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A new method is developed for solving linear optimization

problems based on the RPM network modeling technique which repre-

sents the primal and the corresponding dual models simultaneously

upon a single graph. The network structure is used to eliminate

the need for explicit logical variables and to provide a graphic

tool in analyzing the problem.

The new algorithm iterates through a finite number of basic

solutions working towards optimality (primal) or towards feasibility

(dual). At each iteration a set of critical constraints and basic

structural variables are identified to form the current basic path

network. A solution for the basic variables is obtained through

factorization of the basis and used to update the nonbasic network.

If the Kuhn-Tucker conditions are not satisfied, the method proceeds

with the next iteration unless an unbounded or infeasible solution

is encountered.



Under the new scheme, the original data remains unchanged

throughout the optimization procedure and round-off errors can be

kept to a minimum. Furthermore, the basic paths representation used

in factorization reduces computer core requirement and permits

direct - addressing of pertinent non-basic node data on disk storage.

These features are especially appealing in solving large-scale

problems even on limited computer hardware.

Since the size of the basis is never greater than the size of

the basis required by simplex-type algorithms, the new scheme has an

advantageous memory storage requirement.

Any basic solution (not necessarily optimum or feasible) can be

used as a starting point and multipivoting can accelerate the

optimization process.

In general, the number of iterations and the amount of operations

depends on the sparsity of the constrained matrix and the complexity

of the problem.

Statistical data based on sample experimental results indicate

that the new algorithm, on the average, requires less arithmetic

operations and no more iterations to reach the final solution than

the simplex-type algorithms.
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A GENERAL LINEAR OPTIMIZATION ALGORITHM BASED UPON LABELING
AND FACTORIZING OF BASIC PATHS ON RPM NETWORK

I. INTRODUCTION

The Linear Programming Problem

The general linear programming problem can be described as

follows: Given a set of m linear inequalities or equations in n

variables, we wish to find non-negative values for these variables

which will satisfy the constraints and maximize or minimize some

linear function of the variables.

Mathematically, the problem is stated as:

n n
Maximize z = z c.x., such that E a..x. ( <, =, >) hi

j=1 j=1 13 3

x.
J

> 0; i = 1, 2,..., m; j = 1, 2,..., n

The widely documented simplex method, developed by George

Dantzig (1963), was the first method presented for solving general

linear programming problems.

The Need for New Algorithms

There have been several algorithms, most of them closely

related to the simplex method, that attempt to reduce the computa-

tional effort involved in solving linear programming problems. The

computational effort is widely classified into two categories;

polynomial time and exponential time. An algorithm is said to run in

polynomial time if the upper bound of the total amount of computations

required is a polynomial function of the size of the problem. It is

said to run in exponential time if the bound is an exponential

function. In spite of several so called "polynomial time" algorithms,
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including the Khachian's method discussed in Chapter Two, there has

not been a practical algorithm that solves the general linear pro-

gramming problem in polynomial time. Even more critical is the

problem associated with the computer memory size requirement to

implement currently available standard linear programming methods to

large scale problems.

The simplex method is an exponential time algorithm that is not

easily applicable to large size problems. In his article, "Linear

Programming: Its Past and its Future," Dantzig (1977) wrote the

following:

Integrated national economy-energy models are currently
being developed and solved using standard linear pro-
gramming methods. Already a bottleneck on the size of
energy models has been encountered because large-scale
solution techniques are not available for practical
application.

From an engineering point of view, a solution procedure that

minimizes memory requirement and computational efforts for solving

most practical problems is more desirable than even a theoretically

polynomial time algorithm that is usually inefficient for solving

large-scale practical problems.

The purpose of the research presented in this dissertation is

to create a general purpose linear programming algorithm that is

essentially suited for solving practical problems. Such an algorithm

should first be able to solve any problem definable as a linear

programming model. Second, it should minimize both the computer

core memory space requirement and the amount of computational effort

necessary to arrive at the solution. Ideally, the average memory
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and time requirements for such a method should not be greater than

those of the existing algorithms even for solving the worst case

problems. The criteria considered were:

1. Memory space requirements. The new algorithm should require

no more memory space than the simplex type algorithms. In most

practical problems, the requirements should actually be less. A

typical "practical" problem, for the sake of this dissertation is:

(1) having a fair number of variables and constraints, say

1,000 x 1,000,

(2) having a sparsely populated constraint matrix, and

(3) having a constraint matrix that is more or less technolog-

ically ordered'.

2. Number of iterations. The number of iterations required for

the optimization procedure should be finite and not greater than that

of the simplex-type algorithms.

3. Arithmetic operations per iteration. At each iteration, the

average number of necessary arithmetic operations should be no great

er than that of simplex-type algorithms.

4. Round-off errors. Many of the well known linear programming

algorithms require alteration of model representation at each itera-

tion. This often results in accumulation of round-off errors.

1. The term "technologically ordered" is borrowed from the Critical
Path Method. In the LP context it implies that the nonzero ele-
ments form diagonal blocks in the basis matrix (Jacobs, pp,356,
1977).
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5. Limited Computer Requirement. The algorithm should be ap-

plicable to a mini-computer using disk storage system.

6. Network Structure. A network structure may eliminate the

need for explicit logical variables as well as provide a graphic tool

in analyzing the structure of the problem.

The New Methodology

In order to satisfy the above criteria, the new methodology is

based on the RPM network modeling technique. The RPM (Resource

Planning and Management) system, developed by Inoue & Riggs (1972),

represents both the primal and dual model of the optimization problem

simultaneously upon a single graph. On the network, each structural

variable, xj, is represented by a square node (decision process) and

each constraint, i, by a circle node (resource node). The coeffi-

cients a..0, of the constraint matrix are shown as solid arrows.1J

The cost coefficients cj, and the constant right hand sides, bi are

shown as dotted arrows (Appendix A).

A process node is considered basic if the corresponding primal

structural variable is basic in the traditional simplex sense. A

resource node is considered basic if the corresponding structural

variable in the dual model of the linear programming is basic. Thus,

any basic node will have a zero residue. A basic path is a path on

the RPM network that connects basic processes and basic resources.

Basic steps of the proposed algorithm (Figure 1.1)

1. Labeling. Unlike the simplex method, the dimension of the
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basis for the new approach is not the same from one iteration to the

next. The basis on the network is represented by a set of process

nodes and the corresponding set of critical resource nodes The

number of basic nodes (which should be the same for both the process

nodes and the resource nodes) identifies the dimensionality of the

basis for each iteration. The labeling technique is used to keep

track of the current basic variables and critical constraints. At

each iteration, the labeling process makes the proper change on the

set of basic nodes. At each iteration, the complementary slackness

theorem applies to all nodes and the algorithm stops as soon as the

Kuhn-Tucker conditions are satisfied or an unbounded or infeasible

solution is encountered.

2. Factorization. A decomposition scheme is used to form a

triangular basis for the labeled network in such a way that both

primal and dual solutions can be obtained by "back substitution."

Depending on the change in labeling, each triangular basis can be

modified in a way that complete refactorization is not necessary at

each iteration.

3. Balancing. At each iteration, the values of the basic

variables for the primal and dual problem are updated first. The

non-basic nodes are updated next, each one independently. If the

Kuhn-Tucker conditions are not satisfied the algorithm proceeds with

2. The terminology "basic" or "basis" in this dissertation refers to
a set of basic structural variables in the primal and dual models
of LP. For further discussion on this, refer to p. 51.
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the next iteration.

( START

Check for
feasibility &
optimality
conditions

Labeling

Factoring

Balancing

Figure 1-1. The Basic Steps of the Algorithm
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Outlines of the Thesis

Chapter Two presents the general purpose linear programming

algorithms. Attention will be directed to the "State-of-the-Art"

algorithms, with emphasis on those which provide an exact solution

to the problem. The polynomial time algorithm developed by L. G.

Khachian is included. Among the algorithms that give an approximated

solution to the problem, only recently developed algorithms will be

discussed.

The discussion of the new methodology is included in Chapter

Three through Eight.

Chapter Three introduces the RPM network structure and a Set

Analysis for the primal and dual problem. The necessary network

terminology is given in the same chapter.

The Labeling process is presented in Chapter Four. Three

mutually exclusive and exhaustive types of labeling are discussed

in detail. The need for different types of labeling is due to the

fact that the algorithm operates on both the primal and dual model

working toward optimality or toward feasibility. There is no

restriction on the sequence in which the different types of labeling

are applied. However, the number of iterations required for a given

problem may depend upon the chosen sequence.

The decomposition algorithm used to triangularize the labeled

network and the different factorization schemes corresponding to all

possible changes during the labeling procedure are analyzed in

Chapter Five.
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Chapter Six gives the necessary computational procedure for

balancing. The case in which all nodes of the network are updated

at each iteration is considered here.

The theoretical computational effort for the algorithm and

statistical data based on test problems are given in Chapter Seven.

Chapter Eight includes the discussion on experimental results,

conclusions, and recommendations for further studies.

The relationship between the traditional mathematical formulation

of the linear programming problem and the RPM equivalent is included

in Appendix A.

Appendix B contains listings of computer programs. Operating

instructions for the software for mini-computers are given in Appendix

C. Appendix D includes sample data and computer runs.
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II. THE STATE OF THE ART

Introduction

The purpose of this chapter is to review the current status of

the linear programming solution methods to establish the basis for

discussing and evaluating the proposed methodology. Attention

will be directed to the developments of the theory of linear

optimization and not to the application. The different algorithms

are divided into simplex-type algorithms and other methods. The

simplex-type algorithms include simplex methods, dual methods, and

primal-dual methods. Other methods include the generalized inverse

method, matrix factorization methods, the Khachian's algorithm and

the surrogated linear programming method. All of the above listed

algorithms are "exact methods", with the exception of the surrogated

linear programming method which is an "approximation method."

Only the more recent or especially significant contributions

are noted. No attempt has been made to include all available

techniques. J. W. Barnes and R. M. Crisp (1975) presented a detailed

survey of general purpose LP algorithms.

Simplex Methods

The Simplex Method and the simplex algorithm for choosing the

optimal feasible program was developed by the end of the summer of

1947. Intensive work began in June 1947 in an Air Force group that

later was given the title of Project SCOOP (Scientific Computation
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of Optimum Programs.)

The basic LP problem is:

max Z = CTX such that AX (<, =, >) B, X > 0

where A is an mxn array, and C, B, X are column vectors.

The canonical form is given as:

max Z = CTX such that AX t B, X > 0

and the dual problem:

min Z = BTY such that A
T
Y > C, Y > 0, Y a column vector.

Simplex Method and its best known refinement, the Revised

Simplex, iterate from one extreme point of the feasible solution

space to the next by changing the basic variables and

increasing the objective function. Both techniques use the same

criteria to determine the vector to enter the basis, the vector to

leave the basis, and the terminal conditions. A comparison of the

number of calculations needed to perform each step of an iteration

points to the essential difference between the methods. If n > 3m

(where n is the number of columns, and m is the number of rows),

the revised method requires less computation per iteration. Also,

further savings can be made when the product form of the inverse is

used. Other reasons that recommend the revised simplex method are:

I. It is simpler to introduce a new variable into the system

after an optimum solution has been found.

2. The general solution to the dual problem seems more

immediate.

3. Associated with the above reasons is the conclusion that



different post optimality problems and upper bounding techniques

appear to be more easily solved (Wagner, 1956).

A technique developed by George Dantzig and Philip Wolfe

(Dantzig and Wolfe, 1959) was the decomposition principle for

linear programs. This technique permits the problem to be solved

by alternate solutions of linear sub-programs representing its

several parts and a coordinating program that is obtained from the

parts by linear transformations. The coordinating program generates,

at each cycle, new objective forms for each part, and each part

generates in turn new activities for the interconnecting program.

Besides its computational advantages, the principle of decomposition

yields a certain rationale for the decentralized decision process

in the theory of the firm.

Adi Ben-Israel and Philip D. Robers (1968) have developed a

decomposition method for the interval linear programming.

The interval LP is of the form: max CTX such that B < AX <

If A has full rank, the optimal solutions can be written explicitly.

This result is used in conjunction with the decomposition principle

to develop a finite iterative technique.

Generalized upper bounding techniques have been developed for

handling constraints of the simple form x.< b. implicitly without
J J

increasing the dimension of the problem. Problems with simple

upper bounds often occur in practice.

A. Charnes and C. Lemke (1954) have introduced a modified

simplex method. The modification consists of using, at each stage,



12

only the inverse matrix of the current basis and the original data.

The main advantages of this method are: (1) the accumulation of

round-off errors is confined entirely to the current inverse matrix

and (2) there is no increase in computation due to the initially

sparse matrix filling up with nonzero entries as one proceeds

from stage to stage.

Dual Simplex Methods

The dual simplex algorithm simply allows the user to apply

the simplex algorithm's rules (pivot selection) while maintaining

the problem in its primal form.

C. E. Lemke (1954) developed a dual method for LP based on the

exploitation of orthogonality and the dual theorem of Tucker,

Kuhn and Gale. The resulting method yields the same advantages as

the "modified simplex" method and also eliminates the need for

doubling the number of variables where they are not necessarily

nonnegative. This approach focuses on a simultaneous geometry of

the primal and dual problems which may be advantageous in particular

problems, and provides a visualization of the primal and dual at

each stage, and also offers the possibility of a combination of the

two methods.

Primal-Dual Methods

Primal-dual algorithms solve the primal and dual problems

simultaneously. Perhaps the best known is the one by Dantzig,
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Ford and Fulkerson. It is an extension to a primal-dual method in

solving transportation problems. Artificial variables are added

and a starting feasible solution to the dual must be available.

At each iteration the dual feasibility will be preserved while

iterating for primal feasibility. The algorithm stops as soon as

a feasible solution has been found for the primal (Dantzig, Ford,

and Fulkerson, 1956).

The algorithm of Talacko and Rockefeller (1960) and the

MINIT algorithm of Llewellyn are similar. Given a problem with no

primal or dual feasible solution, choose the primal or dual

iteration satisfying the appropriate primal or dual iteration

criteria that maximizes the absolute change in the objective

function. All inequality constraints have implicit slack variables

in the initial basis (all inequalities are less than or equal to,

allowing negative right hand sides). The Gauss-Jordan method

applied to the contracted tableau is used for changing the basis.

The criss-cross method developed by S. Zionts (1969) normally

begins with a problem solution which is neither primal or dual

feasible. The method generates a starting basic solution, then al-

ternative primal and dual iterations are performed until primal and

dual feasibility has occurred. The advantages of this method are

(1) no feasible solution is required for the primal or dual,

(2) no artificial variables are introduced, and (3) the product form

can be employed.

M. Y. Harris (1970) has developed an algorithm which is similar
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to that of Dantzig, Ford and Fulkerson in terms of using the

complementary slackness concept and alternates between primal and

dual problems. However, it is simpler, but requires a separate

Phase I stage. The algorithm is initiated with basic feasible

solutions to both the primal and dual problems: (max Z = CTX s.t.

Ax + IS = B), (min u = WTB s.t. ATW - IV = C) which may be contained

in the initial formulation of the problem or may be generated by

Phase I of the simplex algorithm, then alternates between the

primal and dual systems, optimizing the decision variables with

respect to complementary slackness condition as the objective

function.

Balinski and Gomory (1963) developed the Mutual Primal-Dual

Algorithm. The algorithm employs a hierarchy of the subtableaux

and uses a primal simplex pivot rule on subproblems until primal

degeneracies occur and then applying a dual simplex pivot rule until

the degeneracies are resolved.

Generalized Inverse

Let us consider a linear programming problem of the form:

maximize z = CX subject to AX < B where A is of full rank.

The main result is an explicit representation of the general

solution in terms of a generalized inverse of A. The solution

A
-1
B has possible computational advantages over simplex or other

iterative methods of linear programming. Consider the following

matrix equations:
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ATA = A

TAT = T

(AT)t = AT

(TA)t = TA

where t means transpose.

The explicit solution is then of the form X = TB + (I-TA)Y,

Y arbitrary and T such that ATB = B. The method is based on Moore-

Penrose work on generalized inverse for A denoted by A+ (Boullion,

Odell, 1976).

Matrix-Factorization Methods

The way in which linear programming is performed commercially

has been recently affected by established results in the field of

Numerical Analysis. The way in which a factorization method is

implemented depends upon the size of the problem it is designed to

handle.

The three major factorizations used in linear algebra are:

1. The LDLT factorization.

Let B = LDL
T

B'. L'D'L'
T

; B is a square matrix where L, L' are

lower-triangular matrices and D, D' are diagonal matrices.

Usually, L and D are known and we want to find L' and D'

when B changes to B'. A special case of practical

importance is the so-called "rank-one modification" of B:

B'= B + xYY
T
; where Y is a vector with norm 1, x a real
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number (Gill and Murray, 1977).

2 The LQ factorization.

Let A = [L, 0] Q

A'= 0] Q', where 0 is a zero array, and A, A'

are n x m matrices (m > n), L is a lower-triangular and Q

is such that QTQ = I. Any array A can be factorized in

this form. We want to find L' and Q' if we know L, Q and

A changes to A' as:

A'= A + XY
T

3 The LU factorization.

Let A = LU

where L is a lower-triangular matrix (with unit diagonal

elements) and U is an upper-triangular matrix. Let,

A'= A + XY
T

An explicit update of the LU factorization of A is

required.

The advantage from a matrix factorization method is

the computational savings when solutions to a sequence of

related problems are required.

Khachian's Algorithm for Linear Programming

L. C. Khachian (1979)-published a polynomial-

bounded algorithm to check the solvability of a system of linear

inequalities. It may be applied to solve linear programming

problems in polynomial time.
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The immediate importance of Khachian's results is theoretical.

The new method may also be useful for a broader class of problems

(nonlinear and dynamic programming problems). The new scheme,

based on Shor's theoretical results (Shor, 1970 ) involves the

construction of a sequence of ellipsoids in multidimensional space

that close in on the optimal solution, when applied on linear

programming problems. Many experts in the field, however, point

out that the practicality of Khachian's method cannot be decided

until much more computing experience with it has been obtained.

Khachian's method is tied to what is said to be the major

unsolved problem in computer science, i.e. a polynomial-bounded

algorithm for a class of problems known as NP-complete problems.

In 1970, N. Z. Shor presented a generalized method for

minimizing a convex function f (x), defined over the entire n-dimen-

sional Euclidean space. His method is a combination of the

generalized gradient descent method and a transformation of the

argument space (called space dilatation). (The usual gradient

methods impose extra assumptions concerning the continuity of f (x)).

Although he constructs the general algorithm, no attempt is made

towards its practical behavior (round-off errors, etc.), or claim

that the algorithm is polynomial bounded. Also, no application of

his method to solve linear programming problems is explicitly

stated. He explains, however, that the method can be applied in

the more generalized case, i.e. to solve a system of equalities and

convex inequalities.
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For example let:

Fi (x) = 0; i = 1, r

Hj (x) < 0; j = 1, p

This can be reduced to a problem of minimizing:

2

f (x) = max (0, max Fi (x), max Hj (x) )

Shor's algorithm is applicable to nonlinear programming

(Shor, 1970).

The Algorithm.

Let E a.. x.< b.; i = 1, n.

13 1 j = 1, m.

be a system of linear inequalities with integral coeffi-

cients.

Define:

L=Elog(la..1+1)+Elog((10.1+ 1) + logmn + 1
i,j

13 1

Let Aj; j = 0, 1, 2,... nxn matrices, and k; k = 0, 1, 2,..

n-dimensional column vectors.

Start with:

x0 = 0; AO = 2LI (I is the identity matrix)

assuming that (xk, Ak) is defined, compute t(x) such that:

t(x) = max (a x-b); i = 1, 2,...,m.
i i i

t(x) is the maximum discrepancy. If t(x) <0 the current

solution is optimal. Otherwise, along with t(x), i is

defined from the above equation.
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Next compute:

1 A a.
x = x - k
k+1 k n+1 T

a.A a
k

n2 2 (A a) (A a.A = A - ki ki
k+1

n
2
+1

k n+1
a.A a.iki

If the system is inconsistent then the algorithm will

stop after 16n2L steps.

T

The L.P. case: If we want to solve the linear programming

problem (in canonical form)

Maximize c
T
x

s.t.Ax<b(A=(a..); i = 1, 2,...,m; j = 1, 2,...,n)
1J

we consider the system of inequalities:

cTx < bTy

cTx > bTy (obj. fn)

A x < b

x > 0 (primal)

A
Ty

> c

y > 0 (dual)

This is solvable if the original program has a feasible

solution and a finite optimum. For any solution (x, y) of

this system, x is an optimal solution of the L.P.

Surrogated Linear Programming

Surrogated linear programming is a different approach for
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solving the general linear programming problem. The linear pro-

gramming problem is replaced by an LP problem having a single

constraint called the surroaate constraint. The surrogated constraint

is a convex combination of the constraints of the original problem.

Glover used such constraints for the solution of zero-one

integer programming problems (Glover, 1968). Staats also used the

same type of constraints for solving the geometric programming

problem (Staats, 1970). Greenberg and Pierskalla used surroaated

constraints for the general L.P. problem.(Greenberg and Pierskalla,

1969).

Any L.P. problem can be written in the form:
n n

max z = EC .X. s.t. Ea ..x. < P.; i = m
j=1 j=113 1

where i = k

Pi= -1 i= k+1,..., s x. > 0; j= n

0 i = s+1,..., m

The associated surrogated problem has the form:
m m n

max z = Ec.x. s.t. z x.(z a..x.) < E x. - z x.
j=1 J J

i=1
1 13 j

i =1
1 i=101 1

m
Ex = 0; 0 < x < 1; x. 0; j = n>

i=1

The characteristic of the surrogated programming is that the

algorithm generates successive solutions which are interior points of

the feasible region.

The algorithm itself (Dittmann, 1973) consists of a heuristic

procedure for iterating from some starting vector of surrogate
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multipliers (xi) to the optimum xi values. Since the surrogated

problem has only one constraint there is a quick check for opti-

mization for each set of x. values. The technique is not subject to

round off errors and has promise for savings in computation time.

SUMMARY

Most of the "State of the Art" algorithms operate on a full

basis (i.e. the dimensionality of the basis depends on the number

of constraints or variables in the model).

Logical variables are added to the majority of the "exact

solution" algorithms. The efficiency of the algorithm, for primal

or dual simplex-type algorithms, is affected by the "shape of the

problem," i.e. the ratio of the number of constraints and the number

of variables.

All algorithms (with the exception of Khachian's algorithm)

are exponential. This is the worst case where (m+n)!/m!n! is

considered to be all possible solutions. Theoretically, Khachian's

algorithm is polynomial time. However, experience so far has not been

practical. All algorithms are based on matrix theory, and most of

them are not distinguished between structural and logical variables.

The original data is changed for the majority of the algorithms.

Nonzero elements created in the basis is an important factor for the

computational requirements and accuracy of the algorithm. Facto-

rization methods alleviate the problem of nonzero elements created

at each iteration.
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III. RPM SET ANALYSIS

Introduction

The purpose of this chapter is to describe the RPM network

terminology (Appendix A). First, the resource graph and process

graph are defined. Each graph is a mapping of the nonzero elements

of the constraint matrix on the RPM network, and remains unchanged

throughout the optimization procedure. Next, we consider the set of

nodes corresponding to the structural variables of the primal linear

programming problem (process nodes), and the set of nodes correspon-

ding to the constraints of the problem (resource nodes).

On the RPM network, each structural variable is represented by

a square node. Given an RPM network with n process nodes (numbered

one through n), we define J as the set of indexes of the process

nodes: i.e. J = {l, n}. Also, given m resource nodes on the

same network (numbered one through m), we define I as the set of

indexes of the resource nodes; I = {l, m}

The ordered pair (k, uk), where k is an element of J, (k e J),

and u
k
is a nonzero real number, is called "primal arc." The

order pair (h, vh), where h is an element of I, and vh a nonzero real

number, is called "dual arc."

