Coordination effects in area-specific management regimes empirical evidence from a Swedish shrimp fishery

Lisa Björk ${ }^{1}$
University of Gothenburg, Sweden

July 10, 2016

Area-specific regulations

- Convention on Biological Diversity in $1993 \rightarrow$ political process towards MPAs and ecosystem-based management

Area-specific regulations

- Convention on Biological Diversity in $1993 \rightarrow$ political process towards MPAs and ecosystem-based management

Area-specific regulations

- Convention on Biological Diversity in $1993 \rightarrow$ political process towards MPAs and ecosystem-based management
- Renewed focus on area-specific fisheries regulations, such as TURFs, Co-management areas, and area specific command and controls \rightarrow balance socio-economic and conservation considerations

Area-specific regulations

- Convention on Biological Diversity in $1993 \rightarrow$ political process towards MPAs and ecosystem-based management
- Renewed focus on area-specific fisheries regulations, such as TURFs, Co-management areas, and area specific command and controls \rightarrow balance socio-economic and conservation considerations
- Little scientific evidence of the comparative advantage of different area-regulations

Empirical setting - Swedish shrimp fishery, 1997-2013

- Swedish shrimp fishery, 12% of total annual landings value

Empirical setting - Swedish shrimp fishery, 1997-2013

- Swedish shrimp fishery, 12% of total annual landings value
- Quasi-natural experiment:
- Overall fishery, voluntary 3 days/week, TAC
- Command and control introduced in $2000 \rightarrow 27$, specific gear limitation, voluntary 3 days/week, TAC
- Territorial user rights introduced in $2004 \rightarrow 5$, exclusive rights, 100 days/year, TAC

Data

- Data from Swedish Agency of Marine and Water Management SWAM + SMHI, SPBI, IMR
- Unique panel data set on all shrimp trips 1997-2013
- Geographical positions and dock-side prices
- Weather, fuel prices, and stock index

Outcome variables

	TURF		CAC		ROA
Variable	<2004	$\geqslant 2004$	<2000	$\geqslant 2000$	Full period
	177.9	197.04	203.13	$\mathbf{2 0 0 . 3 8}$	380.1
kW	(47.81)	(66.78)	(74.07)	$\mathbf{(7 5 . 2 5)}$	(187.4)
	13.01	12.67	14.80	14.19	21.35
Length (m)	(1.73)	(1.59)	(3.87)	(3.47)	(6.33)
	9.72	10.49	10.06	9.18	26.31
Trip effort (h)	(3.59)	(3.56)	(5.86)	(4.14)	(15.46)
	1091.78	1701.04	$\mathbf{1 5 0 9 . 9 3}$	$\mathbf{1 4 4 1 . 9 7}$	1867.53
Gross rev (SEK/h)	(876.37)	(1838.5)	$\mathbf{(1 3 6 9 . 2 2)}$	$\mathbf{(1 3 4 4 . 1 9)}$	(1566.86)
	1033.30	1596.50	1428.33	1254.70	1570.21
Net rev (SEK/h)	(866.74)	(1829.45)	$\mathbf{(1 3 5 4 . 7 1)}$	$\mathbf{(1 3 1 6 . 8 2)}$	(2107.27)
	$\mathbf{1 4 . 9 1}$	$\mathbf{1 4 . 2 2}$	38.02	26.51	37.2
	$\mathbf{(1 2 . 9 4)}$	$\mathbf{(1 3 . 9 2)}$	(40.13)	$(.26)$	(33.67)
CPUE (kg/h)	.82	.80	.56	.56	.54
	$\mathbf{(. 2 3)}$	$\mathbf{(. 2 4)}$	$\mathbf{(0 . 2 9)}$	$\mathbf{(. 3 2)}$	$(.23)$
Share large	.07	.04	.13	.05	.15
	$(.18)$	$(.14)$	$(.19)$	$(.14)$	$(.20)$
Share bycatch	37.7	44.8	35.87	36.94	35.77
	(4.27)	(1.06)	(1.75)	(2.84)	(2.09)
Mesh size (mm)	84	67	54	62	-
Within area (\%)	(36)	(47)	(50)	(49)	33,720
Observations	268	686	1,552	9,675	

