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Chapter 1: Introduction

Video labeling is a basic vision problem, and of great importance to a wide range of

applications, including object detection (e.g., [32]), object proposals (e.g., [141]), video

segmentation (e.g., [70, 126, 101]), depth prediction (e.g., [1]), object tracking (e.g.,

[75, 15, 72]), video surveillance (e.g., [112]) and robot navigation (e.g., [89]).

Video labeling can be formulated at varying levels of granularity, including (i) clas-

sifying an entire video with one label (i.e., video classification/recognition [113, 58, 122,

120, 104, 2, 135, 19, 30, 31, 38, 123]), (ii) classifying video frames with appropriate classes

(i.e., frame-wise video labeling [131, 106, 27, 29, 28, 96, 62, 65]) and (iii) labeling every

pixel in a video with a label (i.e., pixel-wise video labeling [55, 126, 47, 16]).

This dissertation focuses on the problem of video labeling at both the frame and

pixel levels. The challenges of the problems can be summarized as follows:

• We are working with real video data. The videos are recorded in uncontrolled

environments with large variations in lighting conditions and camera viewpoints.

Also, objects occurring in these videos exhibit a wide variability in appearance,

shape, and motion patterns, and are subject to long-term occlusions.

• We are working with big data. The large size and high dimensionality of data intro-

duce unique computational challenges, which require specific software engineering

and parallel computing techniques for efficiency.

In order to address these challenges, our research is aimed at building effective deep

neural networks. Traditional approaches (e.g., [34, 40, 53, 133, 138, 80, 81, 129, 55])

typically resort to extracting hand-designed video features, and compute compatibility

terms only over local space and/or time neighborhoods. In contrast, we jointly learn the

feature extractor and the labeler that accounts for both local and long-range dependen-

cies end-to-end, in a unified manner. Different from existing deep learning approaches to

frame-wise labeling (e.g., [65, 67, 68]) which compute regular temporal convolutions in

a single processing stream for capturing long-range video information at different scales,

we compute two parallel temporal streams facilitating both local, fine-scale cues and

multiscale context for improving accuracy of frame classification.
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Figure 1.1: Gien a video, assign an object class label to every pixel in each video frame.

Our design of deep architectures for video labeling has been driven by the following

two hypotheses: (i) Robust and accurate video labeling requires accounting for both

local and long-range spatial and temporal cues; and (ii) Accuracy of pixel-level video

labeling improves by modeling and inferring of object boundaries, and similarly for the

frame-level video labeling, temporal action boundaries.

In this dissertation, we validate our two hypotheses on benchmark datasets. Our

results were published at peer-reviewed conferences, and at the time our approaches

outperformed the existing work.

In the following, we first summarize our work on pixel-wise video labeling including:

(i) Recurrent temporal deep field (RTDF) [73] for spatiotemporal semantic segmentation;

and (ii) Fully convolutional Siamese network (FCSN) [71] for joint boundary detection

and boundary flow estimation. Then, we summarize our work on frame-wise video

labeling that uses a temporal deformable residual network (TDRN) [74] for temporal

action segmentation.

We have developed a recurrent temporal deep field (RTDF) [73] for semantic pixel

labeling in videos. Our goal here is to assign a semantic label (e.g., bike, road, sidewalk,

hair, skin) to every pixel in a video which shows natural driving scenes, captured by a

camera installed on a moving car facing forward, or indoor close-ups of a persons head

facing the camera, as shown in Figure 1.1. RTDF is a conditional random field (CRF) [64]

that combines a deconvolution neural network (DeconvNet) [4] and a recurrent temporal

restricted Boltzmann machine (RTRBM) [114], which can be jointly trained end-to-end.

Our key idea has been to combine CRF and RTRBM to build a state-of-the-art video

labeler, since CRF is suitable for modeling local interactions while RTRBM is appropriate

for modeling global properties of object shapes. We have derived a mean-field inference
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Figure 1.2: Given two consecutive video frames, detect object boundaries and estimate
motions of object boundaries.

algorithm to jointly predict all latent variables in both RTRBM and CRF, and conducted

end-to-end joint training of all DeconvNet, RTRBM, and CRF parameters. The joint

learning and inference integrate the three components into a unified deep model RTDF.

We have epirically shown on the benchmark Youtube Face Database (YFDB) [125] and

Cambridge-driving Labeled Video Database (Camvid) [9] that RTDF outperforms the

state of the art both qualitatively and quantitatively.

Our work on pixel labeling has addressed boundary flow estimation using a fully

convolutional Siamese network (FCSN) [71]. Our goal here is joint object boundary

detection and boundary motion estimation in videos, which we named boundary flow

estimation (see Figure 1.2). Boundary flow is an important mid-level visual cue as

boundaries characterize objects spatial extents, and the flow indicates objects motions

and interactions. Yet, most prior work on motion estimation has focused on dense

object motion or feature points that may not necessarily reside on boundaries. Our

FCSN encodes two consecutive video frames into a coarse joint feature representation

and estimates boundaries in each of the two input images via deconvolution and un-

max-pooling operations. The correspondence of those predicted boundary points are

estimated by decoder bridging, which uses the joint feature representation as a bridge

to connect the two decoder branches. Evaluation has been conducted on three tasks:

boundary detection in videos, boundary flow estimation, and optical flow estimation. We

have achieved the state-of-the-art performance on boundary detection on the benchmark

VSB100 dataset [33]. Besides, we have presented the first results on boundary flow

estimation on the Sintel training dataset [12]. For optical flow estimation, we have

augmented coarse-to-fine path match (CPM) [49] input with our boundary-flow matches,

and achieved significant performance improvement on the Sintel benchmark [12].

Finally, we have specified a temporal deformable residual network (TDRN) [74] using

two parallel temporal computational processes for frame labeling. As shown in Figure 1.3,
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Figure 1.3: Given a video, label video frames with appropriate action classes.

the goal here is to label video frames with appropriate action classes. We have introduced

a new model – temporal deformable residual network (TDRN) – aimed at analyzing video

intervals at multiple temporal scales for labeling video frames. Our TDRN computes two

parallel temporal processes: i) Residual stream that analyzes video information at its full

temporal resolution, and ii) Pooling/unpooling stream that captures long-range video in-

formation at different scales. The former facilitates local, fine-scale action segmentation,

and the latter uses multiscale context for improving accuracy of frame classification.

These two streams are computed by a set of temporal residual modules with deformable

convolutions, and fused by temporal residuals at the full video resolution. Our evalu-

ation on the University of Dundee 50 Salads [110], Georgia Tech Egocentric Activities

[29], and JHU-ISI Gesture and Skill Assessment Working Set [36] has demonstrated that

TDRN outperforms the state of the art in frame-wise segmentation accuracy, segmental

edit score, and segmental overlap F1 score.

This is a manuscript type of Ph.D. dissertation, and the following chapters are taken

from our peer-reviewed publications [73, 71, 74] and accommodated for the dissertation

formatting. This dissertation is organized as follows. Chapter 2 describes our recurrent

temporal deep field (RTDF) for pixel labeling in videos, Chapter 3 presents our fully

convolutional Siamese network (FCSN) for boundary points labeling and boundary flow

estimation, Chapter 4 specifies our temporal deformable residual network (TDRN) for

temporal action segmentation in videos, and Chapter 5 presents our concluding remarks.
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Chapter 2: Recurrent Temporal Deep Field for Semantic Video

Labeling

2.1 Introduction

This chapter presents a new deep architecture for semantic video labeling, where the goal

is to assign an object class label to every pixel. Our videos show natural driving scenes,

captured by a camera installed on a moving car facing forward, or indoor close-ups of a

person’s head facing the camera. Both outdoor and indoor videos are recorded in uncon-

trolled environments with large variations in lighting conditions and camera viewpoints.

Also, objects occurring in these videos exhibit a wide variability in appearance, shape,

and motion patterns, and are subject to long-term occlusions. To address these chal-

lenges, our key idea is to efficiently account for both local and long-range spatiotemporal

cues using deep learning.

Our deep architecture, called Recurrent Temporal Deep Field (RTDF), leverages

the conditional random field (CRF) [64] for integrating local and contextual visual cues

toward semantic pixel labeling, as illustrated in Figure 2.1. The energy of RTDF is

defined in terms of unary, pairwise, and higher-order potentials.

As the unary potential, we use class predictions of the Deconvolution Neural Network

(DeconvNet) [4] for every pixel of a new frame at time t. DeconvNet efficiently computes

the unary potential in a feed-forward manner, through a sequence of convolutional and

deconvolutional processing of pixels in frame t. Since the unary potential is computed

based only on a single video frame, DeconvNet can be viewed as providing local spatial

cues to our RTDF. As the pairwise potential, we use the standard spatial smoothness

of pixel labels. Finally, as the higher-order potential, we use hidden variables of the

Recurrent Temporal Restricted Boltzmann Machine (RTRBM) [114] (see Figure 2.1b).

This hidden layer of RTRBM is computed from a sequence of previous RTDF predictions

for pixels in frames {t−1, t−2, . . . , t−γ}. RTRBM is aimed at capturing long-range

spatiotemporal dependencies among already predicted pixel labels, which is then used

to enforce spatiotemporal coherency of pixel labeling in frame t.
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Figure 2.1: (a) Our semantic labeling for a Youtube Face video [125] using RTDF. Given
a frame at time t, RTDF uses a CRF to fuse both local and long-range spatiotemporal
cues for labeling pixels in frame t. The local cues (red box) are extracted by DeconvNet
[4] using only pixels of frame t. The long-range spatiotemporal cues (blue box) are
estimated by RTRBM [114] (precisely, the hidden layer of RTDF) using a sequence of
previous RTDF predictions for pixels in frames t−1, t−2, . . . , t−γ. (b) An illustration of
RTDF with pixel labels yt in frame t, unary potentials xt, and top two layers rt−1 and
ht belonging to RTRBM. The high-order potential is distributed to all pixels in frame t
via the full connectivity of layers ht and yt, and layers rt−1 and ht.

We formulate a new mean-field inference algorithm to jointly predict all latent vari-

ables in both RTRBM and CRF. We also specify a joint end-to-end learning of CRF,

DeconvNet and RTRBM. The joint learning and inference integrate the three compo-

nents into a unified deep model – RTDF.

The goal of inference is to minimize RTDF energy. Input to RTDF inference at

frame t consists of: (a) pixels of frame t, and (b) RTDF predictions for pixels in frames

{t − 1, . . . , t − γ}. Given this input, our mean-field inference algorithm jointly predicts

hidden variables of RTRBM and pixel labels in frame t.

Parameters of CRF, DeconvNet, and RTRBM are jointly learned in an end-to-end

fashion, which improves our performance over the case when each component of RTDF

is independently trained (a.k.a. piece-wise trained).
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Our semantic video labeling proceeds frame-by-frame until all frames are labeled.

Note that for a few initial frames t ≤ γ, we do not use the high-order potential, but only

the unary and pairwise potentials in RTDF inference.

Our contributions are summarized as follows:

1. A new deep architecture, RTDF, capable of efficiently capturing both local and

long-range spatiotemporal cues for pixel labeling in video,

2. An efficient mean-field inference algorithm that jointly predicts hidden variables in

RTRBM and CRF and labels pixels; as our experiments demonstrate, our mean-

field inference yields better accuracy of pixel labeling than an alternative stage-wise

inference of each component of RTDF.

3. A new end-to-end joint training of all components of RTDF using loss backprop-

agation; as our experiments demonstrate, our joint training outperforms the case

when each component of RTDF is trained separately.

4. Improved pixel labeling accuracy relative to the state of the art, under comparable

runtimes, on the benchmark datasets.

In the following, Sec. 2.2 reviews closely related work; Sec. 2.3 specifies RTDF and

briefly reviews its basic components: RBM in Sec. 2.3.1, RTRBM in Sec. 2.3.2, and

DeconvNet in Sec. 2.3.3; Sec. 2.4 formulates RTDF inference; Sec. 2.5 presents our

training of RTDF; and Sec. 2.6 shows our experimental results.

2.2 Related Work

This section reviews closely related work on semantic video labeling, whereas the litera-

ture on unsupervised and semi-supervised video segmentation is beyond our scope. We

also discuss our relationship to other related work on semantic image segmentation, and

object shape modeling.

Semantic video labeling has been traditionally addressed using hierarchical graphical

models (e.g., [34, 40, 53, 133, 138, 80]). However, they typically resort to extracting

hand-designed video features for capturing context, and compute compatibility terms

only over local space-time neighborhoods.
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Our RTDF is related to semantic image segmentation using CNNs [26, 82, 13, 18,

92, 42, 41, 35, 140]. These approaches typically use multiple stages of training, or

iterative component-wise training. Instead, we use a joint training of all components

of our deep architecture. For example, a fully convolutional network (FCN) [82] is

trained in a stage-wise manner such that a new convolution layer is progressively added

to a previously trained network until no performance improvement is obtained. For

smoothness, DeepLab [13] uses a fully-connected CRF to post-process CNN predictions,

while the CRF and CNN are iteratively trained, one at a time. Also, a deep deconvolution

network presented in [88] uses object proposals as a pre-processing step. For efficiency,

we instead use DeconvNet [4], as the number of trainable parameters in DeconvNet is

significantly smaller in comparison to peer deep networks.

RTDF is also related to prior work on restricted Boltzmann machine (RBM) [109].

For example, RBMs have been used for extracting both local and global features of object

shapes [45], and shape Boltzmann machine (SBM) can generate deformable object shapes

[25]. Also, RBM has been used to provide a higher-order potential for a CRF in scene

labeling [78, 56].

