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There are over 130 million wood poles supporting electrical transmission and distribution 

lines in the U.S.  The vast majority of these poles are preservative treated to prolong their 

useful life.  In some cases, however, the depth of treatment is relatively shallow, leaving 

a deep zone of moderately durable, untreated heartwood.  This zone is susceptible to the 

development of internal decay that reduces pole capacity and shortens service life.  

Douglas-fir is one such species. Extensive efforts by Pacific Northwest utilities in the 

1960’s led to the development of a number of methods for improving the treatment of 

heartwood in Douglas-fir.   One of the most popular is through boring which involves 

drilling a series of holes through the cross section in critical decay areas such as the 

groundline, prior to treatment. The process results in nearly complete treatment of this 

zone. 

Any process that drills holes in a pole removes cross sectional area, creating the potential 

for reduced flexural properties. Engineers have long been concerned about the effects of 

through boring.  Prior studies; however, have shown that through boring produces only a 

minimal effect on modulus of rupture (MOR)  or modulus of elasticity (MOE) and the 



 

 

process has been standardized through the American National Standards Institute (ANSI) 

with a 5 % reduction in properties compared to non-through bored poles.  However, there 

are still lingering questions about the process. One of these questions is the possible 

effect of proximity of through bored holes to the edge of the pole.  Current standard 

specify a minimum edge distance of two inches; however, some utilities extend this 

distance to three inches. This increases the risk of incomplete preservative penetration 

that might reduce pole properties.  

In order to address the issue, finite element modeling was used to examine the effect of 

edge distances ranging from 1 to 3 inches on pole properties.  The models suggested that 

the current 2 inch edge distance would have no significant effect on pole properties.  

Forty eight air-seasoned Douglas-fir poles were used to confirm the model results. The 

poles were divided into 4 groups of 12 poles each. Poles in a given group were left 

without holes or drilled so that the through boring holes were 1, 2, or 3 inches inward 

from the outer edge. The poles were then tested to failure in a four point bending test and 

the results were used to calculate MOR and MOE. While MOE and MOR were lower 

than those found in previous tests, there were no statistical differences between the 

treatments.   

The Mean Stress Method was used to simulate wood anisotropy, as stress concentration 

theory over-predicts stress in wood products. This was implemented as a post processing 

tool and used the Hoffman failure criterion to determine strength. 

The numerical model or Finite Element Model was able to predict the location of failure 

in 36% of poles, and failure criteria within 25% of the experimental load. The model 

predicted failure location for 40% of poles from a previous test using the same testing 



 

 

procedures, and failure criteria of 23% of the experimental load. The model predicted an 

observed significant difference within the previous data, but was not sensitive enough to 

predict a smaller difference. The model cannot predict the properties of individual pole, 

but may be useful for examining the relationships between anatomical and mechanical 

properties collected here to model changes in failure location and strength between 

different drilling patterns.    
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Chapter 1. Introduction 

Wood utility poles are a vital part of electrical infrastructure, and failure in any part of the system 

can affect the lives of thousands. As a result, utilities require products that are reliable and long 

lasting. One aspect of wood is that biological agents can cause losses of strength that increase the 

probability of premature failure. Poles are normally pressure-treated with preservative for 

protection before they are placed in service. Utilities have created several solutions to improve 

preservative penetration during treatment, including deep incising, radially drilling, and through 

boring. Through boring offers the greatest preservative penetration of the three approaches, 

creating complete preservative treatment at the ground-line zone, the region most susceptible to 

decay.  

Engineers have long questioned the effects of through boring on strength, however, and there 

have been several studies on its effect on the mechanical properties of poles (Brown and 

Davidson 1961, Graham 1969, Elkins 2005, Morrell 2011). The results of these studies led to the 

development of a standard through-boring pattern that attempted to minimize strength losses and 

maximize preserved area (Elkins 2005).  

Some utilities do not use the standard through-boring pattern as specified in ANSI 05.1 (ANSI 

2017), and instead drill at larger edge distances. Edge distance is the perpendicular distance 

between the bore hole and the pole surface. Increasing the edge distance may leave gaps in the 

preservative envelope, increasing the likelihood of decay. However, increasing the edge distance 

also lowers stress concentrations. Additionally, even when the edge distance remains constant for 

all sizes of poles, the resultant stress concentrations can be different for each one. It would be 

prohibitively expensive to test all classes of poles at different edge distances; however, 
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developing a better understanding of the effects of edge distance on pole properties would help 

utilities make better decisions on through-boring patterns. 

Finite-element modeling (FEM) has been used in the past to predict the strength of wood poles 

(Pellicane and Franco 1994), however strength predictions should be taken with a grain of salt as 

there are often assumptions to simplify the task. FEM has been used to predict the effects of edge 

distance in dimensional lumber (Falk et al. 2003) and knot location (Baño et al. 2011, Guindos 

and Guaita 2013) on strength, as well as trends of through-boring hole size and stress. The 

effects of individual parameters in drilling patterns on pole strength can be isolated, and utilities 

can use this information to create new through-boring and other drilling patterns.  

The goal of this research was to investigate the effect of edge distance on flexural properties for 

a single class of Douglas-fir poles. Additionally, a strategy for predicting the effects of through 

boring on strength for all classes of poles was developed. A dual strategy was used to accomplish 

the following research aims:  

1. Evaluate differences in strength of and failure patterns between poles through bored at 

different edge distances. 

2. Numerically predict the strength and failure locations of through-bored poles. 

By validating the finite element model with the full-size test data, the model can be modified to 

predict strength losses for different classes of poles, through-boring patterns, or species.  

Scope of Study 

An experiment was designed to investigate the effect of the edge distance (control, 1 inch, 2 

inch, and 3 inch) of through-bored holes on pole strength. A linear elastic finite model was 
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developed to predict stress concentrations manifested at through-bored holes. The failure 

location and strength of poles were predicted with stresses found with the Mean Stress Method. 

Validation of the model included the experimental data in this study, as well as previous results 

by Elkins (2005).   
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Chapter 2. Literature Review 

Development of Through Boring 

The development of modern society was spurred by accessible electricity. A reliable electrical 

network has been required since the invention of the first light bulbs. Moving electricity requires 

a distribution network, and wood poles have been an important component of that system. There 

are over 150 million wood poles supporting the wires that make up the electric grid in the United 

States (Mankowski et al. 2002). These poles are largely composed of three wood species: 

southern pine, western redcedar, and Douglas-fir. Wood is a biological material that is 

susceptible to degradation from a variety of agents. As a result, most poles are artificially 

impregnated with preservatives to extend their service life.  

The species used for wood poles have different performance attributes. Southern pine is the most 

commonly used species; it has a thick band of very treatable sapwood surrounding a small, 

untreatable heartwood core. Once treated, the thick shell of treated wood provides good 

protection for the untreated core. Western redcedar has a thin shell of sapwood surrounding a 

naturally durable heartwood core. This species was initially used without supplemental 

treatment, but the thin sapwood shell is now  artificially impregnated with preservative.   

The expansion of the burgeoning electrical distribution system after the Second World War led 

to shortages of western redcedar and the substitution of Douglas-fir. However, there were a 

number of problems with this substitution. Douglas-fir is difficult to treat; this species has a thin 

band of treatable sapwood surrounding a moderately durable heartwood core, which poses the 

greatest protection challenge. The thin layer of preservative treatment can be compromised by 
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checks while in service. Furthermore, poles were not being sufficiently heated during the 

treatment process, allowing decay fungi already present in the wood to continue to degrade the 

poles once they were placed in service. The poles were often not properly seasoned prior to 

treatment, leading to skips in the preservative barrier. These wet poles also continued to season 

in service. As they did, deep checks opened that often penetrated beyond the depth of the original 

preservative treatment. These checks created pathways for fungi and insects to enter and degrade 

the moderately durable heartwood.  

A 1959 survey of 74 pressure-treated poles that had been service for an average of 11 years in 

Portland, Oregon found that 19% of the poles had rot pockets, while a separate survey by the 

Bonneville Power Administration (BPA) found decay rates closer to 50% (Merz 1959). These 

surveys led to a cooperative effort by BPA, Pacific Power, and Portland General Electric Co. 

(PGE) to identify solutions to what was viewed as a very large, emerging problem. Among the 

developments from this process were the identification of fumigants for the internal treatment of 

poles in order to arrest decay and the requirement that poles be heated for a sufficient time period 

to kill any fungi present inside the wood. In addition, there were efforts to develop improved 

methods for achieving more complete treatment of Douglas-fir heartwood. Among the processes 

developed were deep incising, radial drilling, and through boring prior to preservative 

impregnation.  

Incising is the practice of driving sharpened metal teeth into the wood to a specific depth (usually 

0.40 to 0.75 inches). The process exposes more end-grain to preservative penetration, improving 

the depth and uniformity of treatment. Deep incising substitutes 5- to 6-inch-long teeth to 

produce much deeper penetration. Radial drilling involves drilling 0.25-inch diameter holes to a 
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depth of 3 to 5 inches into the wood in a pattern that produces nearly complete preservative 

penetration of the bored area.  

Through-boring was developed by George Merz of PGE, and it has increased the service life of 

Douglas-fir poles to 60 to 70 years (Morrell 2011). Through boring involves drilling holes of 

0.50 to 0.56 inches in  diameter at a slight angle completely through the pole in the groundline 

area (Figure 2-1). While all three practices were and continue to be used, through boring has 

been the most widely adopted. At first, only the local utilities employed through boring for their 

Douglas-fir poles, but the practice slowly spread across the country for pre-treatment of large 

Douglas-fir transmission poles, ultimately leading to its inclusion in the American National 

Standards Institute Standard ANSI 05.1 (ANSI 2017).  

Conceptually, drilling holes in the critical groundline region of a pole creates concern among 

engineers, and there have been a limited number of tests to evaluate the potential effects of these 

groundline treatments on the flexural properties of poles. Brown and Davidson (1961) tested the 

bending strength of Class 4, 40-foot poles with several variations of groundline boring. The poles 

were drilled before treatment with one of either two different radial drilling patterns or two Merz 

through-bored patterns. The poles were set in the ground to a normal depth (about 6 feet) and 

tested full length in cantilever loading. They found that the breaking strengths of the poles with 

varying Merz patterns were 91% to 96% of those for the untreated controls. Radial drilling to a 

depth of 4 inches from the surface or to the pole center resulted in breaking strengths that were 

73% to 76% of the controls. This is counterintuitive that holes drilled partway are weaker, but 

could be due to the creation of multiple radial failure planes in the pole.    
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Figure 2-1: The through-boring pattern used today. (ANSI 2017) 

 

Graham et al. (1969) tested shorter Douglas-fir pole sections that had been deep incised, through 

bored, or radially drilled, and found minimal effects for deep incising, but 16% to 24% losses in 

modulus of rupture (MOR) for poles with various boring patterns. These poles were tested in 

bending, but it is unclear if the results bear directly on the properties of a full-length pole tested 

in cantilever loading, which is more reflective of in-service loads. These limited test data largely 
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formed the basis for supporting the use of through boring and radial drilling in utility 

specifications.  

In 2002, the effects of through boring on lodgepole pine were investigated; this species has 

similar durability and treatment characteristics as Douglas-fir (Morrell 2002). The pole sections 

were small (average diameter was 4.77 inches) with 0.25-inch diameter holes drilled 0.5 inch 

from the edge, at a spacing of 1.97 inches (50 mm) or 5.91 inches (150 mm) horizontally and 

2.95 inches (75 mm) longitudinally. The poles were tested in four-point bending, both parallel 

and perpendicular to the holes. Modulus of elasticity (MOE) was found to be 88% of that found 

for non-through-bored controls; MOR was found to be 90% to 96% of the control when poles 

were tested parallel to the holes and 70% to 82% when tested perpendicular to the holes. The 

results indicated that through boring could negatively affect the flexural properties of smaller 

diameter poles, and that the effect was directional. 

A number of studies showed that through-boring largely eliminated decay in the drilled region 

and markedly extended pole service life (Newbill 1993, Morrell and Schneider 1994). While 

there were periodic concerns about losses in flexural properties, the trade-off in terms of 

improved treatment at the ground line was believed to largely offset any strength losses. 

However, periodic pole failures of through-bored poles subjected to overloads such as strong 

winds or ice generally occurred in the through-bored zone, leading engineers to question the 

potential effects of this practice on strength. In addition, there were a number of patterns used by 

utilities, making it difficult for wood treaters to standardize practices. 

Kent (2003) used loss of section modulus from through boring to estimate possible strength 

effects, and estimated a maximum 17.5% to 23.5% reduction in strength. These calculations did 
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not take into account stress concentrations, and he recommended modeling and testing to 

determine the actual effects. 

In order to address the issues highlighted by Kent (2003), Elkins (2005) undertook a large-scale 

test to determine the effects of through boring on pole properties. Elkins began with finite-

element modeling to study stress concentrations around through-bored holes. The goal was to 

determine the sizes of and distances between holes that would minimize stress concentrations. 

These data, along with prior studies, showed the minimum distances needed to result in full 

preservative penetration in a through-bored zone, which were then used to develop an optimum 

boring pattern. The effects of through boring on flexural properties were then evaluated, using 

four different hole sizes on Class 4, 40-foot pole sections. One hundred and thirty-two poles 

were tested in four-point bending in a configuration developed in Australia (Crews et al. 2004). 

The results indicated that through boring had no significant effect on flexural properties when the 

holes were less than or equal to 0.5 inches in diameter. These results, along with a follow-up test 

evaluating the effects of the orientation of the load direction (parallel or perpendicular to the 

holes) were used to support the inclusion of through boring in the ANSI 05.1 standard, using a 

standard pattern, 0.5-inch diameter holes and a reduction in properties of 5%, in order to account 

for the directional effects. 

While through boring continues to be used and adopted by utilities, there are still lingering 

concerns about its possible effects on pole properties. One particular area of concern is the 

distance from a through-boring hole to the edge of a pole. Elkins (2005) examined this factor 

using finite-element modeling and used test data to arrive at a minimum 2-inch edge distance. 

However, some utilities have chosen to use larger edge distances. This practice moves the holes 

farther into the pole and increases the likelihood of unpreserved wood between the surface and 
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hole. This is important because the potentially affected area is located close to the surface, where 

most of the bending strength of a pole lies. There appear to be no data supporting the larger edge 

distance, and there is concern among treaters that this practice will make it more difficult to 

obtain acceptable treatment. In order to address this issue, the following study was undertaken. 

Pole Kiln Drying and Moisture Content 

Utility poles are often kiln-dried before treatment to reduce the moisture content (MC) from 

green to near fiber saturation. Kiln-drying affects strength, MOE, and checking. The ANSI 05.1 

standard recognizes that kiln-dried wood has a 0.9 reduction factor on strength. This 0.9 factor 

seems to be a conservative estimate derived from two series of tests on southern pine poles 

(Eggleston 1952, Thompson 1969). Electric Power Research Institute (EPRI) authors saw a 10% 

reduction in MOR (Philips et al. 1985) and a 14% to 34% reduction in MOE. In practice, kiln 

drying is performed on green poles to bring the shell below the fiber saturation point (FSP) 

before treatment, but it is not frequently used on Douglas-fir or western red cedar.  

