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SYMBOLS 

a semimajor axis 

A area projected to free stream 

A satellite acceleration 

b constant (defined on page 27) 

B vector constant (defined on page 27) 

c most probable molecular speed 

Od drag coefficient 

C vector constant (defined on page 28) 

d distance from focus to directrix of ellipse 

D drag vector 



D-D• directrix 

e lEI 
....
£ vector constant (defined on page 29) 

f drag on satellite 

F force on satellite 

F focus of ellipse 

g local acceleration of gravity 

G gravity force 

h height measured from earth's surface (20,891,199.6 ft from 
earth's center) 

H dissociated hydrogen 

K universal gravitation constant 

K1 constant (defined on page 44) 

°K degrees Kelvin 

L characteristic dimension 

m satellite mass 

(K c 3.44o32 X 10-8 rt3/slugs sec 2) 

M mass of eartl\ (M =4.0919 X 1013 slugs) 

N dissociated nitrogen 

N unit vector in the direction of the principal normal to the 
satellite flight path 

molecular nitrogenN2 

0 dissociated oxygen 

o molecular oxygen2 

p pressure 

P period of revolution 

r magnitude of radius vector from earth center to satellite 

r radial distance (defined on page 24) 1 



r radius to satellite at apogeea 

r radius to satellite at perigee
p 

R universal gas constant (6.13 ft-lb/gm-cmqK) 

R radius vector from earth center to satellite 

fil unit vector in direction of R 

a arc length along satellite flight path 

t time 

T temperature 

T unit vector tangent to satellite flight path 

U total energy of satellite 

v speed of satellite 

v initial perigee speed
0 

second perigee passage speedv1 

vp speed at perigee 

V velocity of satellite 

V velocity of atmosphere due to atmospheric rotation r 

vt thermal velocity of atmospheric molecules 

~ defined by $ =fT (slope of logarithmic density curve) 

8 density of atmosphere 

8o initial value of density (defined on page 9) 

~ r reference density (defined on page 38) 

8P atmospheric density at perigee 

a angle measured between Rand the fixed direction of E 
E eccentricity of s.atellite orbit 

Q angle measured between ray from focus to perigee and focus to 
satellite (see Figure 4.3) 

mean free path of gas molecule 



molecular weight (atomic mass units per molecule, 
-28 )1 AMU =1,137 X 10 · slugs 

p radius of curvature of satellite flight path 

included angle between unit radius and unit tangent vector 
(see Figure 4.1) 



ARTIFICIAL SATELLI TE LIFE DURATION 
IN NEAR-EARTH ORBITS 

INTRODUCTION 

Up to the present time, the majority of artificial earth aatel­

lites have had orbits which could be considered to be, at least par­

tially, within the earth•s 1000 mile thick atmosphere. Future satel~ 

lites may also occupy this region of space for reasons of desirability . 

or necessity. For example, if no provision for shielding is provided 

for the manned observation satellite, rather restrictive limits are• 
imposed on the selection of operating altitudes by the Van Allen radia­

tion belts. The region of space• from sea level up to 4oo miles in 

height above the surface of the earth and latitudes less than 6o0 
, 

is relatively free of radiation. The next radiation free region is 

above 30,000 miles (17, p. 4). This region is much higher than would 

be desired for an observation satellite. 

If consideration is given to the flight mechanics of an earth 

satellite in orbit within the earth's atmosphere, then account must 

be made for the small but important drag force which will be present. 

This force, when integrated over long periods of time, is sufficient 

to force the satellite to descend back toward the earth. 

This thesis contains an analys is of satellite motion with drag 

and a solution to the corresponding differential equation of motion. 

The resulting solution allows prediction of expected satellite life• 

times. As pointed out above. the lifetimes at "low" altitudes are of 

interest. For this reason, results are presented for orbits with 

perigee heights less than 6oO miles and eccentricities between 0 

(circular orbits) and 0.2 (elliptical orbits). 
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An exact solution to the equations of satellite dynamical motion, 

with drag, is extremely difficult to obtain. The Variables involved 

• are not amenable to exact description. For example, the upper atmos­

pheric density depends to an extent on the latitude, the time of year, 

the time of day, and the state of the atmospheric tide. Since an 

exact solution is virtually unobtainable (at lease in closed form), 

an approxim•te solution is practical and may be carried out by making 

a number of simplifying assumptions. This approach is used in this 

thesis. 

A study is made of the variables involved with the problems of 

satellite engineering. There are ~ assumptions that can be made 

in connection with these variables and still allow a sufficiently 

accurate solution. A relation expressing drag in terms of velocity 

and density is derived for use in the differential equation of motion. 

· A new model atmosphere is then developed to relate atmospheric densitJ 

with height (up to 600 miles). This model is used in the drag rela­

tion. 

The solution to the controlling differential equation of motion 

is carried out completely for the simplified case of a circular orbit. 

The result is an equation relating orbital lifetime to the other con­

trolling variables. The solution is then generalized to include 

elliptical orbits and a comparison is carried out between predicted 

lifetimes and actual lifetimes of the present day satellites. This 

serves to confirm the accuracy of the solution. 



SOME IMPORTANT CONSIDERATIONS 

DRAG 

It is a well established fact that the atmospheric density mono­

tonically decreases with altitude above the earth's surface until some 

vague point often referred to as the edge or outer bound of the atmos~ 

phere is reached. Cis-lunar space extends beyond this altitude and 

remains at a more or less constant d~nsity of 1.42 X 107 particles/ 

rt'. 
Any satellite orbiting within this sphere of atmospheric gas will 

be influenced by it in the form of drag. The atmospheric density at 

high altitudes is extremely small compared to sea level values. OVer 

a long period of time, the integrated effect of drag will be sufficient 

to gradually reduce the orbital altitudes to the more dense regions of 

the atmosphere and finally terminate the initially established orbit. 

The atmospheric drag force depends upon the type of flow that a 

satellite will experience. Classical aerodynamics is based on the 

assumption of continuum flow. A body placed in this type of fluid 

flow will influence not only the molecules that actually impinge upon · 

its surface, but will also influence the molecules in the vicinity of 

the body. This results from the numerous collisions between the mole­

cules themselves. The aerodynamic forces and flow patterns result 

from a collective flow behavior of the gas. As might be expected. 

however, the continuum concept is not valid at satellite altitudes. 

