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ABSTRACT 

The spatial, multi-species nature of coral reef fisheries makes them notoriously difficult to manage. We 
have developed a simulation modeling approach to examine the effect of management options on the 
recreationally important tourist destination of Ningaloo Reef in Western Australia where a recreational 
fishery targets Spangled Emperor (Lethrinus nebulosus). The approach brings a broad range of physical, 
biological and socio-economic information and process understanding into an integrated framework. It 
also provides an effective interface with management. Model results show the effects of historical fishing 
mortality, localized depletion of Spangled Emperor, and the potential effect of the sanctuary zones that 
are closed to fishing. They also show expected recreational catches and catch rates under different 
projected management strategies and future scenarios regarding the evolution of the fishery. Results from 
the model will provide a means to assess, test and ultimately improve the effectiveness of management 
and monitoring strategies in the region. 

Keywords: reef line fishery, recreational fishing, management strategy evaluation, Ningaloo Marine 
Park, Western Australia 

INTRODUCTION 

One of the big challenges for contemporary societies is the management of competing human uses of, and 
impacts on, natural and transformed ecosystems. In meeting this challenge, there has been an increasingly 
prominent role for science in providing information and analytical methods for supporting policy and 
management decisions.  This has led to a need for scientists to communicate with an ever increasing range 
of stakeholders. This in turn has induced a search for decision support frameworks allowing active 
participation of stakeholders (including management agencies) and facilitating the generation of ideas, 
identification of problems and approaches for solving them, as well as anticipation of real-world impacts.  
Such frameworks necessarily span diverse fields ranging from biophysical, social and economic sciences, 
to jurisdictional, political, institutional and managerial processes. Integrated management strategy 
evaluation (MSE) frameworks have been developed with such a purpose. While they have been largely 
applied to commercial fisheries (Sainsbury et al. 2000, Mapstone et al. 2008), MSE approaches have only 
rarely been applied to the explicit assessment of recreational fisheries management or to Marine Protected 
Area (MPA) regulations (Little et al. 2007). In this paper, we present the preliminary results of an 
application of the MSE approach to the regulation of recreational fishing in the context of a marine 
protected area. 
 
Ningaloo Marine Park is located along the coast of Western Australia. Its Commonwealth (i.e. federally 
managed) component was established in 1987, with the objective to protect the marine biodiversity of the 
longest fringing barrier reef in Australia, as well as to favor the development of sustainable recreational 
uses, education and research. Current management objectives, strategies and targets for the Ningaloo 
Marine Park are documented in CALM and MPRA (2005). These address a broad range of ecological, 
social and conservation issues. Measures implemented include: sanctuary zoning for 34% of the park; 
facilitation of comprehensive research and monitoring programs; implementation of education and 
information programs; regulation of recreational use to ensure sustainability; and integration of 
management of the marine environment and the adjoining coastal lands. 
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In this paper, we focus on the management of the recreational line fishery which operates within and 
outside the boundaries of the Park. Recreational fishing is by far the main extractive activity in the park, 
and as such, has the potential to be a major factor affecting the overall conservation value and, ultimately, 
the ecological integrity of the park.  Within the park this is currently the activity most directly controlled 
and influenced by new multiple use zoning regulations. We present preliminary results obtained as part of 
a research project aimed at developing a modeling framework that integrates key ecological, social and 
economic considerations for evaluation and simulation testing of the current and potential future 
management arrangements for the fishery, within the broader set of park management strategies. The 
paper is structured as follows. In the first section, we describe the approach taken to develop an MSE for 
the Ningaloo recreational fishery for Spangled Emperor (Lethrinus nebulosus), which is the main species 
targeted by recreational fishers in the area, based on the ELFSim modeling platform. The second section 
presents a description of management objectives, management strategies and scenarios selected through 
consultation with the key stakeholders involved in the regulation of this activity in the park. Preliminary 
results of the simulations are illustrated in the third section, and section 4 discusses these results and 
concludes. 

DEVELOPING A MSE FOR THE NINGALOO RECREATIONAL FISH ERY  

Management strategy evaluation (MSE) is a process that attempts to evaluate the effects of management 
actions in a computer simulation framework so that trade-offs can be identified among management 
objectives, specified by stakeholders. MSE is comparative rather than prescriptive, seeking to compare 
likely outcomes from a range of management strategies rather than just prescribe an optimal strategy or 
decision that should be taken under an existing regulatory framework. The approach thus uses a 
simulation based framework consisting of a representation of the resource dynamics and exploitation, 
within which management actions are implemented and compared. 
 