Resource and Process Graph

Let us consider the LP model as defined in Chapter One.
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Using the RPM notation (Appendix A), this problem may be restated as:

max cx = E C.J X. - E cox. subject to: Ea..x.
J

- Ea. .x. < b. -
IJ ij

where, x.
J

> 0; j = 1, n, and i = 1, m. An example is

given in Figure 3-1.

b

p1

xi

4.2

P2

R1

all

Igt
a22 P3

a
x3

3

d3

Figure 3-1. The RPM Network Representation.

For a given set of resource nodes I, and a set of process nodes

J, we define:
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The set I.

The set I. = 1, is the set of all process nodes

which are connected to the resource node i. For i = 1, m,

let U. be the set of all arcs corresponding to the resource node i

andthesetI.,i.e.

U. = {(k, u ). k e I.}; where u =
k ' k aik

Def. 3.1. The set U defined as the union of all sets U.

i = 1, m, is called "Resource Graph", i.e. U = UU ;i e I.

The set J.

The set J., is defined as the set of all resource nodes

which are connected to the process node j; j = 1, n.

For j = 1, n, let V. be the set of all arcs corresponding

to the process node j and the set Jo., i.e.

Vj = (h, vh); h e ty; vh = ahj

Def. 3.2. The set V defined as the union of all sets V.

j = 1, n, is called "Process Graph," i.e. V = UVj; j C J.

A primal (dual) arc is called "positive" if uk> 0 (vh >0). Other-

wise, it is called "negative," since zero elements are not allowed.

LetU.4.bethesubsetofUvwhich contains the positive arcs of

Ui, aij, and Ui the subset of Ui which contains the negative arcs,

aij , i = 1, m. The sets Vj
+

and Vj are defined in the same

way for j = 1, n.

E.g. 3.1. For the RPM network shown in Figure 3- 2 we have:



25
I = {1, 2} ; J = {1, 2, 3}

(i) Resource Graph:

U1 . {(1, 2), (2, 4) }; I1 = {1, 2}

U2 {(1, 3), (3, 5)}; 12 = {1, 3}

and U = {U1, U2} is the resource graph.

(ii) Process Graph:

V
1
. {(1, 2), (2, 3)).2 J = {1, 2};

V
2
. {(1, 4)}

;

J2
{1};

V
3
. {(2, 5)}

; J3 = {2 };

and V = {V1, V2, V
3
} is the process graph.

RI
2

V
f-
r

1

2

Figure 3-2. An RPM network for Example 3.1.

Resource and Process Nodes

Process Nodes

Let Pj denote the process node with index number j; 1 < j < n.

Def. 3.3. For each process node Pj; j = 1, n.

(i) The variable X (j) is defined as the "process variable"

corresponding to node j. The process variable is also

called "primal variable" and corresponds to the structural
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variable j of the linear programming problem.

(ii) The constant C (j) is defined as the "process constant,"

ancicorresp"dstothecostcoefficient,c.of the linear

programming problem.

(iii) The constant D (j) is defined as "process residue"

and corresponds to the
J J

coefficient of the linear

programming simplex tableau.

Resource Nodes

Also,letR.denote the resource node i; 1 < i < m.

Def. 3.4. For each resource node R.; i = 1, m,

(i) The variable Y (i) is defined as the "resource variable"

corresponding to the resource node i. The resource

variable is also called "dual variable" and corresponds

to the dual variable i, in the linear programming problem.

(ii) The constant B (i) is defined as the "resource constant,"

b., corresponding to the resource node i. The resource

constant is the constant corresponding to the ith constraint

of the linear programming problem.

(iii) The constant S (i) is defined as the "resource residue"

of the resource node i, and replaces the slack or

surplus variable of the corresponding linear programming

problem.

Def. 3.5. For each resource node i, i 1, 2,..., m, we define

as "Resource Cluster i," the following set:
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Ui {Ri, Ui}

Def. 3.6. For each process node j; j = 1, 2,..., n we define

as "Process cluster j " the following set:

V.
J J

= {P. V.}
' J

Def. 3.7. For each resource node i; i = 1, 2,..., m, we define

as "Resource Flow i" the following product:

(XU)
i
= EU

k
(k);X (k). (k u

k
) e U.

i

Def. 3.8. For each process node j; j = 1, 2,..., n we define as

"Process Flow j" the following product:

(YV)i = EvhY (h); (h,vh

Def. 3.9. Let R = {U, V, R, P, z, Z} where,

U is the resource graph corresponding to the resource nodes

V is the process graph corresponding to the process nodes

R is the set of resource nodes

P is the set of process nodes

and z, Z are defined as

z = E C (j) X (j); = E B(1)Y(i)
jeJ icI

The set R we call an RPM network.

Def. 3.10. For any resource node, we define as "resource

input" the following sum:

(XU); = E utX (k) + B (1); (k, uk) e Ui; i = 1, m
k N

and as "resource output" the following sum:

(KU). = r u X (k); (k, u ) C U.' i = 1, m.
k k k 1'
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Def. 3.11. For any process node, the "process input" is defined

as the sum:

(YV)

j h

= E V
h

Y(h); (h, v
h j

) 6 V.. j = 1, n
'

and as "process output" the following sum:

= E v Y (h) + C (j); (h, v ) E 1,7 j = 1, n
j h h h j

Def. 3.12. As "resource residue" of any resource node, we

define:

S (i) = (XV) - (XV);; i = 1, 2,..., m

Def. 3.13. As "process residue" for any process node is

defined as:

D = (YV)13. - (YV)]; j = 1, n

E.g. 3.2.For the RPM network shown in Figure 3.2, the resource

and process nodes are:

(i) Resource nodes, Ri; i = 1, 2.

For i = 1, the resource variable Y (1) is equal to 1, the

resource constant B (1) is equal to 10 and the residue

S (1) is equal to 0. The resource input is equal to B (1),

i.e. equal to 10, and the resource output is ul X (1) =

2 5 = 10. For i = 2, we have:

Y (2) = 0, B (2) = 20 and S (2) = 5

(ii) Process nodes, P.; j = 1, 2, 3.

For j = 1, the process variable X (1) is equal to 5, the
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process constant C (1) is equal to 2 and the residue D (1)

is 0. The process input is v1Y (1) = 1 2 = 2, and the

process output is C (1) = 2. For j = 2, we have:

X (2) = 0, C (2) = 4 and D (2) = 0. Also, for j = 3:

X (3) = 0, C (3) = 1 and D (3) -1.

The primal objective function is equal to:

C (1) X (1) = 2 5 = 10, and the dual objective function

Z is equal to Z = B (1) Y (1) = 10 1 = 10.
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IV. LABELING

Introduction

Labeling is the process that identifies the set of process and

resource nodes to be included in the basis. The labeled sets of

process and resource nodes, I and J grow from the initial nul sets

by adding or sometimes deleting basic variables.

In this chapter, the labeling process will be described. The

number of labeled resource nodes and the number of labeled process

nodes will always be equal to each other. This number, p, is called

the "dimension of the labeled network."

For simplicity we assume that only greater than or less than

constraints are involved in the LP model in its canonical form. In

this case, the labeling procedure will continue until the Kuhn

Tucker conditions are satisfied, or in the absence of optimum

solution, an indication of unboundedness or nonfeasibility will

terminate the labeling.

At each iteration only certain changes in node labeling will

occur. The following discussion applies in the case of single

labeling. The case where multiple labeling accelerates the

computational procedure, will be discussed in Chapter Eight.

Types of Labeling

1. Type (a). Any process node (unlabeled) with negative residue

can be a candidate for labeling. For every newly labeled process

node the Set Equality condition must be maintained. One of the two
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cases are possible:

(a.1.) A labeled process node may be changed to an unlabeled

node, thus maintaining the same size of dimensionality (p) for the

labeled network, or

(a.2.) An unlabeled resource node may be changed to a labeled

node, thus increasing p by one.

2. Type (b). Any unlabeled resource node with negative residue can

be considered as a candidate for labeling. As in type (a) labeling,

in order to maintain the Set Equality, one of the following must

happen:

(b.1.) An unlabeled process is changed to labeled along with the

candidate resource node (p increased by one), or

(b.2.) An already labeled resource node is unlabeled at the

same time that the candidate becomes labeled (p remains the same).

3. Type (c). Any labeled resource or process node with a negative

variable may be considered a candidate for unlabeling. In this case,

the Set Equality requirements provides the following possible changes.

(c.1.) An already labeled process (resource) node is unlabeled

(p is decreased by one), or

(c.2.) An unlabeled resource (process) node is labeled

(p remains the same).

When the type (a) labeling is considered, we first look at the

process cluster (the set consisting of the resource nodes connected

to the candidate for labeling). We next perturbate the value of the

candidate node variable. Increasing the value of the process

variable by an arbitrarily small value (c) allows us to observe the
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changes of the variables that belong to the labeled network. We can

increase the value of the candidate process variable as long as:

(a) The values of the nonnegative labeled process variables

do not become negative, and

(b) Nonnegative resource residues, corresponding to unlabeled

resource nodes, do not become negative.

From the above discussion it is clear that at least one

variable (resource or process) will be driven to zero value, or an

unbounded situation will arise.

Type (b) labeling requires the same procedure applied to the

process graph.

For type (c) labeling we perturbate the value of the residue

of the candidate node.

Any resource node that corresponds to an equal to constraint

with zero residue is not a candidate for labeling. Otherwise, if

the residue is negative, then the type (b) labeling is applied for

that node. For a resource node corresponding to equal to constraint

that has positive residue, the sign of the primal arcs and the

constant b are changed. Again, type (b) labeling can be applied in

this case. Type (c) labeling never applies to equal to constraints

(negative value for variables corresponding to equal to constraints

is allowed).
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Notes to Figure 4-1

LP Simplex interpretation of RPM variables for an LP problem

with n structural variables and m constraints:

X(j) = primal structural variable for the original LP

problem.

D(j) = Simplex criterion (z.-c.) corresponding to X(j), a
J J

logical variable.

Y(i) = Langrange Multiplier for the constraint i = the stru-

ctural variable for the dual model of the original LP

problem.

S(i) = Logical slack or surplus variable corresponding to the

th
constraint.

= current index for the constraint i; lci4m (pivot row).

j = current index for the primal variable j; (pivot

column).

j' = temporary indexes for i and j;

t = min(t1,t2).

t
1

= the e ratio for pivoting in X(j) or Y(i) due to the

structural variable ratio (e.g. t1= min(EX(j)/iXe(j)I).

t
2 = the e ratio for pivoting in X(j) or Y(i) due to the

logical variable ratio (e.g. t2= min(ESMASeM).

= the number of primal structural variables in the basis.
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Type (a) Labeling

Consider a process node ,j1 with negative residue, i.e.

D (j1) < O. We define:

(i) the set J. as the set of all resource nodes which are
1

connectedtotheprocessnodejyThesetJ.is divided
1

into:

(a)ThesubsetJ.which contains all the labeled
1

resource nodes connected to the process node

and:

0

(b) The subset J which contains all the unlabeled

resource nodes connected to the process node ji,
* 0

i.e. J. = J. UJ. .

31 31
(ii) the set V. as the set of arcs which connect the

1

process node j1 and the resource nodes, i.e.

V. = {(h, vh); h c J. }

*
J1 Ji

each labeled resource node i 6 I ), the resource(iii) for

flow (XU)i as:

(XU). = E ukX (k); k 6 J and (k, uk) c U.
k

The residue of any labeled resource node is zero

(complementary slackness theorem). Therefore, for a

labeled ,resource node the resource flow is:

(XU)i = B (i); i C I*

Let X (j1) = c where E is a positive number with an arbi-

trarily small value.
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We can increase the value of X (j1) as long as:

(a) The values of the nonnegative labeled process

variables do not become negative, and

(b) Non-negative resource residues, corresponding to

unlabeled resource nodes, do not become negative.

Let t
I
be the maximum value allowed for X (j1) so that condition

(a) is satisfied.

We define X
6
(j); j E J to be the change of the variable of the

labeled process node j, when X (j1) is set equal to E.

For each labeled resource node i, if i c J.

1

otherwise:

LI X (k) = -Cu. k 6 J
6 1 k

*
(X

6 i
U) = E ukXE (k) = 0; k s J

(4.1.)

(4.2.)

Equations (4.1.) and (4.2.) give the values of the variables

*
X
6

(j); j e J .

Condition (a) is satisfied if:

X (j) Xc (j) > 0; j 6 J*

Therefore, the value of t1 can be found as:

X(j) X(j2)
t = min fs ; kW< 0; X(j) > 0, co} =

1 !yin x,(j2)
(4.3.)

Let t2 be the maximum value allowed for X (j1) so that condition

(b) is satisfied. We define S to be the change of the resource

residue i, when the residue for that resource node is non-negative.

The changes of the non-negative resource residues are:
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Example 4.1. Consider the network shown in Figure 4.2. The sets of

the resource and process nodes are: I = {1, 2, 3 }, J = {1, 2}. The

labeled and unlabeled resource and process nodes are:

I = {3 }, I° = {1, 2} and J = {1}, j° = {2}

The current solution X (1) = 10, X (2) = 0 is not optimum. The

residue of the process node 2 is negative, D (2) = -4 < 0. There-

fore, type (a) labeling is applied. The candidate for labeling is

the process node j1 = 2 for which:

V
2
= {(1,3), (2,1), (3,-1)}; J

2
= {1, 2, 3 }; J

2

*
= {3 }; J

2
= {1, 2}

(i) Let X (2) = E. Equation 4.1 becomes:

(XCU)3 = 1 Xc (1) = -(-1) c, i.e. Xc(1) = c

The value of t
I
defined from 4.3 is t

1

=

(ii) The updated positive resource residues are:

Sc(1) = -3e -2e = -5c

Se(2) = -E

The value of t
2

defined from Equation 4.4 is:

15 13 15
i.e.

.

t
2

= min { 1 =
5

= 3, .e.
1

= 1
5' 1

1,2

Finally, the value of t is:

t = min (t1, t2) = min (03, 3) = 3

Since t = t2, resource node it = 1, and process node j1 = 2 are

labeled.
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S (i) = -E u.X (j)

j "
where (j, uj) c Ui; j 6

*
{il} and i E 1° such that S ( i) > O.

The value of t
2

is found from: S (i) + Sc (i) > 0, or

S(i) S (i1)
t2 = min {E S (i) > 0; SE(i) < 0} ( )

'E'
i

(4.4.)

Otherwise, if Sc (i) > 0 for all i, then t2 s . Let t = min

(tl, t
2
). Then:

(i) If t = t1 < t2 we label process node j1 and unlabel process

node j2

(ii) If t = t2 we label resource node i1 and process node j1.

When process node j2 is not uniquely defined from equation

4.3, then we arbitrarily choose any of the process nodes

that gives the minimum ratio. Also, the resource node it

may not be uniquely defined from equation 4.4. In that

case, we arbitrarily choose any resource node that gives

the minimum ratio.

If t is - then:

(i) If the current solution is infeasible then node j/ cannot

be a candidate for labeling.

(ii) If the current solution is feasible then the solution is

unbounded.
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3

Figure 4-2. An Example for Type (a) Labeling.
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Type (b) Labeling

Consider a resource node i
1

with negative residue i.e.

S (i
1

) < 0. We define:

(i) The set I. as the set of all process nodes which are
1

connected to the resource node il. The set Ii is divided

into:
1

(a) The subset I. which contains all the labeled
1

process nodes connected to the resource node i1,

and

(b) The subset I.° which contains all the unlabeled
1

process nodes connected to the resource node i
1

.

i.e. I. = I. UI.°
11 1

1
1

1

(ii) The set U. , as the set of arcs that connect the resource
1

node i
1

and the process nodes, i.e.

Ui

1

= {(k, uk); k e I }

1

(iii) For each labeled process node j J*), the process flow

(YV) is defined as:

(YV); = E v,Y (h); h E I*; (h, vh) V.

h "

The residue of any labeled process node is zero i.e.

D = 0; j e J *. Therefore,

(YV)i = C (j); j J*

Let Y (i1) = e, where E is a positive number arbitrarily small.

We can increase the value of Y (i1) as long as:
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(a) Any non-negative value of a labeled resource variable does

not become negative and:

(b) Mon-negative process residues corresponding to unlabeled

process nodes do not become negative.

Let t
1
be the maximum value allowed for Y

1
) so that condition

(a) is satisfied. Let Y (i); i c I be the change of the labeled

resource variable Y (i) when Y (i
1

) is set equal to E.

*
For each labeled process node j (j E J ), if j e Ii* then:

1

(Y
6
V)

j
=EV

h
Y
c
(h) = -cv. ;heI

11

Otherwise,

*

(4.5.)

(V
E
V)

j
= E vhlic (h) = 0; h e I (4.6.)

*
Equations 4.5 and 4.6 give the values of the variables Ye(i); i 6 I

The value of t
1

is found from: Y (i) + Y
c

(i) > 0, for all i

such that Y (i) > 0, or
Y(i2)

t =min { .

c Y(i) Y (i) < 01
1 1YE(i

Ye(i2)

(4.7.)

Let t2 be the maximum value allowed for Y
1

) so that condition

(b) is satisfied.

Then, we define D (j) to be the change of the process

residue D (j), for each process node j with non-negative

residue. Then,

De(j)=Ev.Ye 0
J'

),where(i,v.)c V. iCIu { i1 } and j e J°

such that D > O. The value of t2 is found from:

D(i) +0e(i) >0,or
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D(j) D(j )

t2 = min fE ; D(j) > 0; DE(j) < 0} = D
IDE(j)i

(4.8.)
Otherwise, if DE(j) > 0 for all j, then t

2
= co. Let

t = min (t1, t2). Then,

(i) If t = t1 < t2 we label resource node i1 and unlabel

resource node i
2.

(ii) If t = t
2
we label resource node i

1
and process node

When the resource node i
2

is not uniquely defined from

equation 4.7, then we arbitrarily choose any resource node that

gives the minimum ratio. Also, the process node j1 may not be

uniquely defined from equation 4.8. In that case, we arbitrarily

choose any process node that gives the minimum ratio.

If t is - then:

(i) If the optimality conditions are not satisfied then

it cannot be a candidate for labeling.

(ii) If the optimality conditions are satisfied then the

dual problem is unbounded.



Example 4.2. Consider the RPM network shown in Figure 4-3.

The set of resource nodes I is, I= {1, 2, 3} and the set of

process nodes J, J = {1, 2 }. The corresponding labeled sets I
*

and J are:

* *
I = {2}, and J = Cl}
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The current solution is not feasible. The residue of the

resource node 3 is negative, S (3) = -5 < 0, and type (b) labeling

is applied:

The candidate for labeling is it = 3, and for that resource node,

U3 = {(1,-1), (2,-2)1; 13 = {1, 2 }; 13* = Cl} ; 13° = {2}.

(i) Let YE (3) = E. Equation 4.5 becomes:

(YEV)1 = -3Ye(2) = -E (-I) or -3'16(2) = c i.e. YE(2) = E.

The value of t
1

is found from equation 4.7 to be:

t = min Cc 1 3, therefore i
2

= 2.
1

2 1-1/361

(ii) The change of the non-negative process residues are:

Dc(2) = -2 (- - 2s = -

The value of t2 is found from 4.8 to be:

t
2

= min Cc
1

1= 4, therefore j/ = 2
2 1-4/316

The value of t is

3t = min {t/, t2} = min {3, 3
} = 4-, i.e. t = t2

In this case we label resource node i1 = 3 and process

node j1 = 2.
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Figure 4-3. An Example for Type (b) Labeling.
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Type (c) Labeling

A. Consider the case where there is a labeled resource node i

with Y(i
1
) < 0. Let S(i1) = c where E is an arbitrarily small

number.

In this case we increase the value of S (i
1
) as long as:

(a) The values of the labeled process variables do not become

negative, and:

(b) Non-negative resource residues do not become negative.

Let t
1
be the maximum value allowed for S(i

1
) so that condition

(a) is satisfied.

The perturbated values X (j); j c J , for the labeled process

variables are found from:

(X
6
U). = -c for i = i1, and

(XeU)i = 0 for i e I*; i

In order to satisfy condition (a), i.e. X(j) Xe(i) > 0

j c J , the value of ti is defined as:

X(j)
X(j i)

t = min {6 ; X (j) < 0} = X(j) > 0
1 .

ixe(j)1 6 X

e I

(j/)

(4.11.)

Let t2 be the maximum value allowed for S(i1) so that

condition (b) is satisfied.

The changes of the non-negative resource residues are:

S (i) = E U.1 X
E
(j) where

(j, u.) E 0.., j c J and for all i such that S(i) > 0.

The value of t
2

is found as:



SO) .

S(i2)
t
2

= min {e ; S(1)> 0., S (i) < 0}semi
S6(i2)

Let t = min (t1, t2).

Then,

(4.12.)
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(i) If t = t
1
4 t

2
we unlabel resource node i

1
and

process node j1.

(ii) If t = t
2
we label resource node i

2
and unlabel

resource node i1.

In the case where t
1
is not uniquely defined from equation

4.11, j1 is chosen arbitrarily. In the same way, if t2 is

not uniquely defined from equation 4.12, i2 is chosen

arbitrarily. If t = w, then the same is true as in

type (a) labeling.

B. Finally, consider the case where there is a labeled process node

jl, with X(j1) < 0. Let D(jI) = E. In this case we increase the

value of D(j1) as long as:

(a) The values of the labeled resource variables do not become

negative, and

(b) Non-negative process residues do not become negative

Let t
1
be the maximum value allowed for D(j1) so that condition

(a) is satisfied.

The perturbated values Y (i); i E 1 , for the labeled resource

variables are found from:

(YEV)j = -Fc for j = j1 and

(Yelt)i = 0 for j *
; j



In order to satisfy condition (a) i.e. Y(i) + Y6(i) > 0;

i e I the value of t
1

is defined as:

Y(i )

t1 = min {E Y(i) y_(i) < 0} =
1 ; y(i) > 0

i

1

IY6(i)1 Ye(11)
(4.15.)
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Let t
2

be the maximum value allowed for D(j
1

) so that

condition (b) is satisfied.

The changes of the non-negative process residues are:

D (j) = z v.Y
e
(i) where

*i
(i,v.)E V., ie I and for all j such that D(j) > 0.

The value of t
2

is defined as:

D(j
2

)

t
2

= min {6
D(j)

;
D(i)

> 0. , D < 0}
iDs(i)1 De(j2)

Let t = min (t1, t2). Then: (4.16.)

(i) If t = t1 < t2 we unlabel process node j1 and

resource node i
1

(ii) If t = t
2
we label process node j

2
and unlabel

process node j1.

In the case where t
1
is not uniquely defined from equation

4.15 it is chosen arbitrarily. In the same way, if t2 is

not uniquely defined from equation 4.16, the node j2 is

chosen arbitrarily. If t = =, then the same is true as

in type (b) labeling.
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Example 4.3. Figure 4-4 shows the RPM network with three resource

and four process variables.

The current solution is feasible but not optimum.

The value of the variable for the third resource is negative,

Y(3) = -.379.

We have:

I = {1, 2, 3}; J = {1, 2, 3, 4}, I = {2, 3}, J = {3, 4}

(i) For the candidate for unlabeling resource node it = 3 let

S (3) = E. Equation 4.9 and 4.10 become:

-7 XE(3) + 8 XE(4) = -e

Xe(3) + 3 XE (4) = 0

The perturbated solution is:

X (3) = .1E; XE(4) = -.034 E

The value of t
1
from equation 4.11 is found to be:

ti = min {E 2.41
} = 70 therefore j1 = 4

1-.0341E

(ii) The change in the residue S(1) is:

S (1) = 9 (.1) - 6 (-.034) = 1.1 > 0

Therefore t
2

= 0. and t
1

= min {70, co}. In this case unlabel

resource node i1 = 3 and process node j1 = 4.
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Termination Conditions

The new algorithm iterates through basic solutions working

towards optimality (primal) or towards feasibility (dual)3. The

final network solution is feasible if S(i) > 0 for all i e I and

X(j) > 0 for all j E J. It is optimal if D(j) > 0 for all j c J

and Y(i) > 0 for all i E I.