Note: All prices have been converted to 2013's prices using CPI by Statistics Sweden

Main analysis - difference in differences

$$
Y_{i, d, m, y}=\beta_{1} \text { treatloc }_{i}+\beta_{2}\left(\text { treatloc }_{i} * \text { post }_{y}\right)+\chi_{i} \gamma+\theta_{i}+\tau_{y}+\tau_{m}+\tau_{d}+\epsilon_{i, d, m, y}
$$

- Treatment and control groups based on location of trips
- χ_{i} Controlling for windspeed, tows, first haul CPUE
- θ_{i} Vessel fixed effects
- year, month, day of week indicators
- Errors clustered on the day of fishing

Main analysis - difference in differences

$$
Y_{i, d, m, y}=\beta_{1} \text { treatloc }_{i}+\beta_{2}\left(\text { treatloc }_{i} * \text { post }_{y}\right)+\chi_{i} \gamma+\theta_{i}+\tau_{y}+\tau_{m}+\tau_{d}+\epsilon_{i, d, m, y}
$$

- Treatment and control groups based on location of trips
- χ_{i} Controlling for windspeed, tows, first haul CPUE
- θ_{i} Vessel fixed effects
- year, month, day of week indicators
- Errors clustered on the day of fishing
- Under parallel trend \& exogeneity assumptions, β_{2} identifies the average effect of the management regime

Results - Revenues

Panel A: TURF
Treat: trips located within TURF Control: trips located in other areas

Panel B. CAC
Treat: trips located within CAC
Control: trips located in other areas, excluding TURF

VARIABLES	(1) Gross rev	(2) Shrimp rev	(3) Net rev	(1) Gross rev	(2) Shrimp rev	(3) Net rev
Treatloc	$\begin{aligned} & -0.08 \\ & (0.08) \end{aligned}$	$\begin{aligned} & -0.05 \\ & (0.08) \end{aligned}$	$\begin{aligned} & \hline-0.09 \\ & (0.07) \end{aligned}$	$\begin{gathered} 0.22 * * * \\ (0.03) \end{gathered}$	$\begin{gathered} 0.15^{* * *} \\ (0.03) \end{gathered}$	$\begin{gathered} 0.23 * * * \\ (0.03) \end{gathered}$
Treatloc*post	$\begin{gathered} 0.15 * * * \\ (0.07) \end{gathered}$	$\begin{aligned} & 0.14 * * \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.12^{*} \\ & (0.06) \end{aligned}$	$\begin{gathered} -0.26 * * * \\ (0.03) \end{gathered}$	$\begin{gathered} -0.19 * * * \\ (0.03) \end{gathered}$	$\begin{gathered} -0.25^{* * *} \\ (0.03) \end{gathered}$
Mean wind speed	$\begin{gathered} 0.02^{* * *} \\ (0.00) \end{gathered}$	$\begin{gathered} 0.03^{* * *} \\ (0.00) \end{gathered}$	$\begin{gathered} 0.03^{* * *} \\ (0.00) \end{gathered}$	$\begin{gathered} 0.02 * * * \\ (0.00) \end{gathered}$	$\begin{gathered} 0.03^{* * *} \\ (0.00) \end{gathered}$	$\begin{gathered} 0.03^{* * *} \\ (0.00) \end{gathered}$
Cpue/first haul	$\begin{gathered} 0.01^{* * *} \\ (0.00) \end{gathered}$					
Constant	$\begin{gathered} 5.71^{* * *} \\ (0.11) \end{gathered}$	$\begin{gathered} 5.62 * * * \\ (0.11) \end{gathered}$	$\begin{gathered} 5.41^{* * *} \\ (0.13) \end{gathered}$	$\begin{gathered} 5.64 * * * \\ (0.11) \end{gathered}$	$\begin{gathered} 5.56 * * * \\ (0.11) \end{gathered}$	$\begin{gathered} 5.37 * * * \\ (0.13) \end{gathered}$
Vessel FE	YES	YES	YES	YES	YES	YES
Y, m, d FE	YES	YES	YES	YES	YES	YES
Observations	40,942	40,807	36,279	40,094	39,960	39,998
R-squared	0.46	0.46	0.42	0.46	0.46	0.41