This is simply because the extremely low density at these heights 
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vastly decrease the number of collisions between the gas molecules 

themselves . The gas in the vicinity of a body is practically un­

affected by its presence . The criteria for a continuum is that 

~A >> 1, where Lis a characteristic dimension associated with the 

aerodynamic body, usually the boundary layer thickness, and A is 

the mean free path of the gas molecule (15, P• 56-58). Noncontinuum 

flow (~A< l) is .usually referred to as free molecule flow. Th' 

dynamical aspects of free molecule flow are investigated using the 

methods of kinetic theory. 

Kinetic theory treats the interactions of the gas molecules with 

the immersed body surface in accordance with the conservation laws of 

classical mechanics (momentum and energy). Statistical methods are 

used in the theory; this presupposes that the ~ctual behavior of gas 

is equivalent to the average behavior . The model gas molecule is 

analyzed in this theory by giving it the characteristics of a small 

rigid elastic sphere . For free molecule flow, collisions between gas 

molecules are ignored since these are few when compared with collisions 

against the aerodynamic body. 

Internal energy of the gas is usually accounted for by assuming 

that the gas has a Maxwellian distribution of thermal velocity. How­

ever, at satellite speeds the internal energy of the gas may be 

neglected . For molecular speed ratios greater than about six, the 

contribution of internal energy to drag force is very small. (The 

molecular speed ratio is the ratio of the relative speed between the 

gas and satellite to the most probable molecular speed) . A satellite 
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orbiting at a height of 4oo miles has a molecular speed ratio greater 

than six. 

In addition to the random thermal motion mentioned, the atmos­

pheric gas molecule will have an ordered mass motion. This component 

of velocity arises because the viscous nature of the earth's atmosphere 

requires that, without external interaction, the entire atmosphere · 

rotate with the same angular velocity as the earth. The presence of 

this velocity, theoretically, should be accounted for in the equation 

of motj.on. 

Velocities expressed in the equation of motion are measured with 

respect to a Newtonian frame of reference. Thus, if the satellite is 

traveling at a velocity'v, it will have a relative velocity with 

respect to the gas molecules of v- {v + v' where~ is the velocity
r t' r 

of the gas molecule due to atmospheric rotation and vt is the thermal 

velocity (negligible at satellite speeds). A comparison of calculated 

characteristics with the orbital characteristics of Explorer IV show 

that a 5 per cent ·error is introduced by not accounting for atmos­

pheric motion due to the earth's rotation (14, p. 19). Rough estimates 

of this effect are in agreement with this percentage. Since this 

effect is small, it will be neglected in the analysis. Both vr and vt, 

then, are set equal to zero and are not considered in the derivation 

of the equation of motion. 

The drag relation for flow about a satellite can now be developed 

using the concepts and methods of kinetic theory. Consider a satel­

lite traveling through the upper atmosphere. A drag force t will be 
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imparted to the satellite by the gas molecules as they collide with it. 

The magnitude of this force is equal to the time rate of change of the 

gas momentum. Since both the thermal and atmospheric motion of the 

gas may be neglected, the satellite is essentially encountering mole­

cules at rest. This is equivalent to having the dynamical situation 

of a uniform stream of molecules striking the satellite surface with 

a speed v. The total momentum imparted to the satellite will depend 

upon how the gas molecules are reflected from .the surface. 

It has been shown by Millikan (?, p. 226) that the fraction of 

molecular flow reflected specularly (mirror like) is extremely small, 

less than 3 to 10 per cent for most materials and surface conditions. 

This follows from the fact that structural surfaces, though highly 

polished, are considered rough on the molecular scale. The surtace 

projections (roughness) are large compared to the characteristic 

diameter of the impinging molecules. The initial molecular contact 

is likened to throwing tennis balls into the mouth of a cave. All 

the translational energy is removed while the molecule temporarily 

remains in contact with the surface. During this contact previous 

directional history is erased and later the molecule is re-emitted 

randomly with a thermal energy corresponding to the surface tempera­

ture of the vehicle. This type of reflection is knqwn as diffuse 

reflection. 

The expression for drag force is (Newton's second law) 

f = (8Av)~v (1.1) 
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'Where (8Av) is the mass of gas that collides with the satellite per 

second and Av =vinitial • vfinal. A 100 per cent diffuse reflection 

is assumed by setting Av =T • Substituting this quant ity into equation 

(1.1) givea 

Equation {1.2) is identical with a relation deri:ved by Sir Isaac 

Newton for drag on a flat plate oblique to the flow. It is interesting 

to note that years ago engineers bad ~rrorteously applied this relation 

to calculate wind loads on buildings and struetures. Th.U ansvera 

were always somewhat high since more recent work has show that equa­

tion {1.2) is not valid for COI'it.inuum tyPe now. 
The classical expression for drag toroe on a body immersed 1n a 

flUid is 

(1.,3) 

Equating equations (1.2) and (1.3) gives a drag coefficient or 

tvo for free molecule nov. This result is in agreement with experi­

ment as show in Figure 1.1 (11, p. 345). This figure indicates the 

thermal effects at lower molecular speed ratios by the rise ot the 

curve. Corresponding aurves for flat plates (13, P• 42) and oones 

{16, p. 40) give virtually the same results. These results imply 

that equation (1.2) is independent or body shape. 
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Figure 1.1 

ATMOSPHERIC DENSITY VARIATION 

In order to successfully use equation (1.2) to compute drag, it 

is necessary to have a relation for the density 8 in terms of the 

altitude h. This type of relationship may be theoretically derived 

and is known as the barometric formula. The derivation of this for­

mula assumes that the earth's gravitational field, the atmospheric 

temperature, and atmospheric composition to be uniform with height. 

Consider a vertical column of gas of unit cross-sectional area ex­
. 

tending from h =0 at the earth's surface to an indefinite height. 