At each iteration the labeling process alters the sets of

labeled nodes in such a way that the value of the objective function

increases (decreases), provided that a change in the basic sets of

nodes can be made, i.e. the value of the parameter t is finite

(t < .). If t = c, then the next candidate node is considered.

For the final solution one of the following is possible:

1. The solution is primal and dual feasible (both the feasi-

bility and optimality conditions are met). In this case the problem

has an optimum solution.

2. The solution is feasible (i.e. the feasibility conditions

are met) and there is at least one node with a negative value of

dual variable (Y(i) or D(j)) with a corresponding value of t equal to

In this case the primal problem is unbounded.

3. The solution is dual feasible (i.e. the optimality conditions

for the primal are met), and there is at least one node with a negati-

ve primal variable (X(j) or S(i)) and a corresponding value of t equal

3. In certain literature, the term "optimal" is used to imply a fea-
sible and optimal solution. In this dissertation, as in Wolfe
(1973, pp. 110-111) and other literature, we consider a solution
to be optimal, or dual feasible, even if it is not primal feasible.
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to ... In this case the primal problem is nonfeasible (the dual pro-

blem is unbounded).

4. The solution is neither primal nor dual feasible and there

is at least one primal variable value (X(j) or S(i)) and at least

one dual variable value (Y(i) or D(j)) for which the corresponding

values of is are infinite. In this case the problem is neither fea-

sible nor optimal (both primal and dual problemsare unbounded).

Interpretation of Basis in RPM

In this chapter, the sets of labeled resource and process nodes

I* and J*, at each iteration identified the critical constraints

and the corresponding basic structural variables. The set of arcs

of the original network that connect the labeled nodes forms a pxp

constraint matrix which corresponds to the basis matrix for the new

algorithm. In the traditional simplex algorithm, and for the same

basic solution, the set of basic variables(primal problem) would

be the set consisting of the labeled process variables and unlabeled

resource residues (slack variables) and the dimension of the basis

is mxm.
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V. FACTORIZATION

Tne purpose of this chapter is to find a method to decompose the

labeled network into a triangular structure so that the process and

resource variables can be easily evaluated. The labeling procedure,

described in Chapter Four, guarantees that the number of labeled

resource nodes, p, is equal to the number of labeled process nodes.

The problem of finding values for the primal and dual variables is

therefore, equivalent to the problem of finding a solution to a

system of p linear equations in p unknowns.

LetA.(a..1J ), a pxp matrix. The matrix equation:

Ax = b, where x
T

= (x
1,

...,x
n
), b

T
= (b

1,
...,b

n
)

defines a system of p linear simultaneous equations in p unknowns.

By Ab we denote the px (p + 1) matrix with the vector b placed in the

last column. Let r (A) be the rank of matrix A. The following are

true: (Ralston A, 1965)

(i) The system of equation Ax = b has a solution if and only if:

r (A) = r (Ab)

(ii) If r (A) = r (A
b

) = p, then there is a unique solution.

There are several methods for solving a linear system of equa-

tions divided mainly into two categories: direct methods and

approximation methods. Among the direct methods, the method of

triangular decomposition will be discussed in this chapter.
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Theoretical Background

The best known and most widely used method for solving linear

systems of equations is due to Gauss. The method is called "Gaussian

Elimination".and it is the elementary procedure in which the first

equation is used to eliminate the first variable from the remaining

equations, the second equation is used next to eliminate the second

variable from the remaining equations, etc. If the number of

equations is p, then p-1 such eliminations can be performed and

reduce the original system into a system with triangular structure.

The solution of the system can be easily obtained. The new last

equation gives the value of the last variable xp of the system. This

value is then substituted in the remaining new equations, and the

value of the variable x
p-1

is obtained from the p-1 equation of the

new system. After p steps the values of the p variables of the

system are explicitly evaluated. The method of finding the values

of the variables from a triangular structured system is called

"back-substitution." In general, the p-1 eliminations are not

possible, unless certain row or column interchanges are performed

during the elimination process.

The general procedure is described next analytically:

Consider the system Ax = b and set A(1) = A, b(1) = b. We select an

arbitrary non -zero element a .,and call it "the 1st pivot element."
-1 1

Using this pivot element, we can eliminate the variable x from all

remaining equations. The variable x. appears only in equation

To eliminate the variable x. from the kth equation (k = 1, 2,..., p;
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k # i ) we use the multiplier a
(1)

/ a
il

l
j

(1) to multiply equation
1 kj

1

i1 and then subtract equation k1 from it. The reduced system is

written as: A(2)x b(2). A(2) is obtained from A(1) after elimi-

nating variable x. and deleting row i
1
and column j

1
of the original

J/

array A(1). The new system A.
(2)

x = b(2) is one of having p-1

equations in p-1 unknowns. The same elimination procedure yields the

subsystems A
(k)

x = b
(k)

; k = 1, p, from which the variables

have been eliminated. Isaacson and Keller (1966)
J
1 32

give a proof to the following theorem:

Theorem: Let the matrix A have rank r. Then we can find a

sequence of distinct row and column indices (i1, il),
(i2, i2),...,

(i
r'

j
r

) such that the corresponding pivot elements in A
(1)

, A
(2)

,...,

111(6arenon-zeroandaii(r) = 0 ifii
1' 2"*" ir . Let us define

the permutation matrices, whose columns are unit vectors.
i
1

i

P pl

= {e
1
, e

2
e e P}where ik, jk are piv-

otal indices and0
k
1 and {i

k
} are permutations of 1, p.

Then the system By = g, where B = P
T
AQ, y = Q

T
x, g = PTb is equiv-

alent to Ax = b and can be reduced to triangular form using Gaussian

elimination with the natural order of pivots (1,1), (2,2),..., (r,r).

From the above theorem it is clear that when p (A) = p, A can be

factorized as A = LU, where L is a lower triangular matrix, in which

the diagonal elements are ones.

When the matrix A has been decomposed into the product LU, the
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solution of Ax = b can be found by first solving the system Ly

and then solving Ux = y, since Ax = LUx = Ly = b.

In general, there are many ways of choosing the pivots (ik, ik)

during the elimination process, depending on the accuracy required

and the way the array A is stored.

From the above discussion, it is clear that when the labeling

process defines a set of resource nodes and a set of process nodes

that form a nonsingular array A, then the labeled network can be

transformed into a triangular structure, i.e. it can be decomposed

into a lower triangular array L and an, upper triangular array U.

An analytic procedure to evaluate the elements of L and U is given

next. To simplify the notation, position for the pivot elements

is ignored (in the subsequent section of this chapter, the choice

of the pivot elements, and the resulting permutations will be

discussed in detail).

Suppose next that array A can be decomposed into the product LU,

where A = (aid), L = (lid) and U = (ui). (Figure 5-1)

For the first row of L and the first column of U, the decompo-

sition gives:

ull all' 111 1

For the second row of L and the second column of U, we calculate:

u12 al2' 121 a2/ull
and

u22 a22 121 u12' 122 1

For any subsequent row k; k = p of L and the corresponding



10(1) 30(1)

-10(2) 30(2)

10(1) Bo(i)

10(P) Bo (P)

Y1(1) X0(1) Y (1) X1(I)

Figure 5-1. The Basis Factorization Scheme.
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C0(1) J0(1)

C0(2) J0(2)

Co(i) Jo(i)

Co(p) Jo(P)
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kth column of U, the analytic formulas are: (Ralston, A., 1965)

k-1
u
kj

= a
kJ

. - E 1

kl
u
lj

for j > k and
1 =1

1 k-1
1ik

u
kk

ik 1

= (a - E
=1

1. u
lk

) for i > k, and 1
kk

= 1
11

The Decomposition Method

In the remainder of this chapter, the method of decomposing

the labeled network is described. Given a set of p labeled resource

nodes and a set of p labeled process nodes, a decomposition scheme is

derived for one of the following cases:

(i) The labeled network is decomposed, using the process graph.

The method is divided into p stages in a way that at each

stage only one labeled process cluster is added to the decomposed

network. At the end of the pth stage a complete decomposition

is obtained.

(ii) The labeled network is decomposed, using the resource

graph.

The method is divided as in (i) into p stages such that

only a labeled resource cluster is added to the decomposed

network. Again, at the end of the pth stage, a complete decompo-

sition is obtained.

The Labeled Process Graph Decomposition

In the following discussion, Io contains the index number of

the labeled resource nodes, corresponding to the rows of L, and Jo
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contains the index number of process nodes corresponding to the

rows of U.

The vector Bo is used to store the values of the arcs connecting

each labeled process node and the labeled resource nodes.

The method is divided into p stages (where p is the number of

labeled process nodes). At each stage r: r = 1, p, the

elements of the first r columns of L and U are explicitly evaluated.

Stage I. First, the labeled process node j1, corresponding to

the node number Jo (1), is considered. If V. = {(h, v
h
); h EJ

j
1

},

then the value of the arcs vh connecting the process node it and

the labeled resource nodes are entered into a p dimension vector

Bo, where p is the number of labeled process nodes i.e. Bo (j) = vh,

if there is an h such that, h = Io (j), otherwise Bo (j) = 0;

j= 1, 2,..., p.

Let pl be the first non-zero element in Bo (i); i = 1, p.

If pl = 1 (i.e. if Bo (1) # 0), then Bo (1) is used as a pivot

element, and no resource node exchange is necessary. However, if

pl > 1 then we exchange the following elements:

Io (1) and Io (p1)

(ii) Bo (1) and Bo (p1)

Thus, if pl > 1 then, resource nodes 1 and pl are exchanged.

Next, the elements of the first column of L and U are calculated

from:

u11
= Bo (1)

lil = Bo (i)/Bo (1); i = 2, 3,..., p.
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Stage 2. Let j2 be the process node corresponding to Jo (2).

Each of the arcs connecting the process node j2 and the labeled

resource nodes are entered into the vector Bo, as in stage one, i.e.

if V. = {(h, vh); h E J. 1, then: Bo (j) = vh, if there is an h,
J2 J2

such that h = Io (j), (otherwise Bo (j) = 0), j = 1, 2,..., p.

Next, update Bo (i): Bo (i) = Bo (i) - 1i (1);

11
i = 2, 3,..., p, and take u12 = Bo (1). At this point we proceed to

find a new pivot element. First, a non-zero element is found:

Let p2 be the first non-zero element in Bo (i); i = 2, 3,..., p.

If p2 = 2, then no resource node exchange is necessary. However, if

p
2
> 2 the resource nodes 2 and p

2
are exchanged, i.e.:

(1) Io (2) and Io (p2) are exchanged (update index).

(ii) Bo (2) and Bo (p1) are exchanged (switch the corresponding

arcs.

(iii) 1

21
and 1

p are exchanged (exchange rows #2 and p
2

of L).
2

The new pivot element is Bo (2). The remaining elements of the

second column of U and L can be found:

u
22

= Bo (2) and

1
i

= Bo (i)/Bo (2); i = p

2

The process can be generalized for any given stage r; r = 3, 4,

p. For such an r, the corresponding stage is:

Stage r.

Step 1. For the process node jr corresponding to Jo (r), the set of

arcs connecting the process node j
r
and the resource nodes, V , is

used to enter the values of the arcs into the vector Bo, i.e.:



60

LetV..{(h,v0;heJ.and Bo (i) = vh, if there is an h,
J r Jr

such that h = Io (i), otherwise Bo (i) = 0; i = 2, 3,..., p.

Step 2. We update Bo and calculate the first r-1 elements of the

rth column of U, i.e.: for j r-1 repeat (i) and (ii).

ujr Bo (j)

(ii) update Bo (i): Bo (i) = Bo (i) - lijBo (j); i = j 1,.., p

Step 3. The next pivot element is selected. Let pr be the position

of the first nonzero element in Bo (i); i = r, r + p.

If pr = r, the element Bo (r) can be used as a pivot (no resource

node exchange is necessary). However, if pr > r, then the resource

nodes r and pr are exchanged, i.e.:

(i) Exchange Io (r) and lo (pr)

(ii) Exchange Bo (r) and Bo (pr)

(iii) Exchange 1
rj

and 1
p
r
j; j = 1, r

Step 4. Calculate the remaining elements for the rth column of

U and L. We have:

u = Bo (r), and
rr

1ir = Bo (i)/Bo (r); i = r + p

Example 5.1. (Process entry)

Consider the RPM network in Figure (5.2a.). There are three

resource and three process nodes. I = {1, 2, 3 }, J = f1, 2. 31.

Suppose that all nodes are labeled. Let Io I (i); i = 1, 2, 3.

Stage 1. For the process node j, = 1, we have:

V
1
= {(1,2), (2,4), (3,1)1

Let Jo (1) = 1. Each of the arcs connecting the process node (1),



B0(1)=2 10(1)=1

B0(2)=4 10(2)=2

B0(3)=1 Io(3)=3

80(1)=3 1:0(1)=1

B0(2)=6-2x3=0 10(2)=2 3

B0(3)=3-.5x3=15 10(3)=32

B0(1)=1 10(1)=1

(a)

(b) Stage 1

(c) Stage 2

2
I

B0(2)=5-.5x1=4.5 10(2)=3

B0(3)=6-2x1=4 10(3)=2

(d) Stage 3
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J0(1)=1

J0(1)=1

J0(2)=2

J0(1)=1

J0(2)=2

J0(3)=3

Figure 5-2. The Labeled Process Graph Decomposition.
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and the resource nodes Io (1); i = 1, 2, 3, is entered in the hector

Bo, such that

Bo (1) = 2 (i.e. Bo (1) = v1; 1 = Io (1))

Bo (2) = 4 (i.e. Bo (2) = v2; 2 = Io (2))

Bo (3) = 1 (i.e. Bo (3) = v3; 3 = Io (3))

Since Bo (1) = 2 0 (i.e. p1 = 1) no resource exchange is necessary.

We compute:

u
11

= Bo (1) = 2 and

1

21
= Bo (2)/u

11
= 4/2 = 2; 1

31
= Bo (3) # u

11
= 1/2 = .5

(Figure 5 -2b)

Stage 2. For the process node j2 = 2, we have:

V
2
= {(1,3), (2,6), (3,3)}

Let Jo (2) = 2. Each of the arcs connecting the process node (2) and

the resource nodes Io (i); i = 1, 2, 3, i.e. entered in the vector

Bo, as in stage 1. Thus, Bo becomes:

Bo (1) = 3

Bo (2) = 6

Bo (3) = 3

and, u12 = Bo (1) = 3. The values Bo (i); i = 2, 3 are updated:

Bo (2) = Bo (2) -
121 u12 6 2 3 °

Bo (3) = Bo (3) - 131 u12 = 3 - .5 3 = 1.5

In this case Bo (2) is zero. The first nonzero element for Bo (i);

i = 2, 3, is Bo (3) = 1.5. Here, the interchange of resource nodes

two and three is necessary. Set Bo (2) = 3, Bo (3) = 6 and

1

21
= .5, 1

31
= 2. Next, we take u

22
= Bo (3) = 1.5, and



63

132 = [Bo (3) - 131u12]/u22 (6 - 2 3)/1.5 = 0. (Figure 5-2c.)

Stage 3. Process node j
3
= 3, is next entered for factorization.

For this process node (3), we have:

V
3
= {(1,1), (2,6), (3,5)/

The values Bo (i) are:

Bo (1) = 1, Bo (2) = 5, Bo (3) = 6 and u13 = Bo (1) = 1

Updating these values we get:

Bo (2) = Bo (2)
121 "113 5

.5 1 = 4.5 or u23 = 4.5

Bo (3) = Bo (3) - 13iu13 132u23 6 - 2 1 = 4 or u33 = 4

(Figure 5-2d.)

The Labeled Resource Graph Decomposition

As in the previous case (process graph decomposition), we

assume that Io contains the index numbers for the labeled resource

nodes, corresponding to the rows of L, and Io contains the index

number of the process nodes corresponding to the rows of U. The

vector Co is used to store the values of the arcs, which connect

each labeled resource node and the labeled process nodes.

At each stage r; r = 1, p, the elements of the first r

rows of L and the first r rows of U are evaluated.

Stage 1. First, the labeled resource node i1, corresponding to the

node number Io (1), is considered. If U. = {(k, uk); k e I.
11

1
then the values of the arcs connecting the resource node it and the

labeled process nodes are entered into the vector Co of p dimension,

where p is the number of labeled process nodes, i.e.: Co (i) = uk,
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if there is a k such that, k = Jo (i), otherwise Co (i) = Owhere

i = 1, 2,..., p.

Let pl be the first nonzero element is Co (i); i = 1, 2,...,

If pl = 1 (i.e. if Co (1) 0), then Co (1) is used as a pivot

element, and no process node interchange is necessary. However, if

p
I

> 0, then we interchange the following elements:

(i) Jo (1) and Jo (p1)

(ii) Co (1) and Co (p1)

Thus, if pl > 1 then process nodes 1 and pl are exchanged next,

the elements of the first row of L and U are calculated:

1
II

= 1; u
ij

= Co (j); j = 1, 2,..., p.

Stage 2. Let i2 be the resource node corresponding to Io (2). Each

of the arcs connecting the resource node i2 and the labeled process

nodes, are entered into the vector Co, as in stage one. I.e.:

if.11.={(k,uk);k6I.}, then Co (i) = uk if there is a k,
1
2

1
2

such that k = Jo (i), (otherwise, Co (i) = 0) i = 1, 2,..., P.

Next, we update Co (j):

Co(1)
Co (j) = Co

(j) 121
uij; j = 2, 3,..., p, where 121

u
11

At this point we proceed with a new pivot element. First a

nonzero element is found:

Let p2 be the first nonzero element in Co (j); j = 2, 3,..., p.

If p2 = 2, then no process node interchange is necessary. However,

if p2 > 2 the process nodes 2 and p2 are rotated, i.e.:

(i) Jo (2) and Jo (p2) are interchanged.

(ii) Co (2) and Co (p2) are interchanged.
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(iii) u
21

and u , are interchanged.
PI

The new pivot element is Co (2). The second column of L and U

are evaluated:

1 and u
2j

. = Co (j); j = P-122

The above stages can be generalized for any number r; r = 3, 4,

p. Thus, for any r, we have:

Stage r.

Step 1. For the resource node i
r
, corresponding, to Io (r), the set

of arcs connecting the resource node it and the process nodes U 9

'r
is used to enter the values of the arcs into the vector Co, i.e.:

Let1.14={(k,u0;kEI. } and Co = uk, if there is a k, such
r rI

that k = Jo (j), (otherwise CO = o) where j = 1, 2,..., p.

Step 2. We update Co and calculate the first r-1 elements of the

rth row of L, i.e.: For i = 1, 2,..., r-1, we repeat (i) and (ii)

(i) lri
Co

(ii) Update Co (j): Co = Co -
ri ij
u; j = r + p

Step 3. The next pivot element is selected: Let pr be the position

of the first nonzero element in Co (j); j = r, r + p.

If pr = r, the element Co (r) can be used as a pivot (no

process node exchange is necessary). However, if pr > r then the

process nodes r and pr are exchanged, i.e.:

Io (r) and Jo (pr) are exchanged.

(ii) Co (r) and Co (pr) are exchanged.

Oiflurj and up up j= 1, r are exchanged.

Step 4. Calculate the remaining elements of the rth row of L and V.
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1 = 1 and u = Co (j); j = p.rr rj

Example 5.2. (Resource entry)

Consider the RPM network, shown in Figure 5-3.(a). Suppose that

all of the resource and process nodes are labeled, i.e.:

I . {1, 2, 3 }, and Io = I (1); i = 1, 2, 3

J = il, 2, 3} and Jo (j) = J (j); j = 1, 2, 3.

Stage 1. For the first resource node it = 1, we have Ul=

{(1,2), (2,3), (3,1)1. The values of the arcs are then entered into

Co, i.e.:

Co (1) = 2

Co (2) = 3

Co (3) = 1

Since Co (1) # 0, we have p1 = 1 (no process node exchange is

needed). The elements of the first row of L and U are calculated:

1 and u1 .

13
= Co 0) i.e. u

11
2,= 2 u

12
. 3 and u

13
= 1111

Stage 2. For the second resource node i2 = Io (2) = 2, we have

U
2
= {(1,4), (2,6), (3,6)1 and Co becomes:

Co (1) = 4

Co (2) = 6

Co (3) = 6

Next, we update Co:

Co(1) 4
Co (j) = Co - 1 u

lj
., where 1

21 = 2; j = 2, 3.21 u
11

Thus, Co (2) = 6 - 2 3 = 0; Co (3) = 6 - 2 1 = 4.

The new pivot element is found next: p2 = 3 (since Co (3) =

4 0). Process nodes 2 and 3 are exchanged:



Io(I)=1

10(2)=2

10(1)=1

:0(2)=2

10(3)=3

(a)

(b) Stage 1

(c) Stage 2

(d) Stage 3
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Jo(1)=1 C0(1)=2

Jo(2)=2 C0(2)=3

Jo(3)=3 Co(3)=1

J0(1)=2 C0(1)=4

Jo(2) =23 C0(2)=6-3x3=0i2.

Jo(3)=32 C0(3)=5-2.1=40

30(1)=1 C0(1)=1

J0(2)=3 C0(2)=5-.5 x 1=4.5

Figure 5-3. The Labeled Resource Graph Decomposition.
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(i) Jo (2) = 3 and Jo (3) = 2

(ii) Co (2) = 4 and Co (3) = 0

(iii) u
12

= 1 and u
13

= 3

The second row of L and U are found from:

1 and u2i = Co (j); j = 2, 3; i.e. u22 = 4 and u23 = 0122

Stage 3.

Step 1. For the resource node i
3

to (3) . 3, we have:

U
3

= {(1,1), (2,3), (3,5)1. The vector Co becomes:

Co (1) = 1

Co (2) = 5

Co (3) = 3

Step 2. We update Co and calculate the first 2 elements of the 3rd

row of 1, i.e.: For i = 1, 2 we repeat (i) and (ii)

(i) 13i = Co (i)/uil and

(ii) Co (j) = Co - 1
ri
u... j = r +

Let i = 1. Then:

(i) 131 - 1/2 = .5

(ii) for j = 2 we have Co (2) = 5 - .5

for j = 3 we have Co (3) = 3 - .5

Next, let i = 2. Then:

(i) 132 = Co (2)/u21 4.5/4 = 1.125

(ii) for j = 2 we have: Co (3) = 1.5

1 =

3 =

- 1.125

1.

4.5

1.5

0 = 1.5

Step 3. p2 = 3 (no process node exchange is needed).

Step 4. Compute 133 = 1 and u37 = 1.5.
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Partial Factorization

In the last two sections, we considered the case where a

numerical procedure was developed to factorize the labeled network

by operating on the process or resource graph. However, at each

iteration the factorization of the labeled network is required, when

a factorization of a very similar labeled network has been obtained

at the previous iteration. In order to reduce the number of opera-

tions required at each iteration, a technique which utilizes the

additional information provided by the previous iteration, seems to

be appropriate to apply.

The labeling process discussed in Chapter Four provides one of

the following possible changes of the basis.

I. A new pair of nodes, one process node and one resource

node per pair, is added to the labeled sets of nodes.

2. A newly labeled node (resource or process) replaces

a previously labeled node (resource or process).

3. A pair of nodes (one resource and one process node) are

deleted from the sets of labeled nodes.

Each of the above listed different possible changes in the basis

are discussed in detail. For each one an economical (in the amount

of computations needed for factorization) scheme will be developed.

Type (1) Factorization

In this section we consider the case in which a new pair of
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nodes (one process node and one resource node), is added to the

labeled sets of nodes.

Let Io be the set of the indexes for the labeled resource nodes,

Jo.the set of the indexes for the labeled process nodes, and p the

number of elements in Io (the "set equality constraint" requires

that Jo will have the same number of elements).

Suppose that the resource node it and the process node j
I

are

added to the labeled network, i.e. Io (p + 1) = i1 and Jo (p + 1) = j1.

