polynomial, and α2 + β2 + γ2 = 1

is a degree two polynomial. According to Bézout’s theorem, there are at most 2 x 10 x

2 = 40 real solutions. It can be seen here that all three equations in the system contains

only monomial of even degree. Consequently, if (α, β, γ) is a solution, then (−α,−β,−γ)

is also a solution to the system of equations. Under structurally stable condition, there

are up to maximum of 20 transition points in any 3D linear tensor field.

4.2 Transition Point Analysis and Observation

This section provides observation on the number of transition points both on a single

degenerate curve and in a 3D linear tensor field. Zhang et al. proved that there are

always two or four degenerate curves in a linear tensor field under structurally stable

conditions[11]. When Tx, Ty and Tz are linearly independent, Tx, Ty and Tz spans a

subspace of R3 (codimension two). So, there are two quadratic polynomials forming a

system of polynomials. The real solution to the system of these polynomials either have

zero, two, or four real solutions. The system of polynomial equations cannot have zero

solution as the tensor field is traceless. Therefore, two or four degenerate curves are the

only possible cases under structurally stable conditions.

In case of two curves, when T0 is linearly independent, there are 3 different cases possible:

(1) WW, WW, (2) TT, TT, and (3) WW, TT.

(1) WW, WW: We know from our previous discussion that there are same number of

LWs as PWs. Therefore, we have 2 LWs and 2 PWs as the only combinations. We also

know that along the degenerate curve linear/planar classification does not change. So,

LW can only be connected to LW and PW can only be connected to PW. As a result,

we have two degenerate curves connected as LW↔ LW and PW ↔ PW. This gives us

two WW curves.



32

(2) TT, TT: We know from our previous discussion that there are same number of

LTs as PTs. Therefore, we have 2 LTs and 2 PTs as the only combinations. We also

know that along the degenerate curve linear/planar classification does not change. So,

LT can only be connected to LT and PT can only be connected to PT. As a result, we

have two degenerate curves connected as LT↔ LT and PT ↔ PT. This gives us two TT

curves.

(3) WW, TT: We know from our previous discussion that there are same number

of LWs as the PWs and same number of LTs as PTs. Therefore, we have 1 LW, 1 PW,

1 LT and 1 PT as the only combinations. We also know that along the degenerate curve

linear/planar classification does not change. So, LT can only be connected to LW and

PT can only be connected to PW. As a result, we have two degenerate curves connected

as LW ↔ LT and PW ↔ PT which gives us two WT curves.

Similarly, in case of four degenerate curves, we have 5 different possible cases: (1) WW,

WW, WW, WW, (2) WW, WW, WW, TT, (2) WW, WW, TT, TT, (4) WW, TT, TT,

TT, and (5) TT, TT, TT, TT.

(1) WW, WW, WW, WW: Same analysis can be applied as case 1 for two de-

generate curves. In this case, we have 4 LWs and 4 PWs as the only combinations

possible, and LW can only be connected to LW and PW can only be connected to PW.

As a result, we have four degenerate curves connected as LW↔ LW, LW↔ LW, PW↔
PW and PW ↔ PW. This gives us four WW curves.

(2) WW, WW, WW, TT: Since there are same number of LWs as PWs and same

number of LTs as PTs. The only possible combination is 3 LWs, 3 PWs, 1 LT and 1 PT

and they are connected as LW↔ LT, LW↔ LW, PW↔ PW and PW ↔ PT. Therefore,

we have 2 WW and 2 WT curves.

(3) WW, WW, TT, TT: In the work of Zhang et al. [11], they showed that if two

singularities are connected by a linear degenerate curve, then the same singularities can-

not be connected by a planar degenerate curve. Keeping this fact in mind, and, also

the fact that there are same number of LWs as PWs and same number of LTs as PTs,
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and linear/planar classification does not change along the degenerate curve, we have 2

LWs, 2 PWs, 2 LTs, and 2 PTs as the only combinations and they can be connected in

following two ways to give different type of curves:

(a) If the wedges and trisectors are connected as: PT ↔ PW, LW ↔ LT, PT ↔ PW,

and LW ↔ LT. Then, we have 4 WT curves.

(b) If the wedges and trisectors are connected as: PT ↔ PW, LW ↔ LW, PW ↔ PT,

and LT ↔ LT. Then, we have 1 WW, 1 TT and 2 WT curves.

(c) If the wedges and trisectors are connected as: LT ↔ LW, PW ↔ PW, LW ↔ LT,

and PT ↔ PT. Then, we have 1 WW, 1 TT and 2 WT curves similar to case 3(b). The

only difference here is that the tensor field is negated.

(4) WW, TT, TT, TT: The only possible combination in this case is 1 LW, 1 PW, 3

LTs, and 3 PTs, and they are connected as LW↔ LT, LT↔ LT, PT↔ PT and PT ↔
PW. Therefore, we have 2 TT and 2 WT curves.

(5) TT, TT, TT, TT: This case is symmetric to case 1 for four degenerate curves. In

this case, we have four TT curves.

From our analysis for two degenerate curves, we have 3 possible scenarios: (1) Two

WW curves, (2) Two TT curves, and (3) Two WT curves. Also, from the analysis of

four degenerate curves, we have 6 possible scenarios: (1) Four WW curves, (2) Four

TT curves, (3) Two WW curves and two WT curves, (4) Two TT curves and Two WT

curves, (5) Four WT curves, and, (6) One WW curve, one TT curve and two WT curves.

Combining the analysis for two curves and four curves, we have 9 possible scenarios in

a linear tensor field, shown in Table 4.1.

The theoretical bound on the number of transition points is found to be 20 according to

the corollary 4.1.3.1. In our observation, we found that there are at most 8 transition

points under structurally stable conditions in a 3D linear tensor field. To validate our

claim, we analyze all 9 structurally stable scenarios with different configurations. A ta-

ble for each scenario is also provided to show all possible cases under structurally stable

conditions. To understand the table provided in each scenario, the reader should assume

following points:
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Scenarios
Number of
WW curves

Number of
TT curves

Number of
WT curves

1 2 0 0
2 0 2 0
3 0 0 2
4 4 0 0
5 0 4 0
6 2 0 2
7 0 2 2
8 0 0 4
9 1 1 2

Table 4.1: Different combinations of degenerate curves under structurally stable condi-
tions.

• a, b means a transition points on one degenerate curve and b transition points on

the other degenerate curve.

• The number of element separated by comma represents number of degenerate

curves in the particular scenario.

• The comment ‘Asymmetry’ followed by scenario number means that this configura-

tion was not observed in the current scenario but was observed in the symmetrical

scenario or vice versa.

4.2.1 Scenario 1: Two WW curves

When there are two WW curves, there are zero or even number of transition points on

each of the degenerate curve. The reason behind these even number of transition points

is due to the curve having their both ends in wedge. Each of these curves cannot switch

from wedge to trisector unless there is a transition point along the curve. Therefore, the

local pattern i.e, wedge and trisector either have to switch twice on each curve or remain

same throughout the curve to have its end in wedge. In our analysis, we search for the

following configuration (Table 4.2) under scenario 1.
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Number of
transition

points Zero Two Four Six Eight Ten

Possible
Combinations

0,0
Figure 4.1

2,0
Figure 4.2

4,0
Figure 4.3

6, 0
Figure 4.5

8,0
Not Found

10,0
Not Found

2,2
Figure 4.4

4,2
Figure 4.6

6,2
Figure 4.7

8,2
Not Found

4,4
Not Found

Asymmetry with
scenario 2

6,4
Not Found

Table 4.2: Combination of different configurations in scenario 1.