If .this gas is a continuous fluid of mass density 8 in hydrostatic 

equilibrium, then the layer of fluid betwe&n h and h + dh is subject 

to a pressure force p(h) on its lower surface and p(h + dh) =p(h) + dp 

on its upper surface. Let g be the local acceleration of gravity, 

then, 



9 

-dp = 8 gdh (1 . 4) 

Assuming the perfect gas law by inserting dp = d8 RT gives 

Integration of the density in equation (1 . 5) is carried out between 

the initial density 8 (h =0) and the density at height h. 
G 

(1 . 6) 

Equation (1.6) will represent the earth's density variation only 

to the extent in which the assumptions are valid• Obviously neither 

the gravitational acceleration g nor the temperature T remains con­

stant with height . The gas constant R will change as the composition 

of the atmosphere changes. Despite these variations, however, equa­

tion (1.6) is still useful in that it gives the proper relationship . 

between the various parameters . 

The following table illustrates the variation of average atmos­

pheric composition and temperature with altitude as given in reference 

(1, P• 114). 

From sea level to 6o miles, the composition of the atmosphere 

and the gravitational acceleration remain essentially constant. Equa­

tion {1 . 6) is applied to this region of space by assuming an average 

value for the temperature . 
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(Composition by %Volume) 

Height 0 N H Molecular Temp.02 N2 
Mile a Weight t: •K 

0 21 0 79 0 0 28.8 288 

45 21 0 79 0 0 28.8 219 

6o 20 1 79 0 0 28.7 230 

70 12 13 ?5 0 0 26.9 260 

80 5 26 69 0 0 25.1 300 

95 4 26 65 5 0 24.4 4.50 

125 2 46 41 11 0 21.0 ?00 

155 1 59 24 16 0 18.6 800 

190 0.5 66 13 20 0.5 17.3 900 

250 0 69 3 2? 1 15.6 1000 

Above 0 69 0 .30 1 15.32 1000+ 

From 60 to 250 miles, the atmosphere is partially dissociated. 

This results in a variable molecular weight. The change in this 

quantity and the temperature variation renders equation (1.6) useless 

for this region. Fortunately, sufficient data have been compiled 

during the International Geophysical Year to establish the density 

variation or the atmosphere in this region. Figure 1.2 ie repre­

sentative of the current IGY data (18, p. 3). 
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Beyond 250 miles the atmospheric composition is completely dis­

sociated and the molecular weight once again becomes constant. The 

temperature continues to increase but not as rapidly as before• Equa­

tion (1.6) is used to determine the density variation from 250 to 600 

miles. The gravitational acceleration is average4 between these alti• 

tudes and a constant average temperature of ll4o°K is used• The at­

mospheric density variation with altitude is constructed by dividing 

the atmosphere into three space regions and analyzing each region 

separately• 

Region 1: From sea level to 6o miles the atmosphere is assumed 

to consist of air (~ =28.8) at an average temperature of 249°K with 

a sea level density of 2.378 X 10-3 slugs/ft3• The average gravita­

tional acceleration for this region is 31.7 ft/sec2• Using these 

values in equation (1•6) gives: 

(1.7) 

This relation generates densities that are very close in value to the 

well known ARDC model atmosphere which has been used up to altitudes 

of 80 miles successfully for many years. 

Region 2: Between the heights of 60 and 2.50 miles• the atmos­

pher.ic density is assumed to correspond to the IGY data given in 

Figure 1.2. 

Region 3: From 250 to 6oo miles, the atmosphere is assumed to 

be composed of completely dissociated oxygen, nitrogen, and hydrogen 
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-~--~----~--~-----------------------

(~= 15.32) at an average temperature of ll4o•K. Using an initial 

density, 8 , of 3.17 X l0-12 slugs/ft3 matches equation (1.6) to the 
0 

region two data. The average gravitational constant is equal to 26.2 

ft/sec2• Using the above values in equation (1.6) gives: 

-6-3.93 X 10 h 
8 =3.17 x lo-12 e 

Extrapolated calculations using equation (1.8) show that the 

density of cis-lunar space is reached at 1000 miles. This altitude 

then corresponds to the "edge" of the atmosphere. 

Figure 1.3 depicts the complete atmospheric density variation. 

SATELLITE MOTION 

In addition to the drag force just described, an earth satellite 

will be influenced by the earth's gravitational field and to a lesser 

extent by the gravitational fields of the moon, sun, and planets. The 

earth's gravitational equipotential surfaces are not spherical, but 

assume the shape of a geoid very closely. An1 perturbations the non-

spherical character of this field induces are referred to as oblate­

ness effects. These effects decrease as the orbital altitude is in­

creased. 

The gravity and drag forces, assumed to be the only ones acting 

on the satellite, combine to determine the motion of the satellite 

according to Newton's laws. This motion can generally be thought 

to consist of three phases. 
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According to Nielsen (9, p. 6-7), a satellite originally moves 
in an almost elliptical path depending on the initial orbit 
eccentricity and height. However, in the first phase called 
circularization of the ellipse, the perigee altitude decreases 
slowly while the apogee altitude decreases more rapidly. The 
circularization of elliptical orbits has been studied by Henry 
(4, p~ '21-24) and others using energy methods. These studies 
show that the altitude at perigee decreases less rapidly than 
at apogee until a nearly circular orbit is achieved. 

The next phase of the trajectory is termed spiral decay. 
In this phase the distance of the satellite from the center 
of the earth is a monotonically decreasing function of time. 
During this phase the satellite is traveling at nearly oir~ 
cular orbital speed, but with its angular momentum decreasing 
slowly because of drag. 

In the final or terminal phase, the air drag becomes so im­
portant that the satellite turns downward into the lower at­
mosphere and reaches the earth in a small part of a revolu~ 
tion. During this phase aerodynamic heating is important 
and the path is not even approximately elliptical. 



16 

EAR'm SATELLITE LIFETIMES 

EQUATION OF MOTION 

The fundamental relation underlying the behavior of earth satel­

lites is given by Newton's second law. The resultant force acting on 

a body equals the time rate of change of its momentum. In syJDbols, 

"- d ...L F a dt (aV) (2.1) 

The mass of an earth satellite will remain essentially constant 
/ 

so that equation (2.1) may be rewritten as 

(2.2) 

Only two forces will be assumed to act on the satellite. Tbey 

are the atmospheric drag force and the earth's gravitational pull. 