Wood et al. (1960) looked at the effects of Boultonizing, steaming, and air drying for several 

species. The authors found that the strength decreased more between treated and untreated poles 

compared to small, clear specimens cut from both groups. Additional defects, such as shakes 

developed in treatment, exacerbated strength loss. Steamed southern pine poles developed pith 

checks and lost 20% strength, compared to green controls. This was greater than for other 

treatments, which lost less than 10% strength. Wood et al. (1960) recognized that checks affected 

the shear area, and that shear stress in bending was typically low. Shakes would reduce bending 

strength. The authors also stated that the strength of treated Douglas-fir decreased radially 
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inward. They did not hypothesize why; however, differential shrinkage would create tension 

cracks that would reduce strength. 

Philips et al. (1985) examined the difference in strength between air-seasoned southern 

pine poles and poles in a previous kiln-drying study (Thompson 1969). The authors found kiln 

drying at 152° and 182° F led to a decrease of MOR by 12% to18% and MOE by 34% and 39%. 

Matched samples were not used, and the presence of pith checks and shakes was not recorded. 

The species in the study were southern pine, but a reduction in strength would also be expected 

for Douglas-fir. 

Graham and Womack (1972) dried 8-foot sections of green Douglas-fir at temperatures from 

220° to 290° F. The authors found that the largest checks extended the length of the section, and 

that internal checks formed. Internal checks were caused by differential shrinkage between the 

dry shell and wet core. However, no mechanical testing was performed; the researchers 

estimated the loss of strength to be between 5% and 12%. Kozlik (1982) kiln dried 8-foot 

sections of Douglas-fir to find strength reductions, testing three pole diameters at three kiln 

schedules, which ranged in severity. The largest checks extended the length of the pole in 75% of 

the kiln-dried samples, but air-seasoned poles had similar checking patterns. Small, clear 

specimens were cut, and were tested in three-point bending. The authors found that there was a 

reduction of 15% in the severely kiln-dried specimens and only a 5% drop at the less severe 

schedule, compared to the air-dried specimens. At all temperatures, MOE was reduced by 4%. 

Based on the conclusions from this study and the ASTM 1960 (Wood et al. 1960) test, greater 

drops in strength would be expected for a full-size pole than for small, clear samples. Checking 

was similar for all sizes, but no tests were performed on differences in strength between sizes. 
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Kiln drying reduces the strength of wood, but as wood dries, its strength increases. As 

Douglas-fir dries from green to 12% MC, the strength increases by 60% for tension parallel to 

grain, 90% for compression parallel to grain, and 25% for shear parallel to grain (Forest Products 

Laboratory 2010) for small, clear specimens. The effect of moisture decreases as size increases. 

This conclusion is based on wet service factors (CM), a safety factor for MC above 19% for an 

extended period. In dimensional lumber, the maximum CM for bending is 0.85, for shear parallel 

to grain is 0.97, and for compression parallel to grain is 0.8 (National Design Specifications 

2015). For posts and timbers, CM is one except for compression perpendicular to grain and 

compression parallel to grain. A similar non-loss of strength is seen for poles and pilings. 

Although pole design values may not change with moisture content, individual strengths may. 

Philips et al. (1986) showed an increase in strength properties of air-dried poles of 1% to 10%, 

with MOR being significantly greater.  

Madsen (1975) examined the effects of MC on the distribution of strength in dimensional 

lumber. Madsen found that dimensional lumber that was weaker than the average was not 

affected by MC, while stronger specimens experienced changes in strength. Although material 

properties increased, defects still controlled the point and strength at failure.   Utility poles under 

the fiber saturation point may increase in strength, depending on the frequency of defects. As 

both air seasoning and kiln drying were used in the experiment, the mechanical effects of both  

may cancel.  
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Stress Concentrations 

Stress is a way in which a body reacts to external forces. The stress field within a body is the 

distribution of internal tractions that balances the external forces that are applied. In a solid body 

under tension, a plane normal to the load will contain a constant distribution and magnitude of 

these traction fields or stress fields. However, the stress fields are redistributed when there is a 

discontinuity, and there is a sharp rise in stress around those regions. The redistribution and 

increase in stress is greatest near an abrupt discontinuity, such as a hole. Stress fields and 

magnitude are near normal farther from the distribution, shown by Saint-Venant’s Principle 

(Boresi and Schmidt 2003). Stress concentrators can occur in many locations, such as notches, 

holes, or corners.  

Equation [1] describes the magnitude of stress concentration, called the stress concentration 

factor (SCF),  

ܨܥܵ ൌ
௠௔௫ߪ

௡௢௠ߪ
																																																																														ሾ1ሿ 

where σnom is the stress without the discontinuity and σmax is the maximum stress created by the 

discontinuity. The most common example is an isotropic bar with a hole under tension loading 

(Figure 2-2). The bar is defined by width D, hole diameter d, and thickness t. The nominal stress 

is simply the tensile force divided by the cross-sectional area.  
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Figure 2-2: Bar under tension (Roark and Young 2011).  

Stress can be predicted for different ratios of D and t (Figure 2-3); these predictions indicate that 

the maximum stress for an isotropic material can increase threefold. This is important, as a small 

hole or notch causes a large increase in stress. If SCFs are not considered in the design, 

premature failures can occur. Although SCF have been listed for a variety of different shapes and 

loading conditions (Pilkey 1997), there are still a number of scenarios that have not been 

examined. 

 

 

Figure 2-3. Maximum stress concentration for a bar under tension.  
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Stress concentrations can occur together, and this magnifies the stress. For example, a utility pole 

in bending contains multiple stress concentrations. Each through-bored hole creates a stress 

concentration, and the edge distance of each hole creates additional stress. In addition, most 

SCFs are only applicable for isotropic materials, although solutions do exist for some loadings of 

anisotropic materials.  

A utility pole can also be idealized as a cylinder under bending, where curvature adds additional 

stresses compared to a rectangle. Figure 2-4 describes an isotropic cylinder in bending, derived 

from Pilkey (1997); the curve has a minimum at d/D = 0.1. The optimal hole diameter is 1.05 

inches for a Class 4 pole with a diameter of 12 inches. However, the experimentally optimal hole 

size is smaller, 0.5in (Elkins 2005). These results suggest that stress concentrations alone do not 

explain the results of previous testing.  
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Figure 2-4: Stress concentrations created for a cylinder in bending: d/D is a normalized hole 
diameter, where d is the hole diameter and D is the cylinder diameter. 

 

Pilkey (1997) also described the effect of edge distance for a rectangular beam with a hole in 

bending (Figure 2-5). There is no minimum stress value, as was the case in the cylindrical 

member above. This is important in utility poles since moving the holes farther from the edge 

increases the likelihood of gaps in the treated area. Thus, there is a tradeoff between stress and 

treatment quality.  

 

Figure 2-5: SCFs for a rectangular prism in bending with a hole at the edge distance, c/e, where c 
is the edge distance and e is the width minus the edge distance. 

 

The effect of edge distance on properties has been previously investigated on dimensional 

lumber (Williams et al. 2000, Falk et al. 2003). Falk examined the effect of 1-inch diameter holes 

drilled into Douglas-fir nominal 4- by 8-inch (88.9-by 184-mm) beams tested in bending and 
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found that a small edge distance significantly affected the strength. They hypothesized that edge 

distance was more important than hole size. However, the parameters were only tested in a few 

configurations, and the authors suggested the need to test more configurations. Williams et al. 

(2000) modeled Douglas-fir nominal 4- by 8-inch (88.9- by 184.0-mm) beams using finite 

element analysis with two different edge distances and used Falk’s experimental data to validate 

the model, comparing ultimate load, load-deflection, and mode of failure. They found holes to be 

at a critical stress near the edge of the beam, and subsequently estimated the stress ratios. This 

model only predicted failure for rectangular dimensional lumber with a single hole, however. A 

different model would need to be developed for a cylindrical member. 

In addition to causing an increase in stress, holes can produce a change in the neutral 

axis. Davis et al. (2012) investigated the effect of knots in the tension and compression faces, 

and tracked the location of the neutral axis. A change in neutral axis depth means that traditional 

beam mechanics are less accurate. The neutral axis can change for both small and large samples 

due to differences in MOE in tension and compression (Davis et al. 2012); however, the true 

neutral axis for large specimens should remain nearly constant, due to nearly equal knots and 

holes in both the tension and compression faces, 

Most SCF derived in the literature are for isotropic materials and are solely dependent on 

the geometric properties of those materials. Stress concentrations for orthotropic materials also 

depend on the material properties. The first prediction for stress concentrations in wood was by 

Smith (1944), who predicted the stress distribution in plywood under tension. Smith used 

mechanics to show that there was an increase of 5.84σnom, compared to 3σnom, as previously 

derived for an isotropic material. This stress increase was a multiplier based off the difference of 

Young’s Modulus in the x and y direction, and the shear modulus in the xy direction. This stress 
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increase was 16% greater than the experimental results because of mathematical assumptions and 

the difficulty of measuring strain at a point. Measured stress concentrations in wood have been 

shown to be accurate, although they do not address wood’s heterogeneity. Chiang (1998) 

predicted SCF for an edge-notched orthotropic plate using a multiplier factor of the material 

properties to predict the stress increase and found good correlations with experimental results.  

The orthotropic multiplier factor is not the only multiplier in this process. Wu (2003) 

examined stress concentrations in orthotropic cylinders with a hole in tension, where no SCF 

existed for this system; however, factors do exist for plates, cylinders, and orthotropic materials. 

Wu (2003) determined the stress concentration using two scaling factors: the ratios between (1) 

an isotropic cylinder and an isotropic plate and (2) an orthotropic plate and an isotropic plate. 

These factors were multiplied together with the SCF for an isotropic plate to find the SCF for an 

orthotropic cylinder under tension. The results showed good convergence with finite element 

predictions. More SCFs for other loadings and geometries could be developed using this 

approach. 

As a non-homogenous material, wood already contains natural stress concentrations in 

the form of knots and checks. Knots radiate outward from the pith and are weaker than the 

surrounding wood. Differences in stiffness result in knots acting similarly to holes when under 

tension (Guindos and Guaita 2013). Additionally, knots redirect the flow of grain and change the 

direction of normal stresses. Natural stress concentrations may be greater than the manufactured 

stress concentrations. Elkins (2005) tested through-bored utility poles and found that the majority 

of failures initiated at knots. The initial stress concentrations created by the knots were greater 

than the manufactured concentrations, and they dictated the type of failure. 
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Although minor in comparison with large defects such as knots, the cellular structure of 

wood may also affect stress concentrations, depending on how the cells are sheared by a 

manufactured defect such as a hole. Stress concentration theory assumes that the maximum stress 

will occur at a point, which is a limitation of FEM, requiring an infinitesimally fine mesh, 

although it produces close estimates.  Additionally failure can only initiate at a finite area, 

compared to traditional homogeneous stress concentrations (Danielson 2007). This idea will be 

further explored in the failure criteria section.  

Stress concentrations can occur near each other, and introducing stress concentrations 

may occasionally increase the strength. An example of introducing stress concentrations to 

increase the strength is with crack remediation in concrete and steel, which can be explained as 

follows. A small hole is drilled at the crack tip. This hole produces a smaller stress concentration 

than the prior crack tip. This hole can also be drilled near another hole, which then smooths the 

stress field around both of the holes. This use of holes for defense was first introduced by 

Heywood (1952), was optimized later by Erikson and Riley(1978), and was further optimized 

with Finite Element Analysis by Meguid (1986). One of the main conclusions from Meguid’s 

(1986) work was that to act defensively, holes have to be one to two hole diameters apart. 

However, Pilkey (1997) stated that holes would continue to interact at distances of 10 diameters 

apart. Wang and Bodig (1991) explored this idea with wood, examining interactions between 

pairs of knots on a two-dimensional plate. They found that knots needed to be close together and 

that the larger the difference between the two knots, the greater the stress decrease. They also 

noted that at least one interacting knot pair existed in half of the poles surveyed, and that their 

interaction increased the stress induced in bending. 
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The defense hole theory was one of the explanations for the decreased variation found in 

through-bored utility poles (Elkins 2005). The through-boring holes redirect stress around the 

knots, and the pattern and spacing of the holes ensure that there will nearly always be a hole near 

a knot to redirect stress. 

Fracture Mechanics and Failure Criteria 

All materials fail under extreme loading, and it important to understand how this process occurs. 

Materials can experience many types of stresses under loading. Failure theories attempt to 

determine how the combination of stresses cause the material to fail. The simplest stress theory is 

the maximum stress criterion, which states that a material will fail when a principal stress 

exceeds the yield stress (Boresi and Schmidt 2003). This theory ignores components of any 

secondary stresses and is not useful for anisotropic materials.  

More realistic examples combine multiple stress components in order to create more accurate 

stress states. The most common example of this approach is the von-Mises yield criterion (Boresi 

and Schmidt 2003), which gives an equivalent stress based on differences in principal stress. The 

problem with this theory is that it does not recognize stresses in different directions, and it uses 

only the largest principal stresses and again is only for isotropic materials.  

Strength can differ in all directions for an anisotropic material. A failure theory then must 

account for strength differences in every direction. Hill’s (1948) yield criterion uses all stress 

components, with coefficients that represent strength in three directions. Hill’s yield theory does 

not consider differences between tensile and compression stresses, however, so is not applicable 

to wood. The Tsai-Azzi criterion is a special case of the Hill yield criterion that looks at 

individual quadrants of stress to account for the difference (Carbero 2012). The Tsai-Wu criteria 
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is similar to the Tsai-Aziz, but it contains a linear term. The Tsai-Wu contains coefficients for 

the differences in tension and compression for each direction of stress, products of those 

directions, and shear. Additionally, there are components that need to be determined by using a 

biaxial test. These methods work when biaxial components are assumed to be equal to zero 

(Patton-Mallory 1997,Williams et al. 2000). The criterion is similar to the Hill approach when 

the biaxial term = 0 (Carbero 2012); however, other researchers have determined biaxial 

components to be between 0.08 (Eberhardsteiner 2002) and 0.5 (Tsai 1992). The Hoffman 

criterion (ANSYS 2017) is similar to the Tsai-Wu criterion, but does not contain the term for 

differences in tension and compression and instead uses a linear multiplier.  

Researchers have recognized that traditional stress criteria must be modified when applied to 

wood. Theories for stress concentrations assume that maximum stress will occur at a singularity. 

In wood, the smallest distance is determined by the size of the wood cells (Guindos and Guaita 

2014). Wood grain around knots and holes also change the direction of stress. One approach to 

address these issues is to acknowledge the size effect by using fracture mechanics.  