T0 =

0.0000 0.0000 0.0000
0.0000 0.0000 0.100000
0.0000 0.1000 0.0000


Tx =

0.0000 1.0000 0.0000
1.0000 0.0000 0.0000
0.0000 0.0000 0.0000


Ty =

−0.9739 −0.0114 0.1770
−0.0114 0.6823 −0.4680
0.1770 −0.46800 0.2916


Tz =

−0.3636 0.4061 −0.6208
0.4061 0.7348 −0.2113
−0.6208 −0.2113 −0.3712



Figure 4.1: Zero transition point in scenario 1.
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T0 =

0.0000 0.0000 0.0000
0.0000 0.0000 0.1000
0.0000 0.1000 0.0000


Tx =

0.0000 1.0000 0.0000
1.0000 0.0000 0.1000
0.0000 0.0000 0.0000


Ty =

−0.9739 −1.3114 0.1770
−1.3114 1.5823 −0.5680
0.1770 −0.5680 −0.6084


Tz =

−0.3636 0.4061 −0.6208
0.4061 0.7348 −0.2113
−0.6208 −0.2113 −0.3712



Figure 4.2: Two transition points in scenario 1.

T0 =

0.4000 0.0000 0.0000
0.0000 0.0000 0.1000
0.0000 0.1000 −0.4000


Tx =

0.0000 1.000000 0.0000
1.0000 −1.0000 0.1000
0.0000 0.0000 1.0000


Ty =

0.0000 0.0000 1.0000
0.0000 10.0000 0.0000
1.0000 0.0000 −10.0000


Tz =

0.0000 0.0000 0.0000
0.0000 1.0000 0.0000
1.0000 0.0000 0.0000



Figure 4.3: Four Transition points: Four transition points on one degenerate curve and
zero transition point on the other degenerate curve in scenario 1.
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T0 =

0.4000 0.0000 0.0000
0.0000 0.0000 0.1000
0.0000 0.1000 −0.4000


Tx =

0.0000 1.0000 0.0000
1.0000 −1.0000 0.1000
0.0000 0.0000 1.0000


Ty =

−0.9739 −1.3114 1.770
−1.3114 1.6823 −0.5680

1.770 −0.5680 −0.7084


Tz =

−0.3636 0.4061 −0.6208
0.4061 0.7348 −0.2113
−0.6208 −0.2113 −0.3712



Figure 4.4: Four Transition points: Two transition points each on each of the two
degenerate curves in scenario 1.

T0 =

−1.3255 0.2754 0.6118
0.2754 0.4000 −0.1401
0.6118 −0.1401 0.9255


Tx =

−1.3613 0.9225 2.1393
0.9225 −0.3564 0.4082
2.1393 0.4082 1.7177


Ty =

 0.3777 −0.2103 0.7597
−0.2103 −0.3438 −1.5334
0.7597 −1.5334 −0.0339


Tz =

−2.4063 −0.8692 0.2452
−0.8692 1.5207 1.5363
0.2452 1.5363 0.8856



Figure 4.5: Six transition points: Six transition points on one degenerate curve and zero
transition point on the other degenerate curve in scenario 1.
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T0 =

 0.7425 0.3580 −0.9072
0.3580 −1.0637 −1.4240
−0.9072 −1.4240 0.3212


Tx =

0.1446 0.6549 2.1568
0.6549 −1.5726 1.6439
2.1568 1.6439 1.4280


Ty =

 −1.889 −0.6525 1.0078
−0.6525 1.9779 −1.6968
1.0078 −1.6968 −0.0889


Tz =

−0.7365 −1.2447 0.532
−1.2447 1.5137 −1.1979

0.532 −1.1979 −0.7772



Figure 4.6: Six transition points: Four transition points on one degenerate curve and
two transition points on the other degenerate curve in scenario 1.

T0 =

 0.0595 −0.0305 0.0404
−0.0305 0.0716 0.0598
0.6118 0.0598 −0.1311


Tx =

−2.2608 −1.2583 0.6668
−1.2583 0.6141 1.7100
0.6668 1.7100 1.6467


Ty =

 0.0607 −0.5707 0.1859
−0.5707 0.8933 1.7705
0.1859 1.7705 −0.9540


Tz =

 0.9947 −0.9103 −0.4214
−0.9103 −0.2301 0.2761
−0.4214 0.2761 −0.7646



Figure 4.7: Eight transition points when there are two degenerate curves in scenario 1.
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4.2.2 Scenario 2: Two TT curves

This scenario is symmetrical to scenario 1. So, we look for the similar configurations

(Table 4.3) similar to scenario 1:

Number of
transition

points Zero Two Four Six Eight Ten

Possible
Combinations

0,0
Figure 4.8

2,0
Figure 4.9

4,0
Figure 4.10

6,0
Figure 4.12

8,0
Not Found

10,0
Not Found

2,2
Figure 4.11

4,2
Figure 4.13

6,2
Figure 4.14

8,2
Not Found

4,4
Figure 4.15

Asymmetry with
scenario 1

6,4
Not Found

Table 4.3: Combination of different configurations in scenario 2.

T0 =

−0.0723 0.0074 0.0527
0.0074 0.0336 −0.0569
0.0527 0.0336 0.0387


Tx =

 0.1238 −0.2017 −0.0300
−0.2017 0.0134 −0.1645
−0.0300 0.0134 −0.1372


Ty =

−0.9850 2.1346 0.0075
2.1346 2.5524 −1.7452
0.0075 2.5524 −1.5674


Tz =

 0.3305 0.3829 −0.4246
0.3829 −2.0064 −1.9651
−0.4246 −2.0064 1.6759



Figure 4.8: Zero transition point in scenario 2.
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T0 =

0.1000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 −0.1000


Tx =

0.5000 1.0000 0.1000
1.0000 0.1000 −1.3000
0.1000 0.1000 −0.6000


Ty =

 1.2446 −1.2305 0.4739
−1.2305 −1.6873 0.4599
0.4739 −1.6873 0.4427


Tz =

0.0000 0.0000 0.0000
0.0000 0.0000 1.0000
0.0000 0.0000 −0.0000



Figure 4.9: Two transition points on one degenerate curve and zero transition point on
the other degenerate curve in scenario 2.

