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High speed photodetectors are a necessary element in

broad band digital and analog optical communication systems.

In this thesis easily integrable planar high speed

photodetectors made on undoped semi-insulating (SI) GaAs

substrates are modeled and tested. The fabrication process

of the detectors is fully compatible with GaAs

metal-semiconductor field effect transistor (MESFET)

processing technology. Interdigitated fingers are used as

the contacts to achieve both high sensitivity and large

bandwidth. Detectors made with both ohmic and Schottky

contacts are fabricated and tested.

The equivalent circuit elements of the interdigitated

structure are modeled using accurate lumped element circuit

models associated with the various discontinuities of the

structure. The results of the model agree well with the

experimental results as well as with other published

results. Numerical simulation of the SI-GaAs metal-

semiconductor-metal (MSM) photodetector is performed. The

carriers are tracked after an ideal optical pulse is applied

and the intrinsic current as a function of time is computed.

Then the influence of all the external circuit elements is

included and the output current across the load resistor is



computed. The simulated response is compared with other

published models.

The electrical and optical characteristics of the

detectors are measured. For ohmic contact detectors, the

dark current increases linearly with bias until some

critical field is reached beyond which the dark current

increases nonlinearly with bias. The time response of the

detectors is measured with a 10 ps pulsed laser operating at

- 600 nm and also with a pulsed GaAs /A1GaAs semiconductor

laser operating at 850 nm. The ohmic and Schottky contact

detectors have approximately the same rise time. The fall

time of the Schottky contact detector is much smaller than

the fall time of ohmic contact detector. The long fall time

of the ohmic detector does not depend on the spacing between

contacts. This long fall time is due to the large barrier

that exists near the ohmic metal/SI-GaAs cathode contact. No

such barrier exists for SI-GaAs MSM photodetector. The

simulated impulse response of the SI-GaAs MSM photodetector

is compared with the measured impulse response.



Modeling and Testing of Semi-Insulating Gallium Arsenide

Interdigitated Photodetectors

by

Ravindranath Tagore Kollipara

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Completed: April 12, 1991

Commencement: June 1991



APPROVED:

Redacted for Privacy

Associate Professor of Electrical and Computer Engineering

in charge of major

Redacted for Privacy

Head of the Electribal and Computer Engineering Department

Redacted for Privacy

Dean of Graduat chool 1

Date thesis is presented April 12, 1991

Presented by Ravindranath Tagore Kollipara



ACKNOWLEDGEMENTS

The author wishes to express his appreciation to

Dr. Thomas K. Plant, his major professor, for his

encouragement, guidance and support during the course of

this research.

The author expresses his special thanks to Prof. Vijai

K. Tripathi for his encouragement and guidance during his

coursework and the preparation of this research. The author

wants to extend his thanks to Professors John W. Wager, John

R. Arthur, Joseph Nibler and Dwight Bushnell for serving on

his graduate committee and reviewing the manuscript.

The author also expresses his thanks to his colleagues

Hosung Chang, Hyung Mo Yoo, John T. Ebner, Seungbae Kim,

Yong Thye and Leon Ungier for their helpful discussions and

interest in the development of this research.

The author is deeply grateful to his wife, Sumathi and

sons, Deep and Naveen, for their love, patience and

understanding during the course of this work.

Finally, the author wishes to thank his mother for her

encouragement, courage, dedication and inspiration

throughout his life.



TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Motivation 2

1.2 Synopsis of chapters 4

2. THEORY AND BACKGROUND 6

2.1 Parameters common to all photodetectors 6

2.2 Different types of photodetectors 10

2.2.1 Photoconductors 15

2.2.2 Photodiodes 17

2.2.3 Schottky photodetectors 19

2.2.4 Phototransistors 21

2.3 Literature review 22

3. MODELING AND DESIGN OF INTERDIGITATED STRUCTURE 25

3.1 Introduction 25

3.2 Theory 26

3.3 Modeling technique 34

3.4 IDS without the ground plane 40

3.5 Results 42

4. IMPULSE RESPONSE SIMULATION OF MSM PHOTODETECTORS 49

4.1 Introduction 49

4.2 Physical description 50

4.3 Mobility models 57

4.4 Domain and boundary conditions 58

4.5 Scaling 62

4.6 Numerical method 64

4.7 Discretization of the semiconductor equations 66

4.8 Solution method 72



5.

4.9 Results

EXPERIMENTAL RESULTS AND DISCUSSION

76

92

5.1 Introduction 92

5.2 Detector fabrication 92

5.3 Detector packaging 93

5.4 I-V characteristics of the detectors 95

5.5 Pulse measurements 100

5.6 Discussion 100

6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 114

6.1 Summary and conclusions 114

6.2 Suggestions for future work 116

BIBLIOGRAPHY 118



LIST OF FIGURES

Figure Page

2.1 Some common electronic transitions taking place

in a photodetector 11

2.2 Five types of homogeneous photodetectors 13

2.3 A p-i-n photodiode and its field distribution

under reverse bias 18

2.4a A Schottky barrier photodiode under reverse bias 20

2.4b An MSM photodiode under bias 20

2.5 A phototransistor and its equivalent circuit 20

3.1 Single and coupled microstrips and their

capacitances 27

3.2 Schematic of an Nf-line, 2Nf-port interdigitated

structure 30

3.3 Interdigitated structure and its equivalent circuit 32

3.4 Discontinuities in the interdigitated structure and

their representation as circuit elements 32

3.5 Four-port network of IDS with effects of the

discontinuities included 36

3.6 Circuit used to calculate the insertion loss of

the IDS 39

3.7 Coplanar Strips 41

3.8 Top view of IDS on alumina and sapphire substrates 44

3.9 Predicted and measured real and imaginary parts

of Sli for the IDS on alumina substrate 45

3.10 Predicted and measured real and imaginary parts

of Sll for the IDS on sapphire substrate 45

3.11 Plot of insertion loss for three interdigital

structures 48

4.1 Band diagram of SI-GaAs MSM structure 53

4.2 Plot of drift velocity verses electric field 59



4.3 Simulation domain 60

4.4 Mesh notation for finite differencing 65

4.5 A uniform mesh over the domain 65

4.6 Image nodes utilized in enforcing Neumann

boundary conditions 73

4.7 Flow chart for the program 77

4.8 Plot of equipotential lines 78

4.9 Potential plot 79

4.10 Plot of electric field in the X-direction 80

4.11 Plot of electric field in the Y-direction 81

4.12 Plot of constant electric field lines 83

4.13 Impulse response of an ideal detector 84

4.14 Impulse response of a photodetector with a simple

equivalent circuit 86

4.15 Typical equivalent circuit of a photodetector 87

4.16 Influence of Ls on the detector time response 87

4.17 Influence of C_pack on the detector time response 89

4.18 Influence of Rs on the detector time response 89

4.19 Simulated impulse response of an MSM photodetector 91

5.1 Two types of packaging techniques 96

5.2 Typical plot of observed I-V curves for ohmic

contact detectors 98

5.3 Typical plot of observed I-V curves for MSM

detectors 99

5.4 Block diagram for pulse measurements 101

5.5 Observed shape of the pulse response for ohmic

contact detectors 102

5.6 Pulse response of interdigital ohmic detectors 103

5.7 Pulse response of an 8-um gap with ohmic contacts . 104

5.8 Pulse response of interdigital MSM detector 105

5.9 Pulse response comparison of ohmic and Schottky

contact detectors 106



5.10 Influence of packaging on the detector response 107

5.11 Energy-band diagram of SI-GaAs with ohmic contacts 110

5.12 Predicted impulse response of the MSM interdigital

photodetector 113



LIST OF TABLES

Table

3.1

Page

Comparison of C and C1 between the subject model

and Pettenpaul model 46

4.1 Scaling factors 63

5.1 Detector fabrication steps 94

5.2 Detector dimensions 97

5.3 Bias conditions for pulse measurements and the

observed rise and fall times 102



MODELING AND TESTING OF SEMI-INSULATING GALLIUM ARSENIDE

INTERDIGITATED PHOTODETECTORS

1. INTRODUCTION

The high speed and large dynamic range of pho

todetectors have resulted in a number of novel applications

in electronics and optoelectronics. These include (1]

optical detection, characterization of high speed optical

components such as modulators, lasers, and multiplexers,

transmission of microwave signals via optical fibers,

electronic gating and switching, etc..

Until the mid 1970's, most of the high speed

semiconductor photodetectors were made of silicon (Si) and

germanium (Ge) p-i-n and avalanche photodiodes (APDs). Si is

primarily used for wavelengths below 1 gm and Ge is used in

the wavelength range of 1.0 to 1.6 gm. Since the mid 1970's,

interest has grown in photodetectors made of GaAs (GaAs,

A1GaAs) and InP (InP, InGaAs, InGaAsP) compounds. These

III-V compounds have a direct bandgap and therefore higher

absorption coefficients than the indirect bandgap materials

Si or Ge. This makes the light absorption layer shorter for

III-V compounds than for Si or Ge to achieve the same

quantum efficiency. III-V compounds also have higher

mobilities and higher peak drift velocities. III-V detectors

could be integrated with GaAs or InP integrated circuits and

the integrated receiver would perform better because GaAs

metal-semiconductor field effect transistors (MESFETs) and

InP metal-insulator-semiconductor field effect transistors

(MISFETs) have superior performance over Si metal-oxide-

semiconductor field effect transistors (MOSFETs). Since GaAs
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is also an electro-optic material, modulators, switches and

amplifiers could be integrated on the same chip. GaAs has a

higher bandgap than Si which results in smaller leakage

current since the dark current is exponentially dependent on

the energy bandgap. Finally, the smaller junction

capacitance in GaAs due to the larger depletion width makes

higher bandwidths possible.

1.1 Motivation

GaAs material is excellent for high speed analog and

digital integrated circuits, monolithic microwave integrated

circuits (MMIC) and optoelectronic integrated circuits

(OEICs). High speed photodetectors made of GaAs material are

used in many applications that include high speed sampling

and instrumentation.

Until the early 1980's the p-i-n photodiode and the APD

were the work horses of the GaAs photodetector applications.

However, p-i-n and APD structures are not planar and the

processing steps are not readily compatible with the

standard MESFET processing technology. GaAs p-i-n and APD

detectors also require large biasing voltages. Since the

early 1980's, interest has grown in developing easily

integrable, planar photodetectors capable of operating at

low biasing voltages.

The choice of a photoconductive material for a fast

photodetector requires a material with a short

photoconductive lifetime [2]. A short lifetime, however,

means a lower conductivity when illuminated, which in turn

results in low responsivity unless the material has a high

mobility. Good detectivity on the other hand requires a high

dark resistance. So a photoconductive material should have a

high dark resistance, high mobility and short lifetime.
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Undoped SI-GaAs has all of these properties. Gain is

possible in photoconductors at the expense of bandwidth and

the gain is relatively insensitive to temperature variation

because neither carrier lifetime nor transit time is a

strong function of temperature [3]. This is in contrast to

APDs where avalanche gains are highly temperature sensitive.

Because of all these reasons the photoconductor has become a

viable option [4].

The candidates for easily integrable planar detectors

are photoconductors, back-to-back Schottky barriers and

p-i-n structures which are all used in planar configuration.

The capacitance of an APD or a vertical p-i-n structure is

higher than that of a photoconductor. An interdigitated

structure (IDS) has an enhanced sensitivity with a time

response similar to a simple gap of the same active area

[5]. In the simple gap case even though capacitance is

small, transit time is large and so the bandwidth is small.

In an IDS capacitance and transit time could be adjusted

such that bandwidth is optimized. For large area devices,

vertical p-i-n and APD detectors are not suitable whereas a

photoconductor, back-to-back Schottky barrier or lateral

p-i-n in IDS configuration would be ideal.

The objective of this work is to study, through

modeling and testing, the time response of planar detectors

made on undoped SI-GaAs. Detectors are made directly on

SI-GaAs substrates instead of implanted epi-layers. (The

absorption length for GaAs material at 0.8 gm is - 1 gm

where as the Si-implant depth in GaAs is only - 0.3 gm, so

the sensitivity of the detectors made on SI-GaAs is greater

than those made on Si-implanted layers). Interdigitated

detectors with n-ohmic and Schottky contacts are studied.

The fabrication process and the contact metals used are
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fully compatible with MESFET processing technology. The

lateral p-i-n is excluded from this study because present

commercial GaAs MESFET technology does not include a

p-implant or a p-ohmic step.

1.2 Synopsis of chapters

In chapter 2, the theory of photodetectors and some of

the previous work on GaAs photodetectors is reviewed with

emphasis on planar integrable photodetectors. The

characteristic parameters describing a photodetector are

defined and expressions for gain and bandwidth are given.

Some common transitions taking place in photodetectors are

described. Distinction is made between primary and secondary

photocurrents and between intrinsic and extrinsic

photocurrents. The influence of contacts and traps on the

photodetection process is discussed. Various types of

photodetectors are described briefly.

In chapter 3, the circuit modeling work on the

interdigitated structure (IDS) is presented. The parasitics

associated with the IDS are modeled using accurate lumped

element circuit models associated with the various

discontinuities of the IDS. The model results are compared

with experiment as well as other published results in the

literature. The capacitance of the IDS is analyzed with and

without a ground plane.