Masuda and Honda(1988) and Landelius (1989) developed similar methods to calculate the 

stress in a region rather than at a point. The “mean stress method” averages stresses over an area 

or volume. This method was developed through testing notched beams, while Landelius created 

a theoretical solution. This method uses an additional variable, the theoretical integration size, 

which is dependent on the orthotropic stiffness for Mode 1 fracture, the perpendicular tensile 

strength, and the critical energy release rate (Landelius 1989). However, changing the magnitude 

of this variable does change the averaged stresses around the area, another variable to be aware 

of.  
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Gustafsson et al. (1996) used the mean stress method to predict the strength of glulam beams 

with holes and it has also been used to predict the effects of knots on strength in bending using 

finite element analysis (Guindos and Guaita 2014) . The best strength prediction was made with 

the Tsai Hill criterion and an integration volume, using an 8-mm cube. Correct integration 

volumes are still under discussion, and differ for hardwoods and softwoods because of the 

differences in cell arrangement. Masuda (1988) used 2 mm in the longitudinal direction, while 

Thelandersson (2003) suggested using 20 mm along the grain and 4 mm in radial/tangential 

directions for softwoods. This method increases the computational time, but may provide 

valuable information at a small scale.  

Finite Element Modeling of Wood and Utility Poles 

The orthotropic nature, heterogeneity, and nonlinearity of wood make predicting strength 

difficult. Wood requires testing many more samples as it comes from a living organism, resulting 

in inherent variance not present in steel or other materials. Computer modeling can be used to 

predict the strength of wood products and thereby reduce the need for physical tests. 

Nonlinearity, natural defects, grain direction, and failure mechanism have all been modeled for 

wood.  

The material behavior of wood is orthotropic and nonlinear. Nonlinear behavior occurs in 

compression, and wood behaves differently in compression as the cells either buckle or are 

crushed. Methods to define the nonlinear behavior include using bilinear and trilinear functions 

(Patton-Mallory et al. 1997, Moses and Prion 2002, Guindos and Guaita 2014), power functions 

(Tabiei and Wu 2000), or more terms (Baño et al. 2011). Bodig and Goodman (1973) showed 

that longitudinal MOE was proportional to the other elastic parameters, and these ratios have 
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been used in several models (Cramer and Goodman 1983, Cramer and Goodman 1985, Pellicane 

and Franco 1994). Some researchers reference the work of Vallippan et al. (1976) and Shih and 

Lee (1978). Vallippan et al. (1976) created an anisotropic work-hardening material model, for 

which Shih and Lee (1978) created an extension of the Hills yield criterion in order to account 

for strength differences in tension and compression. Patton-Mallory et al. (1997) created a 

constitutive model to account for the effects of changing elastic parameters on other directions 

for a bolted connection. The nonlinear behavior was modeled using a trilinear curve for Douglas-

fir; in addition to changing EL, the authors also reduced the Poison’s ratio. The authors modeled 

both shear and tension perpendicular to grain as nonlinear, in order to maintain symmetry. This 

model produced a good match between the stress strain curves. However, it is not a true 

constitutive model, due to negative stiffness coefficients, which show that the model is unstable. 

Tabiei and Wu (2000) examined nonlinear compression of wood, and attempted to create a 

symmetric, nonlinear stiffness matrix. Changes to the elastic modulus were based on previous 

experiments that used the same species with different orientations, producing reasonable results. 

The anisotropic model created by Moses and Prion (2002) improved upon the Patton-Mallory 

model in order to more accurately predict strength, using a constitutive model. The authors used 

the TB, ANISO option in ANSYS, which does not modify the stiffness matrix. This anisotropic 

option assumes a bilinear curve in each direction for compression, tension, and shear. The 

tangent moduli and yield moduli in each direction can be different. This option reduced the 

tension-perpendicular-to-grain stress, compared to the Patton-Mallory model, but overestimated 

the failure properties of Douglas-fir. The Moses-Prion model uses 3.2 MPa, compared to 2.3 

MPa, for tension perpendicular to grain, and 7.6 MPa, compared to 5.5 MPa, for compression 

perpendicular to grain (Forest Products Laboratory 2010). A number of researchers have used 
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inflated strength values for their small clear samples, but other strength values remain relatively 

close to reference values. 

The nonlinearity of wood has also been addressed using an effective section technique. Cramer 

and Goodman (1983) characterized the tensile strength of a beam with a knot in it by decreasing 

the stiffness of an element to near zero when the element stress reached the designated tensile 

strength in any direction. After this initial failure, the load will continue to increase until a 

maximum has been reached. This technique was coined “the effective section technique” and 

predicted the stress within 20%, an improvement compared to ASTM tests. Removing material 

as it yielded created a nonlinear stress strain curve. This work laid a good foundation, but the 

stress was essentially dictated by the clear wood area after material was removed due to 

perpendicular to grain stress. Cramer and Goodman (1985) improved the model to use stress 

intensities to create cracks. Zandbergs and Smith (1988) included grain direction while Williams 

et al. (2000) predicted the bending strength of a beam with a single hole using the Tsai-Wu 

strength theory and the stress limits found in the Wood Handbook (2010). Element reduction 

occurred when an element reached the Tsai Wu criteria on all nine integration points. This 

minimized the potential for one stress to dominate a single location. Williams et al. (2000) found 

good results for stress strain curves, and replicated the nonlinear behavior. The maximum load 

fell within one standard deviation of test specimens, and the model remained conservative. Ghan 

and Zhu (2004) used the effective section technique to predict the strength of OSB I-beams with 

different sized openings. Failure was dictated by the Tsai-Hill criteria. The authors found good 

correlations between the stress strain curves and failure loads.  

Finite element modeling has been used to predict the stress concentrations around knots. Knots 

are commonly modeled as holes when the knot is in tension (Cramer and Goodman 1985, Baño 
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et al. 2011, Guindos and Guaita 2013). Cramer and Goodman (1985) found that using the 

maximum stress concentration for an orthotropic material was inaccurate, with a maximum SCF 

of 8. The authors used the effective section technique to predict strength. Wang and Bodig 

(1991) looked at the knot interaction in wooden poles, using at a planar model and 

superimposing the stress fields of the two knots together. Baño et al. (2011) modeled knots as 

both holes and knots and compared the model to experimental results. The authors found that 

knots could be safely modeled as holes when in tension; however, the material behavior and 

contact should be modeled in compression. This was significant, as it suggested that there were 

already many holes existing in a pole that are creating stress concentrations. Their nonlinear 

model predicted the maximum load with an error of 9.7%. One error in the model is that the 

strength properties for tension perpendicular to grain (10 to 3.2 MPa) and in shear (14 MPa to 

10.4 MPa) are larger than for species similar to Pinus sylvestris found in the Wood Handbook 

(Forest Products Laboratory 2010). The authors later determined the influence of size and 

position on knots in another set of experiments in 2013. The knots were placed on the tension 

side at varying heights in a beam. They found that there was a 250% decrease in MOR as the 

knot moved from the neutral axis to near the edge, showing the importance of edge distance on 

strength.  

Guindos and Guaita (2013) further developed the model created by Baño et al. (2011) to include 

grain orientation. Grain deviation was modeled as a liquid flowing around a knot, and the 

velocity vectors acted as the grain direction around knots. The authors then compared several 

failure criteria with the experimental failure load of Pinus sylvestris beams and found an error of 

less than 5%. However, there was no distinction between yield stress and the tangent modulus in 

the tension and compression. Guindos and Guaita (2014) addressed this in the next model by 
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adding fracture mechanics using the mean stress method. The authors compared the magnitude 

of stress components of knots at different orientations, finding orientation to be as important as 

edge distance.  

Pellicane and Franco (1994) created a model to simulate cantilever bending of utility poles and 

verified through the testing of full-size poles. The model consisted of 20-sided isoparametric 

elements and 15 node wedge elements. Knots were modeled in the poles as decreases of the 

MOE, with the knot area based on the affected area, using the flow grain analogy. The poles 

were 50 to 60 feet long and were tested as cantilever beams. After testing, small, clear samples 

were cut from along the cross-section. The samples were broken in bending, and the moduli of 

elasticity and rupture were determined. The MOR of small samples were compared to the 

maximum stress parallel to grain in the model segments to find a proportional factor. The 

predicted strength was a 1-kip load multiplied by this proportional factor. The authors found less 

than 7% difference between the predicted and experimental strength, and predicted the failure 

location in 66% of samples. However, the method, which was supposed to predict strength, was 

only used for two-thirds of the samples; when the same method was used for the remaining 

samples, predicted strength was off by 32% to 44%.  

Elkins (2005) used finite element modeling to predict the effects of distance between holes, the 

size of holes, and edge distance in utility poles. She predicted trends for the above information, 

but the presented SCF were not meaningful due to not considering size effects of wood. Her 

results provide a starting point to investigate how edge distance affects pole strength.  
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Chapter 3. Experimental Materials and Methods 

Summary of Experiment 

The goal of this research was to determine the effect of the distance of through-boring holes from 

the edge of Douglas-fir utility poles on flexural properties. 

Materials 

Forty-eight poles were obtained from a facility located in Arbuckle, California and shipped to 

Oregon State University (OSU) in Corvallis. The poles had been obtained from Douglas-fir 

stands near Lebanon, Oregon. The poles were a mix of Class 1 40-foot, Class 2  35-foot, and 

Class 4 40-foot, and the butts were cut into 20-foot sections. The poles had been air-seasoned 

prior to arrival. 

Typically, through-boring holes are drilled parallel to the reference face, or the face of greatest 

curvature. This is important, as the greatest wind loads will bear perpendicularly against the pole. 

Many of the poles were heavily checked in one direction, and this face was marked as the 

reference face. Orienting the pole according to the largest check minimized the creation of a 

shear plane.  

A drilling apparatus was created (Figures 3-1, 3-2, 3-3) to allow accurate drilling for holes at a 

constant edge distance. Holes were drilled at 1, 2, or 3 inches (25, 50, or 75 mm) inward from the 

pole edge (Figure 3-3 and 3-4). Holes were drilled in both the tension and compression faces at 

the defined edge distance (Figure 3-5). The Merz pattern (1959) additionally has holes in the 

center (crossed circles in Figure 3-4); however, these holes were not drilled in the test poles in 

order to isolate the effect of edge distance. Additional holes also increase the probability that 
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these holes will interact with knots, causing failure due to the interaction. This would obfuscate 

the role of edge distance on flexural properties. 

 

 

Figure 3-1. Diagram of the drilling rig created for drilling holes at a constant edge distance for 
any size of pole. 
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Figure 3-2 and 3-3. Photos of the drilling apparatus created for drilling holes at a constant edge 

distance. The plate can slide in and out to fit any size. Blocks cut to 1 and 2 inches are placed in 

the interior edges to drill at different edge distances. Holes are drilled downward through the 

pipes. 
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Figure 3-4. Example of a hole pattern used to through bore Douglas-fir poles. Holes with an “x” 
were not drilled. 

 

Figure 3-5: Position of the holes in the tension and compression sections of the pole 

Twelve holes were drilled at 9-inch (225 mm) intervals along the pole length, from 36 to 96 

inches (900 to 2400 mm) above the butt, following the Merz (1959) pattern, as defined in ANSI 

Standard 05.1 (2017). Six holes were drilled parallel to the tension face, and the other six were 

drilled on the compression face of each pole.  
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The initial moisture content (MC) of the poles ranged from 14% to 28%, as measured from the 

outer 1.5 inch (38.1 mm). Due to the range of MC and the influence of moisture on mechanical 

properties, the poles were kiln dried at OSU. This option was chosen over wetting all poles 

above the FSP, due to time limits and the difficulty associated with obtaining a uniform high 

moisture content. Generally poles are tested in the green condition to derive ANSI properties.  

The poles were dried in three charges of sixteen poles each. The first charge of 16 poles was 

exposed to a dry-bulb temperature of 160° F for 48 hours, with no steam applied, resulting in 

severely checked poles with an average MC of 8%, as measured from the outer inch. The first 

charge was then conditioned to 14% before testing. The second and third batches of poles were 

subjected to a dry bulb temperature of 120° F and wet bulb depression of 15° F for 2 hours, 

followed by a dry bulb of 140° F and depression of 15° F for 72 hours. The resulting MC was 

14% to 16% in the outer inch of these poles.  

Test Apparatus 

The poles were tested using a method first developed by Crews et al. (2004), and adopted by 

Elkins (2005). The test is an asymmetric, unequally loaded four-point bending test. The load is 

biased 1:5 to the bottom end (Figure 3-4). The asymmetric and unequal loading conditions create 

a nearly constant moment across the groundline, mimicking the stress at the groundline observed 

in the field. The 1:5 ratio is created by the cylinder pushing asymmetrically on a beam, and by 

lever arms producing the 1:5 ratio. The moment in this test is not constant, and shear is present. 

Rounding of the loads was done for ease of construction of the beam lever arm. This test setup 

has advantages over the three-point bending test, as it stresses the entire groundline region rather 

than a small section directly beneath the load. This nearly constant moment will affect both 
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natural and manufactured stress concentrations, with the cause of failure being easily traced at 

the point of origin, which should be the highest stress concentration present in the loaded section. 

  

 

Figure 3-4: Diagram illustrating the support position and loading direction. 

 

The supports were Douglas-fir saddles, with rotation allowed. This configuration allowed the 

pole tests to be modeled as a simply supported beam. The use of Douglas-fir for both the 

supports and the load heads minimized stress concentrations and limited material bearing. The 

test was not shear critical; the length was calculated to produce a depth-to-length ratio greater 

than 14.  

Testing Procedure 

The poles were grouped to maintain a constant average diameter and standard deviation. 

Additionally, all poles in Charge 1 were distributed across all groups, to keep variability caused 

by drying stresses constant through all groups. This was done for Charge 2 and Charge 3 as well.  

The poles were weighed, and the diameters at the tip, bottom, and the loading locations were 

measured. Multiple diameters were measured, since taper was not constant across the pole 
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length. Knot maps were created for each pole, noting the longitudinal location and size of every t 

knot (>12.5 mm in diameter) near the groundline. The minimum diameter was defined by ANSI 

05.1, as contributing to the maximum number of knots per 300-mm-long section. The 

circumferential distance was defined by the arc distance from a straight line on the compression 

face. 

These parameters were needed to create the finite element model for each pole. The largest 

checks and their distance, width, and arc position were reported. The checks were not included in 

the finite model nor were other defects such as splits, crushing, and sweep were noted, but were 

not included in the model. The edge distances of the through-bored poles were measured, with 

both ends of the holes being measured, to give the average through-bored distance. Additionally, 

the average edge distance of at least two holes was measured for both the tension and 

compression faces in every pole.  

Some poles were too large for the load heads, and supports had to be cut to fit. This was done by 

using an angle grinder to remove material at the location. Pole diameter, length of pole, locations 

and edge distances of through-bored holes, knot maps, and test MOE data were all input into the 

finite element model. These data were used to predict failure location, the failure load, and mode 

of failure and these results were compared to the experimental results.  