The most related model to ours is the shape-time random field (STRF) [55]. STRF

combines a CRF with a conditional restricted Boltzmann machine (CRBM) [116] for

video labeling. They use CRBM to estimate a higher-order potential of the STRF’s

energy. While this facilitates modeling long-range shape and motion patterns of objects,

input to their CRF consists of hand-designed features. Also, they train CRF and CRBM

iteratively, as separate modules, in a piece-wise manner. In contrast, we jointly learn all

components of our RTDF in a unified manner via loss backpropagation.

2.3 Recurrent Temporal Deep Field

Our RTDF is an energy-based model that consists of three components – DeconvNet,

CRF, and RTRBM – providing the unary, pairwise, and high-order potentials for pre-

dicting class labels yt = {ytp : ytp ∈ {0, 1}L} for pixels p in video frame t, where ytp has

only one non-zero element. Labels yt are predicted given: (a) pixels It of frame t, and

(b) previous RTDF predictions y<t = {yt−1,yt−2, . . . ,yt−γ}, as illustrated in Figure 2.2.

DeconvNet takes pixels It as input, and outputs the class likelihoods xt = {xtp :

xtp ∈ [0, 1]L,
∑L

l=1 x
t
pl = 1}, for every pixel p in frame t. A more detailed description of
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Figure 2.2: Our RTDF is an energy-based model that predicts pixel labels yt for frame t,
given the unary potential xt of DeconvNet, the pairwise potential between neighboring
pixel labels in frame t, and the high-order potential defined in terms of zt, ht and rt−1 of
RTRBM. The figure shows the time-unfolded visualization of computational processes
in RTRBM. RTRBM takes as input previous RTDF predictions {yt−1, . . . ,yt−γ} and
encodes the long-range and high-order dependencies through latent variables rt−1. The
high-order potential is further distributed to all pixels in frame t via a deterministic
mapping (vertical dashed lines) between yt and zt.
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DeconvNet is given in Sec. 2.3.3. xt is then used to define the unary potential of RTDF.

RTRBM takes previous RTDF predictions y<t as input and estimates values of latent

variables r<t = {rt−1, . . . , rt−γ} from y<t. The time-unfolded visualization in Figure 2.2

shows that rt−1 is affected by previous RTDF predictions y<t through the full connectiv-

ity between two consecutive r layers and the full connectivity between the corresponding

r and z layers.

The hidden layer rt−1 is aimed at capturing long-range spatiotemporal dependences

of predicted class labels in y<t. Thus, ht and rt−1 are used to define the high-order

potential of RTDF, which is distributed to all pixels in frame t via the full connectivity

between layers ht and zt, as well as between layers ht and rt−1 in RTRBM. Specifically,

the high-order potential is distributed to each pixel via a deterministic mapping between

nodes in zt and pixels in yt. While there are many options for this mapping, in our

implementation, we partition frame t into a regular grid of patches. As further explained

in Sec. 2.3.1, each node of zt is assigned to a corresponding patch of pixels in yt.

The energy of RTDF is defined as

ERTDF(yt,ht|y<t, It)=−
∑
p

ψ1(x
t
p,y

t
p)−

∑
p,p′

ψ2(y
t
p,y

t
p′)+ERT(yt,ht|y<t). (2.1)

In (2.1), the first two terms denote the unary and pairwise potentials, and the third

term represents the high-order potential. As mentioned above, the mapping between

yt and zt is deterministic. Therefore, instead of using zt in (2.1), we can specify ERT

directly in terms of yt. This allows us to conduct joint inference of yt and ht, as further

explained in Sec. 2.4.

The unary and pairwise potentials are defined as for standard CRFs:

ψ1(x
t
p,y

t
p) = W 1

ytp
· xtp, ψ2(y

t
p,y

t
p′) = W 2

ytp,y
t
p′
· exp(−|xtp − xtp′ |), (2.2)

where W 1
y ∈ RL is an L-dimensional vector of unary weights for a given class label at

pixel p, and W 2
y,y′ ∈ RL is an L-dimensional vector of pairwise weights for a given pair

of class labels at neighboring pixels p and p′.

Before specifying ERT, for clarity, we first review the restricted Boltzmann machine

(RBM) and then explain its extension to RTRBM.
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2.3.1 A Brief Review of Restricted Boltzmann Machine

RTRBM can be viewed as a temporal concatenation of RBMs [114]. RBM [109] is an

undirected graphical model with one visible layer and one hidden layer. In our approach,

the visible layer consists of L-dimensional binary vectors z = {zi : zi ∈ {0, 1}L} and each

zi has only one non-zero element representing the class label of the corresponding patch

i in a given video frame. The hidden layer consists of binary variables h = {hj : hj ∈
{0, 1}}. RBM defines a joint distribution of the visible layer z and the hidden layer h,

and the energy function between the two layers for a video frame is defined as:

ERBM(z,h) = −
∑
j

∑
i

L∑
l=1

Wijlhjzil −
∑
i

L∑
l=1

zilcil −
∑
j

bjhj (2.3)

where W is the RBM’s weight matrix between z and h, and b and c are the bias vectors

for h and z, respectively. RBM has been successfully used for modeling spatial context

of an image or video frame [78, 56, 55].

Importantly, to reduce the huge number of parameters in RBM (and thus facilitate

learning), we follow the pooling approach presented in [55]. Specifically, instead of

working directly with pixels in a video frame, our formulation of RBM uses patches i of

pixels (8×8 pixels) as corresponding to the visible variables zi. The patches are obtained

by partitioning the frame into a regular grid.

Recall that in our overall RTDF architecture RBM is grounded onto latent pixel

labels yp through the deterministic mapping of zi’s to pixels p that fall within patches i

(see Figure 2.2). When predicted labels y<t are available for video frames before time t,

we use the following mapping zi = 1/|i|
∑

p∈i yp, where |i| denotes the number of pixels

in patch i. Note that this will give real-valued zi’s, which we then binarize. Conversely,

for frame t, when we want to distribute the high-order potential, we deterministically

assign potential of zi to every pixel within the patch.

2.3.2 A Brief Review of RTRBM

RTRBM represents a recurrent temporal extension of an RBM [114], with one visible

layer z, and two hidden layers h and r. As in RBM, h are binary variables, and r =

{rj : rj ∈ [0, 1]} represents a set of real-valued hidden variables. In the time-unfolded



12

visualization shown in Figure 2.2, RTRBM can be seen as a temporal concatenation of

the respective sets of RBM’s variables, indexed by time t, {zt,ht, rt}. This means that

each RBM at time t in RTRBM has a dynamic bias input that is affected by the RBMs

of previous time instances. This dynamic bias input is formalized as a recurrent neural

network [100], where hidden variables rt at time t are obtained as

rt = σ(Wzt + b +W ′rt−1), (2.4)

where {b,W,W ′} are parameters. Note that b+W ′rt−1 is replaced by bint for time t = 1,

σ(·) is the element-wise sigmoid function, and W ′ is the shared weight matrix between

rt−1 and ht and between rt−1 and rt. Consequently, the recurrent neural network in

RTRBM is designed such that the conditional expectation of ht, given zt, is equal to rt.

RTRBM defines an energy of zt and ht conditioned on the hidden recurrent input rt−1

as

ERT(zt,ht|rt−1) = ERBM(zt,ht)−
∑
j

∑
k

W
′
jkh

t
jr
t−1
k . (2.5)

From (2.3), (2.4) and (2.5), RTRBM parameters are θRT = {bint,b, c,W,W
′}. The

associated free energy of zt is defined as

FRT(zt|rt−1)=−
∑
j

log(1 + exp(bj+
∑
i,l

Wijlzil+
∑
k

W
′
jkr

t−1
k ))−

∑
i,l

zilcil. (2.6)

RTRBM can be viewed as capturing long-range and high-order dependencies in both

space and time, because it is characterized by the full connectivity between consecutive

r layers, and between the corresponding r, z, and h layers.

Due to the deterministic mapping between zt and yt for frame t, we can specify

ERT given by (2.5) in terms of yt, i.e., as ERT(yt,ht|rt−1). We will use this to derive a

mean-field inference of yt, as explained in Sec. 2.4.

2.3.3 DeconvNet

As shown in Figure 2.2, DeconvNet [4] is used for computing the unary potential of

RTDF. We strictly follow the implementation presented in [4]. DeconvNet consists of
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two networks: one based on VGG16 net to encode the input video frame, and a mul-

tilayer deconvolution network to generate feature maps for predicting pixel labels. The

convolution network records the pooling indices computed in the pooling layers. Given

the output of the convolution network and the pooling indices, the deconvolution network

performs a series of unpooling and deconvolution operations for producing the final fea-

ture maps. These feature maps are passed through the softmax layer for predicting the

likelihoods of class labels of every pixel, xp ∈ [0, 1]L. Before joint training, we pre-train

parameters of DeconvNet, θDN, using the cross entropy loss, as in [4].

2.4 Inference of RTDF

Pixel labels of the first γ frames of a video are predicted using a variant of our model –

namely, the jointly trained CRF + DeconvNet, without RTRBM. Then, inference of the

full RTDF (i.e., jointly trained CRF + DeconvNet + RTRBM) proceeds to subsequent

frames until all the frames have been labeled.

Given a sequence of semantic labelings in the past, y<t, and a new video frame, It,

the goal of RTDF inference is to predict yt as:

ŷt = arg max
yt

∑
ht

exp(−ERTDF(yt,ht|y<t, It)). (2.7)

Since the exact inference of RTDF is intractable, we formulate an approximate mean-

field inference for jointly predicting both ŷt and ĥt. Its goal is to minimize the KL-

divergence between the true posterior distribution, P (yt,ht|y<t, It) = 1
Z(θ) exp(−ERTDF(yt,ht|y<t, It)),

and the mean-field distribution Q(yt,ht) =
∏
pQ(ytp)

∏
j Q(htj) factorized over pixels p

for yt and hidden nodes j for ht.

To derive our mean-field inference, we introduce the following two types of variational

parameters: (i) µ = {µpl : µpl = Q(ytpl = 1)}, where
∑L

l=1 µpl = 1 for every pixel p;

(ii) ν = {νj : νj = Q(htj = 1)}. They allow us to express the mean-field distribution as

Q(yt,ht) = Q(µ,ν) =
∏
p µp

∏
j νj . It is straightforward to show that minimizing the

KL-divergence between P and Q amounts to the following objective

µ̂, ν̂ = arg max
µ,ν
{
∑
yt,ht

Q(µ,ν) lnP (yt,ht|y<t, It) +H(Q(µ,ν))}, (2.8)
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Figure 2.3: Key steps of the mean-field inference overlaid over RTDF which is depicted
as in Figure 2.1b. (a) Initialization of µ(0). (b) Initialization of ν(0). (c) Updating of
µ(k+1). (d) Updating of ν(k+1). The red arrows show the information flow.

where H(Q) is the entropy of Q.

Our mean-field inference begins with initialization: µ
(0)
pl =

exp(W 1
µpl
·xp)∑

l′ exp(W
1
µpl′
·xp) , ν

(0)
j =

σ(
∑

l

∑
i

∑
p∈i

1
|i|µ

(0)
pl Wijl + bj +

∑
j′W

′
jj′r

t−1
j′ ) and then proceeds by updating µ

(k)
pl and

ν
(k)
j using the following equations until convergence:

µ
(k+1)
pl =

exp(W 1

µ
(k)
pl

· xp +
∑

jWijlν
(k)
j + cil + β

(k)
p′→p)∑

l′ exp(W 1

µ
(k)

pl′
· xp +

∑
jWijl′ν

(k)
j + cil′ + β

(k)
p′→p)

, (2.9)

ν
(k+1)
j = σ(

∑
l

∑
i

∑
p∈i

1

|i|
µ
(k+1)
pl Wijl + bj +

∑
j′

W
′
jj′r

t−1
j′ ), (2.10)

where β
(k)
p′→p =

∑
p′
∑

l′W
2

µ
(k)
pl ,µ

(k)

p′l′
·exp(−|xp−xp′ |) denotes a pairwise term that accounts

for all neighbors p′ of p, W 1 and W 2 denote parameters of the unary and pairwise

potentials defined in (2.2), and Wijl and W
′
jj′ are parameters of RTRBM. Also, the

second and the third terms in (2.9) and the first term in (2.10) use the deterministic

mapping between patches i and pixels p ∈ i
(see Sec. 2.3.1). Figure 2.3 shows the information flow in our mean-field inference,

overlaid over RTDF which is depicted in a similar manner as in Figure 2.1b.

After convergence at step K, the variational parameter µ(k), k ∈ {0, 1, · · · ,K} asso-

ciated with minimum free energy as defined in (2.12) is used to predict the label of pixels
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Algorithm 1 Joint Training of RTDF

INPUT: Training set: {It,yt, t = 1, 2, · · · }, where yt is ground truth
OUTPUT: Parameters of RTDF

1: repeat
2: I. For every training video, conduct the mean-field inference, presented in Sec.2.4,

and calculate the free energy associated with yt using (2.12);
3: II. Compute the derivative of 4(θ) given by (2.11) with respect to:
4: II.a. Unary term xp, using (2.11) and (2.2),
5: II.b. Pairwise term exp(−|xtp − xtp′ |), using (2.11) and (2.2);

6: III. Update CRF parameters W 1, W 2, using the result of Step II;
7: IV. Backpropagate the result of Step II.a. to DeconvNet using the chain rule in

order to update θDN ;
8: V. Compute ∂4

∂θRT
using (2.11), (2.12), (2.6) and (2.4) for updating θRT;

9: until stopping criteria

in frame t. The label at every pixel p is predicted as l for which µ
(k)
pl , l ∈ {1, 2, · · · , L}

is maximum. This amounts to setting ŷtpl = 1, while all other elements of vector ŷtp are

set to zero. Also, the value of ĥtj is estimated by binarizing the corresponding maximum

ν
(k)
j .

2.5 Learning

Parameters of all components of RTDF, θ = {W 1,W 2, θDN, θRT}, are trained jointly.