In chapter 4, the impulse response simulation of the

SI-GaAs MSM photodetector is presented. The differential

equations are descretized using the finite difference method

and Gummel's algorithm is used to solve the resulting

algebraic equations. The bulk carrier transport equations

and material parameters are given. The model considers full

bipolar transport, effects of field dependent mobilities,
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carrier diffusion and recombination. Dynamic simulation is

carried out after applying an ideal optical impulse. The

output current is plotted with and without the influence of

the external circuit.

In chapter 5, experimental results are presented and

discussed. Both ohmic and Schottky contact photodetectors

are fabricated on undoped SI-GaAs. The processing steps and

contact metals used are all compatible with commercial

MESFET processing technology. Results from I-V and pulse

measurements are presented. The experimental results are

compared with expected results.

In chapter 6 the work performed is summarized and

conclusions are given. Suggestions for future work are made.
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2. THEORY AND BACKGROUND

In this chapter different types of photodetectors are

described in brief. Some parameters which are common to all

photodetectors are defined. The literature on monolithically

integrable photodetectors is reviewed.

2.1 Parameters common to all photodetectors

The one characteristic that is common to all

photodetectors is that they are all square law detectors.

The detector output is proportional to the square of the

optical electric field. Some common parameters of all

photodetectors are described below.

Responsivity, Rx(A/W or V/W), is the amount of electrical

signal per unit of optical power. RA. is a function of

optical signal wavelength, X. RA, might vary with detector

bias and load resistance also.

Spectral coverage specifies over what wavelength range the

detector will operate and at what responsivity.

Ouantum efficiency specifies the efficiency of converting

photons to electrical carriers and is defined as the number

of electron-hole pairs (EHPs) or electrons or holes

generated for each incident photon.

Noise equivalent power (NEP) and specific detectivity (D )

specify the noise properties of the total detection system.

NEP is the optical power that must be incident on the

detector so that the signal is equal to the noise for a

given wavelength, detector temperature and bandwidth. D* is
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the inverse of the NEP normalized to the square root of the

detector area and the system bandwidth.

D* = '/Area *Bandwidth /NEP, cmVirz-/W. (2.1)

Response time is the rise time (tr) or fall time (tf) or

full width at half maximum (FWHM) for a pulse input and is

related to the bandwidth (BW) of the detector. The bandwidth

of a photodetector is limited by both the RC time constant

and transit time (tt) effects. The RC limited fall time is

tf(RC limited) = 2.2RC (2.2)

and the RC limited 3-dB bandwidth (the frequency range over

which the detector output power is ... 50% of the peak power)

is

BW(RC limited) = 1/(2nRC) = 0.35/tf(RC limited). (2.3)

The transit time limited 3-dB bandwidth is given by [6]

BW(tt limited) = 0.38/tt. (2.4)

This expression is valid only if carriers are not trapped

and if tt the minority carrier lifetime. The overall

bandwidth of a photodetector due to both RC and transit time

effects is

[BW] -1 = [BW(RC limited)]-1 + [BW(tt limited)]-1 (2.5)

[BW]-1 = tf(RC limited)/0.35 + tt/0.38 (2.6)

BW = 0.35/[tf(RC limited) + tt]. (2.7)

If the ratio of tf and tt is much different from one then

the bandwidth is dominated by the larger of the two.
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Linearity and saturation: The linear range specifies the

optical power range in which the detector output is

proportional to the input power. The saturation region

specifies the optical power range in which the detector

output is no longer proportional to the input optical power.

Gain (F) is defined as the number of carriers collected for

each electron or hole or EHP generated due to an absorbed

photon. If light falling on a photodetector creates Gc EHPs

per second per unit volume, then the net increases in free

electron and hole densities as a result of absorption of

light are

An = GcTil (2.8)

= Gctp (2.9)

where tin (tip) is the free lifetime of the electron (hole) .

The free lifetime is defined as [7] the time the charge

carrier is free to contribute to the conductivity. It is the

time that an excited electron (hole) spends in the

conduction (valence) band. It can be (a) terminated by

recombination, or if the carrier is extracted from the

crystal by the electric field without being replenished from

the opposite electrode; (b) interrupted if the carrier is

trapped, to be resumed when the carrier is freed from the

trap; (c) undisturbed if the carrier is extracted from the

crystal by the field and at the same time an identical

carrier is injected into the crystal from the opposite

electrode.

The increase in current due to An and Op is

AI = qGc(Tngn + TO.110)EA (2.9)
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where gn (gp) is the mobility of the electron (hole), E is

the electric field, q is the charge of an electron and A is

the area of the detector. If GT is the total number of EHPs

generated per second (if Gc is uniform then GT = Gc.volume)

then the gain of the photodetector for a uniform generation

rate is

F . AI/qGT = (Tngm + Tpgp)E/L (2.10)

where L is the length of the detector. If the photodetector

is operated in the linear region of the drift velocity-field

curve then

vn = gnE (2.11)

vp = gpE (2.12)

where vn (vp ) is the drift velocity of the electron (hole).

The electron and hole transit times are given by

ttn = L/vn (2.13)

ttp = L/v .

P
(2.14)

The gain can be expressed in terms of the transit times as

r (Tnvn + Tpvp) /L = Tn/ttn + Tp/ttp (2.15)

If the photodetector is operated in the saturation region of

the drift velocity-field curve, then vn and vp are replaced

in equations (2.13)-(2.15) by vnsat and v psat The

expression for gain given by equation (2.10) or (2.15)

applies to any photodetector that has no avalanche gain. The

lifetime of photoexcited carriers is a key parameter for

photodetectors.
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Gain - Bandwidth Product (GBP) is the product of the gain and

the bandwidth of the detector.

2.2 ailLesmattypasafaultszietesitsma
In this section photoconductor, photodiode, Schottky

photodiode and phototransistor type solid state

photodetectors are described. The electronic transitions

that might be taking place when light is incident on a

semiconductor material are shown schematically in the

energy-band diagram of Fig. 2.1 (7]. These transitions can

be devided into three groups: (1) absorption and (Fig. 2.1

(a)); (2) trapping and capture (Fig. 2.1(b)); and (3)

recombination (Fig. 2.1(c)).

The three types of absorption transitions that produce

free carriers resulting in increased conductivity of the

semiconductor material are shown in Fig. 2.1(a). Transition

1 corresponds to absorption by the atoms of the crystal,

producing a free electron and a free hole for each photon

absorbed. These transitions contribute to intrinsic

photoconductivity. Transition 2 corresponds to absorption

at localized (donor-like) defects in the crystal, producing

a free electron and a hole bound in the neighborhood of the

defect for each photon absorbed. Transition 3 corresponds to

absorption again at localized (acceptor-like) defects in the

crystal, raising an electron from the valence band to an

unoccupied defect level, producing a free hole and an

electron bound in the neighborhood of the defect for each

photon absorbed. Transitions 2 and 3 contribute to extrinsic

photoconductivity. The GaAs detectors characterized in this

thesis involve only intrinsic transitions.

The electrons and holes freed by the absorption of

light will remain free until they are captured at a defect
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(a)

4
6

(b)

7
5' 5

(c)

Fig. 2.1 Some common electronic transitions taking place in a
photodetector: (a) absorption, (b) trapping and capture, and
(c) recombination.
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or recombine directly or pass out of the crystal at the

electrodes. The capturing centers are classified into two

groups: (1) trapping centers-if the captured carrier has a

greater probability of being thermally re-excited to the

free state than of recombining with a carrier of opposite

sign at the defect; or (2) recombination centers-if the

captured carrier has a greater probability of recombining

with a carrier of opposite sign at the defect than of being

reexcited to the free state. Fig. 2.1(b) shows trapping and

thermal release of electrons in electron traps (transitions

5 and 5'); trapping and thermal release of holes in hole

traps .(electron transitions 4 and 4'); and also capture of

an electron (transition 7) or of a hole (electron transition

6) in recombination centers.

Three simple types of recombination transitions are

shown in Fig. 2.1(c). Transition 8 corresponds to a free

electron recombining directly with a free hole and is

usually radiative. Recombination also occurs through

recombination centers (transitions 9 and 10) and could be

either radiative or nonradiative.

When a homogeneous semiconductor material is uniformly

illuminated under bias, five possibile situations exist [7]

depending on whether or not carriers may be replenished at

the electrodes and on the freedom of the carriers as shown

in Fig. 2.2. If both carriers are mobile and replenished at

the electrodes (Fig. 2.2(a)), then both contribute to the

photoconductivity until recombination takes place. The life

times of free electrons and free holes are equal in the

absence of traps and the gain is given by

r = (gn + gp)TE/L (2.16)

where ="C n tip.



(a)

+

NMI

t o

(e)

+

(d)

Fig. 2.2 Five types of homogeneous photodetectors.

13
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Fig. 2.2(b) shows the case when both carriers are

mobile but only one carrier(electron) is replenished at the

electrodes. The photocurrent saturates at a value of the

applied electric field sufficient to sweep out the holes

before they take part in recombination. In saturation, the

holes contribute to the photocurrent until they are drawn

off into the cathode and the electrons contribute to the

photocurrent for a time equal to the time it takes to draw

the holes off into the cathode. So the life time of a hole

is equal to the transit time of the hole in the absence of

traps and this is also equal to the life time of the

electron. The following equations apply for the case shown

in Fig. 2.2(b).

T = ttp = ti n = L/(gpE) = L/v (2.17)

ttn L/(gE) = L/vn (2.18)

I' = (gn + gp)/gp = (vp + vn) /vp (2.19)

Fig. 2.2(c) shows the case when both carriers are

mobile but neither carrier is replenished at the electrodes.

The gain for this case is

r = (tinvn + TpvpuL = (4 + X_) /L (2.20)

where X+ is the distance traveled by the freed positive

carrier in the direction of the field before it is trapped

or recombined and X_ is the distance traveled by the freed

negative carrier in the direction opposite to the field

before it is trapped or recombined. Since the maximum value

of X+ + X_ is L, the maximum gain is unity and such a

photocurrent is called primary photocurrent in contrast to

secondary photocurrent where the gain may be greater than
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unity. The photocurrent is proportional to the applied

electric field for small values of the field and saturates

when the field is high enough to draw off both carriers

before they recombine with each other. The photocurrent is

proportional to the light intensity.

Fig. 2.2(d) shows the case when only one carrier

(electron) is mobile and it is replenished at the electrode.

The minority carrier freed by light is captured at a crystal

defect so that it can be considered effectively immobile.

The photocurrent is mainly contributed by the flow of the

majority carriers. The life time of the electron is

determined by the recombination with the holes captured at

the defects which is equal to the hole trap time. Then for

the case shown in Fig. 2.2(d) tip can be neglected when

compared to to and the expression for gain is given by

r = TrivniL = Tn/ttn' (2.21)

Fig. 2.2(e) shows the situation where only one carrier

is mobile and it is not replenished at the electrode. In

this case the observed photocurrent decays with time even

under excitation, because of the polarization of the

material, and a steady photocurrent can not be maintained.

2.2.1 Photoconductors

The theory of basic photoconductive processes is

complex and quite involved [7,8]. However, many practical

photoconductive photodetectors can be grouped into two

categories. The first group corresponds to the case shown in

Fig. 2.2(b) and the second group corresponds to the case

shown in Fig. 2.2(d). Each of these is furthur discussed

below.

For the first group the effects of traps in the
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material are negligible and so both carriers contribute to

the photocurrent. If the detector is operated in the linear

region of the drift velocity-field curve then the maximum

obtainable gain for p and n type materials, respectively, is

[9]

rmax (gn gp)/(2gn)

"max (gn gp)/(2gp).

(2.22)

(2.23)

If the detector is operated in the saturation region of the

velocity-field curve then the maximum gains for p and n type

materials, respectively, are

rmax (vnsat v psat )/(2vnsat)

rmax (vnsat vpsat )/(2vpsat).

(2.24)

(2.25)

If the free lifetime of the carriers is equal to the

minority carrier transit time then the transit time limited

bandwidth is given by

BW(tt limited) = 0.38/tt(minority carrier). (2.26)

Since the photoconductor does not have an intrinsic

capacitance the RC time constant is usually smaller than the

transit time. So the bandwidth of the photoconductor is

given by equation (2.26). Then the gain-bandwidth product

depends only on the majority carrier transit time.

For the second group of photodetectors the minority

carrier is captured by the traps in the material and usually

the trapping time is much greater than the majority carrier

transit time. So gains much greater than those given by

equations (2.22) and (2.23) are possible at low fields. The

gain-bandwidth product, however, still depends only on the
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majority carrier transit time, so the bandwidth for these

detectors is degraded.

2.2.2 photodiodes

A p-i-n phtodiode is shown in Fig. 2.3. Under large

reverse bias the lightly doped intrinsic (i) region is

completely depleted and the field in the i region could

exceed the saturation field (the field at which the drift

velocities of the carriers are saturated). The generated

EHPs in the i region and in the depletion regions of the p

and the n regions due to the incident light will be swept

out by the high fields in those regions. Some of the

electrons (holes) generated within a distance Ln (Lp) of the

p (n) depletion region will diffuse to the junction and will

be swept across by the fields, Ln and Lp being the diffusion

lengths. The carriers can not be replenished at the contacts

so the maximum gain is one. This corresponds to the case

shown in Fig. 2.2(c).

The field in the depletion region is usually greater

than the field required for the carriers to travel at

saturation velocities. The maximum velocity of electrons

(holes) collected along L+Ln (L+Lp) is vnsat (vpsat) The

mean velocity will be smaller because of the combination of

both diffusion and drift. A reasonable approximation for

transit time is [9]

tt = (Lp + L + Ln ) /vsat (2.27)

where vsat is the smaller of vnsat and vpsat.

