ARTICLE TYPE

Highly Regioselective Nitrile Oxide Dipolar Cycloadditions with *ortho*-Nitrophenyl Alkynes.

Melissa L. McIntosh,^a Michael R. Naffziger,^a Bradley O. Ashburn,^a Lev N. Zakharov^b and Rich G. Carter^{*a}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

The dipolar cylcoadditions of *ortho*-nitrophenyl alkynes with aryl nitrile oxides has been demonstrated. A range of substituents are tolerated on the alkyne. These reactions ¹⁰ proceed with excellent levels of regioselectivity. Subsequent functionalization of the isoxazole scaffold has been demonstrated.

Isoxazoles serve as a valuable class of heterocyclic structures found in natural products and medicinally relevant ¹⁵ compounds. Pinho e Melo has written a recent detailed review of the synthesis and reactivity of isoxazoles.¹ This functional group is generally constructed via two major methods – condensation of hydroxylamine with a 1,3-dicarbonyl compound and cycloaddition of an alkyne with a nitrile

²⁰ oxide.² The cycloaddition strategy is of particular interest to our laboratory.^{3,4}

A variety of regioselective syntheses of isoxazoles using [3+2] cycloadditions have been reported. Fokin and coworkers⁵ used a copper(I) catalyst to access 3,5-²⁵ disubsubstituted isoxazoles regioselectively. Although a computational study suggested that the 3,5-regioisomer was strongly favoured (100:1) under thermal, uncatalyzed conditions,⁶ Fokin observed a mixture of regioisomers in the absence of catalyst. Grecian and Fokin⁷ optimized a

- ³⁰ ruthenium-catalyzed reaction to access the 3,5-disubstituted, 3,4-disubstituted and 3,4,5-trisubstituted isoxazoles. The regioselectivity was controlled by the complexation of the different dipoles to the ruthenium catalysts. Access to 3,4,5trisubstituted isoxazoles could also be accomplished through a
- ³⁵ cycloaddition of an alkynyldimethylsilyl ether with an aryl or alkyl nitrile oxide.⁸ This method uses the inherent bias of the dipole and dipolarophile to control regioselectivity. There are limited examples of the cycloaddition process employing haloalkynes to access 3,4,5-trisubstituted isoxazoles.
- ⁴⁰ Ohlemeyer and co-workers accessed 5-aryl-4-bromo-3carboxyisoxazoles through a cycloaddition of aryl alkynes with alkyl and THP ether nitrile oxides in modest yields.⁹ A separate study employed the use of an alkynyliodide in the cycloaddition reaction with nitrile oxides to provide 3,4,5-
- ⁴⁵ trisubstituted isoxazoles.¹⁰ In most cases, dimerization pathways of the nitrile oxides could be avoided by *in situ* formation of the nitrile oxides. ^{5,8,9}

Our laboratory has demonstrated the powerful and

underexploited directing ability of ortho-nitrophenyl-50 substituted alkynes to access densely functionalized biaryls through a net [4+2] cycloaddition / cycloreversion process of substituted 2-halo-6-nitrophenyl acetylenes (e.g. 1) with cyclic dienes (e.g. 2) as shown in Scheme 1 (Eqn. 1).³ These transformations proved highly regioselective - routinely 55 giving the biaryl **4** as the single regioisomer. Recently, we began to extend the scope of these reactions to include [3+2]cycloadditions. Earlier this year, we published a full account of the thermal, dipolar cycloaddition of ortho-nitrophenyl alkynes (e.g. 1) with a series of azides with up to 11:1 60 regiomeric ratio (rr) (Scheme 1, Eqn. 2).⁴ Unlike what was observed in the [4+2] series, we found that the regioselectivity of this reaction was highly dependent on the nature of the second subsitution on the alkyne (R_2) – giving low selectivity with hydrogen, alkyl or ester substitution but high selectivity $_{65}$ with halogens (R₂ = Cl, Br). In parallel with the experimental work on these azide dipolar cycloaddditions, computationally explored these transformations - including a detailed analysis of the dipolarophile.⁴ In this Article, we extend this exploration of dipolar cycloadditions to include 70 nitrile oxides as a highly regioselective method to access densely functionalized isoxazoles. As observed in the [4+2] series, we are aware of only a single study utilizing orthonitrophenyl alkynes in [3+2] cycloadditions to access isoxazoles.11

Scheme 1. Prior Work in [4+2] and [3+2] Cycloadditions with *ortho*-Nitrophenyl Alkynes.

- We first selected 2-chloro-6-nitrophenyl acetylene (1a) and ⁵ the oximyl acid chloride 8¹² to screen for both reactivity and selectivity in the cycloaddition process (Scheme 2). To our delight, we found that clean conversion to the desired isoxazole occurred in high yield (82%) and as a single regioisomer. Unfortunately, when a more challenging ¹⁰ substrate such as the di-substituted alkyne 1b⁴ was employed in this transformation, less than 10% of impure desired product 10b was produced (tentatively identified by mass spectroscopy). We attributed this divergence in reactivity to competitive dimerization of the nitrile oxide.¹³ Presence of ¹⁵ nitrile oxide dimer 11 (Fig. 1) was confirmed by x-ray
- crystallographic analysis. We have previously observed a related reduction in reactivity for alkyl substituted alkynes (e.g. **1b**) in dipolar cycloadditions with benzyl azides.⁴ Attempts to minimize this unwanted side reaction through the
- ²⁰ use of slow addition techniques proved ineffective. The reduced reactivity imparted by the addition of a methyl group on the alkyne likely increases the transition state energy for the [3+2] dipolar cycloaddition sufficiently so that the dimerization pathway is more energetically favourable.

Scheme 2. Initial Exploration of Nitrile Oxide Dipolar Cycloadditions

25

Fig. 1 . ORTEP Representation of Isolated Dimer 11.

- In order to minimize the dimerization pathway, a more 30 sterically hindered nitrile oxide was selected. 2,4,6-Trimethyl derivative 12^{14} has been shown to minimize dimerization pathways with nitrile oxides (Table 1).¹³ We screened this nitrile oxide precursor with our parent alkyne 1a (Entry a) and again observed excellent chemical yield and regioselectivity 35 for the isoxazole product 13a (88% yield, sole regioisomer). Fortunately, the previously problematic alkynyl methyl isomer 1b proved equally effective with 87% yield of the desired isoxazole 13b. Similar high levels of regioselectivity and chemical yield were observed for a series of both mono- and $_{40}$ di-substituted alkynes³ (Entries c-j). We were particularly pleased to see once again that halogenated alkynes (Entries dg) all proved highly effective in the cycloaddition process. Assignment of the regiochemistry of the reactions was confirmed by x-ray crystallographic analysis of compounds
- ⁴⁵ **13b**, **13d** (Fig. 2), **13g** and **13h**. The high level of regioselectivity observed in Table 1 is in stark contrast to the azide series in which the R_2 substituent had a dramatic impact on the regioselective outcome of the transformation.⁴

 Table 1 Exploration of Scope in Nitrile Oxide / Alkyne Dipolar Cycloaddition.