Each pole was loaded with the through-bored holes perpendicular to the applied load. Each pole 

was loaded in four-point bending at a rate of 6.25 mm/min, with a 250 kip hydraulic actuator 

attached to a steel moment frame bolted to a concrete reaction floor. Linear variable differential 

transformers (LVDTs) measured the displacement at each support caused by compression of the 

saddles. The settlement from both ends was averaged and subtracted from the total deflection. 
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Additionally, a potentiometer measured deflection at a point 9.5 feet from the butt, which was 

calculated as the point where the greatest deflection occurred. Load, the two deflection 

measurements, and support settlement were recorded continuously at a rate of 5 Hz.    

Failure was defined as the point when the maximum strength capacity of the pole was reached. 

The test was stopped after a loss of 15% of strength (post peak) or after a catastrophic failure. 

The ultimate mode of failure was recorded for each pole, in addition to any previous failures. 

Modes of recorded failure included tension, hole shear, compression, or end-shear failure. The 

failure area was photographed for each pole segment. Possible causes of failure, such as knot, 

knot cluster, hole, or check were noted for each pole. The diameter of the failure location was 

determined from the known taper, and was used for the section modulus and edge distance 

calculations. (Appendix 4)  

A 50-mm-thick disk was cut near the failure zone of each pole. The disks were weighed, oven 

dried at 102° C, and weighed again to determine MC (oven dry basis). The thickness and 

diameter of each disk were measured. For disks with large voids or holes, disks were cut into 

halves or quarters. The oven-dry volume and mass for each disk were found by using the above 

method, and these data were used to calculate the specific gravity. The number of annual rings 

and number of rings in the outer 2 inches of the pole were counted, and the diameter of the 

heartwood was measured. 

The MOR was calculated by using the section modulus of the through-bored region and the 

maximum moment. This was done to remain consistent with the method used in previous papers. 

The section modulus was calculated using a gross section, rather than subtracting the area 

removed from through-bored holes. Many poles did not fail at a section with through-bored 
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holes, negating the need for using a net section calculation. The effect of grinding larger 

members only changed MOR by 1% to 2%. The post-grinding MOR was not used, as many 

sections did not fail at a section with removed material. 

The MOE was derived by using equations for a tapered beam and superposition of two loads. 

The equation, derivation, and validation can be seen in Appendix 4. The recorded MOE was  

used for elastic properties in the finite element modeling and to examine correlations between 

MOE and MOR.  

 

Sample Size Determination 

Sample size was determined by using a power-based calculation, which is typically used for 

hypothesis testing (Cornish 2006). Both power-based and precision-based samples were 

considered, but power calculations compare two groups directly to each other. δ was the smallest 

detectable difference, s was the standard deviation, and α and β represented the significance and 

power of the test, respectively. The data produced by Elkins (2005) were used to determine 

standard deviation by multiplying MOR and the coefficient of variation for a 50-mm diameter 

hole. δ was estimated so that a 15% difference in the sample MOR would be detected. These 

analyses indicated that 12 samples were sufficient for each group.  
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Chapter 4- Finite Element Materials and Methods 

 

Previous 2D and 3D models, considered a variety of defects such as knots and slope of grain.  

However, they were very computationally expensive. Since then, increased computational power 

makes is easier to model many parameters quickly and efficiently. The goal of our work was to 

detect differences among multiple parameterized models; that included failure load, failure 

location, and failure mechanism.  Detecting strength differences can be used to optimize the 

geometry of through-boring or other drilling patterns, decreasing the need to test many pole 

sections.  

Pole diameter, length of pole, locations and edge distances of through-bored holes, knot maps, 

and test MOE data were all input into the finite element model. These data were used to predict 

failure location, the failure load, and mode of failure and these results were compared to the 

experimental results. 

Geometry  

The FEM was built in ANSYS (version 16.0) with a Top Down approach. Cone primitives 

replicated the shape of a utility pole. Three cone primitives were created, representing sections in 

four-point bending from the butt to the first load point, the width between the two loading heads, 

and between the second loading head and the tip. The diameter was measured for all poles at 

those points. The intersection between the cones provides geometry for loading to be applied. 
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The through-bored holes were modeled as cylinders slicing through the pole using the sketch 

function in ANSYS workbench. The holes were then extruded to cut through the cones with the 

edge distance kept constant through the entire bored section.  

Knots were modeled as cones drilling out radially from the center of the cone. The position and 

direction of the cone were parameterized from knot maps to yield the longitudinal distance from 

the butt and circumferential distance from the reference face. Knots were not modeled to have a 

longitudinal inclination, since visually measuring the longitudinal inclination was not possible 

visually without cutting into the pole. This assumption was reasonable as the largest bending 

stresses occur at the pole surface. 

Additional models were created using rectangles and cylinders with holes to verify and predict 

bending stress concentrations in plates and cylinders.  A model with a parabolic curve was 

created to simulate the sweep of a utility pole to check for circumferential differences in 

stiffness.  

Meshing 

Meshing was done primarily with the Proximity and Curvature function, a size function in 

ANSYS. This function allows the user to refine the mesh near holes, and to mesh curves 

correctly. The minimum element size at the holes was 0.05 inches and the minimum element size 

at knot vertexes was 0.02 in. The maximum element size was 1.4 in. The stiffness matrix 

decreased in size and consequently reduced processing time by only refining the mesh near holes 

(Figure 4-1). The mesh could not converge at vertexes in knot. so a small face was introduced to 

provide correct meshing. The mesh was verified in post processing using the default ANSYS 

convergence tools, and by hand calculation for orthotropic materials, since this property is not 
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supported in ANSYS. Symmetry was not used, due to the lack of symmetry in a utility pole with 

defects.  

 

Figure 4-1: Meshing around a hole is finely meshed 

Elements 

Determining the element that fits all requirements required several iterations starting with 

SOLID186. This is a 20 node quadratic cube, with options for tetrahedrons, pyramids and 

prisms, needed to correctly model curvature. This element is capable of large strains and 

birth/death. The 20-sided node is one of the most computationally expensive elements, having 60 

total DOF but midsized nodes are needed to capture curvature. The cylindrical orthotropic 

material properties were defined by a cylindrical coordinate system. This element does not 

support anisotropic plasticity. For this reason, SOLID 92, a tetrahedral 10 node quadratic solid 

was used. It proved to be a better choice as it supported non-linearity and element birth and 

death. The program automatically added additional elements too. SURF156 is a quadratic surface 

load element, used to apply loads in the structure. CONTA174 connects cone primitives together.  
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Boundary Conditions and Loading 

Four-point and cantilever bending were created, representing two common methods for pole 

testing. For four-point bending, the model is restrained transitionally in the X, Y, and Z 

directions, and rotationally in the X direction. The cantilever model it is fixed in all directions 

with the remote displacement tool with the deformable option, which allows the model to 

converge easier.  

The load was applied as a force acting downward at the nodes along the circumference of the 

pole at the intersection of the cone primitives. Load was applied until the experimental failure 

load. The loading pattern used in the model was the same asymmetric unequal distribution used 

in the actual testing.  

For the verification of the force in four-point bending, the specimen converged to within 5% of 

the expected normal stress using standard beam calculations. There were greater than expected 

shear stresses in the xy, yz plane and normal stresses in other directions for orthotropic materials. 

This effect was magnified when knots or holes were near the load point, causing excessive 

deformation and stress. For this reason, a submodel was developed, but not used, that would be 

most effective in cantilever bending, where the load was far away from the region of interest.  

Other loading methods investigated included displacement boundary conditions and a plate 

bearing downwards. These methods were not validated due to excessive displacements of nodes, 

and excessive stresses at the contact surface. Using a distributed force over an area was also 

examined, but not used because it created a larger area with spurious stresses at the edges. 
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Material Properties 

The elastic relationships and strength parameters were obtained from the Wood Handbook for 

12% Coastal Douglas fir (Tables 4-1 and 4-2). The material properties were transversely 

isotropic, a common assumption although wood is orthotropic.  Material direction was defined 

by a global cylindrical coordinate system, and the effects of grain angle were ignored. Table 4-1 

used elastic ratios for the determination of parameters based on a longitudinal modulus 

determined in testing. Table 4-2 includes an estimated shear perpendicular to grain, and the 

MOR instead of tension parallel to grain, which is an assumption used in modeling of bending 

specimens. A discussion on implementing non-linear behavior is included in Appendix 1. 

 

Table 4-1: Material Properties for Douglas-fir for elastic relationships 

EZ (psi) ER & ET (psi) GRT (psi) GTL & GRL 

(psi) 

ΜXY μYZ / μXZ 

EZ
 0.07* EZ 0.007*EZ 0.07* EZ 0.374 0.0325 

 

Table 4-2: Strength Properties for Wood Used in Finite Element Modeling 

Tension 

Perp(psi) 

Compression 

Perp 

Tension 

Para 

Compression 

Para 

Shear 

TL,RL 

Shear 

RT 

300 800 13600 7230 3000 1130 
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Failure Criteria 

A common method for determining the mode of failure is to use a failure criterion. The goal of 

implementing the failure criteria is to perform load stepping while processing and to check the 

failure state of the material. The model stops when the material reaches the failure criteria, and 

the dominating stress, location and failing load are recorded. In a further developed model, the 

load would continue to increase after the initial failure. The Hoffman criteria is a material theory 

that differentiates between tension and compression and is used for anisotropic materials. The 

Hoffman failure criteria can be reduced to equation 3 below, when  σ1-3 represents the stresses in 

three directions, independent of tension or compression.  

These criteria are an extension of the Tsai-Hill failure theory and are similar to the Tsai-Wu 

theory. The differences between the two theories are the sigma1 terms and the biaxial terms. The 

Sigma1 terms represent the difference between tension and compression, which are less accurate 

for highly anisotropic materials. The Hoffman theory has been shown to be a more accurate 

strength predictor than the Tsai-Wu theory(Guindos 2014), although it has the same number of 

parameters. For this reason, the study used the Hoffman criteria, to determine failure. 
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Multiple values for the biaxial criteria were considered for the Hoffman criteria. The testing to 

perform these tests is difficult and there are varied values for different species, with 

disagreements among researchers. To ensure a closed yield surface, possible values ranged from 

-1 <F12 < 1. Previous studies have used values ranging from zero (Patton Mallory 1997, Liu 

1984), 0.08 (Eberhasteiner 2002), 0.5 (Tsai 1992). In lieu of tests, the value used was 0.25, 

which offered greater convergence than zero and 0.5, but was not determined experimentally.  

Experimental testing would be recommended to find the biaxial coefficient in the three 

directions.  

Traditional stress concentrations are not representative of conditions in wood  without 

consideration of size effects since they occur over an area smaller than the fracture area. For this 

reason, the mean stress method was implemented to determine stresses over an area.  The mean 

stress method calculates stress over a small volume using dimensions of 20 mm along grain and 

4 mm in the radial direction (Thelandersson 2012); however, the volume is typically 

experimentally determined from elastic moduli and toughness values. Mean stress was calculated 

with a weighted average based on element volume. The mean stresses were used in the above 

failure criteria to find the most likely locations of failure and the dominating failure modes.  

The mean stress method was implemented using APDL code in the post processing. Results were 

exported to Excel for calculating the failure criteria, location, and direction.  
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Parameterization 

Models were parameterized to determine relationships between different factors. The following 

inputs, geometry, loading conditions, size, and material were parameterized in multiple models. 

Parameterized outputs include stress, strain, deformation, failure location, and dominant failure 

mode. Additional models were run within a range of parameters and ANSYS created a response 

surface to fit these points.  The response surface included measurements for the goodness of fit, 

and can include verification points. This response surface was created using a second order 

polynomial, which provided a good fit if the predicted trend was linear or quadratic.  
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Chapter 5 - Results and Discussion 

Flexural Properties 

Edge Distance 

The poles were grouped by hole treatment (Table 5-1).The mean values and standard deviations 

are presented graphically in Figure 5-2.  A T-test was first used to compare the means of two 

groups. The mean MOR for different edge distances were not significantly different from each 

other (α = 0.05). but there was a trend of decreasing strength with decreasing edge distance with 

the three-inch group similar to the control. 

The variation (COV) in each group was similar. This differs from the results reported by Elkins 

(2005), who found that the control group had the greatest variation and that variation decreased 

in groups with smaller holes. She cited the defense hole theory as the reason for this trend as the 

holes should alleviate stresses by redirecting the stress field. Elkins (2005) used the full Merz 

(1959) pattern for drilling, and the additional holes could have redistributed stress differently.  

Table 5-1: Effect of hole edge distance on average MOR of Douglas-fir poles subjected to 
flexural tests.1  

Hole edge distance 

(inches) 

Average MOR 

(psi) 

 
Coefficient of 

variation (%) 

Percent decrease 

from control (%) 

Control 6228.5 (999.0) 16.0 
 

1 5831.0 (1163.1) 19.9 6.4% 

2 5894.6 (1198.9) 20.3 5.4% 

3 6301.5 (1275.9) 20.2 -1.2% 

                                                 
1 Values represent means of 12 poles per drilling group and 11 in the control. One pole was excluded from the 
control group due to a testing error. Parentheses represent one standard deviation. 
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Figure 5-1: Box and whisker plot showing the distribution of MOR for the three edge distances 
and the control group. The middle line in each group represents the median. The black line 
represents the ANSI 05.1 fiber stress standard of 8000 psi for Douglas-fir poles (ANSI 2017). 

The average MOR for the poles was 6060 psi for all specimens (Figure 5-2). This value is below 

the ANSI specification of 8000 psi for green poles. Elkins (2005) used the same bending 

apparatus and found the mean MOR of green poles to be 7350 psi for the poles without through 

boring, and 6860 psi for the poles with 0.5-inch diameter through-bored holes. Elkins (2005) 

used an edge distance of 2 inches. Her results for this edge distance were significantly greater 

than the results for the 2-inch edge group tested here. Morrell et al. (2011) found the mean MOR 

to be 5750 psi for 0.5-inch diameter through-bored poles at an edge distance of 2 inches. 

Although not statistically significant, the difference in strength between poles without holes and 

those with 0.5-inch diameter holes was 5.5% for the 2-inch edge distance, compared with 6.5% 

for Elkins (2005). This reduction was also noted in poles with a 1-inch edge distance. Elkins 
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(2005) found no significant differences in strength between poles with 0.5-inch through-bored 

holes and the control group (α =.05).  

Kiln Cycle 

The poles were grouped by kiln cycle (Table 5-2). There were significant differences in moisture 

content (α = 0.05) between poles from different kiln cycles. However, MC was poorly correlated 

to MOR (R2 = 0.05) as expected and varied by only a few percent. Despite differences in MC 

from poles in the third charge, mean MOR did not differ significantly, although poles from the 

first charge had a higher MOR. This effect may be due to pole size, as the first charge contained 

significantly smaller poles than the other charges. 

Table 5-2: Effect of kiln charge on MOR of Douglas-fir poles with edge distance groups equally 
distributed to each. 