The small perturbing forces due to the •gravitational fields of the 

sun and planets are neglected, as well as the perturbation forces 

caused by the oblateness effect of the earth. The satellites are 

reckoned to be close enough to the earth to neglect external gravita­

tional fields, yet far enough away so that the earth's gravitational 

field "looks" spherical. 

Under these conditions, the gravitational force Gwill act along 

the radius vector Rand the drag force will act along the tangent to 

the flight path. • These forces are depicted in Figure 2.1. 
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The gravitational force Gis given by Newton's Law of Gravita­

tion. It ia equal in magnitude to ~. where K is the universal 
r 

gravitation constant, M the maas of the earth, m the mass of the 

satellite, and r the magnitude of the radius vector R. The drag 

fo~ce is given by the relation, 21 
cd 8 AT

2
' where cd is the drag 

coefficient previously computed by methods of kinetic theory to be 

equal to two. The atmospheric density 8 is a function of height 

shown in Figure 1.3. The area A is the cross-sectional area of the 

satellite presented to the free stream, and v is the relative scalar 

• speed between the satellite and the oncoming molecules• 

The sum of the forces acting on the .satellite is given as 

(2.3) 

.... 
The positive unit radius vector ~ is directed outward from the 



--

18 

center of the earth and the positive unit tangent is directed along 

the flight path in the direction of the velocity vector. 

The radius vector Rhas magnitude r and is in the direction of 

the unit vector R1 • In vector notation, 

R • r~ 

The radius vector R is a function of arc length along the path so 

that 

ds •The scalar velocity v equals dt and the unit tangent vector ~ equals 

~(2ds ' P• 90) • ~nus, 

R=vT =v (2.6) 

The first time derivative of ~is the vector velocity v. It is tangent 

to the path and has magnitude equal to the speed. The second time 

derivative of Rgives 

1he unit tangent is a function of arc length along the path. Thus, 

dT d! dsCit • d'S dt (2.8) 

ds ­The scalar velocity v equals dt and the unit vector N in the direction 
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dTof the principal normal to the path is equal to p dB where p is the 

radius of curvature of the flight Path (2, P• 92). Equation (2.7) 

can be rewritten to give 

.. v ) dv ­R = v (,o i +dtT 

(2.l.O) 

The second time derivative of Ris the vector acceleration. The 

acceleration A of the satellite is a vector lying in the plane of the 

tangent and the principal normal to the flight path (equation 2.'10). 

The tangential component is the time derivative of the speed. Th.e 

normal component is the square of the speed divided by the instan­

taneous radius of curvature p • 

Equation (2.2) may be rewritten as 

(2.11) 

Equations (2.3) and (2.11) are combined to give 

KMm .... ~ 2- ~ ... T I\ - o Av T =mR (2.12) 
r 

:. KM - A z....
R=--IL - 8 -vT (2.i3)2 --1 m 

r 

Equations (2.10) and (2.13) are combined to give 

2v ... dT .... KM ... 2 A .... 
-p N ·+ (it T = - 2 ~ - 8 v - 'l' (2.14) 

r m 



This vector equation completely describes the motion of earth 

satellites under the assumptions given so far. The equation is nonlin­

ear, and a general solution in closed form has not yet been devisedi 

CIRCULAR ORBITS 

Equation (2.14) may be used to describe the motion of an initiallr 

circular orbiting satellite quite easily. A satellitt in this initial 

configuration will fall back to the earth under the influence of drag 

and gravity in a spiral orbit of small pitch• Operating on equation 

(2.14) by dot product multipH.oation firEJt with the unit normal vector 

and second with the unit tangent vector results in two scalar equa­

tions. These may be solved simultaneously for time in terms of radial 

distance r and density 8 • Figure 3.1 aids in visualizing these equa­

tiona. 

PATH 

T 

OF CURVATURE RADIUS 

CENTER 
OF 

EARTH 

Figure 3.1 
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Dot product multiplication with the unit normal vector gives 

2 KM 
!.. •- sin cpp 2 

r 

For the near circular orbit, the radius of curvature of the flight 

path is given approximately by 

p a r 
sin ¢ 

Using this allows equation (3.1) to be written as 

Dot product multiplication with the unit tangent vector gives 

dv . KM 2 A 
-a -- cos cp - 8 v ­dt 2 • 

r 

This equation is simplified by using equation (2.13). Multiplying 

both members of equation (2.13) by 2~· gives 

.:.~ KM --... ~ A 2 .......
2R ·R =- 2-- BL · R- 2 o - v T·R (3.5)r2 --l m 

Use is now made of the fact that Rl· ~ =Bl'(r~ + r~) =rand that 
.... .:.:. d .:. ..:.. d 2 .......

2R ·R =dt (R R) =dt (v) ;and T·R =v, to give 

2 
d(v ) • - 2 !2i !!!: - 2 8 ~ ! (3.6)
dt r2 dt m 



'lbe integral of equation (3.6) i s the energy equation. I f equa­

2 2tion (3.3) and equation (1, 2 ) are now substituted for v and 8 Av , 

equation (3.6) reduces to 

_ddt ( !!!) • -~ ~ -2 !:!. (3.?)r a dt m 
r 

dr - · The change in radial distance with time is Cit =1\"ll c: + v cos ¢ • 

l KMm
fv :: ... a l V COli ¢ 

r 

or 

KM 2f - 2 cos ¢ =+- (3.10) 
r • 

Substituting for - 2KM cos ¢ in equation (3.4) allows this equation to 
r 

be written as 

dv 2 A Cit • 8 ., ii (3.11) 

In equations (3.3) L~d (3.11) the time t is the independent 

variable. Velocity v is the function of radial distance r and r in 

turn is a function of time t. Thus the derivative of velocity with 

respect to time is g1ven by 



dv dv dr 
crt•dz=di 

dvEquation (3.3) can be Uved to find d;• 

viM .
V = i/z

r 

d'l 1 T- =--­dr 2 r 

Therefore from equation (3.12) 

dv 1 T dr.......... ----­dt 2 r dt 

Equations (3.11) and (3.16) combine to give 

1 v dr B 2 ·A 
·-a;Cit=- •; 

1 dr A·art• 8 Yr; 

Substituting for v from equation (3.13) givea 

(3.12) 

(3.14) 

(3.15) 

(3.1?) 