The central part of MSE is the computer representation of reality on which to impose the various 
management activities including regulations, monitoring and assessment procedures. The operating model 
in this study, ELFSim (Little et al. 2007), provides the MSE framework to examine the trade-offs 
associated with the performance of alternative management strategies. ELFSim captures the dynamics of 
the underlying resource and its exploitation.  
 
The framework is able to deal explicitly with a range of sources of uncertainty when showing the 
consequences of alternative management strategies, including structural and parameter uncertainty, errors 
in data, estimation uncertainty and management implementation uncertainty. Transparency and 
recognition of sources of uncertainty in assessing trade-offs between alternative strategies are essential to 
the approach and acceptance of outcomes from stakeholders. 
 
Stakeholder engagement in MSE is essential to the acceptance of credible management objectives and 
strategies that represent the divergent interests of the different user groups. A key element of MSE 
involves turning broad conceptual objectives into quantifiable and measurable operational management 
objectives and related performance indicators. Fundamental to this approach is the identification and 
representation of stakeholder objectives. In specifying operational management objectives three things are 
needed: a performance indicator that specifies the quantity of interest, a target for the performance 
indicator, and a measure of tolerance or acceptance that the indicator must achieve, usually specified as a 
probability. 
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In addition, central to a MSE approach are the identification of management strategies and of scenarios 
for the resource system under consideration. In this paper, we define a management strategy as a 
deliberate existing or planned course of action by one or more people.  It may be a management strategy 
that constrains human use in order to achieve environmental, social and economic objectives.  It may be a 
monitoring strategy (or program) designed to observe and measure the state of the ecosystem through 
time and space in order to build a set of environmental, social and economic indicators.  It may be a 
business or private strategy aimed at achieving business outcomes or personal advantage.  It may be a 
particular set of policy instruments or governance arrangements.  It may also be a combination of these 
and other types of strategies. A scenario is a hypothesized future trajectory of external forces on either the 
system itself or a computer representation (or model) of the real system.  Uncertainty in knowledge 
usually leads to several alternative scenarios of the system, which include the natural ecosystem and 
relevant components of human society. These scenarios represent alternative hypotheses about current 
state of nature and how the system evolves in response to natural events and human actions. 
 
For each combination of a strategy and scenario, the MSE provides output data in the form of GIS layers 
(maps and images) and indicator variables chosen with stakeholders to reflect the management objectives.  
The display of these data may then be used to compare and contrast similar displays for different 
combinations of strategies and scenarios. 
 

The ELFSim modeling platform  

ELFSim (“Effects of Line Fishery Simulator”) was initially developed for the assessment of management 
scenarios for the commercial line fishery operating on the Great Barrier Reef of Australia (Mapstone et al. 
2008). It includes the following key components (see Little et al. 2007 for a detailed presentation of the 
model):  
• a (meta) population dynamics model of target species that captures their full life history 

(including larval dispersal, reproduction, development, and habits); 
• a spatial fishing effort allocation model that captures the exploitation pattern due to fishing 

behavior; 
• a management model that simulates the implementation of management strategies; 
• an output visualization and run management tool, for easy scenario testing and interpretation of 

results. 
 
The biological component permits several local populations of the same species. Each is associated with a 
single reef and has a specified age, sex, and size-structure, which may be linked to other reefs through 
larval dispersal. The number of animals settling each year is determined by the annual egg production, the 
assumed larval distribution pattern and density-dependence in first-year survival. The biological model 
also allows for variability in natural mortality and larval survival among different reefs and at different 
times, as well as monthly variation in the relationship between fishing effort and fishing mortality. Larval 
dispersal is controlled by reef-to-reef migration data, and a self-seeding parameter that specifies the 
proportion of larvae spawned on a reef that settles on it. 
 
The model explicitly represents the spatial allocation of fishing effort in the projection period across 
individual reefs at each monthly time step. Several harvest models have been developed for ELFSim (e.g. 
Little et al. 2004). For the application to the Ningaloo Marine Park, a module was developed to simulate 
the movement, reef selection processes, and fishing activities of both charter and individual recreational 
vessels, using an agent-based model. Agent-based models attempt to determine the combined behaviour 
of a collection of individuals (Uchmański and Grimm 1996, Grimm 1999, Lempert 2002). In the ELFSim 
platform, the agents are vessels with heterogeneous characteristics, such as location and boat ramps from 
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which they sail, and different fishing efficiencies. These agents make decisions on effort allocation based 
on rules, learn from past experiences and may use information from a range of external sources. 
 