Kiln cycle Average MOR 

(psi) 

 
Coefficient of 

variance (%) 

Moisture content (%) 

1 6588.4 (935.3) 14.2 14.6 

2 5998.7 (1224.6) 20.4 14.8 

3 6014.4 (1228.2) 20.4 16.2 

 

MOE 

MOE has generally been well correlated with MOR (R2 = 0.45-0.72) in previous pole tests using 

the same test method (Elkins 2005, Clauson et al. 2017). R2 values for the current set of data 

were around 0.4. One possible reason for the lower correlations was the high frequency of end 

shear. MOR is a measure of bending strength, and the presence of shear failures obscures the 

effects of bending strength. The R2 values improve to 0.67 when the end-shear specimens are 
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removed from the data. It is unclear why end-shear was more prevalent in the current test 

although the presence of deep checks on some poles may have facilitated this failure mode. 

Effect of Pole Circumference 

Although not typically correlated with MOR, pole size seemed to be a factor in the current study. 

Previous tests showed poor correlations (R2 = 0.08-0.15) between diameter and MOR (Elkins 

2005, Clauson et al. 2017). MOR in the current study was negatively correlated with pole 

circumference (Figure 5-3). 

 

Figure 5-2: Relationship between pole circumference and MOR of Douglas-fir poles with and 
without through boring. 

The size dependency of MOR differed between groups. Figure 5-4 below displays the 

normalized edge distance (c/e) and MOR: for the 1-inch edge distance (R2 = 0.34), for the 2-inch 

edge distance (R2 = 0.27) and for the 3-inch edge distance (R2 = 0.75) (Figure 5-4). Although not 

displayed,  the R2 = 0.41 for the controls.  
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Stress concentration theory predicts that a smaller c/e ratio causes increased stress. Following 

that prediction, an initial hypothesis for the current study was that c/e would affect MOR. 

However c/e and MOR were poorly correlated for all through-bored holes (R2 = 0.08). 

Therefore, c/e and, consequently, edge distance did not affect MOR in the current study.  

 

 

Figure 5-4: Normalized edge distance (c/e) and MOR, where c is the edge distance and e is 
diameter minus the edge distance. Normalizing edge distance is a method of graphically 
separating groups. Three distinct groups, representing: 1-inch, 2-inch and 3-inch drilling 
distances are shown from left to right.  

 

Poles from the first kiln charge (Table 4-1) had a larger mean strength than those from the other 

two charges, while the diameter was significantly smaller (p = .003) than poles in the other two 

charges. Smaller diameter poles could have lost less strength from kiln drying, likely due to 

different drying patterns.  



50 
 

 

Statistical Analysis Of Above Variables 

T-tests confirmed that neither edge distance nor kiln cycle affected pole properties significantly. 

The data was subjected to an analysis of covariance (ANCOVA), ANCOVA was preferred over 

an analysis of variance (ANOVA) because it allowed the pole diameter and MOE to be included, 

which were both covariates. Assumptions of an ANCOVA test are homogeneity of variance, 

parallel regression slopes for each independent variable, and normality. Homogeneity in variance 

was tested by using Levene’s test, which showed no difference in variance between groups. The 

MOR appeared to be binormal (Figure5-5), which would violate the assumptions used in the 

Student’s t-test and ANCOVA. A Shapiro- Wilk normality test did not detect departures of 

normality (p =.185). The regression slopes for each group were roughly parallel. 

The ANCOVA used a linear model, with the factors of kiln cycle and edge distance, and the 

covariates of diameter and MOE. No significant differences were found for kiln cycle or edge 

distance (p = 0.54), but diameter and MOE had a significant effect (p = 0.001). A Kruskal-

Wallace test assesses whether a non-normal distribution would change the significance of any 

factors (Ramsey and Schafer 2012). The Kruskal-Wallace test did not reveal any variables with a 

significant effect on the MOR.  

An experimental assumption was that the COV would be approximately 13% and differences 

between groups would be 15%. The variance in groups ranged from 14% to 20%. The sources of 

variance were kiln-drying and testing below the fiber saturation point. The greater-than-expected 

variance showed that the power of the statistical tests performed was lower than expected.  
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Figure 5-4: Distribution of MOR values in Douglas-fir poles with and without through-bored 
holes  

Physical Properties of Test Poles 

Moisture Content 

The moisture content (MC) of the kiln-dried poles was 8% to 16% in the outer inch, as measured 

with a Delmhorst RDM-3 resistance-type moisture meter. The MC measurement after testing, 

using the oven-dry method showed an averaged MC of 15.2% and a range of 11% to 19% (Table 

5-1). Moisture content of poles from the third charge differed significantly from that of poles in 

the first and second charges (p = 0.003 and p = 0.047 respectfully). The second and third kiln 

charges ended when the outer inch reached 15% MC, while the first was subjected to a drier 



52 
 

 

cycle due to human error. Although the second and third charges underwent the same drying 

cycle, the second charge was not removed from the dry kiln immediately, allowing the residual 

heat in the dry kiln to continue to dry the wood. This would tend to make moisture levels near 

the surface more similar to that of the first group. The potential effects of kiln charge on flexural 

properties were minimized by equally distributing poles from each charge to each edge distance 

group. 

 

Weight and Specific Gravity 

The average pole weight was 518 lb, with a range of 388 to 694 lb. The wide range reflects the 

fact that pole diameter varied by 3 inches. The specific gravity of the measured poles averaged 

0.51, which is consistent with the reported value for oven-dried Douglas-fir of 0.5 (USDA 2010).  

Circumference 

The poles were a mixture of Class 4, 40-foot, Class 2, 35-foot, and Class 1, 40-foot. The average 

circumference of the poles was 40.8 inches at the butt and 35.3 inches at the tip. The average 

circumference at the groundline was 39.22 inches. The pole circumferences were not normally 

distributed (Figure 5-1). The supplier chose poles that had a circumference greater than 36 

inches; and three different classes of poles were present. Previous pole studies have not shown 

strength differences between classes for distribution poles. The poles were sorted so that average 

diameter was equal for each edge distance group, in order to limit possible size effects. The poles 

were then visually assessed for knot checks, knots, and other defects to ensure that they met the 

ANSI 05.1 requirements. 
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Figure 5-5: Distribution of circumferences of 48 Douglas-fir poles.  

 

Ring Count 

The average age of the poles was 45 years, with a range of 23 to 77 years. The number of growth 

rings in the outer 2 inches averaged 19, with a minimum of 10 rings. All poles met the ANSI 

requirement for a minimum of 5 rings per inch in the outer 2 inches (Appendix 3)  
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Failure Types 

Ultimate failures were separated into three groups: tensile (Figure 5-6), end shear (Figure 5-7), 

and compression (Figure 5-8). Most tensile failures occurred around a knot or hole. Some tensile 

failures were attributable to slope of grain. End shear is a shear failure at the end of the pole. 

Compression failures occurred near the top of knots and holes, but were not the ultimate cause of 

failure.  

 

Figure 5-6: Tensile failures caused by failure at a knot and rupture of fibers. 
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Figure 5-7: Two end shear failure at the pole end, marked by separation of the areas above and 

below the center of the pole. 
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Figure 5-8: Compression failure marked by buckling of wood fibers around the hole. 

Most failures occurred at knot clusters, the same result observed by Elkins (2005). This 

observation suggests that the largest stress concentrations remain at knots. The weakest failed 

modes failed under compression and end shear. Only three specimens failed in compression, 

making statistical comparisons impossible. End shear strength was lower (Table 5-3), but not 

significantly lower. End shear caused the ultimate failure in 35% of all poles, but was present in 

68.8% of poles (Figure 5-9). Penultimate end shear failures release energy and change material 

properties such as MOE. The unexpected presence of end shear and its implications will be 

discussed below. 
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Figure 5-9: Frequency of ultimate failure modes for each edge distance group. 

Many failures in the control group were end shear or compression, suggesting that holes cause 

more tensile failures to occur. As the highest average MOR is tensile failures, it is beneficial to 

force the pole to break in tension. The majority of failures in the one inch group were tensile 

failures, whereas the failure modes in the two and three inch group were a mix. Drilling holes 

closer to the edge causes more tensile failures, but may also reduce the poles strength as seen in 

Table 5-1. Although the failure patterns in the two and three-inch group are similar the three inch 

group is stronger (Table 5-1). This is due to some holes in the two-inch group causing failure 

compared to none in the three –inch group. Drilling at a two or three inch group seems to be 

optimal, with a three-inch group causing no strength loss. 

Table 5-3: MOR of each failure mode. 
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Average MOR Standard Deviation Coefficient of Variance 

Tension 6252.9 1282.6 0.205 

End shear 5867.0 881.6 0.150 

Compression 5423.9 374.5 0.069 

 

One load deflection curve was accidentally deleted after testing; however, the maximum load 

and deflection were still recorded. In another test, the cylinder reached the maximum load limit 

that could be recorded. The cylinder continued to deflect downward, while the load remained 

constant, before the test stopped. The pole was tested again, but previous plastic deformations 

reduced the maximum load. For this reason, this data point was not included in the above data 

set. 

Comparison to Previous Data 

The average MOR for all poles was 6060 psi for all specimens. This value is below the ANSI 

specification of 8000 psi for green poles. Elkins (2005) found the mean MOR of green poles to 

be 7350 psi for poles with no through boring, and 6860 psi for poles with 0.5-inch diameter 

through-bored holes drilled at a 2-inch edge distance. Morrell et al. (2011) found the mean MOR 

to be 5750 psi for poles with 0.5-inch diameter through-bored holes drilled at a 2-inch edge 

distance . Bodig et al. (1986) found the mean MOR for green Douglas-fir poles to be 6630 psi. 

Elkins (2005) and Morrell et al. (2011) used the same test set-up as in the current study, although 

they tested poles in the green condition; class and age were similar, however, and poles were also 

obtained from stands in western Oregon or Washington. 

The average MOR found in the current study fell between the MOR for poles in the green 

condition, as reported by Elkins (2005) and Morrell et al. (2011). However, drying increased the 
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strength of poles in this study. Philips et al. (1985) found that air-drying Douglas-fir poles 

increased MOR by 8%, compared to green poles. For this study, poles arrived in an air-seasoned 

condition, and then were kiln-dried to reduce moisture variability. ANSI 05.1 suggests using a 

0.9 strength reduction for kiln-dried poles.  

Decreases from kiln drying and increases from air-drying seem to be conflicting, and these 

effects will be addressed shortly. The presence of a size effect and end shear were not seen 

previously, and causes for these will be discussed below as well. 

Effect of Kiln Drying 

In the current study, many poles were pith checked and lost shear resistance due to kiln drying. 

In another study, steamed southern pine poles developed pith checks and lost 20% strength 

(Wood et al. 1960), compared to the predicted 15% loss (ANSI 2017). The strength reduction of 

0.9 found previously is an accurate representation of strength loss (Eggleston 1952, Thompson 

1969, Bodig et al. 1986), although greater reductions can occur. The internal checking reported 

by Graham and Womack (1972) caused by differential shrinkage may change for different sizes 

of poles and could explain lower stresses in larger poles. Moisture content of poles in some 

studies was above the fiber saturation point (Thompson 1969), which would result in no strength 

increases due to drying, but little checking. Douglas-fir poles are usually not kiln-dried below the 

fiber saturation point, therefore larger and more frequent cracks appeared in the poles in this 

study compared to the industry. 
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Effect of Air seasoning 

Bodig et al. (1986) also showed an increase of 1% to 10% in strength properties of air-dried 

poles, with MOR significantly greater. The poles in this study had been air seasoned previously, 

and kiln drying opened existing checks and created new ones. Although the poles gained strength 

from drying, the increased magnitude of defects controlled the failures. Madsen (1975) found 

that that strength of weaker material does not change with moisture content due to stress 

concentrations causing a different mode of failure. 

Effect of Check Formation 

The poles checked heavily after kiln drying, with many checks pith centered and extended for 

multiple feet, discontinuously. Wood et al. (1960) recognized that checks affect the shear area, 

and that shear stress in bending is typically low. They also stated that the strength of treated 

Douglas-fir decreases radially inward. Decreased core strength would explain the presence of 

end shear in the current study.  

Additionally, multiple checks opened at the pole ends. It was not possible to avoid placing 

checks horizontally and creating a shearing plane. There were also honeycomb-like checks in 

some of the larger poles. These checks would have rapidly decreased the pole’s shear resistance. 

Cause of Diameter Effect 

A linear relationship of decreasing strength with increasing size was observed. A diameter effect 

has not been seen previously in utility poles (Bodig et al. 1986, Wood et al. 1960). This is not 

due to a material effect, rather an artifact of kiln drying. This effect was clearly seen in the first 

charge. The MOR of the first charge was larger but not significantly larger than that of the other 
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charges, but the diameter was significantly smaller. The strength increase was not due to MC; 

correlations between MC and size (R2 = 0.03) and MC and MOR (R2 = 0.06) were poor. The first 

charge was likely stronger due to the smaller size of the poles. Larger poles developed checks 

that failed in shear through higher drying stresses. 

Stress concentration theory predicts decreasing strength with decreasing size. This did not occur 

in the current study, as the effect was present in the control poles too. Instead, knots controlled 

the majority of tension failures, and the strength of poles remained the same between groups. 

Failures at holes did occur at holes in the 1-inch sample, but this edge distance is impractical to 

drill.  

One difference between poles in this study and previous tests was size. Diameter in previous 

testing was not related to MOR (R2 = 0.08). Average pole diameter in the current study was 1.5 

inches larger than in previous tests. In previous tests, end shear was rare. Shear increases less 

than other properties when dried. The distance between the center of the loading head and 

support in the test apparatus was small, 2.0 to 2.5 times as large as the pole diameter. ASTM 

D198 suggests that ratios of 2.5 and under cause frequent shear failures. This ratio is for 

symmetric four-point bending, but indicates that test geometry influences the frequency of shear 

failures, and that these reasons explain the high frequency. End shear was not seen previously, 

due to smaller diameters, lack of end checking, and material properties. 

The R2 correlations between diameter and MOR jumped to 0.75 when end shear was not 

included in the data. Consequently, end shear failures did not cause the size effect; rather, kiln 

drying affected larger poles more. Kiln drying seems to be the cause of the diameter effect 
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Chapter 6- Finite Results and Discussion 

Verification 

As a part of the verification process, the physics in the model must be validated against 

theoretical results. Aspects of the model that can be compared against theoretical calculations are 

stress and deflection in the four-point bending of a tapered beam and the stress concentrations 

around holes. Aspects of the model that can be implicitly verified are stress concentrations at 

knots and the mean stress method. 

Four-point bending stress and deflection 

The bending pole model was loaded to a total of one kip distributed asymmetrically. Stress and 

deflection were compared to theoretical results. Table 6-1 shows the difference theoretical and 

modeling values are low, less than 10%.  The model is conservative compared to the 

experimental and theoretical values. Theoretical deflection calculations are for an isotropic 

material, whereas the finite element uses an orthotropic material. 