(}.18) 

(3.19) 



I ~'~ t
1 

1 dr liiiiA (3.20)... - """;"""1:: • v KM ­2 _J..{C. • r 

r 0 

where r1 is a radial distance lees than r. For small increments 

r-r1 the denait7 is approxiaately constant and may be taken outside 

the integral eign. Using this to integrate equation (3.20) gives 

(3.21) 

Since the time to descend from a given rad~al height r to a 

slightly lower radial height r1 is ot interest, equation (3.21) is 

expressed in terms of the independent variable t. 

'l'he total time spent in orbit can be determined by SUM1ng up the time 

spent in each segment (r-r1). The smaller the choice of segments, the 

more accurate the final answer will be. 

Calculations using equation (3.22) were carried out using 

KM =1.40??5 X 106 
tt3/sec2 (3, P• 636). The value of the density 

was determined b7 using the average density between r and r 1 from 

Figure 1.3. 

The initial altitude of the satellite was broken up into 100,000 

foot intervals and equation (3.22) applied to each interval. 
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Approximately a one per cent error is introduced by using segments 

of this size. Even though equation (3.22) is not strictly applicable 

for very low altitudes, the computations were carried out down to 

sea level. Very little error was introduced by doing this since the 

time spent in the low altitude regions is only a small fraction of the 

total time spent in orbit. 

Satellite lifetimes for a range of altitudes up to 6oo miles is 

shown in Figure 3.2. 'Ibis figure gives the total lifetime expected 

from an initially established circular orbit. 

ELLIPTICAL ORBITS 

If there is no drag, the last term in equation (2.14) is set 

equal to zero and this equation reduces to the well known equation 

of particle motion under an inverse square force of attraction. 

(4.1) 

Needless to say,there is a vast amount of published literature 

on the solution of this equation. These solutions are a great aid 

in arriving at an approximate solution to equation (2.14). The 

pertinent information which is used from these solutions will be 
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derived here for the sake of completeness . The following material 

through page 29 is eondensed from work by Hostetter (5, p. IV15-IV20). 

Taking the cross product with the radial vector R in equation 

(4 .1) gives 

RX~=-~RX~aO (4. 2) 
r 

or 

d - ~dt (R X R) =0 

thua 

(4.4) 

where Bis a vector constant. The equation 

states that the angular momentum of the satellite remains constant 

during the motion. The equivalent scalar equation is, (see Figure 4.2 

for definition of Q ) 

2 dQ 
r dt'=b (4. 6) 

As the area of the triangle described by the radius vector in 

time dt is 21 r (rdQ), the left hand side of equation ( l• . 6) is twice 

the area described by the radius vector per unit time. Therefore the 

equation states that the radius vector describes equal areas in equal 

times. This is Kepler's second law of planetary motion·. 



•• 

To find the equation of the path, the dross product of equation 

(4.1) with the vector constant Bis applied., Use of equation (4.4) is 

th made to give equation (4.7). Note that R=rBi• 

i X i = v»! (R X ft) x R (4.7) 

The vector triple product in equati·on (4.7) is expanded in the usual 
... ... . 

vay. Note that R:R =rr. 

i xB= i!! (r2~ .. rr R)
r3 

Equation (4.8) is now simplified by using the identitr 

"i = (r~ + r~) and noting that l X B= h (~X B) 

L ~ ... d&w 
dt {R X B) = KM ~ (4.9) 

(4.10) 

where Cis a vector constant of integration. The ·time is eliminated 

from equation (4.10) by multiplying both members by R· , intercllanging 

the dot and cross in the resulting lett member, and applying equation 

(4.4) to get 

(~.11) 
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2 -­b • KMr + R·C (4.12) 

2
b -­r =-- R· E (4.13)
101 

where E • ~· Let • • lEI ud a be the angle 'b4ttween R and the fixed 

direction of E. Then R·E = re cos a • Using this to rewrite equa­

tion (4.13) gives 

(4.14) 

~uation {4.14) may be shown to be an equation of an ellipse by 

comparing this equation to .the equation ~f an ellipse obtained from 

·geometry. By definition, an ellipse is the curve traced by a point 

j {satellite) which moves so that the ratio of its distance from a 

fixed point F (center of earth) to its distance from a straight line 

D-D• ia a constant leas than unity. {Figure 4.1). 

D 

;_-----­
F -------­

d 

o• 

Figure 4.1 



Tbe point F is known as a focus, D-D' a directrix, and the ratio 

of the distance of j from the focus to its distance from the direc­

trix is known as the eccentricity of the ellipse ( E < 1). If d is 

the distance of the focus from the directrix, then, 

r (4.15)
E = d - r cos Q 

Equation (4.15) is the equation of an ellipse 

t------- 2o 

Figure 4.2 .. 
The major axis 2a is the sum of the minimum value r (perigee

p 

for F at the center of the earth) of the radius vector corresponding 

to Q ~ 0 and the maximum value ra (apogee for F at the center of the 

earth) corresponding to Q • ~ • Since 

E d E d r • -=---..;;;;... r • (4 ..16)p l + E a l - t: 
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it follows that 

2a = r + ra • 
2 d 

2 (4.1'7) 
p 1 •E 

(4.18) 

Replacing d in equation (4.15) with equation (4.18) gives 

(4.19) 

BJ comparing equation (4.19) With equation (4.14) it is a"n that 

equation (4.14) is also an equation of an ellipse it e < 1. In which 

2cue e •E, a• Q, and b2/KM • a(l -• ). Equation (4.14) can be 

rewritten u 

(4.20) 

Equation (4.19) states that the satellite motion ( with no drag) 

is completely determined by its initial eccentricity and semimajor 

axis a. 

The energy equation is found by multiplying both members of 

equation (4.1) by zR·and noting that R·~ =rr. 