T0 =

0.1000 0.0000 0.0000
0.0000 0.0000 0.1000
0.0000 0.0000 −0.1000


Tx =

−1.2252 −0.7677 0.5336
−0.7677 −0.2813 0.3178
0.5336 −0.2813 1.5065


Ty =

 1.0168 −1.0791 0.1176
−1.0791 −1.2755 −1.3055
0.1176 −1.2755 0.2587


Tz =

 0.6253 −0.5554 0.9307
−0.5554 −0.8702 1.1838
0.9307 −0.8702 0.2449



Figure 4.10: Four Transition points: Four transition points on one degenerate curve and
zero transition point on the other degenerate curve in scenario 2.
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T0 =

0.1000 0.0000 0.0000
0.0000 0.0000 0.1000
0.0000 0.0000 −0.1000


Tx =

−1.2252 −0.7677 0.5336
−0.7677 −0.2813 0.3178
0.5336 −0.2813 1.5065


Ty =

 1.0168 −1.0791 0.1176
−1.0791 −1.2755 −1.3055
0.1176 −1.2755 0.2587


Tz =

 0.6253 −0.5554 0.9307
−0.5554 −0.8702 1.1838
0.9307 −0.8702 0.2449



Figure 4.11: Four Transition points: Two transition points on each degenerate curves in
scenario 2.

T0 =

0.6000 0.2000 0.0000
0.2000 0.4000 0.0000
0.0000 0.4000 −1.0000


Tx =

0.3447 1.7633 0.4000
1.7633 −2.6369 0.5000
0.4000 −2.6369 2.2922


Ty =

 0.6909 −0.3648 0.7771
−0.3648 0.5383 1.4591
0.7771 0.5383 −1.2292


Tz =

0.6107 0.0000 0.9000
0.0000 0.9452 −1.1910
0.9000 0.9452 −1.5559



Figure 4.12: Six transition points: Six transition points on one degenerate curve and
zero transition on the other degenerate curve in scenario 2.
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T0 =

0.0000 0.1000 0.0000
0.1000 0.0000 0.1000
0.0000 0.0000 −0.0000


Tx =

−1.2252 −0.7677 0.5336
−0.7677 0.3187 0.3178
0.5336 0.3187 0.9065


Ty =

 1.0168 −1.0791 0.1176
−1.0791 −1.2755 1.2945
0.1176 −1.2755 0.2587


Tz =

 0.6253 −0.5554 0.9307
−0.5554 −0.8702 1.1838
0.9307 −0.8702 0.2449



Figure 4.13: Six transition points: Four transition points on one degenerate curve and
two transition points on the other degenerate curve in scenario 2.

T0 =

0.8046 0.6470 0.5960
0.6470 −0.0900 1.1553
0.5960 −0.0900 −0.7146


Tx =

2.0977 1.6935 0.1243
1.6935 0.1628 1.5706
0.1243 0.1628 −2.2605


Ty =

 2.4280 0.4236 −1.3956
0.4236 −1.5913 1.7224
−1.3956 −1.5913 −0.8367


Tz =

 1.0004 −0.2250 −0.4504
−0.2250 −0.5826 0.8175
−0.4504 −0.5826 −0.4178



Figure 4.14: Eight transition points: Six transition points on one degenerate curve and
two transition points on the other degenerate curve in scenario 2.
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T0 =

0.0000 0.0000 0.0000
0.0000 0.0000 0.1000
0.0000 0.0000 −0.0000


Tx =

−1.2252 −0.7677 0.5336
−0.7677 0.2187 0.3178
0.5336 0.2187 1.0065


Ty =

 1.0168 −1.0791 0.1176
−1.0791 −1.2755 1.2945
0.1176 −1.2755 0.2587


Tz =

 0.6253 −0.5554 0.9307
−0.5554 −0.8702 1.1838
0.9307 −0.8702 0.2449



Figure 4.15: Eight transition points: Four transition points each on two degenerate
curves in scenario 2.
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4.2.3 Scenario 3: Two WT curves

In such case, there is at least two transition points in the tensor field. Also, there are

odd number of transition points on each of the degenerate curve. In such tensor fields,

one degenerate can have maximum of 7 transition points and minimum of 1 transition

point. There cannot be zero transition point on a degenerate curve in such configuration

because a WT curve always has an odd number of transition points. In this case too,

we have upper bound of 8 transition points in all the observed linear tensor field. Table

4.4 shows different configurations possible under this scenario.

Number of
transition

points Two Four Six Eight Ten

Possible
Combinations

1,1
Figure 4.16

3,1
Figure 4.17

5,1
Figure 4.18

7,1
Figure 4.20

9,1
Not Found

3,3
Figure 4.19

5,3
Figure 4.21

7,3
Not Found

5,5
Not Found

Table 4.4: Combination of different configurations in scenario 3.

T0 =

−0.0116 0.0237 0.0960
0.0237 0.6919 0.0966
0.0960 0.6919 −0.6803


Tx =

 1.3459 2.1036 −1.0505
2.1036 0.4072 −1.4391
−1.0505 0.4072 −1.7531


Ty =

−5.3075 5.1121 −7.4489
5.1121 3.2839 −8.1517
−7.4489 3.2839 2.0236


Tz =

2.5061 0.5772 2.5073
0.5772 −0.1838 0.1619
2.5073 −0.1838 −2.3223



Figure 4.16: One transition point each on each of the two degenerate curves in scenario
3.
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T0 =

−0.0116 0.0237 0.0960
0.0237 0.6919 0.0966
0.0960 0.6919 −0.6803


Tx =

 1.2510 1.2321 −0.6147
1.2321 0.4235 −1.3982
−0.6147 0.4235 −1.6745


Ty =

−1.3341 −0.0351 −0.7498
−0.0351 0.2000 −2.0022
−0.7498 0.2000 1.1341


Tz =

 2.5167 −0.8126 −2.4270
−0.8126 −0.1636 −0.0210
−2.4270 −0.1636 −2.3531



Figure 4.17: Three transition points on one degenerate curve and one transition point
on the other degenerate curve in scenario 3.

T0 =

0.6000 0.2000 0.0000
0.2000 0.4000 0.0000
0.0000 0.4000 −1.0000


Tx =

0.3447 1.7633 0.4000
1.7633 −2.6369 0.5000
0.4000 −2.6369 2.2922


Ty =

 0.6909 −0.2648 0.7771
−0.2648 0.5383 1.4591
0.7771 0.5383 −1.2292


Tz =

0.6107 0.0000 0.9000
0.0000 0.9452 −1.1910
0.9000 0.9452 −1.5559



Figure 4.18: Six transition points: Five transition points on one degenerate curve and
one transition point on the other degenerate curve in scenario 3.
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T0 =

0.0000 0.0000 0.0000
0.0000 0.1000 0.0000
0.0000 0.1000 −0.1000


Tx =

−0.4552 −0.0843 −0.9109
−0.0843 −0.7403 −0.2663
−0.9109 −0.7403 1.1955


Ty =

−0.7000 0.0000 1.0000
0.0000 0.4000 0.0000
1.0000 0.4000 0.3000


Tz =

0.0000 0.0000 0.2000
0.0000 0.0000 0.2000
0.2000 0.0000 −0.0000



Figure 4.19: Six transition points: Three transition points on each of the two degenerate
curves in scenario 3.