By adding a new pair of nodes, we add an extra row to the array L

(p + 1 row), and a column to array U (p + 1 column), where L and

U are the lower and the upper triangular matrices defined from the

previous iteration.

The case where p is equal to zero is trivial since 111 = 1 and

u
11

is equal to the value of the arc connecting the resource and

process nodes.

Let p = I. Set Io (2) = i/ and Jo (2) = j1. We consider

V.=0,vh);1'{IEJ.} and for j = 1, 2 we set: Bo (j) = vh,
J
I

where h = Io (j), i.e. Bo (1) is the value of the arc connecting the

newly labeled process node j1 and the resource Io (1), and Bo (2) is

the arc connecting the new pair of labeled nodes.

Next, we consider U. = {(k, uk); k I. } and for i = 1, 2
11 11

we set Co (i) = uk where k = Jo (i) ; i.e. Co (1) is the value of the

arc connecting the resource node it and the process node Jo (1), and

Co (2) is the arc connecting the newly labeled pair of nodes i1 and
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j
1

. Clearly Bo (2) = Co (2). (Figure 5.4

Bo(1) J0(1)

90(Z) Jo(2)sil

J0(1) Co(1)

Jo(z)-ii co(2)

Figure 5.4. Adding a new pair of nodes to the basic nodes.

It follows that the new row of L is 122 = 1 and 121
u11

Co (1),
Co(1)

i.e. 1 = . For the new column of U we have:21 u
11

u
12

= Bo (1) and u
22

= Bo (2) - 1

21
u
12

In general, for p > 2 the analytic formula for computing the elements

of the p + 1 row of L is:
1 i-1

=
ii

[Co (i) -
k =11P +i,kuik1

i = 1, 2,..., p and 1
p+1,p+1

=1

and the analytic formula for finding the elements of the p+1 column

of U is:

i-1
u
1,p+1

= Bo (1) - E 1ik u
kp

i = 1, P+1
'

u=1

The above factorization is possible, provided that the element

up+1, is different from zero. If u
p+1, p+1

is equal to zero then

clearly the determinant of U is zero ( 1U1
u11 u22 up+1,p+1)

In this case, 1A1 = ILI 1U1, i.e. the determinant of A is zero, and

the rows (or columns) of A are not linearly independent. Therefore,

provided that the new labeled resource (or process) node does not

provide the labeled network with a set of arcs which form a constraint

which is redundant, the type (1) factorization is always possible.

The necessary and sufficient condition for all types of factor-
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ization is that the labeled network corresponds to a set of linearly

independent constraints.

Type (2) Factorization

In this section, we consider the case in which the labeling

process described in Chapter Four, provides with one of the following

changes in the basis:

(a) A newly labeled process node replaces a previously labeled

process node (process exchange), or

(b) A newly labeled resource node, replaces a previously

labeled resource node (resource exchange).

Both (a) and (b) are described next in detail.

(1) Process Exchange

Suppose that a process node j1 is to replace a process node j2

in the basis at a given iteration and p is the number of labeled

process nodes.

If Jo is the set of indexes for the labeled process nodes, there

exists an r, 1 < r < p, such that Jo (r) = j2.

Step 1. Delete process node j2 and add process node j1. For

j = r, r+1,..., p-1 we update the set Jo, i.e. Jo (j) = Jo (j+1),

thus, deleting the node j2 from Jo. Next, we add the node j/:

Jo (p) = j1. The node ji is placed at the last position of the set

labeled process nodes.

Step 2. We continue with the process graph decomposition method

described earlier in this chapter. Since at each stage k of the

process graph decomposition method we calculate the kth column of



L and U arrays, it is clear that we can start the process at the r

stage (r defined from Jo (r) = j2)

(2) Resource Exchange

Suppose that at a certain iteration the resource node it is to

replace the resource node i2 in the new basis. Since i2 is in the

basis, there is an r such that Io (r) = i
2

, where Io is the set of

indexes for the labled resource nodes (Io (i); i = 1, 2,...,p).

Step 1. Delete resource node i
2

and add resource node i
1*
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For i = r, r+1,..., p-1 we update Io; i.e. Io (j) = Jo (j+1), thus

deleting the node i2. The resource node it is added at the last

position of the set Io, i.e. Io (p) =

Step 2. We continue with the resource graph decomposition method

described earlier in this chapter. Recall that at each state of the

method k, we calculate the kth row of L and U arrays. Clearly,

the first r-1 rows of L and U (r defined from Io (r) = i
2

) remain

unchanged, and we start the method at stage r.

Type (3) Factorization

In this section we consider the case in which the labeling

technique results with the following change in the set of basic

(labeled) variables: A pair of nodes (a resource and process node)

are deleted from the set of labeled nodes.

Let i
1
be the resource node, and j

1
be the process node, both to

be deleted from the basis (unlabeled).

Let p be the number of labeled resource nodes. The necessary
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steps, to update the factorization are:

Step 1. Delete process node j1. Let r; 1 < r < p such that

Jo (r) = j1. Then for j = r, r+1,..., p-1 we replace Jo (j) with

Jo (j+1), and take Jo (p) = 0. Thus, the protess node ji is deleted

from Jo.

Step 2. Delete resource node i1. Again let r; 1 < r < p such that

10 (r) = il. Then for i = r, r+1,..., p-1 we replace Io (i) with

10 (1+1), and take 10 (p) = 0. The resource node it is deleted

from 1o.

Step 3. Apply the resource graph decomposition technique described

earlier in this chapter for the set of labeled resource nodes Io(i);

i = p-1, and the set of labeled process nodes Jo (j);

j= 1, 2,..., p-1.

Discussion

In this chapter, a general method for the triangular decomposition

of the labeled network was discussed. The triangular basis can be

obtained from the process graph (labeled process graph decomposition),

by considering one labeled process node at each stage. The decompo-

sition of the labeled network can also be obtained from the resource

graph (labeled resource graph decomposition), by considering one

resource node at each stage. In both cases, the decomposition is

feasible, provided that the labeled network consists of a set of

linearly independent constraints.
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However, this is always the case. For example, in type (a)

labeling, whenever j1 replaces j2 in the basis, the updated basis

corresponds to a nonsingular array (using Cramer's rule and the

fact that X£(j2) 0). Also, whenever and d it become labeled the

new basis corresponds to a nonsingular array (using Gauss' method)

The same is true for the other types of labeling.

During the decomposition process, the elements of a lower

triangular array L of dimension pxp (where p is the number of labeled

resource nodes), and the elements of an upper triangular array U of

the same dimension (pXp) are calculated. For storage purposes the

elements of both arrays L and U can be stored in an array of dimension

pXp.

At each iteration, the decomposition of the labeled network is

required, when a decomposition of the labeled network of the previous

iteration has been derived. The partial factorization methods

described in this chapter can reduce the number of operations necessary

for factorization at each iteration. The computational savings, in

general, depend on the position of the exchanged nodes (resource or

process) in the basis.
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VI. BALANCING

Introduction

Balancing is the process of updating the values of the

variables for the labeled nodes and the residues for the unlabeled

nodes. Applying the complementary slackness theorem, the residues

of the labeled nodes, and the variables of the unlabeled nodes

are set equal to zero.

First, the primal and dual basic structural variables are

obtained from the factorized basis by backsubstitution. Next,

the values of the residues are computed individually for each

resource or process node. (Resource or process nodes which are not

connected to a basic node do not need balancing.)

Analytically, the balancing equations for the network are given

below:

(1) Labeled nodes:

(XU)i = B(i); i 6 I

*
(YV). = C(j); i 6 J

(2) Unlabeled nodes:

S(i)=B(i)-(XU)i; i C Io

D (j) = (YV)i - C(J); i 6 J°

The Process of Balancing

The labeled network, when it is factorized into the product of

a lower triangular (L) and an upper triangular (U) matrix, provides
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a simple procedure for computing the basic variables. This procedure

is called backsubstitution, and it is used for finding the values of

the primal and dual basic variables. This procedure is explained

below.

The artificial process nodes Xo are used first to find a

solution to the system of equations, LXo = Bo, where L is the lower

triangular array and Bo the vector containing the constants B(i)

corresponding to the labeled resource nodes. For the first variable

Xo(1), we have Xo (1) = Bo (1). Substituting this value of Xo (1)

in the second equation, we find Xo (2), etc. After a solution for

Xo has been found, array U is used to calculate the process variables.

In this case we solve the system UX, = Xo applying the same procedure,

this time backwards, i.e. the value of the variable X1 (p) is found
1

from the last equation as X1 (p) Xo (p), etc.

PP
To calculate the values of the dual variables Y1, we use the

artificial nodes Yo as the solution of the system Po'= Co.

Next, Yo is found by backsubstitution. The dual variables are

computed next by solving the system LY1 = Yo.

After the solution for X
1

and Y
1
has been found, the process and

resource variables are identified from the set of indexes Io and Jo

and the residue of each unlabeled node is updated. The different

steps are:

Step 1. The process variables are computed for the labeled

process nodes: (the indices Io, Jo are defined in Chapter Five).
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For i = 1, 2,.., p; let So = 3(k) where k = Io (i).

j-1
Xo (j) = Bo (j) - E 1Xo (k) ; j=1, p

k=1 J'
1 p-1

X (j) = [Xo (j) - E X (k)] j = p, p-1,..., 11 u
U.

jj
jk 1

The corresponding process variables are given by:

X(k) = Xl (j); k = Jo (j); j = 1, 2,..., P.

Step 2. The resource variables are computed for the labeled

resource nodes:

For j = 1, 2,..., p; let Co (j) =C(h)where h = Jo (j).

Let,

and

1 1-1
Yo (i) = C (i)- E u Yo (k) ], i = 1, 2,...,

U11
1=1 ki

p-1
Y
1

(i) = Yo (i) - E 1

10
.Y (k);

1
(k)- = p, p-1, 1.

k=1

The resource variables are given by:

Y (h) = Yl (1); h = Io (i), i = 1, p

Step 3. Update resource residues for unlabeled resource

nodes:

S(i)=B (i) - E U. X(j) ; E I J;°

Step 4. Update process residues for unlabeled process nodes:

D(j)= E v.Y(i) + C(j); j 6 J.0; i s J.
i 1
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Illustrative Example 6.1.

Consider the RPM model shown in Figure 6-1. The network contains

three resource nodes (Y1, Y2, and Y3) and four process nodes (X1, X2,

X3, and X4). The initial zero solution for the primal and dual

variables is entered and the resource and process residues are updated.

The zero solution contains negative residues and is neither feasible

nor optimum: (S (2) = -4; S (3) = -10) (0 (1) = -2; D (2) = -1,

D (3) = -4, D (4) = -5.

Iteration 1.

(C.1.) The residue of the first process X (1) is negative

0(1) = -2, and the process is considered a candidate

for labeling. Therefore, type (a) labeling is applied.

(L.1.) Let j1 = 1 for choosing X(1) as a candidate. For

this process node, j1 = 1, we have:

J
1

= {1, 2, 3 }; J
1

= 0, J
1
° = {1, 2, 3 }, since the

process node 1 is connected to resource nodes Y1, Y2,

Y
3
which are all unlabeled.

(i) Let X (1) = 6. The values of the parameters

t1 = t2 = -. Since JI is empty, we have t1=

(ii) To find the value of t2, we calculate the

changes of the residues when X(1) = c for all

resource nodes with non-negative residue. In

this case S (1) = -1 6 and the value of t
2

is found from Equation 4.4 to be:

20
t,
4
= min {T=7} = 20 and the corresponding to
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X1

Liriiear RPM -t

RPM 't e S. t -Fi 1 e

Iteration No. 0 Objective Function

c

2

0.000

1

4

5

Resource C r..so
No Name St Value Constant Resid. N Arc(Nd) Arc(Nd) Arc(Nd) Arc(Nd)

1 RES001 0.00 20.00 20.00 4 1.0( 1) 3.0( 2) 2.0( 3) 5.01 4)
2 RES002 0.00 -4.00 -4.00 4 -2.0( 1)-16.0( 2) -1.0( 3) -1.0( 4)
3 RES003 0.00 -10.00 -10.00 4 3.0( 1) -1.0( 2) -5.0( 3) 10.0( 4)

Process
No Name St Value Constant Resid. N Arc(Nd) Arc(Nd) Arc(Nd) Arc(Nd)
1 PROO1 0.00 2.00 -2.00 3 1.0( 1) -2.0( 2) 3.0( 3)
2 PROO2 0.00 1.00 -1.00 3 3.0( 1)-16.0( 2) -1.0( 3)
3 PR003 0.00 4.00 -4.00 3 2.0( 1) -1.0( 2) -5.0( 3)
4 PROO4 0.00 5.00 -5.00 3 S.0( 1) -1.0( 2) 10.0( 3)

Figure 6-1. The Initial RPM Network for Illustrative

Example 6.1.
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the minimum value resource node is i
1

= 1.

(iii) Find the value of t:

t = min (t1, t2)

t = min (20, 00) = 20, i.e. t = t1

Label resource node 1 and process node 1.

(F.1.) At the first iteration p = 1. LU = A or (111)

(u
11

) = 1 since the elements of L and U for a one-

dimension case are 1
11

= 1 and u
11

= 1. Graphically,

u
11

= ar connecting Y to Xo and 1 = the new arrow
(1) (1) 11

from Y1(1) to Xo (1).

Next, the indexes of the labeled nodes are updated.

10 (1) = 1, Jo (1) . 1.

(B.1.) The vectors Bo and Co are:

Bo (1) = 20, Co (1) = 2

1. Update labeled network (Figure 6-2).

(a) Update process variables:

Xo (1) = 20, X1 (1) = 20 and X (1) = 20

(b) Update resource variables:

Yo (1) = 2, Y1 (1) = 2, and Y (1) = 2

2. Update unlabeled network.

(a) Update resource residues:



(1)

20

Y1

Xl*

V44tri1re.
Y2 low*

041:4. X3

4

Y3 :10
-70

10

Y1(1) xo(1)

X2

X4

Y0(1)

-

an

2

4

X1(1)

(1)

Figure 6-2. The First Iteration for Illustrative
Example 6.1.

82
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S (2) = -4 + 2 20 = 36

S (3) = -10 - 3 20 = -70

(b) Update process residues:

D (2) = -1 + 2 3 = 5, D (3) = -4 + 2 2 = 0, and

D (4) -5 + 2 5 = 5

Iteration 2.

First, the complementary slackness theorem applies: S(1) = 0

and D(1) = 0. The current solution is optimum (i.e. the opti-

mality conditions D(j) > 0 and Y(i) > 0 are satisfied) but not

feasible (i.e. the feasibility conditions S(i) > 0 and X(j) > 0

are not satisfied).

(C.2.) The third resource has negative residue. Type (b)

labeling is applied.

(L.2.) (i) First the value of t1 is found. Let Ye(3) = E.

Equation 4.5 becomes (Y6V)1 = 1 YE(1) = -3 E

or Ye(1) = -3. e. Therefore, t1= min{

(ii) Next, the changes of the process residues when

Y6 (3) = E for all process nodes with non-negative

residue are computed:

0(2) = 5 and Dc(2) = -3.3.6 - 6 = -106

D(3) = 0 and DE(3) = -2.3-6 -5 e = -116

D(4) = 5 and D6(4) = -5.3-6 + 106 = -56

The value of t
2

given from Equation 4.8 is:

to . min {5, 5
1 = 0; = 3.

2,3,4 10 11 5
1

Therefore, we label i1 = 3 and j1 = 3
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(F.2.) The dimension of the labeled network is p = 2.

First, we update Bo and Co:

For the process node 3 we have, Bo (1) = 2

and Bo (2) = -5, and for the resource node 3,

Co (1) = 3 and Co (2) = -5.

The type (1) factorization gives:

1

21
= 3 and 1

22
= 1

q
12

2 and q
22

= -5 - 3 2 = -11

(B.2.) First, the vectors Bo and Co are updated:

For the resource nodes, Bo (1) = 20 and Bo (2) = -10,

and for the process nodes, Co (1) = 2 and Co (2) = 4.

1. Update labeled network:

(a) Update process variables:

Xo (1) = 20

Xo (2) = -10 - 3 20 = -70

X1 (2) = (-1/11) (-70) = 6.36, X (3) = 6.36

X1 (1) = 20 - 2 6.36 = 7.27, X (1) = 7.27

(b) Update resource variables:

Yo (1) = 2

Yo (2) = (-1/11) (4 - 2 2) = 0

Y1 (2) = 0, Y (3) = 0

Y1 (1) = 2 3 0 = 2, Y (1) 2



(1)

(3)

Y1
*

X1*

20 (74,11112
Y2

* P
X3*

4

Y3*

0
31.436

8 10
X4

10

Y1(1) Y0(1)

2

4

5

X1 (1)

(1)

(3)

Figure 6-3. The Optimum Network for Illustrative
Example 6.1.
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2. Update unlabeled network:

(a) Update resource residues:

S (2) = -4 + 2 7.27 + 6.36 = 16.9

(b) Update process residues:

D (2) = -1 + 2 3 - 5 0 = 5

D (4) = -5 + 5 2 + 10 0 = 5

The current solution is optimum. The value

of the objective function is:

z = 2 7.27 + 4 6.36 = 40



L...1 rt r- {RPM 1'4 --t ;p4c, s.

Iteration No. 1

!RPM test file C BX4r- >

Objective Function 40.000

3;7

Resource Grap11
No Name St Value Constant Resid. td Arc(Nd) Arc(Nd) Arc(Nd) Arc(t1d)

1 RES001 * 2.00 20.00 0.00 4 1.0( 1) 3.0( 2) 2.0( 3) 5.0( 4)
2 RES002 0.00 -4.00 36.00 4 -2.0( 1)-16.0( 2) -1.0( 3) -1.0( 4)
3 RES003 0.00 -10.00 -70.00 4 3.0( 1) -1.0( 2) -5.0( 3) 10.0( 4)

Process
No Name St

Crap t -
Value Constant Resid. N Arc(Nd) Arc(Nd) Arc(Nd) Arc(Nd)

1 PROO1 * 20.00 2.00 0.00 3 1.0( 1) -2.0( 2) 3.0( 3)
2 PROO2 0.00 1.00 5.00 3 3.0( 1)-16.0( 2) -1.0( 3)
3 PR003 0.00 4.00 0.00 3 2.0( 1) -1.0( 2) -5.0( 3)
4 PROO4 0.00 5.00 5.00 3 5.0( 1) -1.0( 2) 10.0( 3)

1_1 -yr ear- RPM N -two r- 1-c s.

F2P1v1 test f- 1 1 a COX-4>

Iteration No. 2 Objective Function 40.000

Resource G r- p-1-1
No Name St Value Constant Resid. N Arc(Nd) Arc(Nd) Arc(14d) Arc(Nd)

1 RES001 * 2.00 20.00 0.00 4 1.0( 1) 3.0( 2) 2.0( 3) 5.0( 4)
2 RES002 0.00 -4.00 16.90 4 -2.0( 1)-16.0( 2) -1.0( 3) -1.0( 4)
3 RES003 * 0.00 -10.00 0.00 4 3.0( 1) -1.0( 2) -5.0( 3) 10.0( 4)

P co, a s.
No Name St

r- p
Value Constant Resid. N Arc(Nd) Arc(Nd) Arc(Nd) Arc(Nd)

1 PROO1 7.27 2.00 0.00 3 1.0( 1) -2.0( 2) 3.0( 3)
2 PROO2 0.00 1.00 5.00 3 3.0( 1)-16.0( 2) -1.0( 3)
3 PR003 a 6.36 4.00 0.00 3 2.0( 1) -1.0( 2) -5.0( 3)
4 PROO4 0.00 5.00 5.00 3 5.0( 1) -1.0( 2) 10.0( 3)

Current Solution is Optimum

Figure 6-4. Different Tableau for Illustrative
Example 6.1.
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Illustrative Example 6.2.

Consider the RPM model shown in Figure 6-5. The network

contains three resource and two process nodes. The initial zero

solution for the primal and dual variables is entered and the

resource and process residues are updated. The zero solution is

feasible but not optimum.

Iteration I. (Figure 6-5)

(c.1.) The residue of the first process is negative and

the process is considered as a candidate for labeling.

In this case, type (a) labeling is applied.

(L.1.) Let ji = I. For this process node we have:

J
1
= (1, 2, 3) and V

1
= ( (1,1), (2, 12), (3,5) ).

Also, J
1
* 0; J1° = J

1.

Let t1, t2, t

(i) Find the value of t1:

Since JI is empty, we have t1 =

(ii) Find the value of tl:

t = min (19/1, 45/12, 16/5) = 16/5. Therefore, it = 3.

(iii) Find the value of t:

t = min (16/5, -) = 16/5; i.e. t = tl.

Label resource node 3 and process node 1.

(F.1.) At the first iteration p = 1. The elements of L

and U are 1

11
= 1 and u

11
= 5.



Y1

X1

X2

Y3

16

L i n e a r -- F217Pr1 hle #w4 r1cs

Iteration No. 0

F2 e s c) u r-
No Name St
1 RES001
2 RES002
3 RES003

Process
No Name St
1 PROO1
2 PROO2

FtF31-fi test -F 1 1 c 3x.a

4

Objective Function 0.000

r- Ft

Value Constant
0.000 19.000
0.000 4S.000
0.000 1E..000

Cr-.aapt-41
Value Constant
0.000 8.000
0.000 4.000

Resid. N Arc(Node)
19.000 2 1.0 (

45.000 2 12.0 (

15.000 2 5.0 (

Arc(Node)
1) 4.0 ( 2)
1) 5.0 ( 2)
1) 1.0 ( 2)

Resid. N Arc(Node)
-8.000 3 1.0 ( 1)

-4.000 3 4.0 ( 1)

89

Arc(Node)

Ar,c(Node) Arc(Node)
12.0 ( 2) 5.0 ( 3)

5.0 ( 2) 1.0 ( 3)

Figure 6-5. The Initial RPM Network for Illustrative

Example 6.2.
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Next, the indexes of the labeled nodes are updated.

Io (1) = 3, Jo (1) = 1.

(B.1.) The vectors Bo and Co are: Bo (1) = 19, Co (1) = 8.

1. Update labeled network.

(a) Update process variables:

Xo (1) = 16, X1(1) = 16/5 = 3.2 and X (1) = 3.2

(b) Update resource variables:

Yo (1) = 8/5 . 1.6, Y1 (1) = 1.6 and Y (3) = 1.6

2. Update unlabeled network.

(a) Update resource residues:

S (1) = 19 - 3.2 = 15.8

S (2) = 45 - 12 3.2 = 6.6

(b) Update process residues:

D (2) = -4 4- 1.6 = -2.4

Iteration 2. (Figure 6-6)

First, the complementary slackness theorem applies:

B (3) = 0 and D (1) . 0

(C.2.) The second process variable has negative residue.

Type (a) labeling is applied.

(L.2.) Let ji = 2, we have J2 = (1, 2, 3)

and V
2

= ( (1,4), (2,5), (3,1) ). Also,

J
2
* = (3), J

2
= (1,2). Let t1, t2, t =

(i) Find the value of tl: Let XE(2) = E



(3)

Y1

a-

4

Figure 6-6. The First Iteration for Illustrative
Example 6.2.
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Then, 5 Xe(1) -c i.e. Xe(1) = -.2e

t1 = min (3.2/.2) . 16, and j2 = 1

ii) Next, the value of t2 is computed. We have:

S6(1) = +.2e - 4e = -3.8e; Se(2)= 12..2c - 56=-2.6e...i.e. t2 = min{ 15 4 6 6 6 6

92

3.8 ' 2.6 2.6
2.5; i1

2

(iii) Find the value of t:

t = min (2.5 , 16) = 2.5. Therefore t = t2

The resource node 2 and the process node 2 are

labeled.

(F.2.) The dimension of the labeled network is, p = 2.

First, we update Bo and Co:

For the process node 2 we have, Bo (1) = 1 and

Bo (2) = 5, and for the resource node 2, Co (1) . 12

and Co (2) = 5

The type (1) factorization gives:

1

21
12/5 = 2.4 and 1

22
= 1

u12
1 and u

22
5 - 2.4 = 2.6

(B.2.) First, the vectors Bo and Co are updated.