Entry	R ₁	\mathbf{R}_2	R ₃	% Yield ^a
а	Cl	Н	NO_2	88
b	Cl	Me	NO_2	87
с	Cl	CO ₂ Me	NO_2	83
d	Cl	Br	NO_2	68
e	Cl	Cl	NO_2	70
f	Н	Cl	NO_2	69
g	Me	Cl	NO_2	73
h	Н	Н	NO_2	90
i	Me	Н	NO_2	92
j	Me	Me	NO_2	74

^{*a*} Regioselectivity in each case was >20:1 as determined by crude ¹H 5 NMR.

Fig. 2 . ORTEP Representations of Compound 13d (Note: Only one position for disordered nitro moiety and chloro group are shown for clarity).

- ¹⁰ It is important to note the critical role that substituents play in the success of these dipolar cycloadditions (Scheme 3). For example, the *ortho*-nitro moiety provides a key activating role in the cycloaddition – leading to improved yields as compared to the *des*-nitro alkynes **14a** and **14b** which provided the
- ¹⁵ products **15a** and **15b** in 76% and 27% yield respectively. In both cases, these yields were lower than the corresponding nitro series (90% for **13h** and 74% for **13j**) which clearly demonstrated the electronic benefits of the nitro moiety to override the steric penalty for its presence. Variation of the
- ²⁰ dipole component also led to a divergence in chemical yields. Cycloaddition of nitrile oxide percursor **16a** with alkyne **1a** provided a much lower yield (**17a**, 29%) than the less sterically hindered variant **16b** with alkyne **1a** (**17b**, 75%). The cycloaddition using nitrile oxide precursor **16c** with **1a**
- ²⁵ provided a 39% yield of the desired product **17c**. These yields are all lower than the parent mestyl series **13a** (88%, see Table 1).

Scheme 3. Important Effect of the *ortho*-Nitro Acetylene and Variation of the Nitrile Oxide

30

Scheme 4 illustrates that it is possible to derivatize both the halogen and the ester moieties in the isoxazole scaffold. Saponification⁴ of the the methyl ester **13c** under optimized conditions provided the acid **18**. This acid could be easily ³⁵ converted¹⁵ to the corresponding acid chloride **19** using PCl₅ in high yield. Subsequent coupling with benzyl amine or (+)- α -methyl benzyl amine cleanly generated the desired amide bond. Interesting, careful analysis of the ¹H NMR spectra of amide **23** reveals doubling of both the *ortho*-methyl moieties that there is restricted rotation around the mesityl group on the NMR time scale. The *ortho*-chloride moiety could be cross coupled using PEPPSI-IPr¹⁶ under our previously reported boroxine coupling conditions^{3g} to provide the biaryls **24** and ⁴⁵ **25**.

In summary, we have demonstrated a highly regioselective method for the construction of densely functionalized ⁵ isoxazoles through the use of dipolar cycloaddition with *ortho*-nitrophenyl alkynes and *in situ* generated nitrile oxides. A variety of subsituents on the alkyne is tolerated. The importance of the *ortho*-nitro moeity on the alkyne and the R group on the nitrile oxide was demonstrated. The subsequent ¹⁰ derivatization of the isoxazoles has been demonstrated.

Additional applications of the cycloaddition strategy for the construction of sterically congested linkages will be reported in due course.

Experimental Section

15

Oxime 27: To a stirred solution of ice (46 g) in H₂O/Ethanol (40 mL, 1:1) was added mesitylaldehyde **26** (6.0 g, 6.0 mL, 40.7 mmol), hydroxylamine hydrochloride (4.2 g, 61.0 mmol) and NaOH (17 mL, 100 mmol, 6.0 M in H₂O). After 2 h, the ²⁰ reaction was quenched with 1 M HCl (50 mL), extracted with Et₂O (3 X 30 mL), and washed with brine (30 mL). The dried (MgSO₄) extract was concentrated *in vacuo* and purified by recrystallization with Et₂O and Hexanes to give known oxime **27**¹⁴ (6.05 g, 37.1 mmol, 91%) as a white solid. ¹H NMR (400 ²⁵ MHz, CDCl₃) δ 8.44 (s, 1H), 6.91 (s, 2H), 2.39 (s, 6H), 2.30 (s, 3H) ppm.

Oximyl Acid Chloride 12: To a stirred solution of oxime 27 (3.0 g, 18.4 mmol) in DMF (18.5 mL) at 0 °C, was added 4 ³⁰ portions of NCS (0.75 g X 4, 20 min apart). Upon warming to

rt over 4 h, the reaction was quenched with H₂O/Ice (50 mL), extracted with Et₂O (4 X 25 mL), and washed with brine (2 X 10 mL). The dried (Na₂SO₄) extract was concentrated *in vacuo* to give known **12**¹⁴ (3.6 g, 18.4 mmol, 99%) as a white ³⁵ semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 6.92 (s, 2H), 2.27 (s, 9H) ppm.

Oximyl Acid Chloride 16a: To a stirred solution of ice (15 g) in H₂O/Ethanol (14 mL, 1:1) was added aldehyde 28 (1.0 g, 40 1.3 mL, 14 mmol), hydroxylamine hydrochloride (1.5 g, 21 mmol) and NaOH (5.8 mL, 35 mmol, 6.0 M in H₂O). After 21 h, the reaction was quenched with 1 M HCl (10 mL), extracted with DCM (3 X 25 mL), and washed with brine (50 mL). The dried (MgSO₄) extract was concentrated in vacuo to 45 give crude oxime 29 as a yellow liquid which was used without further purification. To a stirred solution of oxime 29 (1.2 g, 14 mmol) in DMF (14 mL) at 0 °C, was added 4 portions of NCS (0.49 g X 4, 20 min apart). After 18 h at rt, the reaction was diluted with H₂O (20 mL), extracted with 50 Et₂O (3 X 20 mL), and washed with brine (1 X 50 mL). The dried (Na2SO4) extract was concentrated in vacuo to give known $16a^{17}$ (1.63 g, 13.4 mmol, 96%) as a pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (bs, 1H), 2.82 (septet, J = 6.8 Hz, 1H), 1.23 (d, J = 6.8 Hz, 6H) ppm.