T0 =

 1.7209 −0.3590 0.0865
−0.3590 −0.1476 0.0207
0.0865 −0.1476 −1.5733


Tx =

−0.3493 −0.2422 −0.0384
−0.2422 −1.7299 −0.1965
−0.0384 −1.7299 2.0792


Ty =

−0.1407 −0.0844 1.9154
−0.0844 0.2167 −0.2852
1.9154 0.2167 −0.0760


Tz =

−0.1134 −0.0840 2.9275
−0.0840 0.1737 0.0740
2.9275 0.1737 −0.0603



Figure 4.20: Eight transition points: Seven transition points on one degenerate curve
and one transition point on the other degenerate curve in scenario 3.
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T0 =

−0.5728 −0.4436 −0.0024
−0.4436 0.5732 0.2141
−0.0024 0.5732 −0.0004


Tx =

 0.0170 −0.9867 2.4017
−0.9867 −0.7061 2.2959
2.4017 −0.7061 0.6891


Ty =

 1.8383 −1.7101 0.8759
−1.7101 0.0000 0.0000
0.8759 0.0000 −1.8383


Tz =

0.0000 0.0000 0.0000
0.0000 0.0000 1.0000
0.0000 0.0000 −0.0000



Figure 4.21: Eight transition points: Five transition points on one degenerate curve and
three transition points on the other degenerate curve in scenario 3.
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4.2.4 Scenario 4: Four WW curves

When there are four WW curves, there are always either none or even number of tran-

sition points on a degenerate curve. The observed maximum and minimum number of

transition points in such field are 8 and 0 respectively. Following are the configuration

(Table 4.5) which are possible to occur:

Number of
transition

points Zero Two Four Six Eight Ten

Possible
Combinations

0,0,0,0
Figure 4.22

2,0,0,0
Figure 4.23

4,0,0,0
Not Found

6,0,0,0
Not Found

8,0,0,0
Not Found

10,0,0,0
Not Found

2,2,0,0
Figure 4.24

4,2,0,0
Figure 4.25

6,2,0,0
Not Found

8,2,0,0
Not Found

2,2,2,0
Figure 4.26

4,2,2,0
Not Found

6,4,0,0
Not Found

2,2,2,2
Figure 4.27

6,2,2,0
Not Found

4,4,2,0
Not Found

4,2,2,2
Not Found

Table 4.5: Combination of different configurations in scenario 4.
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T0 =

0.1000 0.0100 0.0000
0.0100 0.0000 0.0000
0.0000 0.0000 −0.1000


Tx =

−0.7208 1.4853 −0.4368
1.4853 0.9841 −1.0347
−0.4368 0.9841 −0.2633


Ty =

−3.1768 −0.7047 −0.6298
−0.7047 0.1884 1.4414
−0.6298 0.1884 2.9884


Tz =

 0.1166 0.3200 −0.2222
0.3200 −0.5140 −0.8002
−0.2222 −0.5140 0.3974



Figure 4.22: Zero transition point in scenario 4.

T0 =

−0.6180 −0.1320 0.2179
−0.1320 0.6083 0.3606
0.2179 0.6083 0.0097


Tx =

 0.0170 −0.9867 2.4017
−0.9867 −0.7061 2.2959
2.4017 −0.7061 0.6891


Ty =

 0.1788 1.2135 −1.4717
1.2135 −0.8925 −0.5553
−1.4717 −0.8925 0.7137


Tz =

 0.3460 −0.4611 −0.4414
−0.4611 −0.9169 −0.0763
−0.4414 −0.9169 0.5709



Figure 4.23: Two transition points on one degenerate curve and zero transition point on
all other degenerate curves in scenario 4.
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T0 =

 0.0514 0.0333 −0.0778
0.0333 0.0053 0.0011
−0.0778 0.0053 −0.0566


Tx =

0.0463 0.0657 0.0708
0.0657 −0.0437 0.2232
0.0708 −0.0437 −0.0026


Ty =

−2.8003 1.0429 −1.3473
1.0429 −0.3228 −0.8642
−1.3473 −0.3228 3.1232


Tz =

 0.1166 0.3200 −0.2222
0.3200 −0.5140 −0.8002
−0.2222 −0.5140 0.3974



Figure 4.24: Two transition points on two degenerate curves and zero transition point
on other two degenerate curves in scenario 4.

T0 =

−0.1935 0.3977 −0.0206
0.3977 −0.0732 0.0714
−0.0206 −0.0732 0.2667


Tx =

−0.2132 0.7479 −0.6931
0.7479 0.3928 1.2670
−0.6931 0.3928 −0.1796


Ty =

−1.2350 0.0565 −3.1983
0.0565 0.1481 0.9768
−3.1983 0.1481 1.0870


Tz =

−0.8562 −0.7682 −0.1183
−0.7682 0.9399 −0.3332
−0.1183 0.9399 −0.0837



Figure 4.25: Six transition points: Four transition points on one degenerate curve, two
transition points on one degenerate curve and zero transition point on one degenerate
curve in scenario 4.
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T0 =

 0.3595 −0.1305 0.0404
−0.1305 0.2716 0.1598
0.0404 0.2716 −0.6311


Tx =

2.0977 0.6955 1.3215
0.6955 0.1578 1.5729
1.3215 0.1578 −2.2555


Ty =

−0.6349 −0.5709 −0.0637
−0.5709 1.1157 2.0381
−0.0637 1.1157 −0.4808


Tz =

 0.9947 −0.9103 −0.0900
−0.9103 −0.2301 0.2761
−0.0900 −0.2301 −0.7646



Figure 4.26: Six transition points: Two transition points on three degenerate curves and
zero transition point on one degenerate curve in scenario 4.

T0 =

 0.3595 −0.1305 0.0404
−0.1305 0.2716 0.1598
0.0404 0.2716 −0.6311


Tx =

2.1977 0.6955 1.3215
0.6955 0.1578 1.5729
1.3215 0.1578 −2.3555


Ty =

−0.4385 −0.5842 −0.0540
−0.5842 1.0463 1.7287
−0.0540 1.0463 −0.6078


Tz =

 0.9947 −0.9103 −0.0900
−0.9103 −0.2301 0.2761
−0.0900 −0.2301 −0.7646



Figure 4.27: Eight transition points: Two transition points on all four degenerate curves
in scenario 4.
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4.2.5 Scenario 5: Four TT curves

When there are four TT curves, there are always either none or even number of transi-

tion points on a degenerate curve similar to scenario 4. In this case too, the observed

maximum and minimum number of transition points are 8 and 0 respectively. Table 4.6

provides all the possible configurations under this scenario.

Number of
transition

points Zero Two Four Six Eight Ten

Possible
Combinations

0,0,0,0
Figure 4.28

2,0,0,0
Figure 4.29

4,0,0,0
Not Found

6,0,0,0
Not Found

8,0,0,0
Not Found

10,0,0,0
Not Found

2,2,0,0
Figure 4.30

4,2,0,0
Figure 4.31

6,2,0,0
Not Found

8,2,0,0
Not Found

2,2,2,0
Figure 4.32

4,2,2,0
Not Found

6,4,0,0
Not Found

2,2,2,2
Figure 4.33

6,2,2,0
Not Found

4,4,2,0
Not Found

4,2,2,2
Not Found

Table 4.6: Combination of different configurations in scenario 5.
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T0 =

−0.0116 0.0237 0.0960
0.0237 0.6919 0.0966
0.0960 0.6919 −0.6803


Tx =

−2.7407 −0.9808 −4.3788
−0.9808 8.3682 −5.1143
−4.3788 8.3682 −5.6275


Ty =

 −0.8359 −5.3236 −10.5531
−5.3236 3.4134 3.9742
−10.5531 3.4134 −2.5775


Tz =

−1.0416 −3.9385 9.0661
−3.9385 −0.9106 0.6563
9.0661 −0.9106 1.9522



Figure 4.28: Zero transition point in scenario 5.