Table 6-1: Deflection and stresses using theoretical, element, and experimental methods of a 20 

ft. utility pole. 

 Hand Calculation Finite Element Experimental 

Deflection  (inch) 1.65 1.81 1.62 

Maximum Normal 

Stress(psi) 

2800 3000 2800 
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Stress Concentration around Hole 

An initial model was created to examine how the finite element software can handle the 

prediction of stress concentrations for an orthotropic and cylindrical material. A rectangular 

cantilever beam with a ½ in hole at varying edge distances was placed into bending. The 

maximum stresses at the hole were divided by nominal stresses to find stress concentrations. A 

finely meshed model is able to predict the theoretical stress concentration (Figure 6-1) for an 

isotropic rectangle with a high degree of precision. A coarser mesh is still close to the theoretical 

and finely meshed SCFs (Figure 6-1).  For the validation of an orthotropic rectangle, the derived 

orthotropic factor was multiplied by the theoretical calculation (Appendix X). Figure 6-2 shows 

that the multiplier is conservative. This is not surprising; the orthotropic factor  was previously 

inaccurate within 15% (Smith 1944). For a more detailed look at the modeling, look at Appendix 

X. This method is accurate although a derivation in three dimensions may produce a result closer 

to the method used in the finite analysis.  
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Figure 6-1: Two meshes were used to create the above curves along with theoretical calculations 

for the stress concentration in an isotropic rectangle.  

 

Figure 6-2: Normal stresses for an orthotropic cylinder. The multiplier curve uses the orthotropic 

multiplier found in Appendix 1.  

Saint Venant’s Principle 

One aspect of the model that could not be verified was placing a hole near the load. Stresses are 

higher closer to the loading point as predicted by St. Venant’s Principle as seen in Table 6-2. 

This is not seen for all directions of stress, but is most evident in tension perpendicular to grain 

and shear perpendicular to grain. The higher stress cause inaccurate failure criteria predictions. 
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For this reason, stresses near the loading point were ignored. For this reason, further modeling in 

future experiments could be done in cantilever bending, to limit distance effects.  

Table 6-2: Stresses at a hole near and far from hole. Near and far are defined as 1 and 10 inches 

respectively.  

 Near Loading Point Far From Loading Point 

Maximum Normal Stress Z 

(psi) 

24950 24700 

Maximum Normal Stress Y 

(psi) 

2360 860 

Maximum Shear Stress XY 

(psi) 

3775 1750 

Maximum Shear Stress YZ 

(psi) 

2130 2230 

 

Linear Assumption 

An assumption of the model is a linear relationship between deflection and load, whereas the true 

relationship is nonlinear. The load-deflection curve in Figure 6-3 shows the convergence of 

experimental and finite element behavior; however, beyond the elastic region there is a 

difference between the two curves. The average difference between linear predictions and 

experimental deflections at maximum load is 20%.  However, the relationship between MOE and 

MOR will remain the same. The MOE is dependent on the linear portion of the graph, while the 

MOR is dependent on the applied force.  
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Figure 6-3: Experimental and linear predicted load-deflection curves of Pole 554 

 

Comparison of Knot and Hole Concentrations 

A set of models were created to compare the stresses created by knots and through-bored holes. 

This is important, as the largest stress concentrations can dictate the failure location and failure 

mode for the pole. This was seen in this set of experiments and previous experiments. Modeling 

knots is important as most poles failed at knot clusters in previous testing (Elkins 2005). It may 

also mean that hole edge distance can be increased until the knot SCF is reached at which point 

the failure mode may shift. In any one pole, the size and location of knots are randomly 

determined. By generating a population of knot characteristics and their associated stress 
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concentrations, manifested stress concentrations from holes can be determined. The probability 

of failure due to holes at different edge distance can then be found.  

Models with knots and through-bored holes were compared (Figure 6-5 and 6-6), to examine the 

difference between stresses and failure modes. The through-boring pattern was 9” spacing, 2” 

edge distance and ½” diameter holes. The applied load was 1kip. The stresses at the knots in 

each directions were normalized against through-boring stresses, and presented in Table 6-3. In 

addition, the knot cluster is rotated 90° to compare how the stresses can change. 

 

Figure 6-4: Example of a Knot Cluster 

Figure 6-5: Example of Through Borne Section 

Table 6-3: Knot and Through-bored stress ratios 
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 Knot/Through bored Knot/Through bored 90 

+σ L (psi) 1.018 1.035 

-σ L (psi) 1.61 2.51 

τTL 1.32 1.65 

τRL 0.42 .4236 

+σ T (psi) 0.659 1.0162 

This particular knot cluster was the cause of failure in a previous test. This is not representative 

of all knot conditions and edge distances, but shows that knots can dominate the failure of a pole. 

Due to knot’s influence in failure modes, this model was expanded upon.  

Validation using test data 

Pole strength was investigated by their stress concentrations using the above methods. Knot 

maps, modulus of elasticity, and geometry were inputted for every pole. The model was initially 

validated by comparing the experimental and model deflections at a load in the elastic region. 

The deflections matched within 5% in all cases. Based on this initial validation the model was 

loaded to the ultimate load. At this point, the mean stress macro ran and collected this data into a 

text file. The text file was imported into Excel and analyzed to find the maximum Failure 

Criteria. A failure criterion greater than one indicates the model over predicts strength, under one 

indicates under prediction of stress. 

The Hoffman criteria and was used for failure analysis. The nine necessary parameters are 

reduced to six, as there are equal strength parameters for the tangential and radial directions. 

These strength parameters are listed in Table 4-2. The most likely failure locations in term of 

failure criteria were collected for each pole. One artifact of the model is increased stresses at the 

loading points. As per St. Venant’s principle, stresses near the load are highly magnified and are 
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inaccurate. There was always a hole near the loading point in the experiment. Points nearest the 

load were ignored for this reason.  

Only tensile failures were considered, not compressive or end shear failures. A failure criterion 

beyond one in compression is not an ultimate failure. Rather, compressive failures change the 

neutral axis location and decrease the apparent moduli of elasticity. As nonlinear effects were not 

considered in this model, no compressive failures were considered in the ultimate analysis. End 

shear failures were caused by checks in the butt end. As checks were not modeled, poles that 

failed by end shear were not considered.  

Experimental Data 

The most likely failure locations for all poles are shown below in Table 6-4. The model correctly 

predicted the average failure criteria within 25%. However, the model correctly predicted the 

strength at the failure location within 8% accuracy; however, the coefficient of variance is 43%. 

The model correctly predicted the failure location in 36% of the models, but predicted the 

location within the first three most likely locations. The MOR/failure criteria column contains 

erroneous results, containing MOR well above the ANSI fiber stress of 8000 psi (ANSI 2017) 

and the Wood Handbook MOR of 12400 psi (USDA 2010).  The failure mode for each pole is 

noted too, and is dictated by tensile parallel to grain. Tensile parallel to grain is present in all 

holes and knots, and tensile perpendicular to grain is dominant in 42% of the poles. While tensile 

perpendicular to grain can be the ultimate cause of failure, parallel to grain is always nearly 

equal in terms of failure criteria. Shear is present in locations closest to the load. The percent 

difference between the 1st and actual failure averages 45% when ignoring poles where the 

location was correctly predicted and 29% when those poles are included. Three FEM failure 
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criteria are twice as large as the failure criteria at the location due to large knots at those 

locations. Large knots oriented in the tension face cause the largest SCs but smaller downward 

oriented knots can still control failures.  

Table 6-4: The Failure Criteria and Location of Modeled Sections, the experimental failure 

location and its associated failure criteria.2 

 

Pole # FEM Predicted 

Location (in) 

Failure 

Criteria 

Actual Failure 

Location (in) 

Failure 

Criteria 

MOR/Failure 

Criteria 

1 91.5 1.71 91.5 1.71 5045 

2 78 0.65 78 0.65 5848 

540 63 1.19 63 1.19 4324 

554 44.25 0.945 75.5 0.92 7250 

568 69 1.8 69 1.8 3769 

707 60 1.27 51 0.92 6937 

715 39.9 0.75 126 0.57 9221 

727 87.1 0.8 78 0.66 7898 

822 94 1.93 94 1.93 3760 

997 64.5 1.57 53 1.45 5110 

4248 68.9 1.45 87 0.888 4199 

4771 52 1.1 52 1.1 4506 

4774 51.1 0.75 63 0.454 9983 

4789 94.5 1.57 52.3 0.818 7596 

4850 87 1.27 87 1.27 3482 

4853 78 1.95 60 1.78 3839 

4855 88.7 0.933 60.25 0.57 13993 

                                                 
2 Pole 4988 does not have an MOR due to a testing error. 
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4897 89.4 0.89 60.4 0.82 6605 

4899 72.9 1.04 36 0.45 10463 

4926 87 1.09 48 0.999 6778 

4963 70 1.41 70 1.41 5268 

4966 87 1.65 78 1.503 5561 

4977 98 0.717 76 0.399 17249 

4988 74.5 1.32 74.5 1.32  

4993 66 1.5 79 1.21 5825 

4995 87 1.87 78 1.68 4459 

4996 83 0.92 61 0.37 18432 

5218 60 1.38 60 1.38 5119 

 

The model correctly predicts average strength within 10%, however there is a high degree of 

variance.  MOE and MOR are well correlated with an R2=0.42, ranging from R2=0.4-0.65 in 

other tests (Elkins 2006, Clauson et al. 2015). The correlations between the failure criteria and 

MOR are R2=0.334. This suggests that stress concentrations caused by knots and holes can 

predict the MOR, however MOE remains a better indicator of MOR.  

The model may be able to predict strength more accurately at different edge distances, diameters, 

or types of failure. By predicting trends in through-boring patterns or boring geometries, designs 

could be optimized with less testing. 

A failure criterion near one means that for that population of poles, the failure criteria is near the 

breaking strength. For an individual pole, that ratio can be off, but averages to near one. The 

average failure criteria being above 1 indicates the model is conservative.  
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In Table 6-5, the two-inch edge distance and control show the least variance in the failure 

criteria. An ANOVA test shows that there is not a significant difference of load until failure for 

the four groups. There was no significant difference in strength between groups in the 

experimental analysis either.  

Table 6-5: Average failure criteria for each edge distance. The fourth column is the averaged 

load for failure criteria to equal unity for each pole. The failure criteria is the FEM predicted FC. 

 

 
Average 

FC 

Standard 

Deviation 

COV Load/FC 

(kips) 

Control 1.016 0.363 0.357 48.8 

1 inch 1.103 0.558 0.506 39.9 

2 inch 1.181 0.233 0.198 37.4 

3 inch 1.078 0.685 0.636 44.0 

 

The variance in both the one-inch and three-inch groups need to be addressed. The COV of 

MOR in the experimental breaking data is 14-20%. The dominant cause of failure in the finite 

one-inch group is due to holes and tension parallel to grain. Many of the experimental one-inch 

samples failed at the holes, but holes were not the ultimate cause of failure. Reasons for this are 

twofold; drilling at angle due to the highly curved at the edge, and wood fibers beyond the hole 

remained intact after failure at the hole. For the three-inch group the majority of failures occurred 

at knots, but there does not seem to be an explanation for the variation. The two-inch group 

performed well and failed at knots. The difference between these groups is there seems to be less 

premature failures from cracks. This is likely a random occurrence as the poles were sorted 
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beforehand to limit size and kiln cycle, but not crack length. However, due to the small sample 

size of each group any statistical power is limited. 

Validation with Past Data 

Further modeling was done on a previous set of through-boring poles (Elkins 2005). Additionally 

the data may be better suited to see observable trends in the model; there are higher correlations 

between MOE and MOR in the control poles (R2=0.67 vs 0.4), and there are significant 

differences in strength between groups. If the finite model is able to predict significant 

differences between groups, it will be better validated. The data set has the following limitations; 

no photographs of failure zones to compare to handwritten notes and no load deflection curves.  

Five poles were selected from the control, ½ in, ¾ in and 1-inch groups (Elkins 2005). The 

model correctly predicted the failure location in 40% of tests and overpredicted the average 

failure criteria by 23% (Appendix 1, Figure 3). The average FC in the control group and ½ in are 

near unity (Table 6-7). An ANOVA test does show a significant difference (p=0.00668) between 

the groups for the load at a failure criteria of one, but not a significant difference between 

average failure criteria. This is expected as Elkins reported a difference in strength between the 

¾ and one-inch groups and the control (Elkins 2005). However, the model did not reveal a 

difference in strength in the ¾-inch group, but concurred with Elkins (2005) in the one inch 

holes. Holes have previously increased the average strength of poles (Elkins 2005), a trend seen 

below (Table 6-6) but not seen in this study (Table 6-5). The trend may be due to comparable 

size knots in a smaller pole (Elkins) compared to larger knots controlling failure in this study. 

Additionally, the load until failure in Table 6-5 and 6-6 are not directly comparable as the poles 

are sized differently. 
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Table 6-6: Average failure criteria for three sizes of holes in the Elkin’s data set. The fourth 

column is the averaged load for failure criteria to equal unity for each pole. The failure criteria is 

the FEM predicted FC. 

 

 
Average 

FC 

Standard 

Deviation 

COV Load/FC 

(kips) 

 

Control 1.07 0.33 0.309 32.4 (6.52) 

1/2 inch 1.01 0.246 0.242 40.4 (9.33) 

3/4 inch 1.13 0.289 0.255 28.2 (6.34) 

1 inch 1.31 0.336 0.256 23.6 (3.94) 

 

Predictive Behavior 

 The model does have predictive behavior and can predict differences in strength between 

parameters. The user must input several characteristics and be mindful of several pitfalls. First 

the user has to input the modulus of elasticity, the knot map, and hole pattern. The user would 

find the dynamic modulus of elasticity using an NDE device. R2 correlations between the 

dynamic and static moduli are near 0.80 (Elkins 2005). The user then must input the knot map 

and hole geometry into ANSYS’s geometry modeler. Any force can be inputted and the user can 

solve for the failure load after finding the failure criterion. This can be done easily by 

multiplying or dividing the stresses by the square root of the failure criteria.  

The associated load and failure criteria has a strong correlation with MOR. Load multiplied by 

failure criteria have correlations of 0.30 for this study and 0.49 for past data. This improves upon 

a relationship with applied load and MOR with correlations of 0.10 and 0.37 respectively. MOE 
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and MOR correlations are 0.60 and 0.45. Failure criteria and MOE are similarly correlated to 

strength and could be used to sort weaker poles from a population. The model is not accurate 

enough to predict a single poles strength, nor is it efficient to model a single poles strength, but 

could be used to examine differences between groups 

Due to the difficulty of correctly measuring all defects and coupled with woods natural 

heterogeneity, the largest stress concentration may not necessarily cause the ultimate failure as 

seen in Table 6-5. For this reason, it is important to note the range of failure criteria in different 

locations. Users should be aware of locations near the loading point, where there are excessive 

deformations and overlook these locations. By instead modeling cantilever bending instead of 

four-point bending, excessive St Venant deformations can be avoided. 