The harvest model operates on a daily time-step within each monthly time-step at which the remainder of 
ELFSim operates. Through the model effort can respond dynamically to daily changes in fishing 
conditions (e.g. catch rates on individual reefs) and management arrangements (e.g. area and seasonal 
closures). The model incorporates progressive discounting of historical catches, with more recent 
experiences and personal information being more important than historical information or fleet-wide 
experience when making decisions. Catch expectations therefore are specific for each vessel, for each reef 
for each month of the year; and are ‘learnt’ by the fishers or ‘forgotten’ if a reef is not visited for some 
time. It is assumed that at the start of each day the vessels start from a particular port/boat ramp (e.g. 
Exmouth, Tantabiddi Creek, Coral Bay). 

The model is based on the idea that fishers will endeavour to fish in locations where they would expect to 
obtain the highest catch rates. At each daily time step a decision is made of where to fish. This is done by 
selecting a location (reef) based on the (normalised) distribution of expected CPUE, i.e. the probability of 
vessel b fishing on reef r, in any day is given by 

 

 

Where ,b rCPUE  is the historical average CPUE experienced by boat b on reef r, and is calculated as 

 

 

with 

, ,expb rCPUE  is the past experienced catch rates 

p  is the price of fish per kg 

c  is the cost of moving to fish per unit distance 

,b rd  is the distance between the location of boat b and reef r, 

δ  is the parameter used to discount past CPUE value. 

Based on this formulation the vessels are constrained to fish at locations they have fished in the past. We 
have also introduced the ability of boats to explore new fishing locations (reefs). With a 1% probability a 
vessel will choose a reef location based only on distance from port, and not on catch rate. We assume the 
probability of choosing a location declines exponentially with distance from port. The probability that a 
vessel will choose a reef in this manner is calculated as, 
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Each vessel allocates fishing effort on a daily basis, , , ,
r
y m b dE , by selecting a location at random from either 

,b rP  with 99% probability or ,b rP′  with 1% probability. Since fishing varies from day to day, however, the 
daily effort is assumed to be influenced by stochastic fluctuations. Thus, an effective effort , , ,

r
y m b dE%  is 

determined as: 

, , , , , ,
r r
y m b d d y m b dE Eε=%  

where dε represents the daily variability in fishing expressed as a log-normal random variable 

2 2(0, ) / 2~ eN
d

σ σε − , and 2σ  is equal to 1. This effective effort is used to calculate fishing mortalities. 

ELFSim operates at a monthly time scale and each simulation consists of two parts. In the first, the 
biological component uses information from the physical characteristics of individual reefs to determine 
the population size (and its age-, sex- and size-structure) on each reef given the documented amount of 
past fishing. In the second part, which projects the reef populations forward in time, the biological 
component is subjected to simulated fishing pressure, which is subject to management measures imposed 
by the user. The user is then able to evaluate various management options by examining performance 
indicators that are produced from the model. 
 
Infringement 
 
Whether a reef r, is open or closed to fishing by vessel-class v is defined by its ‘management status’, ,r vL , 
which ranges between 0 (open to fishing) and 1 (closed), with intermediate values representing closed 
reefs that experience some level of infringement. Effort assigned to reefs is calculated by multiplying the 
probability of fishing on a particular reef by (1- ,r vL ). Allowance can be made for spatial (edge effects) 
and temporal changes to infringement into MPAs (Little et al. 2005).  
 

Data 

Biological data were obtained from Marriot et al. (2010) for growth rates, length-weight relations, 
maturity, sex-change and selectivity relationships, as well as natural mortality of Spangled Emperor. 
 