T0 =

−0.0116 0.0237 0.0960
0.0237 0.6919 0.0966
0.0960 0.6919 −0.6803


Tx =

−2.7407 −0.9808 −4.3788
−0.9808 8.3682 −5.1143
−4.3788 8.3682 −5.6275


Ty =

−0.1979 −6.2851 −9.8869
−6.2851 2.1413 5.3048
−9.8869 2.1413 −1.9434


Tz =

−0.6756 −3.7720 9.1113
−3.7720 −1.4930 0.2499
9.1113 −1.4930 2.1686



Figure 4.29: Two transition points on one degenerate curve and zero transition point on
all other degenerate curves in scenario 5.
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T0 =

−0.0116 0.0237 0.0960
0.0237 0.6919 0.0966
0.0960 0.6919 −0.6803


Tx =

−2.7407 −0.9808 −4.3788
−0.9808 8.3682 −5.1143
−4.3788 8.3682 −5.6275


Ty =

−0.1979 −6.2851 −9.8869
−6.2851 2.1413 5.3048
−9.8869 2.1413 −1.9434


Tz =

−0.2904 −3.5801 9.1146
−3.5801 −2.0936 −0.1753
9.1146 −2.0936 2.3840



Figure 4.30: Two transition points on two degenerate curves and zero transition point
on all other degenerate curves in scenario 5.

T0 =

−0.1871 0.0410 −0.6872
0.0410 −0.2922 −0.0559
−0.6872 −0.2922 0.4793


Tx =

−0.7152 1.6814 −0.4420
1.6814 0.9881 −1.0377
−0.4420 0.9881 −0.2729


Ty =

−0.1135 0.0821 −0.4112
0.0821 −0.0645 0.0276
−0.4112 −0.0645 0.1780


Tz =

 0.0779 0.4396 −0.3575
0.4396 −0.6411 −1.0759
−0.3575 −0.6411 0.5632



Figure 4.31: Six transition points: Four transition points on one degenerate curve, two
transition points on one degenerate curve and zero transition point on one degenerate
curve in scenario 5.
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T0 =

−0.0088 0.2469 −0.1972
0.2469 1.0442 −0.1593
−0.1972 1.0442 −1.0354


Tx =

−1.5613 0.1249 0.8366
0.1249 2.0668 −0.9217
0.8366 2.0668 −0.5055


Ty =

 1.7777 0.1847 −0.4755
0.1847 −0.4547 0.9872
−0.4755 −0.4547 −1.3230


Tz =

0.8519 1.1166 2.5128
1.1166 0.2589 −0.1784
2.5128 0.2589 −1.1108



Figure 4.32: Six transition points: Two transition points each on three degenerate curves
and zero transition point on one degenerate curve in scenario 5.

T0 =

−0.0088 0.2469 −0.1972
0.2469 0.9442 −0.1593
−0.1972 0.9442 −0.9354


Tx =

−1.5613 0.1249 0.8366
0.1249 2.0668 −0.9217
0.8366 2.0668 −0.5055


Ty =

 1.7777 0.1847 −0.4755
0.1847 −0.4547 0.9872
−0.4755 −0.4547 −1.3230


Tz =

0.8519 1.1166 2.5128
1.1166 0.2589 −0.1784
2.5128 0.2589 −1.1108



Figure 4.33: Eight transition points: Two transition points each on all four degenerate
curves in scenario 5.
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4.2.6 Scenario 6: Two WW curves and two WT curves

When there are two WW curves and two WT curve, there are minimum of two transition

points. None of the observed cases had zero transition point which clearly make sense

as there are two WT curves and each WT curve have at least one transition point.

Similar to our previous analysis, a degenerate curve can only have their ends in wedge

and trisector if there is at least one switch along the curve. Two WW curve either have

zero transition point or even number of transition points. Consequently, we have even

number of transition points in this scenario. Table 4.7 show all possible configuration

under this scenario.

T0 =

 0.1259 0.0591 −0.0846
0.0591 0.1465 0.1165
−0.0846 0.1465 −0.2724


Tx =

 0.2587 0.0861 −0.9337
0.0861 −0.9061 0.9366
−0.9337 −0.9061 0.6474


Ty =

−0.7781 1.0794 −0.8078
1.0794 1.8484 −0.3140
−0.8078 1.8484 −1.0703


Tz =

−1.7610 1.0224 −1.0675
1.0224 −0.0609 1.4906
−1.0675 −0.0609 1.8219



Figure 4.34: One transition point each on two degenerate curves and zero transition
point on other two degenerate curves in scenario 6.
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T0 =

 0.1259 0.0591 −0.0846
0.0591 0.1465 0.1165
−0.0846 0.1465 −0.2724


Tx =

 0.2587 0.0861 −0.9337
0.0861 −0.9061 0.9366
−0.9337 −0.9061 0.6474


Ty =

−0.7781 1.0794 −0.8078
1.0794 1.8484 −0.3140
−0.8078 1.8484 −1.0703


Tz =

−1.7610 0.4224 −1.0675
0.4224 −0.0609 1.4906
−1.0675 −0.0609 1.8219



Figure 4.35: Two transition points on one degenerate curve, one transition point each
on two degenerate curves and zero transition point on one degenerate curve in scenario
6.

T0 =

−0.0904 −0.0700 −0.0004
−0.0700 0.0904 0.0338
−0.0004 0.0904 −0.0001


Tx =

−0.9648 −0.2299 −0.7033
−0.2299 0.3605 −0.0693
−0.7033 0.3605 0.6043


Ty =

 2.1181 −0.4236 0.4121
−0.4236 0.2050 0.9737
0.4121 0.2050 −2.3231


Tz =

−0.1649 −1.0237 0.1652
−1.0237 0.0070 0.6842
0.1652 0.0070 0.1579



Figure 4.36: Six transition points: Three, two, one and zero transition point on each of
the degenerate curves respectively in scenario 6.
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Number of
transition

points Two Four Six Eight Ten

Possible
Combinations

1,1,0,0
Figure 4.34

4,0,0,0
Not Found

6,0,0,0
Not Found

8,0,0,0
Not Found

10,0,0,0
Not Found

3,1,0,0
Not Found

Asymmetry with
scenario 7

5,1,0,0
Not Found

7,1,0,0
Not Found

9,1,0,0
Not Found

2,2,0,0
Not Found

4,2,0,0
Not Found

6,2,0,0
Not Found

8,2,0,0
Not Found

2,1,1,0
Figure 4.35

4,1,1,0
Not Found

Asymmetry with
scenario 7

6,1,1,0
Not Found

8,1,1,0
Not Found

3,2,1,0
Figure 4.36

5,3,0,0
Not Found

7,3,0,0
Not Found

2,2,1,1
Figure 4.37

5,2,1,0
Not Found

7,2,1,0
Not Found

4,2,1,1
Figure 4.38

Asymmetry with
scenario 7

6,4,0,0
Not Found

3,3,2,0
Not Found

6,3,1,0
Not Found

3,2,2,1
Not Found

Asymmetry with
scenario 7

6,2,1,1
Not Found

5,5,0,0
Not Found

5,4,1,0
Not Found

5,3,2,0
Not Found

5,2,2,1
Not Found

4,4,1,1
Not Found

4,3,2,1
Not Found

3,3,2,2
Not Found

Table 4.7: Combination of different configurations in scenario 6.
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T0 =