55

Oximyl Acid Chloride 16b: To a stirred solution of ice (15 g) in H₂O/Ethanol (14 mL, 1:1) was added aldehyde 30 (1.0 g, 1.3 mL, 14 mmol), hydroxylamine hydrochloride (1.5 g, 21 mmol) and NaOH (5.8 mL, 35 mmol, 6.0 M in H₂O). After 60 2.5 h, the reaction was quenched with 2 M HCl (10 mL), extracted with Et₂O (3 X 20 mL), and washed with brine (50 mL). The dried (MgSO₄) extract was concentrated in vacuo to give crude oxime 31 as a colorless liquid which was used without further purification. To a stirred solution of oxime 31 65 (1.2 g, 14 mmol) in DMF (14 mL) at 0 °C, was added 4 portions of NCS (0.49 g X 4, 20 min apart). After 18.5 h at rt, the reaction was diluted with H₂O (20 mL), extracted with Et₂O (3 X 20 mL), and washed with brine (1 X 50 mL). The dried (Na₂SO₄) extract was concentrated in vacuo to give ⁷⁰ known **16b**¹⁸ (1.7 g, 14 mmol, 99%) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (bs, 1H), 2.50 (t, J = 7.3 Hz, 2H), 1.70 (sextet, J = 7.4 Hz, 6H), 0.98 (t, J = 7.3, 3H) ppm.

Oximyl Acid Chloride 16c: To a stirred solution of ice (15 g) ⁷⁵ in H₂O/Ethanol (14 mL, 1:1) was added aldehyde **32** (1.8 g, 1.8 mL, 14 mmol), hydroxylamine hydrochloride (1.5 g, 21 mmol) and NaOH (5.8 mL, 35 mmol, 6.0 M in H₂O). After

4.5 h, the reaction was quenched with 1 M HCl (12 mL), extracted with Et_2O (3 X 20 mL), and washed with brine (50 mL). The dried (MgSO₄) extract was concentrated *in vacuo* to give crude oxime **33** as a yellow solid which was used ⁵ without further purification. To a stirred solution of oxime **33** (2.06 g, 14 mmol) in DMF (14 mL) at 0 °C, was added 4 portions of NCS (0.49 g X 4, 20 min apart). After 11 h at rt, the reaction was diluted with H₂O (50 mL), extracted with Et_2O (2 X 40 mL), and washed with H₂O (3 X 60 mL). The

¹⁰ dried (Na₂SO₄) extract was concentrated *in vacuo* to give known **16c**¹⁷ (2.49 g, 13.7 mmol, 98%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (bs, 1H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.48-7.31 (overlapping m, 4H), 6.88 (d, *J* = 15.6, 1H) ppm.

Isoxazole 10a: To a pressure vessel containing $1a^{3c}$ (63.2 mg, 348 µmol) was added dry PhMe (600 µL), NEt₃ (109 mg, 150 µL, 1.08 mmol) and $8^{2,12}$ (208.5 mg, 1.123 mmol) sequentially, and heated to 80 °C. Immediately after addition ²⁰ of **8**, a white solid formed along with a mild exotherm. After 1 h, the reaction was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 10-25% EtOAc / Hexanes to give **10** (101.4 mg, 306.6 µmol, 82%) as a yellow solid. Mp 82-84 °C; IR (neat) ²⁵ 3087, 2839, 1612, 1534, 1434, 1255, 1029, 809, 738 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 1H), 7.82 (m,

- 3H), 7.64 (t, J = 8.2 Hz, 1H), 7.02 (m, 2H), 6.82 (s, 1H), 3.89 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 162.2, 161.2, 150.4, 136.2, 134.3, 131.6, 128.4, 123.0, 122.2, 121.0,
- $_{30}$ 114.4, 104.0, 55.4 ppm; HRMS (ES+) calcd. for $C_{16}H_{12}N_2O_4Cl$ (M+H) 331.0486, found 331.0476.

Dimer 11: To a stirred solution of $\mathbf{1b}^4$ (19.4 mg, 99 µmol) and $\mathbf{8}^{2,12}$ (184 mg, 990 µmol) in PhMe (500 µL) at 80 °C was added NEt₃ (800 µL, 1.19 mmol, 1.50 M in PhMe) via syringe pump over 5 hours. After 14 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 0-50 % EtOAc / Hexanes to give undesired dimer **11** (64.6 mg, 216 µmol, 40 22%) as a yellow solid. Mp 105-107 °C; IR (neat) 2938, 2840, 1611, 1591, 1574, 1520, 1450, 1258, 1179, 835 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (m, 4H), 6.97 (m, 4H), m, 3H), 3.88 (s, 3H), 3.87 (s, 3H) ppm; ¹³C NMR (100 MHz,

CDCl₃) δ 161.6, 161.1, 155.9, 130.2, 129.8, 199.0, 114.9, ⁴⁵ 114.5, 55.4 ppm; HRMS (EI+) calcd. for C₁₆H₁₄N₂O₄ (M+) 298.0953, found 298.0952.

Isoxazole 13a: To a stirred solution of 1a^{3c} (63.8 mg, 351 50 µmol) and NEt₃ (500 µL, 363 mg, 3.59 mmol) in PhMe (700 μ L) at 80 °C was added 12¹⁴ (15.4 mL, 3.846 mmol, 250 mM in PhMe) via syringe pump over 5 hours. After 10 h, the crude mixture was cooled to rt, filtered, concentrated in vacuo, and purified via flash chromatography over silica gel, 55 eluting with 2-8% EtOAc / Hexanes gave pure 13a (105.9 mg, 309.0 µmol, 88%) as a yellow oil. IR (thin film) 1750, 1613, 1536, 1464, 1439, 1382, 1353, 906, 882, 808, 757, 737 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.02 (dd, J = 8.2, 1.2 Hz, 1H), 7.83 (dd, J = 8.2, 1.2 Hz, 1H), 7.65 (t, J = 8.2 Hz, 1H), 7.00 60 (s, 2H), 6.49 (s, 1H), 2.36 (s, 3H), 2.25 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.3, 162.2, 150.2, 139.1, 137.3, 136.3, 134.4, 131.7, 128.4, 125.5, 123.1, 122.4, 107.6, 21.8, 20.2 ppm; HRMS (EI+) calcd. for C₁₈H₁₅N₂O₃Cl (M+) 342.0771, found 342.0759.).

