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1
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EI blade stiffness
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q2 blade two deflection

q3 teeter angle

rotor angle

q5 generator angle
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Qi transformation from ith generator
coordinate to jth blade coordinate

r distance to blade element

R total blade length

Ri,R2,R3 three-point turbulence simulation
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Ri resultant force magnitude in ith
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R
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R resultant of external forces
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T rotor torque
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w frequency, weighing factor
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W
n natural frequency

W, Weibell wind speed

tile angular velocity of point Q in
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Y distance from tower centerline

z dimensionless blade radius

Greek
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NaQ

angle of attack

angular acceleration magnitude in ith
direction

angular acceleration of point Q in
reference frame N

Q precone angle



Yu coherence function between points
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AP pressure difference across the rotor
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E tower shadow velocity deficit
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Ica gearbox efficiency

Gen generator efficiency
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4 blade mass per unit length

P air density
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Turbulence Induced Loads on a Teetered Rotor

CHAPTER 1

Introduction

The determination of inertial and aerodynamic loads is

necessary for the design of horizontal axis wind turbines

(HAWT). Extensive work has been done predicting steady-

state and cyclic blade and rotor loads [1-6] for constant

speed HAWT. Currently, variable speed generators are

being examined for use with HAWT [7]. The effect of

variable speed operation on blade and rotor loads is not

well known. Understanding variable speed operation of

HAWTS is critical because the rotor speed can coincide with

many system natural frequencies. Instabilities and

excitations near system natural frequencies can reduce

working lifetimes of components and, in extreme cases,

cause catastrophic failure. The wind turbine designer

needs tools to predict potential trouble spots. This

thesis develops techniques for analyzing the loads

associated with variable speed operation of HAWT.

The objective of this thesis was to develop a five

degree-of-freedom time-domain computer model of a two-

bladed, teetered HAWT with a variable speed rotor. The

specific geometry was chosen to parallel projected

development of HAWT which will have this configuration [8].

The computer code determines loads and response by
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combining a mathematical model having four degrees-of-

freedom with aerodynamic loading. The aerodynamic loading

consists of deterministic effects, such as wind shear,

tower shadow, and yaw, with stochastic effects from wind

turbulence.

1.1 Variable Speed

In order for variable speed to be economically viable,

the additional cost of variable speed equipment must be

offset. These offsets are a combination of increased power

capture from the wind and decreased loads, which results in

longer turbine component lifetimes. In the past, this has

not been the case, consequently most HAWT run at fixed

speed. Recently, the capital cost of the power

transmission components used in variable speed generators

has decreased [7]. With this decrease, variable speed

implementation has becom'e a candidate for use on the next

generation of wind turbines. The advantages of variable

speed operation are numerous and have been extensively

discussed, although their individual reduction of the cost

of energy is widely varied and often cannot be assigned a

dollar value.

A typical HAWT rotor power coefficient (Cp) versus tip

speed ratio I' is shown in Figure 1.1. A fixed speed wind

turbine can be designed to have an optimum power

coefficient at only one wind speed. When the wind speed is
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either higher or lower than this optimum wind speed, the

aerodynamic efficiency is reduced. A variable speed turbine

can operate with a optimum power coefficient by varying the

rotor speed proportionally to the wind speed. This results

in increased power capture over fixed speed operation.

Predictions of increased power have been widely varied,

from 3% to 6% [9] up to 10% to 20% [10].

A variable speed machine can reduce the power and load

fluctuations caused by rapid changes in the wind. When a

fixed speed machine experiences a gust, the effects are

translated directly to the machine as a change in torque

and consequently changes the power sent to the utility

[11]. This has a disadvantage for wind farms with large

numbers of turbines, subject to wind gusts, could send

large, potentially damaging voltage spikes through the

utility distribution system. The direct variation of

torque with wind tends to decrease the fatigue life of the

drive train components. Variable speed machines can use

the rotor as a flywheel storage system to reduce these

effects. When a wind gust is experienced the rotor can

accelerate, transferring the increase in wind energy to the

rotor as kinetic energy instead of passing it down the

drive train as a sudden increase in torque. During a wind

deficit the opposite occurs. The generator extracts energy

from the rotor, which will decelerate the rotor. This

process also significantly dampens torque variations due to

turbulence, tower shadow, and wind shear.
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The variable speed configuration can be used as a

turbine control system. Many fixed pitch machines use blade

pitching to keep thrust and torque below some nominal value

dictated by machine limitations. Instead, the rotor speed

can be varied to achieve the same result without the

complicated pitch actuators. Control schemes using both

variable speed generators and mechanical blade pitching

were developed for HAWT [12-13]. Blade pitching reduces

torque variations while maintaining rated power.

Variable speed generators can be used to regulate

start and stop conditions. Turbines can be motored to a

start-up rotation speed and braking can be achieved by

setting the generator electrical torque higher than the

mechanical rotor torque. Braking ability would still be

needed for emergency loss-of-load. Some fixed speed

machines freewheel up to their normal operating speed and

the generator is then turned on. This causes an impulse

torque to be transmitted through the drive train increasing

wear and fatigue. Fixed speed machines need a braking

device to stop the turbine. Brakes are aerodynamic, such as

blade feathering, or mechanical, such as friction brakes.

Anderson et al [10] were able to use motored start up to

67% of rated rotor speed for a 500 horsepower variable

speed demonstration. The start-up took approximately 100

seconds.

Variable speed generators can be used to dampen out

torsional modes that exist in the drive train. This
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phenomenon is often referred to as ringing. The quick

response of generator torque allows damping of very high

modes. A simulated 0.1 Hertz drive train resonance was

successfully damped out on a 500 horsepower variable speed

demonstration [10].

The problem of synchronizing wind turbine output power

with the utility is eliminated with variable speed

operation. This reduces the amount of time the generator

is off-line during start up conditions. This can be

significant when the wind is oscillating around the minimum

operating speed.

Variable speed operation can also reduce acoustic

noise. Noise reduction is important when the turbines are

sited near residential areas. At high wind speeds the

rotor is operating slower to limit torque. The slower

rotor speed reduces the noise emitted by the blade.

The preceding paragraphs have outlined the many

advantages of operating HAWT with variable speed

generators. A number of variable speed test machines have

been built to date.

The MOD-0A, a two-bladed HAWT, was equipped with a

variable speed generator and tested in a number of

configurations [14]. Drive train loads variations were

reduced and the power quality was improved with the

variable speed operation.

A three-bladed 40 kiloWatt HAWT was tested Sweden [15]

with a constant tip speed ratio below rated torque and held
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to the rated torque above. Significant torque variations

were reduced with the variable speed generator.

Other test variable speed HAWT have been studied in

Japan [16], Germany [17], and Italy [18]. At the German

site, noise reduction was reported for the variable speed

operation.

1.2 Blade Dynamics

The blades of a HAWT are long cantilever beams. The

blades are frequently rigidly attached to the hub. The hub

can either be rigidly attached to the low-speed shaft or

allowed to teeter. Teeter mechanisms can include the

displacement of the teeter axis from the blades principal

bending axes, which is referred to as undersling, and the

teeter axis may be rotated from a perpendicular alignment

from the blades, referred to as a delta-3 angle. Each

blade has three degrees-of-freedom: motion in the flapping

direction, motion in the edgewise direction, and torsional

motion. A teetered rotor would have seven degrees-of-

freedom, three for each blade and one for the teeter

motion. This geometry is similar to that of many

helicopter rotors. One major difference is that helicopter

blades are kept as light as possible to reduce power

required for flight. Helicopter blades are also replaced

frequently, as often as every 1000 hours of flight time,

resulting in less required structural support to resist



fatigue. Consequently, most HAWT blades are much heavier

and stiffer than helicopter blades. Most of the governing

equations for blade motions are similar. The large

difference in stiffness results in some of the terms

governing HAWT blade motion to be small. The torsional

stiffness can be more than an order of magnitude greater

than the edgewise stiffness which in turn may be an order

of magnitude greater than the flapwise stiffness. Often,

degrees-of-freedom in these directions can be ignored. A

thorough description of governing equations for blade

motion can be found in Johnson [19], Bramwell [20], and

Gessow & Meyers [21]. A discussion of current blade

modeling techniques is made by Hodges [22]. Solutions to

the blade equations can be found depending on their

complexity. Aeroelastic solutions can be obtained by

linearizing the dynamics and the aerodynamics. This

technique is more suitable for helicopters, where the

geometry lends itself to linearization. In the literature,

a number of researchers have examined aeroelastic solutions

for helicopter rotors [23-25]. Kottapalli and Friedman [26]

examined the aeroelastic stability of a wind turbine blade

by computing an equilibrium position for the nonlinear

equations and then examining the behavior of perturbations

about the equlibrium position. Linearized dynamics has

been used to examine system natural frequencies and

stability regions [27-28]. Including the nonlinearities in

the dynamics and the aerodynamics requires a solution in
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the time domain. Recently, Hartin [4] combined tower

motion and elastic blade flapping with an unsteady

aerodynamic model for a HAWT. The response was obtained by

using a time domain predictor-corrector method.

1.3 Rotary Wing Aerodynamics

Aerodynamic loads on a HAWT rotor are determined using

the axial momentum theory for an actuator disk first

examined by Rankine [29] and Froude [30]. This theory

balances the thrust from the momentum change of the flow

passing through rotor with the blade element thrust. This

theory is often referred to as strip theory as the flow

through the rotor can be divided up into individual

streamtubes or "strips." This theory was modified by

Prandtl [31] and Goldstein [32] to account for tip-loss

effects. A modified strip theory was developed by Wilson

and Walker [33] to account for wake expansion. Using the

assumption of linear aerodynamics, closed form solutions

can be achieved. Most HAWT operate with large portions of

their blades in deep stall, so use of linear aerodynamics

is not generally a valid assumption. When nonlinear

aerodynamics is used a solution can be found through an

iterative procedure. The inclusion of nonlinear

aerodynamics has been shown to be an improvement [34].

A wind model to drive the aerodynamic model consists
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of two distinct parts, a deterministic part and a

stochastic part. The deterministic wind consists of

effects that are constant for each rotor revolution. These

are the mean wind, wind shear, tower interference, and yaw.

The stochastic portion is due to atmospheric turbulence.

Turbulence consists of lateral, vertical, and longitudinal

components. Only the longitudinal component is important

in HAWT load analysis. Many turbulence models have been

developed using simple autoregression for a single point in

space. Connell [35] developed a model that decomposes a

Fourier Transform of a autocorrelation for a rotating point

in turbulent wind which can be used for analysis of small

HAWT with a rigid rotor. Veers [36] developed a full field

model that has many applications in wind engineering but

requires mainframe memory to run. Walker et al [37]

summarized turbulence models for HAWT use. A number of

analysists have implemented turbulence models into loads

prediction codes [38-40].
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Chapter 2

Development of Equations of Motion

Four degrees-of-freedom are necessary to model a HAWT

with a two-bladed, teetered hub connected to a variable

speed generator. One degree-of-freedom arises from

flapwise motion of each of the two blades. Motion of the

blade is confined to the flapwise direction. Edgewise and

torsional blade motion are not considered in this study.