For a suitable initialization of RTDF, we first pretrain each component, and then carry

out joint training, as summarized in Alg. 1.

Pretraining. (1) RTRBM. The goal of learning RTRBM is to find parameters

θRTRBM that maximize the joint log-likelihood, log p(z<t, zt). To this end, we closely fol-

low the learning procedure presented in [114], which uses the backpropagation-through-

time (BPTT) algorithm [100] for back-propagating the error of patch labeling. As in

[114], we use contrastive divergence (CD) [46] to approximate the gradient in training

RTRBM. (2) DeconvNet. As initial parameters, DeconvNet uses parameters of VGG16

network (without the fully-connected layers) for the deep convolution network, and fol-

lows the approach of [4] for the deconvolution network. Then, the two components of

DeconvNet are jointly trained using the cross entropy loss defined on pixel label predic-

tions. (3) CRF. The CRF is pretrained on the output features from DeconvNet using
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loopy belief propagation with the LBFGS optimization method.

Joint Training of RTDF. The goal of joint training is to maximize the condi-

tional log-likelihood
∑

t log p(yt|y<t, It). We use CD-PercLoss algorithm [86] and error

back-propagation (EBP) to jointly train parameters of RTDF in an end-to-end fashion.

The training objective is to minimize the following generalized perceptron loss [69] with

regularization:

4(θ) =
∑
t

(F (yt|y<t, It)−min
ŷt

F (ŷt|y<t, It)) + λθT θ (2.11)

where λ > 0 is a weighting parameter, and F (yt|y<t, It) denotes the free energy of

ground truth label yt of frame t, and ŷt is the predicted label associated with minimum

free energy. The free energy of RTDF is defined as

F (yt|y<t, It) = −
∑
p

ψ1(x
t
p,y

t
p)−

∑
p,p′

ψ2(y
t
p,y

t
p′) + FRT(yt|rt−1) (2.12)

where the first two terms denote the unary and pairwise potentials, and the third term

is defined in (2.6). In the prediction pass of training, the pixel label is obtained by

the mean-field inference, as explained in Sec.2.4. In the updating phase of training, the

errors are back-propagated through CRF, DeconvNet and RTRBM in a standard way,

resulting in a joint update of θ.

2.6 Results

Datasets and Metrics: For evaluation, we use the Youtube Face Database (YFDB)

[125] and Cambridge-driving Labeled Video Database (CamVid) [9]. Both datasets are

recorded in uncontrolled environment, and present challenges in terms of occlusions, and

variations of motions, shapes, and lighting. CamVid consists of four long videos showing

driving scenes with various object classes, whose frequency of appearance is unbalanced.

Unlike other available datasets [76, 37, 11], YFDB and CamVid provide sufficient training

samples for learning RTRBM. Each YFDB video contains 49 to 889 roughly aligned face

images with resolution 256 × 256. We use the experimental setup of [55] consisting of

randomly selected 50 videos from YFDB, with ground-truth labels of hair, skin, and

background provided for 11 consecutive frames per each video (i.e., 550 labeled frames),
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Model Error Redu Overall Accu Hair Skin Background Category Avg

CRF [64] 0.0 0.90 ± 0.005 0.63 ± 0.047 0.89 ± 0.025 0.96 ± 0.005 0.83 ± 0.009
GLOC [56] 0.03 ± 0.025 0.91 ± 0.006 0.61 ± 0.038 0.90 ± 0.023 0.96 ± 0.003 0.82 ± 0.008
STRF [55] 0.12 ± 0.025 0.91 ± 0.006 0.72 ± 0.039 0.89 ± 0.025 0.96 ± 0.004 0.86 ± 0.010

RTDF† 0.11 ± 0.027 0.91 ± 0.008 0.70 ± 0.043 0.89 ± 0.024 0.96 ± 0.004 0.85 ± 0.011
RTDF∗ 0.17 ± 0.028 0.92 ± 0.008 0.76 ± 0.049 0.88 ± 0.025 0.96 ± 0.003 0.87 ± 0.012
RTDF 0.34 ± 0.031 0.93 ± 0.010 0.80 ± 0.037 0.90 ± 0.026 0.97 ± 0.005 0.89 ± 0.014

Table 2.1: Superpixel accuracy on Youtube Face Database [125]. Error reduction in
overall superpixel accuracy is cacluated w.r.t the CRF. The mean and the standard
derivation are given from a 5-fold cross-validation.

which are then split into 30, 10, and 10 videos for training, validation, and testing,

respectively. Each CamVid video contains 3600 to 11000 frames at resolution 360× 480.

CamVid provides ground-truth pixel labels of 11 object classes for 700 frames, which

are split into 367 training and 233 test frames. For fair comparison on CamVid with

[4], which uses significantly more training data, we additionally labeled 9 consecutive

frames preceding every annotated frame in the training set of CamVid, resulting in 3670

training frames.

For fair comparison, we evaluate our superpixel accuracy on YFDB and pixel accuracy

on Camvid. For YFDB, we extract superpixels as in [55] producing 300-400 superpixels

per frame. The label of a superpixel is obtained by pixel majority voting. Both overall

accuracy and class-specific accuracy are computed as the number of superpixels/pixels

classified correctly divided by the total number of superpixels/pixels. Evaluation is done

for each RTDF prediction on a test frame after processing 3 and 4 frames preceding that

test frame for YFDB and Camvid, respectively.

Implementation Details: We partition video frames using a 32 × 32 regular grid

for YFDB, and a 60 × 45 regular grid for CamVid. For YFDB, we specify RTRBM

with 1000 hidden nodes. For CamVid, there are 1200 hidden nodes in RTRBM. Hyper-

parameters of the DeconvNet are specified as in [4]. The DeconvNet consists of: (a)

Convolution network with 13 convolution layers based on VGG16 network, each followed

by a batch normalization operation [52] and a RELU layer; (b) Deconvolution network

with 13 deconvolution layers, each followed by the batch normalization layer and the

RELU layer; and (c) Soft-max layer producing a 1× L class distribution for every pixel

in the image. We test λ ∈ [0, 1] on the validation set, and report our test results for λ

with the best performance on the validation dataset.
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Runtimes: We implement RTDF on NVIDIA Tesla K80 GPU accelerator. It takes

about 23 hours to train RTDF on CamVid. The average runtime for predicting pixel

labels in an image with resolution 360× 480 is 105.3ms.

Baselines: We compare RTDF with its variants and related work: 1) RTDF†:

RTDF without end-to-end joint training (i.e., piece wise training); 2) RTDF∗: jointly

trained RTDF without joint inference, i.e., using stage-wise inference where the output

of RTRBM is treated as fixed input into the CRF. 3) CRF [64]: spatial CRF inputs with

hand-engineered features; 4) GLOC [56]: a jointly trained model that combines spatial

CRF and RBM; and 5) STRF [55]: a piece-wise trained model that combines spatial

CRF, CRBM and temporal potentials between two consecutive frames.

2.6.1 Quantitative Results

YFDB: Table 2.1 presents the results of the state of the art, RTDF and its variant

baselines on YFDB. As can be seen, RTDF gives the best performance, since RTDF

accounts for long-range spatiotemporal dependencies and performs joint training and

joint inference. It outperforms STRF [55] which uses local hand-engineered features and

piece-wise training. These results suggest that accounting for object interactions across

a wide range of spatiotemporal scales is critical for video labeling. We also observe that

RTDF† achieves comparable results with STRF [55], while RTDF∗ outperforms both.

This suggests that our end-to-end joint training of all components of RTDF is more

critical for accurate video labeling than their joint inference. Also, as RTDF∗ gives an

inferior performance to RTDF, performing joint instead of stage-wise inference gives an

additional gain in performance. Finally, we observe that RTDF performance can be

slightly increased by using a larger γ. For fair comparison, we use the same γ as in [55].

CamVid: Table 2.2 presents the results of the state of the art, RTDF and its variants

on CamVid. In comparison to the state of the art and the baselines, RTDF achieves

superior performance in terms of both average and weighted accuracy, where weighted

accuracy accounts for the class frequency. Unlike RTDF, SegNet [4] treats the label of

each pixel independently by using a soft-max classifier, and thus may poorly perform

around low-contrast object boundaries. On the other hand, SegNet has an inherent bias

to label larger pixel areas with a unique class label [4] (see Figure 2.4), which may explain

its better performance than RTDF on the following classes: sign-symbol, column-pole,
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Dense Depth Maps [136] 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1
Super Parsing [119] 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3

High-order CRF [111] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8
CRF + Detectors [63] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8

Neural Decision Forests [99] N/A 56.1 82.1
Deeplab [13] 82.7 91.7 89.5 76.7 33.7 90.8 41.6 35.9 17.9 82.3 45.9 62.6 84.6

CRFasRNN [140] 84.6 91.3 92.4 79.6 43.9 91.6 37.1 36.3 27.4 82.9 33.7 63.7 86.1
SegNet [4] 73.9 90.6 90.1 86.4 69.8 94.5 86.8 67.9 74.0 94.7 52.9 80.1 86.7

RTDF† 81.8 87.9 91.5 79.2 59.8 90.4 77.1 61.5 66.6 91.2 54.6 76.5 86.5
RTDF∗ 83.6 89.8 92.9 78.5 61.3 92.2 79.6 61.9 67.7 92.8 56.9 77.9 88.1
RTDF 87.1 85.2 93.7 88.3 64.3 94.6 84.2 64.9 68.8 95.3 58.9 80.5 89.9

Table 2.2: Pixel accuracy on Cambridge-driving Labeled Video Database [9].

pedestrian and fence. From Table 2.2, RTDF† achieves comparable performance to that

of SegNet, while RTDF∗ outperforms RTDF†. This is in agreement with our previous

observation on YFDB that joint training of all components of RTDF is more critical

than their joint inference for accurate video labeling.

2.6.2 Qualitative Evaluation

Figure 2.4 illustrates our pixel-level results on frame samples of CamVid. From the

figure, we can see that our model is able to produce spatial smoothness pixel labeling.

Figure 2.6 shows superpixel labeling on sample video clips from YFDB. As can be seen, on

both sequences, STRF [55] gives inferior video labeling than RTDF in terms of temporal

coherency and spatial consistency of pixel labels. Our spatial smoothness and temporal

coherency can also be seen in Figure 2.5 which shows additional RTDF results on a

longer sequence of frames from a sample CamVid video.

Empirically, we find that RTDF poorly handles abrupt scale changes (e.g., dramatic

camera zoom-in/zoom-out). Also, in some cases shown in Figure 2.4 and Figure 2.5,

RTDF misses tiny, elongated objects like column-poles, due to our deterministic mapping

between patches of a regular grid and pixels.
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Figure 2.4: Frame samples from CamVid. The rows correspond to original images,
ground truth, SegNet [4], and RTDF.
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Figure 2.5: Sequence of frames from a sample CamVid video. The rows correspond to
input frames and RTDF outputs.
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Figure 2.6: Frame sequences from two CamVid video clips. The rows correspond to
original video frames, ground truth, STRF[55], and RTDF.

2.7 Summary

We have presented a new deep architecture, called Recurrent-Temporal Deep Field

(RTDF), for semantic video labeling. RTDF captures long-range and high-order spa-

tiotemporal dependencies of pixel labels in a video by combining conditional random

field (CRF), deconvolution neural network (DeconvNet), and recurrent temporal re-

stricted Boltzmann machine (RTRBM) into a unified framework. Specifically, we have

derived a mean-field inference algorithm for jointly predicting latent variables in both

CRF and RTRBM, and specified an end-to-end joint training of all components of RTDF

via backpropagation of the prediction loss. Our empirical evaluation on the benchmark

Youtube Face Database (YFDB) [125] and Cambridge-driving Labeled Video Database

(CamVid) [9] demonstrates the advantages of performing joint inference and joint train-

ing of RTDF, resulting in its superior performance over the state of the art. The results

suggest that our end-to-end joint training of all components of RTDF is more critical for

accurate video labeling than their joint inference. Also, RTDF performance on a frame

can be improved by previously labeling longer sequences of frames preceding that frame.

Finally, we have empirically found that RTDF poorly handles abrupt scale changes and

labeling of thin, elongated objects.



23

Chapter 3: Boundary Flow: A Siamese Network that Predicts

Boundary Motion without Training on Motion

Figure 3.1: Boundary flow estimation. Given two images (a), our approach jointly:
predicts object boundaries in both images (b), and estimates motion of the boundaries
in the two images (c). For clarity, only a part of boundary matches are shown in (c).

3.1 Introduction

This chapter considers the problem of estimating motions of object boundaries in two

consecutive video frames, or simply two images. We call this problem boundary flow

(BF) estimation. Intuitively, BF is defined as the motion of every pixel along object

boundaries in two images, as illustrated in Figure 3.1. A more rigorous definition will be

presented in Sec. 3.3. BF estimation is an important problem. Its solution can be used as

an informative mid-level visual cue for a wide range of higher-level vision tasks, including
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object detection (e.g.,[32]), object proposals (e.g.,[141]), video segmentation (e.g.,[70]),

and depth prediction (e.g., [1]). This is because, in a BF, the boundaries identify objects’

locations, shapes, motions, local interactions, and figure-ground relationships. In many

object-level tasks, BF can be computed in lieu of the regular optical flow, hence avoiding

estimating motion on many irrelevant background pixels that may not be essential to

the performance of the task.

Yet, this problem has received scant attention in the literature. Related work has

mostly focused on single-frame edge detection and dense optical flow estimation. These

approaches, however, cannot be readily applied to BF estimation, due to new chal-

lenges. In particular, low-level spatiotemporal boundary matching — which is agnostic

of objects, scenes, and motions depicted in the two video frames — is subject to many

ambiguities. The key challenge is that distinct surfaces sharing a boundary move with

different motions, out-of-plane rotations and changing occlusions. This makes appear-

ance along the boundary potentially inconsistent in consecutive frames. The difficulty

of matching boundaries in two images also increases when multiple points along the

boundary have similar appearance.