When looking at the optimization of through-boring or other drilling patterns, the efficacy of the 

patterns can be determined if the failure mode changes. If the failure location is occurring at 

knots, there is minimal loss of strength. If the failure location changes to holes, the pole is losing 

strength.  

Determining the efficacy of a pattern based off one knot map and modulus of elasticity is not 

enough. There have been hundreds of knot maps for Class 4 poles collected in this and previous 

studies. Performing a statistical study to determine any detrimental effects can be done with this 

data. 
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Improvements to the model 

Nonlinearity 

Nonlinearity could be approached in two methods in ANSYS; the Newton-Raphson Method and 

Element Birth and Death. The Newton-Raphson method is a numerical method used to change 

the stiffness matrix to achieve convergence as the material yields. This method will use the 

tangential material properties. In Element Death, the program multiplies the stiffness matrix for a 

particular elements by a small number as the element yields, simulating decreased stiffness but 

maintaining symmetry. Both methods require many iterations for the model to converge 

correctly. A similar technique has been used by previous researchers (Cramer 1986, Williams et 

al. 2000, Ghan 2009). This method is also similar to damage mechanics method, which expresses 

a crack as a damaged zone, and the area around the crack can be investigated.  

One difficulty with this approach is gathering post processed data and inputting it into the solver. 

The mean stress method used an exported text file inputted to excel to find the maximum failure 

criteria. Using the mean stresses in a nonlinear procedure would require significant coding in 

APDL to solve.  

Differentiation of Knots and Holes 

The representation of knots can be improved for three reasons; the coordinate system, distinction 

between knots and holes, and material differences in tension and compression. The current 

model’s coordinate system is cylindrical, oriented in the radial, tangential and longitudinal 

directions. The idealized cylindrical coordinate system represents the grain direction in a 

homogeneous substance, but the flow of grain is not truly cylindrical. Knots redirect the flow of 
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grain, and spiral grain can be present as well. Guindos and Guaita (2012) modeled the flow of 

grain in dimensional lumber in ABAQUS using a fluid flow simulator and coupled the results to 

a structural solver. A similar method can be used to model grain direction and redirection around 

knots. Applying the results of the coordinate system to each element, holes can then be 

introduced and the model can run normally.  

Additionally the current model does not distinguish between knots and holes, although their 

behavior is different. Holes interrupt the flow of grain, whereas knots redirect it. Another method 

would be to introduce a local coordinate system at each knot. The result of this is that some 

perpendicular to grain stresses would be converted to parallel to grain. Creating the coordinate 

system could be done with a macro. 

Knots were modeled as holes, whereas behavior is different in tension and compression. Knots 

can be modeled as holes in tension (Baño et al. 2011, Pellicane et al. 1994). Material behavior of 

knots must be included for compression to be correctly modeled. As compression failures were 

not considered as ultimate failures in the finite model, all knots were considered as holes to save 

processing time.  

Chapter 7-Conclusions 

Through boring and other pretreatment methods have improved preservative penetration and 

extended the service life of utility poles. Through boring has been proven to have minimal 

effects on strength. A single pattern for through boring has been developed through rigorous 

testing; however, testing of new patterns is expensive and time consuming. Additionally, a single 

pattern is recommended for all pole sizes. The goal of this thesis was to create a finite-element 

model to optimize through-boring and other drilling patterns for other pole classes.  
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The model was validated by determining the differences in strength between different edge 

distances of through-bored holes. There is one standard edge distance currently used for all poles 

classes. However, stress concentration theory predicts that maximum stress will change for 

different pole classes. In order to test the effect of through boring at different edge distances, 48 

poles were tested in a four-point bending setup. 

The average MOR of both the through-bored and control poles was lower than the ANSI 

standard, but comparable to previous research. Variations were greater in this population than in 

previous tests. An ANCOVA test showed that there were no significant differences in strength 

between poles drilled at different edge distances. The lack of significant differences suggested 

that knots, rather than holes, created the greatest stress concentrations and initiated failure; the 

experimental results of this study confirmed this finding. However, the ANCOVA also showed 

that diameter had a significant effect on strength. This was likely not due to edge distance, as 

was hypothesized, but due to checks created through kiln drying. A large number of end-shear 

failures also occurred, possibly due to the combination of kiln drying and distance between the 

loading head and supports. 

The presence of drying defects, end-shear failures, and low MOE, but high diameter correlation 

imply a high amount of experimental error. Additional testing of smaller sizes with no 1-inch 

distance and with testing at or above the FSP would reduce variance. These improvements to the 

experiment would increase the likelihood of recognizing significant differences between groups. 

Finite element analysis results were nearly uniform for all groups, but had high variance. The 

model found the point of failure accurately in 36% of tests. Moreover, the actual failure occurred 

within the first three predicted locations. The largest knot was often not the cause of failure; 
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rather, failure tended to occur at knots oriented perpendicular to the load direction. Holes were 

the predominant cause of failure in the group with holes drilled at a distance of  1 inch inward 

from the pole edge.  

As with the experimental data, differences between groups were insignificant. A data set from a 

previous through-boring test was also simulated by the model, and resulted in less variance and 

more accurate predictions of strength (Elkins 2005). The model was able to correctly find 

differences in strength for different hole sizes.   

The model developed in the study could be used in the future to predict stresses in cantilever 

bending. Additional studies can use this population of pole characteristics, including MOE, 

failure mode, knot maps, and diameter to investigate other through-boring patterns. Future 

studies should test changes in failure modes, stress, and locations as through-boring 

characteristics change. This model would also have to be validated for species other than 

Douglas-fir, as fracture volume, dependence on knot concentrations, and size could change.  
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Appendices 

Appendix 1: Additional Finite Element Modeling 

True Material Behavior 

The linearly elastic models run below used the elastic parameters found in Table 4-1 (USDA 

2010). Multiple material procedures were examined for nonlinear behavior. The first method was 

only for compression parallel and perpendicular to grain. Patton-Mallory (1997) derived a 

trilinear stress strain curve for Douglas-fir, but was not verified for small clear specimens due to 

experimental error. In addition, two components of the shear modulus and the Poisson’s ratio 

would be modified to maintain stiffness matrix symmetry. This option was briefly modeled but 

was not used. This is due to the shear stress and the normal direction in the tangential and radial 

direction were modeled incorrectly (Moses and Prion 2002). 

Table 4-1: Material Properties for Douglas-fir (USDA 2010) 

EZ (psi) ER & ET (psi) GRT (psi) GTL & GRL 

(psi) 

ΜXY μYZ / μXZ 

1.78e6 1.05E5 12.46E4 1.264E5 0.374 0.0325 

 

Figure 1 shows the ideal load-displacement curve for curve. This behavior was implemented 

successfully for bolted Douglas-fir connections (Moses Prion 2003) using the ANISO command. 

Yield parameters in Table 1 and tangent moduli in Table 4-3 were initially used (Moses and 

Prion 2003). The ANISO command can be used to account for the differences in yield strengths 

in directions. This command is based off the generalized Hill Theory, and accounts for strength 
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differences between tension and compression (Shih 1978), and anisotropic work hardening 

(Valliappan et al. 1976).  However, there is a requirement for incompressibility, which is shown 

in Equation 4.  In order for equation 4 to be satisfied, tangent moduli, tensile and compressive 

yield stresses must remain nearly equal. ANSYS is not able to run successfully when that 

requirement is not met. Figure 2 shows behavior of the ANISO command, which is dissimilar to 

Figure 1. Moses and Prion solved this problem by only using the command in compression. One 

solution that was not fully developed is identifying the stress state of the material with a test 

load. The material properties can then be switched depending on if it’s in tension or 

compression. By identifying material behavior in compression or tension from a test load, the 

appropriate tangent moduli, yield strength can then be chosen, and the ANISO command will 

then model more accurate behavior. 

Table 1: Anisotropic Tangent Material Properties (Moses Prion) 

Etx Ety Etz Gtxy Gtyz Gtxz 

580 580 20300 7.25 667 667 

 



87 
 

 

 

Figure 1: The Ideal Load-Displacement Curve for Tension and Compression in the Longitudinal 

Direction. The yield strength is different for tension and compression. Additionally the tangent 

moduli after yielding is different, representing both the ductile and brittle behavior of wood. 
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Figure 2: The Load-Displacement Curve in the Longitudinal Direction as inputted into ANSYS. 

Yield strength and tangent moduli have to be nearly equal in tension and compression.  
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Maximum Stress Location for Cantilever Bending 

Mechanics can predict the location of greatest stress in a tapered cantilever beam. The maximum 

stress occurs at the support at a prismatic cantilever beam, where the greatest moment occurs. 

The section modulus reduces along the section in a tapered section, and the maximum stress will 

occur elsewhere depending on the reduction.  

Equation 5 shows the theoretical location of failure is dependent on the ratio between the top and 

bottom diameters (McCutcheon 1983). This is significant for longer poles where the ratios will 

be greater than 1.5.  A pole under cantilever loading was modeled, with a 1-kip load at the tip, 

and the location of greatest stress recorded in finite. The tip and butt diameter were calculated 

using the ANSI05.1 minimum bottom and top diameters for a Class 2 Douglas fir pole. Figure 3 

shows a good fit between finite and theoretical failure locations for longer poles. For shorter 

poles, the theoretical failure location is assumed to equal zero, and quickly begins to approach 

zero. 
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The majority of through-boring tests have been conducted on Class 4-40 foot long poles. A few 

tests have been conducted on Class 2, 60 foot long poles (Newbill et al. 1999). The authors found 

no relationship between stress and failure location. Additionally, through-boring did not appear 

to change the theoretical failure location. However, no knots were measured in the study. 

Additionally, it is impossible to know the failure location in identical non through-bored poles. 

Knots may still control the failure location, but through boring could change the failure location 

to the groundline in some instances. A practicality of the developed model is to investigate 

changes in the theoretical failure location. 
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Figure 3: Position of greatest stress for a Class 2 Pole 

 

Sweep Difference Stiffness 

Sweep was parameterized to investigates how it affects pole stiffness. A previous study showed 

that there is a significant difference in stiffness as the pole rotates (Clauson et al. 2017). This 

model was developed to characterize the rotational stiffness of a pole and investigate if sweep 

was the cause of differences. A full-length pole 20 ft. long was modeled with a 2” defect similar 

to Figure 4 below (ANSI 05.1 2015). The ANSI 05.1 standards allows for a maximum sweep of 
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1” per 10 ft. The pole was rotated 90 ° and tested every 22.5° to investigate the change in 

stiffness. There was no difference in stiffness at this standard sweep.  

 

Figure 4: ANSI 05.1 and measurement of single sweep.  

Submodel 

Submodeling is typically used to create a finer mesh at an area of interest. By only modeling a 

small area, it can reduce the number of nodes and reduce runtime. Submodeling is achieved in 

ANSYS workbench by first running a coarse model. The coarse model provides accurate 

deformations but inaccurate stresses. The submodel is then ran using the displacements from the 

full model at the cut boundaries. One particular aspect is the cut boundaries need to be far from 

any stress raisers. 

A full-scale model was created using the cones described above, with knots added as well. The 

model was loaded until the maximum load from testing was reached. A submodel was created, of 

the through-bored section plus 12” on either side. The 12” provides more locations for knots and 

failure locations. The submodel also needs to include any surface loads at the body.  

To validate the submodel, the maximum stresses of the submodel and full model were compared. 

The maximum stresses in the submodel with load are within 10% of the full model except for 

compression parallel to grain.  
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Running the submodel without the load was an attempt to reduce shear caused at the load point 

when a knot or hole is nearby. The stresses in the submodel are under predicted without the load 

as seen in Table 2. With inaccurate stresses, this submodel was not included either. Submodeling 

would be more useful where stresses are further away from the boundaries, such as cantilever 

bending. 

Table 2: Maximum stresses in full model and submodel 

 
Full Model With 
Knots and Holes 

Submodel With 
Load 

Submodel 
Without Load 

 T C T C T C 

σz 179.3 -381.0 176.6 -450.9 163.2 -436.1 

σy 14.7 -29.8 13.1 -23.5 7.2 -16.1 

σx 31.9 -46.6 29.7 -43.4 5.8 -8.9 

τxy 18.6 -17.6 14.6 -16.1 2.3 -4.6 

τxz 26.3 -24.8 25.3 -24.4 24.3 -23.8 

τyz 32.7 -35.2 32.8 -31.9 19.8 -22.2 

Although the submodel with the load was nearly validated, creation of it does not save many 

elements. In addition, both the submodel and the full model overpredict shear at the loading 

point when a hole is placed there. For this reason, results of the full model at the loading points 

were cautiously looked at and stresses ignored if a hole was placed directly at the loading point. 
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Edge Distance Calculations 

Through boring is typically done using the Merz Pattern, which provides complete preservative 

treatment over the ground line. Previous works investigated the spacing used in the Merz pattern, 

and briefly looked at the edge distance. A set of models were created to estimate the stress 

concentrations at varying edge distances.    

The effect of edge distance was first investigated using an isotropic rectangular member. A 

rectangular isotropic member in bending was first chosen to compare the accuracy of finite 

modeling to existing work. The SCFs were compared to derivations from photoelastic 

experiments (Isida 1952). There are no existing models to estimate stress concentration factors 

for cylindrical members in bending, or for orthotropic members with a hole, although there are 

methods to estimate both. For each edge distance referred to as c, the secondary edge distance 

from the other edge to the hole was taken as e (Figure 5). The nominal stress at the edge of the 

member was calculated using standard stress calculations based on moment, distance from the 

neutral axis, and moment of inertia. The maximum stress at the hole was calculated using a stress 

probe that finds the maximum σZ at the hole. σZ was used, as it represents the bending moment 

in this model. Rectangular models were created at 108 by 2 in and either 8,10,12,14 in wide. The 

hole has a diameter of ½”. The hole is located above the fixed boundary and not at the bottom of 

the model to reduce meshing errors causing a large stress increase. Edge distances, c were 1, 1.5, 

2, 2.5, and 3 in. The secondary edge distance, e was calculated for each member.  
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Figure 5: c and e ratio for a cylindrical member. This ratio was also used for rectangle as well. 

The models were meshed, with a default mesh, and then converged to find the correct mesh size. 