• .. 2KM .
2R·R = - --- R·R (4.21)

r3 



.a 21M zu 
... ·-·-•r 

1'he quantiey !ll te the ooutant of tntesrat1on. The total eJSer . U 

st••b7 

1 2tJ ..";' .. ... ­
~;. r 

'!he tint teN on the ript le the kinetic energ, the a co th• 

pot r.atlal euers;r. 

At the point ot nearest approach to the earth (peris e) the 

nloc1t1 18· ut1rel1 trazurt'erae, eo that 

(4. 26) 

where •p 1• the veloc:1t7 at perigee. Uaina •quatio (4.6) with thla 

ezpr uion si••• 

v, .L.., (4.21) 

equation (4. 20) 

(coa G • 1) (4.28) 



With the aid of (4.27) this reduces to 

K'M E KM v .:::.:.- (4.29)p b b 

Substituting these values tor r and v in the energy equation gives
p p . 

(4.30) 

which reducea · to 

(4.31) 

E ·= (4.32) 

For elliptical orbits, the eccent~ioity E is less than one. Equation 

(4.32) requires that for the elliptic orbit the total energy be nega­

tive. 

The greatest radial distance a satellite obtains from the center 

of the earth is the apogee distance. This is given by equation (4.20) 

to be 

(4.,33) 

The smallest radial distance a satellite obtains from the center of 

the earth is the perigee position. This is obtained from equation 

(4.20) to be 

\.2/vu 
r a~ 

p l + E 



The major axis is given by 2a =r + r (see Figure 4.2)
a P 

2
_b/KM ( l+ E +1- E)2 ' (4.35)a - 2 

1- E 

1 KM 
a=~ 

Comparing equations (4.31) and (4.,36) shows that 

2U KM.... e---- (4.37)m a 

from which is concluded that all elliptic orbits of the same major 

· ~s have the same energies irrespective of their eccentricities. The 

energy equation is rewritten as 

1 2 KMm KMm 
-mv ·-=-- (4.39)
2 r 2a 

The magnitude of the potential energy is then always larger than the 

kinetic energy. 

The period of revolution P for elliptical orbits can be deter­

mined by using equation (4.6) and geometry. Multiplying both sides 

of this equation gives 

(4.40) 

http:e----(4.37
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The left hand side expresses the area swept out by the radius vector 

per unit time. During one revolution the total area of the ellipse 

must be given by l bP. This can be set equal to the area as deter­

mined from geometry, 1r a2~ • 

2 r---2bP = 277a y l - ~ - (4.41) 

From equation (4 . 36) 

(4.42) 

thus 

Equations (4 . 1) • (4 . 43) were derived assuming the drag term in 

equation (2.14) to be equal to zero. The above results will , however, 

approximate the actual motion predicted by equation (2.14) if the 

motion is confined to one or two revolutions. The drag term becomes 

important when long time periods are involved. 

The following procedure is used to arrive at an approximate 

solution for elliptic orbit lifetime . 

The fundamental assumption that the perigee height r re~ains 
p 

fixed until the elliptical orbit is circularized is used. From equa• 

tion (4,43), the time required for the first revolution is found 

knowing the initial magnitude of the semimajor axis a. This same 

equation is used to find the period of the second revolution after 



calculating the change in a, as determined !rom the energy equation .. 

This presupposes knowledge of the change in velocity at perigee due 

to drag. The change in velocity at perigee due to drag during one. 

revolution is formulated by integrating the drag term in equation 

(3.4). Naturally, once the period of the second revolution is de­

termined, the period for the third revolution may be determined in 

the same way and so on until the elliptic orbit is circularized. 

The time required for the circularization of the ellipse is 

equal to the sum of the periods for each revolution, in going from the 

initially established elliptical orbit, to the circular orbit at 

perigee height r • The period is expressed in equation (4.43) as 
p 

2:rra3/2 
p ............ ­
~ 

The velocity change at perigee due to change in orbital eccentri­

city can be determined from the derivative of the energy equation (4,39) 

written for conditions at perigee. 

! mv 2 
- ~ = -~ (4.44)2 p r 2a 

p 

Differentiation of equa.tion (4.44), assuming r constant, gives
p 

2v dv • 2KM da (4.45)
P P a 

Solving for v in (4.44) and substituting into equa tion (4.45) gives
p 
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JKMr 
dT a 2. da (4.46) 

P v'i a ./i ... r /24
p 

The change in velocity at perigee due to drag during one re't'olu­

tion is obtained from equation (3 .•4) which is repeated here . Note that 

once the change in velocity due ~o drag is obtained, the corresponding 

change in major axis. 2a; is given by equation (4.46). 

dv KM (4.47)- =-- cos,J.,.dt r2. 't' 

The first term on the right hand side of this equation describes 

the periodic variation in acceleration as the satellite moves in 

orbit. The second term expresses the acceleration resulting from 

atmospheric drag. The acceleration resulting from drag only is given 

by 

dv ~ 2 A (4.48)Cit=- o Y II ­

dv = - 8 .,2. ~ dt (4 . 49) 

The Telocity is obtained from energy equation (4. 39) . 

2 . (1 1 ) v =2KM --­ (4.50)r 2a 

Equation (4.6) can be rearranged to give 



. .. 

2 
dt =~ d9 (4 . 51) 

Using these last two equations to express v 2 and dt in equation (4.49) 

gives 

. A (1 1 ) 2 
dv = ... 8 - 2KM - - - !... dQm r 2a b 

The radial distance r is expressed in terms of 9 by using the equation 

of an ellipse repeated here. 

a ( 1 .. ~ 2) .(4.1. 9) 
r =1 + ~ cos 9 

. -{3h 
The density 8 is given by equation (1.6), 8 = 8 e • /3 = - L o RT. 