Our key hypothesis is that because of the rich visual cues along the boundaries, BF

may be learned without pixel-level motion annotations, which is typically very hard to

come by (prior work resorts to simulations [84] or computer graphics [12], which may

not represent realistic images).

While there are a few approaches that separately detect and match boundaries in a

video, e.g., [81, 117, 118], to the best of our knowledge, this is the first work that gives

a rigorous definition of boundary flow, as well as jointly detects object boundaries and

estimates their flow within the deep learning framework. We extend ideas from deep

boundary detection approaches in images [127, 130], and specify a new Fully Convo-

lutional Siamese encoder-decoder Network (FCSN) for joint spatiotemporal boundary

detection and BF estimation. As shown in Figure 3.2, FCSN encodes two consecutive

video frames into a coarse joint feature representation (JFR) (marked as a green cube

in Figure 3.2). Then, a Siamese decoder uses deconvolution and un-max-pooling to

estimate boundaries in each of the two input images.

Our network trains only on boundary annotations in one frame and predicts bound-

aries in each frame, so at first glance it does not provide motion estimation. However,

the Siamese network is capable of predicting different (but correct) boundaries in two
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frames, while the only difference in the two decoder branches are max-pooling indices.

Thus, our key intuition is that there must be a common edge representation in the JFR

layer for each edge, that are mapped to two different boundary predictions by differ-

ent sets of max-pooling indices. Such a common representation enables us to match

the corresponding boundaries in the two images. The matching is done by tracking a

boundary from one boundary prediction image back to the JFR, and then from the JFR

to boundaries in the other boundary prediction image. This is formalized as an excita-

tion attention-map estimation of the FCSN. We use edgelet-based matching to further

improve the smoothness and enforce ordering of pixel-level boundary matching along an

edgelet.

Since FCSN performs boundary detection and provides correspondence scores for

boundary matching, we say that FCSN unifies both boundary detection and BF esti-

mation within the same deep architecture. In our experiments, this approach proves

capable of handling large object displacements in the two images, and thus can be used

as an important complementary input to dense optical flow estimation.

We evaluate FCSN on the VSB100 dataset [33] for boundary detection, and on the

Sintel training dataset [12] for BF estimation. Our results demonstrate that FCSN

yields higher precision on boundary detection than the state of the art, and using the

excitation attention score for boundary matching yields superior BF performance relative

to reasonable baselines. Also, experiments performed on the Sintel test dataset show

that we can use the BF results to augment the input of a state-of-the-art optical flow

algorithm – CPM-Flow [49] – and generate significantly better dense optical flow than

the original.

Our key contributions are summarized below:

• We consider the problem of BF estimation within the deep learning framework,

give a rigorous definition of BF, and specify and extensively evaluate a new deep

architecture FCSN for solving this problem. We also demonstrate the utility of BF

for estimating dense optical flow.

• We propose a new approach to generate excitation-based correspondence scores

from FCSN for boundary matching, and develop an edgelet-based matching for

refining point matches along corresponding boundaries.

• We improve the state-of-the-art on spatiotemporal boundary detection, provide

the first results on BF estimation, and achieve competitive improvements on dense
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Figure 3.2: FCSN consists of a Siamese encoder and a Siamese decoder and takes two
images as input. The two Siamese soft-max outputs of the decoder produce boundary
predictions in each of the two input images. Also, the decoder associates the two Siamese
branches via the decoder layers and the JFR layer (the green cube) for calculating the
excitation attention score, which in turn is used for BF estimation, as indicated by the
cyan and purple arrows. The convolution, pooling, softmax and concatenation layers are
marked with black, blue, red and brown respectively. Best viewed in color.

optical flow when integrated with CPM-Flow [49].

3.2 Related Work

This section reviews closely related work on boundary detection and dense optical flow

estimation. The literature on semantic video segmentation and semantic contour detec-

tion is beyond our scope.

Boundary Detection. Traditional approaches to boundary detection typically extract

a multitude of hand-designed features at different scales, and pass them to a detector for

boundary detection [3]. Some of these methods leverage the structure of local contour

maps for fast edge detection [24]. Recent work resort to convolutional neural networks

(CNN) for learning deep features that are suitable for boundary detection [35, 102,

8, 7, 127, 130, 83]. [59] trains a boundary detector on a video dataset and achieved

improved results. Their network is defined on a single frame and does not provide

motion information across two frames. The approach of [130] is closest to ours, since

they use a fully convolutional encoder-decoder for boundary detection on one frame.

However, without a Siamese network their work cannot be used to estimate boundary

motion as proposed in this chapter.

Optical flow estimation. There has been considerable efforts to improve the effi-
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ciency and robustness of optical flow estimation, including PatchMatch [6] and exten-

sions [61, 43, 5]. They compute the Nearest Neighbor Field (NNF) by random search

and propagation. EpicFlow [95] uses DeepMatching [124] for a hierarchical matching

of image patches, and its extension Coarse-to-fine Patch-Match (CPM-Flow) [49] intro-

duces a propagation between levels of the hierarchical matching. While EpicFlow [95]

propagates optical flow to image boundaries, it still does not handle very abrupt motions

well, as can be seen in many of the fast-moving objects in the Sintel benchmark dataset.

In this chapter, we do not focus on dense optical flow estimation, but demonstrate the

capability of boundary flow estimation in supplementing optical flow, which is benefi-

cial in large displacements and flow near boundaries. As our results show, we improve

CPM-Flow when using our boundary flow estimation as a pre-processing step. Boundary

motion estimation was first considered in [81], and then in [129] where dense optical flow

was initialized from an optical flow computed on Canny edges. However, in both of these

papers, the definition of their edge flow differs from our boundary flow in the following.

First, they do not consider cases when optical flow is not defined. Second, they do not

have a deep network to perform boundary detection. Finally, they do not evaluate edge

flow as a separate problem.

3.3 Boundary Flow

This section defines BF, introduces the FCSN, and specifies finding boundary correspon-

dences in the two frames using the FCSN’s excitation attention score.

3.3.1 Definition of Boundary Flow

BF is defined as the motion of every boundary pixel towards the corresponding boundary

pixel in the next frame. In the case of out-of-plane rotations and occlusions, BF identifies

the occlusion boundary closest to the original boundary pixel (which becomes occluded).

We denote the set of boundaries in frame t and t + 1 as B1 and B2, respectively. Let

OF(x) denote the optical flow of a pixel x in frame t, and x+OF(x) represent a mapping

of pixel x in frame t+ 1. Boundary flow BF(x) is defined as:

(i) BF(x) = arg miny∈B2 ‖y − (x + OF(x))‖2 − x, if OF(x) exists;

(ii) BF(x) = OF(arg miny,∃OF(y) ‖y−x‖2), if OF(x) does not exist (x occluded in frame
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Figure 3.3: Figure 3.3(a) shows the case when a boundary B1 in frame t is occluded at
time t + 1. Figure 3.3(b) shows the case when a boundary B1 in frame t is no longer a
boundary at time t + 1 but its pixels are visible. In both cases BF is well-defined and
always resides on the boundary.

t+ 1);

(iii) BF(x) is undefined if argmin in (i) or (ii) does not return a unique solution.

In (i), BF is defined as optical flow for translations and elastic deformations, or

the closest boundary pixel from the optical flow for out-of-plane rotations (see Figure

3.3(b)). In (ii), BF is defined as the closest occlusion boundary of the pixel which

becomes occluded (see Figure 3.3(a)). Thus, BF can be defined even if optical flow is

not defined. Since optical flow is often undefined in the vicinity of occlusion boundaries,

BF captures shapes/occlusions better than optical flow. In (iii), BF is undefined only

in rare cases of fast movements with symmetric occluders (e.g. a perfect ball) resulting

in multiple pixels as the argmin solution.

3.3.2 Fully Convolutional Siamese Network

We formulate boundary detection as a binary labeling problem. For this problem, we

develop a new, end-to-end trainable FCSN, shown in Figure 3.2. FCSN takes two images

as input, and produces binary soft-max outputs of boundary predictions in each of the

two input images. The fully convolutional architecture in FCSN scales up to arbitrary

image sizes.

FCSN consists of two modules: a Siamese encoder, and a Siamese decoder. The

encoder stores all the pooling indices and encodes the two frames as the joint feature

representation (JFR) (green box in Figure 3.2) through a series of convolution, ReLU,
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and pooling layers. The outputs of the encoder are concatenated, and then used as the

input to the decoder. The decoder takes both the JFR and the max-pooling indices from

the encoder as inputs. Then, the features from the decoder are passed into a softmax

layer to get the boundary labels of all pixels in the two images.

The two branches of the encoder and the two branches of the decoder use the same

architecture and share weights with each other. However, for two different input im-

ages, the two branches would still output different predictions, since decoder predictions

are modulated with different pooling indices recorded in their corresponding encoder

branches. Each encoder branch uses the layers of VGG net [105] until the fc6 layer. The

decoder decodes the JFR to the original input size through a set of unpooling, deconvo-

lution, ReLU and dropout operations. Unlike the deconvolutional net [88] which uses a

symmetric decoder as the encoder, we design a light-weight decoder with fewer weight

parameters than a symmetric structure for efficiency. Except for the layer right before

the softmax layer, all the other convolution layers of the decoder are followed by a ReLU

operator and a dropout layer. A detailed description of the convolution and dropout

layers is summarized in Table 3.1.

Layer Filter Dropout rate

Deconv1 1× 1× 512 0.5

Deconv2 5× 5× 512 0.5

Deconv3 5× 5× 256 0.5

Deconv4 5× 5× 128 0.5

Deconv5 5× 5× 64 0.5

Deconv6 5× 5× 32 0.5

Softmax 5× 5× 1 -

Table 3.1: The configuration of the decoder in FCSN.

3.3.3 Boundary Flow Estimation

This section first describes estimation of the excitation attention score, used as a cue

for boundary matching, and then specifies our edgelet-based matching for refining point

matches along the boundaries.
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Figure 3.4: (a) Estimation of the excitation attention score in frame t+ 1 (bottom) for
a particular boundary point in frame t (top; the point is indicated by the arrow). The
attention map is well-aligned with the corresponding boundary in frame t + 1, despite
significant motion. (b) Visualization of attention maps at different layers of the decoders
of FCSN along the excitation path (cyan) from a particular boundary point in frame t
to frame t+ 1 via the JFR. For simplicity, we only show the attention maps in some of
the layers from the decoder branch at time t and t+ 1. As can be seen, starting from a
pixel on the predicted boundary in frame t, the attention map gradually becomes coarser
along the path to the JFR. Then from the JFR to boundary prediction in frame t + 1,
the excitation attention scores gradually become refined and more focused on the most
relevant pixels in frame t+ 1. (Best viewed in color)

3.3.3.1 Excitation Attention Score

A central problem in BF estimation is to identify the correspondence between a pair

of boundary points 〈xit,y
j
t+1〉, where xit is a boundary point in frame t, and yjt+1 is

a boundary point in frame t + 1. Our key idea is to estimate this correspondence by

computing the excitation attention scores in frame t + 1 for every xit in frame t, as

well as the excitation attention scores in frame t for every yjt+1 in frame t + 1. The

excitation attention scores can be generated efficiently using excitation backpropagation

(ExcitationBP) [137] – a probabilistic winner-take-all approach that models dependencies

of neural activations through convolutional layers of a neural network for identifying

relevant neurons for prediction, i.e., attention maps.

The intuition behind our approach is that the JFR stores a joint representation of

two corresponding boundaries of the two images, and thus could be used as a “bridge”

for matching them. This “bridge” is established by tracking the most relevant neurons
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along the path from one branch of the decoder to the other branch via the JFR layer

(the cyan and purple arrows in Figure 3.2).

In our approach, the winner neurons are sequentially sampled for each layer on the

path from frame t to t+ 1 via the JFR, based on a conditional winning probability. The

relevance of each neuron is defined as its probability of being selected as a winner on the

path. Following [137], we define the winning probability of a neuron am as

p(am) =
∑
n∈Pm

p(am|an)p(an) (3.1)

=
∑
n∈Pm

w+
mnam∑

m′∈Cn w
+
m′nam′

p(an)

where w+
mn = max{0, wmn}, Pm and Cn denote the parent nodes of am and the set

of children of an in the path traveling order, respectively. For our path that goes from

the prediction back to the JFR layer, Pm refers to all neurons in the layer closer to the

prediction, and Cn refers to all neurons in the layer closer to the JFR layer.

ExcitationBP efficiently identifies which neurons are responsible for the final predic-

tion. In our approach, ExcitationBP can be run in parallel for each edgelet (see next

subsection) of a predicted boundary. Starting from boundary predictions in frame t, we

compute the marginal winning probability of all neurons along the path to the JFR. Once

the JFR is reached, these probabilities are forward-propagated in the decoder branch of

FCSN for finally estimating the pixel-wise excitation attention scores in frame t + 1.

For a pair of boundary points, we obtain the attention score si→j . Conversely, starting

from boundary predictions in frame t+ 1, we compute the marginal winning probability

of all neurons along the path to JFR, and feed them forward through the decoder for

computing the excitation attention map in frame t. Then we can obtain the attention

score sj→i. The attention score between a pair of boundary points 〈xit,y
j
t+1〉 is defined as

the average of si→j and sj→i, which we denote as sij . An example of our ExcitationBP

is shown in Figure 3.4.