If the low-doped i layer is removed, then a simple p-n

photodiode is obtained. This detector would have a large

capacitance (because of small L), a small quantum efficiency

(because all of the incident light may not be absorbed in
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Fig. 2.3 A pin photodiode and its field distribution under
reverse bias.
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the depletion region L) and a large transit time limited

bandwidth. If the p-n photodiode is operated close to the

reverse breakdown voltage, then the detector is called an

APD. In an APD very high gains are possible because of

avalanche multiplication. The transit time limited bandwidth

of an APD depends on the ratio of electron and hole

ionization rates [6]. Ionization rate of a particular

carrier is the number of EHPs generated by that carrier per

unit distance traveled.

2.2.3 Schottky photodetectors

Two types of Schottky photodetectors are shown in Fig.

2.4 under typical reverse biased conditions. Fig. 2.4(a)

shows a simple Schottky diode. The EHPs generated in the

surface depletion region are separated by the action of the

internal field as in a p-n junction photodiode. To avoid

large reflection and absorption losses when the diode is

illuminated through the metal contact, the thickness of the

metal film is - 100 A and an antireflection coating is also

used [6]. Usually the minority carrier has the larger

transit time and for the case shown in Fig. 2.4(a) is given

by [9]

tt = (L+Lp )/vpsat (2.28)

The maximum gain is one since the carriers can not be

replenished at the contacts. By using a low-doped i-layer a

metal-i-n photodiode similar to a p-i-n photodiode can be

made [6]. If the field in the depletion region is close to

the breakdown field then avalanche multiplication can be

achieved.

Fig. 2.4(b) shows a metal-semiconductor-metal (MSM)

photodetector which is a back-to-back Schottky barrier and
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(a)

(b)

Fig. 2.4 (a) A schottky barrier photodiode under reverse bias.
(b) An MSM photodiode under bias

-4111-- L Do- Lp
..4-01..

Fig. 2.5 A phototransistor and its equivalent circuit.
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is also called a Mott diode [9]. If the applied bias is

large enough such that the depletion regions of the two

Schottky diodes merge with each other then the carriers

generated anywhere between the two contacts would travel at

saturation velocities and the bandwidth is given by [9]

tt = 2L/(vnsat vpsat) (2.29)

2.2.4 Phototransistors

A phototransistor achieves gain through the transistor

action [6]. An npn bipolar phototransistor and its

equivalent circuit model are shown in Fig. 2.5. A

phototransistor differs from a conventional bipolar

transistor by having a large base-collector junction on

which the light is incident. When the base lead is floating,

the photogenerated carriers contribute a primary

photocurrent Ip in the collector. The holes generated in the

base and the holes swept into the base from the collector

lower the base-emitter built-in potential allowing electrons

to be injected across the base to the collector. The total

collector current is

It = I_ h FEIp -p (1+11FE)Ip (2.30)

where hFE is the dc common-emitter current gain so the gain

for a phototransistor is (1+hFE), typically around 100. The

fabrication of a phototransistor is more complex than that

of a photodiode and the frequency response of a

phototransistor is also limited by the large base-collector

capacitance and is reduced furthur by the gain of the

detector due to feedback effects [6]. Because of these

limitations phototransistors are rarely used for high speed

applications.
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2.3 Literature review

A general comparison of gain and bandwidth of

photodetectors in the near-infrared range (0.8 gm to 1.7 gm)

was given by Beneking [9]. Wojtcjuk et al. [10] have

compared several easily integrable photodetectors made on Cr

doped SI-GaAs substrate. The design theory of p-i-n

photodiodes was given by Bowers et al. [11]. Both p-i-n [12]

and APD [13] detectors were shown to be integrable with GaAs

MESFETs. Wang et al. [14],Parker et al. [15] and Rav-Noy et

al. [16] have shown that the Schottky barrier photodiodes

with thin transparent electrodes could have bandwidths as

high as 110 GHz with very small light sensing areas.

Modulation doped photodetectors in GaAs/AlGaAs system

were probed by Chen et al. [3,4,17] and Pang et al. [18].

One particular modulation doped detector was shown to be

capable of operating without any bias [3]. The long fall

times observed in the pulse response of these detectors was

shown to be due to the slow moving holes [4]. Several

authors [19-23] have studied the GaAs MESFET itself as a

potential high speed photodetector with and without the

presence of the gate electrode.

Forrest [24,25] has shown that the photoconductive

structures can be used for high speed photodetector

applications though sometimes they require equalization. A

vertical photoconductive structure was studied by Gammel et

al. [21] for high speed applications. But most of the work

was done on planar photoconductor structures.

Photoconductive detectors made on undoped or lightly

doped epi layers were shown by Vilcot et al. [26] and Matsuo

et al. [27] to have large gains at low frequencies and at

low power levels. The mechanism for gain in these detectors

was also suggested by them. The noise characteristics of
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these detectors were explored by Vilcot et al. [28] and the

detectivity by Constant et al. [29]. The impedance

properties of these detectors were probed by Wojtczuk et al.

[30] and the space charge domains formed at high fields were

investigated by Wei et al. (31]. The microwave properties of

epi-layer photoconductors have also been characterized [32].

Darling et al. [33] replaced the ohmic metal contacts by

highly doped n+ contacts and the detector had a better

sensitivity. Lam et al. [34] studied the properties of

surface depleted photoconductors. Photoconductors made on

epi-layers of GaAs have also been integrated with GaAs

MESFETs [35,36].

The speed of the photoconductors can be increased by

shortening the lifetime of the minority carriers at the

expense of responsivity. Approaches used to enhance the

speed include radiation damage [37] and amorphization [38].

Roth et al. [39] have shown that detectors fabricated on

p-epi layers also have fast response times. More work was

done on GaInAs photoconductive detectors [40,41] which can

be used in the wavelength range of 1.0 gm to 1.6 gm.

Several authors [42-45] have studied the

characteristics of MSM photodetectors made on implanted or

epi layers of GaAs. The impulse response curve for some of

these detectors is nearly symmetrical. Gain was observed in

some detectors even though it is not as high as the gain

observed in the photoconductive detectors. Possible

mechanisms of gain were also discussed [42,44]. The dark

current was shown to be the lowest for Schottky contacts

made out of WSix metal [44]. Bandwidths as high as 105 GHz

have been achieved for a detector size of 10 gm X 15 gm

[45]. Analysis and modeling of these fast detectors were

carried out by Van Zeghbroeck [46] and Koscielniak et al.
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[47,48]. The noise characteristics were studied by Wada et

al. [49]. An MSM photodetector fabricated on quasi-ternary

(GaAs doped with 1% indium) grown GaAs material was shown

[50] to have very low dark current. These MSM photodetectors

were also shown to be easily integrable with GaAs MESFETS

[51-54].

Work has also been reported on detectors made directly

on SI-GaAs substrates [55-60]. The gain measurements,

temperature measurements, and spectral response measurements

were carried out by Schumm [61] and Yang [62] on detectors

made with both ohmic and Schottky contacts. Koscielniak et

al. [63] have shown that MSM photodetectors made on SI-GaAs

with Au islands between the fingers have higher responsivity

but decreased bandwidth. Nakajima et al. [64] have studied

the properties and developed a theory of MSM detectors made

on SI-GaAs material. Hammond et al. [65] have studied the

characteristics of Fe doped InP photoconductive detectors.
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3 MODELING AND DESIGN OF INTERDIGITATED STRUCTURE

3.1 Introduction

The interdigitated structure (IDS) has become a useful

element in recent years and has been used as contact

electrodes in photodetectors [56], as a capacitor and band

pass filter in monolithic microwave integrated circuits

[66], as modulating electrodes in acousto-optic modulators

[67] and as emitter and base contacts in bipolar junction

transistors [68]. The analysis and design of the structure

has been conducted by using a number of related techniques,

leading to an equivalent circuit of the required parameters

of the two port network. These circuit elements influence

the time response of the interdigitated photodetectors.

The models of Matthaei [69] and Ren [70] consider the

IDS in stripline configuration and the model of Williams

[71] considers the IDS in coplanar waveguide configuration.

All the other models [72-77] consider the IDS in microstrip

configuration. The models of Ou [72] and Chin [73] consider

the IDS without the pads which connect the interdigitated

fingers. The models of Alley [74], Hobdell [75] and

Esfandiari et al. [76] were based on coupled microstrip line

theory and calculate the even and odd mode admittances of

the interdigitated fingers. These admittances were averaged

over the terminal strip's length and were added to the shunt

admittance of the terminal strip. They neglect all the other

distributed effects of the structure, e.g., the open end

effect and the effects of gaps and steps in the microstrip

lines. The model of Pettenpaul et al. [77] took into account

the phase shift along the terminal strip and also all the

other distributed effects of the structure and was based on

S-parameter network theory.
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In this chapter the IDS is modeled starting with the

admittance matrix of the coupled microstrip lines and

modifying it to include the distributed elements. Even

though the model does not consider the phase shift along the

terminal strip, it is shown to be valid well into the GHz

range. It is easier to implement than the model based on

S-parameter network theory [77]. The model is tested against

experimental results and the model of Pettenpaul et al.

[77]. The IDS is also modeled without the ground plane.

3.2 Theory

For a single microstrip line, shown in Fig. 3.1(a), the

capacitance to ground is made up of the parallel plate

capacitance, Cp, and the fringing capacitance, 2Cf. Cp and

C
f
are capacitances per unit length of the microstrip line.

The fringing capacitance is given by [78]

2C
f

= C C = 1/(v
p
Z
0

) Cp
P

(3.1)

where v
p

is the phase velocity and Z
0
is the characteristic

impedance.

For a pair of symmetric coupled microstrip lines, shown

in Fig. 3.1(b), the total even and odd mode capacitances are

given as

Ce = Cp + Cf + Cf' (3.2)

Co = Cp + Cf + C
ga

+ C
gd

(3.3)

where C
f

' is the fringing capacitance to ground on the

coupled side of the microstrip and C
ga

and C
gd

are the

fringing capacitances across the gap in the air and

dielectric regions, respectively. The capacitance to ground,
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Fig. 3.1 Single and coupled microstrips and their capacitances
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C10; the self capacitance, C11, of each line; and the mutual

capacitance between the lines, C12, are given in terms of

even and odd mode capacitances as

C10 Ce Cp + Cf + Cf'

C12 = (Co C
e
) /2 = (Cga

+ Cgd
C
f
')/2 (3.5)

C
11

= C
10

+ C
12

= (C
e

+ C
o
)/2 = C

P
+ C

f
+

(Cga + Cgd + C
f'

)/2. (3.6)

(3.4)

The 4-port admittance matrix for the two coupled lines

is [79]

Y 11 Y 22 Y 33
Y = (j/2)(Y

o
cot(0

o
1) + Y

e
cot(0

e
1)

(3.7)

Y12 Y 21 Y 34 Y 43
(j/2) [Yocot((3ol) Yecot(Pel)

(3.8)

Y13 Y 31 Y 24 Y 42
(j/2)[Yocsc((301) Yecsc(Pel)

(3.9)

Y14 Y 41 Y 23 Y32
(j/2)[Yocsc(1301) + Yecsc(Pel)

Y
e

= 1/Z
e

Y
o

= 1/Z
o

where Y
e
(Z

e
) and Y

o
(Z0) are the even and odd mode

characteristic admittances(impedances), Re and Po are the

even and odd mode propagation constants and 1 is the length

of the coupled lines. The even(odd) mode propagation



constant, 0
e
(0
o
), is related to the even(odd) mode phase

velocity, v
pe

(v
po

), and the even(odd) mode effective

dielectric constant, via
Cre(Cro)'

Pe W/vpe W 4C-e-ic

0
o
= W/v = W qi--/c

po ro
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(3.13)

(3.14)

where c = 3 x 10
8 m/s is the velocity of light in vacuum and

W is the angular frequency. The impedances and effective

dielectric constants of the single and the multiple coupled

microstrips are calculated from [79]. The even and odd mode

capacitances and inductances are

C
e
= 1/(vpe

Z
e

) = 4E---/(cZ
e

)

re

C
o
= 1/(vpo

Z
o ro

) = 4E--/(cZ
o

)

L
e
= Z

e
/vpe = Z qi--/c

e re
000000

L
o

= Z
o
/v
po

= Z
o ro

4i--/c.

(3.15)

(3.16)

(3.17)

(3.18)

An Nf-coupled interdigitated structure is shown in Fig.

3.2. Assuming a quasi TEM mode of propagation, the

equivalent even and odd mode admittances can be estimated by

using the capacitance matrix of the two coupled lines as

given by [73]

[(Nf/2) - 1](C22 - 2C12)1 (3.19)
YeN vpe(C11 C12 +

{(Nf/2) - 1](C22 + 2C12)1 (3.20)
YoN vpo(C11 + C12 +

where C11 is the self capacitance of lines 1 and Nf, C22 is

the self capacitance of lines 2 through Nf -1, and C12 is the

mutual capacitance between adjacent lines. The coupling

between non-adjacent lines is neglected. C
11

and C
12

are the
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Fig. 3.2 Schematic of an Nfline, 2Nf port interdigitated
structure.
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same as in equations (3.5) and (3.6). C22 is expressed as

C
22

= C
20

+ 2C
12

= Cp + 2C
f

' + 2C
10.