For the resource nodes, Bo (1) . 16 and Bo (2) = 45,

and for the process nodes-, Co (1) = 8 and Co (2) = 4

1. Update labeled network.

(a) Update process variables:

Xo (1) = 16

Xo (2) = 45 - 16 2.4 = 6.6



(3)

Y1

Y1(1) X0(1) YO(1)

8
Ow-

4

X1(1)

(1)

(2)

FigureFigure 6-7. The Second Iteration for Illustrative

Example 6.2.
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X1 (2) = 6.6/2.6 = 2.54, X (2) = 2.54

X1 (1) = (16 - 2.54)/ 5 . 2.69, X (1) = 2.69

(b) Update resource variables.

Yo (1) = 8/5 = 1.6

Yo (2) = (4 - 1.6)/ 2.6 = .923

Y1 (2) = .923, Y (2) = .923

Y1 (1) = 1.6 - 2.4 .923 = -.615, Y (3) = -.615

2. Update unlabeled network.

(a) Update resource residues:

S (1) = 19 - 2.69 - 4 2.54 = 6.15

(b) Update process residues:

(All process nodes are labeled)

The current solution is not feasible.

Iteration 3. (Figure 6-7)

(C.3.) The third resource variable is negative. In this

case type (c) labeling is applied.

(L.3.) Let i
1

= 3. For this resource node:

I
3
. (1, 2, 3) and U

3
= ( (1,5), (2,1) )

I
3
*= (1,2), I

3
= 0

(i) The perturbated values of the process variables

are found from:

12 Xe (1) + 5 XE (2) = 0



(2)

Y1

19

1411111110 74Y2.4
01411IIK4

45

16

Y1(1)

Y3

*X2

100110Iir
Sk4

YO(1)

4

)

Figure 6-8. The Final RPM Network for Illustrative
Example 6.2.

(1)

(2)
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and 5 Xs (1) + Xe (2) = -e

We have, Xe (1) = -.384e and Xe (2) = .926

Next, we compute t1 as:

t
1
= min (2.69/ .384) = 7, and j

1
.= 1

(ii) The updated residues are:

Se (1) = .384e - 4 .92e = -3.2966

The value of t
2

is computed next:

t
2
= min (6.15/ 3.296) = 1.86, and i

2
= 1

(iii) The value of t is:

t = min (7, 1.86) = 1.86, i.e. t = t1

In this case the resource node 1 becomes labeled

and resource node 3 becomes unlabeled.

(F.3.) The dimension is p = 2. The labeled network is:

1, 121 = 12, 1

22
1 and u

11
1,= 1 u

12
= 4111

and u22 . 5 - 12 4 = -43

(B.3.) The updated Bo and Co are: (Bo (1) = 19,

Bo (2) = 45 (corresponding to the resource nodes),

and Co (1) = 8, Co (2) = 4 (corresponding to the

process nodes).

1. Update labeled network.

(a) Update process variables:

Xo (1) = 19

Xo (2) = 45 - 12 19 = -183



L. i 7Th r FR F rel N IC, 't 4,11 cr r 1{

Iteration No. 1

F" re l 5 r . 1 -F i. 1 e ( AX 2>

Objective Function 25.600

Resource Graph
No Name St Value Constant Resid. N Arc(Node) Arc(Node) Arc(Node) Arc(Node)1 =RES001 0.000 19.000 15.800 2 1.0 ( 1) 4.0 ( 2)2 ,RES002 0.000 45.000 6.600 2 12.0 ( 1) 5.0 ( 2)3 ORESUO3 * 1.600 16.000 0.000 2 5.0 ( 1) 1.0 ( 2)

Process Graph
1 PROO1 * 3.200 8.000 0.000 3 1.0 ( 1) 12.0 ( 2) 5.0 ( 3)2 PROO2 0.000 4.000 -2.400 3 4.0 ( 1) 5.0 ( 2) 1.0 3)

Iteration No. 2 Objective Function 31.692

Resource Graph
No Name St Value Constant Resid. N Arc(Node) Arc(Node) Arc(Node) Arc(Node)
1 JIES001 0.000 19.000 6.153 2 1.0 ( 1) 4.0 ( 2)
2 =RES002 * 0.923 45.000 0.000 2 12.0 ( 1) 5.0 ( 2)
3 =RES003 * -0.615 16.000 0.000 2 5.0 ( 1) 1.0 ( 2)

Process Graph
1 PROO1 * 2.692 8.000 0.000 3 1.0 ( 1) 12.0 ( 2) 5.0 ( 3)
2 PROO2 * 2.538 4.000 0.000 3 4.0 ( 1) 5.0 ( 2) 1.0 ( 3)

Iteration No. 3

Resource Graph
No Name St Value

Objective Function

Constant Resid. N

32.837

Arc(Node) Arc(Node) Arc(Node) Arc(Node)
1 'RES001 * 0.186 19.000 0.000 2 1.0 ( 1) 4.0 ( 2)
2 =RES002 * 0.651 45.000 0.000 2 12.0 ( 1) 5.0 ( 2)
3 =,RES003 0.000 16.000 1.860 2 5.0 ( 1) 1.0 ( 2)

Process Graph
1 PROO1 * 1.976 8.000 0.000 3 1.0 ( I) 12.0 ( 2) 5.0 ( 3)
2 PROO2 * 4.255 4.000 0.000 3 4.0 ( 1) 5.0 ( 2) 1.0 ( 3)

Figure 6-9. Different Tableau for Illustrative Example 6.2.
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X1 (2) = 183/43 = 4.26, X (2) = 4.26

X1 (1) = 19 - 4 4.26 = 1.98, X (1) = 1.98

(b) Update labeled resource variables.

Yo (1) = 8

Yo (2) . -(4 - 4 8)/ 43 = .651

Y1 (2) .651, Y (2) .651

Y1 (1) = 8 - 12 .651 = .186, Y (1) = .186

2. Update unlabeled network.

S (3) = 16 - S 1.98 - 4.26 = 1.86

The current solution is optimum. The value of the

objective function is,

z = 8 1.98 -I- 4 4.26 = 32.8
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VII. COMPUTATIONAL RESULTS

The purpose of this chapter is to evaluate the practicality of

the new method, and provide statistical results based on test

problems.

First, the "worst case" analysis based on all possible basic

solutions was made. The three basic steps of the algorithm i.e.

labeling, factoring and balancing were analyzed separately, in order

to find an upper bound of their computational requirements, and find

ways of avoiding nonnecessary operations. The criterion used to

measure the amount of work involved was the number of multiplications

and divisions at each iteration. Additions and subtractions were

omitted, since they are executed much faster, they are proportional

to the number of the other two arithmetic operations (multiplications

and divisions), and mainly because they increase the complexity of the

analysis. Typical computational speed for Wang 2200 on which the

program was written are shown in Table 7.1.

For a number of sample problems, the number of iterations and

total arithmetic operations (multiplications and divisions) were

recorded and compared against simplex methods, using the MPOS

(Multipurpose Optimization System) software package.

The Worst Case Analysis

The "worst case" analysis is often used as a theoretical

measure of the efficiency of an algorithm. For extreme point algo-

rithms, it is based on the total number of iterations, over all the



TABLE VII.1. EXECUTION TIMES FOR WANG 2200 B MODEL.*

*

CPU (Central Processing Unit) System 2200,
Model A or B

Variable Formats

Scalar Numeric Variable.
Numeric 1- and 2-dimension Array Variables.
Alphanumeric String Variable.
Alphanumeric 1- and 2-dimensional String Arrays.

Average Execution Times (Milliseconds)
Add/Subtract 0.8
Multiply/Divide 3.87/7.4
Square Root/ex 46.4/25.3
Loge x/XY 23.2/45.4
Integer/Absolute Value 0.24/0.02
Sign/Sine 0.25/38.3
Cosine/Tangent 38.9/78.5
Arctangent 72.5
Read/Write Cycle 1.6g sec
(Average execution times were determined using
random number arguments with 13 digits of pre-
cision. Average execution times will be faster in
most calculations with arguments having fewer

significant digits.)

TAPE DRIVE Model 2217

Stop/Start Time
0.09/0.05 sec

Capacity
522 bytes/ft (1712 bytes/m)

Recording Speed
7.5 IPS (19.05 cm/sec)

Search Speed
7.5 IPS (19.05 cm/sec)

Transfer Rate
326 characters/sec (approx.)

Inter-record Gap
0.6 in. (1.52 cm)

(Capacity and transfer rate include gaps and redun-
dant recording.)

WANG, Laboratories: Reference Manual, Model 2200 B.

100
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extreme points and the number of operations per iteration. For the

new algorithm the number of operations at each iteration depends not

only on the size of the problem, and the density of the constraint

matrix (100% density is assumed), but also on the size of the labeled

network at each iteration. Figure 7.1 shows all possible combinations

of the labeled network for problems with m resource, n process nodes,

and p dimension of the labeled network: 0 < p < min (m, n). For four

resource nodes and four process nodes, 0 < p < 4, and there are

70 combinations of basic solutions (m m)!/(m! m!) where m = 4.

From all these basic solutions, one has no dimension,p= 0 (all

nodes are unlabeled), 16 correspond to p = 1 (only one resource and

one process node is labeled), and 36 correspond to p = 2, etc.

The next section discusses the number of arithmetic operations

required per iteration for values of p ranging from 0 to min (m, n).

The Number of Operations per Iteration

In this section, an upper bound of the number of arithmetic

operations (multiplications and divisions) is given for each of the

three basic steps of the algorithm, i.e. labeling, factoring, and

balancing.

For a given network with m resource and n process nodes, p is the

number of labeled resource nodes (and also the number of labeled

process nodes).

To find the total number of operations per iteration the

following assumptions were made:



L_b21d

ED Ie. lr 1 C)C) 7/-.

r, 1-c

I =-- irn m

rim 0 1 2 3 4 5 6 7 8 9 10 Total

( 1) 1 1 2

( 2) 1 4 1 6

( 3) 1 9 9 1 20

( 4) 1 1E. 36 16. 1 70

( 5) 1 25 100 100 25 1 252

( 6) 1 36 225 400 225 36 1 924

( 7) 1 49 441 1225 1225 441 49 1 3432

( 2) 1 64 784 3136 4900 3136 784 64 1 12370

( 9) 1 81 1296 7056 15876 15876 7056 1296 81 1 48620

(10) 1 100 2025 14400 44100 63504 44100 14400 2025 100 1 124756'

Figure 7-1. All Possible Basic Solutions for an m x m Model.
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(i) The constrained matrix is 100% dense.

(ii) Although type (a) labeling process is assumed, the number

of arithmetic operations is the same in type (b) or type

(c). The assumptions are:

(a) The ratio of the residue of each unlabeled

resource node and its perturbated value must be

found for all unlabeled resource nodes.

(b) A perturbated value is required for all the

labeled process nodes and the ratio of the value

of each basic process variable and its perturbated

value must be calculated for all labeled process

nodes.

(iii) At each iteration a complete factorization of the labeled

network is required.

(iv) A complete network updating scheme is necessary, i.e. all

the resource and process nodes are updated.

Under the above assumptions an upper bound of the operations

required at each iteration is given analytically.

1. Labeling. For the process of labeling, the operation count

is the sum of:

(i) p
2
operations for an explicit evaluation of the perturbated

values of the labeled process variables, and p operations

for finding the minimum ratio.

(ii) p (m-p) operations for updating and m-p operations for

finding the minimum ratio of the residues of each unlabeled
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resource node and its perturbated value.

Thus, the total amount of computations per labeling is:

2
P p p(m -p) m -p, or pm m

2. Factoring. For a complete factorization of a pXp labeled

network, the operation count is given by: p(p?1) (Isaacson, Keller,

1966, p.35).

3. Balancing. The amount of operations needed for balancing

3

is the sum of:

(i) P
2
operations for an explicit solution of the labeled

process variables. Also, p
2
operations for the labeled

resource variables. Thus, a total of 2 p
2

operations.

(ii) p operations are required for updating the residue of an

unlabeled resource node, i.e. a total of p(m -p) for all

unlabeled resource residues. Also, a total of p(n-p) is

required for updating the process residues.

Thus, each balancing process has an upper bound of p(m + n)

operations.

Statistical Data

A number of sample problems were selected and solved by the new

algorithm. The sample problems were:

(a) Textbook problems: Sample problems were selected randomly

from textbooks.

(b) Concocted problems: Sample problems were constructed to

test the algorithm for:
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(i) Unbounded solutions

(ii) Nonfeasible solutions and

(iii) Cycling on loops. Networks including chains of arcs

which formed loops were tested by the new algorithm.

The statistical results for a set of sample problems are shown

in Table 7.2. The number of iterations for each problem required by

the new method and the simplex type methods(regular method and

primal dual algorithm ) were recorded.

The total amount of operations required for the solution (or

for an indication of unboundedness or nonfeasibility conditions),

are shown in Table 7.3.



TABLE VII.2. NUMBER OF ITERATIONS REQUIRED PER EXAMPLE PROBLEM.

Problem m x n Density % Simplex Primal - Dual RPM

1 3 x 4 100 5 2 2

2 3 x 4 100 2 2 3

3 3 x 4 100 1 2 1

4 3 x 2 100 3 3 3

5 3 x 4 100 2 2 4

6 4 x 2 100 2 2 2

7 5 x 2 75 4 2 2

8 4 x 3 80 4 2 2

9 3 x 3 100 2 1 1

10 2 x 2 100 2 2 2

11 6 x 6 47 5 5 5

12 3 x 3 100 3 3 3

13 6 x 6 33 6 6 5

14 11 x 14 12 11 11 11

15 12 x 11 19 8 8 8
16 8 x 10 25 6 6 6



TABLE VII.1 NUMBER OF OPERATIONS REQUIRED PER SAMPLE PROBLEM.

Problem Size m x n Density Simplex Primal - Dual RPM

1 3 x 4 100 119 42 24
2 3 x 4 100 46 46 42
3 3 x 4 100 21 21 15
4 3 x 2 100 44 44 44
5 3 x 4 100 46 46 69
6 4 x 2 100 40 40 32
7 5 x 2 75 96 34 31

8 4 x 3 80 106 38 36
9 3 x 3 100 37 16 30

10 2 x 2 100 22 22 22
11 b x 6 47 186 137 108
12 3 x 3 100 46 46 44
13 6 x 6 33 135 85 58
14 11 x 14 12 134 156 132
15 12 x 11 19 276 243 196

16 8 x 10 25 102 78 75
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VIII. CONCLUSION

The purpose of this chapter is to discuss and evaluate the

different criteria considered for the development of the new method-

ology, and to evaluate the experimental results based on sample

problems.

Different ways of accelerating the optimization procedure by

reducing the number of iterations and amount of arithmetic operations,

and recommendations for future studies are also included in this

chapter.

Feasibility of the New Algorithm

Let us first summarize the findings of our feasibility analysis

of the new algorithm.

The labeling process described in Chapter Four alters the sets

of basic resource and process nodes in such a way that the updated

labeled network contains no redundant constraints (primal or dual),

i.e. the labeled nodes form a non-singular array with rank p, where

pXp is the dimension of the basis. The factorization scheme described

in Chapter Five guarantees a triangular structure for the labeled

network since the matrix which corresponds to the labeled network is

not singular.

The transformation of the labeled network into a triangular

structure also guarantees that the primal and the dual basic solution

can be found by backsubstitution. This is then used to update the

nonbasic nodes of the network.
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At each iteration the algorithm works towards optimality or

towards feasibility. If the final solution is optimal but not

feasible and no type (b) or type (c) labeling is possible, then the

solution of the problem is infeasible. If the final solution is

feasible but not optimal and no type (a) or type (c) labeling is

possible, then the solution of the problem is unbounded. If the

final solution is neither optimum nor feasible and no labeling is

possible, then the solution of the problem is unbounded. If the

final solution is neither optimum nor feasible and no labeling is

possible then the problem is both unbounded and inconsistent.

Evaluation of the Criteria

The criteria discussed in Chapter One are:

1. Memory Space Requirements. Unlike most of the simplex type

algorithms, the dimension of the basis for the new algorithm is not

the same from one iteration to the next. The starting basis has

zero dimension, and at each iteration the number of labeled resource

nodes, p, defines the new dimensionality of the basis. The minimum

number of the resource nodes m, and the process nodes n on the

network, is an upper bound for p, i.e. 0 < p < r = min (m, n).

In general, for problems with a dense constraint matrix (in its

canonical form), the number p, on the average, is considerably less

than r, when the ratio min is close to one. If the ratio m/n is very

large or very small, then it is expected that p will get closer to r.

In Chapter Five, the decomposition method used for transforming

the basic network into a triangular structure (LU decomposition) was
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described in detail. Both arrays (L and U) can be stored on the

same pxp array in order to reduce the memory space requirements.

Under the new scheme the memory space requirements, on the

average, are considerably less than that of a full basis.

For example, at each iteration the requirements (approximately) are:

p
2
elements for storing the basis

(ii) 2 m elements for the resource variables and residues

(iii) 2 n elements for the process variables and residues

The resource and process graph of the network are saved on the

same or different disks in a compact way.

2. Number of iterations. The number of iterations required for

the new method is finite and depends on the size and the complexity

of the problem under solution, as well as the hierarchy in which

different types of labeling are applied.

When compared with simplex methods, the new algorithm, on the

average, did not require more iterations than simplex type algorithms

for sample problems discussed in Chapter Seven.

3. Arithmetic Operations per Iteration. At each iteration, the

number of arithmetic operations varies depending upon:

(i) Size of the labeled network.

(ii) Density of the constraint matrix.

(iii) Status of the residues of the resource and process nodes.

) Type of factorization required and the positions of the

exchanged nodes.
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The upper bound of operations required at each iteration is given

in Chapter Seven ("worst case"). In practice, statistical data based

on sample problems indicate that on the average the number of

arithmetic operations is less than simplex type algorithms.

4. Round-off Errors. Many of the simplex type algorithms change

the model representation at each iteration and errors occuring at

every stage of the process directly affect the solution. If either

the optimal feasible solution or its dual is degenerate or nearly so,

it is possible that errors will affect the choice of the basic

variables so that in the final tableau the segregation of variables

into basic and nonbasic is incorrect. When the revised simplex is

used the round-off errors are reduced. The difference in round-off

errors arise from the way in which the original representation of

the model is changed. In the revised simplex round-off errors occur

only in the basic vectors, and the method is thus susceptible to

numerical instability in the final stages of the solution (Jacobs,

1977).

In recent years it has become recognized that linear programming

inversion routines for a full basis can be improved in accuracy when

the Gaussian or Elimination Form of Inverse, rather than the Gauss-

Jordan or Product form of Inverse is used (Forrest and Tomlin, 1971).

Under the new scheme, the round-off errors can be minimized by

using the triangular factorization method for the reduced basis, and

the original model representation. The factorization method can be

modified in a way that:
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(i) The maximum pivot element is used instead of the first

nonzero in each row (column).

(ii) Double precision arithmetic can be used for the vectors

Co (Bo), thus obtaining greater accuracy.

Basically, the round off errors occurring in the solution are

due to operations made during the last iterations.

5. Limited Computer Requirements. The new method is designed in

such a way that the original data can be stored as resource and

process graph on one or more disks when a disk storage system is

available. Depending on the size of the problem, the resource or

process variables and residues can be stored in core or on the disk.

The computer program may be further modified, so that at each

iteration, the available memory space can be used to process a

decomposed labeled network a segment at a time.

6. Network Structure. The new method, based on the RPM network

technique eliminates the need for explicit logical variables (slack,

surplus or artificial). When compaired with simplex algorithms the

total number of explicit variables is considerably less.

Accelerating Methods

The new method described in Chapters Four through Eight is based

on a complete network updating scheme and a single labeling at each

iteration. It is also assumed that there was no initial basic
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solution available, so that the zero solution is introduced at the

first iteration. For large problems however, the method can be

modified in a way that the number of iterations and arithmetic

operations can be reduced. Some of the changes of the algorithm

which may accelerate the optimization procedure are listed below:

(i) The algorithm can start with the primal problem working

towards optimality on the relaxed network which contains only the

less than or equal to constraints. After the optimum solution has

been found for the relaxed network, the greater than constraints

can be introduced and the algorithm continues working on both

problems.

(ii) The labeling process may be changed in such a way that,

at each iteration only the perturbated values for the process

(resource) variables are computed and the feasibility (optimality)

conditions are checked only for the candidate process(resource) node

cluster. This approach has computational advantages, especially for

networks which contain no loops.

(iii) Any number of unlabeled process (resource) nodes can be

considered as candidates for labeling in a sequential order, as long

as their clusters do not contain labeled nodes. This way more than

one process (resource) node can become basic at each iteration.

(iv) Any number of pairs of nodes (one resource and one process

node per pair), which form a path on the network may become labeled.

Any basic path which does not contain loops has a triangular struc-

ture, so that the factorization process is trivial.
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Recommendations for Future Research

In this research a network approach for the general linear

programming problem has been proven feasible and the first practical

experience with the new method has given satisfactory results.

However, there is little doubt that significant improvements can

be made to further improve the new methodology. The algorithm

described has extreme point (labeled path) solutions. Theoretically

the new method belongs to the "exponential" methods, since no attempt

was made to bound the number of all possible combinations of labeled

networks by a polynomial function.

For all practical purposes some promising areas for future

research are listed below.

1. The implementation of the factorization. In general, the

way in which a factorization method is implemented and updated

depends critically upon the size of the problem it is designed to

handle. In Chapter Five no attempt was made to include the most

modern techniques available for very large and sparse problems.

Sparse matrix preprocessors (i.e. rearrangement of columns and rows

of a sparse matrix before factorization) can be applied to the labeled

network to reduce the number of operations and storage requirements

(Hellerman and Rarick, 1971).

2. Analysis of network paths. An analytic method that

identifies the basic paths on the network may lead to near optimum

starting basic solution.

3. Approximation method. For large sparse problems an approx-
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imated solution based on approximation methods for solving linear

systems of equations may lead to satisfactory results. A similar to

overrelaxation method for solving linear systems of equations can be

applied on both primal and dual problems. At each iteration the

labeling process can be modified to include a set of basic process

nodes with negative residues in such a way that the resulting labeled

network has a triangular structure. The initial resource constants

can be added to the resource residues, and the dual variables

corresponding to labeled resource nodes, can be used to identify

a new set of basic process nodes. In case of convergence the set of

critical constraints and basic processes will give the solution of

the problem.

4. Cycling. The new algorithm operates on basic solutions of

the primal and dual models, by changing the sets of basic (labeled)

nodes of the labeled network at each iteration. Since there is a

finite number of basic solutions, the algorithm will terminate as

long as no basis (i.e. the sets of labeled nodes which form the

basis) will be repeated. A further study should be made to further

research the cycling aspects.

5. Computational efficiency. The computational results given

in Chapter VII were based on small sample problems. In general,

the computational efficiency of the new algorithm cannot be decided

unless a comparison is made with other methods, based on large

linear problems, using the same computer for a true test of compu-

tational efficiency.
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APPENDIX A

RPM NOTATION

RESOURCE PLANNING AND MANAGEMENT (RPM)

Relationship of RPM to the Traditional Linear Programming Model

Consider a linear programming model with n structural variables

and m constraints.

MAXIMIZE Zx = C X

s.t. A X < B

where X = {x.J
J

} 1 < j < n and x. > 0

B ={ b.} 1 < i < m

C={cj } 1 < i < m

A = fa1J. .1 1 < i < m; 1< j< n

Let the A matrix, B and C vector separated into positive and

negative elements so that:

A = A+ - A where A
+

ai
+

a. 0j'
A- -aij ;aija. > 0

aij aij = 0 and a
ij

+
- a

ij
= a

ij

B = B
+

- B
-
where B

+
= b.

+
; b.

+
> 0

B = b.; b.- > 0

- b b. = b.

and C = C
+

- C where C
+

= c.
J

+
; c.