The direction of the blade flapping is a function of the

twist and pitch of the blade, so that the motion is in the

direction perpendicular to the axis of the blades smallest

moment of inertia. The model allows for blade precone and

delta-3. The model also allows for the teetering hub

center to be offset from the teeter axis. This length is

referred to as undersling. The model has provisions for

fixed rotor tilt and yaw. Time varying yaw is not

considered. The variable speed generator is driven by the

aerodynamic torque, drive train losses, and an arbitrary

generator load. The aerodynamic loading is determined

using the modified strip theory with nonlinear lift and

drag characteristics. The aerodynamics is driven by a wind

model that consists of a deterministic portion made up of

mean wind, shear, and yaw, and a stochastic portion,

consisting of an atmospheric turbulence model. The

aerodynamic loads are calculated in the blade deformed
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position. The resulting nonlinear equations are solved in

the time domain using a predictor-corrector method. The

bending moments, shear, and tension forces are integrated

along the deformed blade. The derivation of the governing

equations of motion is presented in this chapter.

2.1 Geometry and Coordinate Transformations

Figure 2.1 shows the orientation of one turbine blade

with all the coordinate systems required for determination

of the system equations of motion. These coordinates are

defined as

a"1 = inertial coordinates

a i = yaw coordinates

a_
1

= tilt and generator coordinates

b. = rotating rotor coordinates

ci = rotating teeter coordinates

di = delta-3 rotation coordinates

e1 = precone rotation coordinates

f. = elastic axis rotation coordinates

gi = deflected blade coordinates

(i=1,2,3)

The first two coordinate transformations, a" to a' and

a' to a, are yaw and tilt rotations respectively, and are

used for determination of wind input. The tilt rotation

also effects the gravity load on the rotor. The rotor

generator and main shaft spin about the al axis. The
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rotation about this axis is the variable speed degree-of-

freedom, q4. The rotor assembly teeters about the b2 axis,

with the teeter axis being displaced from the yaw and tilt

axes' center by a distance, d. The rotation about the

teeter axis is the teeter degree-of- freedom, q3. The hub

is displaced from the teeter axis by the undersling

distance, Ru . The axes c1, d2, and e3 define rotations at

the hub center for delta-3 (S3), precone (0) and the

elastic bending axis (Op), respectively. The resulting

coordinate transformation from the generator coordinate

system to the rigid blade coordinate system is given by

where,

a2

a3i

1Q11 Q12
Q21 Q22 Q23 I

Q31 Q32 Q33
f3
2 j

(2.1.1)

Q11 = cOpcpcq3 + seps(53sq3 cOpspc(53sq3
Q12 = -sOpcpcq3 + ceps83sq3 + sepsf3c83sq3

Q13 = sPcq3 + cpc63sq3
Q21 = cOpcpsq3sq4 + sOpQA + cepsPQB
Q22 sOpcpsq3sq4 + cOpQA sOpspQB

Q23 = spsq3sq4 c/3 (s83cq4 + c83cq3sq4)
Q31 = -cOpcpsq3cq4 + sOpQc cOpsPQD

Q32 sOpcPsq3cq4 + cOpQc + sOpsf3QD

Q33 = -sPsq3cq4 + c/3 ( -s(53sq4 + cS3cq3cq4)
QA = c(53cq4 si53cq3sq4
QB = s(53cq4 + c83cq3sq4
Qc = c63sq4 + s63cq3sq4
QD -s(S3sq4 + c(53cq3cq4

(2.1.2)

(cos (q4) is written as cq4, sin(q4) as sq4, and so on



18

for brevity)

For determination of aerodynamic loads, the

transformation from rigid blade coordinates to the deformed

blade coordinates can be taken as a local rotation about

the f2 axis. This must be done for each blade element with

a rotation C. The transformation between the rigid and

deformed blade coordinates is given by

ECOS(C)
f2t = 0

f3 J sing)

2.2 Blade Deflection

0 -sing)
1 0

0 cos(()

r,

gz'

Lg3.!

(2.1.3)

The displacement of each blade is modeled as a single

degree-of-freedom in a direction perpendicular to the axis

of the blades smallest moment of inertia. This is not

necessarily perpendicular to the swept rotor plane due to

twist and pitch. Blade deflection tangential to the axis

of the smallest moment of inertia is zero, although

provisions have been left in the code for future

development. Deflection in the radial direction can be

expressed as a function of the flapwise displacement.

Displacement of the blade is given by a product of an

assumed mode shape and a function of time. This relation

for displacement in the flapwise or f1 blade coordinate

direction can be expressed as



= (pi (r) qi (t)
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(i = 1,2) (2.2.1)

where,

q(t) = the blade displacement, a function of time

Oi(r) = the assumed mode shape, a function of the

blade coordinate r. (i=1,2 blade number)

The displacement in the tangential or f2 blade

coordinate can be expressed in the same manner as

u21 = (1)2 (r) q; (t) (i=1,2) (2.2.2)

For this model the assumed mode shape 02(r) is zero for all

values of r.

For a small blade deflection as shown in Figure 2.2,

the radial deflection can be expressed as

r

11r1 i dru3; = cos( 3a i=1,2 (2.2.3)

taking the first two terms from a Taylor series of the

cosine function and linearizing gives

so that

au. au- aui
COS ( 1 ) = 1 2sin2 - 1 2 ( ')`

-517

r

u3i = r ) 2dr
0

(2.2.4)

(i=1,2) (2.2.5)

The local blade element rotation used for equation

2.1.3 can be approximated as the slope of the displacement

function given as



a(P1
C; (r) = q; (t) (i=1,2)
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(2.2.6)

The choice for the shape function was determined using

the following relation developed by Wilson et al [1], for

an Euler beam that has stiffness that varies as

EI = kr -b (2.2.7)

where k is a constant, r is the distance from the fixed

hub, and b 0. For a uniformly loaded cantilevered beam

with stiffness variation as given in equation 2.2.6 the

static deflection (normalized to unity at the blade tip) is

given by

(pa(z)=zb+2[(1+b)(2+b)z2-
6 (2.2.8)

2(1+b)(4+b)z+(3+b)(4+b)]

where z=(r-RH)/(R-RH), R is the length of the blade, and RH

is the hub length. For a cantilevered beam with a force

acting at the tip and the stiffness given in equation 2.2.6

the static deflection (normalized to unity at the tip) is

given by

(fib 2Z =
z b

[ 3 4-b ) (14-b)z] (2.2.9)

For a cantilevered beam with a uniform load and a force

acting at the tip (ie. a tip mass) the relation for the

static deflection is a weighted superposition of equations

2.2.8 and 2.2.9, written as
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cp(z) = wcp,(z) + (1-w)(pb(z) (2.2.10)

where w is a weighting factor between one and zero. Wilson

and Hartin [1] found that the parameter b could be found by

calculating the bending natural frequency for a range of

values of b and selecting the value of b that minimizes the

flapwise bending frequency. This procedure can be extended

to find a combination of values w and b that minimizes the

bending natural frequency. For the ESI-80, the turbine

used for comparison in this thesis and described in

Appendix A, minimizing values were found to be 1.3 for b

and 0 for w. These values were used for the rest of the

analysis.

2.3 Blade Kinematics

Expressions for the velocity and acceleration of an

arbitrary point on the blade is required for determining

blade equations of motion and blade forces. A position

vector of an arbitrary point Q on the ith deformed blade can

be written as

(NPQ); = Plifi P2if2 P3if3 (i=1,2) (2.3.1)

where,

= u1 - Ftucos(p)

p2i = u2i

p3i = u3i - Rusin(p) (i=1,2)

where (V)i is the position vector of a point Q in the

(2.3.2)
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inertial reference frame N. The displacements u1i, u2i, and

u3i are given in the relations 2.2.1, 2.2.2, and 2.2.5,

respectively. The velocity of the point Q is the time

derivative of the position vector in 2.3.1 given by

(NvQ)
(NdNe) )

dt
(2.3.3)

this can be expressed in the rigid blade coordinate as

where,

where,

and,

(Nvq) i = viifi + v2if2 + v3,f3 (2.3.4)

V1i = 1:11j (W2P3I w3P2i)
V21 = 1:12i W3P 1 w1P3i) (2.3.5)
v31 = 1:131 (W1P2i W2P1 i

112i =qi92 = 0

113i = -tiecT,89)2dr (1=1,2)
dr

(q4' + sin(q4) Q31)w1 = 0.11'41Q" (43 (cos
= (q4,+ (43 ( COS ) + sin(c14)Q32)

w3 = (44Q13 + (43 (cos(q4) Q23 + sin(g4)Q33)

(2.3.6)

(2.3.7)

where q3 and q4 are the teeter and variable speed

degrees-of-freedom, respectively, and q3 and c are their

time derivatives. Q" through Q33 are transformations given

in equation 2.1.1.

The acceleration of point Q is the time derivative of



the velocity vector given in equation 2.3.4 given by

(NaQ) (NdNv°)
dt

23

(2.3.8)

this can be expressed in the rigid blade coordinates as

(NaQ) =. a2if2 a3if3 (2.3.9)

where (without the indice i),

al =iii +2 ( wit:13 -w3U2 ) + (w2v3 ) + ( a2p3 -a3p2 )

a2 =1:1.2 +2 (w3U1 ) + (w3vi -wiv3) + (cr3pi -al P3 )
a3 =ii3 +2 (w1t2-w2U1) + (w1v2-w2v1 ) + (a1p2-a2p1 )

(2.3.10)

where, w1, w2, and w3 are given in Eq. 2 . 3 . 7 , v1, v2,

and v3 are given in Eq. 2 . 3 . 5 , and u1, u2, and u3 are given

in Eq. 2 . 3 . 6 , and,

and,

i:131

a1

a2

a3
QW1

QW2

QW3

QA 1

QA2

QA3

= el; (Pi
= 92 = 0

r

= (41 + (141)2)1( sr(P)2dr

44c1 43c2w1

44Q1 2 + (431QW2

44Q13 + 43t2W3

= cos (q4) Q21 +

= cos (q4) Q22 +

= cos ( q4 ) Q23 +

= cos (q4) Q31

= cos ( q4 ) Q32

= cos (q4) Q33

441QA 1

(44QA2

143(44QA3

sin (q4) Q3'

sin (q4) Q32

sin ( q4 ) Q33

sin(g4)Q21sin (g

(:14)(222sin

sin ( q4) Q23

(2.3.11)

(2.3.12)

the q's are the second time derivatives of the q's and

Q" through Q33 are transformation given in 2.1.1. The



angular velocity can be written using Eq. 2.3.7 as

(Nwa) = wifi + w2f2 + w3f3
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(2.3.13)

The angular acceleration can be written using Eq. 2.13.12

as

(NcrQ) = aift '22f2 a3f3

2.4 Aerodynamic Loading

(2.3.14)