(3.21)

YeN
and YoN

can also be written in terms of parallel

plate and fringing capacitances as

vpe[(Nfi2)Cp + Cf + (Nf-1)Cfl]
YeN

YoN
vp0[(Nf/2)Cp + Cf + (Nf-1)(Cga

+ Cgd )]

(3.22)

(3.23)

The IDS and its equivalent circuit are shown in Fig.

3.3. The series resistance, Rs, is made up of contact and

spreading resistances and conductor losses of the

interdigitated fingers. The various discontinuties in the

IDS and their representation as circuit elements are shown

in Fig. 3.4. The capacitance of the non-symmetrical gap in

the microstrip structure is given by [80]

where

C
g

= 5 x 10
-10 Qihs exp(-1.86G/hs){1 + 4.19 [1

5
exp(-0.785(hs/W1)

0.
W2/W1) ] 1 (3.24)

Q1 = 0.04598[0.03 + (W1ihs)Ac](0.272 + 0.07er) (3.25)

Ac = 1.23/[1 + 0.12(W2/W, 1)
0. 9

]. (3.26)

From Fig. 3-3 W, and W2 are given by

W
1
= W

W
2
= W + 2S

(3.27)

(3.28)

The capacitance and inductance of the microstrip step

are given by [80]
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Fig. 3.3 Interdigitated structure and its equivalent circuit.
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Mg. 3.4 Discontinuties in the interdigitated structure and their
representation as circuit elements.



Cstep (pF) = -,1,7TiT2 { [4.386 log(Er) + 2.33]W2/W1

5.472 log (Er) - 3.171

L
step

(nH) = hs[40.5(W2/1011 - 1) - 32.57 log(W2/W1)
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(3.29)

+ 0.2 (W
2
/W

1
- 1)

2
] (3.30)

where W
1
and W

2
are given by equations (3.27) and (3.28).

The capacitances of the open end coupled lines are

given by [81]

AC
10

= AC
e

= e
O
E
r
AL

e
W/h

S
(3.31)

(AC0 ACe)/2 = E0 (CreffALo - ErALe)W/hs (3.32)
AC12

where AL
e

and AL
o
are the increments in the line length of

the open end coupled microstrips for the even and odd modes,

respectively, and are given as

where

AL
e
= [(A2L AL + 0.0198 hsGi

R1) exp(-0.328G1
2.244

)

+ AL]

AL0 = [(AL hsR3) (1 - exp(-R4)) + hsR2]

G1 = (W + 2S)/hs

R
1
= 1.187[1 exp(-0.0690

2.1
)]

R
2
= 0.3430

0 6187 + [0.45E /(1 + Er)] U
R
5

R3 = 0.2974 [1 exp(-R2)]

R
4

= (0.271 + 0.0281Er)Gi
[1.167Er/(0.66 + Cr)]

[1.025E
r
/(0.687 + Er)]Gi

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

[0.958Er/(0.706 + er)](3.39)



R5 = 1.357 + 1.65/(1 + 0.7er)

U = W/hs

34

(3.40)

(3.41)

AL is the increment in the line length of a single

microstrip with an open end and is given as [81]

where

AL = hsP1P2P3 /P
4

(3.42)

P =
1

P
2

=

0.434907

1

0.8544 0.81
+ 0.26)(U

1
+ 0.236) (E

reff

(U10.8544 0.87) (E
reff

0.8544 0.81
0.189)

(3.43)

- 0.218 exp(-7.5U1) (3.44)

P
3

= 1 + {0.5274 tan
-1

[0.084U1
(1.9413/B)]1

/ Ereff
0.9236

(3.45)

P
4

= 1 + 0.0377 tan
-1

(0.067U
1

1.456
)

{6 5 exp[0.036 (1 Er)]} (3.46)

U1 = w/h
s

B = 1 + U
1

0.371
/ (1 + 2.358 Er)

(3.47)

(3.48)

A2L is calculated in the same way as AL except for W in

equation (3.47) for U1 is replaced by 2W.

3.3 Modeling technique

The conductor and dielectric losses are not included

here but can be easily incorporated in the model, i.e, Rs is

not modeled. Although it is possible to model the
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interdigitated structure in terms of the multiport

admittance matrix (2Nf port), it is convenient to formulate

the analysis in terms of the equivalent four port

representation. The equivalent even and odd mode admittances

of the Nf-coupled interdigitated fingers, which are given by

equations (3.19) and (3.20), are used to reduce the Nf-line,

2Nf-port admittance matrix to a 2-line, 4-port admittance

matrix by replacing Ye and Yo by YeN and Y
oN'

respectively,

in equations (3.7) to (3.10). The discontinuties are modeled

by using known reliable equivalent circuit models.

The total capacitance due to the non-symmetrical gaps

between the fingers and the pads is

Cgt = (Nf/2)Cg (3.49)

for each side of the pad since they are all in parallel. The

total capacitance and inductance due to the microstrip steps

at the pads are

C
st

= (Nf/2)C
s

L
st

= Le/(Nf/2)

(3.50)

(3.51)

Finally, the total ground and mutual capacitances due to

open end coupled lines are

(Nf/2)ACio
AClOt

Ac
12t

(Nf 1)AC12

(3.52)

(3.53)

The modified 2-line, 4-port admittance matrix of the

n-interdigitated fingers is now augmented as shown in Fig.

3.5 to include the effects of the discontinuties in the

structure. When all the capacitors are taken inside, the

4-port admittance matrix is modified as
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Fig. 3.5 Fourport network of IDS with effects of the discontinuties included.
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Y1'1'
Y

Y ll j(1)(Cgt Cst - Ac
12t

) (3.54)

Y2'2' Y 4'4' Y ll
iG) (Cgt + AC

10t AC 12t ) (3.55)

Y1'2' Y 2'1' Y 3'4' Y4'3' Y12

jW(C
gt

Ac
12t

) (3.56)

Y1'3' = Y
3'1'

= Y
2'4'

= Y
4'2'

= Y
13

(3.57)

Y
1'4'

= Y
4'1'

= Y
2'3'

= Y3,2, = Y
14

(3.58)

and the new ports are 1', 2', 3' and 4'. There is no current

flow through ports 2' and 3' since they are open circuited .

The modified 4-port admittance matrix is inverted and is

reduced to 2-port impedance matrix by applying the boundary

conditions of zero current at ports 2' and 3'. The 2-port

impedance matrix is augmented to include the inductance as

Z1,,1,, = z
4"4" Z 1'1' *Lst

= z
1'4'z

1"4"
= z

4"1"

(3.59)

(3.60)

The 2-port admittance matrix is obtained by inverting

the above impedance matrix.

For the center tapped IDS shown in figure 3.3 where

ports 1, 2, 3 and 4 are open circuited the impedance matrix

for each half section is given by [76]

Z11 = Z22 = (1/2)[Z Te
coth((3Te 1

T
/2) + Z

Tocoth((3To 1 T/2)]

(3.61)

Z21 = Z12 = (1/2)[Z
Te

coth((3Te 1
T
/2) - Z

To
coth(P

To
1
T
/2)]

1T = NfW (Nf 1)S

(3.62)

(3.63)
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where Z
Te'

ZTo
and p

Te'
PTo are the characteristic

impedances and propagation constants for the terminal strip

and 1
T

is the length of the terminal strip. The total

admittance of the terminal strips is

v

YTll
= 2Y

11

YT12
= 2Y

12

v t

(3.64)

(3.65)

where the admittance matrix [Y ] = [Z ]

-1
. When the fingers

are connected to the terminal strips, the fingers can be

represented by an effective distributed shunt admittance

across the terminal strip. Thus at an angular frquency Co the

line parameters for the terminal strips with fingers

connected are

ZTe \ILTe /ECTe + (Yll + Y12)/(
j2W1T)]

ZTo \/ LTo /ECTo + (Y11 Y12
)/(j2(A1T)]

Pre j(1)4LTeECTe + (Yll + Y12 )/(j2W1T)]

PTo j"ToECTo + (Y11 Y12)
/ (j2(w1T) ]

(3.66)

(3.67)

(3.68)

(3.69)

where [y] = [Z]
-1 obtained from (3.59) and (3.60) and C

Te'

C
To

and L
Te'

L
To

can be calculated from Z
Te'

Z
To

and 0
Te'

p
To

using equations (3.15)-(3.18).

The insertion loss of the IDS can be calculated with 50

0 source and load impedances. If we add the microstrip's

step inductance and capacitance resulting from the

microstrip connecting the pads to the source and the load,

then the overall circuit is as shown in Fig. 3.6. The step
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Fig. 3.6 Circuit used to calculate the insertion loss of the IDS.



inductance L
ms

and capacitance Cms
are calculated from

equations (3.29) and (3.30). The derived expression for

insertion loss is

where

40

S
21

(dB) = 20 log(V
o I
/V.

n
) = ((ORI,C)

2
/[(Al2

+A2
2
)(A3

2
"/-A4

2
)]

RL = RG = 50 C2

Al = WRLCt

A2 = w2LmsCt 1

A3 = w2 (2LmsC + LsC + LmsCt) (w4 LsCLmsCt - 1)

A4 = (O3LsCRLCt - wilL(2C + Ct

Ct = C + C
ms

The experimentally measured insertion loss can be

compared with the modeled insertion loss.

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

3.4 IDS without the ground plane

When there is no ground plane the capacitance to ground

C
P

in Fig. 3.3 is eliminated. The interdigitated fingers can

then be modeled as coupled coplanar strips. For a pair of

coplanar strips shown in Fig. 3.7, the line capacitance per

unit length is given as [78]

where

Cc = E
()
Ereff K(d')/K(d) (3.77)

d = S/ (S + 2W) (3.78)
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Fig. 3.7 Coplanar strips.



d' = 41

Ereff =

42

(3.79)d
2

[(1+cr)/2]Itanh[0.785 ln(hs/W) + 1.75] +

(Wd/hs) [0.04-0.7d+0.01 (1-0.1Er) (0.25+d) ] } (3.80)

and K is the complete elliptic function of the first kind.

The gap capacitance, Cg, between each finger and the pad is

also given by equation (3.77) but the values of W and S are

modified as

W = W
P

S = G

(3.81)

(3.82)

When there are n interdigitated fingers of length 1, the

total capacitance of the fingers considering only nearest

neighbor coupling is given by

CT = (Nf-1)C1 + NfCgW (3.83)

The actual value of C
T
would be slightly smaller than

the value given by equation (3.83) because of multiple

coupled lines. The approximate value of Cc per meter can

also be calculated from equation (3.5) by substituting zero

for Cf' as follows

Cc = (Cga + Cgd)/2 (3.84)

The series resistance, Rs, is given in terms of the

metal sheet resistance, Rsh as [82]

Rs = 4R
sh

1/3NfW

3.5 Results

(3.85)

The reflection coefficient, S11, of the IDS shown in
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Fig. 3.8 is measured on two substrate materials, alumina and

sapphire. The measurements are taken on a HP8510 network

analyzer using Cascade Microtech planar probes. The real and

imaginary parts of the measured Sli and the calculated Sli

are plotted in Figs. 3.9 and 3.10 for the two substrates.

The results are in reasonable agreement considering the fact

the that the IDS shown in Fig. 3.8 has some extra bends in

it to facilitate the measurement. A figure of accuracy is

how close are the measured and predicted resonant

frequencies. The resonant frequency occurs when the real

part of Sli is equal to 1. As can be seen from Figs. 3.9 and

3.10, the resonant frequency is predicted within 0.5 GHz of

the measured one.

In table 3.1 the values of C and C
1
of this model are

compared with those of Pettenpaul et al. [77] for three

values of N. The C values are in good agreement.The C1

values of Pettenpaul et al. [77] seem to be incorrect. The

value of C
1
is the sum of the parallel plate capacitance and

the even mode fringing capacitance to ground. The static

capacitance of the fingers to ground, Clos, is

ClOs [Cf
(Nf/2)Cp + (Nf-1) Cf'] 1 (3.86)

where C is the parallel plate capacitance per meter. For a

finger width and spacing of 10 um the values of C
P'

C
f

and

Cf' are 8.147 pF/m, 40.7 pF/m and 10.49 pF/m, respectively.

The capacitance of the pads, Cpad, connecting the

interdigitated fingers is added to Clos to get the total

capacitance to ground, Cl. The approximate value of Cpad for

a 10 gm width pad is 50 pF per meter. For a finger length of

100 gm, the values of C1 for various N are: C1(Nf=5) = 15

fF, C1(Nf=10) = 27 fF, and C1(Nf=20) = 52 fF. The values of
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Fig. 3.8 Top view of IDS on alumina and sapphire substrates.



alt 1
O
o. 0.8

0.6
0%
O 0.4
E

0.2
-o
c 0o .-

11 Ti; 0.2
w0 -0.40.4

t
0.6
0.8
1

45

2 4 4 8 10 12 14 16 18
bob Frequency (GHz)

Fig. 3.9 Predicted and measured real and imaginary parts
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Fig. 3.10 Predicted and measured real and imaginary parts
of S11 for the IDS on sapphire substrate. (N f=13, S=W=1
mil, G=2 mil, Wp=4 mil, 1=10 mil, lb =15 mil,Er =9.9).



Table 3.1 Comparison of C and C1 between the subject model and Pettenpaul
model. [Capacitor dimensions: 1=100 Al m, VII=S=BG=10,u m, h5=140 M,

Wpnal 0 AA m, Er =12.9] (1: The subject model and 2: Pettenpaul model [77]).