3.3.3.2 Edgelet-based Matching

After estimating the excitation attention scores sij of boundary point pairs 〈xit,y
j
t+1〉, as

described in Sec. 3.3.3.1, we use them for matching corresponding boundaries that have
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Figure 3.5: Overview of edgelet matching. The matching process consists of three phases:
superpixel generation, edgelet matching, and flow placement. The two frames are first
over-segmented into large superpixels using the FCSN boundaries. (a) most of the bound-
ary points (in red color) are well aligned with the superpixel boundaries (in cyan color);
(b) Example edgelet matches. In the second case, it can be seen clearly that the ap-
pearance only matches on one side of the edgelet. (c) The process of matching and flow
placement. Sometimes, because of the volatility of edge detection, xt and yt+1 falls on
different sides of the boundary, we will need to then move xt so that they fall on the
same side. Note that s1 and s2, s

′
1 and s

′
2 denote the superpixel pairs falling on the two

sides of the edgelets.

been predicted in frames t and t+1. While there are many boundary matching methods

that would be suitable, in this work we use the edgelet-based matching which not only

finds good boundary correspondences, but also produces the detailed point matches along

the boundaries, as needed for our BF estimation. To this end, we first decompose the

predicted boundaries into smaller edgelets, then apply edgelet-based matching to pairs

of edgelets.

From predicted boundaries to edgelets. Given the two input images and their

boundary predictions from FCSN, we oversegment the two frames using sticky super-

pixels [24], and merge the superpixels to larger regions as in [51]. Importantly, both

oversegmentation and superpixel-merging use our boundary predictions as input, ensur-

ing that contours of the resulting regions strictly respect our predicted boundaries, as

illustrated in Figure 3.5(a). We define an edgelet as all the points that lie on a given

boundary shared by a pair of superpixels. Figure 3.5(b) shows two examples of matching

edgelet pairs in frames t and t+ 1.

Edgelet matching. We apply edgelet-based matching to each edgelet pair, et in frame
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(a) (b) (c) (d) (e)

Figure 3.6: Example results on VSB100. In each row from left to right we present (a)
input image, (b) ground truth annotation, (c) edge detection [24], (d) object contour
detection [130] and (e) our boundary detection.
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Figure 3.7: PR curve for object boundary detection on VSB100.
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Figure 3.8: PR curve for object boundary detection on VSB100 with fine-tuning on both
BSDS500 and VSB100 training sets.

t and e
′
t+1 in frame t+ 1, that fall within a reasonable spatial neighborhood (empirically

set to 100 pixels around the edgelet as sufficient to accommodate for large motions).

For each edgelet pair, et in frame t and e
′
t+1 in frame t + 1, all the similarities between

all the pixel pairs on these edgelet pairs are summed up and normalized to obtain the

similarity between the edgelet pair. The similarity between points 〈xit,y
j
t+1〉 on et and

e
′
t+1 is expressed in terms of their respective excitation attention scores as sij .

For an edgelet et in frame t, we keep the top-10 most similar edgelets in frame t+ 1

as its matching candidates. These candidate edgelet pairs are further filtered by their

normals, with only edgelets with an angle not more than 45 degrees retained. The

normals are computed as the average direction from pixel coordinates on one side of the

edge to corresponding pixel coordinates on the other side of the edge. This also helps to

determine which superpixel pair falls on the same side of the edge in the two images. As

shown in Figure 3.5(c), superpixels s1 and s
′
1 fall on the left side of edges et and e

′
t+1,

respectively, thus superpixel pair {s1, s
′
1} fall on the same side of the edges.

After filtering by angle, a greedy matching algorithm is performed to approximate

bipartite matching of edgelets in frame t to edgelets in the frame t + 1. This further

reduces the number of edgelet pairs retained.

For the final boundary flow placement, we observe that some boundary points will
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Method ODS OIS AP

CEDN [130] 0.563 0.614 0.547

FCSN 0.597 0.632 0.566

Table 3.2: Results on VSB100.

be placing on the incorrect side of the edgelet. We utilize normalized region similarity

defined by color to assign the motion to superpixels pairs that are more similar to each

other in color. As shown in Figure 3.5(c), point xt is on the right side of edge et but

the corresponding point yt+1 is on the left side of edge e
′
t+1. Our approach moves xt

to the other side of et, resulting in xnewt . After moving the points, we obtain pixel-level

matches which are the final boundary flow result.

3.4 Training

FCSN is implemented using Caffe [54]. The encoder weights are initialized with VGG-

16 net and fixed during training. We update only the decoder parameters using the

Adam method [60] with learning rate 10−4. We train on VSB100, a state-of-the-art

video object boundary dataset, which contains 40 training videos with annotations on

every 20-th frame, for a total of 240 annotated frames. Because there are too few

annotations, we augment the training with the PASCAL VOC 12 dataset, which contains

10582 still images (with refined object-level annotations as in [130]). In each iteration,

8 patches with size 224× 224 are randomly sampled from an image pair of VSB100 (or

two duplicated frames of PASCAL VOC) and passed to the model.

The loss function is specified as the weighted binary cross-entropy loss common in

boundary detection [127] L(w)=− 1
N

∑N
i=1[λ1yn log ŷn+λ2(1−yn) log(1−ŷn)] where N is

the number of pixels in an iteration. Note that the loss is defined on a single side of the

outputs, since only single frame annotations are available. The two decoder branches

share the same architecture and weights, and thus can be both updated simultaneously

with our one-side loss. The two branches still can output different predictions, since

decoder predictions are modulated with different pooling indices recorded in the corre-

sponding encoder branches. Due to the imbalances of boundary pixels and non-boundary

pixels, we set λ1 to 1 and λ2 to 0.1, respectively.
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Method ODS OIS AP

SE [24] 0.643 0.680 0.608

HED [127] 0.677 0.715 0.618

CEDN [130] 0.686 0.718 0.687

FCSN 0.698 0.729 0.705

Table 3.3: Results on VSB100 with fine-tuning on both BSDS500 and VSB100 training
sets.

Method FLANN [87] RANSAC [10] Greedy Our Matching

EPE 23.158 20.874 25.476 9.856

Table 3.4: Quantitative results of boundary flow on Sintel training dataset in EPE metric.

3.5 Results

This section presents our evaluation of boundary detection, BF estimation, and utility

of BF for optical flow estimation.

3.5.1 Boundary Detection

After FCSN generates boundary predictions, we apply the standard non-maximum sup-

pression (NMS). The resulting boundary detection is evaluated using precision-recall

(PR) curves and F-measure.

VSB100. For the benchmark VSB100 test dataset [33], we compare with the state-of-

the-art approach CEDN [130]. We train both FCSN and CEDN using the same training

data with 30000 iterations. Note that CEDN is single-frame based. Nevertheless, both

FCSN and CEDN use the same level of supervision, since only isolated single frame

annotations apart from one another are available. Figure 3.7 shows the PR-curves of

object boundary detection. As can be seen, F-score of FCSN is 0.60 while 0.56 for

CEDN. FCSN yields higher precision than CEDN, and qualitatively we observe that

FCSN generates visually cleaner object boundaries. As shown in Figure 3.6, CEDN

misses some of the boundaries of background objects, but our FCSN is able to detect

them. Due to limited training data, both FCSN and CEDN obtain relatively low recall.

Table 3.2 shows that FCSN outperforms CEDN in terms of the optimal dataset scale

(ODS), optimal image scale (OIS), and average precision (AP).
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EpicFlow

Contour

Figure 3.9: Overview of augmenting boundary flow into the framework of CPM-Flow.
Given two images, we compute the standard input to CPM-Flow: matches using CPM
matching [49] and the edges of the first image using SE [24]. Then we augment the
matches with our predicted boundary flow (i.e., matches on the boundaries), as indicated
by black arrows.

Finetuning on BSDS500 and VSB100. We also evaluate another training setting

when FCSN and CEDN are both fine-tuned on the BSDS500 training dataset [3] and

VSB100 training set for 100 epochs with learning rate 10−5. BSDS has more edges anno-

tated hence allows for higher recall. Such trained FCSN and CEDN are then compared

with the state-of-the-art, including structured edge detection (SE) [24], and holistically-

nested edge detection algorithm (HED) [127]. Both SE and HED are re-trained with the

same training setting as ours. Figure 3.8 and Table 3.3 present the PR-curves and AP.

As can be seen, FCSN outperforms CEDN, SE and HED in all metrics. We presume

that further improvement may be obtained by training with annotated boundaries in

both frames.

3.5.2 Boundary Flow Estimation

Boundary flow accuracies are evaluated by average end-point error (EPE) between our

boundary flow prediction and the ground truth boundary flow (as defined in Sec. 3.3.1)

on the Sintel training dataset.

In order to identify a good competing approach, we have tested a number of the

state-of-art matching algorithms on the Sintel training dataset, including coarse-to-fine

PatchMatch (CPM) [49], Kd-tree PatchMatch [43] and DeepMatching [124], but have
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Figure 3.10: Example results on MPI-Sintel test dataset. The columns correspond
to original images, ground truth, CPM-AUG (i.e., our approach), CPM-Flow [49] and
EpicFlow[95]. The rectangles highlight the improvements and the numbers indicate the
EPEs.

found that these algorithms are not suitable for our comparison because they prefer to

find point matches off boundaries.

Therefore, we compare our edgelet-based matching algorithm with the following

baselines: (i) greedy nearest-neighbor point-to-point matching, (ii) RANSAC [10], (iii)

FLANN, a matching method that uses SIFT feautres. The quantitative results are

summarized in Table 3.4. Our edgelet-based matching outperforms all the baselines

significantly.

3.5.3 Dense Optical Flow Estimation

We also test the utility of our approach for optical flow estimation on the Sintel testing

dataset. After running our boundary flow estimation, the resulting boundary matches

are used to augment the standard input to the state of the art CPM-Flow [49], as shown

in Figure 3.9. Such an approach is denoted as CPM-AUG, and compared with the other

existing methods in Table 3.5. As can be seen, CPM-AUG outperforms CPM-Flow and

FlowFields. Note the results we submitted on ”Sintel clean” under the name CPM-

AUG was not actually results of CPM-AUG, actually it was just our implementation of

CPMFlow[49], which is a bit lower than the public one on the Sintel dataset. However

these are the best results we can obtain using the public implementation of the algorithm.

In principle, the augmented point matches should be able to help other optical flow
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Method
EPE
all

EPE
matched

EPE
unmatched

CPM-AUG 5.645 2.737 29.362

FlowFields[5] 5.810 2.621 31.799

Full Flow[14] 5.895 2.838 30.793

CPM-Flow[49] 5.960 2.990 30.177

DiscreteFlow[85] 6.077 2.937 31.685

EpicFlow[95] 6.285 3.060 32.564

Table 3.5: Quantitative results on Sintel final test set.

algorithms as well as it is largely orthogonal to the information pursued by current

optical flow algorithms.

Figure 3.10 shows qualitative results of CPM-AUG on Sintel testing dataset with

comparison to two state-of-the-art methods: CPM-Flow and EpicFlow. As it can be

seen, CPM-AUG performs especially well on the occluded areas and benefits from the

boundary flow to produce sharp motion boundaries on small objects like the leg and the

claws as well as the elongated halberd.

3.6 Summary

We have formulated the problem of boundary flow estimation in videos. For this prob-

lem, we have specified a new end-to-end trainable FCSN which takes two images as input

and produces boundary detections in each image. We have also used FCSN to gener-

ate excitation attention maps in the two images as informative features for boundary

matching, thereby unifying detection and flow estimation. For matching points along

boundaries, we have decomposed the predicted boundaries into edgelets and applied

edgelet-based matching to pairs of edgelets from the two images. Our experiments on

the benchmark VSB100 dataset for boundary detection demonstrate that FCSN is su-

perior to the state- of-the-art, succeeding in detecting boundaries both of foreground

and background objects. We have presented the first results of boundary flow on the

benchmark Sintel training set, and compared with reasonable baselines. The utility of

boundary flow is further demonstrated by integrating our approach with the CPM-Flow

for dense optical flow estimation. This has resulted in an improved performance over the
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original CPM-Flow, especially on small details, sharp motion boundaries, and elongated

thin objects in the optical flow.
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Chapter 4: Temporal Deformable Residual Networks for Action

Segmentation in Videos

4.1 Introduction

In this chapter, we address action segmentation where the goal is to label video frames

with appropriate action classes. Action segmentation is a basic vision problem, and of

great importance to a wide range of applications, including video surveillance and robot

navigation.

Recent approaches typically address this problem in two steps: i) Extraction of spatial

or spatiotemporal features using convolutional neural networks, e.g., two-stream CNNs

[104] or local 3D ConvNets [120], and ii) Classification of the extracted features using

a one-directional model, e.g., encoder-decoder temporal convolutional networks (ED-

TCN) [65], or bi-directional LSTM networks (Bi-LSTM) [106, 50]. Although recurrent

deep models have shown promise in capturing latent temporal patterns [106, 50, 23],

they are hard to train [90], and have a limited span of attention [106].

Toward overcoming these limitations, we present a new temporal convolutional model,

named temporal deformable residual network (TDRN). TDRN classifies every video

frame using a deep temporal residual network. The residual network takes frame-level

CNN features as input and computes deformable convolutions along time at multiple

temporal scales, starting at the frame-level resolution. As shown in Figure 4.1, this

computation is done in two parallel temporal streams: i) Residual stream that analyzes

video information at its full temporal resolution, and ii) Pooling/unpooling stream that

captures long-range video information at different scales. The first stream is aimed at

resolving ambiguities about local, frame-to-frame segmentation, and the second stream

uses multiscale context for improving accuracy of frame classification. The temporal

residual stream and the temporal pooling stream are fused through a set of deformable

temporal residual modules (DTRMs), and coupled with temporal residuals at the full

temporal resolution. In addition, TDRN computes deformable temporal convolutions for

modeling variations in temporal extents of human actions, similar to deformable spatial



42

convolution that has been shown to improve object detection in images [20].