The method for determination of aerodynamic loads is

based on the momentum theory. The momentum theory applies

continuity, momentum, and energy to the flow passing

through the rotor plane. Figure 2.3 shows the one-

dimensional flow past the rotor. Two expressions for the

thrust on the rotor can be found. From a conservation of

momentum

dT = pu(V, u)
dA

(2.4.1)

where dT/dA is the axial force per unit area on the

actuator disk, p is the fluid density, and V, and u are

velocities defined on Figure 2.3. From the Bernoulli

equation

dT = AP
dA

where AP is the pressure difference across the

actuator disk expressed as

(2.4.2)



AP = 134" - P- =
2
p (V!
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(2.4.3)

Solving equations 2.4.1 and 2.4.2 gives the velocity

in the rotor disk as

1u =
2
(V, + u1) (2.4.4)

Defining a as the axial induction factor through the

relation aV, = - u the momentum relation Eq. 2.4.1 can

be written as

dT
dA

= 2 V,
2 a (1 a)

By defining the rotor thrust coefficient as

dT

CT =
dA
1
pV,

2

2

(2.4.5)

(2.4.6)

the thrust coefficient can be expressed as a function

of the axial induction factor

CT = 4 a (1 a) (2.4.7)

The effect of the wake expansion on the thrust

coefficient was studied by Glauret both empirically [2] and

analytically [3]. The foliwing expression given by Wilson

and Walker [4] can be used to specify the thrust

coefficient

CT = 4 a F (1 a) a
act

CT = Crac
a ac (a ac) a > ac

(2.4.8)

A value of a = 0.2 gives the best fit to the data. F



is a tip loss factor, given by Prandtl [5] as follows

-B (R r)F= 2 cos [exp
2 r r sincoa
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(2.4.9)

Strip theory combines the momentum theory with a blade

element theory and is based on the assumption that the flow

through the rotor can be divided into individual

streamtubes that can be analyzed independently. The

advantage of strip theory is the axial induction factors

can be found for each element independently of one another.

The thrust relation Eq. 2.4.8 can be related to the blade

element thrust coefficient, which is given as follows

where,

B c (1 a) 2 CL COSO,
CT = (2.4.10)

2 7r r sin20,

= tan-1 V°, (1 a)

rn
(2.4.11)

A solution to Eq's. 2.4.8, 2.4.10, 2.4.11, and 2.4.12

can be found in an iterative manner to give the steady-

state axial induction factor. This allows the lift and

drag to be determined along the blade for any blade azimuth

location, as follows.

Lift / (unit length) =
2
pW2c CL

Drag / (unit length) =
2

p W2 c CD

(2.4.13)

Referring to the geometry of Figure 2.4, the lift and

drag can be resolved onto the blade coordinates such that



the aerodynamic forces acting on a blade element can be

written as

where,

f = fllti + ftf2

fn = L COSOa + D sing),

ft = L Sin0a + D coscPa

where, L = lift, and D = drag.

2.5 Equations of Motion
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(2.4.14)

(2.4.15)

The kinematics and forces are evaluated at discete

points along the blades, so that determination of the

equations of motion requires numeric integration along the

blades. The methods of Kane and Levinson [6] were used for

obtaining the equations of motion. The equations are of

the form

where,

Fr + F; = 0

F
r
= generalized active force

F
r

*
= generalized inertia force

(2.5.1)

The subscript r refers to the number of generalized

coordinates. In this model, the number of generalized

coordinates is equivalent to the number of degrees-of-

freedom. As defined in section 2.1, r=1 and r=2 correspond

to the blade deflections of the two blades, r=3 for the



teeter angle, and r=4 for the variable speed. The

generalized active forces are determined from the blade

kinematics using

where,

Fr = Vr R + 42 T r=1,4
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(2.5.3)

Vr° = holonomic partial velocity of point Q

R = resultant of all external force

0 r
cl = holonomic partial angular velocity of

point Q

T = resultant torque of all external

torques

The generalized inertia forces are determined using

the followind relation

F = Vr (- Ta aQ ) + Or (-a- I-oxI 63) (2.5.3)
r=1,4

where,

m = mass per unit length of the blade

a° = acceleration of point Q, Eq. 2.3.9

I = Inertia dyadic of blade element Q

a = angular acceleration of point Q, Eq. 2.3.14

0 = angular velocity of point Q, Eq. 2.3.13

The generalized speeds are defined as ur=qr (r=1,4).

The partial velocities can be found from the expression for

blade velocity, Eq. 2.3.5,



Q-
jr 951rfl

a ir' = 0
Q-,

V3' = Nj f31 1

Q-,
V4' = Nj f41 1

where,

02rf2 ( 2drf3

jor r = 1, 2

+ NLf2 + NLf3

+ Nj42f2 + N43f3

r = 1,2

r = 1,2

N31 = QW2P3 QW3P2

N32 = QW3P1 QW1P3

QW1p2 QW2p1

No = Q1 2p3 Q1 3p2

N42 =
(213p1 Q11p3

Q11p2
Q1 2P1

j =r

29

(2.5.4)

(2.5.5)

The partial angular velocities can be found from the

expression for blade angular velocity, Eq. 2.3.13,

Q-
1W=0 r = 1, 2

Q2

= b2

= b2
a-(04J = a1 j = 1, 2

(2.5.6)

The resultant R can be written as a combination of

aerodynamic Eq. 2.4.5 and gravity forces

where,

R = R1f1 + R2 f 2 + R3 f 3

Ri = -m g (cos (X)e- sin(x)Q11) fn

R2 = -m g (cos(x)Q22 sin(x)Q12) +

R3 = g (COS (X ) Q23 Sin (X ) Q13 )

(2.5.7)

(2.5.8)

The resultant torque T is due solely to that of the



restraining torque of the generator. The generator model

is discussed in section 2.6. The relation for the

generalized inertia forces can be taken as

2 R
Qi

F: = -5: ( orr- ao dr)
1 = 1 .6
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r = 1,4 (2.5.9)

This relation can be expanded into a form where the

second time derivatives are extracted so that the equations

can be written in the form

[M]{44} = {G} (2.5.10)

This form lends itself to a predictor-corrector scheme

for solution of the equations. With this in mind, the first

two generalized inertia forces can written as

where,

R r

'I; (021 + ( .4a ) 2d-i) 2 ) dr
'0

R

(QW2p3 QW3p2) (QW1p2 r,W2no1)wd, 1A,
3-1`` (2.5.11)

_44 (Q12p3 (213p2) (Q11p2 12-1 )03]dr

qi) r = 1,2 i = 1,4



r

&P 2di.)

0
R
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gr (gi, 4;) = 43,44 [(QA2P3
QA3p2) QA1p2 QA2p3 ) 9 jdr

1 [ (W 2V3 W3V 2) c p + (W 1172 W2V1)03 + 4r03]

r = 1,2 (2.5.12)

The second two generalized inertia forces can be

written as

2

= -E [ 41;1(01W:11 + 03N:13) dr + a,I generator ( if r = 4 )
3=1

R

-q3,p-LE (Qw2P1-Qw3P2) Nri (Qw3Pi -Qw1P3) Nr24
(Qw1p2_Qw2_1) Nr3]dr

R

_44 -A (Q12p3_Q13-2) 1p2 _Q12,si
Nr1 Nr2] dr

-gr(gifdli)) r = 3,4 i = 1,4
(2.5.13)

where,

QA2p3 _QA3,n2
) Njr1+ (QA3P1-QA1p3)

NJI:2+ QA1p2_,QA2-1 Njr3] dr

+2 [ (W21.13-W3T.J2) Nr1+ ( W301 -W1tj3) Nr2+ (W102 14721.71 ) Nr3 I dr

R

( /TAT wul mi + rw wv )N dr.W2V3-W3 2/ J.0 . 3 , , . 2 -..2
'0

R

+411 (ChNir3 ) dr

44Igenerator (If r=4)

T=3,4 j =1,2

(2.5.14)
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The first two generalized active forces can be written

R r
2

Fr = 1( R101 +R303
,f,

r

grl.2 (90 2q4µ (z7) dr)dr

r = 1,2

(2.5.15)

The second two terms arise from the relation between

the potential and the generalized active force

aV
Fr -

qr
(2.5.16)

where, the potential for a blade element is given as

V =
1 EI (

a2u1)2d 1 .

4
2

r q A (7Bui7) di (2.5.17)
a- r

2

The second two generalized active forces can be

written as

2 R
Q

Fr = E [ iR2N2 R3Nir3,dr ] + T- car, (2.5.18)
j=1

r =3,4

where, T is the generator restaining torque. The hub

mass has a contribution to the third and fourth generalized

active and inertia forces.
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F3HUB MHUB RU g(cosxcosq3sinq4 + sinxsinq3)
FL

HUB =NHUE1 RU g(cosxsinQ3cosq4)-

F*3
HUB = 43 [MHUB RU + 'HUB] MHUB RU 614 sinq3cosq3 (2.5.19)

F *4HUB = -44[MHue RU sin2q3)
-mlitmIzu (4344 sinq3cosq3

The generalized active and inertia forces are combined

using equation 2.5.1 into the form of equation 2.5.10 for

numerical solution.

2.6 Generator Model

Two variable speed generator models are to be used for

the generator restaining torque. The first model is for an

induction generaotr that has small variations about a rated

rotation speed due to generator slip. The second model is

for a variable speed generator operating at a constant tip

speed ratio.

For an induction generator the restaining torque can

be divided into two

where,

Telectrical

Ttosses

components

T = Telectrical,

ce N2
no)

+ TLosses

rn
J-variabLe

n 0 2

(2.6.1)

(2.6.2)/7GB

N f2,m f
(Tfixed

'IGB no
n0))

nR no

where, N is the gearbox step up ratio, 770 is the

gearbox efficiency, and ce, no, and nR are constants. The



fixed and variable losses are functions of the generator

fixed loss factor f and can be expressed as

Tfixed = f 1 _

1)

Rated

nGEN 1 nR

Tvariable (1 f) 1) PRated

riGEN nR
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(2.6.3)

where, n
.GEN

is the generator maximum efficiency and

PRated is the generator rated power output.

The variable speed generator operating at constant tip

speed ratio should have a restaining torque that varies to

allow the rotor speed to follow the wind speed preserving

the tip speed ratio, Rn /V. In most wind turbine

applications, future wind speed measurements are not

available. The variable speed controller has only past

torque and wind histories to use in it's control algorithm.

This can result in the generator lagging the wind reducing

the power captured. The following relation for the

generator restraining torque follows the optimum power

coefficient as a function of the tip speed ratio, X. The

tip speed ratio used in this relation is based on a moving

average of the last 100 tip speed ratios. This results in

slowly varying torque.

2
7r p V2 R3 Cp

T =
A

(2.6.4)

The variable speed generator can be used as a start-up

motor or a shut down brake. For a motor configuration the

generator torque has a negative sign. The generator
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braking torque must be greater than the aerodynamic torque

for deceleration of the rotor. Both the motor and brake

can be a function of time, rotor speed, or any other

generator variable.

2.7 Deterministic Wind Model

The deterministic wind model consists of two parts,

wind shear and tower shadow. The shear model uses a power

law expression to determine the velocity distribution with

height, as follows

r sinq4
V = VHUB ( 1

n

HHUB

(2.7.1)

where, q4 is the azimuth angle, which starts when the

blade is horizontal to the ground. The blade starts moving

downward, therefore a negative sign is used in equation

2.7.1. Hum is the hub height, r is the blade radius

location, and n is the power law exponent.