Frequency

(GHz)

Nf=5 Nf=1 0 Nf set20

C (fF) C1 (fF) C (f F) C
1

(fF) C (fF) C1 (fF)

1 2 1 2 1 2 1 2 1 2 1 2

0 36.5 36 19.0 18 80.1 79 35.7 21 166 165 69.3 27

3 36.5 36 19.0 18 80.2 79 35.8 21 168 166 69.5 27
6 36.6 36 19.0 18 80.3 80 35.9 21 170 167 69.7 27

9 36.6 36 19.1 18 80.7 80 36.0 22 173 170 70.1 28

12 36.7 36 19.1 18 81.2 81 36.1 22 179 173 70.7 28

15 36.8 37 19.1 19 82.0 82 36.2 22 186 177 71.3 28

18 36.8 37 19.2 19 82.9 83 36.3 22 196 183 72.2 29



47

C1 given in [77] are all smaller except for Nf=5.

In Fig. 3.11, the measured and the calculated insertion

losses from the model are plotted as a function of frequency

for three interdigitated structures. The measurements were

made on a 12" by 12" by 1/2" slab of stycast material which

has a relative dielectric constant of 12.5 and is very close

to the relative dielectric constant of GaAs which is 12.9.

This material was successfully used to test scaled models.

If we scale the dimensions down then the frequency would be

well into the GHz region. As can be seen form the Fig. 3-11

the general trend is followed in all three cases. The error

varies from less than half a dB to 2 dB at higher

frequencies. Factors that could account for this error are

i) the accuracy to which the IDS pattern could be made by

hand with one mil (1 mil = 25.4 gm) thick copper foil, ii)

the human error in reading the values off the spectrum

analyzer display, iii) the questionable validity of the

equivalent circuit models at scaled dimensions and, iv) the

error in the model itself.
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4 IMPULSE RESPONSE SIMULATION OF MSM PHOTODETECTORS

4.1 Introduction

Solid state device models can be divided into two

categories: physical device models and equivalent circuit

models. Equivalent circuit models are based on the

electrical performance of the device and are easier to

implement. However these models are limited in their range

of application because it is often difficult to accurately

relate the model elements to the physical parameters of the

device (geometry, doping, etc.) and because of the bias,

frequency dependence and non-linear dependence of most

semiconductor devices [83].

Physical device models are based on the physics of

carrier transport and can provide greater insight into the

detailed operation of the device. These are not limited by

the operating conditions and have been successfully used to

analyze dc, transient, large-signal and high frequency

operation. These models are used to predict the

characteristics of devices within the constraints of the

information available with respect to the semiconductor

material properties [83-85].

Physical device models are solved using one of either

bulk carrier transport equations, Boltzmann transport

models, or quantum transport concepts. Boltzmann and quantum

transport models are generally restricted to sub-micron

devices to provide detailed insight into carrier transport

physics. The transport equations based on the first two

moments of the Boltzmann transport equation, which assume

equilibrium transport conditions, satisfy most modeling

requirements [83].

Previous work in this area has mainly concentrated on
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modeling photodetectors made on epi-layers. Wei et al. [31]

reported a 1-D simulation of a planar photoconductor

fabricated on a GaAs epi-layer, neglecting transverse

diffusion and trapping effects. Their model successfully

predicted the light-triggered Gunn oscillations which were

experimentally observed. Van Zeghbroeck et al. [46] and

Koscielniak et al. [47,48] modeled the GaAs epi-layer MSM

photodetectors with interdigital finger spacings in the

sub-micron range. Peterson [86] has modeled the MSM

photodetector made on epi layers of silicon.

Iversion and Smith [87] have modeled the response of

InP:Fe photoconductors taking electron and hole trapping

effects into the deep level Fe impurities into account.

Kolodny and Kidron [88] have modeled the intrinsic

photoconductive response of HgCdTe infrared detectors. A few

analytical models [1,32,64] can also be found in the

literature.

In this chapter the physical modeling of the SI-GaAS

interdigitated MSM photodetector is described. The model

predicts the impulse response using bulk carrier transport

equations for the given structure, material parameters, and

operating conditions. The model considers both carriers,

electrons and holes, and includes the effects of field

dependent mobilities, carrier diffusion, and recombination.

The influence of the parasitic circuit elements calculated

in chapter 3 is also included. Dynamic simulation is

performed after applying an ideal light impulse. Carrier

distributions and currents, with and without the influence

of external circuit, are calculated as a function of time.

4.2 Physical description

The distribution and motion of carriers within a
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semiconductor device structure can be obtained by solving

three basic equations: 1) Poisson's equation, 2) the

continuity equation for electrons, and 3) the continuity

equation for holes [2]. Poisson's equation describes the

relationship between electric potential and space charge and

is given as

172
v = q (p n + ND+ - NA + NDD+ ) /e (4.1)

where AV is the potential, n and p are free electron and hole

densities, respectively, N
D

+
and NA

are ionized shallow

donor and acceptor densities, respectively, and NDD
+

is the

ionized deep donor (EL2 defect) density. For the case of EL2

doped SI-GaAs based on a three-level model [89],

N
D

+ N
DD

s NA .

The free electron and hole densities, n and p, are

(4.2)

close to the intrinsic carrier density, n , which is - 2x10
6

cm 3. Commercially sold EL
2
-doped SI-GaAs substrates are

slightly n-type [90]. Through out the simulation, n = p = n.

and N
D
+

+ N
DD

+
= N are assumed under thermal equilibrium

A
conditions. Under these assumptions the Fermi level is at

the intrinsic level which when referenced to the conduction

band energy level, is given by,

Ec.- Ei = Eg/2 + (kBT /2) loge(Nc/Nv) (4.3)

where Eg is the bandgap and N
c

, N
v
are the conduction band

and valence band densities of states, respectively. The

valueofEc-E.is = 0.68 ev.

The Fermi level at the air-GaAs interface is usually

pinned at 0.8 ev below the conduction band minimum [91].

This would cause a depletion depth of < 0.1 gm at the
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interface. This width is much smaller than the simulation

depth of the structure (2.5 gm). Its effects are negligible

on the operation of the device, so it is not included in the

simulation. A similar situation arises at the Schottky

contacts where the Schottky barrier height for some Schottky

metals is even smaller than 0.8 ev (eg., ibBn (WS ix ) = 0.74

ev, [44]). The effects of this depletion width are also

neglected in the simulation. In effect SI-GaAs is assumed to

be a perfect insulator with n = p = ni and with no band

bending at the interfaces under thermal equilibrium. Under

these assumptions the right hand side of equation (4.1)

becomes zero and the band diagram is as shown in Fig. 4.1.

Equation (4.1) with a zero right hand side is Laplace's

equation,

v2v (4.4)

The flow of charged particles is governed by the two

continuity equations, which are given as

an 1

= V.J + G - R
at q n n n

ap 1

= - _ V.J + G R
at

(4.5)

(4.6)

where G
n'

G
p
and Rn, Rp are the net generation rates and net

recombination rates for electrons and holes, respectively.

J
n
and Jp are the current densities for electrons and holes,

respectively, and are given by, based on the first two

moments of the Boltzmann transport equation [83],
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(b)

Fig. 4.1 Band diagram of SIGaAs MSM structure: (a) with no
bias, and (b) with bias.
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(4.7)

J
P

= qpg
P
E - qD

P
Vp (4.8)

where E is the electric field, gn, gp and Dn, Dp are the

moblities and diffusion constants of electrons and holes

respectively. The electric field is related to the potential

via the relation

E = - Vv. (4.9)

The Einstein relationship is assumed to hold between

diffusion constants and mobilities. This is

D
n
= (kBT/q) gn (4.10)

D
P

= (k
B
T/q) g

P
(4.11)

The optical generation rates G
n

and G
P

in equations

(4.2) and (4.3) will be zero for t > ()I- and the optical

impulse establishes initial carrier densities which are

given by [1]

(1-Rsurf )0c4(x,y)e
(-ay)

n(t = 0+) = p(t = 0+) (4.12)
h V
P

where Rsurf is the reflectivity of the detector surface, a

is the absorption coefficient,4 is the incident optical

pulse energy per unit area and h
P
v is the energy of one

photon. Although n = p initially, their time evolution will

differ due to different mobilities and recombination rates.

The most funadamental recombination process is the

Shockley-Read-Hall (SRH) type which is written, in the case

of a single energy-level recombination center (which

characterizes defects with neutral and single charge
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states), as [31]

np - 2

R = R
n

= R =
ni

. (4.13)
P tip (n+n

t
) + T

n
(p+p

t
)

Here nt, pt are computable constants given by

E
t

E.

nt = n. exp (

.

)

,

1
k
B
T

E

p
t

= ni exp (

i
- E

t
)

k
B
T

(4.14)

(4.15)

where Et is the trap energy level, E.
1
is the intrinsic Fermi

level, and tip, tin are the electron and hole lifetimes. For

simplicity Et = E.
1

and Tr) = tin = t are assumed. With these

assumptions, the recombination rate is given by

R
np - n.

1

2

C (n + p + 2ni)
(4.16)

The existence of '1 in equation (4.16) is an assumption

consistent with the given thermal equilibrium states. As

pointed by Yu et al., [92] it is not clear that, under

sufficiently high electric field, recombination should take

place at all. They point that the recombination process

should be strongly electric field dependent and a certain

finite field exists beyond which recombination time should

be considered infinite. Lacking the data on t(E) in the

literature, and assuming that the device is operated in a

regime where the effect of recombination is small on the

response, T is taken as the thermal equilibrium value.

Two other recombination terms are Auger recombination
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and radiative recombination which become significant only at

carrier densities of 1 x 10
17 cm

-3
[93]. In

photodetectors, even at high illumination levels, the

carrier densities rarely reach these high levels, so only

recombination through midgap states is considered.

The capture time for a deep level electron trap is

given by

tc
1

G
c
vthn

(4.17)

where G
c

is the capture cross section and with is the thermal

velocity of the electron. The capture time of an EL
2

trap is

.=-.. 1 x 10
-8 sec for an electron free carrier concentration of

1 x 10
14

cm 3,
with

of 1 x 10
7 cm.sec

-1 and 0
c

of 1 x 10-13

cm
2 [94-95]. But all the photoexcited carriers are

collected at the contacts in a much shorter time than the

deep level capture time. So the effects of trapping are

neglected assuming very few carriers are trapped during the

response time of the detector. Carrier densities exceed 1 x

10
14

cm
-3 level only at high excitation levels.

The thermal emission time for a deep level electron

trap is given by

'le

1
Ec - Et

exp ( )

0
e
vthN c T

(4.18)

where E
t

is the trap energy level. For the EL
2
trap, which

is approximately 0.69 ev below the conduction band minimum,

the emission time is tens of milliseconds. So whatever few

electrons are captured, their emission time at room

temperature occurs at a much slower rate and is not
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important on the time scales considered in the simulation

[87] .

4.3 Mobility models

The electron and hole mobilities at low electric fields

are constant and independent of the field. But at high

electric fields the mobilities are a function of the field.

The shape of the drift velocity verses electric field curve

is closely related to the value of the low-field mobility

[96]. The typical low field mobility of electrons in SI GaAs

is 5000 cm
2
.v
-1

.sec
-1 [90]. The expression for drift

velocity verses electric field for electrons is taken from

[96] and is given by

where

Egn/vnsat 1
v (g ,E) = v

nsat
{ 1 + } (4.19)

1 + 131(E gn/vnsat)

B 1 = 0.6 [e (gn j

10 -0.2) e-35(gn-0.2),-
1 + 0.01, (4.20)

Q = 4 [1 +
320

sinh (40 gn)
], (4.21)

v
nsat

= [0.6 (1 + gn) 0.2 gn
2

] x 10
5
m.sec

-1
. (4.22)

In equations (4.19-21) mobility is in m
2
.v
-1

.sec
-1

, electric

field is in v.m
1

, and velocity is in m.sec
-1

.

Darling [32] and Snowden [83] have used the following

relationship between low field mobility and electric field

for holes.



v
P

(µp, E)
g E

1 + Eg
p
/v
psat
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(4.23)

Bowers et al. [11] and Hellwege [97] have used a different

relation. Ths saturation velocity for the hole was given as:

0.85 x 107 cm.sec-1 by Darling [32], 1.5 x 107 cm.sec-1 by

Snowden [83], 0.6 x 107 cm.sec-1 by Bowres et al. [11] and

1.0 x 107 cm.sec-1 by Hellwege [97]. A low field mobility of

350 cm
2
.v-1 .sec-1 is assumed for the hole. Fig. 4.2a shows

the plot of electron drift velocity as a function of

electric field calculated from equation (4.19). Fig. 4.2b

shows the plot of hole drift velocity verses electric field.

4.4 Domain and boundary conditions

A finite domain which contains physical and artificial

boundaries should be specified for simulation. The domain

chosen for the photodetector simulation is shown in Fig.

4.3. The interfaces between the passivating layer-SI- GaAs

and the metal contacts-SI-GaAs are the physical boundaries

whereas the dashed lines show the artificial boundaries.

The artificial boundaries I and II are chosen through

the middle of the fingers so that reflecting (Neumann)

boundary conditions (carrier flux and electric field are

zero across the interface) can be imposed. The choice of

artificial boundary III is somewhat arbitrary. It is chosen

at a depth of 2.5 gm from the surface. The absorption

length, which is the inverse of the absorption coefficient,

is = 1 gm in GaAs at a wavelength of 0.8 gm. About 92 % of

the photons are absorbed in the chosen depth of 2.5 gm.