As our results demonstrate, the two-stream residual computation and deformable

temporal convolutions make TDRN more robust against temporal transformations than

recent deep networks, including encoder-decoder temporal convolutional networks (ED-

TCNs) [68, 65], temporal convolutional U-networks (TUNets) [98], and temporal residual

networks (TResNets) [44], illustrated in Figure 4.2. As can be seen in Figure 4.2, ED-

TCNs use a sequence of regular temporal convolutions and temporal pooling/unpooling

layers within a single processing stream. TUNets simply concatenate features computed

in their unpooling path with the corresponding features at the same temporal scale from

the pooling path, as indicated by the cyan arrows. TResNets add shortcut connections

(marked brown) between a layer and its succeeding layer for allowing the gradients to

propagate more effectively through the network in learning. None of these models use

deformable temporal convolutions and two processing streams since they all compute

regular temporal convolutions in a single processing stream. Unlike these related models,

we use two processing streams and deformable temporal convolutions, enabling robust

action classification and accurate action segmentation in videos.

We evaluate TDRN on the following benchmark datasets: University of Dundee 50

Salads (50Salads), Georgia Tech Egocentric Activities (GTEA) and JHU-ISI Gesture

and Skill Assessment Working Set (JIGSAWS). Our results demonstrate that TDRN

is capable of accurately capturing action durations and transitions between distinct ac-

tions. Also, TDRN outperforms the state of the art in frame-wise segmentation accuracy,

segmental edit score, and segmental overlap F1 score.

Our key contributions include:

• A new fully-convolutional temporal residual network that consists of two processing

streams aimed at extracting both multiscale temporal abstractions and frame-level

features for reliable action recognition and precise action segmentation.

• We are not aware of any prior work that uses deformable temporal convolutions;

we show they improve action segmentation over regular temporal convolutions.

• We outperform the state of the art in action segmentation on the 50Salads, GTEA

and JIGSAWS datasets.
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Figure 4.1: For action segmentation, TDRN takes frame-level CNN features as input and
outputs frame-wise action labels. TDRN computes two processing streams: Residual
stream (marked red) that analyzes video information at its full temporal resolution for
precise action segmentation, and Pooling/unpooling stream (marked blue) that captures
temporal context at different scales for accurate action recognition. The two streams are
fused through a set of deformable temporal residual modules (DTRMs). Best viewed in
color.

4.2 Related Work

This section reviews the most related work for action segmentation and detection in

which most of them are about temporal modeling. A host of work on spatiotemporal

modeling for video recognition [113, 58, 122, 120, 104, 135, 19, 30, 31, 38, 123] and action

detection [103, 57, 107, 48, 22] are beyond the scope of this chapter.

Action Segmentation. Existing approaches typically first extract frame-level fea-

tures, and then pass them to a temporal model for frame labeling. For example, Yeung

et al. [131] use an attention LSTM network to model feature dependencies over a fixed

temporal interval. Singh et al. [106] present a multi-stream bi-directional recurrent neu-
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Figure 4.2: Deep architectures of recent work: (a) Encoder-decoder temporal convolu-
tional networks (ED-TCNs) [68], (b) Temporal convolutional U-networks (TUNets) [98],
(c) Temporal residual networks (TResNets) [44]. A comparison of these architectures
with our TDRN shown in Figure 4.1 makes our differences obvious: none of these models
use deformable temporal convolutions and two processing streams. Best viewed in color.

ral network for fine-grained action detection. Fathi et al. [27, 29, 28] use a segmental

model that captures object states at the action’s start and end. Richard et al. [96]

resort to a statistical language model for representing temporal and contextual structure

in videos of varying lengths. Kuehne et al. [62] use Hidden Markov Models (HMMs)

on dense-trajectory features and propose an end-to-end generative approach for action

segmentation.

The approach of Lea et al. [65] is the most related to ours, as they use two tem-

poral convolutional networks for action segmentation and detection. However, their

model computes regular temporal convolutions in a single processing stream, whereas

our TDRN computes deformable temporal convolutions in two temporal streams. Ding

et al. [23] replace the convolutional decoder in the approach of Lea et al. [65] with a

bi-directional LSTM (Bi-LSTM) [39]. However, their network is a hybrid of temporal

convolutional network and temporal recurrent network, and thus inherits the well-known

limitations of recurrent models, including difficult training [90], and limited attention

span [106].

Action Detection. A number of approaches to action detection is also related to
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ours. For example, for action detection, (a) Multi-region two-stream network [91] links

frame-level detections of the faster R-CNN [94]; (b) Recurrent models are learned from

3D skeleton data [77] and under weak supervision [97]; (c) Reinforcement learning is

used for predicting temporal bounds of actions based on observing only a fraction of the

video [132]; (d) Structured temporal pyramid models the temporal structure of actions

[139]; (e) Region convolutional 3D network (R-C3D) with 3D ROI pooling encodes video

streams [128]; (f) Flow network searches for temporal intervals with a maximum sum of

frame-wise classification scores [134]; (g) Temporal convolutional model extracts context

of action proposals through a pair-wise sampling layer [21]; and (h) Temporal single shot

action detector network detects action instances [79].

In some of the aforementioned approaches, video features are usually sampled at

two temporal scales for generating good action proposals. Also, some of the approaches

consist of modules that are typically not jointly trained end-to-end. In contrast, our

TDRN fuses multiscale temporal abstractions with features extracted at the frame-wise

temporal scale, and can be trained in an end-to-end fashion.

There are some similarities between TDRN and recent work on semantic image seg-

mentation [93], which uses a two-stream spatial residual network to compute pixel-level

semantic labeling in the image. In contrast, TDRN computes temporal residual con-

volutions, which are additionally deformable [20], i.e., capable of modeling variations

of temporal extents of actions via deformable temporal convolutions. Hence, we ex-

tend [93, 20] from the spatial to temporal domain, where TDRN also analyzes multiple

temporal scales.

4.3 Temporal Deformable Residual Network

TDRN computes the residual and pooling/unpooling streams in parallel. As shown in

Figure 4.1, features along the residual stream are computed using a sequence of residuals

at the full temporal resolution, whereas features in the temporal pooling stream are

computed at coarser temporal scales by a sequence of deformable temporal convolutions

followed by temporal pooling and corresponding unpooling. The residual stream operates

at the finest temporal scale for accurately localizing action boundaries. The temporal

pooling/unpooling stream computes contextual features at multiple temporal scales for

accurate action recognition using a sequence of deformable temporal residual modules
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Figure 4.3: Key differences between: (a) Common temporal residual module with a single
input and output; and (b) Our deformable temporal residual module (DTRM) with two
inputs and two outputs. The input represents feature sequences fL−11:T/2n and fL−11:T with

temporal lengths of T/2n and T , which are computed by the previous layer L−1. In (a),
the output features are computed by a standard temporal convolution, F (fL−11:T/2n ;WL).

In (b), the output is computed using a cascade of a deformable temporal convolution,
G(fL−11:T , fL−11:T/2n ;WL), followed by a convolution and unpooling, F (fL−11:T , fL−11:T/2n ;WL).

(DTRMs).

Figure 4.3 shows key differences between a common temporal residual module and

our DTRM. The former has only one input and one output, while DTRM has two inputs

and two outputs. This is because DTRM simultaneously operates on both the residual

and pooling streams.

DTRM takes as input two feature sequences, fL−11:T/2n and fL−11:T , with temporal lengths

of T/2n and T , which are computed by the previous layer L− 1 in TDRN. Specifically,

fL−11:T/2n is produced by the pooling stream and fL−11:T comes from the residual stream of

L − 1 layer. Note that the layer number L is correlated with the temporal scale n at

which the features are computed in TDRN. These are depicted in Figure 4.1 as “vertical”

and “horizontal” processing levels in TDRN, respectively. For computing the output

feature sequences, fL1:T and fL1:T/2n , DTRM uses a deformable temporal convolution,

G(fL−11:T , fL−11:T/2n ;WL), followed by a convolution and unpooling, F (fL−11:T , fL−11:T/2n ;WL),
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as

fL1:T = fL−11:T + F (fL−11:T , fL−11:T/2n ;WL)

fL1:T/2n = G(fL−11:T , fL−11:T/2n ;WL)
(4.1)

where WL denotes network parameters. In (4.1), the output of G is input to F to

produce the residual stream.

It is worth noting that our TDRN has similar training characteristics as ResNet [44],

since losses can be easily propagated back to the input through the residual stream. In

the following section, we describe DTRM in greater detail.

4.3.1 Deformable Temporal Residual Module

The pooling and residual streams in our TDRN are fused through a sequence of DTRMs.

Figure 4.4 illustrates the architecture of DTRM. DTRM takes as input the residual and

pooling features of the previous layer, fL−11:T and fL−11:T/2n , where the pooling sequence of

features is computed at a coarser temporal resolution, n, and hence is 2n times shorter

in time than the residual sequence of features. DTRM first applies temporal pooling to

fL−11:T , and then concatenates the result with fL−11:T/2n . The concatenated features are then

processed by the deformable temporal convolution module, explained in greater detail

in Sec. 4.3.2, resulting in the output pooling features, fL1:T/2n , of the same length as the

corresponding input pooling features fL−11:T/2n . From fL1:T/2n , DTRM computes output

residual features, fL1:T , using the 1× 1 temporal convolution and temporal unpooling.

4.3.2 Deformable Temporal Convolution Module

The deformable temporal convolution module is aimed at improving standard fixed-

structure temporal convolutions in modeling temporal variations of action boundaries

along the video. It consists of a deformable temporal convolution layer followed by a

Normalized Rectified Linear Unit (NRLU) [65], defined as follows:

NRLU(·) =
ReLU(·)

max(ReLU(·)) + ε
(4.2)
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Figure 4.4: DTRM: Given the residual and pooling features of the previous layer as
inputs, DTRM applies pooling to the residual stream and then concatenates the result
with the input pooling stream. The concatenated features are then processed by the
deformable temporal convolution, resulting in the output pooling features, fL1:T/2n . Also,

a temporal residual is computed from fL1:T/2n by the 1 × 1 temporal convolution and

temporal unpooling, resulting in output residual features, fL1:T .

where ReLU represents a ReLU layer, max(·) returns the maximal ReLU activation

within the layer, and ε = 0.00001. Below, we specify deformable temporal convolution.

A temporal convolution can be decomposed into two steps: sampling of input fea-

tures at specified moments in time, and weighted summation of the sampled features.

Analogous to deformable spatial convolutions of objects in images [20], in our approach,

the temporal sampling locations that specified by the convolutional kernel are augmented

with variable temporal offsets, which in turn are learned end-to-end along with the other

network parameters.

Let I denote the time interval of input feature map fin, and W denote convolution

weights. Note that I defines the temporal receptive field size as well as the dilation

size. The temporal convolution consists of sampling over I and summing the weighted

sampled values with weights W as

fout(t0) =
∑
ti∈I

W (ti) · fin(t0 + ti). (4.3)

Deformable convolution specifies a set of offsets M= {4ti|i = 1, 2, · · · , |I|}, and
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Figure 4.5: An illustration of deformable temporal convolution with kernel size 3 and
dilation size 1. Both the temporal offsets and output features are obtained by applying
a temporal convolutional layer over the same input feature maps. The offset fields have
the same size as the input feature map.

augments the temporal sampling in (4.3) as

fdeformout (t0) =
∑
ti∈I

W (ti) · fin(t0 + ti +4ti). (4.4)

From (4.4), the sampling is defined over variable time moments ti +4ti.
Note that 4ti is typically learned as a real number. Thus, t0 + ti +4ti is also a real

number. We identify the set of nearest integer temporal locations to t0 + ti +4ti in the

feature map, and use bilinear temporal interpolation to compute the ith input feature

for the summation in (4.4).

As illustrated in Figure 4.5, the temporal offsets {4ti} are obtained by applying

a temporal convolutional to the input feature maps. The kernel size and the dilation

size of the temporal convolution kernel for computing the offsets are the same as those

of the temporal kernel used for computing output features (e.g., 3 × 1 with dilation

1 in Figure 4.5). The resulting offset fields have the same size as the input feature

map. During training, both the temporal convolutional kernel for generating the output

features and the kernel for generating the offsets are learned end-to-end simultaneously.
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Dataset 50Salads (mid) GTEA JIGSAWS

Model F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc F1@{10} Edit Acc

ED-TCN [65] 68.0,63.9,52.6 59.8 64.7 72.2,69.3,56.0 - 64.0 89.2 84.7 80.8

TUnet [98] 59.3,55.6,44.8 50.6 60.6 67.1,63.7,51.9 60.3 59.9 85.9 79.8 80.2

TResNet [44] 69.2,65.0,54.4 60.5 66.0 74.1,69.9,57.6 64.4 65.8 86.2 85.2 81.1

TDRN 72.9,68.5,57.2 66.0 68.1 79.2,74.4,62.7 74.1 70.1 92.9 90.2 84.6

Table 4.1: Performance comparison with respect to the most related temporal convolu-
tion models including ED-TCN [65], TUNet [98] and TResNet [44].

Layer/Module Kernel Specification

FC Dense(C, ’softmax’)

Conv Conv1D(64, 50, 1, 1)

DTRM Conv1D(64, 50, 1, 1, Offsets(96, 50, 1, 1))

DTRM Conv1D(96, 50, 1, 1, Offsets(64, 50, 1, 1))

DTRM Conv1D(64, 50, 1, 1, Offsets(64, 50, 1, 1))

Conv Conv1D(64, 50, 1, 1)

Table 4.2: TDRN architecture: The temporal convolution kernel is described in the same
format as in Keras [17], i.e., Conv1D(filters, kernel size, strides, dilation rate). The last
argument of a DTRM kernel specifies the temporal convolution kernel corresponding
to offsets. C denotes the number of action classes including background class. The
fully-connected layer, Dense, is applied to every temporal window of the input video.