The tower shadow occurs when the blade is straight

down and in the wake from the upstream tower. The shadow

model assumes the tower wake to have a cosine-squared

shaped deficit where the blade passes through it. Assuming

a wake width of two diameters, an expression for the

velocity distribution can be found using a momentum balance



V( y ) = V., (1 E cos2(ir -Y ) )

2 D
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(2.7.2)

where, the velocity deficit can be expressed as a

function of the tower drag coefficient, as follows

1

3 CD
E = ( ) [1 (1 )

2

(2.7.3)

In the case of the ESI-80, the tower has three legs in

a truss arrangement. The tower diameter d in equation

2.7.2 can be expressed as the distance between two legs and

the tower drag coefficient CD is the sum of the individual

tower leg drag coefficients.

2.8 Numerical Solution Technique

A numerical solution of the four equations of motion

is achieved using a fourth-order Adams-Bashforth Predictor

formula together with an Adams-Moulton Corrector formula.

This numerical method is not self starting, therefore a

fourth-order Runge-Kutta method is employed to calculate

the first three points.

2.9 Code Organization

The computer code based on the previous theoretical

development was named the DRT code. A detailed description

of the procedure to operate this code can be found in the
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DRT users manual [7].

The DRT code is written in standard FORTRAN 77. The

code operates in the time domain using time as the marching

variable. Figure 2.5 shows a flowchart of the different

subroutines used. Subroutine INPUT reads in the input file

containing the characteristics of the turbine to be

modeled. Subroutine INTERP takes the blade data and

interpolates them at a constant blade increment. This

increment is the integration increment used for calculation

of the generalized active and inertial forces. Subroutine

COEF determines a number of values that are used repeatedly

through out the program and calculates the blade mode

shapes. The main program starts at time equal to zero.

The total time the code will run depends on the options

chosen. The teeter and variable speed degrees-of-freedom

can be turned off independently. The variable speed option

can be a start-up, shut down, or normal operation with two

different generator models. Subroutine SOLVER solves the

four equations of motion using the numerical scheme

described in section 2.8. Subroutine RTHS (right hand

side) calculates the generalized active and inertia forces

and integrates them down both blades. RTHS calls

subroutines TRANS, CALC, GENTORQ, and GAUSS. Subroutine

TRANS calculates the coordinate transformations given in

Eq. 2.3.12. Subroutine CALC determines the aerodynamic

normal and tangential forces, Eq. 2.4.15, based on the

method described in section 2.4. Subroutine CALC calls



38

subroutine WIND, which calculates the wind shear and tower

shadow contributions described in section 2.7. Subroutine

CALC calls subroutine AERO, which has the lift and drag

airfoil characteristics as a function of angle of attack

and airfoil thickness. Subroutine GENTORQ supplies the

generator restraining torque based on a model from section

2.6. Subroutine GAUSS inverts the matrix Eq. 2.5.10 for

solution in Subroutine SOLVER. If turbulence is desired

the turbulent wind values are read by subroutine RTHS for

every time increment. The main program checks after every

new set of values are calculated to see if it should be

writing loads to the output file and to see if has

completed a simulation. The various loads; blade bending

moments, rotor torque, rotor thrust, and the generator

output power are calculated in subroutine RTHS.
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Chapter 3

Model Validation

Validation of the model was done using two methods.

The results from the model were compared to results from

simple models where analytical solutions could be found.

Additionally, comparisons between model loads predictions

and experimental loads were also made. The experimental

loads were taken from an ESI-80 wind turbine, which is

documented in Appendix A. Loads that were compared were

blade root bending moments, rotor torque, and rotor thrust

for both mean and cyclic loads.

3.1 Simple Beam

In order to validate the static deflections and

natural frequencies of the rotor blades a simple beam,

together with linear aerodynamics, was implemented in the

code. The blade properties: chord, twist, mass and

stiffness were assumed to be constant over the length of

the blade. Undersling, delta-3, the elastic bending axis

rotation, and coning were set at zero and the variable

speed and teeter degrees-of-freedom were turned off.

Lift was assumed to vary linearly with the angle of attack,

C = 2irsina. It was assumed that the induced velocity was

constant over the blade given by the relation for the

induction factor as
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c
V
SI

a =
2

(3.1.1)

Ignoring the cyclic effect of gravity, a relation for

the static tip deflection can be written as

st at i c =

where,

and,

fn 0 dr

aCP
( L-20 ) 2 EI dr + T (,dr ) 2dr)

T C12 p. r

fn
1

= p W2 c CI_ cos 0

which can be written as,

fn=pircri2V (1 -Cf2)2V

The numerator can be expressed as,

C R
p 7r C f2 V (1

V)
r cpi d r

(3.1.2)

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

Letting the shape function be that from Eq. 2.2.9,

with a value of b=0, p=1 kg/m3, c=.25 m, n=60 rpm, V=10

m/s, R=10 m, EI=5,000,000 N-m2, and g=10 kg/m, gives a

static deflection of 0.07747 meters. Implementing the

linear lift and the induction factor given in Eq. 3.1.1,
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the code gives a static deflection within a half of a

percentage point of the analytical value, when the

integration step size is one hundredth of the blade length.

Using the same conditions, a relation for the blade

flapping natural frequency can be written as

(a2

R r

+ (1 fl2gT-d 1f)2)2dr
2

ar 2

wn =
R

CP2dr

(3.1.7)

This gives a value for the natural frequency of 4.165

Hertz. The code predicted a value within a half of a

percentage point, when the integration step size was set at

one hundredth of the blade length.

3.2 Linearized Teeter Motion with Delta-3

A analytical expression can be obtained for the teeter

motion through simplification and linearization of the

teeter equation (r=3 in section 2.6). The analytical

expression can be used for validation of the teeter motion

in the code. Letting the blade displacements and motions

be zero, setting the rotor speed constant, and ignoring

higher order terms, the teeter equation can be written as
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j =1

R

2

( fnrcos63 Agsinq3sinq4rcos63) dr

R

-E A (43 (cos63 r) 2 + f22sinq3cosq3 (cos63 r) 2) dr = 0
j (3.2.1)
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where, coning, the elastic bending axis rotation, and

the undersling have been set to zero. Linearizing the

teeter angle q3 and assuming the two blade mass

distributions are the same, Eq. 3.2.1 can be written as

I C05263 + q3 I n2cos2s3 = r cos63 dr I blade 1

fn r cos63 dr I blade 2

(3.2.2)

Assuming linear lift, an induced velocity as given in Eq.

3.1.1, and a linear wind shear Eq. 3.1.4 can be written as

fn = prcrf2(V(1-a)) -T- (f2sin63 q3 + (43 cos63) r

( blade 1) ( + blade2)
(3.2.3)

Combining Eq's. 3.2.2 and 3.2.3 and integrating along

the blade gives

+ B cos 63 fl q3 + B sinS3 + 1) f22 q3

B fl
top sin (ilt + 53)

2 R °P

where,

(3.2.4)



p 7T R4 c

2 I cos263

with a change of variables

d( ) d( ) dq4 = d( )
dt dq4 dt dq4

Eq. 3.2.4 can be written as

q31 + B cos83 q3 + (Bsin63 + 1) q3

B(Vtop Vhub) 6sin(q4 + 3 )

R f2
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(3.2.5)

(3.2.6)

(3.2.7)

Looking for a steady-state solution of the form

q3 = C1 sing4 + C2cosq4 (3.2.8)

results in the analytical solution

q3
t=V op

R f2

Vhub COS (q4 + 2 63) (3.2.9)

Using the same parameters as in section 3.1 and

implementing the linear lift, the induction factor from Eq.

3.1.1, and a difference of two meters per second for (Vtop -

Vhub) the analytical solution is compared to the code

prediction for three values of delta-3 in Figure 3.1. The

code accurately predicts the analytical solution for all

three cases. Note that the relation for the teeter angle

in Eq. 3.2.9 is independent of blade mass and inertia.
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3.3 Mean Loads

The ESI-80 was used for comparisons of mean loads.

The data for both the mean and cyclic loads were digitized

from the report by Musial et al [13. The measured mean

loads were determined by averaging the values in one mile

per hour divisions. Data was taken at 5 Hertz from fifteen

to thirty minutes. Some data were taken on different days

when the atmospheric conditions were different. This can

be seen on Figure 3.2, which shows a staircase effect on

the bending moment. Atmospheric conditions were not

reported. The code was run using only the teeter option.

The variable speed and turbulence options were not used.

Figure 3.2 compares code predictions to test root

bending moments. The code predictions match well within

the standard deviation for the data, which is approximately

5000 N-m, except in the high wind speed portion where the

prediction is conservative. The mean root bending moment

is the difference between two large moments, the

aerodynamic moment and the centrifical moment. In the high

wind speed case where aerodynamic stall characteristics are

not well known, a small error in either of these would be

greatly exaggerated in their difference. Figure 3.3 shows

the comparison of rotor thrust and Figure 3.4 compares

rotor torque. The code predictions for both of these loads

matches the data well.
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3.4 Cyclic Loads

The cyclic data used for comparison were recorded at

24 Hertz for five to twenty minute intervals and then

averaged versus rotor position. This coarse data sampling

rate combined with a rotor averaging increment of fifteen

degrees results in a fair amount of uncertainty with the

cyclic data. The code was run using the teeter option.

The variable speed and turbulence options were not used.

Figure 3.5 compares the teeter angle at 42 miles per

hour. The code was run with a 3.6 degree interval. The

prediction lags the data by approximately thirty degrees

and underpredicts the amplitude. The ESI-80 has teeter

dampers when teeter amplitudes of two degrees are reached

but that is not a concern for this case as neither the data

nor the predictions exceed that value. Figure 3.6 compares

the root bending moment at 22 miles per hour. The

prediction follows the general trend of the data, however

the prediction shows more detail in the blade flapping

response, especially in the tower shadow region where the

blade passes through the wind deficit and then springs out

of it. This occurs approximately at a rotor position of

ninety degrees. The blade natural frequency of 2.5 Hertz

also can be seen in this Figure. Figure 3.7 shows the

comparison of cyclic rotor thrust. The effect of the blade

entering the tower shadow can be seen at 90 degrees for

blade one and 270 for blade two. The prediction appears to
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have a phase lag of 90 degrees. Thrust measurements were

taken at the base of ESI-80 support tower, so it is

possible that tower motion caused this anomaly. Figure 3.8

shows cyclic rotor torque. The prediction shows the same

trend with exaggerated tower shadow effects. The larger

amplitude for both the thrust and torque data suggests a

yaw error. The yaw errors were unreported for these cases.

3.6 References

1. Musial, W.D., Butterfield, C.P., Handman, D.,
"ESI-80/EPRI Test Program," EPRI RP1996-14,
December 1985.



1

0.2 T

DRT CODE

+ ANALYTICAL

.4

+ +
4.41.