Neumann boundary conditions are also imposed at this

boundary.

Fixed (Dirichlet) boundary conditions (carrier
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concentrations and electric potential are known at the

boundary) are imposed at the metal contacts since no space

charge is assumed at these contacts. Gauss's law should be

applied at the interface between the passivating layer and

the SI GaAs. For an air-semiconductor interface, Peterson

(86] has shown that the potential distribution, as well as

the carrier distributions, are qualitatively unaltered by

replacing air with semiconductor. This would be even a

better approximation when a passivating layer replaces air.

So Neumann boundary conditions are imposed as a result of

symmetry. The surface recombination is neglected because of

the passivating layer which reduces the surface

recombination to insignificant levels.

The Neumann boundary conditions at the artificial

boundaries and at the passivating layer-semiconductor

interface are expressed as

an.Vv = 0 (4.24)

an.Vn = 0 (4.25)

an.Vp = 0 (4.26)

where an is a unit normal perpendicular to the interface.

The Dirichlet boundary conditions at the contacts are

expressed as

n = n.

p = ni

yr = constant

(4.27)

(4.28)

(4.29)

where yl = 0 on one contact and v = V, the applied voltage,

on the other contact.
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4.5 Scaling

The current relations (4.6) and (4.7) are substituted

into the continuity equations (4.5) and (4.6). These

together with Laplace's equation (4.4), constitute a system

of partial differential equations with the dependent

variables 4r, n, and p.

v2v = 0

an
= V.(ng

nE
+ Dn Vn) -R

at

aP = - V.(pg E + D Vp) R
at

(4.30)

(4.31)

(4.32)

The dependent variables yl, n, and p in the basic

equations are scaled so as to reduce their range. The

scaling factors employed are taken from [85] with some

modifications and are given in table 4.1. After scaling, the

basic equations transform into:

V21V = 0

Jn = ngnVIV DnVn

J = pg + D Vp

an ,
= V.(DnVn rignVV) R

at

aP
= V Vp + pg Vlif) R

at

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

The scaled current relations are multiplied by -xo/qDoni.

Boundary conditions and initial conditions are also scaled

according to the scaling factors shown in Table 4.1.
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Table 4.1 Scaling factors

Quantity Symbol Value

x,y X
0

min(X,Y)

IV WO
V

n,p n. n.
1 i

gn' llp g0
max(gn,gp)

D
n
,D
p

D
0

g
0
li
0

R D n /XR
0 0 i 0

t to X
0

2/D
0

2
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4.6 Numerical method

The two most common methods used to solve the partial

differential equations are the finite difference method

(FDM) and finite element method (FEM). Both methods rely on

the discretization of the equations across the domain of the

device. The FDM is well suited for planar rectangular

geometry devices and is employed here. It produces solutions

for the physical variables 4r, n, and p as discretized values

at specific nodes contained within a mesh superimposed on

the domain. The continuous derivatives are approximated by

discretized finite differences. The discretized physical

variables are represented by values obtained from the

solution of the discretized equations at each mesh point

except where the boundary conditions determine the values of

the variables [83].

The classical five point discretization shown in Fig.

4.4 is used. The following notation is employed.

a.
1
= Ax = x.

1+1 1
x. i=0,1,...,m-1

bi = Ay = Yi4.1 Yj

f(x.,y.) = f.I 3 1.J

j=0,1,...,N-1

f(xi+Ax,yj) = fi+1,j i=0,1,...M-1

+1x.+x.
1 +1

f(
'17) fi+1/2,j

2

(4.38)

(4.39)

(4.40)

(4.41)

i=0,1,...,M -1 (4.42)

where x.(y.) is the distance from the origin to the ith (3
th

)

mesh line parallel to the x-axis(y-axis) and f is a function

of x and y. For simplicity a uniform mesh like the one shown

in Fig. 4.5 is used with Ax = Ay = h.
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.1,10.1

65

-411HI
a

Fig. 4.5 A uniform mesh over the domain.
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4.7 Discretization of the semiconductor equations

Central difference approximations are employed for

greater accuracy. The discretization of Laplace's equation

is simple for a uniform mesh and is given by

yri -1,j Vi+1,j+ Vri,j -1 241ri,j Vii j +1
h
2 h

which is simplified and is written as

j j-1 j j+1 1111.+1, j 0'

(4.43)

(4.44)

After applying boundary conditions the discretized Laplace's

equation can be expressed in matrix form as

[A][111] = [B] (4.45)

where (A] is the coefficient matrix and matrix [B] contains

the Dirichlet boundary potentials. The coefficient matrix

has a maximum of five non-zero elements on any row of the

matrix and is therefore sparse.

The electric field, E, at any point is computed from

the two components E
x

and Ey as

E = V Ex2 + E
2

. (4.46)

Central difference notation is used to compute Ex and Ey at

the half points shown in Fig. 4.4.

aV 1,3 11/1+,,3
Exi +l /2,j

ax

Eyi,j+1/2
av vi, j +1

ay

(4.47)

(4.48)
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The electric field, E, is used to determine the mobilities

and diffusion constants.

The finite difference formulation of the continuity

equations is done by a half-point difference expansion based

on central difference approximations. The continuity

equations for electrons and holes are written as

an (- .)- (-nxi+1/2, 1 jnxi-1/2,1 )

at
O. ( -J R j

(-jnyi,j1-1/2 ) (-Jnyi,i-1/2 )
R(n,P).

1 ',3

h

ap
= V.J - R jpxi+1/2,j jpxi-1/2,j

at

jpyi,j+1/2 jpyi,j-1/2 - R(n,p)i,i

h

(4.49)

(4.50)

Employing the standard difference approximations for the

current density expressions leads to numerical instability

whenever the voltage change between mesh points exceeds

2k
B
T/q volts [98]. So J

n
and J are treated as differential

equations in n and p with Jn, JP, n, p, and E assumed

constant between mesh points. The solution of these

differential equations then relates J
n

and J to the other

variables [98].

J pn i+1/2,j n .

0
8 (Ili, )

nx i+1/2,j 1,D

.

1+1,3n
i+1,j

B(
0

1, 3 (4.51)



Dn i-1/2,j [n. .8(
Nv
1'3 1 'jnx i-1/2,j h 1,3 0

=

n JE3(

e
' )i-1,j

Dn i,j+1/2 [n
1,7 e

(lifir j+1 )
jny i,j+1/2 h

B
, j+l 0

Jny i,j-1/2
' ''D

n i, j -1/2
n[ .B (

V
1,3

Vi,
3
-1

h 1,7 0

B j)ni, 3*-1

v
)

Dp i+1/2,j [p,
( "

01+1, .B
jpx i+1/2,j

p. .B(
1,3

N'i +1,)j7Ni, j
e
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(4.52)

(4.53)

(4.54)

(4.55)

D
r- p 1-1/2, D Lpi_LjB )

px

]pi, 7
,B ( j)

e

J
Dp i, j +1/2 C 13(111ifi-olifiij+1

)1.py 1,3+,c pi,j+1

n . .B(
V

'3
1,3 0

B (
T ' 3

1' 3+1)_
pi, J-1 0jpy i,j-1/2

D
P i,j-1/2

[

n. .B
e1,D

(4.56)

(4.57)

(4.58)
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where B(z) is the Bernoulli function which is defined as

z
B(z) (4.59)

ez-1

and 0 is defined as

6 = k
B
T/q

The Bernoulli function is implemented as [85]

(4.60)

-z z5.z1

z/[exp(z)-1] zl<z <z2

B(z) = 1-z/2 z2z5.z3 (4.61)

z exp(-z)/[1-exp(-z)] z3<z<z4

z exp(-z) z4z<z5

0 z5z

The constants zl to z5 depend on the individual computer

hardware and are defined as [85]

exp(zl) -1 = -1

z2/[exp(z2)-1] = 1-z2/2

1-z3/2 = z3 exp(-z3)/[1-exp(z3)]

1-exp(z4) = 1

exp(-z5) = 0

z2<0

z3>0

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

These equations provide numerically stable estimates of the

current density under all bias conditions. Substituting

equations (4.47-4.54)) in equations (4.45) and (4.46), the

discrete forms of the continuity equations for electrons and

holes are obtained.
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The space discretization has been tackled so far. The

full backward time differencing (backward Euler method) is

unconditionally stable for any time step t and is used in

the simulation. The following notation is used.

At = tk+1 tk k=0,1,2,...,LT-1 (4.67)

f(xi,n,tk) = fi,j,k (4, 68)

The discretized equations are given as

V2v = 0 (4.69)

ni,
j, k +1

1'3' V%(-jni,j,k+1) Ri,j,k
(4.70)

At

Pi,j,k+1 Pi,j,k
V.J - R. (4.71).

,k
At pi, j, k +1 1, 3

The expressions for carrier mobilities and recombination

rate at time k can be used when the solution at time (k+1)

is sought. This is because the time scales associated with

carrier mobilities and recombination are much larger than

the time steps required to obtain acceptable truncation

error. The completely discretized continuity equations are

given below.

n. D.

i-1 k +1 1i, k+1B( r, I r,1 )

1,3-1,k+1 n i,j-1/2,k 0

_n
i-1, j,k+1

Dn i-1/2,j,k e

IVi
D /3(NIi,j,k+1 ,j-1,k+1)

ni, k+1 n i,j-1/2,k 0

B(Vi,j,k+111fi-1,j,k+1)Dn i-1/2,j,k 0
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D B(V1, j, k +1 i+1,j k +1)
n i+1/2,j,k 0

2

Dn i,j+1/2,k
B(Vi,j,k+lVi,j+1,k+1) + h

]
0 At

. B(Vi+1,j,k+1-Vi,j,k+n. . D 1) +
1+1j,k+1 n i+1/2,3,k 0

ni,j+1,k+1
Dn i,j+1/2,k 0

. .

= ( -
n1,3,k) h2Ri,j,k

At

pi, p i,j-1/2,kB(9i 0

p. . D
k +1) -

1-1,3,k+1 p i-1/2,j,k 0

P. .1, 3,k+1
[op

B j-1, k+1 Vi, j, k+1.)
j-1/2,k 0

Dp i-1/2,j,k ' e

B(Vi+1,j,k+1-Vi,j,k+1)Dp 1+1/2,j,k 0

2

D B r 1+1 k+iVi,j,k+i) h
p i,j+1/2,k ' e Ot

P. .1+1,3,k+1 p 1+1/2,j,kB ( 1111

1 k+1Vi+1,j,k+1)
0

p. D B(
k +1)

1, +1, k +1 p i,j+1/2,k 0

. .

= (R.
P1,j,k) h2

1,3,k At

(4.72)

(4.73)
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Finally the discretization of the boundary conditions

needs to be carried out. The discretization of the boundary

conditions at the contact is straight forward since

Dirichlet boundary conditions are enforced. Neumann boundary

conditions must be enforced at all the remaining boundaries.

This is done using Stirling polynomials which require extra

mirror image nodes outside of the domain as shown in Fig.

4.6. The Stirling derivative approximation for a surface

parallel to the x-axis is

af
i3O fi,1

f
i,-1

ay 2Ay
(4.74)

This derivative is zero at the interface and the boundary

conditions are

al
av,

= _ __I
ay i,j +l/2 ay i,j-1/2

an an

ay i,j+1/2 ay i,j-1/2

a

=
p

I

ay i,j +l/2 ay

(4.75)

(4.76)

(4.77)

which would give '1i, j +1
ni,j+1 = n1.

,
and pi,

pi,j-1"
The initial conditions are also discretized at the

grid points using equation (4.12) by substituting the values

of x and y at the grid points.

4.8 Solution methods

The two methods that are widely used are the Gummel

method and the Newton method. Newton's method is quadratic,

i.e., the error is approximately squared at each iteration
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Fig. 4.6 Image nodes utilized in enforcing Neumann
boundary conditions.
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giving rapid convergence. Gummel's method is linear, i.e.,

the error decreases by about the same factor at each

iteration. In Newton's method all of the equations are

solved simultaneously whereas in Gummel's method the

equations are solved sequentially.

The potential is assumed to be independent of time

since the conductivity of the substrate is small. Hence the

dielectric relaxation time is much greater than the response

time of the detector. Under this assumption the Laplace

equation and the continuity equations are completely

decoupled and are linear differential equations. Gummel's

method is used to solve these linear differential equations.

Laplace's equation is solved just once and the continuity

equations are solved LT number of times where, Tt = LTAt, is

the time in which the simulation is carried out.

The linear differential equations can be solved either

by a direct method (Gaussian elimination) or an inner

(linear) iteration method. The successive over-relaxation

(SOR) iteration method is employed since it is economical in

CPU time for large grids (> 100 x100) and round-off errors

are negligible. In the SOR method the convergence is aided

by over-relaxation, i.e., scaling up the update by a factor

between 1 and 2. The method is described below.

According to the SOR method, the solution for the

matrix equation,

[A] [X] = [B], [A] = (aij) , [B] = (bi) , [X] = (xj) ,

(i,j)=1,2,...,N (4.78)

is obtained by the following procedure [84]



m+1 -1
x
1

= all (b
1

a
13 3
.x.),

7-

m+1 m m+1
xi = x

1
+ (.0

opt 1
x
1

)

m+1 -1 i-1 m+1 N
x. = a.. (b. a..x. a..x.)
1 11 1 j=1 13 3 j=i+1 13 J

m+1 m m+1
x.
1

= x. + 0.)
opt (Xi 1

- x.),

m+1 -1 N-1 m+1
x
N

= aNN (bN
- a

N3
.x. ),

j =1
3

±

m+1 m m+1
xN = xN + Wopt (-RN xN )

'
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(4.79)

where superscript m is the iteration number and Wopt
is the

optimum over-relaxation parameter.