4.4 Network Configurations and Training

Our TDRN consists three DTRMs, which are implemented with Keras [17] and Tensor-

Flow. As input, TDRN uses a set of frame-level video features computed by CNNs. We

use the same CNN features as in [65]. The output of TDRN is the sequence of action

labels assigned to video frames. A detailed description of each module in TDRN is sum-

marized in Table 4.2. For simplicity, Table 4.2 omits the details of NRLUs that follow

every deformable temporal convolution layer in DTRM and every temporal convolution

layer in TDRN. They are fully specified in Sec. 4.3.2.

Parameters of TDRNs are learned using the categorical cross entropy loss with

Stochastic Gradient Descent and ADAM [60] step updates. The batch size and the

number of epoches are 8 and 200, respectively. Dropouts are also applied in all the

temporal convolutional layers.
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Figure 4.6: Action segmentations for a sample test video named rgb-22-2.avi from the
50 Salads dataset. Top-down, the rows correspond to ground truth sequence of actions
{place lettuce into bowl, cut cheese, place cheese into bowl, peel cucumber, background,
cut cucumber, place cucumber into bowl, mix ingredients, serve salad onto plate, add
dressing}, and predictions of TDRN, TRN, ED-TCN [65], ST-CNN [66], Bi-LSTM [106]
and Dilated TCN [65].

Note that n does not require careful tuning, because it is not a free parameter,

but set to a fixed value that depends on a given network architecture. Specifically,

n is uniquely determined by the number of pooling and unpooling operations in the

network, as the pooling reduces the temporal length of video processing by a half, and

the unpooling doubles the temporal length of video processing. For the model depicted

in Figure 4.1 and summarized in Table 4.2, there are 3 residual modules (DTRMs) and

2 pooling/unpooling operations, so the values of n in each of the 3 DTRMs, bottom to

top, must be 1, 2 and 1, respectively. We use the same architecture and hence the same

values of n for all datasets.

4.5 Experimental Results

We conduct experiments on three challenging action segmentation datasets, including

the University of Dundee 50 Salads (50Salads) [110], Georgia Tech Egocentric Activities

(GTEA) [29] and the JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS)

[36]. For evaluation, we use three standard metrics, including F1@k, edit score and

accuracy of frame labeling.
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4.5.1 Datasets, Metrics and Baselines

Datasets. The 50Salads contains 50 videos with 25 people preparing salad. Each video

contains 9000 to 18000 frames with accelerometer data, depth information, RGB data

and action label. As input to TDRN, we use the same spatial CNN features as in [65],

where the CNN is trained on RGB images showing 17 mid-level action classes. For

evaluation on this dataset, we perform the same 5-fold cross-validation as the state of

the art, and report the average results.

The GTEA dataset contains 28 videos of seven fine-grained types of daily activities

in a kitchen. An activity is performed by four different subjects and each video contains

about 1800 RGB frames, showing a sequence of 20 actions including the background

action. For fair comparison, input to TDRN are the same CNN features as those used

in [65]. For this dataset, we perform the same 4-fold cross-validation as prior work, and

report the average results.

The JIGSAWS dataset contains 39 surgical videos with 10 different actions. Each

video contains about 3000 frames showing about 20 actions. For fair comparison, we use

the same input features of 39 suturing videos as in [68, 65], and perform the same 8-fold

cross-validation as prior work, and report the average results.

As in related work [65], we first downsample the video frames and then handle dif-

ferent lengths of downsampled video clips as follows. We first identify the maximum

temporal length in the dataset, and then pad zeros to those clips that are shorter than

the maximum length.

Metrics. For all the three datasets, we use the following evaluation metrics as in [65]:

frame-wise accuracy, segmental edit score, and segmental overlap F1 score with threshold

k/100, denoted as F1@k. Frame-wise accuracy is one of the most common evaluation

metrics for action segmentation. Its drawback is that it does not take into account the

temporal structure of the prediction. Consequently, results with large qualitative differ-

ences may have the same frame-wise accuracy. Also, this metric does not capture the

case of oversegmentation, when the results do not respect the true temporal continuity

of human actions, and yet score high frame-wise accuracy. To address these limitations,

evaluations presented in [66, 67] additionally use a segmental edit score, which penalizes

oversegmentation. The approach of [65] uses F1@k as a suitable metric for testing both

action segmentation and action detection, since it also penalizes oversegmentation errors,
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50 Salads (mid) F1@{10,25,50} Edit Acc

Spatial CNN [66] 32.3,27.1,18.9 24.8 54.9

IDT+LM [96] 44.4,38.9,27.8 45.8 48.7

Dilated TCN [65] 52.2,47.6,37.4 43.1 59.3

ST-CNN [66] 55.9,49.6,37.1 45.9 59.4

Bi-LSTM [106] 62.6,58.3,47.0 55.6 55.7

ED-TCN [65] 68.0,63.9,52.6 59.8 64.7

TRN 70.2,65.4,56.3 63.7 66.9

TDRN+UNet 69.6,65.0,53.6 62.2 66.1

TDRN 72.9,68.5,57.2 66.0 68.1

Table 4.3: Results on 50 Salads (mid).

but ignores minor temporal shifts between the predictions and ground truth (which might

arise from annotation noise). F1@k score is determined by the total number actions but

not depend on the duration of each action instance. It is a metric that similar to mean

average precision (mAP) with an Intersection-Over-Union (IoU) overlap criterion which

is commonly used in object detection.

Baselines. For ablation studies, we specify the following TDRN variants: (1) TRN :

TDRN without deformable convolution (i.e., uses a standard temporal convolution); and

(2) TDRN+UNet : TDRN with added TUnet connections, marked cyan in Figure 4.2.

We also compare with the following closely related work: (3) Spatial CNN [66]: Frame-

wise classification using CNN features of a single RGB frame that capture object texture

and spatial location; (4) ST-CNN [66]: Temporal convolutional filter that builds on top

of spatial CNN to capture scene changes over the course of action; (5) Bi-LSTM [106]:

Bi-directional temporal LSTM; 6) ED-TCN [65]: encoder-decoder temporal convolution

neural network; and 7) Dilated TCN [65]: encoder-decoder temporal convolution neural

network with dilated temporal convolution. In addition, we compare with the baselines

IDT+LM [96], EgoNet+TDD [108], and MSM-CRF [115] and TCN [68] on 50Salads,

GTEA and JIGSAWS, respectively.

In our experiments, for fair comparison, we use the same number of temporal convo-

lution layers and kernels as in [65].



54

GT Acc

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

86.3

82.6

76.8

74.8

68.2

65.0

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

89.6

83.9

80.2

74.8

67.4

66.4

GT

TDRN

TRN

ED-TCN

ST-CNN

Bi-LSTM

DilatedTCN

Acc

94.2

88.9

81.6

79.7

79.7

77.6

Figure 4.7: Action segmentations for a sample test video named S3-CofHoney-C1.mp4
from the GTEA dataset. Top-down, the rows correspond to ground truth sequence of ac-
tions { background, take, background, take, open, background, scoop, pour, background,
scoop, pour, background, put, close, background, take, background, open, background,
pour, background, put, close, background, take, background, open, background, pour,
put, close, background, stir }, and predictions of TDRN, TRN, ED-TCN [65], Bi-LSTM
[106], ST-CNN [66] and Dilated TCN [65].

4.5.2 Comparison with Convolution Models

Table 4.1 presents a comparison of TDRN with the most related temporal convolution

models, including ED-TCN [65], TUnet [98] and TResNet [44], illustrated in Figure 4.2.

The table shows that the performance of TUnet is worse than that of ED-TCN, and that

TResNet is able to improve over ED-TCN. Our TDRN outperforms the three related

models on all of the datasets. This suggests advantages of explicitly computing the

pooling and residual feature streams in TDRN for capturing contextual and fine-scale

details, respectively, whereas the three related models do not explicitly compute these

streams, as depicted in Figure 4.2.

4.5.3 Comparison with the State of the Art

50Salads. Table 4.3 presents the results of the state of the art, TDRN and its vari-

ants. As can be seen, TDRN gives the best performance, since TDRN accounts for

multiscale long-range/high-order temporal dependencies as well as frame-level features.

Also, TDRN outperforms its variant TRN which uses a standard temporal convolution,

suggesting that TDRN is more robust to temporal variations of action boundaries than

TRN. We also observe that augmenting TDRN with UNet-like connections in the variant

called TDRN+UNet deteriorates performance of TDRN. This is consistent with the re-
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GTEA F1@{10,25,50} Edit Acc

Spatial CNN [66] 41.8,36.0,25.1 - 54.1

ST-CNN [66] 58.7,54.4,41.9 - 60.6

Bi-LSTM [106] 66.5,59.0,43.6 - 55.5

Dilated TCN [65] 58.8,52.2,42.2 - 58.3

ED-TCN [65] 72.2,69.3,56.0 - 64.0

EgoNet+TDD [108] - - 64.4

TRN 77.4,71.3,59.1 72.2 67.8

TDRN+UNet 78.1,73.8,62.2 73.7 69.3

TDRN 79.2,74.4,62.7 74.1 70.1

Table 4.4: Results on GTEA.
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Figure 4.8: Action segmentations for a sample test video named Suturing-B002.avi from
the JIGSAWS dataset. Top-down, the rows correspond to ground truth sequence of
actions in different gestures {G1, G5, G8, G2, G3, G6, G4, G2, G3, G6, G4, G2, G3,
G6, G4, G2, G3, G6, G11}, and predictions of TDRN, TRN, Bi-LSTM [106], ED-TCN
[65], ST-CNN [66] and Dilated TCN [65].

sults presented in Sec. 4.5.2. Figure 4.6 qualitatively compares our segmentation results

with those of the state of the art on a sample test video from the 50 Salads dataset.

As can be seen, TDRN does not suffer from oversegmentation. TDRN produces more

accurate action recognition than ED-TCN. For example, in Figure 4.6, ED-TCN com-

pletely misclassifies the second action in the video, while TDRN is able to generate

partially correct prediction. Also, Figure 4.6 shows that TDRN predicts more precise

action boundaries. This suggests that using deformable temporal convolution is critical

for improving accuracy of prediction of action boundaries.

GTEA. Table 4.4 shows that TDRN and its variants achieve superior segmental over-

lap F1 score, segmental edit score and frame-wise accuracy than the baselines on the

GTEA dataset. Among the state of the art, the best accuracy was achieved by the ap-
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JIGSAWS F1@{10} Edit Acc

MSM-CRF [115] - - 71.7

Spatial CNN [66] - 37.7 74.0

ST-CNN [66] 78.3 68.6 78.4

Bi-LSTM [106] 77.8 66.8 77.4

ED-TCN [65] 89.2 84.7 80.8

TCN [68] - 83.1 81.4

TRN 91.4 87.7 83.3

TDRN+UNet 92.1 89.4 83.9

TDRN 92.9 90.2 84.6

Table 4.5: Results on JIGSAWS.

proach of [108], which combines CNN features with trajectory-pooled deep-convolutional

descriptors (TDD) [121]. This suggests that our results could be further improved by

incorporating the TDD features. Figure 4.7 qualitatively compares our segmentation

results with those of the state of the art on a sample test video from the GTEA dataset.

JIGSAWS. Table 4.5 compares TDRN with the state of the art on the JIGSAWS

dataset. Similar to the results on 50Salads and GTEA, TDRN achieves superior perfor-

mance in all the three metrics. A qualitative comparison on a sample test video from

JIGSAWS is depicted in Figure 4.8.

In general, we find that explicit capturing of long-range temporal dependencies by

TDRN makes its predictions more reliable than that of the state of the art, especially in

cases when distinct actions are visual very similar. For example, in Figure 4.6, ED-TCN

wrongly predicts the ground truth class peel cucumber as background while neglecting

the temporal dependencies between consecutive action pair {peel cucumber, cut cucum-

ber}. On the other hand, TDRN manages to correctly predict peel cucumber most likely

because it explicitly accounts for long-range action dependencies. We also find simi-

lar examples in the results on the GTEA and JIGSAWS datasets (see Figure 4.7 and

Figure 4.8). Empirically, we find that our TDRN sometimes misses the prediction of ex-

tremely short action instance that fall in between two long actions, as shown in Figure 4.6

and Figure 4.7.
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4.5.4 Effect of Kernel Size and Network Depth

We study performance of TDRN as a function of varying kernel size and network depth,

i.e., varying temporal receptive size and number of DTRMs. Figure 4.9 shows F1@10

score of our TDRN on 50Salads (mid). For all network depths, we observe that the score

first increases and then drops as the kernel size becomes larger (i.e., when using longer

temporal context). This suggests the importance of selecting a suitable kernel size. Our

TDRN achieves the best score when the number of DTRMs is 3 (i.e., network depth 6

as specified in Table 4.2) and the kernel size is 50 on the 50Salad dataset. Our optimal

network depth agrees with that in [65]. That is, we use the same architecture as specified

in Table 4.2 for all datasets for fair comparison with [65].

Note that TDRN training takes 10x less time than for Bi-LSTM, on a Telsa K80

Nvidia gpu card. This is due to independent activations within each temporal convolution

layer in TDRN while the activations within Bi-LSTM depend on its previous activations.

Hence, for our TDRN, operations can be computed simultaneously in batches.
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Figure 4.9: F1@10 of TDRN as a fucntion of temporal kernel size and network depth on
50Salads (mid).
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4.6 Summary

We have presented a new deep architecture, called temporal deformable convolution

neural network (TDRN), for action segmentation in videos. TDRN consists of two

processing streams: a temporal pooling stream that captures long-range and high-level

features at multiple temporal scales, and a temporal residual stream that computes

features at the same frame-level temporal resolution as the input video. As the pooling

stream accounts for temporal context, it is aimed at improving action recognition. The

residual stream is aimed at improving localization of action boundaries. The two streams

are aggregated by a cascade of deformable temporal residual modules, each computing

deformable temporal convolutions for modeling temporal variations in action boundaries.