4 +.
+ + 4 +

-
}

135 180 -+ 225 .270 315 +.. 360
+. .+ +

+
e-ft t + +

' .42
.41 :,-.. +

+ + +
.-1- f ...1.

I+ + +
.-.1.. -4 +. .

+ +

++++++
.0+

4.4*

+

t
4-
*

4-

.4*
4- .

DELTA-3 = 30

4:
+

+
4

4-

''+'
+

-4-"-.::;;++++

.
X
+ 4.

+' .. 4 4.

4 4.
i

+ + +
.+ .

+ + i
-4

. + +, +
-4- -I- ;I:

+
4. . 4

oh
4:+

+ +-
.

4.+A-4.4.4,-P+.4' :+++444-

+.
+

t4-
-I*

t.

4 DELTA-3 =-. -30

DELTA-3 = 0
ROTOR POSITION (DEGREES)

Figure 3.1 Comparison of Analytical and Code Teeter Angle



E

cL z

Z
O w

50000

40000 -,--

30000.4-

20000 --

10000 ±

m

cn -20000

-30000

-40000

0

0000

00 0

00 0

00000000 0
000 00

0

10 15 20

WIND SPEED (m/s)

o TEST

* DRT CODE

Figure 3.2 Comparison of Mean Blade Root Bending Moments



30000
T

25000

20000

E-
V)

15000
F-

0
F-0 10000

5000

o TEST

* DRT CODE

0 1
I

1 I I
1

-I-
I -I -1

4 6 8 10 12 14 16 18 20 22 24

WIND SPEED (m/s)

Figure 3.3 Comparison of Mean Rotor Thrusts



45000 T

40000

35000 -4-

30000

Z 25000

LLI

20000 -.-

15000

10000 -.-

5000

2

o TEST

* DRT CODE

4 F. -i i h- 1 1 --i
10 12 14 16 18 20 22 24

WIND SPEED (m /s)

Figure 3.4 Comparison of Mean Rotor Torques



ILL]
_10 1)
Z

(

aW
ce 0
F-
LA a

F-

1.5

4+,

+++++4444444444-14
. -+

++
1 + + ++

+
4,

+
0,5

o
+

+1,

4-
4-

+
4-

4-
4-

+

+
+

. +4-
+

114 4. 4

- TEST
DRT CODE

45 90 135 180 225 270 315 360

ROTOR POSITION (DEGREES)

Figure 3.5 Comparison of Teeter Angle at 18.78 m/s



10000

9000

8000

7000

6000

5000

4000

3000 -r-

2000

1000

.0 TEST

DRT CODE

0 1 I- I i 1-
J

0 45 90 135 180 225 270 315 360

ROTOR POSITION (DEGREES)

Figure 3.6 Comparison of Cyclic Blade Root Bending Moment at 9.83 m/s



17200

16700

16200

i-
(f) 15700 -r

}
15200

14700

14200

.0 TEST

DRT CODE

0 45 90 135 180 225 270

ROTOR POSITION (DEGREES)
315 360

Figure 3.7 Comparison of Cyclic Rotor Thrust at 9.83 m/s



43000

41000

39000

I 37000

35000 -I-D

0 33000
F-

31000

29000

..0

.a. -G.

'0..

0

'0 TEST

-4- DRT CODE

27000
0 45 90 135 180 225 270 315 360

ROTOR POSITION (DEGREES)

Figure 3.8 Comparison of Cyclic Rotor Torque at 19.67 m/s



60

Chapter 4

Turbulence Simulation

There are many multi-bladed rigid-hub horizontal axis

wind turbines that can be analyzed by examining the loads

on only one blade. Rotor loads can be determined by

superimposing the loads from the one blade in the place of

the others with an appropriate phase shift. If the rotor

diameter of the wind turbine is smaller than the

longitudinal turbulence integral length, the loads due to

turbulent wind can be analyzed using the turbulence

simulation at one point for the entire blade. For rotors

perpendicular to the mean flow only the longitudinal

turbulence component is important. Wright [1] and Hartin

[2] chose an arbitrary location on the blade to determine

the rotational time series. This point is then used as the

turbulent wind input along the entire blade.

Turbulence simulation for HAWT analysis codes which

model only one blade on a rigid hub has been well studied.

A comparison of wind turbulence simulation models for

analysis of stochastic loads was made by Walker et al [3].

Rosenbrock [4] developed an autocorrelation for a point

rotating in turbulent wind. Hohenemser et al [5] used this

relation to determine the frequency response function for a

linearized teeter equation for a helicopter rotor. A

number of researchers [6-8] have used the method of

Shinozuka [9] together with the rotational autocorrelation
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function to create models that create a rotational time

series. Holley et al [10] created a :rotational turbulence

simulation model based on a harmonic balance of the

rotational autocorrelation function.

When more complicated rotors are analyzed these codes

cannot be used. The code developed by Holley will generate

multi-blade multi-station turbulence, but it is only valid

up to twice the rotor rotational frequency. This is

limiting, considering that most blade fiapwise natural

frequencies are above that. The rotational autocorrelation

codes generate only one point on one blade. These codes

cannot be used with a teetered rotor where coherent

turbulence is needed because of blade interaction through

the teeter degree-of-freedom. Nor will it be valid for

turbines where the rotor diameter is of the same magnitude

as the longitudinal turbulence integral scale, and the

turbulence over the entire blade must be modeled at more

than one point. These turbulence codes are based on

constant rotor speed so they cannot be used for variable

speed analysis.

A method for simulating a full field of turbulence was

developed at Sandia National Laboratories by Veers [11].

This model is also based on the Shinozuka method. It allows

the user to simulate turbulence at many points in a field

preserving the power spectral densities at each point, and

relating all locations through a coherence function. A

method similar to this one could possibly be developed for
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the rotational autocorrelation for a number of moving

points, but this code would still only work for constant

rotor speed. Veers [12] developed a special version of his

code to handle HAWTS running at fixed rotor speed. For the

case where variable speed operation is being studied the

original code is needed. The Veers model instead of using

constant rotor speed uses a constant time step. This

results in interpolation for variable speed operation, but

if the grid of turbulence points is tight enough the

statistical qualities of the turbulence can be preserved.

The limiting factor for the Veers full field code is the

large main memory requirements. The size of the compiled

code increases approximately by the square of the number of

points being modeled. A desktop PC with a standard 640

kilobytes of memory can simulate only one point on one

blade. The memory required to generate four points on a

blade at a 3.6 degree azimuthal spacing for 1024 points

exceeds the normal 220 byte standard FORTRAN 77 array size

limitation.

The objective of this chapter is to optimize the rotor

loads induced by turbulence from a single point model on

two blades with a multi-blade multi-station turbulence

model using the DRT code. Rainflow cyclic counting and

power spectra of the flapwise root bending moments will be

used for the optimization. Rainflow cycle counting

determines the number of cycles as a function of their

magnitude about the mean value. A cosine wave would have
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one cycle with a magnitude of twice the amplitude of the

cosine wave.

4.1 The Turbulence Simulation Code

A brief discussion of the full field turbulence

simulation model developed by Veers follows. A full field

of turbulent wind can be generated on a grid of points

perpendicular to the mean wind direction. Well known

relations for the power spectral densities [13] (psd) can

be used to define the second order statistics of the wind

speed at each point. Each point is related to the other

points through the cross spectral density (csd). The csd is

related to the psd through the expression:

where,

2 (4.1.1)

2yij = coherence function

= csd between points i and j

= psd at point i

If the csd are approximated as real functions, a

spectral matrix [S] can be formed using a coherence

function suggested by Frost [13].
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2 -awAr
)= exP( V

a = decay coefficient

w = frequency

Or = distance between points i and j

V = mean wind speed
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(4.1.2)

The spectral matrix can be converted into a vector of

time series realizations, by the equation:

{V) = irl ([H][X]){1) (4.1.3)

where,

{V) = vector of time series relations

[X] = diagonal matrix of independent white noise

Gaussian signals with unit variance. Gives

a random phase at each frequency to each

column of [H].

{1) = a column of ones. This is used to sum the

rows of the inverse Fourier Transform of

[H][X].

[H] = matrix of transformation functions relating

white noise to the correlated spectra through

the relation:

[H]*[H]T = [S] (4.1.4)

The matrix [H] is determined using "Cholesky

decomposition" of the matrix [S]. This requires the

assumption that the matrix [H] is lower diagonal. The
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vector (V) has zero mean, so the mean wind and wind shear

must be added. [S], [H], and [X] are N by N matrices, for

N input points. Each element in the matrices must be

defined at M/2 discrete frequencies. The number M is

equivalent to the number of time series values required.

The size of the memory required by the program is

proportional to N by N by M. Recent work by Winkelaar [14]

suggests a more efficient method for the decomposition of

the matrix [H]. Veer's constant rotor speed version shifts

the frequencies by a phase angle equal to the product of

the rotor angular speed and the time of the blade passage

at that point. This reduces the memory requirement by the

ratio of the number of points per revolution to the number

of blades simulated.

Assuming the turbulence components in the lateral,

vertical, and longitudinal directions are uncorrelated, the

procedure above can be repeated to generate turbulence in

the lateral and vertical directions using appropriate psd

and csd.

4.2 Optimization

The first step for optimizing a two-bladed single

rotating point turbulence model was to determine the

computational boundaries in the full field turbulence

model. One bound already mentioned is the 220 byte FORTRAN



66

array size limitation. The author had access, through the

National Center for Supercomputer Applications, to a Cray

X-MP computer. The Cray computer had 32 megawords of main

memory allocated to each user. This allowed three blade'

locations (four including the hub), ninety blade locations

per revolution, and a 2048 point time series length. An

additional limitation to the Cray was an one megabyte file

size. The above mentioned case created an intermediary

file that exceeded 500 megabytes. This barrier reduced the

size of the turbulence file that could be created to PC

proportions. It was then decided to use Veer's constant

rotor speed (CRS) HAWT version to optimize the single point

model. Once the optimization was achieved, the full field

model could be used for variable speed analysis. The Cray

was abandoned and the CRS Code was run on a 386/33 computer

using a virtual memory FORTRAN compiler. Computer virtual

memory allowed three blade stations, 128 blade locations

per revolution and 2048 time series points. Total compiled

memory was 10.8 megabytes. The three blade stations were

chosen by dividing the rotor swept area into three equal

areas and letting the radial location that divided these

areas in half be the radial location used in the turbulence

simulation. Figure 4.1 shows the three areas and the

corresponding blade station locations.

The ESI-80 was the test turbine used for this

analysis. The CRS Code generates a file containing

turbulence values for both blades with three stations each.
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The CRS Code does not generate a hub value. The Kaimal

[15] Spectrum was used as the fixed point input spectrum

(S1). A 2048 point time series with 128 blade locations and

a rotor speed of 60 revolutions per minute corresponds to

16 seconds real time. This is a long enough sample to

allow analysis of the spectral energy around the one period

frequency component. Figure 4.2 shows the typical power

spectral density of wind seen by an outer blade station.

Notice the energy spikes at multiples of the fundamental

frequency, which is the frequency at which the rotor makes

one revolution. The ESI-80 has a rotor speed of 60 rpm

which gives a fundamental frequency of one Hertz. These

energy spikes result from the blades passing through the

same turbulent eddies once per revolution. Bending moments

will show similar spectral characteristics except more

energy will be prevalent at system natural frequencies.