 0.2265 −0.0192 0.0255
−0.0192 0.1711 0.1007
0.0255 0.1711 −0.3976


Tx =

2.1977 0.6955 1.3215
0.6955 0.1578 1.4729
1.3215 0.1578 −2.3555


Ty =

−0.4385 −0.5842 −0.0540
−0.5842 1.0463 1.7287
−0.0540 1.0463 −0.6078


Tz =

 0.9947 −0.9103 −0.0900
−0.9103 −0.2301 0.2761
−0.0900 −0.2301 −0.7646



Figure 4.37: Six transition points: Two transition points on two degenerate curves and
one transition point each on two degenerate curves in scenario 6.

T0 =

−0.055630 0.121152 −0.144964
0.121152 0.030503 −0.073200
−0.144964 −0.073200 0.025127


Tx =

−0.539884 0.435815 −0.387068
0.435815 1.407228 −0.618981
−0.387068 −0.618981 −0.867344


Ty =

 1.277507 −0.065352 −0.207895
−0.065352 0.942943 −1.103464
−0.207895 −1.103464 −2.22045


Tz =

 0.629354 −0.006736 −0.012501
−0.006736 −1.862845 1.245910
−0.012501 1.245910 1.233491



Figure 4.38: Eight transition points: Four transition points on one degenerate curve,
two transition points on one degenerate curve and one transition point each on two
degenerate curves in scenario 6.
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4.2.7 Scenario 7: Two TT curves and two WT curves

When there are two TT curves and two WT curves, the same analysis follows as scenario

6. Table 4.8 shows all possible configurations under this scenario.

T0 =

 0.0344 0.0096 −0.0154
0.0096 0.0440 0.0060
−0.0154 0.0440 −0.0784


Tx =

 0.2587 0.0861 −1.0600
0.0861 0.4939 1.3366
−1.0600 0.4939 −0.7526


Ty =

−0.3769 0.3177 −0.0512
0.3177 0.3068 −0.4099
−0.0512 0.3068 0.0701


Tz =

−1.7922 1.4648 −0.7536
1.4648 0.8485 0.9022
−0.7536 0.8485 0.9437



Figure 4.39: One transition point each on two degenerate curves and zero transition
point on two degenerate curves in scenario 7.
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T0 =

 0.059004 0.147258 −0.035296
0.147258 0.195146 0.006435
−0.035296 0.195146 −0.254150


Tx =

 0.258700 0.086100 −1.060000
0.086100 0.493900 1.336600
−1.060000 0.493900 −0.752600


Ty =

−0.376900 0.317700 −0.051200
0.317700 0.306800 −0.409900
−0.051200 0.306800 0.070100


Tz =

−1.792200 1.464800 −0.753600
1.464800 0.848500 0.902200
−0.753600 0.848500 0.943700



Figure 4.40: Three transition points on one degenerate curve, one transition point on
one degenerate curve and zero transition point on two degenerate curves in scenario 7.

T0 =

−0.0075 −0.0030 0.0134
−0.0030 0.0350 0.0338
0.0134 0.0350 −0.0275


Tx =

−2.6455 −0.1284 1.4676
−0.1284 −1.2834 0.6693
1.4676 −1.2834 3.9289


Ty =

−0.5925 2.9152 −0.2388
2.9152 1.3966 −1.0381
−0.2388 1.3966 −0.8041


Tz =

−0.2953 0.1556 0.0102
0.1556 −0.1746 0.2295
0.0102 −0.1746 0.4699



Figure 4.41: Two transition points on one degenerate curve, one transition point on two
degenerate curves and zero transition point on one degenerate curve in scenario 7.
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T0 =

−0.0199 −0.0015 −0.0191
−0.0015 0.0017 −0.0046
−0.0191 0.0017 0.0183


Tx =

−0.2661 0.1807 −0.4794
0.1807 0.8413 −0.4275
−0.4794 0.8413 −0.5752


Ty =

 1.1745 −0.4655 0.4963
−0.4655 −0.5951 −0.1226
0.4963 −0.5951 −0.5794


Tz =

−0.2799 −0.0822 −0.1720
−0.0822 −0.5679 0.6355
−0.1720 −0.5679 0.8478



Figure 4.42: Four transition points on one degenerate curve, one transition point on two
degenerate curves and zero transition point on one degenerate curve in scenario 7.

T0 =

−0.0712 −0.0053 −0.0683
−0.0053 0.0060 −0.0165
−0.0683 0.0060 0.0652


Tx =

−2.6455 −0.1284 1.4676
−0.1284 −1.2834 0.6693
1.4676 −1.2834 3.9289


Ty =

−0.5925 2.9152 −0.2388
2.9152 1.3966 −1.0381
−0.2388 1.3966 −0.8041


Tz =

−0.2953 0.1556 0.0102
0.1556 −0.1746 0.2295
0.0102 −0.1746 0.4699



Figure 4.43: Two transition points each on two degenerate curves, one transition point
each on two degenerate curves in scenario 7.
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T0 =

 0.039117 −0.006686 0.137009
−0.006686 0.107261 0.005092
0.137009 0.005092 −0.146378


Tx =

−2.394048 −0.116195 1.328106
−0.116195 −1.161414 0.605600
1.328106 0.605600 3.555462


Ty =

−0.442778 2.827740 −0.393000
2.827740 1.542000 −1.032207
−0.393000 −1.032207 −1.099222


Tz =

−0.084154 0.044343 0.002900
0.044343 −0.049800 0.065421
0.002900 0.065421 0.133954