+
> 0

J

C- = c.' c. > 0

c.
+

c = 0 and c.
+

- c. = c.
J J J J J

The linear programming problem can then be written.

MAXIMIZE Zx = C+ X - C X
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s.t. A
+
Xi-B < A X + B

The RPM network representation of this linear programming

problem will identify each inequality as a resource constraint, and

each x. as a process decision variable. A solid arrow joins node

"i" to node "j" if aij > 0. The arrow points from "j" to "i", if

aij > 0. A dashed arrow symbolizes an exogenous flow from a

SOWTeterfTthlaltorlodeuinff bi +> 0, and a reversed flow if

b. > 0. A dashed arrow symbolizes an endogenous flow from node "j"

to the sink terminal if c
+
> 0, and a reversed flow if c. > 0.

Components of RPM

As can be seen in Figure A-;,the RPM network graphically

portrays the linear relationships through the use of three basic

components.

I. The first component of the RPM network is the resource

which is represented by a circle and interpreted as a constraint

of the linear programming model.

a.. -
13

a..+
13

b.+

s.

b.- 411

Figure A-1, Resource Node.

The constraints can be thought of in terms of the amount of
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msourcesavailable(j=1a44-.xj 1)+.

+
) for future use

1J

(j=1 a. x

j
+ b.-), or limit imposed upon subsequent processes x.

(where aid+
lj

> 0). The resource node is divided into four sections.

The top of the resource node (yi) represents the "Shadow Price" or

imputed value of the resource computed as the dual variable

associated with the linear programming model, or Lagrangian Multiplier

forthatcmstraint.Thebottomofthemsourcenode.represents

the "Residue" or the slack or surplus variable corresponding to the

linear programming model. It may be interpreted as the unused

portion of the resource or

Si .=Ea..xj+b
jz -=1

a..
+

x. - b.j=1 13 1
13

The sections on the right and left side of the resource node can be

used in order to insure than the input into the node

(z a. x + b. ) is equal to the output (z a. x. + b.) from
J =1 lj j j=1 lj 1

the node plus the amount of residue or slack, as indicated by Si:

i.e. total inflow = total outflow + S..

II. The second component of the RPM network is the process

which is symbolized by a square node.

// \/
/ C i - c.1- \\.

J J

Figure A-2. Activity Node.
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A process is interpreted as a decision activity which is actually

representative of the action taken in order to achieve an end

result. This node is also divided into four sections. The top of

the square (x.) designates the "Primal Level of Activity" which

corresponds to the structural variable of the linear programming

model: i.e. how many pounds of a product should be purchased,

processed, frozen, etc. at the respective location in the model.

The bottom of the square (di) represents the conventional (zj - cj)

of the linear programming model, or the Lagrangian Multiplier

associated with the non-negativity constraint of the primal

variable. It can be interpreted as the "opportunity cost" or

expected loss incurred by a non-basic activity if it were to be

"forced" into solution by the management. The right and left

sides of the activity node are available for manual verification
m

that the input into the node (z
=1

a..y. + c--.) is equal to the output
i 1J 1m

fromthenode(za1 plus the residue, (y.): i.e. total
i.1 3 1

inflow outflow +

III. The third component of the RPM network is the objective

function:

Figure A-3. Optimization Node.
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which is represented by a triangle. Each maximization model will

have one triangle as a source (on the left side of the network)

indicating the minimizing objective for the corresponding dual

model and one triangle as a sink (on the right side of the network)

representing the maximizing primal objective function. This is

symbolized by activity nodes connected to the maximization sink

node (triangle with a square) through dashed arrows c.:

n
MAXIMIZE z = E - E

x j j J J

Figure A-4. Primal Maximization.

The word "MAX" on the square reveals that the primal objective

function is to be maximized, and the value Z
x
of the primal

objective function is entered within the triangle.

The dual of the model under study then is to minimize the total

value of input resources which are necessary to have the system

operate under the optimal condition. This is represented by

resource nodes connected to the minimization sink node ( a triangle

with a circle) through dashed arrows bi: minimize
m

z =E b.y. - b-y i=1 1 1 i=1 1
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Figure A-5. Dual Minimization.

The word "min" in the circle designates the dual function to be

minimized and the actual value of the objective function,

zy = z bi yi - z bi yi,

is included within the triangle. In an RPM network, z
x

always

equals z .

The arrows depict the actual interrelationship of logic

connections between the three previously described components

(i.e. activity node, resource node, and maximizing/minimizing

nodes). Two types of arrows are used in every RPM network.

Thesolidarrowsrepresentsthea..ij coefficient of the linear

programming problem.

Figure A-6, Internal Flow Arrow.
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When aii = 0, no arrow is shown. An arrow with aij = I may

have its coefficient omitted from the network. The direction of the

flow is depicted by the direction of the arrowhead.

The dashed arrow, as shown in Figure 7, represents an inter-

action between what is internal to the system under study (resources

and activities) and what is outside the model itself (objective

function).

b. or c.

Figure A-7. Exogenous/Endogenous Flow Arrow.

Postulates of RPM

The necessary and sufficient conditions for the optimality and

feasibility of a solution represented by an RPM network have been

summarized as RPM postulates. The first two postulates are useful

in the construction of the RPM networks.

The first postulate of RPM stipulates the conservation of

resources. The total inflow at any activity or resource node must

be larger than or equal to the total outflow from the same node.

If the total inflow is larger than the total outflow there must

be positive residue. If the total inflow into an activity or

resource node is, however, exactly equal to the outflow, then the

residue must be equal to zero.
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Total Input > Total Output

Total Input = Total Output + Residue

za.fx+c .

i
=za- x.+c.++d.for j 1, 2, ..., n.ij j j j j

Ea.. y. + b. = a1.J .

+
y. + b. + S.

1
for i = 1, 2, ..., m.i 1 1

The second postulate of RPM deals mainly with optimization of

the system under study. The RPM network is to be optimized, either

by maximizing the net effective output while maintaining the output

at a given level.

MAXIMIZE Z
X

= EC
j

+
XJ - EC. x.

J J

MINIMIZE Z = zb.
-
y. - zb.

+
y.

y ill
A Resource Planning and Management (RPM) network can,

therefore, be considered as a graphical representation of the

interaction between activities and resources in order to achieve

an optimal goal or end result. This end result can be considered

as either a maximization of the primal, or minimization of the

dual problem. Both the primal and the dual flows are represented

simultaneously on the same RPM network.
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Kuhn-Tucker Conditions

Let us consider a mathematical programming problem:

MAXIMIZE Zx(X)

s.t. gi(X) < bi 1<i<m
1

gi(X) = bi m
1
+1<i<m

2

gi(X) > bi m
2
+1<i<m--

where X = x. m+1 <j<m+n

and xj>p, where gi are nonlinear functions.

Then a Lagrangian expression can be constructed to con-

vert the constrained problem into an unconstrained equation.

MAXIMIZE Z=Z E
1

y.(g.+s.2-b.) +
2

y.(b.-g.) +x 1 1 1 1 1 1 1

m
2, 2,

E y.(g.-b.
j

-s.) E y.(x.-s.)JJ3i=m
2
+1 =m+l

Note that the slack variables have been defined as s
2

to

guarantee their nonegativity. To obtain the Kuhn-Tucker conditions,

the Lagrangian expression is differentiated with respect to all in-

dependent variables and each is set equal to zero. (Inoue, 1974)

Differentiating with respect to the primal variables, xj,

we obtain:

m
2

ag aZ
x

m ag

.m1.1 1 J 1_-
2
+I
Yi@xj

for m+1 < j < m+n

Differentiating with respect to the Lagrangian multipliers (yi or

yj), the original constraints can be recovered. Finally, diffe-

rentiating Z with respect to the slack variables (si or sj), the

complementary slackness conditions are obtained.



0
as

k k

= - 2s
k
y
k

where 1<k<m+n
._

2
And since x.J

J
=s. and we are at liberty to define x. = s.

2
for 1<i<m,

the complemententary slackness can,be expressed as:

xkyk 0 for 1<k<m+n. The sign of y's can also be determined 4 .

When gi for i from 1 to m are linear functions we may write:

agi

= a..
3X. 1J

and
aZ

x
= c.

ax.
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The Kuhn-Tucker conditions for the linear programming problem

and the corresponding RPM network presentation are given below:

1. Feasibility condition. All primal variables must have nonne-

gative values.

or
(0 is permitted for +)

Figure A-8. Feasibility conditions.

2. Optimality condition. All dual variables must have nonne-

gative values.

or
(0 is permitted for +)

Figure A-9. Optimality conditions.

3. The complementary slackness property holds for all nodes.

4. All the Lagrange Multipliers must be nonnegative except the ones
that correspond to the equal to constraints, which may have posi-
tive or negative values. The proof is in Inoue.
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or

or

Figure A-10. Complementary slackness.
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APPENDIX B

LISTINGS OF COMPUTER PROGRAMS

The programs included use WANG 2200 BASIC language (16k memory
size) and they were designed to test the validity of the algorithm.

Some minor portions of the algorithm and Editor program are not
included in the computer listings. A dual floppy disk system was
used and the original data of the LP model are saved on disk.
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Frrlgr rn L_ -t 9 -F- FZ F=P

4010 COM 80$0195N9
4040 SELECT #1910

:<<: PRINT HEX(03)
4100 REM REM

***RPM****(012980)GDS
4120 M9=0

:N9=0
4130 DIM A2$(14)625G8$(2)6259$(100)S,C$(100)5
4131 DIM D$(14)3/B(2),D(10),E(10),R(10)(10),F0$2,R0$(8)
4132 J9=99
4150 SELECT <<: PRINT 005(80)
4160 <<: PRINT HEX(03);

.

:<<: PRINT "LINEAR PROGRAMMING (please enter data file";
:<<: PRINT "in port F and program disP, in port R )";
:<<: PRINT "(CONTINUE)to continue"
:STOP

4170 <<: PRINT
.

:<<: PRINT "Please Enter Name Of Data File RUN ";50$7,
:>>: INPUT 80$
:A0$=130$
:LIMITS T#1,A0$,K0IMO,M0
:GOSUS '41

4180 REM REM

4190 RFM REM
*** store resource names on B$() process names on C$()
4200 DIM 345

:G$=STR(A2$(1),74S)
:INIT(20)A2$(1),AS$(2)

4210 DIM F1$2
:F1$=HEX(012C0120)
;$UNPACK (D=F1$)A2$()TO BS()
:a0: FOR I=1TO J9
:B$(1)=8 VI+1)
:<>: IF 8$(I) =" " THEN 4220
:tt: NEXT I

4220 MG=I-2
:REM REM

*M9 is the no of constraints
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P" p 9 -.cam -t ± -r-1 9 -F fri

.4230 F2S= HEX(0122)
:$UNPACR (D=F2$)A3$()TO D$()

4240 @@: FOR I=1TO 14
:<>: IF D$(I) =" " THEN 4250
:L=L+1
:C$(L) =D$(I)

4250 tt: NEXT I
:INIT(20)D$()
:<>: IF STR(G3$(2)5158)=" " THEN 4260
:A0$=STR(G2$(2)5158)

.

:GOSU3 '40
:<-: GOTO 4230

4260 REM REM
*******. create primal and dual graph ***********

:A0$=130$.
4270 <<: PRINT "Do you want to clear the data disk";

:>>: INPUT W$
:<>: IF W$="Y" THEN 4230
:<-: GOTO 4300

4230 @Q: FOR I=1TO 20
:DATA LOAD DA F(I5L7)FO$F15F25F3,F0IF()
:F$="
:FO,F11F2IF3=0
:MAT F=ZER
:DATA SAVE DA F(I,L6)FO$F1vF21F35F0,F()
:tt: NEXT I
:L7,L8=0

4290 @@: FOR I=1TO 20
DATA LOAD DA F(I+500,L7)F0$,F1,F2,F3,F0,F()
:F$="
:FO,F1,F2,F3=0
:MAT F=ZER
:DATA SAVE DA F(I+500,L6)F0$,F15F25F3,F0F()
:tt: NEXT I
:L7,LS=0

4300 GOSUB '40
:@@: FOR I0=1TO 14
:<>: IF STR(AS$(10)0,3)<>"COL" THEN 4310
:<-: GOTO 4320

4310 tt: NEXT 10
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4320 10=10+1
:N9=N9+1
:REM

N9-1 is the no. of variables
4330 F1$=HEX(0120)

:INIT(20)D$()
:MAT D=ZER
:MAT E=ZEPI
:<>: IF STR(A2$(10)1153)="RHS" THEN 44S0
:$UNPACX (D=F1$)AS$(10)TO D$()
:@@: FOR I=3TO M+1STER 2
:<>: IF EM(I)=" " THEN 4340
:K=INT(I/2)
:CONVERT D$(I)TO D(K)
:t: NEXT I

4340 REM

4350 @T: FOR I=2T0 MSTEP 2
:s: IF D$(1)=" " THEN 4370
:@@: FOR J=1TO 20
: IF D$(1)=STR(8$(J).2,7) THEN 4360
:tt: NEXT J
:e-: GOTO 4370

43S0 EtI/2)=J
:NO=N04-1
:T1: NEXT I

4370 REM

4380 L0 =L0+1
:F2=0
:W: FOR I=1TO M
:<>: IF E(I)=0 THEN 4400
:<: IF E(I)=M9+1 THEN 4390
:I2=2*I
:F(I2-1)=E(I)
:F(I2)=0(I)
:tt: NEXT I
:<-: GOTO 4400

4390 F2=0(I)
:NO=N0-1

146

REM

REM

REM
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4400 FO$=C$(LO)
:FO=NO

4410 REM
**

147

:GOSUB '42
:N{)=0
:F2=0

4420 REM REM
***E is the resource no.(sector)10 is the arrow value.
4430 <>: IF I0<14 THEN 4320

:I0=0
:A0$=STR(G2$(2),1,8)
:<>: IF AO$=" " THEN 4440
:GOSUB '40
:<-: GOTO 4320

4440 RP.M REM

4450 REM REM

4461 GOSU8 '46
M3=N971

:K3=0
:GOSUB '48
:<<: PRINT HEX(0E0A);"Process Graphs
:GOSUB 144(113,K3)
:REM REM

**print dual graph
4471 M3=M9

:K3=500
:<<: PRINT HEX(0E0A):"Resource Graph"
:GOSUB '44(M3,K3)
:REM REM

**print primal graph
4480 REM REM

4490 REM REM
*******end of the main program **********

:STOP
AFE3C3(3 E3E=F=F=P4 '44-Z2

DATA SAVE DA F(LO,L3)FO$F1,F2,F3FO,F()
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4510 @@: FOR I=1TO NO
:MAT R =ZER
:R0=0
:DATA LOAD DA F(S00+E(I),L3)R0$,R1,R2,R3,R05R()

4520 R0$=13$(E(I))
:R(2*R0+1)=N9
:R(2*(R0+1))=D(I)
:RO=R0+1

4530 DATA SAVE DA F(500+E(I) L3)R0$,R1R2,.83RO,R()
:t: NEXT I
:RETURN :ft:

4540 REM

Jer- ESC) DEEF=F=1-44 44 (3
:DATA LOAD DC OPEN T#1,A0$
:DATA LOAD DC #1,G3$(),AS$()
:RETURN :tt:
SEE C) DEEF=F=1,4 -4 I.
:DATA LOAD DA T#1,(KO,M0)GS$(),A8$()
:RETURN :tt:

-4577C3 MEEF=F=P4 ""-F-4 1-(7=3
:GOSUS '49
:L=0
:F0=0
:@@: FOR I=1TO M3
:DATA LOAD DA F(K3+I,L3)F0$,F1,F2,F3,FO,F()

PRINTUSING 4590 ,F0$,F1,F2,F3,F0;
IF F0=0 THEN 4580

:@@: FOR 15=1TO FO
:16=2*15-1

: PRINTUSING 4600 ,F(IS+1),F(I6);
:tt: NEXT 15
:4-s: PRINT

4530 tt: NEXT I
:RETURN :TT:

4590 %######## -####.# -####.# -####.# <#44

4600 % -####.#(##)
-4E-1LO DEEF=F=P4

:10=10+1
:F2$=HEX(0120)

148

REM
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:$UNPACH (D=F2$)042$(10)TO D$()
:@@: FOR I=2T0 MSTEP 2
:<>: IF D$(1)=" " THEN 4640

4620 @(1$: FOR J =1 TO M9
:<>: IF D$(I)=STR(B$(J)5257) THEN 4630
:tt: NEXT J

4630 DATA LOAD DA
F(S004.J,L3)F0$5F1,F2,F3,F05F()

:CONVERT D$(I+i)TD F2
DATA SAVE DA F(500+34_3)F0$,F1,F2F3,FO,F()
:tt: NEXT I

4640 RETURN :tt:
E3EEF=F=P4

:REM
***output
4660 <>: IF M3>S00 THEN 4670

<<: PRINTUSING 4620
:<<: PRINT
:RETURN :tt:

4670 <<: PRINTUSING 4690
:<<: PRINT
:RETURN :tt:

4620 %Resource Value Constant Residue Arcs===>
4690 %Process Value Constant Residue Arcs===>
21-77,0CD E3EE.P-T=T4

:SELECT <<: PRINT 215(110)
:<<: PRINT HEX (OAOA)
:<<: PRINT HEX(OE);TAB(20);"RPM NETWORK
:<<: PRINT HEX(0E0A);TAB(4);"Title
:";0$
:N9=N9-1
:DATA SAVE DA F(10011L3)M9,N9IG$
:<<: PRINT
:RETURN :tt:

RF)rel P'rco.or-m

149

REM
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1000 REM REM
*NETWORK* (07/3030)GDS
1005 SELECT <<: PRINT 215(114)
1010 DIM F(10),K(5)(5),S(14)91(14),B(14),S1(14),Y(14)
1011 DIM. YO(14)1,Y1(14)5I(14)(14)1
1020 DIM.R(10),H(5),V(5)50(14),D1(14),C(14)vC1(14),X(14)
1021 DIM X0(14),X1(14)(14),J$(14)1
1030 DIM L(11511),G(11511),P$1
1040 W=10+10
106.0 REM REM
==== resource data
1070 REM REM
= K primal node number
1020 REM -REM
= U arc from resource to process =
1090 REM RFM
= B resource input
1100 REM REM
= 81 resource buffer
1110 REM REM
= S resource residue
1120 REM REM
= Y resource variable
1130 REM REM
= Y1 resource variable buffer
1140 REM REM
= YO - resource variable buffer
1150 REM REM
==== process data
1160 REM REM
= H - resource node number
1170 REM REM
= V - arc from process to resource =
1180 REM REM
= C cost coefficient
1190 REM REM
= Cl cost coefficient buffer
1200 REM REM
= D1 process residue



r- rn L_ A. r-

1210 REM
= X - process variable
1220 REM
= X1 process variable bUffer
1230 REM
= X0 process variable buffer
1240 REM

1270 MAT X0=ZER
:MAT X1=ZER
:MAT X=ZER
:MAT B=ZER
:MAT B1=ZER
:MAT I=ZER
:INIT(20)1$()

1280 MAT YO=ZER
:MAT `e1=ZER
:MAT Y=ZER
:MAT C=ZER
:MAT C1=ZER
:MAT J=ZER
:INIT(20)J$()

1290 MAT L=ZER
:MAT G=ZER

1320 REM
load residues

1332 DIM G$45
:DATA LOAD DA F(1001,L3)M,N,G$
: I9=M
:J9=N

1333 W.: FOR J=1TO N
:GOSUB '50(J)
:C(J)=C
:D(J)=-C
:tf: NEXT J

1334 W: FOR I=ITO M
:GOSUS '51(I)
:B(I)=B
:S(I)=B
:TT: NEXT I

REM

REM

RPM

REM

REM

151
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U::)*

1351

g og4 T-R

Gnsin iRn

-F- cza L_

17;70 R17m=====-=-=------====----
Cherk for negative process reSiuu17:!

====pp-

1-;8O @@: FOR J=1TO N
:<>: IF D(J)>.O THEN 1321
:J1=J
:GnFUS IS2
:<-: (-4oTn isoo
tt: NEXT j
REM--

Check for negative resource residue
14n0 I=1Tn M

:<>: IF S(I)>=O THEN 1401
:11=I
:GOE.:US i53
:<-: COTO 1500

1401 tt: NEXT I
1440 REM

Check for negative variables
iR:77'71

1470 @@: FOR I=1TO M
: <S>: IF 'sr" ( ) = () THEN 1471
:I1 = T

C;Oqi23 94
:<-: GOTO 15CX)

1471 14: NEXT I
148O @@: FOR J=iTn N

:<>: IF X(J)>=O THEN 1451
:S1=j
:GOSUS '74
:<-: GOTO 1900

141 tt: NEXT J
1490 <<: PRINT "Current Solution is Optimum "

1900 <>: ON F<-: GOTO 1910 , 1920 , , 1540
:STTP
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D --cam L. A. -t A. -nt 9 -F- TA L

1510 GOSUB '57
:<-: GOTO 1550'

1520 GOSUS 'SS
:<-: GOTO 1550

1530 GOSUS '59
:<-: GOTO 1550

1540 GOSUB 'SO
:<-: GOTO 1550

1550 GOSUS 4230
:GOSUB, 4240
:GOSUB '55
:GOSUS '56
:GOSUB '63
:GOSUS '64
:GOSUB '61
:GOSUS '62
:GOSUS 'SO

1590 REM REM

1600 <-: GOTO 1351
1610 REM REM

1700 STOP
1710 REM REM

1730 REM REM

1740 REM REMSUBROUTINES
1760 REM REM

Load Process Node -50-
1-7z3(3 E3E2F=F7P4 'S,C2)(1-<>

:REM REM
*K3 is the process number
1790 MAT H=ZER

:MAT V=ZER
:DATA LOAD DA F(K3,L3)F0$,F1xCAT,F()
:@@: FOR L9=1TO T



F'r-c).94---asom

:H(L9)=F(2*L9-1)
:V(L9=F(2*L9)
:1,1: NEXT L9
:RETURN :tt:

1800 REM

1820 REM
Load Resource Node -51-

I DEEF=F=P4 Eil
:REM

*K3 is the resource number
1850 MAT 1-(=ZER

:MAT U=ZER
:DATA LOAD DA F(S00+K3,L3)F0$,F1,85AIT,F()

FOR L9=1TO T
:K(L9)=F(2*L9-1)
:U(L9)=F(2*L9)
:14-: NEXT L9
:RETURN :tt:

1SSO REM

154

REM

REM

RPM

REM

1380 REM REM
Type (a) Labeling -52-

1-7.9CDC) E3EEF=F=P4
:TS=0
:MAT B1=ZER
:MAT 31=ZER

1910 TO=0
:T1=W
:1-2=W
:P$=" "

:GOSUB 'SO(J1)
1920 TO=T04-1

:<>: IF T0:>T THEN 1950
:<>: IF IS(H(TO))="*" THEN 1940
:<-: GOTO 1920

1940 P$="*"
:GOSUB 4200
:81(I)=-V(TO)
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:<-: COTO 1920
1950 <>: IF P$=" ° THEN 1970

:GOSUS '55
:J=0

1960 J=J+1
:<>: IF J>R THEN 1970
:J5=J(J)
:<>: IF X1(J)>=0 THEN 1960
:TS=-X(J6)/X1(J)
:JO=J5
:<>: IF T5>T2 THEN 1960
:T1=T5
.J2 -J5

:<-: COTO 1960
1970 X1 (J1) =1

:J' (J1)

@@: FOR I=1TO M
<>: IF IVI)="*" THEN 1975
:<>: IF S(I)<0 THEN 1975
:3 =0

:COSA '51(I)
:@@: FOR K=1TO T
:K1=K(K)
:<>: IF J$(K 1)=u m THEN 1972
:S=5-X1(K1)*U(K)

1972 tt: NEXT K
:S1(I)=S
:<>: IF S>=0 THEN 1975
:T5 =- S(I) /S
:I0=I
:<>: IF T5>=T2 THEN 1975
:T2=T5
:I1=I0

1975 tt: NEXT I
:<>: IF T14-T2=2*W THEN 1983
:<>: IF Ti =T2 THEN 1932

1981 I$(11)="*"
:J$(J1)="*"
:F=1
'RETURN :+1:



r- r-.aim L ± -t i -N 9 f- cp.