	Panel C: TURF		Panel D: CAC	
	Treat: trips within TURF			
Control: trips outside TURF	Treat: trips within CAC			
by TURF vessels	Control: trips outside CAC			
	by CAC vessels			

Mesh size by trip location

Additional results - daily fishing decisions

- Reduced form model of daily fishing decisions
- Maximum likelihood assuming logistic errors
- Assume decision to fish $=$ latent variable linearly related to observables (Karaca-Mandic et al., 2012):

```
P(fishi,d}=1|\mp@subsup{W}{i,d}{},\mp@subsup{S}{d}{},\mathrm{ management })
\phi(\alpha+\mp@subsup{\beta}{1}{}\operatorname{exp}\mp@subsup{W}{i,d}{}+\mp@subsup{\beta}{2}{}post+\mp@subsup{\beta}{12}{}(\operatorname{expW}*post)+\mp@subsup{\beta}{3}{}\mp@subsup{S}{d}{}+\mp@subsup{\beta}{32}{}(\mp@subsup{S}{d}{}*post)+\mp@subsup{\epsilon}{i,d}{})
```


Additional results - daily fishing decisions

- Reduced form model of daily fishing decisions
- Maximum likelihood assuming logistic errors
- Assume decision to fish = latent variable linearly related to observables (Karaca-Mandic et al., 2012):

```
\(P\left(\right.\) fish \(_{i, d}=1 \mid W_{i, d}, S_{d}\), management \()=\)
\(\phi\left(\alpha+\beta_{1} \exp W_{i, d}+\beta_{2}\right.\) post \(+\beta_{12}(\exp W *\) post \()+\beta_{3} S_{d}+\beta_{32}\left(S_{d} *\right.\) post \(\left.)+\epsilon_{i, d}\right)\)
```

- $\exp W$ is expected revenue per unit effort, modelled parametrically $\exp W=\exp$ Price $* \exp C P U E$
- Myopic fishers; expPrice $=$ previous auction days average price
- $\operatorname{expCPUE}=$ linear function of stockindex, meshsize, area and area*year, sum of quota use of others, vessel capacity, year, month, day
- S an indicator variable for wsp $>12 \mathrm{~m} / \mathrm{s}$

Sample

- All vessel-date pairs 1997 - 2013
- Exclude from choice set:
(1) Fisher enters when first trip is observed
(2) Inactivity: consecutive period of days above 90 th percentile

Sample

- All vessel-date pairs 1997 - 2013
- Exclude from choice set:
(1) Fisher enters when first trip is observed
(2) Inactivity: consecutive period of days above 90 th percentile
- 670, 561 vessel-date pairs and 144 decision makers - of which 5 TURF, and 24 CAC

Sample

- All vessel-date pairs 1997 - 2013
- Exclude from choice set:
(1) Fisher enters when first trip is observed
(2) Inactivity: consecutive period of days above 90 th percentile
- 670, 561 vessel-date pairs and 144 decision makers - of which 5 TURF, and 24 CAC
- Average 360 vessel-date pairs per year; mean participation rate 25 days (7 \%); 2 \% participation increase after introduction of TURF/CAC

Probability of fishing as expected revenues increases for TURF

Probability of fishing as expected revenues increases for CAC

Summary

TURF

- Net and gross revenues \uparrow
- CPUE unchanged
- Share of large shrimp \downarrow - less high-grading?
- Higher probability to target days when expected revenues \uparrow
- Quality?

CAC

- Net and gross revenues \downarrow
- CPUE \& bycatch \downarrow
- Share of large shrimp \downarrow - less high-grading?
- Lower probability to target days when expected revenues \uparrow Number of players $\rightarrow \mathbf{5}$ v.s. 27

Summary

TURF

- Net and gross revenues \uparrow
- CPUE unchanged
- Share of large shrimp \downarrow - less high-grading?
- Higher probability to target days when expected revenues \uparrow
- Quality?

CAC

- Net and gross revenues \downarrow
- CPUE \& bycatch \downarrow
- Share of large shrimp \downarrow - less high-grading?
- Lower probability to target days when expected revenues \uparrow Number of players $\rightarrow \mathbf{5}$ v.s. 27

Thanks for listening!

Questions?