Isoxazole 13b: To a stirred solution of **1b**⁴ (41.4 mg, 212 μ mol) and **12**¹⁴ (446.3 mg, 2.258 mmol) in PhMe (1.00 mL) at 80 °C was added NEt₃ (1.72 mL, 2.58 mmol, 1.50 M in PhMe) via syringe pump over 5 hours. After 10 h, the crude mixture 70 was cooled to rt, filtered, concentrated in vacuo, and purified via flash chromatography over silica gel, eluting with 5-15 % EtOAc / Hexanes to give impure 13b as a yellow oil. The impure oil was triturated and recrystallized from hexanes / methanol to give pure 13b (65.6 mg, 184 µmol, 87%) as a 75 pale yellow solid. Mp 151-153 °C; IR (thin film) 1609, 1535, 1456, 1437, 1348, 901, 852, 808, 759, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J = 8.2, 1.2 Hz, 1H), 7.85 (dd, J = 8.1, 1.2 Hz, 1H), 7.68 (t, J = 8.2 Hz, 1H), 7.00 (s, 2H), 2.37 (s, 3H), 2.18 (s, 6H), 1.75 (s, 3H) ppm; ¹³C NMR (100 80 MHz, CDCl₃) δ 163.4, 159.0, 150.3, 139.0, 137.5, 137.0, 134.5, 131.8, 128.3, 124.8, 123.3, 122.8, 114.8, 21.2, 19.7, 7.1 ppm; HRMS (EI+) calcd. for C₁₉H₁₇N₂O₃Cl (M+) 356.0928, found 356.0926.

⁸⁵ Isoxazole 13c: To a stirred solution of $1c^{3c}$ (50 mg, 208 µmol) and 12^{14} (411 mg, 2.08 mmol) in PhMe (1.5 mL) at 80 °C,

was added NEt₃ (1.7 mL, 2.55 mmol, 1.5 M in PhMe) via syringe pump over 5 hours. After 14 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 10-20%

- ⁵ EtOAc/Hexanes to give impure 13c as a yellow solid. Repurification via trituration with hexanes gave impure 13c as a pale yellow solid. Repurification via flash chromatography over silica gel, eluting 20-40% EtOAc/Hexanes gave impure 13c. Repurification via trituration with hexanes and EtOAc
- ¹⁰ gave **13c** (69.5 mg, 173 µmol, 83%) as a white solid. Mp 177-178 °C; IR (neat) 1730, 1534, 1456, 1400, 1348, 1310, 1120 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, J = 0.8, 8.3 Hz, 1H), 7.89 (dd, J = 0.8, 8.1 Hz, 1H), 7.75 (t, J = 8.2Hz, 1H), 6.98 (s, 2H), 3.51 (s, 3H), 2.37 (s, 3H), 2.81 (s, 6H) ¹⁵ ppm; ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 162.0, 160.7,
- 149.2, 139.1, 136.6, 134.9, 132.2, 128.1, 124.2, 123.4, 123.0, 111.9, 51.9, 21.3, 19.9 ppm; HRMS (EI+) calcd. for $C_{20}H_{17}N_2O_5Cl$ (M+) 400.0826, found 400.0838.

- ²⁰ **Isoxazole 13d**: To a stirred solution of $1d^4$ (42.8 mg, 164 µmol) and 12^{14} (353.8 mg, 1.790 mmol) in PhMe (1.00 mL) at 80 °C was added NEt₃ (1.43 mL, 2.15 mmol, 1.5 M in PhMe) via syringe pump over 5 hours. After 10 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified
- ²⁵ via flash chromatography over silica gel, eluting with 2-10 % EtOAc / Hexanes to give impure **13d** as a yellow solid. The impure solid was recrystalized from methanol to give pure **13d** (46.8 mg, 111 μ mol, 68%) as a light brown oil. IR (thin film) 1527, 1356, 1116 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ
- ³⁰ 8.21 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.74 (t, J = 8.2 Hz, 1H), 7.02 (s, 2H), 2.38 (s, 3H), 2.23 (s, 3H), 2.20 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.9, 161.7, 149.6, 139.8, 138.0, 137.3, 135.0, 132.6, 128.4, 128.3, 123.6, 121.4, 97.3, 21.3, 19.7 ppm; HRMS (EI+) calcd. for C₁₈H₁₄N₂O₃ClBr ³⁵ (M+) 419.9876, found 419.9880.

Isoxazole 13e: To a stirred solution of $1e^4$ (41.1 mg, 190 µmol) and 12^{14} (386.8 mg, 1.957 mmol) in PhMe (1.00 mL) at 80 °C was added NEt₃ (1.67 mL, 2.51 mmol, 1.5 M in PhMe) ⁴⁰ via syringe pump over 5 hours. After 10 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 10-30 % EtOAc / Hexanes to give impure **13e** as a yellow solid. The impure solid was recrystallized from methanol to give pure

⁴⁵ **13e** (50.2 mg, 133 μmol, 70%) as a light brown oil. IR (thin film) 1528, 1353 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.21

(dd, J = 8.2, 1.2 Hz, 1H), 7.90 (dd, J = 8.2, 1.2 Hz, 1H), 7.74 (t, J = 8.2 Hz, 1H), 7.02 (s, 2H), 2.38 (s, 3H), 2.23 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 159.4, 149.7, ⁵⁰ 139.8, 137.9, 137.4, 134.9, 132.6, 128.4, 123.6, 122.6, 120.9 111.2, 21.2, 19.7 ppm; HRMS (EI+) calcd. for C₁₈H₁₄N₂O₃Cl₂ (M+) 376.0382, found 376.0400.

Isoxazole 13f: To a stirred solution of **1f**⁴ (50 mg, 276 µmol) 55 and **12**¹⁴ (545 mg, 2.76 mmol) in PhMe (1.5 mL) at 80 °C, was added NEt₃ (2.2 mL, 3.30 mmol, 1.5 M in PhMe) via syringe pump over 5 hours. After 16.5 h, the crude mixture was cooled to rt, filtered, concentrated in vacuo, and purified via flash chromatography over silica gel, eluting with 5-10% 60 EtOAc/Hexanes to give impure C as a yellow oil. Purification via flash chromatography over silica gel, eluting 10% EtOAc/Hexanes gave impure 13f as a yellow oil. Repurification via flash chromatography over silica gel, eluting 20% Et₂O/Pentane gave 13f (66 mg, 0.193 mmol, 65 69%) as a beige solid. Mp 89-92 °C; IR (neat) 1534, 1351, 1129, 852 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.0 Hz, 1H), 7.76-7.86 (m, 3H), 7.01 (s, 2H), 2.37 (s, 3H), 2.21 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 161.5, 148.2, 139.8, 137.8, 133.4, 131.8, 131.6, 128.4, 125.3, 122.7, 121.0, 70 109.6, 21.3, 19.8 ppm; HRMS (EI+) calcd. for C₁₈H₁₅N₂O₃Cl (M+) 342.0771, found 342.0772.