1982 J$(J1)="*"
:J$(J2)="
:F=2
:RETURN :tt:

1923 <,;: PRINT
:<<. PRINT "Solution is unbounded"
:STOP

1993 REM
Type (b) Labeling -53-

Z2CDCDC) E3E=F=F7P4 'E323
:TS=0
:MAT C1=ZER
:MAT D1=ZER

2010 TO=0
:T1=W
:T2=W
:T9=W
:P$=" "

:GOSUS '51(11)
2020 TO=T0+1

:<>: IF TOT THEN 2050
:<>: IF J$(K CTO))="*" THEN 2040
:<-: GOTO 2020

2040 R$="*"
:COSUB 4210
:C1(J)=-U(T0)
:<-: COTO 2020

2050 <>: IF P$=" " THEN 2070
:GOSUS 'S6
: 1 =0

2060 I=I+1
:<>: IF 1>R THEN 2070
:IS=I(I)
:<>: IF Y1(I)>=0 THEN 2060

:T5=-Y(I5)/Y1(I)
:10=1S
:<>: IF T5T2 THEN 2060
:T1=TS
:I2=IS

156

REM
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:<-: GOTO 2050
2070 Y1(I1)=1

:IVI1>="*"
@@: FOR J=1TO N

:<>: IF JS(J)="*" THEN 2075
:<>: IF O(J)<0 THEN 2075
:0=0
:GOSUB 'SO(J)
:@@: FOR H =1TD T
:H1=H(H)
:<>: IF I$(H1) =" " THEN 2072
:D=O-Y1(H1)*V(H)

2072 tt: NEXT H
:D1(J)=-D
:<>: IF D1 (J) > =0 THEN 2075
:TS=-D(J)/D1(J)
:JO=J
:<>: IF T5 =T2 THEN 2075
:T2 =T5
:J1=J0

2075 tt: NEXT J
:(>: IF T1+T2=2*W THEN 2083
: < >: IF Tl<=T2 THEN 2082

2081 JVJ1)="*"
:IVI1)="*"
:F=1
:RETURN :tt:

2082 IVI1)="*"
:IVI2)="
:F=2
:RETURN :tt:

2083 <<: PRINT
:<<: PRINT "Solution is infeasible"
:STOP

2180 REM
Type (c) Labeling -54-

2Z2C)C3 EDEEF=P-P4
:MAT 81=ZER
:MAT S1=ZER

221r' TO=0

15

REM



1758
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:T1=W
:T2=W
:T=W
:T5=0
:C.5'(g: FOR I=1TO R
:<: IF I(I) <)I1 THEN 2211
:81(I)=-1
:<-: GOTO 2220

2211 tf: NEXT I
2220 GOSUS '55

:J=0
2230 J=J+1

:<>: IF JR THEN 2240
:J5=J(J)
:4:>: IF X1(J)>=0 THEN 2230
:T5=-X(J5)/X1(J)
:JO=JS
:<: IF T5 T2 THEN 2230
:T1=TS
:J1=J5
:<-: GOTO 2230

2240 (2@: FOR I=1TO M
:<>: IF ICI>="*" THEN 2245
:<>: IF S(I)<0 THEN 2245
:S=0
:CORM '51(I)
:@@: FOR K=1TO T
:K1=K(K)
:<): IF JCK1)=" " THEN 2242
:S=S-Xl(K1)*U(K)

2242 ft: NEXT K
:S1(I)=S
:<>: IF S>=0 THEN 2245
:T5=- S(I) /3
:I0=I

IF T5>=T2 THEN 2245
:T2=TS
:12=10

2245 tt: NEXT I
:<: IF Ti<=T2 THEN 2248
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2246 I$(11)=" "

:I$(12)="*"
:F=';

:RETURN :tt:
2243 I$(I1) =" "

:J$(J1)=" "

:F=4
:RETURN :tt:

2250 REM
Type (c2) Labeling -74-

Z2Z2E58 DEEF=F=P4
:MAT C1=ZER
:MAT D1=ZER

2254 TO=0
:T1=W
:T2=W
:T=W
:TS=0
:@@: FOR J=1TO R
: < >: IF J(J)c.J1 THEN 2256
:C1(J)=-1

GOTO 2258
2256 TT: NEXT J
2253 GOSUB '56

:I=0
2260 I=I+1

IF r:R THEN 2262
:15=1(1)

: IF Y1(I) =O THEN 2260
:T5=-Y(IS)/Y1(I)
:I0=J5

IF T5'-T2 THEN 2260
:T1=T5
:11=15

GOTO 2260
2262 @@: FOR J=1T0 N

: IF J$(J)="*" THEN 2266
IF D(J) 0 THEN 2266

:D=0
:GOSIJB '50(J)

159

- -REM
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:@@: FOR H=1TO T
:H1=H(H)

IF I$0-411=" " THEN 2264
:D=D-Y1(H1)*V(H)

2264 tt: NEXT. H
:D1(J)=D

: IF D> =0 THEN 2266
:T5=-D(J>JD
:JO=J

IF T5,=T2 THEN 2266
:T2=T5
:J2=J0

2266 tt: NEXT J
: IF T1-,=T2 THEN 2270

2268 J$(J1)=" "

:F=3
:RETURN :it:

2270 Js(J1>="

:F=4
:RETURN :tt:

2290 REM
Primal ,Scanning

2233(3(3 E3EEF=F=P4 "SE;
:MAT X0=ZER
:MAT X1=ZER
:S=0

2301 <>: IF R>1 THEN 2302
:X1(1)=S1(1)/G(111)
:RETURN :tt:

2302 REM

2310 @@: FOR 1=1TO R
:S=0
:@@: FOR K=1TO I-1
:S=S+L(I,K)*X0(K)
:tt: NEXT K
:X0(I)=B1(I)-S
:tt: NEXT I

-55-

160

REM

REM
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"TiasL_,C

231S @@: FOR I=1TO R
:S=0
:<.>: IF 1=1 THEN 2316
:@@: FOR K=ITO I-I

:S=S+G(R4-1-I,R+1-K)X1(R+1-K)
:tt: NEXT K

2316 L=R4-1-I
:X1(..)=(X0(L)-S)/G(L,L)
:t t: NEXT I

2330 RETURN :tt:

2390 REM
Dual Scanning

22-41-CD( DEEF=F=P4
:MAT YO=ZER
:MAT Y1=ZER
:S=0

2401 <>: IF R>1 THEN 2402

:Y1(1)=C1(1)/G(151)
:RETURN :tt:

2402 REM

-SS-

2410 @@: FOR J=1TO R

:S=0
:@@: FOR K=1TD J-1

:S=S+Q(K.J>*YO(K>
:t4: NEXT K
:YO(J)=(1/3(J5J))*(C1(J)-S)
:+t: NEXT I

2415 @@: FOR J =RTD 1STEP -1

:S=0
IF J=R THEN 2416

:@@: FOR H=J+1TO R

:5=S+L(KIJ)*Y1(K)
:tt: NEXT K

2416 Yl(J)=YO(J)-S
:1.4: NEXT J

2430 RETURN :tt:

2610 REM
Type 1 Factoring -57-

8E. 3 (3 DE = F=P S7

161

REM

REM

REM
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:MAT B1=ZER
:MAT C1=ZER
:V1=0

2640 COSA '51(11)
:c74Q: FOR 1=1TO T
:<>: IF K(I)<>J1 THEN 2641
:V1=U(I)

2641 @@: FOR 3=1TO R
:,:.>: IF K(I)<>J(J) THEN 2642
:C1(J)=U(I)

2642 tt: NEXT J
:tt: NEXT I

265E GOSUB 'S0(31)
:@@: FOR 3=1TO T
:@@: FOR I=1TO R
:<>: IF H(J)<>I(I) THEN 2659
:81(I)=V(J)

2659 tt: NEXT I
:tt: NEXT J

IF R)0 THEN 2660
:L(111)=1
:Q(1, 1 > =V1

:<-: GOTO 26'36
2660 <>: IF R1 THEN 2661

:L(2,1)=C1(1)/G(1,1)
:L(2,2) =1
:G(152)=B1(1)
:0(252)=V1-L(211)*()(152)
:<-: GOTO 2696

2661 L(R+11,1)=C1(1)/0(1,1)
:@@: FOR J=2T0 R
:S=0
:@@: FOR K=1TO J-1
:S=S+L(R+1,K)*G(K,J)
:ti: NEXT K
:L(R+153)=(01(J)-S)/G(J,J)
:tt: NEXT
:L(R+15R+1)=1

2662 81(R4.1)=V1
2665 0(15R+1)=81(1)
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:@@: FOR I=2TO R+1
:S=0
:@@: FOR K=1TO I-I
:S=S+Lt1,K)*0(K,R+1)
:fit: NEXT K
:Q(I.R+1)=(81(I)-S)
:tt: NEXT I

2696 R=R+1
:I(R)=I1
:J(R)=J1
:RETURN :tt:

2697 REM

163

REM

2710 REM REM
Type 2a Factoring -58-

Z2-723CD EDEEF=F=P4 S3E3
MAT B1=ZER
:MAT C1=ZER
:GOSUS 4220
:J3=J
:<>: IF J3 <R THEN 2740
:@@: FOR I=1TO 0

:it: NEXT I
:<-: GOTO 2758

2740 @@: FOR J=J3TO R-1
:J(J)=J(J+1)
:@@: FOR I=1TO R
:G(I,J)=0(I5J+1)
:G(I,R)=0
:tt: NEXT I
:Ti: NEXT J
:J(P)=J1

270 @@: FOR J=J3TO R-1
:<>: IF G(JW)=0 THEN 2790
:T=G(J+15J)/G(JJ)
:G(J+1,J)=0
:L(J+1,J)=L(J+1,J)+L(J+1,J+1)*T
:G(J+1,J+1)=T*G(J,J+1)+Q(J+1,J+1)
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:tt: NEXT J
2753 GOSLtB '50(J1)

:@@: FOR J=1TO T
:@@: FOR I =ITO R

IF H(J),A(I) THEN 2759
:81(I)=V(J)

2759 tt: NEXT I
:tt: NEXT J

2760 @@: FOR I=1TO R
:3=0

IF I 1 THEN 2770
:(1(1,R) =81(1)
:tt: NEXT I

GOTO 2780
2770 @@: FOR K=1TO I-1

:S=SfL(I0K)*Ci(KR)
:tt: NEXT K
:0(I,R)=81(I)-5
:tt: NEXT I

2780 J(R)=J1
:RETURN :ii:

2790 INIT(20)IV),J$()
:MAT L=ZER
:MAT G=ZER
:R1=R
:R=0
@@: FOR L6=1TO R1
:Ili(I(L6))="*°
:Js(J(L6))='*U
:I1=I(L6)
:J1=J(L6)
:GOSUB '57
:tt: NEXT L6
:RETURN :It:

2310 REM
Type 2b Factoring -59-

Z23-13C3 3E:F=F=P4
:MAT B1=ZER
:MAT C1=ZER

2340 @@: FOR I=I1TO R-1

164

REM
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:@@: FOR J=1TO R

:L(J,I)=L(J,I+1)
:L(J5R)=0
:tt: NEXT J
:tt: NEXT I

2850 @@: FOR I=I1TO R-1
:T=LcI+1,I)/L(III)
:L(I+1,I)=0
:GI+1,I)=0(I+1,I)+G(I4-1,14-1)T
:LiI4-1,141)=T*L(I5I+1)+L(I4-1,1+1>
:it: NEXT I

2355 (: OSUB '51(12)
:@@: FOR I=ITO T
:Ca.§: FOR J=ITO R

: IF KtI)(:.J(J) THEN 2359

:C1(J)=U(I)
2559 tt: NEXT J

:t1: NEXT I
2360 (N: FOR J=11-0 R

:5=0
IF J)1 THEN 2770

:L(I1R)=C1(1)
:tt: NEXT J

GOTO 2880
2370 @@: FOR H=1TO J-1

:S=54,-(J,K)*L(R,R)
:1-1: NEXT
:G(J5R)=C1(J)-3
:tt: NEXT J

2880 I(R)=I2
:RETURN :tt:

2891 REM
Type 3 Factoring -6,0-

E 3 *E3 =3 REEF = F= P4 ' 4E. CD

:@@: FOR L =1TO R

IF I(L)::I1 THEN 2394

:L9=L
:@@: FOR L9=LTO R-I

:I(L9)=I(L9+1)
:tt: NEXT L9

165

REM
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:I(R)=0
:<-: GOTO 2395

2394 fit: NEXT L
:STOP "2394"

2395 Ol: FOR L=1TO R
:<>: IF J(L)<>J1 THEN 2396
:L9=L
:@(2: FOR L9=LTO R-1
:J(L9)=J(L9+1)
:tt: NEXT L9
:J(R)=0
:<-: GOTO 2:399

2396 fit: NEXT L
2399 INIT(20)1$()J$()

:MAT L =ZER
:MAT G=ZER
:R1=R-1
:R=0
:Cal: FOR L6=1TO R1
:I$(I(L6))="*"
:J$(J(L6))="*"
:I1=I(L6)
:J1=J(L6)
:GOSUS '57
:R=R+1
:fit: NEXT L6
:RETURN :tt:

3010 REM

166

REM

Resource Balancing -61-

3021J3EM
REM

73,023(3 MEEF=F=r4 E. 1
3040 (M: FOR I=1TO M

:S=0
: IF 1$(1),,'"*" THEN 3050
:S(I)=0
:fit: NEXT I
:RETURN :tt:

3050 GOSUS '51(1)
:I'M: FOR R=1TO T
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:K1=K(K)
: : IF Js(K1)=" " THEN 3050

3060 ti: NEXT K
:S(I)=B(I)-5
:tt: NEXT I
:RETURN :it;

300 REM
Process Balancing -62-

DC2).14- CI EDEEF=P-4
4000 (2(.2: FOR J=1TO N

:D=0
:<>: IF JS(J)<>"*" THEN 4010
:D(J)=0
:tt: NEXT J
:RETURN :tt:

4010 GOSU3 150(J)
:(2(2: FOR H=1TO T
:Hi=H(H)
<>: IF IS(H1)=" " THEN 4020'
:D=D+Y(H1)*V(H)

4020 tt: NEXT H
:0(J)=-C(J)+0
:it: NEXT J
:RETURN :tt:

4021 REM

4110 REM
Update Process Val.-53-

A- 1 E B EDEEF=FFINI
:MAT X=ZER

4130 @@: FOR J=1TD R
:X(J(J))=X1(J)
:tt: NEXT J
:RETURN :tt:

4131 REM

4150 REM
Update Resour.

53E. EDE:F=F=P4 d E4

167

REM

REM

REM

REM

REM
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:MAT Y =ZER
4157 W: FOR I=1TO R

:Y(I(I))=Y1(I)
:tt: NEXT I
:RETURN :tt:

4162 W: FOR J=ITO R
:X(J(J))=X1(J)
:tt: NEXT J
:RETURN :14:

4170 @g: FOR I=1TO R
:Y(I(I))=Y1(I)
:tt: NEXT I
:RETURN :tt:

4200 W: FOR I=1TO R
: IF I(I)=H(TO) THEN 4299

:tt: NEXT I
:STOP "4200"

4210 @g: FOR J =1TO R
:<>: IF J(J)=K(TO) THEN 4299
:tt: NEXT J
:STOP "4210"

4220 W: FOR J=1TO R
:<>: IF J(J)=J2 THEN 4299
:tt: NEXT J
:STOP "4220"

4230 W: FOR I=1TO R
:81(1)=8(I(I))
:tt: NEXT I
:RETURN :tt:

4240 @@: FOR J=1TO
:CI(J)=C(J(J))
:tt: NEXT J
:RETURN :tt:

4299 RETURN :tt:
5001 REMPrinting Subroutines
SC) CID ES ED EE F=F= P4 ' 13.0

:<<: PRINT HEX(0C0E0A0A)rLinear RPM Networks'

:<<: PRINT HEX(GEONDA):" 11; as

:<<: PRINT

168

REM



169

1=' r- r- L._ -t in -F- r-

:<<: PRINT "Iteration No. ";O;
:0=0+1
:Z=0
:@@: FOR J=1TO N
:2=2+C(J)*X(J)
:tt: NEXT J
:<<: PRINTUSING 5007 52
:<<: PRINT

5006 <<: PRINT "Resource Graph"
:<<: PRINTUSING 5101 5" ";

:@@: FOR I=1TO 4
:<<: PRINTUSING 5111 5" ";

:tt: NEXT I
:<<: PRINT

5007 % Objective Function -###5###5###.###
5010 @@: FOR I=1TO M

:GOSUB '51(I)
:<<: PRINTUSING 5100 5I5F0$5IVI)5Y(I)5B(I)5S(I)5T;
:@@: FOR K=1TO T
:<<: PRINTUSING 5110 5U(K)5K(K);
:tt: NEXT K
:<<: PRINT
:tt: NEXT I
:<<: PRINT

5100 %## ####### # -######.### -######.### -######.### #
5101 No Name St Value Constant Resid. N#
5110 %-####.##(##)
5111% Arc(Node)#
5205 <<: PRINT "Process Graph"
5210 @@: FOR J=1TO N

:GOSU3 '50(J)
:<<: PRINTUSING 5100 5J,F0$5,3$(J)5X(J)5C(J)50(J),T;
:@@: FOR H=1TO T
:<<: PRINTUSING 5110 5V(H)5H(H);
:tt: NEXT H
:<<: PRINT
:tt: NEXT J
:<<: PRINT

7776 <<: PRINT "=== labeled resource network ==="
777-7 @@: FOR I=1TO R



1701='r'cipr-rn -F-Dr

:W: FOR J=1TO R
:<<: PRINTUSING 7778 sL(I,J);
:tt: NEXT J
:<<: PRINT
:+t: NEXT
:<<: PRINT
:<<: PRINT
:<<: PRINT

7778 % -###.###
7779 <<: PRINT "=== labeled process network ==="
7787 W: FOR I=1TO R

:W: FOR J=1TO R
:<<: PRINTUSING 7778 5G(I,J);
: +4: NEXT J
:<<: PRINT
:Tit: NEXT
:<<: PRINT
:<<: PRINT

8001 RETURN :tt:
FZCX>=1,4(X).-'A-



171

APPENDIX C

DATA FILES



Title: RPM test file (3X4)
ROWS
,<RES001,<RES002,<RES003,$PROFIT
COLUMNS
PROO1 RES001 1 RES002 -2 RES003 3 PROFIT 2
PROO2 RES001 3 RES002 -16 RES003 -1 PROFIT 1
PR003 RES001 2 RES002 -1 RES003 -S PROFIT 4
PROO4 RES001 S RES002 -1 RES003 10 PROFIT S
RHS
RESOURCE RESOO1 20 RESF102 -4 RES003 -10
END

E"... X 1

1 2 3 4

Title: RPM test file (3X4)

ROWS

,<RES001,<RES002,<RES003,$PROFIT

COLUMNS

IPROO1 RES001 1 RES002 -2 RES003 3 PROFIT 2

CPROO2 RES001 RES002 -1 RES003 -1 PROFIT

{PR003 RESOO1 2 RES002 -1 RES003 -S PROFIT 4

CPROO4 RES001 S RES002 -1 RES003 10 PROFIT 5

RHS

RESOURCE RES001 20 RES002 -4 RES003 -10

END

g

1

.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

1 2 3 4 5 6

172



Title: RPM test file
ROWS

RES001, RES002. RES003.
COLUMNS
PR001 RES001 -9 RES002 1
PROO2 RES001 -S RES002 -1
PR003 REE001 -1 RES002 3
PROO4 RES001 6 RE9002 3 R
RHS
RESOURCE FES001 2 RE9002
END

1

3Y,4)

PROF IT

RES002 -7 PROFIT 4
RE3003 3 PROFIT -3
RE3003 13 PROFIT 2
E9003 3 PROFIT 1

10 RESOD?, 0

Title: RPM test File

ROWS

,<RES001,<RE3002,<RES003,$PROFIT

COLUMNS

PRO01 RESO01 -9 RE3002 1 RE3003

{PROO2 RE2001 RESOOP -1 RESCOR 3 PROFIT

fPR003 RE2001 -1 REMO'? 3 RESCO3 3 PROFIT 2

fPRO04 RFPlas.,1 6 RES= 3 RE3003 9 PROFIT I

RHS

RESOURCE RESCO1 2 RE2002 10 RFR003 0

ENO

X

3 4 5 .., ',,,.

"'I:X..4)

-7 PROFIT 4

2

01

02

0?

04

OS

07

13

173

11

12'

13

14

173



Title: RPM test file
ROWS
,<RES001,<RES002,<RESOOP
COLUMNS
PROO1 RES001 -2 RES002 3
PROO2 RES001 3 RES002 -4
PROOP RFS001 -1 RES002
PROO4 RESOO1 -4 RE S002
PROOP RES001 -5 RESOCE
END
RESOHROE RES0c1
END

Title:

ROWS

,<RES001.

COLUMNS

IPROO1 RE3001

IPROO2 RESOC1

{PR003 RES001

Example E.

SPROFIT

RES002 -1 PROFIT 2
RES002 -2 PROFIT 5
5 RES003 7 PROFIT 6
I RES003 -2 PROFIT I
S RES003 5 PROFIT 1

-10 RES002 -P RFS0c3 -3

3

I 44-

RPM test file Example #6

RES002,<RESOOP,aPROFIT

-2 RES002 3 RES003 -1 PROFIT 2

3 RES002 -4 RES003 -2 PROFIT 5

-1 RES002 -5 RES002 7 PROFIT 6

{PR O04 R7S001 -4 RES002 -1 RFS003 -2 PROFIT 1

{PROO5 RES001 -5 RFS002 -9 RES002 S PROFIT

ENO

RESOURCE RES001 -10 RES002 -5 RES003

END

S.:

1 3 6.:

11

174



Title: RPM test data File
ROWS
,<RES001,<RF5002, RES003,,.RF5004,<RESOO5 ,j3ESO05,
,<RES007,<RESOaA, RE8009,<RE5010,$PROFIT
COLUMNS
PROO1 RES001 1 RFSnO4 -.6 RESOOS -.5 RESnOS -.6 PROFIT -F00
PROOF RES002 1 RES004 -.7 RESOOS -.5 RFS006 -.3 PROFIT -40
PR003 RES003 1 RES004 -.5 RESOOS -.4 RESOOS -.c PROFIT -70
PRO04 RES004 1 RES007 -1 RESOD? -1 RES009 -1
PROOS RESOOS 1 RES007 -1 RESOD? -1 RESOOS -1
PROOS RES00.6 1 RES007 -1 RES003 -1 RES009 -1
PROO7 RES007 1 RES010 -1
PROOS RESOOS 1 RES010 -1
PROOS RF5009 1 RES010 -1
PRO10 RE5007 1 RES010 -1
PRO11 RES002 1 RES010 -1
PRO12 RES009 1 PROFIT CO
PR013 RES010 1 PROFIT 200
RHS
RESOURCE RESOO1 60 RESDO2 60 RF5003 90
END

175

FR F-11'1,-1,;2.

1 2 3 4 5 6.