The spatial domain of Ningaloo Marine Park was spatially segregated into a 1x1 minute grid (Figure 1). 
The spatial distribution and putative amount of habitat for Spangled Emperor, for each grid, was assigned 
based on GIS intersections with mapped inter-tidal coral reef habitat. The model contains 1544 sub-
populations. Although Spangled Emperor are generally considered reef associated species, they are 
assumed in the model to occur in locations other than the inter-tidal area in the marine park, where they 
are known to exist from fish catch records. Nevertheless, inter-tidal habitat is used to derive an indicator 
of habitat, which determines the population carrying capacity for each local population associated with a 
1 minute grid. For those grid cells not associated with inter-tidal habitat, an initial value for the amount of 
habitat and carrying capacity of the local population is determined by selecting a value randomly for the 
ten closest inter-tidal locations. 
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Figure 1 – Left: The spatial extent of the modeled area, including the 1 minute 
grid cells representing Lethrinum nebulosus populations, and the inter-tidal 
habitat; Right: The zoning on Ningaloo Marine Park used by the management 
model of ELFSim to constrain vessels in the harvest model (pink: no-take 
sanctuaries; green: recreational zones; grey: general purpose; black: special 
purpose) 

 
Since the actual unexploited state of the species is not known but is generally expected to be explored 
through model sensitivity analysis by the user, the actual values of the species carrying capacity of the 
different local populations is less important than the relationship among the location populations. As a 
result, in the current model the spatial distribution of the resource (Figure 1) is calculated as a function of 
inter-tidal coral reef habitat area and catch records. 
 
Charter fishing catch and effort data were obtained at a 5 minute spatial grid scale for the period from 
2002 to 2006 (Dept. of Fisheries, Western Australia). These data were disaggregated to the 1 minute 
spatial scale of the sub-populations based on the amount of assumed habitat distributed among the 1 
minute grid cells embedded in each 5 minute grid cell datum. For each grid cell, catch and effort data 
were hindcast linearly back to zero in 1965, the year in which fishing was assumed to have started (Figure 
2). Recreational fishing catch and effort data were obtained for 5 minute blocks in 2006. These data were 
similarly disaggregated to 1 minute grid cells based on the amount of habitat assumed to exit in each grid 
cell, and hindcast linearly back to zero in 1965. Commercial catches were obtained for 1 degree blocks 
from 1975 to 2005 and disaggregated to the 1 minute spatial scale of the sub-populations based on the 
amount of assumed habitat distributed among the 1 minute grid cells. These data were also hindcast back 
to 0 in 1965 (Figure 2). 
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Figure 2 - Spatially aggregated catch data, by fleet over the historical period 

 
These data allow the model to run historically, capturing the spatial pattern of historical fishing. 
Assuming that there was no or little fishing before 1965, and with an assumed relationship between 
habitat and reef (grid cell) population size, the model derives the state of the local reef populations in 
2006. After 2006 the harvest model operates to project the population under different management 
conditions. For simulation of management strategies involving the zoning of the marine park (Figure 1), 
ELFSim prevents fishing from occurring in the protected (sanctuary) zones in this projection period (pink 
areas Figure 1). 
 

Table 1 - Number and distribution of fishing vessels in the harvest model, fishing in the different 
fleets (charter and recreational) from different ports (boat ramps). 

 Fleet 

Port Charter Recreational 

Exmouth 8 18 

Tantabiddi Creek 4 12 

Coral Bay 0 10 

Total 12 40 

 
At the start of the projection period all vessels start with the same perceived CPUE across different 
locations (reefs), based on the historical data used in the historical period of the model. As the projection 
period in the model progresses however, these perceptions diverge under stochastic influences, and the 
behaviour of individual vessels becomes conditioned on recent individual fishing experiences. For the 
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current simulations, a number of vessels were selected for each fleet so that the aggregate effort of the 
vessels, each operating consistently over the period of a year, would match the aggregate effort that has 
actually occurred in the fishery. A distribution of fishing vessels across different ports, or boat ramps, was 
also necessary, based roughly on the calculated effort distribution in different areas of Ningaloo Marine 
Park (Table 1). 
 

MANAGEMENT OBJECTIVES, MANAGEMENT STRATEGIES AND SC ENARIOS 

Identification of management objectives, management strategies and scenarios to be considered in the 
simulation runs was carried out in consultation with the stakeholders involved in the regulation of the 
fishery. Five workshops were held to this intent, 3 early on in the process (in May, August and September 
2006), one in November 2008 and one in March 2010.  

Management objectives 

The management objectives identified fall into two broad categories of ecological and social objectives. 
 