The ESI-80 has a blade flapwise natural frequency at 2.51

Hertz. This value includes centrifugal stiffening.

The first choice for a single blade point is the

radius that divides the rotor swept area in two. This

occurs at the 70.7 percent radius location. A second

choice can be made by finding the radial centroid of the

aerodynamic bending moment load assuming it varies with the

radius squared. This value is the 75 percent radial

station. The CRS Code was run for these two single-point

cases and the three-point case with parameters of 22.352

meters per second (50 mph) and a turbulence intensity of 15
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percent. The three output files from the CRS Code were

used as inputs to the DRT code. Figure 4.3 shows the

comparison of the power spectral density of the root

bending moment for the multi-blade station simulation

against the two single-point simulations. The same random

number seed was used for all three cases. The 70.7 percent

and 75 percent cases have nearly identical results. Notice

the strong spectral spike at three Hertz caused by

turbulence induced excitation of the blade natural

frequency. All three cases predict an equivalent amount of

spectral energy at this point. For rigid-hub rotors the

one period component usually has the largest spectral

spike, but the teetering mechanism of the ESI-80 transfers

one period flapwise bending moment to one period teeter

motion. The strong peak at two Hertz is due to turbulence

and the blades passing through the tower shadow. The two

single-point simulations have a lower standard deviation

(area under spectra) as that of the three-point simulation,

approximately 18.5 and 17 percent lower for the 70.7 and 75

percent radial stations, respectively. This difference in

area occurs mostly in the lower frequency range under one

Hertz. Table 4.1 shows the rainflow cycle counts for the

same three cases. Again the two single-point simulations

have nearly identical results. The single-point

simulations under-predict the high cycles, above 60,000 N-

m. This concurs with the lower energy values in the low

frequency range of the power spectra, since the low
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frequency, high energy component of the spectra is

responsible for the large cycles. The CRS Code was run

again using a 80 percent radius value and the same random

seed. Figure 4.4 shows this simulation compared with the

three-point simulation for the power spectral density of

the root bending moment. The 80 percent radius simulation

has the same characteristics as those of the lessor radial

stations, except the standard deviation is 14 percent lower

than that of the three-point simulation. The rainflow

comparison in Table 4.2 has some slightly higher cycles,

but follows the same trend. Midrange cycles are more

numerous with the 80 percent radius than the other two

single-point simulations and the three-point simulation. It

appears, the three-point simulation averages the turbulent

values over the blade transferring energy from high to low

frequencies.

Figure 4.5 shows the power spectral density for a

15.65 m/s (35 mph) case with 15 percent turbulence. Three

simulations are compared; a three-point simulation, and two

single-point simulations at radii of 75 and 80 percent.

The same random number seed was used for all three. The

trends for the three cases are similar to that of the 50

mph cases. The two single-point cases are nearly

identical, and strong spectral spikes are seen at the blade

natural frequency, the teeter frequency, and twice the

teeter frequency, in descending order of magnitude. As in
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the 50 mph cases, the spectral energies drop drastically

after the blade natural frequency is encountered, over two

decades. The standard deviations for the two single-point

simulations are 10 and 6 percent lower that the three-point

simulation for the 75 and 80 percent radial locations,

respectively. Table 4.3 shows the rainflow cycle counts

for the same case. Again, the three-point simulation has a

few more high cycle counts, and the two-point simulations

have more low cycle counts. The 80 percent case is more

conservative with more high cycle counts than the 75

percent case.

Figure 4.6 and Table 4.4 compare the power spectral

density and the rainflow cycle counts for three 8.94 (20

mph) with a turbulent intensity of 15 percent. The cases

are the same as the previous wind speed case; a three-point

and two single-point simulations. The trend is similar

except the standard deviations of the root bending moment

of the two single-point simulations is 11 and 14 percent

higher than the three point simulation for the 75 and 80

percent radial stations. The comparison of the rainflow

cycle counts is much closer at this wind speed case, with

approximately the same number of high and low cycle counts.

The final windspeed case is shown in Figure 4.7 and

Table 4.5. A three-point and an 80 percent radius station

single point simulation are shown for a 35 mph case with a
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turbulence intensity of 25 percent. The comparison is

similar to the case with the same wind value and lessor

turbulence intensity. The single-point simulations

standard deviation is 5 percent lower than the three-point

simulation, unchanged from the lower turbulence intensity

case. The rainflow cycle counts are nearly identical in

the low cycle end, however the single-point simulation has

fewer counts at the high cycle end as seen in all previous

cases.

4.3 Conclusions

The 80 percent radial station is the optimal point for

single-point turbulence simulation when compared to three-

point simulation. The corresponding spectral

characteristics of the root bending moment is well

preserved, although the spectral area (standard deviation)

is high for low wind speeds and increasingly lower for

higher windspeeds. This shift of the spectral area is a

function of mean wind only, no dependence on the turbulence

level was noted. The rainflow cycle counts are shifted

from high to low cycles, when compared to three-point

simulations. This effect increases proportionally with

increased wind speed. The three-point simulation averages

the turbulent values over the blade transferring energy

from high to low frequencies (or low to high cycles,

respectively). When using a 80 percent radius simulation
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the predictions will be nonconservative in the low

frequency range. For estimation of fatigue lifetimes, it

is recommended that the rainflow cycle increments of root

bending moment be multiplied by a factor of 1.2. This

factor will better represent the high, most damaging,

cycles. This factor will tend to overpredict low cycles

for cases with low wind speeds and or high turbulence.

This optimization was found using an idealized fixed

point spectrum. Actual wind turbine sites may have

complicated terrains that change the spectral slope and

shape. It is not known how a radically different spectrum

will change the optimal value of the 80 percent radius.
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Figure 4.1 Rotor Swept Equal Areas and Radial Stations
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Figure 4.3 Comparison of Power Spectral Densities of Blade Root Bending Moment for a
22.353 m/s Wind with 15% Turbulence
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Table 4.1 Rainflow Cycle Counts of Root Bending
Moment for 22.35 m/s Wind with 15% Turbulence

Increment
(x 2000 N-M)

81

Cycles Cycles Cycles

Three-pt 70.7% 75%

1 16 22 23
2 34 21 19
3 8 5 6

4 1 1 1

5 2 0 0

6 1 0 0

7 0 3 1

8 4 0 2

9 1 3 1
10 1 4 4

11 2 2 3

12 1 2 4

13 0 4 2

14 1 2 1

15 1 1 2

16 1 5 5

17 1 0 1

18 0 3 4

19 4 2 1

20 0 1 0

21 1 0 1

22 2 4 2

23 3 0 3

24 1 1 0

25 2 2 2

26 0 1 1

27 3 2 0

28 0 2 3

29 2 0 1

30 1 1 1

31 1 1 1

32 3 0 0

33 0 1 1

34 1 0 0

35 2 0 0

36 2 0 0

37 1 0 0



Table 4.2
Moment for

Rainflow Cycle Counts of Root Bending
22.35 m/s Wind with 15% Turbulence

82

Increment Cycles Cycles qcles
(x 2000 N-M) Three-pt 75% 80%

1 16 23 22

2 34 19 22

3 8 6 7

4 1 1 1

5 2 0 1

6 1 0 0

7 0 1 1

8 4 2 2

9 1 1 0

10 1 4 1

11 2 3 6

12 1 2 4

13 0 2 3

14 1 1 0

15 1 2 2

16 1 5 2

17 1 1 4

18 0 4 5

19 4 1 1

20 0 0 0

21 1 1 0

22 2 2 2

23 3 3 2

24 1 0 2

25 2 2 0

26 0 1 3

27 3 0 0

28 0 3 2

29 2 1 0

30 1 1 3

31 1 1 0

32 3 0 1

33 0 1 1

34 1 0 0

35 2 0 0

36 2 0 0

37 1 0 0



Table 4.3
Moment for

Rainflow Cycle Counts of Root Bending
15.64 m/s Wind with 15% Turbulence

83

Increment Cycles Cycles Cycles

(x 2000 N-M) Three-pt 75% 80%

1 90 115 83

2 89 79 55

3 25 18 13

4 7 3 10

5 4 5 6

6 3 4 9

7 1 4 0

8 6 2 2

9 4 2 6

10 1 1 3

11 2 4 2

12 3 1 2

13 2 4 1

14 5 4 4

15 6 2 1

16 2 1 1

17 1 0 2

18 1 2 3

19 2 1 1

20 2 1 0

21 0 0 1

22 1 2 0

23 1 1 0

24 0 0 0

25 0 0 0

26 0 0 0

27 1 0 0
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Table 4.4 Rainflow Cycle Counts of Root Bending
Moment for 8.94 m/s Wind with 15% Turbulence

Increment Cycles Cycles
(x 2000 N-M) Three-pt 75% 80%

1 132 111 107
2 105 87 89
3 35 13 18
4 15 4 4

5 4 5 5
6 2 3 4

7 4 3 0

8 4 4 2

9 2 4 5

10 8 1 1

11 3 5 4

12 0 5 5
13 2 3 3

14 5 1 2

15 0 1 1

16 4 4 4

17 1 4 1

18 4 2 4

19 2 2 3

20 0 0 1

21 1 1 0

22 0 0 1

23 0 1 0

24 0 1 1

25 1 1 1

26 0 0 1

27 0 0 0

28 0 1 1
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Table 4.5
Moment for

Increment

Rainflow Cycle Counts of Root Bending
15.64 m/s Wind with 25% Turbulence

Cycles Cycles
(x 6000 N-M) Three-pt 80%

1 85 83
2 47 53
3 19 13
4 9 10
5 3 6

6 3 9

7 2 0

8 3 2

9 4 6

10 6 3

11 2 2

12 1 2

13 4 1
14 2 4

15 2 1

16 0 1

17 3 2

18 4 3

19 1 1

20 1 0

21 1 1

22 1 0

23 1 0

24 0 0

25 0 0

26 1 0
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Chapter 5

Variable Speed Loads

The torque loads experienced by a HAWT rotor and

drivetrain are dependent on the generator load; the absence

of a generator loads will cause the rotor to accelerate or

decelerate depending on the aerodynamic torque, a

synchronous generator (constant generator speed) will pass

the aerodynamic torque through the drivetrain and the

generator, a variable speed generator can operate with

constant or slowly varying torque to reduce drivetrain

torque variations and or follow maximum power efficiency

points. The drivetrain system consisting of high and low

speed shafts, a gearbox, and couplings have an equivalent

torsional stiffness and damping. An impulse generator load

will excite this system natural frequency. Typical HAWT

drivetrain natural frequencies are on the order of 5-10

periods of the rotor period.

Chapter 5 includes the drivetrain as a fifth degree-

of-freedom to analyze various generator configurations in a

variety of operating conditions.

5.1 Drivetrain Dynamics

Figure 5.1 shows the drivetrain degree-of-freedom, q4

is the rotor angular velocity and q5 is the generator

angular velocity. For simplicity generator values such as
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angular velocity, torque, and inertia are calculated

relative to the rotor through the step-up gearbox ratio.