Our empirical evaluation on the benchmark University of Dundee 50 Salads (50Sal-

ads), Georgia Tech Egocentric Activities (GTEA) and JHU-ISI Gesture and Skill As-

sessment Working Set (JIGSAWS) demonstrates that TDRN outperforms the state-of-

the-art convolution and temporal convolution models. TDRN produces more accurate

action boundary detections, which suggest advantages of our end-to-end learning of de-

formable temporal convolution over using the standard temporal convolution. Also,

TDRN’s results tend to better respect common-sense temporal arrangement of actions,

due to its explicit learning of long-range temporal dependencies. We have empirically

found that TDRN sometimes poorly segments very short actions that fall in between

two long actions.
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Chapter 5: Conclusion

In this dissertation, we have addressed the basic vision problem that of robust video label-

ing at both the frame and pixel levels. For pixel-level video labeling, we have addressed

two problems: spatiotemporal video segmentaton and boundary flow estimation (i.e.,

joint object boundary pixels labeling and boundary motion estimation). For frame-level

video labeling, we have addressed temporal action segmentation.

We advance the state of the art by designing novel deep architectures that are driven

by our two hypotheses: (i) Robust and accurate video labeling requires accounting for

both local and long-range spatial and temporal cues; and (ii) Accuracy of pixel-level

video labeling improves by modeling and inferring of object boundaries, and similarly

for the frame-level video labeling, temporal action boundaries.

For spatiotemporal video segmentation, we have presented recurrent temporal deep

field (RTDF) which captures long-range and high-order spatiotemporal dependencies

of pixel labels in a video by combining conditional random field (CRF), deconvolu-

tion neural network (DeconvNet), and recurrent temporal restricted Boltzmann machine

(RTRBM) into a unified framework. CRF is suitable for modeling local interactions while

RTRBM is appropriate for modeling global properties of object shapes. Our empirical

evaluation on the benchmark Youtube Face Database (YFDB) [125] and Cambridge-

driving Labeled Video Database (CamVid) [9] has demonstrated the advantages of per-

forming joint inference and joint training of RTDF, resulting in its superior performance

over the state of the art.

For boundary flow estimation, we have introduced a rigorous definition of bound-

ary flow and specified a new end-to-end trainable fully convolutional Siamese network

(FCSN). FCSN unifies boundary detection and boundary flow estimation. FCSN takes

two images as input and produces boundary detections in each image. FCSN also gen-

erates excitation attention maps in the two images as informative features for boundary

matching. Our experiments on the benchmark VSB100 dataset [33] for boundary de-

tection have demonstrated that FCSN is superior to the state of the art, successfully

detecting boundaries both of foreground and background objects. We have presented
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the first results of boundary flow on the benchmark Sintel training set [12] and demon-

strated the utility of boundary flow by integrating our approach with the CPM-Flow [49]

for dense optical flow estimation, resulting in an improved performance over the original

CPM-Flow.

For temporal action segmentation in videos, we have presented the temporal de-

formable convolution neural network (TDRN). TDRN integrates local, fine-scale cues

and global, long-range video information via two processing streams – a temporal pool-

ing stream aimed at improving action recognition by accounting for temporal context and

a temporal residual stream aimed at improving localization of action boundaries by using

fine-scale temporal cues. The two streams are aggregated by a cascade of deformable

temporal residual modules (DTRMs), each computing deformable temporal convolutions

for modeling temporal variations in action boundaries. Our empirical evaluation on the

benchmark University of Dundee 50 Salads (50Salads) [110], Georgia Tech Egocentric

Activities (GTEA) [29] and JHU-ISI Gesture and Skill Assessment Working Set (JIG-

SAWS) [36] has demonstrated that TDRN outperforms the state-of-the-art temporal

convolution models. TDRN produces more accurate action boundary detections. This

supports our hypotheses that end-to-end learning of deformable temporal convolution

is more advantageous than the standard temporal convolution. Also, TDRNs results

tend to better respect temporal arrangement of actions, due to our explicit learning of

long-range temporal dependencies.

In summary, our empirical evaluations on the benchmark datasets have demonstrated

validity of our hypotheses that robust and accurate video labeling requires accounting for

both local and long-range spatial and temporal cues as well as object/action boundaries.
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Appendix A: Derivation of Mean-field Updating Equations

In the following we present a detailed derivation of the mean-field inference algorithm

which is explained in Section 2.4 in Chapter 2 (i.e., Inference of RTDF). Here, we use

the same notation as in Chapter 2.

The Kullback-Leibler divergence between Q(yt,ht;µ,ν) and P (yt,ht|y<t, It) is de-

fined as

KL(Q||P ) =
∑
yt,ht

Q(yt,ht;µ,ν) ln
Q(yt,ht;µ,ν)

P (yt,ht|y<t, It)

= −H(Q)−
∑
yt,ht

Q(yt,ht;µ,ν) lnP (yt,ht|y<t, It) (A.1)

where H(Q) is the entropy of Q. It follows that minimizing the KL-divergence amounts

to the following objective

µ̂, ν̂ = arg max
µ,ν
{
∑
yt,ht

Q(µ,ν) lnP (yt,ht|y<t, It) +H(Q(µ,ν))}. (A.2)

Substitute P (yt,ht|y<t, It) = 1
Z(θ) exp(−ERTDF(yt,ht|y<t, It)) andQ(yt,ht) = Q(µ,ν) =∏

p µp
∏
j νj into (A.2). Note that µ = {µpl : µpl = Q(ytpl = 1)}, where

∑L
l=1 µpl = 1

for every pixel p, ν = {νj : νj = Q(htj = 1)} and Z(θ) is the partition function. The
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objective takes a particular form:

µ̂, ν̂ = arg max
µ,ν
{

∑
p

L∑
l=1

W 1
µpl
· xp +

∑
p

L∑
l=1

βp′→p

+
∑
i

∑
j

∑
p∈i

L∑
l=1

1

|i|
Wijlνjµpl +

∑
j

∑
k

W
′
jkνjrk

+
∑
i

L∑
l=1

∑
p∈i

1

|i|
µplcil +

∑
j

bjνj − lnZ(θ)

−
∑
j

{νj ln νj + (1− νj) ln(1− νj)} −
∑
p

L∑
l=1

µpl lnµpl. (A.3)

We can omit the lnZ(θ) term in (A.3) since Z(θ) is not a function of µ and ν.

Take the derivative with respect to νj and set it to 0, we can get that ln
νj

1−νj = bj +∑
i

∑
l

∑
p∈i

1
|i|Wijlµpl +

∑
kW

′
jkrk. It follows that

νj = σ(
∑
i

∑
l

∑
p∈i

1

|i|
Wijlµpl +

∑
k

W
′
jkrk + bj). (A.4)

Similarly, for µpl, we can get that lnµpl = W 1
µpl
· xp + βp′→p +

∑
jWiklνj + cil − 1 where∑L

l=1 µpl = 1. For clarity in presentation, we omit the bias term cil in µpl. It follows

that

µpl =
exp(W 1

µpl
· xp +

∑
jWijlνj + βp′→p)∑

l′ exp(W 1
µpl′
· xp +

∑
jWijl′νj + βp′→p)

. (A.5)

Note that the first term in (A.4) and the second term in (A.5) use the deterministic

mapping between patches i and pixels p ∈ i, as specified in Section 2.3.1 in Chapter 2

(i.e., A Brief Review of Restricted Boltzmann Machine).
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Appendix B: Derivation of the Joint Training of RTDF Parameters

In the following we present a detailed derivation of the joint learning algorithm, which

is explained in Section 2.5 in Chapter 2 (i.e., Learning). Here, we use the same notation

as in Chapter 2.

The goal of joint training is to maximize the conditional log-likelihood
∑

t log p

(yt|y<t, It). We use CD-PercLoss algorithm [86] and error back-propagation (EBP)

to jointly train parameters of RTDF in an end-to-end fashion. In this chapter, we use

generalized perceptron loss [69]. CD-PercLoss with generalized perceptron loss directly

penalizes the model for wrong predictions during training, which makes it suitable for

structured output prediction problems. The training objective is to minimize the follow-

ing generalized perceptron loss with regularization:

4(θ) =
∑
t

(F (yt|y<t, It)−min
ŷt

F (ŷt|y<t, It)) + λθT θ (B.1)

where θ = {W 1,W 2, θDN, θRTRBM}. It is impossible to get an analytical solution. We

use gradient descent algorithm, which leads to the following update rule:

θ(τ+1) = θ(τ) − η∂ 4 (θ(τ))

∂θ(τ)
. (B.2)

In (B.2), η is the learning rate. For calculating the the gradient of the generalized percep-

tron loss, we have to obtain ∂F (yt|y<t,It)
∂θ and ∂F (ŷt|y<t,It)

∂θ where F (yt|y<t, It) denotes the

free energy of ground truth label yt of frame t, and ŷt is the predicted label associated

with minimum free energy. In the following, we specify ∂F (yt|y<t,It)
∂θ . The calculation of

∂F (ŷt|y<t,It)
∂θ is similar to ∂F (yt|y<t,It)

∂θ .

The free energy of RTDF associated with yt is defined as

F (yt|y<t, It) = −
∑
p

ψ1(x
t
p,y

t
p)−

∑
p,p′

ψ2(y
t
p,y

t
p′) + FRTRBM(yt|rt−1)

= −
∑
p

ψ1(x
t
p,y

t
p)−

∑
p,p′

ψ2(y
t
p,y

t
p′) + FRTRBM(zt|rt−1). (B.3)
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In (B.3), the associated free energy of zt given rt−1 is defined as

FRTRBM(zt|rt−1) = −
∑
j

log(1 + exp(bj +
∑
i,l

Wijlz
t
il +

∑
k

W
′
jkr

t−1
k ))

−
∑
i,l

ztilcil (B.4)

where rt−1k is a function of zt−1 and rt−2 parametrized by b,W and W ′, as specified in

Section 2.3.2 in Chapter 2 (i.e., A Brief Review of RTRBM).

It is straightforward to find the derivatives w.r.t. CRF parameters W1, W2, so we

omit this derivation. Similarly, it is straightforward to find the derivatives w.r.t. bias

terms of RTRBM, i.e., {bint,b, c}, so we omit this derivation.

Regarding the gradient with respect to θDN, we first obtain ∂F (yt|y<t,It)
∂xp

and then

back-propagate the gradient using chain rule, i.e., ∂F (yt|y<t,It)
∂xp

∂xp
∂θDN

.

In the following, we specify the gradient with respect to W and W ′. The gradient

with respect to Wijl is given by

∂F (yt|y<t, It)
∂Wijl

=
∂FRTRBM(zt|rt−1)

∂Wijl

= −
∑
m

∂FRTRBM(zt|rt−1)
∂rt−1m

∂rt−1m

∂Wijl
− ztil

exp(bj+
∑

i,lWijlz
t
il+

∑
kW

′
jkr

t−1
k )

1 + exp(bj+
∑

i,lWijlz
t
il+

∑
kW

′
jkr

t−1
k )

= −
∑
m

∂FRTRBM(zt|rt−1)
∂rt−1m

∂rt−1m

∂Wijl
− ztilσ(bj+

∑
i,l

Wijlz
t
il+

∑
k

W
′
jkr

t−1
k )

= −
∑
j′

[σ(bj′+
∑
i,l

Wij′lz
t
il+

∑
k

W
′
j′kr

t−1
k )

∑
m

W
′
j′m

∂rt−1m

∂Wijl
]

−ztilσ(bj+
∑
i,l

Wijlz
t
il+

∑
k

W
′
jkr

t−1
k ) (B.5)

where ∂rt−1
m

∂Wijl
= rt−1m (1− rt−1m )[zt−1il 1(m = j) +

∑
k′W

′
mk′

∂rt−2
k′

∂Wijl
], rt−1m = σ(

∑
i,lWiml z

t−1
il +∑

k′W
′
mk′r

t−2
k′ +bm), σ(·) denotes sigmoid function and 1(·) represents indicator function.
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Similarly, we can obtain the gradient with respect to W
′
jk, which is as follows:

∂F (yt|y<t, It)
∂W

′
jk

=
∂FRTRBM(zt|rt−1)

∂W
′
jk

= −
∑
m

∂FRTRBM(zt|rt−1)
∂rt−1m

∂rt−1m

∂W
′
jk

− rt−1k

exp(bj+
∑

i,lWijlz
t
il+

∑
k′W

′
jk′r

t−1
k′ )

1 + exp(bj+
∑

i,lWijlz
t
il+

∑
k′W

′
jk′r

t−1
k′ )

= −
∑
m

∂FRTRBM(zt|rt−1)
∂rt−1m

∂rt−1m

∂W
′
jk

− rt−1k σ(bj+
∑
i,l

Wijlz
t
il+

∑
k′

W
′
jk′r

t−1
k′ )

= −[
∑
j′

σ(bj′+
∑
i,l

Wij′lz
t
il+

∑
k′

W
′
j′k′r

t−1
k′ )

∑
m

W
′
j′m

∂rt−1m

∂W
′
jk

]

−rt−1k σ(bj+
∑
i,l

Wijlz
t
il+

∑
k′

W
′
jk′r

t−1
k′ ) (B.6)

where ∂rt−1
m

∂W
′
jk

= rt−1m (1 − rt−1m )[rt−2k 1(m = j) +
∑

k′W
′
mk′

∂rt−2
k′

∂W
′
jk

], rt−1m = σ(
∑

i,lWiml

zt−1il +
∑

k′W
′
mk′r

t−2
k′ + bm), σ(·) denotes sigmoid function and 1(·) represents indica-

tor function. Note that rt−γ = σ(Wzt−γ + b + bint), which indicates that ∂rt−γm
∂Wijl

=

rt−γm (1− rt−γm )zt−γil 1(m = j) and ∂rt−γm

∂W
′
jk

= 0.