Isoxazole 13g: To a stirred solution of 1g⁴ (240.9 mg, 1.231 mmol) and 12¹⁴ (2.369 g, 11.98 mmol) in PhMe (6.10 mL) at 75 80 °C was added NEt₃ (10.1 mL, 15.1 mmol, 1.50 M in PhMe) via syringe pump over 5 hours. After 10 h, the crude mixture was cooled to rt, filtered, concentrated in vacuo, and purified via flash chromatography over silica gel, eluting with 10-30 % EtOAc / Hexanes to give impure 13g as a yellow solid. The 80 impure solid was recrystallized from methanol to give pure 13g (346.8 mg, 977.5 µmol, 73%) as a yellow solid. Mp 178-180 °C; IR (thin film) 1538, 1455, 1384, 1339, 912, 880, 854, 803, 748, 735 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (dd, J = 7.4, 2.0 Hz, 1H), 7.70 (d, J = 5.7 Hz, 1H), 7.66 (t, J = 7.285 Hz, 1H), 7.02 (s, 2H), 2.39 (s, 3H), 2.38 (s, 3H), 2.23 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 161.4, 149.0, 141.5, 139.8, 135.5, 131.5, 128.4, 122.8, 122.8, 120.4, 110.0, 21.3, 19.7, 19.5 ppm; HRMS (EI+) calcd. for C₁₉H₁₇N₂O₃Cl(M+) 356.0928, found 356.0913.

Isoxazole 13h: To a stirred solution of 1h (50 mg, 340 µmol) and 12¹⁴ (672 mg, 3.40 mmol) in PhMe (1.5 mL) at 80 °C, was added NEt₃ (2.7 mL, 4.05 mmol, 1.5 M in PhMe) via 5 syringe pump over 5 hours. After 11.5 h, the crude mixture was cooled to rt, filtered, concentrated in vacuo, and purified via flash chromatography over silica gel, eluting with 10% EtOAc/Hexanes to give impure 13h as a yellow solid. Repurification via flash chromatography over silica gel, 10 eluting 20% EtOAc/Hexanes gave impure 13h. Repurification via trituration with hexanes gave 13h (94.4 mg, 0.306 mmol, 90%) as a white solid. Mp 122-123 °C; IR (neat) 1534, 1353 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (td, J = 1.2, 8.1 Hz, 2H), 7.75 (td, J = 1.2, 7.6 Hz, 1H), 7.66 (td, J = 1.3, 7.7 Hz, 15 1H), 6.98 (s, 2H), 6.46 (s, 1H), 2.35 (s, 3H), 2.12 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 162.7, 148.2, 139.1, 137.3, 132.6, 131.0, 130.4, 128.4, 125.5, 124.4, 121.8, 105.4, 21.2, 20.3 ppm; HRMS (EI+) calcd. for C₁₈H₁₆N₂O₃ (M+)

308.1161, found 308.1162.

Isoxazole 13i: To a stirred solution of $1i^4$ (47.2 mg, 293 µmol) and 12^{14} (519.9 mg, 2.630 mmol) in PhMe (1.50 mL) at 80 °C was added NEt₃ (2.40 mL, 3.60 mmol, 1.50 M in PhMe) via syringe pump over 5 hours. After 10 h, the crude mixture ²⁵ was cooled to rt, filtered, concentrated *in vacuo*, and was purified via flash chromatography over silica gel, eluting with 10-25 % EtOAc / Hexanes to give impure **13i** as a solid. The impure solid was recrystalized from Hexanes / methanol to give pure **13i** (87.1 mg, 269 µmol, 92%) as a pale yellow oil. ³⁰ IR (thin film) 1613, 1528, 1457, 1381, 1354, 906, 855, 832,

- 802, 707 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (dd, J = 7.7, 1.0 Hz, 1H), 7.63 (d, J = 6.5 Hz, 1H), 7.58 (t, J = 7.7 Hz, 1H), 6.99 (s, 2H), 6.29 (s, 1H), 2.40 (s, 3H), 2.36 (s, 3H), 2.24 (s, 6H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 164.8, 162.3, 35 149.6, 140.8, 139.0, 137.2, 134.9, 130.8, 128.4, 125.7, 122.3,
- 122.1, 106.1, 21.2, 20.2, 20.0 ppm; HRMS (EI+) calcd. for C₁₉H₁₈N₂O₃ (M+) 322.1317, found 322.1304.

Isoxazole 13j: To a stirred solution of $1j^4$ (80.9 mg, 462 40 µmol) and 12^{14} (845.6 mg, 4.278 mmol) in PhMe (2.30 mL) at

80 °C was added NEt₃ (3.70 mL, 5.55 mmol, 1.50 M in PhMe) via syringe pump over 5 hours. After 10 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 2-10 % 45 EtOAc / Hexanes to give impure **13j** as a yellow solid. The impure solid was recrystalized from methanol to give pure **13j** (115.7 mg, 349.3 µmol, 74%) as a light brown solid. Mp 133-135 °C; IR (thin film) 1643, 1613, 1533, 1457, 1347, 914, 853, 804, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* 50 = 8.4, 1.3 Hz, 1H), 7.65 (dd, *J* = 7.7, 1.9 Hz, 1H), 7.60 (t, *J* = 7.9 Hz, 1H), 7.00 (s, 2H), 2.36 (s, 3H), 2.33 (s, 3H), 2.18 (s, 6H), 1.67 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 163.3, 161.3, 149.6, 141.4, 138.9, 137.3, 135.0, 130.7, 128.2, 125.0, 122.5, 122.3, 113.4, 21.2, 19.7, 19.6, 6.9 ppm; HRMS (EI+) 55 calcd. for C₂₀H₂₀N₂O₃ (M+) 336.1470, found 336.1462.

Isoxazole 15a: To a stirred solution of **14a** (50 µL, 455 µmol) and **12**¹⁴ (900 mg, 4.55 mmol) in PhMe (3.0 mL) at 80 °C was added NEt₃ (3.6 mL, 5.46 mmol, 1.5 M in PhMe) via syringe ⁶⁰ pump over 5 hours. After 20 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 0-10 % EtOAc / Hexanes to give impure **15a** as a yellow solid. The impure solid was recrystallized from EtOAc/Hex to give known ⁶⁵ **15a**¹⁰ (89.4 mg, 340 µmol, 75%) as a white solid. ¹H NMR (700 MHz, CDCl₃) δ 7.88 (d, *J* = 7.1 Hz, 2H), 7.53 (t, *J* = 7.1 Hz, 2H), 7.48 (t, *J* = 7.1 Hz, 1H), 6.99 (s, 2H), 6.50 (s, 1H), 2.36 (s, 3H), 2.22 (s, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 162.7, 138.8, 137.2, 130.1, 129.0, 128.4, 127.6, 126.2, ⁷⁰ 125.9, 100.9, 21.1, 20.2 ppm.