The two shafts are joined by a torsional spring, )(Tv?, and a

torsional damper, CT0R Eq. 2.5.18 is modified such that

the restraining torque is given as

T kToR (q4 (45) CTOR 45) (5.1.1)

The IGEN must be set to zero in Eq's. 2.5.13 and 2,5,14.

The fifth dynamic equation can be written as

IGEN q5 TGEN kT (q4 q5) CTOR (44 q5 (5.1.2)

Notice that this equation is coupled only to the fourth

degree-of-freedom and not though an acceleration term.

This equation can be passed directly to the numerical

solving scheme with out using the form of Eq. 2.5.10. This

additional equation requires a smaller time step for

solution because the natural frequency is higher that the

other system natural frequencies.

5.2 Start-Up and Shutdown

All wind turbines regardless of their generator types

have a variable speed rotor during start and stop

conditions. Turbines may either freewheel or be motored to

get them to a normal operating speed and use a variety of

braking mechanisms for shutdown. The ESI-80 was used for

start-up and shutdown predictions. Teeter springs were

added at the teeter stops in the dynamics subroutine. The
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springs model the rubber pads that the ESI-80 has for

teeter stops. The natural frequency of this spring is

approximately 10 rotor periods. Values of 7,872,000 N-

m/radian and 9000 N-m-s were used for kToR and CToR,

respectively. This results in a drivetrain natural

frequency of 8 rotor periods and a damping of approximately

one percent of critical damping. Figure 5.2 shows DRT

predictions of rotor torque and teeter angle as a function

of time for a motored start-up. Figure 5.3 shows DRT

predictions of the rotor speed and blade root bending

moment for the same case. A constant torque of 18,000 N-m

was used to accelerate the rotor in a 11.18 m/s (25 mph)

wind. After the rated rotor speed is reached (60 rpm), the

motor is shut off and the induction generator model is

turned on. A teeter angle of seven degrees was used as the

initial condition, this corresponds to a blade resting

against a teeter stop. Notice that the rotor never hits a

teeter stop during this case. The eight period drivetrain

ringing can be seen in the first four seconds of the rotor

torque. A torque over shoot occurs when the induction

machine switches from the motor to an induction generator.

The rotor reaches rated speed after eight seconds. A

slight over shoot occurs in the rotor speed during the

motor to generator transition. The blade root bending

moment fluctuations are due only to the blade motion. For

this turbine with very little blade twist, the flapping

motion and the drivetrain motion are uncoupled. The
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periodic spikes seen in the bending moment are due to blade

passage though the tower shadow.

Figure 5.4 shows data taken from a normal start-up of

the ESI-80; teeter angle, electrical power output, rotor

torque, and root bending moment are shown as a function of

time. Note that the sign convention of the rotor torque is

opposite that used thus far in this thesis. Operating

conditions are unknown for this start-up, but general

trends can be compared with the predictions shown in

Figures 5.2 and 5.3. The ringing in the rotor torque is

similar to the prediction as is the magnitude of the torque

overshoot when the induction generator is engaged. The

electrical power overshoot is compounded from the combined

overshoots of the rotor speed and torque. This is in

agreement with the predictions. The teeter angle and the

bending moment show the same trends as the predictions, but

no solid conclusions can be made.

Figure 5.5 shows DRT predictions of teeter angle and

blade root bending moment for a motored start-up with a

constant torque of 1,800 N-m in a 22.35 m/s (50 mph) case.

This case is shown because of the three teeter strikes

experienced by the rotor. The rotor hits the teeter spring

once at approximately four seconds, is pushed off by the

spring, and hits it again one second later. The rotor then

hits the teeter spring again on the other side at nine

seconds. Notice the sharp spikes in the bending moment

caused by the rotor hitting the stops. Figure 5.6 shows
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the same case with 15 percent turbulence. The turbulence

induced fluctuations in bending moment almost completely

obscure the spikes caused by the teeter strikes.

The ESI-80 is equipped with electro-magnetically

controlled tip brakes on each blade. During loss of line

conditions these tip plates are deployed to exert an

aerodynamic braking torque. The magnitude of the braking

torque for one blade is approximately 1/2pR3f12CDA, where C0A =

0.6 m2 for the ESI-80. The tip brakes deploy in a tenth of

a second through a exponential ramp function, f1B=(t/r)2(2-

(t/r)2), where t is the time and r is one tenth of a

second. Figures 5.7 and 5.8 show DRT predictions of teeter

angle, root bending moment, rotor speed, and torque for a

loss of line condition with tip brakes as the braking

torque in a 25 mph wind. The loss of line occurs at one

second and the tip brakes are completely deployed at 1.1

seconds. The rotor slows to 25 percent of the rated speed

in 20 seconds. A minor rotor over speed is experienced

before the tip brakes are totally deployed. Resonant

drivetrain ringing occurs for the first four seconds after

tip deployment. The teeter angle slowly diverges and the

rotor cycles can be seen in the bending moment

fluctuations. The tip brake restraining torque eventually

equals the torque produced by the blades and with out

additional braking the rotor will continue to turn.

The ESI-80 is equipped with a dry caliper brake

capable of exerting a restraining torque of 69,000 N-m on
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the rotor side when the rotor is stopped. The braking

ability decreases linearly with increased rotor speed with

a 20 percent maximum decrease at rated speed.

Figures 5.9 and 5.10 show DRT predictions of teeter

angle, root bending moment, rotor speed, and rotor torque

for a loss of line condition where both tip brakes and the

69,000 N-m mechanical brake are used to restrain the rotor

in a 22.352 m/s (50 mph) wind speed. The loss of line

occurs at one second and both braking mechanisms are

deployed using the 1/10 second ramping function. The rotor

is brought to a complete stop in 2.6 seconds. Torque,

bending moment, and the teeter angle behave nicely without

any large divergences. Figure 5.11 shows root bending

moment and rotor torque for the same case with 15 percent

turbulence. The bending moment has some high cycle

response to the turbulence, while the torque is essentially

unaffected.

Figure 5.12 shows data from a loss of line condition

from the ESI-80. Electrical power, teeter angle, rotor

torque, and bending moment are shown as a function of time.

Again, operating conditions are unknown so a direct

comparison cannot be made with code predictions. Instead,

general trends will be compared. The loss of line starts

when the electrical power drops from 200 Kw to 0 Kw. It

appears from the torque plot that the mechanical brake does

not engage for approximately one second. Once the brake

engages, the characteristic drivetrain ringing can be seen.
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The rotor stops after 3.6 seconds. The additional time to

stop compared with the prediction of 2.6 seconds could be

due to the one second delay of the brake onset during which

the rotor is accelerating. The odd oscillations in rotor

torque at the end of the stop are believed to be caused by

brake "stiction," where the brake seizes with the rotor

momentarily. Teeter angle and bending moment follow the

same trends as the predictions.

5.3 Generator Models

Three generator models are evaluated under normal

operating conditions. Blade root bending moment and rotor

torque are examined using azimuthal averaging and power

spectral densities for all three cases. The synchronous

generator operates at a constant angular velocity, removing

the generator degree of freedom. The induction generator

model allows some variation in angular velocity due to

generator slip. This model was discussed in Chapter 2.

The induction model used with the drivetrain degree-of-

freedom is numerically unstable except for extremely small

time steps. A 0.07 second moving average of the generator

torque was added to remove the instability. The variable

speed generator operates with a slowly varying torque that

keeps the turbine operating at an optimum tip speed ratio.

The tip speed ratio is based on a moving average of the

wind speed for 1.4 seconds. Consequently torque variations
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are on the order of one revolution or greater. This model

was also discussed in Chapter 2. All three cases were run

using the Veers' full field turbulence simulation model

with a single-point at the 80% station, as suggested by the

conclusions of Chapter 4, with a mean wind speed of 8.94

m/s (20 mph) and a turbulence intensity of 15 percent.

This wind speed case was chosen as it is closest to the

design optimum tip speed ratio, between 8 and 11. A tip

speed ratio of 8.6 was used in the variable speed model.

To operate at the true optimum tip speed ratio would

require the wind speed to be so low that the loads would be

difficult to examine. A drivetrain spring constant of

3,900,000 N-m/radian was used in this analysis. This

spring value results in a drivetrain natural frequency of

approximately 5 Hz. 1024 turbulent wind values were

simulated with a time increment of 1/72 of a second. This

corresponds to 72 azimuthal locations for a rotor speed of

60 rpm.

Figure 5.13 compares DRT predictions of the azimuth

averaged root bending moment for the three generator cases.

The variable speed slowly varying torque model has a

slightly higher mean. This is due to a slightly lower mean

rotor speed which results in less centrifugal bending

relief. Although, the same turbulent wind was used the

different rotor speeds cause the turbulence to be sampled

at different rotor positions. This may be the cause of the

different cyclic histories. Figure 5.14 compares the power
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spectral densities of the root bending moment for the same

case. The induction and synchronous generator models have

similar results with strong energy spikes at two and three

periods. The variable speed generator model has much less

energy at one Hertz. This is due to the larger variation

of rotor speed which tends to spread the one period

component over a range of frequencies. None of the

generator models show significant spikes at 5 hertz where

the drivetrain resonance is located. The standard

deviation of the bending moment for the induction and

synchronous generator models is 30 and 31 percent higher

than that of the variable speed model, respectively.

Figure 5.15 shows DRT predictions of the rotor torque

for the same three cases. The synchronous generator has

huge two period oscillations. This model locks out the

fifth degree-of-freedom causing the rotor to ring at its

natural frequency which due to a much higher inertia is

approximately two Hertz. This resonance is excited by the

blades passing through the tower shadow and by two Hertz

rotational turbulence. The variable speed model has some

ringing at the drivetrain five Hertz resonance. Figure

5.16 compares the rotor torque power spectral densities for

the three cases. The synchronous generator model has a

large spike at two Hertz and the variable speed model has a

similar spike at five Hertz. The induction generator model

has a small spike at two Hertz, but this is probably due to

the tower shadow rather than the rotor resonance. The
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standard deviation of the rotor torque for the induction

and synchronous models were 30 percent lower and 175

percent higher than the variable speed model, respectively.

The moving average of the induction model torque may have

played a part in the lower spectral energy of this model.

5.4 Variable Speed Energy Capture

The ESI-80 yearly energy capture is compared using a

variable speed generator and induction generator. Figure

5.17 show the ESI-80 power coefficient versus the tip speed

ratio. A peak coefficient of 0.42 occurs ar a tip speed

ratio of eleven. The ESI-80 operating with an induction

generator and rated speed of 60 rpm has its design wind

speed at 7 m/s (15.5 mph). The most efficient variable

speed energy capture method is to operate the rotor at a

tip speed ratio of eleven for all wind speeds.

Unfortunately, at a moderate wind the turbine would be

operating with a tip speed high enough to worry about

compressibility effects. In addition, the centrifugal

bending moment will be much larger than the aerodynamic

bending and the power output would greatly exceed the ESI-

80's 300 Kw generator. Obvious solutions to these

individual problems would be to decrease the rotor swept

rotor area, decrease the blade coning angle, and install a

larger generator, respectively. Rather than investigate

the effect of many parameters on variable speed operation,
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the ESI-80 energy capture will be analyzed using the ESI-80

"as is" with its present design constraints.