Figure 4.44: Three transition points on one degenerate curve, two transition points each
on two degenerate curves and one transition point in one degenerate curve in scenario 7.
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Number of
transition

points Two Four Six Eight Ten

Possible
Combinations

1,1,0,0
Figure 4.39

4,0,0,0
Not Found

6,0,0,0
Not Found

8,0,0,0
Not Found

10,0,0,0
Not Found

3,1,0,0
Figure 4.40

Asymmetry with
scenario 6

5,1,0,0
Not Found

7,1,0,0
Not Found

9,1,0,0
Not Found

2,2,0,0
Not Found

4,2,0,0
Not Found

6,2,0,0
Not Found

8,2,0,0
Not Found

2,1,1,0
Figure 4.41

4,1,1,0
Figure 4.42

Asymmetry with
scenario 6

6,1,1,0
Not Found

8,1,1,0
Not Found

3,2,1,0
Not Found

5,3,0,0
Not Found

7,3,0,0
Not Found

2,2,1,1
Figure 4.43

5,2,1,0
Not Found

7,2,1,0
Not Found

4,2,1,1
Not Found

Asymmetry with
scenario 6

6,4,0,0
Not Found

3,3,2,0
Not Found

6,3,1,0
Not Found

3,2,2,1
Figure 4.44

Asymmetry with
scenario 6

6,2,1,1
Not Found

5,5,0,0
Not Found

5,4,1,0
Not Found

5,3,2,0
Not Found

5,2,2,1
Not Found

4,4,1,1
Not Found

4,3,2,1
Not Found

3,3,2,2
Not Found

Table 4.8: Combination of different configurations in scenario 7.
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4.2.8 Scenario 8: Four WT curves

In this scenario, there are four WT curves and each of the WT curve have at least one

or odd number of transition point(s). Since there are even number of degenerate curves,

there are even number of transition points and each curve will have at least one transition

point on them (Figure 4.45). So, the minimum number of transition points in such cases

are always four. Table 4.9 shows different configurations possible under this scenario.

Number of
transition

points Four Six Eight Ten

Possible
Combinations

1,1,1,1
Figure 4.45

3,1,1,1
Figure 4.46

5,1,1,1
Not Found

7,1,1,1
Not Found

3,3,1,1
Figure 4.47

5,3,1,1
Not Found

3,3,3,1
Not Found

Table 4.9: Combination of different configurations in scenario 8.

T0 =

0.1000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 −0.1000


Tx =

0.0000 1.0000 0.0000
1.0000 0.0000 0.0000
0.0000 0.0000 −0.0000


Ty =

0.0000 0.0000 1.0000
0.0000 0.0000 0.0000
1.0000 0.0000 −0.0000


Tz =

0.0000 0.0000 0.0000
0.0000 0.0000 1.0000
0.0000 0.0000 −0.0000



Figure 4.45: One transition point each on all four degenerate curves in scenario 8.
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T0 =

−0.0637 −0.0962 −0.1312
−0.0962 −0.0483 0.0111
−0.1312 −0.0483 0.1121


Tx =

−0.3433 −0.5896 −3.0368
−0.5896 1.9754 −0.7279
−3.0368 1.9754 −1.6321


Ty =

−0.1180 −0.8664 0.0275
−0.8664 −1.8729 1.9143
0.0275 −1.8729 1.9909


Tz =

0.5255 0.0557 0.1163
0.0557 −0.3915 −0.0771
0.1163 −0.3915 −0.1340



Figure 4.46: Three transition points on one degenerate curve and one transition point
each on the other three degenerate curves in scenario 8.

T0 =

0.275800 0.411167 0.338027
0.411167 0.018058 0.111983
0.338027 0.111983 −0.293858


Tx =

 −2.986146 −5.128552 −26.415173
−0.5896 17.182735 −6.331500
−26.415173 −6.331500 −14.196589


Ty =

−0.609759 −0.795132 −0.132900
−0.795132 −1.857500 2.178074
−0.132900 2.178074 2.467259


Tz =

0.148799 0.016169 0.032596
0.016169 −0.113324 −0.023562
0.032596 −0.023562 −0.035475



Figure 4.47: Eight transition points: Three transition points each on two degenerate
curves and one transition point each of the other two degenerate curves in scenario 8.
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4.2.9 Scenario 9: One WW curve, one TT curve and two WT curves

In this scenario, there are four degenerate curves: one WW curve, one TT curve and

two WT curves. The two WW curves have zero or even number of transition point(s).

There are even number of WT curves and each of these WT curve have odd number of

transition points. The product of even number with odd number is always even. So two

WT curve contributes to even number of transition points. As a result, in this scenario,

we always have even number of transition points. Figure 4.51) shows the power of our

interactive interface. With lack of navigability and cluttering in visualization, it is always

difficult to see all transition points at once. The zoom and pan-in/pan out functionalities

in the interface helps in visualizing cases when the degenerate curve does not fit in given

viewport size. Table 4.10 shows all the possible configurations under this scenario.

Number of
transition

points Two Four Six Eight Ten

Possible
Combinations

1,1,0,0
Figure 4.48

3,1,0,0
Figure 4.49

5,1,0,0
Not Found

7,1,0,0
Not Found

9,1,0,0
Not Found

2,1,1,0
Figure 4.50

4,1,1,0
Figure 4.51

6,1,1,0
Not Found

8,1,1,0
Not Found

3,3,0,0
Not Found

5,3,0,0
Not Found

7,3,0,0
Not Found

3,2,1,0
Figure 4.52

5,2,1,0
Not Found

7,2,1,0
Not Found

2,2,1,1
Not Found

4,2,1,1
Figure 4.53

6,3,1,0
Not Found

3,3,2,0
Not Found

6,2,1,1
Not Found

3,2,2,1
Figure 4.54

5,4,1,0
Not Found

5,3,2,0
Not Found

5,2,2,1
Not Found

4,3,3,0
Not Found

4,3,2,1
Not Found

3,3,2,2
Not Found

Table 4.10: Combination of different configurations in scenario 9.
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T0 =

−0.5728 −0.4436 −0.0024
−0.4436 0.5732 0.2141
−0.0024 0.5732 −0.0004


Tx =

 0.0170 −0.9867 2.4017
−0.9867 −0.7061 2.2959
2.4017 −0.7061 0.6891


Ty =

 1.8382 −1.7101 0.8759
−1.7101 −1.0792 0.0928
0.8759 −1.0792 −0.7590


Tz =

 0.3460 −0.4611 −0.8414
−0.4611 −0.9169 −0.0763
−0.8414 −0.9169 0.5709



Figure 4.48: One transition point each on two degenerate curves and zero transition
point on the other two degenerate curves in scenario 9.

T0 =

 0.2118 0.5286 −0.1267
0.5286 −0.3995 −0.2769
−0.1267 −0.3995 0.1877


Tx =

 1.3756 −0.0904 0.8231
−0.0904 0.4304 0.0281
0.8231 0.4304 −1.8060


Ty =

−0.1087 1.8888 −0.6382
1.8888 −0.4513 −1.3544
−0.6382 −0.4513 0.5600


Tz =

−1.3906 0.2273 −1.0665
0.2273 −0.0239 1.4640
−1.0665 −0.0239 1.4145



Figure 4.49: Three transition points on one degenerate curve, one transition point on
one degenerate curve and zero transition point on the other two degenerate curves in
scenario 9.
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T0 =

−0.5728 −0.4436 −0.0024
−0.4436 0.5732 0.2141
−0.0024 0.5732 −0.0004


Tx =

 0.0170 −0.9867 2.4017
−0.9867 −0.7061 2.2959
2.4017 −0.7061 0.6891


Ty =

 1.8383 −1.7101 0.8759
−1.7101 −1.0792 0.0928
0.8759 −1.0792 −0.7591


Tz =

0.3460 0.0000 0.0000
0.0000 0.0000 1.0000
0.0000 0.0000 −0.3460



Figure 4.50: Two transition points on one degenerate curve, one transition point on two
degenerate curves and zero transition point on one degenerate curve in scenario 9.
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(a) default view (b) North view