Isoxazole 15b: To a stirred solution of $14b^{19}$ (50.0 mg, 384 µmol) and 12^{14} (759 mg, 3.84 mmol) in PhMe (1.5 mL) at 80 °C was added NEt₃ (3.1 mL, 4.61 mmol, 1.5 M in PhMe) via ⁷⁵ syringe pump over 5 hours. After 15 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 0-20 % EtOAc / Hexanes to give impure **15b**. Repurification via trituration with Hexanes and EtOAc gave **15b** (29.9 mg, 103 ⁸⁰ µmol, 27%) as a white solid. Mp 96-99 °C; IR (neat) 2923, 1614, 1450, 1145, 1006, 898, 852, 766, 741 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.31 (overlapping m, 4H), 6.99 (s, 2H), 2.41 (s, 3H), 2.37 (s, 3H), 2.16 (s, 6H), 1.80 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 163.4, 138.7, 137.8, ⁸⁵ 137.3, 130.8, 129.8, 129.6, 128.2, 128.0, 125.7, 111.4, 21.2, 20.1, 19.8, 7.6 ppm. HRMS (ES+) calcd. for C₂₀H₂₂NO

Isoxazole 17a: To a stirred solution of $1a^{3c}$ (69.7 mg, 384 ⁵ µmol) and $16a^{17}$ (467 mg, 3.84 mmol) in PhMe (1.5 mL) at 80 [°]C was added NEt₃ (3.1 mL, 4.61 mmol, 1.5 M in PhMe) via syringe pump over 5 hours. After 15 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 0-30 % ¹⁰ EtOAc / Hexanes to give impure **17a**. Repurification via flash chromatography over silica gel, eluting with 0-10 % EtOAc / Hexanes gave **17a** (29.5 mg, 111 µmol, 29%[‡]) as a yellow oil. IR (neat) 3089, 2970, 1537, 1352, 1124, 950, 883, 759, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 8.2, 1.0 Hz, ¹⁵ 1H), 7.78 (dd, J = 8.2, 1.1 Hz, 1H), 7.60 (t, J = 8.2 Hz, 1H),

6.42 (s, 1H), 3.16 (septet, J = 7.1 Hz, 1H), 7.60 (t, J = 0.2 Hz, 1H), 6.42 (s, 1H), 3.16 (septet, J = 7.1 Hz, 1H), 1.37 (d, J = 7.0 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 161.5, 150.4, 136.0, 134.2, 131.4, 122.9, 122.4, 104.4, 26.7, 21.6 ppm. HRMS (EI+) calcd. for C₁₂H₁₁N₂O₃Cl (M+) 266.0458, ²⁰ found 266.0462.

Isoxazole 17b: To a stirred solution of $1a^{3c}$ (69.7 mg, 384 µmol) and $16b^{18}$ (467 mg, 3.84 mmol) in PhMe (1.5 mL) at 80 °C was added NEt₃ (3.1 mL, 4.61 mmol, 1.5 M in PhMe) via ²⁵ syringe pump over 5 hours. After 15 h, the crude mixture was cooled to rt, filtered, concentrated *in vacuo*, and purified via flash chromatography over silica gel, eluting with 0-30 % EtOAc / Hexanes to give impure **17b**. Repurification via flash

- chromatography over silica gel, eluting with 0-10 % EtOAc / ³⁰ Hexanes gave **17b** (76.8 mg, 288 µmol, 75%) as a yellow oil. IR (neat) 3090, 2964, 2875, 1538, 1417, 1354, 1125, 950, 883, 808, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.2Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.60 (t, J = 8.1 Hz, 1H), 6.40 (s, 1H), 2.75 (t, J = 7.3 Hz, 2H), 1.77 (sextet, J = 7.4 Hz, ³⁵ 2H), 1.02 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz,
- ³⁵ 2H), 1.02 (f, J = 7.4 Hz, 5H) ppm, ³⁶ C NMR (100 MHz, CDCl₃) δ 164.0, 161.6, 150.3, 136.0, 134.2, 131.5, 122.9, 122.4, 105.8, 28.0, 21.5, 13.6 ppm. HRMS (EI+) calcd. for C₁₂H₁₁N₂O₃Cl (M+) 266.0458, found 266.0469.

⁴⁰ Isoxazole 17c: To a stirred solution of 1a^{3c} (69.7 mg, 384 µmol) and 16c¹⁷ (697 mg, 3.84 mmol) in PhMe (1.5 mL) at 80 °C was added NEt₃ (3.1 mL, 4.61 mmol, 1.5 M in PhMe) via syringe pump over 5 hours. After 14 h, the crude mixture was cooled to rt, filtered, concentrated in vacuo, and purified via 45 flash chromatography over silica gel, eluting with 0-20 % EtOAc / Hexanes to give impure 17c. Repurification via trituration with Hexanes and EtOAc gave 17c (49.4mg, 151 µmol, 39%[‡]) as a yellow solid. Mp 117-120°C; IR (neat) 1535, 1425, 1353, 965, 884, 755, 737, 696 cm⁻¹; ¹H NMR ⁵⁰ (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.64 (t, J = 8.2 Hz, 1H), 7.57 (d, J = 7.1 Hz, 2H), 7.44-7.33 (overlapping multiplets, 3H), 7.27, 7.20 (ABq, J = 16.5 Hz, 2H), 6.80 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 161.9, 150.4, 136.6, 136.3, 135.7, 134.3, 131.7, 55 129.1, 128.9, 127.1, 123.0, 122.1, 155.6, 103.3 ppm. HRMS (ES+) calcd. for C17H12N2O3Cl (M+H) 327.0536, found

327.0543.

Carboxylic Acid 18: To a stirred solution of 13e (100 mg, 60 249 µmol) stirring in THF/H2O (2:1, 0.2 M, 1.2 mL) was added LiOH•H₂O (36.2 mg, 863 µmol). After 5 days the reaction mixture was quenched with 6 M HCl (1.5 mL) and the aqueous layer extracted with EtOAc (3 x 10 mL ea.). The combined organic layers were washed with brine (30 mL), 65 dried over MgSO₄ and concentrated in vacuo to yield 18 as a beige solid (91.9 mg, 238 µmol, 95%). Mp 195-197 °C; IR (neat) 2919, 1691, 1536, 1348, 1139, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.73 (t, J = 8.4 Hz, 1H), 6.98 (s, 2H), 2.36 (s, 3H), 2.18 ⁷⁰ (s, 6H) ppm; ¹³C NMR (175 MHz, CDCl₃) δ 169.7, 162.9, 161.9, 148.8, 139.3, 137.4, 137.1, 136.6, 135.1, 132.4, 128.3, 128.1, 123.9, 123.6, 122.8, 111.2, 21.3, 19.9 ppm; HRMS (ES+) calcd. for C₁₉H₁₆ClN₂O₅ (M+H) 387.0762, found 387.0748.