By converging the mesh, the response surface follows the theoretical curve within 1% error for 

an isotropic material, as shown in Figures 7 for the four rectangles. By this measure, finite 

elements can produce correct stress concentration factors, and then stress concentration factors 

for both cylindrical and orthotropic models can be calculated using the mesh. In figure 8 the 

rectangles are plotted on the same graph, which shows that different sized members can have the 

same SCF with different edge distances. An orthotropic rectangle and its associated SCFs are 

shown in Figure 9; again, there is good convergence between each size. This suggests that in 

practice, there is a different optimal edge distance for each member size. Stress concentration 

factors are calculated using Formula 6, where Sigma max is the maximum model stress, and 

Sigma nominal the calculated stress using beam theory.  
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Figure 6: Reference Section for Determination of Cylindrical Stresses 



96 
 

 

 

 

Figure 7: Theoretical stresses for rectangular sections with a ½ in hole. The curve for converged 

and non-converged meshes are shown as fine and finite respectively.  
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Figure 8: Isotropic Rectangle for the graphs above 

 

Figure 9: Orthotropic Rectangle and associated SCF  

The isotropic and orthotropic cylinder SCFs are shown in Figures 10 and 11. Figure 10 shows 

divergence for each cylinder. The cylinders had a radius of 4, 5.6, 6.92, and 7.64 in, and had a 

range of edge distances ranging from 1 to 3 inches. In the figures, the stress concentrations still 

follow the same c/e curves regardless of the size. For a homogenous material of different sizes, 

exist different edge distances necessary to reduce the stress concentrations below a threshold. 

Compared to the isotropic rectangular stress concentrations, the SCFs increase dramatically for a 

cylinder and for an orthotropic material.  
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Figure 10: SCF for an isotropic Cylinder of different radii 

 

Figure 11: SCFs for an orthotropic cylinder of different radii 

The predicted SCFs for an orthotropic cylinder may be predicted by the ratios of 

orthotropic/isotropic material and cylinder/square SCFs. Wu (2003) used this method to predict 

stress concentrations in orthotropic cylinders in tension. In order to predict cylindrical stress 
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concentrations, the first method used was with a central hole in a cylinder in bending, the values 

of the stress concentrations were generated by Eqn. 7, an empirically derived equation (Pilkey 

1997).  d/D is a ratio between the hole and cylinder diameter. An orthotropic SCF was 

determined by Eqn. 8, developed by Smith for the plane bending of plywood (1944). Eqn. 8 uses 

the moduli of elasticity in the x and y direction, and μXY is the moduli of rigidity in the xy plane. 

This is idealized only in the xy directions, a true orthotropic concentration would be in all three 

directions. For the purposes of finding an initial value for the orthotropic increase, it should be 

effective. The orthotropic\isotropic ratio ends up equaling 1.9 (5.7/3).     
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Using just the initial stress concentrations is not accurate. Figure 12, shows how the finite 

approximation and the theoretical product calculations do not match. The primary reason for this 

occurring is the cylinder is located in the center and does not account for curvature of the 

cylinder. Whereas in the finite approximation as the hole moves to the edge, the length of the 
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hole gets smaller, and stress increases. A cylinder and square in bending behave nearly 

identically when a hole approaches the center of specimen with a SCF of one as seen in Figures 8 

and 10 at larger c/e ratios. 

 

Figure 12: Finite Approximation and theoretical product calculations 

In Figure 13 below the multiplier factor was found at different c/e ratios by dividing the 

cylindrical to rectangular stress concentrations. This cylindrical factor was then multiplied by the 

orthotropic and rectangular concentrations. The difference between Figure 12 and Figure 13 is 

that the cylindrical factor is not a constant, as it is dependent on the edge distance. In figure 13 

below, the quotient between the two lines are nearly constant, showing that the orthotropic 

concentration is not dependent on edge distance, but is dependent on material parameters. The 

orthotropic method developed previously for a plate in bending is close to the factor used in the 

model. Equations 8 represents an orthotropic concentration for a plate, whereas an equation for 

orthotropic behavior will contain three directions. Smith (1944) saw differences between 
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experimental and mechanical predictions between 15%, so it may be expected for stresses to 

differ. 

 

Figure 13: Stress Curves using Finite Multipliers.  

Elkins Data Run 

Table 3: The Failure Criteria and Location of Modeled Sections, the experimental failure 

location and its associated failure criteria. Boxes are blank due to correct location prediction. 

Group e is the control, group d is 1-inch holes, group c is ¾-inch holes and group b is ½ inch 

holes.  
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Pole # FEM Predicted 

Location (in) 

Failure 

Criteria 

Actual Failure 

Location (in) 

Failure 

Criteria MOR/FC 

5e 67.8 0.95 67.8 0.95 5835 

10e 84.2 1.4 96 1.33 6026 

15e 84 1.35 68.5 0.783 10342 

20e 93.5 1.49 93.5 1.49 5260 

25e 48 1.02 88.9 0.78 9024 

4D 50.8 1.48 75.2 0.978 6190 

9D 80.7 1.68 80.7 1.68 3950 

14D 81 1.38 81 1.38 4703 

19D 81.5 1.17 48 0.947 4504 

24D 81 1.35 81 1.35 4219 

8C 81 1.38 94 0.978 6508 

18C 68 1.29 68 1.29 5510 

28C 70 1.45 70 1.45 4496 

33C 70.4 1.24 70.4 1.24 5114 

43C 81 0.856 87.4 0.715 8372 

2B 69.1 0.585 69.1 0.585 9308 

12B 66 1.06 86 1.06 7230 

17B 65.95 1.15 81 1.13 6312 

22B 81 1.02 81 1.02 6374 

27B 70.5 1.018 97.1 0.961 5915 

32B 44 1.42 71 1.33 5918 

 

 

Appendix 2: APDL Code 

!This is in mm 
rangez = 9.906 
rangexy = 2.032 
!nsel,s,node,,max 
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SET,LAST 
*dim,results1,array,2000,1 
*dim,resultsx,array,2000,1  !Dimension results array for all stress directions 
*dim,resultsy,array,2000,1 
*dim,resultsz,array,2000,1 
*dim,resultsxy,array,2000,1  ! 
*dim,resultsyz,array,2000,1 
*dim,resultsxz,array,2000,1 
*dim,resultszloc,array,2000,1 
 
RSYS,12 
!*vfill,results1(1),ramp,1,1 
 
ETABLE,estrx,S,X     !Create Stress Tables for x,y,x 
ETABLE,estry,S,Y  
ETABLE,estrz,S,Z  
ETABLE,estrxy,S,XY     !Create Stress Tables for x,y,x 
ETABLE,estryz,S,YZ  
ETABLE,estrxz,S,XZ  
 
*do,i,1,2000 
/GOPR 
*Del,SMASK 
*dim,SMASK,array,1 
NSEL,ALL 
!nsel,s,node,,i,i+1        ! Select the ith node 
!*vget,SMASK(1),Node,1,nsel    !Puts a 1 for all selected nodes 
 
CSYS,0      !Go into Global Cooridinates 
 
xloc = NX(i)     !x,y,z cooridinates  
yloc = NY(i) 
zloc = NZ(i) 
my_x=xloc 
my_y=yloc 
My_Z=zloc 
resultszloc(i)=my_z 
!nsel,s,loc,x,xloc-rangexy,xloc+rangexy  !Select Nodes Within a x,y,z range of the 
maximum 
!nsel,r,loc,y,yloc-rangexy,yloc+rangexy 
!nsel,r,loc,z,zloc-rangez,zloc+rangez 
 
esel,s,cent,x,xloc-rangexy,xloc+rangexy 
esel,r,cent,y,yloc-rangexy,yloc+rangexy 
esel,r,cent,z,zloc-rangez,zloc+rangez  
 
*get,n_nodes,node,0,count   !Get the number of nodes 
!*get,n_nodes,node,,s,z 
my_n=n_nodes     !The number of nodes 
ESLN,r,0,ALL 
NSLE,r,CORNER 
 
 
*DEL,E_stressx  
*DEL,E_stressy  
*DEL,E_stressz  
*DEL,E_stressxy  
*DEL,E_stressyz  
*DEL,E_stressxz  
*DEL,E_vol 
*DEL,NMASK 
*DEL,wts_x 
*DEL,wts_y 
*DEL,wts_z 
*DEL,wts_xy 
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*DEL,wts_yz 
*DEL,wts_xz 
*DEL,Ele_Id 
 
*GET,numNd,Elem,0,NUM,MAX 
*dim,NMASK,array,numNd 
RSYS,12 
*DIM,E_stressx,Array,numNd   !Create Array for Average Stress X Elements 
*DIM,E_stressy,Array,numNd 
*DIM,E_stressz,Array,numNd 
*DIM,E_stressxy,Array,numNd    
*DIM,E_stressyz,Array,numNd 
*DIM,E_stressxz,Array,numNd 
 
*DIM,E_vol,Array,numNd   !Array For Volumes 
 
!*Dim,Ele_Id,Array,numNd 
 
*DIM,wts_x,Array,numNd   !Array for Weighted Stresses 
*DIM,wts_y,Array,numNd 
*DIM,wts_z,Array,numNd 
*DIM,wts_xy,Array,numNd   !Array for Weighted Stresses 
*DIM,wts_yz,Array,numNd 
*DIM,wts_xz,Array,numNd 
 
 
*vget,NMASK(1),ELEM,1,esel    !Puts a 1 for all selected nodes 
*vmask,NMASK(1)    !Mask All Unselected Elements 
*Vget,E_stressx(1),Elem,1,ETAB,estrx !Get Masked Sx Array 
 
*vmask,NMASK(1) 
*Vget,E_stressy(1),Elem,1,ETAB,estry  
*vmask,NMASK(1) 
*Vabs, 1  
*vmask,NMASK(1) 
*Vget, E_vol(1), Elem, ,Geom 
*vmask,NMASK(1) 
*Vget,E_stressz(1),Elem,1,ETAB,estrz  
*vmask,NMASK(1) 
*Vget,E_stressxz(1),Elem,1,ETAB,estrxz  
*vmask,NMASK(1) 
*Vget,E_stressxy(1),Elem,1,ETAB,estrxy  
*vmask,NMASK(1) 
*Vget,E_stressyz(1),Elem,1,ETAB,estryz  
 
!*vfill,Ele_Id(1),ramp,1,1   !Fill Array with 1:NumNd 
 
 
*VOPER, Wts_x(1), E_stressx(1), MULT, E_vol(1)   !Multiply Volumes and Stress to 
Create Weights 
*VOPER, Wts_y(1), E_stressy(1), MULT, E_vol(1) 
*VOPER, Wts_z(1), E_stressz(1), MULT, E_vol(1) 
*VOPER, Wts_xy(1), E_stressxy(1), MULT, E_vol(1)  
*VOPER, Wts_yz(1), E_stressyz(1), MULT, E_vol(1) 
*VOPER, Wts_xz(1), E_stressxz(1), MULT, E_vol(1) 
 
*VSCFUN, Num_x, SUM, Wts_x(1)  
*VSCFUN, NUM_y, SUM, Wts_y(1)  
*VSCFUN, NUM_z, SUM, Wts_z(1)  
*VSCFUN, Num_xy, SUM, Wts_xy(1)  
*VSCFUN, NUM_yz, SUM, Wts_yz(1)  
*VSCFUN, NUM_xz, SUM, Wts_xz(1)  
 
 
*VSCFUN, Den, SUM, E_vol(1)  
 
*If,Den,eq,0,then 
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Den=.001 
*EndIf 
 
Avg_Stress_x = Num_x / Den  
Avg_Stress_y = Num_y / Den  
Avg_Stress_z = Num_z / Den  
Avg_Stress_xz = Num_xz / Den  
Avg_Stress_yz = Num_yz / Den  
Avg_Stress_xy = Num_xy / Den  
 
 
results1(i)=i 
resultsx(i)=Avg_Stress_x 
resultsy(i)=Avg_Stress_y 
resultsz(i)=Avg_Stress_z 
resultsxz(i)=Avg_Stress_xz 
resultsyz(i)=Avg_Stress_yz 
resultsxy(i)=Avg_Stress_xy 
 
!*DEL,single 
!*Dim,single,array,,1,4 
!*vmask,SMASK(1) 
 
!*Vget,results1(1)=i 
!*Vget,results1(2)=Avg_Stress_x 
!*Vget,results1(3)=Avg_Stress_y 
!*Vget,results1(4)=Avg_Stress_z 
/GOPR 
*enddo 
 
*CFOPEN,results1,txt   !Opens a File 
*vwrite ! Write header information 
('NODE',18x,,'Z Loc',18x,'Sx',18x,'Sy',18x,'Sz',18x,'Sxy',18x,'Syz',18x,'Sxz',18x) 
!*vmask,NMASK(1)   !Masks so only 1 will be written 
*VWRITE,results1(1),resultszloc(1),resultsx(1),resultsy(1),resultsz(1),resultsxy(1),results
yz(1),resultsxz(1) 
(F18.8,F18.8,F18.8,F18.8,F18.8,F18.8,F18.8,F18.8) 
*CFCLOS  
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Appendix 3: Knot Maps 
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Appendix 4: Derivations 

MOE Derivation 

The modulus of elasticity was determined for an asymmetric, unequal four-point loading using 
two methods. The 1st method was for a prismatic beam, and the second for a tapered beam. The 
equations for a tapered beam were taken from a Forest Products Laboratory Publication (Maki 
and Kuenzi 1956). 

ݕ ൌ
ܲ ∗ ଷܮ

ܧ ∗ ଴ܫ ∗ ଷߛ

∗ ቌെ.5 ∗ ቀ1 െ
ݖ
ܮ
ቁ ∗ ߛ ∗ ቌ

1

1 ൅ ߛ ∗ ܮݔ
൅

1

1 ൅ ߛ ∗ ܮݖ
ቍ ∗

ݔ
ܮ
൅ ቀ1 െ

ݖ
ܮ
ቁ ∗ ln ቀ1 ൅ ߛ ∗

ݔ
ܮ
ቁ

െ
ݔ
ܮ
∗ ln ቀ1 ൅ ߛ ∗

ݖ
ܮ
ቁ ൅

ݔ ∗ ݖ
ଶܮ

∗ lnሺ1 ൅  ሻቍߛ

Where 

ߛ ൌ
݀௖ െ ݀଴
݀଴

 

And 

ݖ ൌ  ݐ݂	11.5	ݎ݋	15.5

ݔ ൌ  ݐ9݂

ܮ ൌ  ݐ18݂

The coefficients were found for each pole using formulas in an excel sheet, as γ changes for each 
pole based on end diameters. Using superposition, the modulus of elasticity can be found for the 
beam. 

ݕ ൌ ଵݕ ൅ ଶݕ ൌ
ଵܲ

ܧ
ሺሻ ൅ ଶܲ

ܧ
ሺሻ 

ܧ ൌ ଵܲ

ݕ
ሺሻ ൅ ଶܲ

ݕ
ሺሻ 

For an example, the deflection and load in the linear region for pole 4771 was found to be 30000 
lb and 1.58 inches.  The pole tip diameter is 12.18 inches and the butt diameter is 14.49 inches.  
The resultant MOE is 1.333E6 lb/in2. When the geometry of the pole and MOE in inputted into 
the finite four-point bending model, the resultant deflection is 1.61 in. The difference in 
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deflection is less than 5%. The above equation is validated by the finite model, with a similar 
relationship of MOE and deflection.  
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Shear Deflection
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Orthotropic SCF in Bending 
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Moment Derivation
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