This may be rewritten as 

8 = 8 (} (4 .53) r 

where 8 includes the constant obtained in changing variables from r 
h to r. Substituting the last two expressions into equation (4.52) 

gives 

dv =.. 8 ! ~ r.1-t t: cos 9 _ !_~ 
rm ·b La(l -~ 2) 2a 

- . ­

2 2 2 
a (1 - ~ ) - ~ a( l - ~ 2 )l d9exp 

1 + ~ cos~2 [ ­(l + € cos 9) 
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Equation (4.54) may be simplified by noting that dv is directly 

proportional to density (4.52). Since density varies very rapidly 

with altitude, the greatest change in velocity will occur near 

perigee. It is assumed that the total change in vel ocity for one 

orbit may be approximated by the velocity change i n the vicinity of 

perigee (small values of Q). Cos Q is expanded by using cos Q = 
92 

l-­
2 

2 
A 2KM ( l + E - 1/2 E 9 - _l )dv =- 8 -- ­

r m b a(l _ E 2) 2a 

2
,8 a(l - E ) J dQ 

[ - l + E - 1/2 E 92J 

a(l ... E 
2)

The ellipse equation (4 . 19) written for Q =0 gives r =-::-1 ----- = p + E 

a(l • E) where r =perigee ;radius. Using thi~ in e~uation (4.55)
p 

gives 

-=.a]2a 

E ri· 
-2

[l - 2(1 + E )d 



-1 

The expansion for [ 1 - 1 ' .~ 
2J is given as2c

Q2 Q2rE -1 E E Q4 
[ ~l • 2 1 E a l + 2(1 E ) + 2 + • • • J

+ + 4(1 + E ) 

Using tho first two terms of this expansion in equation (4.;6) and 

rearranging [8p= 8r e _ -:er~ giYes 

\ 

dv = - 8p rp ~ ~& 
13 r QE 2] 

exp .. 2{~ + E 5 dQ~ 
The above equation should be integrated between the small angles 

(in the vicinity of perigee) previously assumed . Integration is 

simplified, however, if advantage is taken of the fact that the inte­

grand of equation {4.58) is a function of density. At Q • 0 the 

density assumes its perigee value 8 . As Q is increased, the 
p 

corresponding value of density r pidly becomes vanishingly small 

when compar d with 8 (See Figure 4. 3) . Negligible error is intro­
p 

duced if integration is carried out between the limits - oo and 

+ oo instead of the "small" values of Q. Neglecting higher order 

.terms in the expansion of cos e eliminated any periodicity in 

equation (4. 58) . 
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8 

Figure 4. 3 

Integration of equation (4.58) gives 

(flY)p 
A2KM= - 8 r - -ppm b 

27r(l +E ) [ l 
{3 r E 

p 
... ~) + ( l 

2a 
.,. ~) _..!._ J 

a 2.{3r
p 

(4 .59) 

Where ([lv) represents the velocity change, due to drag, in going
p 

between the two ''small" angles. This velocity change is precisely 

-the same magnitude as the difference .between the initial and second 

perigee paasage velocities v1 - v0 and will be used in this sense, 

The quantity (~v) is negative since drag decreases the perigeep . 
1 - 2velocity . Note that ~ = 10 • This makes the very last te~ in 

~ p r 
equation (4.59) two orders of magnitude smaller than l - 2i and may 

be neglected. Thus , 
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(4.60) 

The incremental velocity change at perigee due to drag (~v)
p 

per period of revolution may be set equal to the time rate of change 

of velocity at perigee. 

(b,.v) dv ___,....P _.R 
p . • dt (4 . 61) 

(4. 62) 

It would appear that this equation could be integrated for time by a 

step by step summation process. (A procedure that would require as 

many steps as satellite revolutions about the earth.) This laborsome 

summation process is avoided by substituting equations (4.43), (4.46), 

and (4.60) for P, dv , and (~v) • Equation (4.19) is used to relate p p 

E to a and integration is performed in the usual way. 

r 
p 

(4. 63) 

r + r a P 
2 



Integration is carried out for the variable, the semimajor axie 

· r +r ( )a, from its initial value a p elliptic orbit to its final 
2 

valuer (circular orbit) . The "constant" b t11JJ:1 be expressed as 
p 

b =r v (equation 4.2?). From equation (4-50)pp 

v . =J2KM(L- !..) (4.64)
p r 2a 

p 

Thus 

b = r J2KMt!.. - !..) (4.65)
P \r p 2a 

Substituting equation (4.65) into equation (4.63) gives 

r + r 
a P 

2 

£-:E a da (4.66) 

r 
p 

Expanding ,/(1 • ~)'by means of the binomial expansion gives 
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r + r 
r a 2 p 

.ja-r 
p 

r (4.67)
p 

.j.,. /3 rp
where ~ = A • After integrating equation (4.67) and summing 

4 8 -v-iM
pill 

up the infinite series with due regard to convergence, equation (4.67) 

reduces to 

( ;r;:=:r: -1 · ;r-;;;r-)
tan y...,!_P +t =K1 { 1.086\V ~- .ftp 2r 

p 

v1a- rJ [.902 + .311(~) + .123 (:;) 
2 

.j8 a .a 

(4.68) 

r - r 
Using th-t identity ~ = a P and the definition a = -1 

2 (r + r ) , r + r a pa p 
equation (4.68) is expressible in terms of the initial perigee dis­

tance r , and initial eccentricity E • p 



Equation (4.69) expresses the time required for a satellite to 

circularize from an initially established elliptical orbit of eccen­

tricity E and perigee distance r to a circular orbit of radius r • 
p p 

The time used in decaying from the circular orbit to the earth's 

surface is obtained from Figure 3.2. When this time is added to 

that obtained with equation (4.69) the total satellite lifetime is 

determined. This procedure was used to compute the ordinates of 

Figure 4.4. 

.. 
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DISCUSSION OF RESULTS 

Figure {4.4) represents the main objective of this thesis. From 

this figure, the total life duration of an earth satellite may be 

determined. This prediction requires knowledge of the initial eccen­

tricity, perigee height, ~d the frontal area to mass ratio of the 

satellite.. The lifetime in years is evaluated by dividing the 

ordinate value as read from the figure by the area to mass ratio !. 
m 

Note that life duration is inversel~ proportional to th~ area to 

A mass ratio -. A 100 year lifetime is reduced to a one year lifetime 
m 

bJ increasing the area to mass ratio by a factor of 100, other factors 

being held constant. 