Acid Chloride 19: To a stirred solution of 18 (10 mg, 25.8 μ mol) in CH₂Cl₂ (100 μ L) was added PCl₅ (6.4 mg, 30.7 μ mol). After 2 h at reflux the crude mixture was cooled to rt

[‡] This product contains a small (<10% impurity) which is inseparable.

^{8 |} Journal Name, [year], [vol], 00–00

and concentrated *in vacuo* to give **19** as a beige solid (9.8 mg, 24.2 µmol, 94%). Crude materials were used without further purification. Mp 132-136 °C; IR (neat) 2925, 1733, 1536, 1315, 1124, 737 cm⁻¹; ¹H NMR (700 MHz, CDCl₃) δ 8.37 (d, s J = 8.4 Hz, 1H), 7.95 (d, J = 7.7 Hz, 1H), 7.82 (t, J = 8.4 Hz, 1H), 7.02 (m, 2H), 2.83 (s, 3H), 2.22 (s, 3H), 2.19 (s, 3H) ppm; ¹³C NMR (175 MHz, CDCl₃) δ 170.8, 161.6, 157.9, 148.5, 139.9, 137.4, 137.1, 136.6, 135.5, 133.0, 128.5, 128.4, 123.9, 123.0, 122.4, 116.5, 21.1, 19.9 ppm; HRMS (EI+) ¹⁰ calcd. for C₁₉H₁₄Cl₂N₂O₄ (M+) 404.0331, found 404.0330.

Amide 22: To a stirred solution of 19 (14.5 mg, 35.8 µmol) in CH₂Cl₂ (360 µL) was added NEt₃ (7.2 mg, 10 µL, 71.6 µmol) and benzylamine 20 (7.8 mg, 8 µL, 73.2 µmmol) at rt. After 15 15 h the crude materials were concentrated in vacuo and purified via flash chromatography over silica gel, eluting 0-40% EtOAc/Hexanes to give 22 as a beige solid (10.2 mg, 21.4 µmol, 60%). Mp 139-141 °C; IR (neat) 3400, 2922, 1666, 1531, 1350, 1150, 738 cm⁻¹; ¹H NMR (700 MHz, ²⁰ CDCl₃) δ 8.26 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.70 (t, J = 8.4 Hz, 1H), 7.23 (m, 3H), 6.93 (s, 2H), 6.86 (m, 2H), 5.52 (s, 1H), 4.25 (d, J = 4.6 Hz, 1H), 4.18 (d, J = 4.1Hz, 1H), 2.30 (s, 3H), 2.17 (s, 6H) ppm; ¹³C NMR (175 MHz, CDCl₃) & 168.2, 159.2, 159.1, 149.2, 140.7, 138.0, 137.3, 25 136.8, 136.6, 134.8, 131.9, 129.2, 129.0, 128.5, 127.5, 127.2, 123.6, 123.4, 123.3, 113.6, 43.2, 21.2, 19.7 ppm; HRMS (ES+) calcd. for C₂₆H₂₃ClN₃O₄ (M+H) 476.1377, found 476.1358.

- ³⁰ Amide 23: To a stirred solution of 19 (4.8 mg, 11.8 µmol) in CH₂Cl₂ (120 µL) was added NEt₃ (2.4 mg, 3.3 µL, 23.6 µmol) and (R)-(+)- α -methyl benzylamine 21 (2.8 mg, 3 µL, 23.6 µmmol) at rt. After 7 h the crude materials were concentrated *in vacuo* and purified via flash chromatography over silica
- ³⁵ gel, eluting 0-30% EtOAc/Hexanes to give **23** as a beige solid (3.8 mg, 7.75 μmol, 66%). Mp 51-53 °C; IR (neat) 3388, 2924, 1667, 1534, 1351, 757, 699 cm⁻¹; ¹H NMR (700 MHz, CDCl₃) δ 8.24 (bs, 1H), 7.85 (dd, J = 7.6, 14.8 Hz, 1H), 7.68 (t, J = 8.2 Hz, 1H), 7.22 (m, 3H), 7.13 (s, 1H of rotamer), 7.10
- ⁴⁰ (s, 1H of rotamer), 6.96 (s, 1H of rotamer), 6.94 (s, 1H of rotamer), 6.80 (m, 2H), 5.65 (bs, 1H), 4.89 (s, 1H), 2.39 (s, 3H), 2.28 (s, 3H of a rotamer), 2.26 (s, 3H of a rotamer), 2.09 (s, 3H), 1.16 (m, 3H) ppm; ¹³C NMR (175 MHz, CDCl₃) δ 168.0, 159.1, 158.3, 149.2, 142.4, 142.2, 140.8, 138.3, 138.1,
- 45 137.7, 137.4, 136.6, 134.8, 131.8, 129.4, 129.2, 128.9, 128.5, 127.3, 125.4, 123.6, 123.4, 113.7, 48.6, 22.2, 21.3, 19.8, 19.7

ppm; HRMS (ES+) calcd. for $C_{27}H_{25}ClN_3O_4$ (M+H) 490.1534, found 490.1524.

50 Isoxazole 24: To a pressure vessel containing 13a (83.4 mg, 243 µmol) and dioxane (1.00 mL), was sequentially added PEPPSI-IPr (16.8 mg, 24.7 µmol), (PhBO)₃ (124.3 mg, 340 μmol), K₂CO₃ (127.6 mg, 923 μmol). The solution was sealed under Ar and heated to 80 °C. After 48 h, the reaction was 55 cooled to rt, and filtered through a Celite pad with CH₂Cl₂ (40 mL). The elutant was concentrated in vacuo, and purified via flash chromatography over silica gel, eluting with 0-15% EtOAc / hexanes to give 24 (74.1 mg, 19.3 µmol, 79%) as a pale yellow solid. Mp 168-170 °C; ¹H NMR (400 MHz, 60 CDCl₃) δ 8.12 (dd, J = 2.1, 7.3 Hz, 1H), 7.76 (m, 2H), 7.35 (m, 3H), 7.24 (m, 2H), 6.92 (s, 2H), 5.85 (s, 1H), 2.32 (s, 3H), 2.02 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 162.0, 149.5, 145.3, 138.8, 138.4, 137.3, 134.6, 130.9, 128.9, 128.4, 128.21, 128.20, 125.7, 123.6, 121.7, 107.0, 21.1, 20.0 65 ppm; HRMS (EI+) calcd. for C₂₄H₂₀N₂O₃ (M+) 384.1474, found 384.1465.