Figure 5.18 show the tip speed schedule to be used for

the DRT prediction of the ESI-80 variable speed yearly

energy capture. A tip speed schedule was chosen that

balances the centrifugal and aerodynamic blade root bending

moments, for the ESI-80 that was achieved with a constant

tip speed ratio of nine. A tip speed ratio of nine is

sufficiently close to the peak tip speed ratio of eleven to

maximize energy capture. At approximately 12.5 m/s, the

variable speed tip speed schedule decreases at a value that

holds the generator output at 275 Kw, with the added

benefit of keeping the blade tip speed from becoming to

high. The turbine will reach a maximum rotor speed of 90

rpm using the tip speed schedule of Figure 5.18.

Figure 5.19 compares DRT prediction of the power curve

for the fixed and variable speed configurations. The

variable rotor speed power exceeds the fixed rotor speed

power at every wind speed except near the fixed rotor speed

design wind speed, which is approximately 8 m/s for a tip

speed ratio of nine. Yearly energy capture depends on a

wind speed distribution. A Weibel distribution of the form

P( W Wp ) = exp[ (14f)k ] (5.4.1)

can be used, where P(WP) is the probability that the wind

speed will be greater than the wind speed WP in question,

and c and k are site characteristics. Frost [1] gives
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average values of c=3.17 and k=1.59 for California. Using

these values and the power curves of 5.19 results in a

total energy capture for one year of 244,700 Kw-hr and

318,700 Kw-hr for the induction and variable speed

configurations, respectively. The ESI-80 has a tower

natural frequency at approximately 0.5 Hertz. The benefit

of not operating the turbine at a rotational frequency near

this resonance is greater than the low energy capture at

the wind speed where this occurs, below 5 m/s. This

reduces the variable speed yearly energy capture to 302,900

Kw-hr or a 24 percent energy capture gain over the fixed

speed machine.

Figure 5.20 compares DRT prediction of the mean root

bending moments for the fixed and variable speed machines.

Variable speed operation has a zero bending mean up to

approximately 12.5 m/s. The variable speed bending

increases up to a value 6 percent higher that the induction

bending moment at a wind speed of 23.8 m/s. A prediction

of the change in the bending moment fatigue lifetime using

the variable speed configuration can not be made using

Figure 5.21 since other parameters such as the wind speed

distribution and the turbulence intensity levels are

involved.
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Chapter 6

Summary and Conclusions

The objective of this work was to develop and validate

a dynamics model of a two-bladed, teetered HAWT with a

variable speed generator and study the effects of

deterministic and stochastic loading in a variety of

operating conditions. The stochastic loading arises from

the turbine interaction with atmospheric turbulence.

Optimization of single-point turbulence simulation model

was necessary for determining turbulence induced loads.

6.1 Dynamics Modeling

Four degrees-of-freedom were used to model a HAWT with

two flexible blades, a teetered rotor, and a variable speed

generator. In addition, a fifth degree-of-freedom was

added to model the drivetrain. Time independent geometric

parameters included in the analysis were; rotor yaw, rotor

tilt, delta-3, precone, an elastic bending axis, and a

rotor undersling. Each blade deflected in a direction

perpendicular to the axis of the blades smallest moment of

inertia. The deflection was modeled using an assumed mode

shape. The kinematics for blade points were determined and

together with holonomic partial velocities and angular

velocities, generalized forces were constructed.

Generalized active forces were determined from gravity
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loads, aerodynamic loads, and a generator torque load.

Aerodynamic lift and drag were determined using a

combination of momentum and blade element theory.

Deterministic wind loading resulted from wind shear and

tower shadow. The resulting five equations-of-motion were

solved using a Gaussian matrix inverter and a Runge-Kutta

started Predictor-Corrector scheme.

6.2 Validation of Model

Comparisons were made between the DRT code loads

predictions and experimental and analytical loads.

Elimination of some degrees-of-freedom with equation

linearization allow analytical solutions to be found.

Analytical solutions were found for a simple constant

property blade with linear aerodynamics and for linearized

teeter motion with a delta-3 angle. The DRT code

accurately predicted blade displacement and teeter

excursions for these two cases, respectively. The DRT code

predictions of mean and cyclic loads were compared to ESI-

80 data. Mean and cyclic blade root bending moment, rotor

torque, and rotor thrust were adequately predicted. Cyclic

teeter angle was also well predicted.

6.3 Single-Point Turbulence Simulation

A single-point turbulence model was optimized by
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comparing the DRT code predictions of rotor blade bending

moment induced by using various radial stations in the

single-point turbulence simulation model to the bending

moments induced by a three-blade-point turbulence model.

Blade root bending moment was compared using power spectral

densities and rainflow cycle counting. Generally, the

single-point simulations show more high frequency energy

content. The three-point simulation tends to average some

of the turbulence over the blade transferring energy from

high to low frequencies. This effect will become more

pronounced as the number of turbulence points on the blade

increases approaching the limit of continuous turbulence.

A 80 percent radial station is the most conservative and

optimal point for single-point turbulence simulation. The

corresponding power spectral density of the bending moment

is well preserved, although the spectra area is high for

low wind speeds and low for high wind speeds. No

significant variations between the three-point model and

the 80 percent model power spectral densities was noted for

changes in the turbulence intensity. It was recommended

that rainflow cycle increments be multiplied by a factor of

1.2 when using rainflow cycle counting for fatigue

analysis. This allows better representation of the high,

most damaging, cycles.

This optimization was done for the ESI-80 with a rotor

diameter of 25.4 meters. Larger turbines may require a

larger rainflow cycle correction factor as more turbulence
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will be averaged over the blade transferring energy from

high to low frequencies.

6.4 Variable Speed Predictions

A number of start-up and shutdown scenarios were

examined with and without turbulence. DRT code predictions

of load trends were compared to ESI-80 data trends, when

available. Drivetrain ringing was found to be substantial

for sudden applied torques. The drivetrain ringing would

definitely reduce the fatigue lifetime of turbines in a

wind regime requiring many starts and stops. The ESI-80

tip brakes were able to prevent rotor overspeed, but

additional braking was required to bring the rotor to a

complete stop.

Rotor torque and blade root bending moment were

compared using the DRT code with three different generators

under normal operation. A synchronous, an induction, and a

variable speed generator were modeled. The 80% single-

point turbulence simulation model was used to create a

turbulent wind input. The variable speed generator reduced

the standard deviation of the root bending moment by

approximately 30 percent compared to the synchronous and

induction generators. The variable speed rotor torque

standard deviation was 30 percent higher than the induction

model rotor torque, however the variable speed generator

torque was nearly constant. This results in a significant
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increase in the fatigue life of the high speed shaft, which

is more susceptible to fatigue damage than the low speed

shaft.

The variable speed generator used with a control model

tailored for the presently configured ESI-80 resulted in a

increase of the yearly energy capture by 24% over an

induction generator at a California site.

6.5 Conclusions

The five degree-of-freedom model developed in this

thesis adequately predicts rotor and blade loads for a HAWT

with a variable speed rotor in a variety of operating

conditions. A full field turbulence simulation model

supplies a turbulent wind input for examination of

stochastic loads. The DRT code can be used to study the

effects of turbine parameters with variable speed operation

on turbine loads.

6.6 Future Work

Areas were future work is needed are as follows:

a) use the DRT code to do parametric studies of;

delta-3, elastic bending axis, yaw, tilt, undersling, and

mass and twist unbalances.

b) test variable speed generator control models that

reduce loads and optimize power capture with the DRT code.



c) test start-up and shutdown models with the DRT

code.

124

d) add tower dynamic degrees-of-freedom to the DRT

code, including tower motion fore and aft, and tower twist.

e) add a yaw degree-of-freedom, separate from tower

twist to the DRT code.

f) add a blade pitch degree-of-freedom to the DRT

code.

g) develop an advanced full field turbulence

simulation model.

h) add an advanced aerodynamics model to the DRT code,

including, unsteady aerodynamics and dynamic stall.
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Appendix A

ESI -80

The ESI-80 was a commercially available 300 kW

horizontal axis wind turbine, built by the now defunct Energy

Sciences, Incorporated. Figure A.1 show a diagram of the

ESI-80.

The rotor has two wood-epoxy blades with a diameter of

24.38 meters. The 300 kW induction generator was driven by

the rotor at 60 rpm through a gearbox with a step-up ratio of

30. The ESI-80 has a teetered rotor with a undersling length

of approximately .25 meters. Hydraulic dampers dampen the

teeter motion after two degrees of free travel. Teeter stops

(stiff springs) stop the teeter motion at seven degrees. The

blades have a precone angle of 7 degrees and the blades are

at a fixed pitch. Table A.1 shows blade properties; twist,

chord, thickness, weight, and stiffness as a function of

percent radius. The ESI-80 has a NASA LS(1)-04XX series

airfoil. Wind tunnel lift and drag characteristics used in

this study were obtained from three sources [1-3]. The rotor

has electro-magnetically released airbrakes located on the

tips of the blades for turbine over speed protection. A

mechanical caliper brake is used to stop the rotor. The

turbine is supported by an 24.4 meter open truss tower. The

turbine operates downwind with a free yaw system. Table A.2

lists important turbine characteristics.

The data used for comparison in this study was obtained
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from a combined Electrical Power Research Institute and

Energy Sciences, Inc. test program [4]. All data used for

comparisons were digitized from this report. The test

turbine was located at Altamont Pass near Tracy, California.

Reported loads include; blade bending moment, rotor thrust,

rotor torque, teeter characteristics, and electrical

performance. Both mean and cyclic loads were recorded.
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Figure A.1 ESI-80
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Table A.1 Blade Properties

Percent
Radius

Chord
(m)

Thickness Twist
(% chord) (degrees)

Weight
(kg/m)

Stiffness
(N/m)

.075 .635 .5 2.0 63.3 13316800

.1875 .762 .4125 1.845 55.8 10767500

.3 .8891 .325 1.69 44.9 6818700

.375 .8372 .318 1.503 39.7 4735500

.5 .751 .2875 1.19 29.6 1406300

.625 .6648 .2638 .557 19.6 861000

.75 .5787 .237 -.076 14.0 660100

.875 .4925 .2033 -.905 10.6 344400
1.00 .4063 .17 -2.0 8.95 287000

Table A.2 Turbine Characteristics

Number of Blades - 2

Rotor Radius - 12.192 m
Hub Height 24.4 m
Hub Radius .92 m

rpm
degrees
degrees
degrees

Tip Mass - 19.1 kg
Tower Width .7 m
Delta-3 0 degrees
Rotor Tilt - 0 degrees
Undersling - 0.25 m
Elastic Axis 0 degrees
Hub Mass - 700 kg
Gearbox Efficiency .985
Generator Efficiency - .94
Generator Inertia 4.89 kg/m2

Rotor Speed - 60
Teeter Stop - 7

Teeter Dampers - 2

Precone - 7