It is interesting to speculate on the lifetime of the proposed 

NASA lOo-foot sphere communication satellite. This vehicle is com­

posed of a .0005-inch thick Mylar plastic coated structure with 

vapor-deposited aluminum on the outer surface. It will have an area 
. 2 

to mass ratio of about 1700 ft /slug. This means, if it were put 

into a circular orbit at 600 miles, it would have a lifetime of only 

270 days. 

The lowest lifetime shown in this figure is 3.65 days for -A =1. 
m 

Even with eccentricities as large as 0.20, a satellite can not main­

tain a lifetime greater than this value for perigee altitudes less 

than 8o miles. The per cent change in satellite lifetime is very 

sensitive to perigee height, especially in lower altitude regions. 

For example, the circular orbit lifetime may be increased by a factor 

of ten by increasing the initial orbital altitude from 142 miles to 



,l 

189 miles. The slope of the curves ("slope'' with respect to the 
s 

logarithmic vertical scale) decrease as the perigee altitude in­

creases up to about 250 miles, beyond this height the slope remains 

nearly constant. This reflects the trend of the density variations 

given in Figure 1~3· 

The highest altitude considered in Figure 4.4 is 600 miles which 

just lies wi~hin the range of the model atmosphere derived earlier. 

Satellite lifetimes at this perigee height are of the order of thou­

Sands of years (for! • 1).
m 

At any given perigee height, the lifetime as well as the total 

energy of a satellite increases See equation (4.38) with an in­

crease in eccentricity. The constant energy line illustrated shows 

that the circular orbit maximizes total lifetime for a given value 

of total energy. In following a line of constant energy, the lifetime 

in orbit decreases with an increase in eccentricity. 

The effects of the many assumptions used in deriving equation 

(4.69) may be summarized below. 

1. It was assumed that the density curve slope (Fig. 1.3) was 

constant. Actually, the value of ~ varies over a small 

portion of the range of altitudes given in Figure 4.4. At 

60 miles, ~ ~ 4.093 X 10-5 ft-1 (equation 1.7) not the 

constant value of ~ =3.93 X 10-6 ft-l (equation 1.8) used. 

As a consequence, the predicted lifetimes in the lower 

altitude regions are low. 

2. For posigrade orbits, neglecting the atmospheric rotation means 



satellite lifetime predictions are low. 

3. Neglecting oblateness means satellite lifetime predictions 

should be high (9, P• 4o). 

4. Assuming a constant perigee height during the circularization 

of the ellipse may mean that lifetimes are predicted low or 

high depending on the interrelationship between the additional 

time needed to go to a lower perigee height and the effect of 

the resulting greater density in reducing the circularization 

time. In addition, higher lifetime predictions will result 

during the circular decay. 

The analysis neglects all of these effects as well as other 

smaller ones not mentioned. It is assumed th~t these combined effects 

are small when compared with the gross effects of the other parameters 

(for example consider the effect of a small error in density deter­

mination). 

Figure 5.1 aids in estimating the over-all accuracy of the re­

sults. Lifetimes are calculated for several actual earth satellites 

and compared with their measured lifetimes. Unfortunately, even 

though the satellite lifetimes are known with a good deal of accuracy, 

the quantity ;A is not. Sputnik I is the only spherical satellite that 

has returned to the earth so far. {Being spherical there is no ques­

tion to the value of A). The other data points are plotted assuming 

an average value of! (tumbling) with the possible extremes indicated. 
m 

. A 
Notice that lifetime predictions using an average value of mare 

within 50 per cent of the diagonal lin' representing absolute 



accuracy. The data points lie on either side of the diagonal. This 

indicates that there are no consistent errors in the analysis. In­

deed, the data points corresponding to Sputnik II and Explorer III 

would tend to indicate that lifetime prediction errors are entirely 

due to uncertainties in the actual value or the area-to-mass ratio. 

For these seven data points, the lifetimes are predicted on the 

average 5 per cent low, with maximum deviations amounting to ! SO per 

cent of lifetime. 
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CONOUJSIONS 

1. The dynamical mQdel or aatellite motion presented allova solu• 

tion to the reeulting equation of motion . in terms or lifetime'• 
. . . 

2. The accuracy of the solution may not be ·reliably de.tertJJined 

tram satellite data due to oooerta.1nties in the ma.gntt.ude ot 

area to mass ratio of' the satellites • 

.),. Accurate predictions or eatellite data require that the orienta• 

tion of the satellite (if other than spherical) be known:. 

4. For a giyen input energy, the circular orbit allows maxtmum 

lifetime~ 

5. · For H.tetimes greater than 10 to 20 years, the unshielded manned 

·satellite must have an ~ (rt2/slug) ratio less than one. 
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APPENDIX 

• 



Record of Successful Earth Satellite Launches 
(to Sept. 19.59) 

Maximum Minimum 
Possible Possible Perigee 
Area to Area to Height Mass 

Name Mass Ratio Mass Ratio Miles Eccentricity Lifetime Slugs 

Sputnik I 0.,50 0 • .50 142 0.0.517 92 days .5-72 
Sputnik II 8.04 (?) 0.4 (?) 14o 0.0986 161 days 34.8 
Explorer I 3.48 0.20.5 224 0.1394 in orbit 0.9.56 
Vanguard I 2.03 2.03 4o9 0.1893 in orbit 0.1009 
Explorer III 3.48 0.20.5 121 0.1661 94 days 0.964 
Sputnik III 0.359 0.278 135 0.1120 in orbit 90-9 
Explorer IV 2.90 0.178 163 0.1288 4.53 days 1.192 
Project 

Score 3.13 0.289 110 0.0909 34 daye 272 
Vanguard II 3-39 3-39 347 0.16?9 in orbit 0.644 
Discoverer I 2.33 0.486 99 0.0588 6 days 4o.4 
Discoverer II 1.92 0.392 142 0.00938 13 days ,50.0 
Explorer VI­ 1.33 0.829 157 0.762 in orbit 4.42 
Discoverer V 2.18 0.451 136 0.037 in orbit 52.8 
Discoverer VI (?) (?) 138 0.0466 67 days (?) 

Explorer VII (?) (?) 316.6 0.0433 in orbit 2.84 