The matrix notation introduced above is useful for

theoretical analyses. Practical implementation of the SOR

algorithm needs explicit formulas [99]. Corresponding to

each row of the matrix A is an equation of the form

a. .x. , .

+ b .
.x. .

+ c .
.x. .

+ d .
.x. . ,

1,3 1+1,D 1,3 1-1,3 1,3 1,3+1 1,7 1,3-1

+ e . .x. . = f. . . (4.80)
1,3 1,3 1,3

The iterative procedure is defined by solving equation

(4.80) for xi,i

* 1
x. . = (f. . a. .x. , . - b. .x. . -1,3 e 1,3 1,3 1+1,3 1,3 1-1,3

1.7
c1. .x. - d. .x. . ). (4.81)

, 3 1,3+1 1, 3 1, 3-1

new
Then x. is a weighted average

1,3

new old old
x. . = x. . + W

'opt
(x
i,j

- x. .).
1,3 1,3 1,3

(4.82)



The residual at any stage is

ai,ixi+1,i

d.

+ b1.
,

.x.

.x. .

3 1-1, j

+ e.

+ C. .x.1,3 1,j+1

.x. f,
1,3 1,3-1 1,3 1,3 1,3

and the SOR algorithm (4.82) is

new old
x,i = x, w

1,j opt el'i
i,j
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(4.83)

(4.84)

This formulation is easy to program and the norm of the

residual vector is used as a criterion for terminating the

iteration. The flow chart for the problem is shown in Fig.

4.7.

4.9 Results

Potential distribution and electric fields are

calculated for a detector with L = 100 gm, S = W = G = 5 Rm,

W = 100 Rm, and N = 10. For these dimensions the length and

the thickness of the domain are 10 gm and 2.5 gm,

respectively. A uniform grid of size 400x100 is chosen which

corresponds to h = Ax = Ay = 0.025 Rm.

From the solution of Laplace's equation, the potential

distribution is known at the grid points. The equipotential

lines inside the domain are shown in Fig. 4.8. The potential

plot is shown in Fig. 4.9. From the known potentials at the

grid points, E
x

and E are calculated and are plotted in

Figs. 4.10 and 4.11, respectively. The electric field lines

are perpendicular to the equipotential lines everywhere. The

electric field at the surface is minimum at the center of

the gap and increases at the electrode corners. In practice,

the finite thickness and the specific geometry of the

electrodes will tend to suppress this singularity in the
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Fig. 4.9 Potential plot.



Fig. 4.10 Plot of electric field in the Xdirection.



Fig. 4.11 Plot of electric field in the Ydirection.
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field but a strong peak remains near the electrodes [1]. The

constant field plot is shown in Fig. 4.12.

The current is spatially localized along the electric

field lines. In the lateral direction, spatial confinement

of the channel is achieved by the extent of the illumination

itself or by the area of the interdigitated fingers. In the

vertical direction, carrier confinement is achieved by the

finite absorption depth of the illumination. Although some

diffusion occurs transverse to the electric field lines

(which is taken into account), the primary effects are

caused by longitudinal carrier flow which is collinear with

the field lines [32].

An optical impulse of uniform illumination is assumed

to be incident on the surface of the interdigitated

structure. Electron-hole pairs are generated within the

domain due to photoabsorption and the resulting distribution

of electrons and holes is calculated from equation (4.12) at

t=0
+

. Initial values for the electron and hole densities for

subsequent times are furnished by the previous run. In

general, the functions R, gn, and g vary at each point in

the device according to the values n, p, and E at that point

if their dift velocities are not equal.

All of the carriers generated at t=e contribute to the

output current. As time progresses, the contribution to the

current due to the carriers that reach the contacts or that

are lost due to recombination is subtracted out. The impulse

response of an ideal detector with the electric field

perpendicular to the direction of incident light is shown in

Fig. 4.13. Uniform electric field intensity, uniform light

intensity, zero recombination, and blocking contacts are

assumed. The shape of the impulse response is independent

of the absorption coefficient. The areas under the curves



Fig. 4.12 Plot of constant electric field lines.
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for electrons and holes are equal. The influence of

different mobilities and saturation velocities for electrons

and holes is also shown in the figure.

The response shown in Fig. 4.13 is the particle or the

intrinsic current. This current acts as the driving current

for the external circuit which determines the current

flowing through the load resistor. The impulse response of a

simple photodetector is shown in Fig. 4.14. For the particle

current shown in Fig. 4.14a, electron and hole drift

velocities are assumed to be equal. The most simple

equivalent circuit possible for a photodetector is shown in

Fig. 4.14b. It consists of the detector capacitance, which

is non-zero for any size detector, and the load resistance.

The output voltage in terms of transit time and RLC time

constants is

volt) =

i (t=0) *RI, [ (1+RLC/tt) (1-exp (-t/RLC) ) -titt ]

05. tS tt

i (t =0) *RL [RLC /tt- (1 +RLC /tt) exp ( -t /RLC) ] *

exp[- (t -tt) /RLC] tt_<t_<00 (4.85)

The overall impulse response, shown in Fig. 4.16c, depends

on both the transit time of the carriers and on the RC time

constant of the detector.

Several authors have stressed the influence of

parasitic circuit elements and the slow moving holes on the

response time of the detector [11,45,47,48,100]. A typical

equivalent circuit with parasitics which approximates a

practical detector is shown in Fig. 4.15. RD is the detector

dark resistance, Rs is the series resistance due to the

finite conductance of the fingers, pads and the connecting

cables, Cpack is the capacitance of the package, Ls is the
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R

Fig. 4.15 Typical equivalent circuit of a photodetector.
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Fig. 4.16 Influence of Ls on the detector time response.
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total inductance of the interdigital fingers and the bond

wires. The dark resistance for the SI-GaAs MSM detector is

in megaohms and its influence on the detector response can

be neglected. The output voltage and the input current are

related by the following 3rd-order differential equation.

where

d3vo d2vo dvo
+ C1 + C2 + C3vo = C4i(t)

dt dt 4 dt

C 4
= 1/(LsCCpack)

C3 = C4/RL

C2 = C3*(RsC + RLC + RLCp ack)

C1 = Rs/Ls + 1/(RLCp ack)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

This equation is solved using the fourth-order Runge Kutta

numerical method. The influence of the parasitic circuit

elements on the response of the detector is shown in Figs.

4.16-4.18 for a detector with Nf=13, S=5 gm, W=10 gm, 1=200

gm, vn=vp=107 cm.sec-1.

An analysis of an SI-GaAs MSM photodetector with the

above mentioned dimensions was done by Nakajima et al. [64].

The measured capacitance of the detector is 0.2 pF which is

the same as the one calculated from the interdigital

structure model. Nakajima et al. [64] calculated the shape

of the impulse response assuming the equivalent circuit

shown in Fig. 4.14b. They have assumed that the electrons

are traveling at a saturated drift velocity of 107 cm.sec-1

for an applied bias of 10 volts and the contribution to the

impulse response from the holes was neglected. Then tt = 50
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ps corresponding to the tt = SRLC case shown in Fig. 4.14c.

This response is the same as the one calculated by Nakajima

et al.

The calculated rise and fall times are 10 ps and 34 ps

while the measured ones are 23 ps and 55 ps, respectively.

The discrepancy is attributed by Nakajima et al. to the

inductance of the bonding wires and to the finite rise time

of the connecting cables. The simulated impulse response for

the same detector with Rs=0 ohms, C=0.2 pF, C_pack=10 fF,

RL=50 ohms and Ls =50 pH is shown in Fig. 4.19. The rise and

fall times are 12 ps and 50 ps, respectively.
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5.1 Introduction:

In this chapter the fabrication process used for both

ohmic and Schottky contact photodetectors made on SI-GaAs

material is described. The packaging techniques used to test

the pulse response are also described. The observed dark I-V

and high speed pulse measurement results are reported and

discussed. The modeled impulse response of the MSM

photodetector is compared with the measured pulse response.

5.2 Detector fabrication:

A two-level photomask is made on ultraflat, high

resolution photosensitive glass plates. The first level is

used to define the interdigitated pattern on the GaAs

surface and the second level is used to remove the

anti-reflection (AR) coating material from the contact pads

for bonding the device. The AR coating increases the amount

of light coupled into the photodetector. It also acts as a

surface passivation layer tying up the surface states to

minimize the surface leakage current and protect the

detector surface from humidity and scratches. The GaAs

material has a refractive index of - 3.5. Without the AR

coating, the Fresnel reflection, Rsurf from the detector

surface would be

r nGaAs-nair
J

2

Rsurf L

nGaAs+nair

(5.1)

where nair is the refractive index of air which is - 1.0. To

reduce the 30% reflection loss to zero, a dielectric layer

with a refractive index of
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(5.2)

and thickness X0/4n dielectric should be deposited on the

detector surface. ko is the operating wavelength in free

space. Usually silicon dioxide (SiO2) or silicon nitride

(Si3N4) are used as the passivating layers with refractive

indices of - 2.0 and - 1.45, respectively. Then at an

operating wavelength of 800 nm, the SiO2 and Si3N4 layer

thicknesses should be 1400 A and 1000 A, respectively. The

processing steps for both ohmic and Schottky contact

detectors are detailed in table 5.1.

5.3 Detector packaging:

Once a high speed photodetector is designed, packaging

it properly is the next most important step. In many cases

designing a good high speed package can be more difficult

than making the high speed detector itself [11]. The

influence of the parasitic elements introduced by the

packaging on the time response of the detector is shown in

chapter 4. The goal is to minimize these parasitic effects

introduced by the package. Integration with an amplifier

right next to the detector would eliminate the bond wire

inductance and the package capacitance. However, the

detector response should be known before it is integrated.

Three types of packages are used. In the first type,

the detector is placed in a small gap in a microstrip (MS)

line or in the center conductor of a coplanar waveguide

(CPW). Since the load resistance is 50 ohms, the

characteristic impedance of the MS and CPW lines should also

be 50 ohms to avoid reflections from the load. The

dielectric constant and the thickness of the microwave

substrate employed are 10.2 and 1.25 mm, respectively. The
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Table 5.1 Detector fabrication steps.

Step 1: Sample cleaning: Boil in TCA, acetone and IPA for 10

min. in each.

Step 2: Liftoff photolithographic step: Spin HMDS and then

AZ1350J photoresist at 4500 RPM for 20 sec.

Softbake at 85 C for 20 min.

Chlorobenzene soak for 3 min. to harden surface

Expose to 1st level mask at 16 mW.cm-2 for 20 sec.

Develop in 3.5:1 DI H20:AZ1400 for 30-40 sec.

Step 3: Evaporation and annealing for ohmic contact detec

tors: HC1 dip for 2 min. to remove native oxide.

Evaporate 0.2 g of Au:Ge, 0.015 g of Ni and 0.2 g of

Au at 1.0E-6 Torr in succession.

Anneal at 420 C for 3 min.

Step 4: Evaporation for Schottky barrier detectors: HC1 dip

for 2 min.

Evaporate 0.015 g of Ti, 0.02 g of Pd and 0.2 g of

Au at 1.0E-6 Torr in succession.

Step 5: AR coating: Clean the sample with acetone, methanol

and DI H20.

Deposit 1400 A of Si02 by PECVD technique.

Step 6: Bond pad opening: Spin HMDS and then AZ1350J photo

resist at 4500 RPM for 20 sec.

Softbake at 60 C for 5 min.

Expose to 2nd level mask at 16 mW.cm-2 for 20 sec.

Develop in 3.5:1 DI H20:AZ1400 for 30-40 sec.

Hardbake at 120 C for 5 min.

Buffered HF dip to remove Si02 (etch rate - 1000 A/

min.)

Remove photoresist with acetone.
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dielectric is covered with 70 AM thick copper strips on both

sides. The dimensions of the 50 ohm line are patterned onto

the substrate using photolithographic process. The detectors

are bonded to the microwave substrate by silver epoxy and

wire bonded to the copper strip with multiple 1-mil Au wires

to decrease bond inductance. No bias-T was required for this

package.

In the second type, the detector is placed at the end

of a 50 ohm SMA connector. A bias-T is used with this

package to isolate the pulse output from the DC bias

voltage. The two types of packages are shown in Fig. 5.1.

The third package used was designed at Tektronix, Inc.,

Beaverton, OR, for high speed device testing.

5.4 I=Vcliaractexisilasaftheieractara:

The dimensions of the fabricated detectors are shown in

table 5.2. DET1-DET4 are ohmic contact detectors and DET5 is

an MSM detector. DET6 is an MSM detector with a simple gap.

The gap length is 5 gm and gap width is 50 gm. DET7 is again

a simple gap detector with ohmic contacts. The gap length is

8 gm and width is 50 gm. DET1-DET5 are made at Oregon State

University and DET6-DET7 are made at Tektronix, Inc.

The measured I-V characteristics of detectors DET1 and

DET5 are shown in Fig. 5.2 and Fig. 5.3, respectively. The

current is plotted both on linear and logarithmic scales.