Isoxazole 25: To a seal tube containing 13e (50 mg, 125 µmol) was added sequentially K₂CO₃ (52 mg, 374 µmol), 70 (PhBO)₃ (117 mg, 374 µmol), and PEPPSI-IPr (3.8 mg, 5.6 µmol). The vessel was evacuated and backfilled with argon 3 times. Dioxane was added and the reaction was let stir at 100 °C. After 15 h, the crude material was cooled to rt, filtered through Celite and concentrated in vacuo. Purification via 75 flash chromatography over silica gel, eluting 5-20% EtOAc/Hexanes gave 25 as a yellow solid (37.4 mg, 84.5 µmol, 63%). mp 175-178 °C; IR (neat) 2953, 1732, 1534, 1123, 737, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (t, J = 4.8 Hz, 1H), 7.82 (d, J = 4.8 Hz, 2H), 7.32 (m, 3H), 7.21 80 (m, 2H), 6.92 (s, 1H), 6.86 (s, 1H), 3.41 (s, 3H), 2.31 (s, 3H), 2.13 (s, 3H) 1.76 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 161.8, 160.6, 148.3, 145.6, 138.8, 137.9, 137.1, 136.9, 135.1, 131.3, 128.6, 128.4, 128.3, 128.2, 128.0, 127.8, 124.4, 123.9, 122.1, 111.7, 51.6, 21.2, 19.8, 19.7 ppm; HRMS (EI+) 85 calcd. for C₂₆H₂₂N₂O₅ (M+) 442.1529, found 442.1531.

Acknowledgements

Financial support was provided by the Oregon State University (OSU) and the National Science Foundation (CHE-0848704). We thank Professor Claudia Maier and Dr. Jeff 90 Morré (OSU) for mass spectra data. Finally, we are grateful to Dr. Roger Hanselmann (Rib-X Pharmaceuticals) for his helpful discussions.

Notes and references

^a Department of Chemistry, Oregon State University, 153 Gilbert Hall,

- ⁵ Corvallis, Oregon 97331. Fax: 541-737-2062; Tel: 541-737-9486; E-mail: rich.carter@oregonstate.edu. ^b Director of the X-ray Crystallographic Facility of the Departments of Chemistry at Oregon State University and the University of Oregon. E-mail: lev@uoregon.edu
 [†] Electronic Supplementary Information (ESI) available: Copies of ¹H
- ¹⁰ and ¹³C NMR spectra, for all new compounds and X-ray data for **13b**, **13d** (Fig. 1), **13g** and **13h** are provided. See DOI: 10.1039/b000000x/ **REFERENCES**
 - 1. T. M. V. D. Pinho e Melo, Curr. Org. Chem., 2005, 9, 925-958.
 - (a) H. Pellisier, *Tetrahedron*, 2007, **63**, 3235-3285. (b) V. Nair and T. D. Suja, *Tetrahedron*, 2007, **63**, 12247-12275. (c) M. Pineiro, and T. M. V. D. Pinto e Melo, *Eur. J. Org. Chem.* 2009, 5287-5307.
 - (a) B. O. Ashburn and R. G. Carter, Angew. Chem. Int. Ed., 2006, 45, 6737-6741. (b) M. R. Naffziger, B. O. Ashburn, J. R. Perkins and R. G. Carter, J. Org. Chem., 2007, 72, 9857-9865. (c) B. O. Ashburn, R. G. Carter and L. N. Zakharov, J. Am. Chem. Soc., 2007, 129, 9109-9116. (d) B. O. Ashburn and R. G. Carter, J. Org. Chem., 2007, 72, 10220-10223. (e) B. O. Ashburn and R. G. Carter, Org. Chem., 2007, 72, 10220-10223. (e) B. O. Ashburn and R. G. Carter, Org. Biomol. Chem., 2008, 6, 255-257. (f) Ashburn, B. O; Rathbone, L. K.; Camp, E. H; Carter, R. G. Tetrahedron, 2008, 64, 856-865. (g) J. R. Perkins, and R. G. Carter, J. Am. Chem. Soc., 2008, 130, 3290-3291. (h) B. O. Ashburn and R. G. Carter, J. Org. Chem., 2008, 73, 7305-09.
 - M. L. McIntosh, R. C. Johnston, O. Pattwong, B. O. Ashburn, M. R. Naffziger, P H.-Y. Cheong and R. G. Carter, *J. Org. Chem.*, 2012, 77, 1101-1112.
 - 5 T. V. Hansen, P. Wu and V. V. Fokin, J. Org. Chem., 2005, 70, 7761-7764.
 - 6 F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovstev, L. Noodleman, K. B. Sharpless and V. V. Fokin, J. Amer. Chem. Soc., 2005, 127, 210-216.
 - 7 S. Grecian and V. V. Fokin, Angew. Chem. Int. Ed., 2008, 47, 8285-8287.
 - 8 S. E. Denmark and J. M. Kallemeyn, J. Org. Chem., 2005, 70, 2839-2842.
 - 9 J. J. Letourneau, C. Riveillo and M. H. J. Ohlmeyer, *Tetrahedron Lett.*, 2007, **48**, 1739-1743.
 - 10 J. A. Crossley and D. L. Browne, J. Org. Chem., 2010, 75, 5414-5416.
 - (a) D. A. Patrick, S. A. Bakunov, S. M. Bakunova, E. V. K. S. Kumar, R. J. Lombardy, S. K. Jones, A. S. Bridges, O. Zhirnov, J. E. Hall, T. Wenzler, R. Brun and R. R. Tidwell *J. Med. Chem.*, 2007, 50, 2468-2485. (b) R. R. Tidwell, S. Bakunova, S. Bakunova, D. A. Patrick. *Eur. Pat. Appl.* (2006), EP 1719767 A1 20061108.
 - M. C. Pirrung, L. N. Tumey, C. R. H. Raetz, J. E. Jackman, K. Snehalatha, A. L. McClerren, C. A. Fierke, S. L. Gantt and K. M. Rusche, J. Med. Chem., 2002, 45, 4359-4370.
 - 13. F. De Sarlo, J. Chem. Soc., Perkin Trans. 1, 1974, 1951-1953.
 - K.-C. Liu, B. R. Shelton and R. K. Howe, J. Org. Chem., 1980, 45, 3916-3918.
 - 15. Rajinder, S.; Hui, L. PCT Int. Appl. (2005), 2005033103.
 - M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O'Brien and C. Valente, *Eur. J. Chem.*, 2006, **12**, 4749-4755.
 - 17 Dubrovskiy, A. V.; Larock, R. C. Org. Lett. 2010, 12, 1180-1183.
 - 18 Bourbeau, M. P.; Rider, J. T. Org. Lett. 2006, 8, 3679-3680.
 - 19 Mesnard, D.; Bernadou, F.; Migniac, L. J. Chem. Res. (S), 1981, 9, 270-271.