Ecological management objectives on which stakeholders agreed pertained to: 

• the capacity for spawning biomass of the target species to be restored to high levels in the 
sanctuaries. Quantitatively, this was taken to imply a spawning biomass above 90%, or at least 
above 75%, of pre-exploitation spawning biomass, 75% of the time; 

• the length distribution and the age distribution of the population in the sanctuaries, which should 
approximate those of an unexploited population. Quantitatively, we interpreted these objectives as 
the mean of the age and length distributions of the population in the sanctuaries to be within the 
tenth percentile of the unexploited values, 75% of the time; 

• the status of the stock outside of the sanctuaries and the desire that it not decline below the current 
state. Quantitatively, this was taken to mean that both the spawning biomass and the biomass 
available to fishers outside sanctuaries should be greater than what they were in 2007, 75% of the 
time; 

• the status of spawning biomass at the scale of the entire marine park. This specified that the 
spawning biomass should be more than 40% of the pre-exploitation spawning biomass, 75% of the 
time. 
 

Social objectives on which stakeholders agreed pertained to: 
• maintaining a good recreational fishing experience in terms of catch rates. This was interpreted as 

the total catch rate (including landed and released catches) , CPUE, be greater in the future than the 
most recent value 75% of the time; 

• improving recreational fishing experience by ensuring that there should be a good chance of 
catching trophy fish (considered as fish of body size > 50cm). This was interpreted as ensuring that 
each fisher would catch one trophy fish on each trip, or that trophy fish would constitute 25% of a 
fisher’s catch on any given trip 75% of the time; 

• reducing the variability in catch (assumed to be the day-to-day variability in total catch), and the 
number of days, or trips in which zero fish are caught.  Because the functional relationship between 
catch and effort assumed in the model, a non-zero effort will never result in a zero catch. Also, 
because the main form of catch is weight, not numbers, it is possible to get catch in numbers that is 
fractional, e.g. 1.5 fish. As a result we developed an indicator that represents the chance of not 
catching a fish, as the proportion of days or trips during which the average number of fish in the 
catch is less than 1, 75% of the time. 
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Management Strategies 

Several management strategies were considered during the workshops, under current conditions. These 
include: 

• use the current or an increased network of marine sanctuaries; 
• allowing or not allowing fishing to occur from shore in sanctuaries; 
• maintaining the current recreational effort, or increasing it, presumably through a licensing 

platform or implementing a TAC; 
• implementing an educational program, which would be expected to reduce infringement in closed 

areas, and informally reduce the bag limit through the development of a catch and release plan; 
• implementing an enforcement monitoring program by having a monitoring vessel patrol the coast, 

to reduce fishing in the sanctuaries, and over-catches of the bag limit. 
 
Although other management options are included in the modeling platform, such as bag limits and 
minimum legal sizes, changes to these regulations were thought to be less likely to be adopted in the near 
future, and were thus not implemented in the first set of simulations considered here. 

Scenarios 

The scenarios that were thought to be likely conditions experienced in the future included:  
• environmental pressures as a result of climate change or similar global effect; 
• increased fish catchability, which would result from technological development; 
• development of fishing effort in relation to the increase in population and economic activity 

currently experienced in Western Australia; 
• wider footprint of the fishery, which would result if fishers moved to bigger boats, or relative costs 

decreased, such that their operational range per unit cost increased; 
• boat ramp / road upgrade, which would allow more vessels originating from Coral Bay, and thus 

would be expected to have an effect on localized depletion of the resource. 
 
The table below illustrates a combination of management strategies and scenarios which were considered 
for the presentation of preliminary simulation results in this paper. Across all scenarios, catchability was 
assumed to increases by 1% a year for 10 years, and overall recreational fishing effort was assumed to 
double, which was thought to be likely outcome under increasing mining activity in the region.  
 

Table 2 – Combination of management strategies and scenarios tested 

Management 
strategy 

Climate 
Change (CC) 

Fishing footprint 
(foot prt) 

New boat ramps 
(b ramp)  

All ( all) None  

Status Quo  SQ1  SQ2  SQ3  SQA  SQN  

Modified Sanctuaries  MS1  MS 2 MS 3  MS A  MS N  

No inshore fishing  NIF1  NIF 2  NIF 3  NIF A  NIF N  

Increased Sanctuaries  IS1  IS 2  IS 3  IS A  IS N  

 
Management strategies considered individually were: a modification in the spatial distribution of 
sanctuaries in the Park; a ban on inshore fishing in the sanctuaries; or the extension of the area of existing 
sanctuaries. Key indicators considered in this analysis to assess the capacity of Management Strategies to 
achieve the objectives pursued in the fishery include the spawning biomass relative to un-fished levels 
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(ecological objective), catch rates (fisher satisfaction) and the probability of catching trophy fish (fisher 
satisfaction and population structure). 