(PRO10 RESOD 7 1 RES010 -1 01

IPR011 RES003 1 RES010 -1 02

IPRO12 RES003 1 PROFIT 50 03

{PRO13 Rpsnio 1 PROFIT 200 04

RHS OS
F F 1-el 1

RESOURCE RES001 60 RESOOP 60 RPsnos 90 OS

1 3 4 S
END 2

Title: RPM test data file 01

ROWS 02

,'RES001, PE5002, RES003,'RES004, RES005, RESOOS 03

,<RES007,<RES002,<RES009,<RES010,11PROFIT 04

COLUMNS OS

{PROO1 RES001 1 RF5004 RFS005 -.5 RESOOS -.6 PROFIT -c00 OS

{PROO2 RES002 1 RES004 -.7 RES005 RFS006 -.3 PROFIT -40 07

1
iPRO03 RES003 1 PES004 -.5 RFS005 -.4 RESOOS -.5 PROFIT -70 03

{PROO4 RES004 1 RES007 -1 RES003 -1 RES009 -1 09

{PROOS RES005 1 REBOOT -1 RE5003 -1 REF009 -1 10

IRR006 RES006 1 RES007 -1 RE5008 -1 8E5009 -1 11

{PROO7 RES007 1 RES010 -1 12

(PRODS RE5008 1 RES010 -1 13

IPROO9 RESn09 1 RES010 -1 14

1 2 3 4 5
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APPENDIX D

SAMPLE RUNS



IL_ Ae IFTel ge, 11:4,-,,s r-- rzs.

Iteration No. 2

Resource Graph
No Name St Value

-U.' 1 ae

Objective Function

Constant Resid. N

40.000

Arc(Nodel Arc(Node) Arc(Node) Arc(Node)

1 -,RES001 * 2.000 20.000 0.000 4 1.0 ( 1) 3.0 ( 2) 2.0 ( 3) 5.0 ( 4)

2 xqEoOo2 0.000 -4.000 16.909 4 -2.0 ( 1) -16.0 ( 2) -1.0 ( 3) -1.0 ( 4)

3 <nFSo03 * 0.000 -10.000 0.000 4 3.0 ( 1) -1.0 ( 2) -5.0 ( 3) 10.0 ( 4)

Process Graph
1 PROO1 * 7.272 2.000 0.000 3 1.0 ( 11 -2.0 ( 2) 3.0 ( 3)

2 PROO2 0.000 1.000 5.000 3 3.0 ( 1) -16.0 ( 2) -1.0 ( 3)

3 PR003 * 6.'363 4.000 0.000 3 2.0 ( 1) -1.0 ( 2) -5.0 ( 3)

4 PROO4 0.000 5.000 5.000 3 5.0 ( 1) -1.0 ( 2) 10.0 ( 31

-r-t IF' Fel IN1 c3, r-

FR F3* r'ri 4S-2. 1 f?..

Iteration No. 3

Resource Graph
No Name St Value

Objective Function

Constant Res/d. N

4.362

Arc(Node) Arc(Node) Arc(Nude) Arc(Nude)
1 ,RES001 * 0.026 7.000 0.000 4 3.0 ( 1) 3.0 ( 2) 4.0 ( 3) 1.0 ( 4)

2 xqEooO2 * 1.334 3.000 0.000 4 2.0 ( 1) 6.0 ( 2) 1.0 ( 3) 5.0 ( A)

3 ,RES003 0.000 2.000 6.E31 4 1.0 ( 1) 4.0 ( 2) 5.0 ( 3) 2.0 ( 4)

Process Graph
1 PROO1 * 0.842 3.000 0.000 3 2.0 ( I) 2.0 ( 2) 1.0 ( 3)

2 PROO2 0.000 4.000 4.447 3 3.0 ( 1) 6.0 ( 2) 4.0 ( 31

3 PR003 0.000 1.000 0.4'39 3 4.0 ( 11 t.0 ( 2) 5.0 ( 31

4 PROO4 * 0.263 7.000 0.000 3 1.0 ( 1) 5.0 ( 2) 2.0 ( 3)



F-2F'M 11"Nle--Lite,sw--t-cs.3

Iteration No.

Resource Graph
No Name St

R7F-7*M

I

Value

tua-r11.1: T-11E3.

Objective Function

Constant Resid. N

40.000

Arc(Node) Arc(Node) Arc(Node) Arc(Node)
1 RES001 0.000 2.000 02.000 4 -9.00( 1) -5.00( 2) -1.00( 3) 6.0n( 4)

2 RES002 * 4.000 10.000 0.000 4 1.00( 1) -1.00( 2) 3.00( 3) -A.00( (4)

3 xnseOoa 0.000 0.000 70.000 4 -7.00( 1) 3.00( 2) 3.00( 3) S.00( 4)

Process Graph
1 PROO1 * 10.000 4.000 0.000 3 -9.00( 1) 1.00( 2) -7.00( 3)

2 PROO2 0.000 -3.000 -1.000 3 -5.00( 1) -1.00( 2) 3.00( 3)

3 PRO03 0.000 2.000 10.000 3 -1.00( 1) 3.00( 2) 3.00( 3)

4 P8004 0.000 1.000 11.000 3 6.00( 1) 3.00( 2) 8.00( 3)

Solution is unbounded

FR11:1M

Iteration No. 3 Objective Function 32.837

Resource Graph
No Name St Value Constant Resid. N Arc(Node) Arc(Node) Arc(Node` Arc(Node)
1 xnEoOo1 * 0.186 19.000 0.000 2 1.0 ( 1) 4.0 ( 2)
2 ,RES002 * 0.651 45.000 0.000 2 12.0 ( 1) 5.0 ( 2)
3 RES003 0.000 16.000 1.860 2 5.0 ( 1) 1.0 ( 2)

Process Graph
1 PRO01 * 1.976 8.000 0.000 3 1.0 ( 1) 12.0 ( 2) 5.0 ( 3)
2 PRO02 * 4.255 4.000 0.000 3 4.0 ( 1) 5.0 ( 2) 1.0 ( 3)



r.- 117* rell f2. C.} r-

IF7 E2. EG- 12 'F. i.

Iteration No.

Resource Graph
No Name St

4

Value

Objective Function

Constant Restd. N

113.571

Arc(Node) Arc(Node) Arc(Node) Arc(Node)1 RES001 * 4.714 15.000 0.000 4 1.0 ( 1) 1.0 ( 2) 1.0 ( 3) 1.0 ( 4)2 <nes0o2 0.000 90.000 16.428 4 7.0 ( 1) 5.0 ( 2) 3.0 ( 3) 2.0 ( 4)3 RG5003 4 0.42R 100.000 0.000 4 3.0 ( 1) 4.0 ( 2) 10.0 ( 7) 8.0 ( 4)

Process Graph
1 PRO01 * 7.142 6.000 0.000 3 1.0 ( 1) 7.0 ( 2) 3.0 ( 3)2 PRO02 0.000 5.100 1.328 3 1.0 ( 1) 5.0 ( 2) 4.0 ( 313 PRO03 -4 7.857 9.000 0.000 3 1.0 ( 1) 3.0 ( 2) 10.0 ( 3)4 PROO4 0.000 6.000 2.142 3 1.0 ( 1) 2.0 ( 2) 8.0 ( 3)

IL,. 11-11 r" 144.1 Ikeql

Vel .1F- c?

Iteration No. a Objective Function 26.500

Resource Graph
No l'1,-.me St Value Constant Resid, N Arc(Node) Arc(Node) Arc(Node) Arr(Node\
1 ,9E5001 0.000 6.000 0.500 1 1.0 ( 1)
2 x9soOm2 0.000 2.00n 12.000 2 -1.0 ( 1) 1.0 ( 2)
3 REJA003 4 3.250 7.000 0.000 2 1.0 ( 1) 1.0 ( 2)
4 Re0004 * 0.24',.) 15,000 0.000 2 3.0 ( 1) -1.0 ( 2)

Process Graph
1 PR001 * 5.500 4.000 0.000 4 1.0 ( 1) -1.0 ( 2) 1.0 ( 3) 71.0 ( 4)2 PRO02 * 1.500 3.000 0.000 3 1.0 ( 2) 1.0 ( 3) -1.0 ( 4)



L_. r- IFE. it

Iteration No.

Resource Graph
No Name St

IP hi

Value

1: Sa It: -1- I. 1 tE,

Objective Function

Constant Pesid N

21.333

Arc(Node) Arc(Node) Arc(Node) Arc(Node)
1 <RES001 0.000 4.000 3.066 2 0.1 ( 1) 0.2 ( 2)
2 <RFS002 * 0.066 50.000 0.000 1 30.0 ( 2)
3 0.4E5003 * 3.000 6.000 0.000 1 1.0 ( 1)
4 <RES004 0.000 -0.500 134..166 2 -18.0 ( 1) -16.0 ( 2)
5 <RES005 0.000 -0.100 85.566 2 -14.0 ( 1) -1.0 ( 2)

Process Graph
1 PRO01 * 6.000 3.000 0.000 4 0.1 ( 1) 1.0 ( 3) -18.0 ( 4) -14.0 ( 5)
2 PROO2 * 1.666 2.000 0.000 4 0.2 ( 1) 30.0 ( 2) -16.0 ( 4) -1.0 ( 5)

L_ 1.11 r-- 111:7 FT"' -11:4"/ 11-4: !Ea

Iteration No.

Resource Graph
No Name at

IF" 11-1

2

Value

ce ts 1 cr..?

Objective Function

Constant Resid, N

-,7466.666.666

Arc(Node) Arc(Node) Arc(Node) Arc(Node)
1 <0E5001 0.000 2000.000 0.000 3 3.0 ( 1) 1.0 ( 2) 6.0 ( 3)
2 <RES002 * 333.333 -2000.000 0.000 3 -3.0 ( 1) -1.0 ( 2) -6.0 ( 3)
3 <RES003 * 300.000 -1000.000 0.000 3 -2.0 ( 1) -5.0 ( 2) -1.0 ( 3)
4 <PES004 0.000 3000.000 2111.111 3 1.0 ( 1) 2.0 ( 2) 4.0 ( 3)

process Graph
1 PRO01 1 444.444 -1(.,00.000 0.0)0 4 3.0 ( 1) -3.0 ( 2) -2.0 ( 3) 1.0 ( 4)
2 muoa 0.000 -3200.000 1366.EC6 4 1.0 ( 1) 1.0 ( 2) -5.0 ( 3) 2.0 ( 4)
FRO03 111.111 -2300.000 0.000 4 6.0 ( 1) ( 2) -1.0 ( 3) 4.0 ( 4)



Iteration No 1 Objective Function 18.000

Resource Graph
No Name St Value Constant Resid, N Arc(Node) Arc(Node) Arc(Node) Arc(mode)

1 RFS001 0.000 5.000 0.500 3 3.0 ( 1) -2.0 ( 2) 1.0 ( 3)2 '13E5002 * 6.000 3.000 0.000 3 2.0 ( 1) 1.0 ( 2) -1.0 ( 3)
3 'RES003 0.000 16.000 1.500 3 9.0 ( 1) ( 2) 3.0 1 3)

Process Graph
1 PROO1 * 1.500 12.000 0.000 3 3.0 ( 1) 2.0 ( 2) 9.0 ( 3)
2 PROO2 0.000 2.000 -2.000 3 -2.0 ( 1) 1.0 ( 2) -6.0 ( 3)
3 PR003 0.000 4.000 -10.000 3 1.0 ( 11 -1.0 ( 2f 3.0 ( 31

Solution is unbounded



L_ 7-.1 IF3'. V.1 17. to-4 4E) I-- 1-4:

cF-"rez -t F.-; 1 1. E=.

Iteration No.

Resource Graph
No rlDme St

S

Value

Objective Function

constant Resid.
1 RES001 * 1.250 10.000 0.000
2 <9ESoo2 * 0.607 15.000 0.000
3 xnEoOoy * 0.749 12.000 0.000
4 ,9ES004 * 3.000 7.000 0.000
5 RES005 * 1.000 9.000 0.000
6 ,,W-Sons 0.000 0.000 3.3.3

Process Graph
1 PROO1 * 2.142 3.000 0.000
2 PROO2 * 2.172 5.000 0.000
3 PR003 * 0.428 6.000 0.000
4 PROO4 * 1.583 9.000 0.000
5 PRODS * 2.250 7.000 0.000
6 PROOS 0.000 5.000 1.000

ir2..2.11 174. Irell #a? r- tc

17;7 Pax-1 !F.; 1:: i. 1.. c?.

Iteration No. a Objective Function

N
2
1.

2
3
1

3

i-.11). X

60.607

Arc(Nodel Arc(Node) Arc(Node) Arc/Node)
4.0 ( 2) 3.0 ( 3)
7.0 ( 1)

5.0 ( 1) 3.0 ( 3)
3.0 ( 4) 1.0 ( 5) 2.0 ( 6)
4.0 ( CI

-3.0 ( 2) 2.0 ( 4) 3.0 ( 6)

7.0 ( 2) 5.0 ( 3)
4.0 ( 1) -3.0 ( 6)
3.0 ( 1.) q.0 ( 3)
3.0 ( 4) 2.0 ( 6)
1.0 ( 4) 4.0 ( 5)
2.0 ( 4) 3.0 ( 6)

63.000

Resource Graph
No Name St Value Constant Resid. N Arc(Node) Arc(Node) Arc(Node) Arc(Nude)

1 RES001 * 2.250 12.000 0.000 2 3.0 ( 1) 2.0 ( 2)
2 RES002 * 2.249 10.000 0.000 2 1.0 ( 1.) 2.0 ( 2)

Process Graph
1 PROO1 * 3.999 9.000 0.000 2 3.0 ( 1) 1.0 ( 2)
2 PROO2 * 3.000 9.000 0.000 2 2.0 ( 1) 2.0 ( 2)

Current Solution is Optimum



lrt .eal IF" Ft IP' IN1 4.4 CD, 11-"

FZ -t rt. Tir t.?,

Iteration No. 5

Resource Graph
No Name St Value

Objective Function

t Restd. N

if . 02

Arc(Node)

7

Arc(Node) Arc(Node) Arc(Node)
1 .RES001 * 0.377 10.000 0.000 3 2.0 ( 1) 4.0 ( 2) 3.0 ( _11

2 ,JRC5002 * 0.863 15.000 0.000 3 7.0 ( 1) 3.0 ( 2) 6.0 ( 31
3 9ES003 0.000 12.000 5.18.1 2 5.0 ( 1) "1.0 ( 3)
4 tRF5004 * 1.800 7.000 0.000 3 3.0 A 4) 1.0 ( 5) 2.0 ( 6)
5 '2E3005 * 1.300 9.000 0.000 3 2.0 ( 41 4.0 ( 5) 3.0 ( 6)
6 RES006 * 0.500 0.000 0.000 3 -3.0 ( 2) 2.0 ( 4) 3.0 ( 6)

Process Graph
1 PRO01 * 1.3(13 8.000 0.000 3 2.0 ( 11 7.0 ( 2) 5.0 ( 3)
2 PRO02 * 1.818 5.000 0.000 3 4.0 ( 1) 3,0 ( 2) -3.0 ( 6)
3 PRO03 0.000 6.000 2.113 3 3.0 ( 1) 6.0 ( 2) 3.0 ( 3)
4 PRO04 * 1.426 0.000 0.000 3 3.0 ( 4) 2.0 ( 5) 2.0 ( 6)
5 PRO05 * 0.826 7.000 0.000 2 1.0 ( 4) 4.0 ( 5)
C. PRO06 * 0.827 9.000 0.000 3 2.0 ( 4) 3.0 ( 5) 3.0 ( 61

i_ IP' Itel 00.4 i- SS.

-117_ 1EL. -1.-z i_ 1.

Iteration No.

Resource Graph
No Name St

2

Value

Objective Function

Constant Resid. N

20.000

Arc(Node) Arc(Node) Arc(Node) Arc(Node)
1 <RES001 * 4.000 5.000 0.000 3 3.0 ( 1) -2.0 ( 2) 1.0 ( 3)2 ,J425002 * 0.000 3.000 0.000 3 2.0 ( 1) 1.0 ( 2) -1.0 ( 3)3 <RES003 0.000 15.000 0.000 3 9.0 ( 1) -6.0 ( 2) 3.0 ( 3)

Process Graph
1 PRO01 * 1.600 12.000 0.000 3 3.0 ( 1) 2.0 ( 2) 9.0 ( 3)2 PRO02 0.000 -8.000 0.000 3 -2.0 ( 1) 1.0 ( 2) -6.0 ( 3)3 P2003 * 0.200 4.000 0.000 3 1.0 ( 1) -1.0 ( 2) 3.0 ( 3)



L. inh tr- Ft FI' cix r-

Iteration No.

Resource Graph
No Name St

rei

11

Value

C-2. SS-

Objective

Constant

1- 1:

Function

Restd.

-f-

N

fau

5,700.000

Arc(Node) Arc(Node/ Arc(Node1 Arc(Node)
1 ,RES001 * 40.000 20.000 0.000 1 1.0 ( 11
2 'RES002 * 150.000 30.000 0.000 1 1.0 ( 2)
3 '12E5003 * 40.000 10.000 0.000 1 1.0 ( 3)
4 ,RES004 * 200.000 0.000 0.000 4 -0.2 ( 1) -0.4 ( 2) -0.1 ( 3) 1.0 ( 4)5 OWS005 * 200.000 0.000 0.000 4 -0.2 ( 11 -0.2 ( 21 -0.1 ( 3) 1.0 ( 5)6 ,RF5O0(.1".. * 200.000 0.000 0.000 4 -0.3 ( 11 -0.4 ( 2) -0.2 ( 3) 1.0 ( 6)7 .RF5007 * 200.000 0.000 0.000 3 -1.0 ( 4) 1.0 4 7) 1.0 (10)
8 RES(108 * 000.000 0.000 0.000 3 -1.0 ( 5) 1.0 ( 3) 1.0 (11)
'3 RES009 * 200.000 0.000 0.000 3 -1.0 ( 6) 1.0 ( 9) 1.0 (12)
10 'RES010 * 200.000 0.000 0.000 4 -1.0 ( 7) -1.0 ( 8) -1.0 ( 9) 1.0 (13)
11 RFS011 4 E50.000 0.000 0.000 4 -1.0 (10) -1.0 (11) -1.0 (12) 1.0 (14)

Process Graph
1 PROO1 4 20.000 -100.000 0.000 4 1.0 ( 11 -0.2 ( 4) -0.2 ( 5) -0.3 ( 6)2 PRooa 4+ 30.000 -50.000 0.000 4 1.0 ( 2) -0.4 ( 4) -0.2 ( 5) -0.4 ( 6)3 PR003 * 10.000 -40.000 0.000 4 1.0 ( 3) -0.1 ( 4) -0.1 ( 51 -0.2 ( 6)4 PR004 * 17.000 0.000 0.000 -3

E.. 1.0 ( 4) -1.0 ( 7)
5 PROOG * 11.000 0.000 0.000 2 1.0 ( 51 -1.0 ( 8)
6 PH006 * 20.000 0.000 0.000 ,

c_ 1.0 ( 6) -1.0 ( 9)
7 PROO7 * 17.000 0.000 0.000 2 1.0 ( 71 -1.0 (10)
8 PROO8 * 11.000 0.000 0.000 2 1.0 ( 8) -1.0 (10)
9 PROO9 * 00.000 0.000 0.000 2 1.0 ( 9) -0..0 (10)
10 PRO10 0.000 0.000 120.000 P 1.0 ( 71 -1.0 (11)
11 PRO11 0.000 0.000 120.000 2 1.0 ( 8) -1.0 (11)
12 PRO12 0.000 0.000 1.20.000 2 1.0 ( q) -1.0 (11)
13 PRO13 4 42.000 200.000 0.000 1 1.0 (10)
14 1-1(014 * 0.000 20.000 0.000 1 1.0 (11)



i...___ Ti r- FR F'Tel eg nt. r-

Iteration No.

Resource Graph
No Name St

r-;z IPTel

8

Value

1: cliza

Objective Function

Constant Resid, N

1. 1 FL?:

Arc(Node) Arc(Node) Arc(Node) Arc(Node)
1 'RFS001 0.000 120.000 119.593 1 1.0 ( 4)

2 RES002 0.000 48.000 48.000 1 1.0 ( 5)

3 4(1E5003 * 152.522 0.000 0.000 3 -1.0 ( 31 1.0 ( 6) 1.0 ( 7)

4 ,*F5004 * 43.250 0.000 0.000 4 -1.0 ( 41 -1.0 ( 5) 0.4 ( 6) 0.5 ( 7)

5 REb005 * 26.550 0.000 0.000 2 -6.4 ( 6) 1.0 ( 2)

6 RPS006 17.415 0.000 0.000 2 -8.5 ( 7) 1.0 (10)

7 RFS007 0.000 120.000 119.557 1 1.0 ( 1)

8 <9c0000 0.000 48.000 48.000 1 1.0 ( 2)

9 RES009 * 50.000 0.000 0.000 4 -1.0 ( 1) -1.0 ( 2) 0.0 ( 8) 0.0 (10)

10 ,RES010 * 30.000 0.000 0.000 2 -1.0 ( 8) 1.0 ( 9)

11 ,RES011 * 20.000 0.000 0.000 2 -1.0 (101 1.0 (11)

12 RES012 * 0.005 500.000 0.000 1 500.0 ( 3)

Process Graph
1 PRO01 * 0.440 -50.000 0.000 .71 1.0 ( 7) -1.0 ( 9)

2 PRO02 0.000 -75.000 25.000 2 1.0 ( 8) -1.0 ( 9)

3 PROM 1.000 -150.000 0.000 2 -1.0 ( 3) 500.0 (12)

4 PR004 0.410 -43.250 0.000 2 1.0 ( 1) -1.0 ( 4)

5 PROO5 0.000 -64.820 21.630 2 1.0 ( 2) -1.0 ( 4)

6 PRODS 1.0(10 0.000 0.000 3 1.0 ( 31 0.4 ( 4) -6.4 ( 5)

7 PROO7 0.000 0.000 26.090 3 1.0 ( 3) 0.5 ( 4) -3.5 ( 6)

3 PRO02 6.410 0.000 0.000 3 1.0 ( 5) 0.0 ( 9) -1.0 (10)

9 PRO09 6.410 30.000 0.000 1 1.0 (10)

10 PRO10 0.000 0..000 0.000 3 1.0 ( St 0.0 ( 1 -1.0 (11)

11 PR011 0.000 20.000 0.000 1 1.0 (11)



IF' c?. 4,4 r-

t41 -t ca, 17: cF.-

Iteration No.

Resource Graph
No Name St Value

Objective Function

Constant Re.id,
1 ,RE5001 1 1.250 10.000 0.000
2 ,RES002 0.000 15.000 12.600
3 RES003 * 1.600 12.000 0.000
4 ,REb004 * 3.000 7.000 0.000
5 \RF5005 * 1.000 9.000 0.000
6 -RFb006 0.000 0.000 4.333
7 -RES007 * 2.000 0.000 0.000
8 RES008 0.000 0.000 0.000

Process Graph
1 PROO1 * 2.400 8.000 0.000
2 PROO2 4 2.500 5.000 0.000
13 P9003 0.000 6.000 2.550
4 PR004 * 1.581 9.000 0.000
5 PRODS * 2.250 7.000 0.000
6 PR006 0.000 0.000 6.000
7 PROO7 0.000 0.000 6.000
8 PRODS 4 0.000 10.000 0.000
9 PRODS 0.000 0.000 E.000
10 PRO10 0.000 3.000 1.000

N
2
1

2
3
1

4
4
4

61.700

Arc(mole) Arc(Node) Arc(Nodel Arc(Node)
4.0 ( 2) 1.0 1 1)
1.0 ( 1)
5.0 ( 11 3.0 ( 3)
3.0 ( 4) 1.0 ( 5) 2.0 ( 6)
4.0 f 5)
-3.0 ( 2) 2.0 ( 4) 3.0 ( 61 -9.0 ( 9)
3.0 ( 7) 5.0 ( 2) 3.0 ( 9) 2.0 (10)
4.0 ( 7) 3.0 ( 2) 2.0 ( 9) 4,0 (10)

1.0 ( 2) 5.0 ( 3)
4.0 ( 1) -3.0 ( 6)
3.0 ( 1) 3.0 ( 1)
3.0 ( 41 2.0 ( 6)
1.0 ( 4) 4.0 ( 5)
2.0 ( 4) z.o ( 6)
3.0 ( 7) 4.0 ( 2)
5.0 ( 71 9.0 ( 2)
3.0 ( 7) 2.0 ( 2) -3.0 ( 61
2.0 ( 7) 4.0 ( 2)