The I-V characteristics of DET2-DET4 are similar to the one

shown in Fig. 5.2. The interdigitated ohmic contact

detectors have an SiO2 passivating/AR coating layer whereas

the MSM interdigitated detector has no passivating layer at

all. The detectors fabricated at Tektronix have an Si3N4

passivating layer. The I-V characteristics of these

detectors are given in [61,62].
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Fig. 5.1 Two types of packaging techniques. a) Microstrip and coplanar
packaging. b) SMA connector end packaging.



Table 5.2 Detector dimensions.

Detector ID I (mm) S (Anti) W (.um) W p( Awn) G (.um) N

DET1 (ohmic) 4 80 10 100 160 44

DET2 (ohmic) 2 32 8 100 64 50

DET3 (ohmic) 1.5 25 5 100 50 50

DET4 (ohmic) 1 16 4 100 32 50

DET5 MAO 1.5 25 5 100 50 50

DET6 (14SM) Simple gap with Suls5 -um and width W=50 AM

DET7 (ohmic) Simple gap with S=8 -um and width W-50 .um.
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5.5 pulse measurements:

The packaged detectors are tested with a Tektronix

Optical Impulse Generator (OIG 501) and with a mode-locked

dye laser. The OIG 501 operates at 850 nm with two pulse

modes. In the "low energy" mode, the optical output pulse

width (FWHM) is < 35 ps with an output power of > 10 mW. In

the "high energy" mode, the optical pulse width is < 300 ps

with an output power of > 25 mW. The pulse repetition

frequency can be set to 10 kHz, 100 kHz or 1 MHz. A block

diagram of the system used for making pulse measurements

with the dye laser is shown in Fig. 5.4. The pulse

repetition frequency can be varied between 20 kHz and 800

kHz.

The typical observed shape of the pulse measurements

made on the interdigitated ohmic contact detectors using the

dye laser is shown in Fig. 5.5. The bias conditions and the

observed rise and fall times are shown in table 5.3. The

pulse responses of DET2 and DET4 to OIG 501 in the high

energy mode are shown in Fig. 5.6. The pulse response of the

simple ohmic gap to the dye laser pulse is shown in Fig.

5.7.

The pulse responses of the MSM interdigitated

photodetector to both the OIG 501 and the dye laser are

shown in Fig. 5.8. The pulse responses of the interdigitated

MSM detector (DET5) and the interdigitated ohmic contact

detector (DET3) which have the same dimensions are compared

in Fig. 5.9. Finally, the measured pulse responses of the

MSM gap detector are compared in Fig. 5.10 for the Tektronix

package and the SMA package.

5.6 Discussion:

The measured dark current is almost three orders of
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Fig. 5.5 Observed shape of the pulse response for omhic
contact detectors.

Table 5.3 Bias conditions for pulse measurements and the
observed rise and fall times.

Det.

ID

Bice.

v

Oat. current,

mA

Risetime,

p3

Falltime,

ns

DET1 40 2 200 3.5

DET2 15 1 140 2.5

DET3 10 0.47 120 2.5

DET4 15 0.4 100 3.5
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Fig. 5.6 Pulse response of interdigital ohmic detectors: a)
DET2, bias me 11 v, and b) DET4, bias Ma 5.5 v.
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Fig. 5.8 Pulse response of interdigital MSM detector: a) OIG

response, and b) Dye laser response (bias I 16 v).
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Fig. 5.9 Pulse response comparison of ohmic and Schottky

contact detectors: a) MSM detector, and b) Ohmic detector.
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Fig. 5.10 Influence of packaging on the detector response:

a) Tektronix package, and b) SMA connector package.
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magnitude lower than the microscope-illuminated current. The

ohmic contact detectors have linear I-V characteristics at

lower electric fields but start rising nonlinearly at

fields greater than about 5 kV.cm-1. This can be explained

by the space charge injection phenomenon which causes a

space charge limited current to flow through the

semi-insulating substrate at high fields [101]. However, the

observed fields at which the exponential rise in dark

current occurs are lower for the ohmic contact

interdigitated detectors here than the ones observed in the

literature [5,61,62].

Lee et al. [102] have shown that SiO2 passivation on

GaAs is inferior to Si3N4 and inferior to even a bare GaAs

surface. So the surface leakage current might be causing the

nonlinear rise in the dark current at fields > 5 kV.cm
-1

.

The leakage current can be reduced further by employing

Si3N4 as the passivation layer instead of SiO2. The linear

portion of the I-V curve can be extended to higher fields

with Si3N4 passivation layer if the surface leakage current

is causing the nonlinear rise in dark current.

The observed rise times of all the ohmic detectors are

in the hundreds of picoseconds range and are limited by the

RC time constant. The fall times, however, are not

proportional to either the transit time or the RC limited

decay time. The fall time is almost independent of the

detector dimensions. A similar observation was made by

Boudebous [5]. The capture time of the photogenerated

electrons by the EL2 traps is much longer than the input

pulse width and the transit time of the electrons across the

gap under moderate excitation conditions. So the effect of

EL2 traps on the pulse response of the detector is

negligible. The fall times of the detectors made on n-epi
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layers of GaAs also have longer fall times than predicted.

Vilcot et al. [26] and Matsuo et al. [27] made the

observation that the photogenerated holes are trapped at the

surface because of the surface band bending caused by Fermi

level pinning at the surface.

The energy-band diagram of the photoconductive SI-GaAs

detector in thermal equilibrium and under bias in the dark

and under illumination is shown in Fig. 5.11. The

equilibrium Fermi level is at 0.6 eV below the conduction

band for an electron concentration of 5X107 cm-3. The

metal-n
+ barrier at the "ohmic" contacts is so thin that the

electrons can easily tunnel through the barrier in both

directions. The depletion layer width at the n+-SI GaAs

interface is approximately 1.7 pm assuming a net (NsA-N SD)

shallow acceptor concentration of 3X1014 cm-3 [19]. The band

bending (Ec-Ef) at the surface of SI-GaAs is - 0.2 eV

whereas the band bending at the surface of an n-epilayer

(N
D
=1X10 15 cm-3 ) - 0.6 eV. So the hole trapping effect due

to band bending at the surface of SI-GaAs is not as severe

as at an n-epi layer surface.

The applied voltage is dropped across three regions: 1)

across the n
+/SI-GaAs interface near the cathode which

reduces the barrier height at the interface; 2) across the

quasi-neutral bulk region and 3) across the n+/SI-GaAs

interface near the anode which increases the barrier height.

Of these three voltage drops, that across region (1) is the

smallest and hence the barrier height reduction would be

very small. The electrons generated in the photoabsorption

process in regions (2) and (3) are easily collected while

only a fraction of the electrons generated in region (1) are

collected due to the strong internal field present in that

region. The photogenerated holes in regions (2) and (3)
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Fig. 5.11 Energyband diagram of SIGaAs with ohmic
contacts: a) in equilibrium, b) under bias in dark, and
c) under bias with illumination.
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easily reach the region (1) and (2) boundary, but they can

not reach the cathode contact or recombine easily with the

electrons in the n
+ region because the hole barrier at the

contact is - 0.8 eV. A similar effect was predicted in

HgCdTe infrared detectors [103]. This barrier would be

lowered with high intensities of illumination due to

photovoltaic effect. Since most photodetector applications

require both sensitive and high speed detectors, the barrier

for holes poses a serious limitation as far as speed is

concerned. Large photoconductive gains can be observed at

low light intensities if electrons can enter region (2)

easily to satisfy the charge neutrality in region (2). Very

large detectivities were indeed observed in epi-layer GaAs

photoconductive detectors at low light intensities and at

small frequencies [26-29]. The gains of the ohmic contact

detectors were measured by Yang [62] and Schumm [61] to be

2-100.

The hole trapping near the cathode contact is

independent of the detector dimensions and hence explains

the observed non-correlation of fall time with either hole

transit time or RC-limited decay time. The holes would

eventually recombine in the bulk due to excess carrier

lifetime. Evidence of trapping could also be seen in the

detectors tested by the OIG pulse. These trapping effects go

away at high intensities of illumination as can be seen from

Fig. 5.5 which shows the pulse response to the intense dye

laser.

A small tail is observed in the pulse response of the

interdigitated MSM photodetector response. This is believed

to be caused by traps or the slow moving holes. The tail is

shortened with increasing bias. The response drops below the

0% level of the pulse due to inductance effects in the



112

bias-T. No such dip is seen in the response of the simple

MSM gap which is tested without a bias-T.

The predicted response curve for the interdigitated

MSM detector is plotted in Fig. 5.12. The predicted risetime

and FWHM are 100 ps and 323 ps, respectively when only

electron current is considered and 106 ps and 366 ps,

respectively when both electron and hole currents are

considered. The measured risetime and FWHM are 130 ps and

320 ps, respectively. The measured risetime is the overall

risetime. It includes the combined effects of the finite

risetime of the input optical pulse, the risetime of the

sampling scope, the risetime of the bias-T and the risetime

of the detector itself. This is why the measured risetime is

slightly higher than the predicted risetime. The measured

and predicted FWHMs agree well. The falltimes are difficult

to compare because of the reflections due to packaging. The

hole current is significant only at high electric fields

where hole drift velocitiy approaches saturation velocity.

The hole current can be neglected at low electric fields.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Summary and conclusions

In this thesis the time response characteristics of

ohmic and Schottky contact photodetectors fabricated on

SI-GaAs material have been discussed. In chapter 2 the

theory of photodetectors is discussed and the parameters

that describe a photodetector are given. The literature with

respect to GaAs photodetectors is reviewed.

In chapter 3, a computer-aided-design compatible model

of the interdigitated structure is presented which takes

into account the discontinuities in the pattern. The model

is shown to be valid well into the GHz range as long as the

quasistatic assumption is valid. The series resistance due

to conductor losses for moderate finger lengths and metal

thickness is small when compared to the contact resistance

and spreading resistance of the interdigitated contacts. The

parasitics influence the time response of the detector, so

if the parasitic elements are known, the time response could

be modeled.

In chapter 4 an impulse response simulation of SI-GaAs

MSM photodetectors is carried out. The finite difference

numerical technique is employed. The potential and field

distribution inside the detector are calculated. Diffusion

and recombination effects are included. Dynamic simulation

is performed after applying an ideal optical impulse. The

influence of the parasitic elements on the time response of

the detector is shown. The simulated intrinsic current acts

as the current source for the detector equivalent circuit

and the output voltage across the load resistor is computed.

The simulated results are compared with published analytical

and experimental results. The model helps in the
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understanding of the detector response including the 2-D

effects and should be useful in the design of SI-GaAs MSM

photodetectors.

In chapter 5, the fabrication process of the ohmic and

Schottky detectors and the packaging techniques utilized are

described. The I-V and pulse measurements made on the

fabricated detectors are shown and discussed. The long fall

time observed for the ohmic contact detector is a problem in

high speed applications and requires equalization. Schottky

contact detectors have a fall time limited by the transit

time or the parasitic elements of the detector circuit. The

MSM detectors could be used in high speed applications.

The parasitics associated with the packaging depend on

the type of packaging employed. Even if the same package is

used to compare different detectors, there could still be

variations in the parasitic element values. The parasitics

modeled in chapter 3 are intrinsic to the detector's

interdigitated structure and do not depend on the type of

packaging used. The particle current modeled in chapter 4

also does not depend on the parasitics. However, the output

voltage across the load resistor is influenced by the

particle current, the detector's intrinsic parasitics and

the parasitics associated with the packaging. For this

reason, it is difficult to compare the predicted results

directly against the measured results. However, the model

could be fitted to the experimental results by varying the

parasitic elements associated with the packaging.

In conclusion, the equivalent circuit elements of the

IDS are modeled and are included in the impulse response

simulation of SI-GaAs MSM photodetectors. The SI-GaAs MSM

photodetectors are promising for high speed applications

whereas SI-GaAs ohmic contact detectors require equaliztion
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for high speed applications. The dark current of both MSM

and ohmic contact detectors is in the nanoamperes range at

operating voltages. Both detectors can be easily integrated

with a GaAs MESFET amplifier.

6.2 Suggestions for future work

The simulation of ohmic contact detectors is quite

involved and must include the effects of electron and hole

trapping. The voltage drops across various regions of the

detector need to be computed. Barrier lowering and space

charge injection must also be considered. The simulation of

impulse response should include the modeled circuit elements

of the IDS. The model could be used to calculate the DC or

low frequency gain which can be compared with the

experimentally observed values.

The finite difference method is implemented on a

uniform grid for calculating the impulse response of MSM

photodetector. Implementation of a nonuniform grid would

allow a higher density of node points near the conductor

corners where the field changes rapidly. An exponentially

decreasing grid spacing as a function of depth would make

the grid spacing to be proportional to the carrier density

at t=o
+

. Simulation depth could also be increased beyond 2.5

gm to account for more of the photogenerated carriers.

One possible investigation is the the study of gain in

MSM photodetectors which is not well understood. The various

theories proposed by some were ruled out by others. Large

scale testing might be needed to find out what is causing

the gain.

Another area of possible investigation is to study the

dark current and noise properties of the MSM and ohmic

contact photodetectors made on SI-GaAs. Especially the
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mechanism causing the increase in dark current with aging

needs to be understood before it can be eliminated. The

noise properties help determine the NEP and the specific

detectivity of these detectors.

Finally detectors with both p- and n-ohmic contacts

could be studied. These are expected to behave like p-i-n

photodiode and will have short response times. These can

also be integrated with MESFETs if the MESFET processing

includes a p-well implant step.

All of these studies depend critically on the package

parasitics. Another whole study of packaging effects on

overall detector response is necessary but will be very

difficult to quantify and achieve definitive results.
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