SIMULATION RESULTS 

Preliminary simulation results are presented in Figure 3 (for each scenario and management strategy listed 
in Table 2).  
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Figure 3 – Simulation results for key indicators. Top: Spawning biomass (SB) relative to 
unfished spawning biomass in open and closed areas; Middle: Catch rates (CPUE) relative to 
2007 catch rates; Bottom: Proportion of trophy catches. Left quadrants: trends in the Status 
Quo management strategy; Right quadrants: status of the indicators at the end of the 
simulation period 
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The left quadrants illustrate the evolution over the projection period of the key indicators selected, in the 
status quo management strategy, under the different scenarios considered. With no new management 
measures adopted, there is a decreasing long term trend in biomass which is stronger if the climate, 
extended footprint and new boat ramp scenarios occur. Catch rates also tend to decrease throughout all 
scenarios, although they do less so under the wider footprint and the boat ramp scenarios, as these entail 
new fishing possibilities for the fleets. Over time, there is also a decrease in the proportion of trophy 
catches. The results in the right quadrant illustrate the effectiveness of alternative management strategies 
at achieving the objectives pursued by the stakeholders, based on the same set of indicators measured at 
the end of the simulation period. Overall, under the scenarios considered, none of the strategies 
considered manages to achieve the ecological objective of restoring spawning stock biomass. Increased 
sanctuaries and a ban on inshore fishing produce the strongest effects towards this objective, whereas the 
modification of sanctuary distribution considered in these runs performs less well. Maintaining catch rates 
is only achieved if none of the foreseen scenarios occurs, or if either the extended footprint of fishing 
scenario or the boat ramp scenario occurs. In the latter case, alternative management strategies to the 
status quo tend to degrade the performance of management towards this objective, while in the former,  
they tend to improve this performance. Trophy catches is the only indicator which appears to be satisfied 
over the projection period, and is relatively unaffected by the scenarios or the alternative management 
strategies. 

DISCUSSION 

The results reported above demonstrate both the variability and trends in depletion and recovery of target 
species and, by implication, a critical component of the Ningaloo marine ecosystem under different 
management strategies and a range of bio-physical and human-usage scenarios. A striking feature of the 
results is the relatively slow recovery of fish stocks from a state of high depletion. This is the result of the 
biological parameters for the species, which include a productivity parameter (steepness), for the stock 
recruitment relationship, which was set to 0.5. This parameter usually varies between about 0.4 and 0.75, 
and we chose 0.5 as an approximate mid-point. 
 
Equally revealing is the rapid human response in the harvest model to changes in extractive use permitted 
in the marine park, and to modified fishing conditions under the alternative scenarios considered. 
Depending on the combination of scenarios and strategies, large differences are observed in the spatial 
distribution of fishing effort, as well as in its variability in time. These key aspects of the results are 
currently being analyzed with the aim to identify the implications of these responses in the evaluation of 
management strategies. 
 
Such model-based results may not only agree with public perceptions, but they also help to pinpoint the 
most important features of the biology and human exploitation that give rise to the changes, and how 
management agencies might best set their strategies in order to achieve their stated objectives. In these 
simulations, some management strategies clearly perform better than others with respect to the social 
objectives pursued in the fishery, although none manages to improve the ecological status of the system.  
 
Further evaluation of alternative management strategies will be pursued, to assess their capacity to 
achieve the objectives which have been identified as key via the stakeholder consultation. This will 
involve testing alternative combinations of management approaches, under a wide range of scenarios 
regarding the conditions under which the fishery will evolve over the next few decades. In particular, we 
will examine the trade-offs between the levels at which the threshold values for objective indicators are 
set, whilst ensuring that given management strategies remain successful. Such analysis is akin to the 
application of viability analysis in ecological-economic modeling (Béné et al, 2001; Martinet et al.,  2007; 
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Martinet et al., 2010), and should better inform the stakeholders involved in determining the regulations 
of recreational fishing in Ningaloo Marine Park, about the options they face to ensure viable management 
strategies for reef line fishing in Ningaloo. 
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