(c) center view (d) South view

T0 =

 0.0132 −0.0030 0.0361
−0.0030 0.0303 0.0062
0.0361 0.0303 −0.0435


Tx =

25.7044 −0.1015 −1.2306
−0.1015 −2.5293 −2.9795
−1.2306 −2.5293 −23.1751


Ty =

0.0000 0.0000 0.0000
0.0000 0.0000 0.1000
0.0000 0.0000 −0.0000


Tz =

−2.0914 5.9905 0.4267
5.9905 −6.8082 −3.4781
0.4267 −6.8082 8.8996


(e) Tensor values

Figure 4.51: Six transition points: Four transition point on one degenerate curve, one
transition point each on two degenerate curves and zero transition point on one degen-
erate curve in scenario 9.
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T0 =

 0.3595 −0.0305 0.4040
−0.0305 0.0716 0.0598
0.4040 0.0716 −0.4311


Tx =

−2.2608 −1.2583 0.3668
−1.2583 0.7141 1.4100
0.3668 0.7141 1.5467


Ty =

−0.1393 −0.5707 0.0859
−0.5707 0.8933 1.7705
0.0859 0.8933 −0.7540


Tz =

 0.9947 −0.9103 −0.1900
−0.9103 −0.2301 0.2761
−0.1900 −0.2301 −0.7646



Figure 4.52: Six transition points: Three transition points on one degenerate curve, two
transition points on one degenerate curve, one transition point on one degenerate curve
and zero transition point on one degenerate curve in scenario 9.
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T0 =

 0.3595 −0.1305 0.1404
−0.1305 −0.0284 0.3598
0.1404 −0.0284 −0.3311


Tx =

2.0977 0.6935 1.4243
0.6935 0.1628 1.5706
1.4243 0.1628 −2.2605


Ty =

−0.3666 −1.0240 −0.6439
−1.0240 0.2514 1.8586
−0.6439 0.2514 0.1152


Tz =

 0.9947 −0.9103 −0.0900
−0.9103 −0.2301 0.2761
−0.0900 −0.2301 −0.7646



Figure 4.53: Eight transition points: Four transition points on one degenerate curve, two
transition points on one degenerate curve, one transition point each on two degenerate
curves in scenario 9.

T0 =

−0.0405 −0.0305 0.0404
−0.0305 0.0716 0.0598
0.0404 0.0716 −0.0311


Tx =

−1.3608 −1.2583 0.8668
−1.2583 0.6141 1.6100
0.8668 0.6141 0.7467


Ty =

−0.0803 −0.5831 0.1212
−0.5831 0.9727 1.7662
0.1212 0.9727 −0.8924


Tz =

 0.8947 −0.9103 −0.4214
−0.9103 −0.2301 0.2761
−0.4214 −0.2301 −0.6646



Figure 4.54: Eight transition points: Three transition points on one degenerate curve,
two transition points each on two degenerate curves, one transition point on one degen-
erate curve in scenario 9.
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4.3 Conjectures

Based on our observation from nine scenarios covering all the possible configurations

under structurally stable conditions, we have following results.

Conjecture 1. Under structurally stable conditions, a linear tensor field has at most

eight transition points.

In all the scenarios presented above, we found the maximum number of degenerate

points to be eight. Figure 4.55 shows all the scenarios having eight transition points.

On the other hand, the lower-bound on the number of transition points is same as the

number of WT curves in a 3D linear tensor field. In all the cases shown in figure 4.56,

we have zero number of WT curves and hence we have zero as the lower bound.

We also observed the maximum transition points on each of WW, TT and WT curves

and we have following conjectures for them based on observation.

Conjecture 2. Under structurally stable conditions, there are maximum of 6 transi-

tion points on a WW curve and 4 transition points on a WW curve, when there are two

and four curves in a linear tensor field, respectively.

The figure 4.57 shows the maximum number of transition points on WW curve.

Conjecture 3. Under structurally stable conditions, there are maximum of 6 transi-

tion points on a TT curve and 4 transition points on a TT curve, when there are two

and four curves in a linear tensor field, respectively.

The figure 4.58 shows the maximum number of transition points on TT curve.

Conjecture 4. Under structurally stable conditions, there are maximum of 7 transi-

tion points on a WT curve and 3 transition points on a WT curve, when there are two

and four curves in a linear tensor field, respectively.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

Figure 4.55: Eight transition.

The figure 4.59 shows the maximum number of transition points on WT curve.

Our analysis further reveals that a linear tensor field can have at most 7 transition

point on a single degenerate curve when there are only two degenerate curves and 4
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(a) Two degenerate curves having their
both ends in wedges

(b) Two degenerate curves having their
both ends in Trisector

(c) Four degenerate curves having their
both ends in wedges

(d) Four degenerate curves having their
both ends in wedges

Figure 4.56: Zero transition.

transition points on a single degenerate curve when there are four degenerate curves.

Conjecture 5. Under structurally stable conditions, a linear tensor field can have at

most 7 transition points on a single degenerate curve only when it contains only two

degenerate curves and at most 4 transition points on a single degenerate curve when it

contains four degenerate curves.
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(a) Two degenerate curves (b) Four degenerate curves

Figure 4.57: Maximum number of transition points on a WW curve.

(a) Two degenerate curves (b) Four degenerate curves

Figure 4.58: Maximum number of transition points on a TT curve.

Figure 4.20 and figure 4.27 are the basis of our above conjecture.
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(a) Two degenerate curves (b) Four degenerate curves

Figure 4.59: Maximum number of transition points on a WT curve.
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Chapter 5: Conclusions and Future Work

In this thesis, we provided an interactive interface to change different design parame-

ters and generate any 3D linear symmetric tensor fields. The interface provides both

geometric as well as algebraic approach to design 3D linear tensor fields. This helped

us in studying the number of transition points both on a degenerate curve and in a 3D

linear tensor field. We first showed that there are 20 transition points in a linear tensor

field under structurally stable conditions. Moreover, we observe that there are at most 8

transition points in a linear tensor field. There are maximum of 6 transition points on a

WW curve when there are two degenerate curves and maximum of 4 transition points on

a WW curve when there are four degenerate curves. Also, we found that the maximum

number of transition points on a TT curve, is 6 when there are two degenerate curves

and, is 4 when there are four degenerate curves. When there are two degenerate curves

in a linear tensor field, there are maximum 7 transition points on WT curve and there are

maximum of 3 transition points on a WT curve when there are four degenerate curves in

a linear tensor field. The lower bound on the number of transition points is same as the

number of WT curves in a linear tensor field. Also, there are an odd number of transi-

tion points on a WT curve and an even number of transition points on WW or TT curves.

In future, we plan to find a tighter upper bound on the number of transition points

in a 3D linear symmetric tensor field and also visualize all of them if there exist such

an upper bound. Also, we plan to study bifurcation using our interactive interface in a

3D linear tensor field. Also we would like to automate these testing to get all the stable

configurations which we were unable to find during our analysis.
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