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Asymmetric Tensor Analysis for Flow Visualization
Eugene Zhang, Harry Yeh, Zhongzang Lin, and Robert S. Laramee

Abstract— The gradient of a velocity vector field is an asym-
metric tensor field which can provide critical insight into the
vector field that is difficult to infer from traditional trajectory-
based vector field visualization techniques. We describe the
structures in the eigenvalue and eigenvector fields of the gradient
tensor and how these structures can be used to infer the behaviors
of the velocity field that can represent either a 2D compressible
flow or the projection of a 3D compressible or incompressible
flow onto a two-dimensional manifold.

The structure in the eigenvalue field is illustrated using
the eigenvalue manifold, which enables novel visualizations that
depict the relative strengths among the physical components in
the vector field, such as isotropic scaling, rotation, and anisotropic
stretching.

Our eigenvector analysis is based on the concept of the
eigenvector manifold, which affords additional insight on 2D
asymmetric tensors fields beyond previous analyses. Our results
include a simple and intuitive geometric realization of the
dual-eigenvectors, a novel symmetric discriminant that measures
the signed distance of a tensor from being symmetric, the
classification of degenerate (circular) points, and the extension
of the Poincaŕe-Hopf index theoremto continuous asymmetric
tensor fields defined on closed two-dimensional manifolds. We
also extend eigenvectors continuously into the complex domains
which we refer to as pseudo-eigenvectors. We make use of evenly-
spaced tensor lines following pseudo-eigenvectors to illustrate the
local linearization of tensors everywhere inside complex domains
simultaneously.

Both eigenvalue manifold and eigenvector manifold are sup-
ported by a tensor reparamterization that has physical meaning.
This allows us to relate our tensor analysis to physical quantities
such as vorticity, deformation, expansion, contraction, which
provide physical interpretation of our tensor-driven vector field
analysis in the context of fluid mechanics.

To demonstrate the utility of our approach, we have applied
our visualization techniques and interpretation to the study of
the Sullivan Vortex as well as computational fluid dynamics
simulation data.

Index Terms— Tensor field visualization, flow analysis, asym-
metric tensors, topology, surfaces.

I. I NTRODUCTION

V ECTOR field analysis and visualization are an integral
part of a number of applications in the field of aero-

and hydro-dynamics. Local fluid motions comprise translation,
rotation, expansion, contraction, and stretching. Most existing
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flow visualization techniques focus on the velocity vector
field of the flow and have led to effective illustrations of
the translational component. On the other hand, other flow
motions may be the center of interest as well. For example,
stretching of fluid parcels can be a good indicator for the rate
of fluid mixing and energy dissipation, rotation expresses the
amount of vorticity, and expansion and contraction are related
to change of volume [2], [10], [24], [27]. The non-translational
components are directly related to the gradient tensor of the
vector field. Consequently, inferring them using traditional
vector field visualization methods that use arrows, streamlines,
and colors encoding the magnitude of the vector field (Figure 1
(a-c)) is difficult even to the trained fluid dynamics researchers.

The gradient tensor has found application in a wide range of
vector field visualization tasks such as fixed point classification
and separatrix computation [12], attachment and separation
line extraction [17], vortex core identification [28], [16], [25],
[26], and periodic orbit detection [4]. However, the use of
the gradient tensor in these applications is often limited to
point-wise computation and analysis. There has been relatively
little work in investigating the structures in the gradient tensors
as a tensor field and what information about the vector field
can be inferred from these structures. While symmetric tensor
fields have been well explored, it is not clear how structures
in symmetric tensor fields can be used to reveal structures
in asymmetric tensor fields due to the existence of the anti-
symmetric components.

Zheng and Pang are the first to study the structures in 2D
asymmetric tensor fields [39]. To our knowledge, this is the
only work where the focus of the analysis is on asymmetric
tensor fields. In their research, Zheng and Pang introduce
the concept ofdual-eigenvectorsinside complex domains
where eigenvalues and eigenvectors are complex. When the
tensor field is the gradient of a vector field, Zheng and Pang
demonstrate that dual-eigenvectors represent the elongated
directions of the local linearization inside complex domains.
Consequently, tensor field structures can be visualized using
the combination of eigenvectors and dual-eigenvectors.

The work of Zheng and Pang has inspired this study of
asymmetric tensor fields. In particular, we address a number
questions that have been left unanswered. First, their algorithm
for computing the dual-eigenvectors relies on eigenvector
computation or singular value decomposition, neither of which
provides much geometric intuition. Thus, a natural question
is whether a more explicit relationship exists and if so what
information about the vector field can be revealed from this re-
lationship. Second, Zheng and Pang definecircular points for
asymmetric tensor fields that are the counterpart of degenerate
points in symmetric tensors. While they provide acircular
discriminant that can be used to detect circular points, it is
not clear how to compute the tensor index of circular points,
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(a) (b) (c) (d)
Fig. 1. The gradient tensor of a vector field (d) can provide additional information about the vector field that is difficult to extract from traditional vector
field visualization techniques, such as arrow plots (a), trajectories and color coding of vector field magnitude (b), or vector field topology (c) [4]. The colors
in (d) indicate the dominant flow motion (without translation) such as isotropic scaling, rotation, and anisotropic stretching. The tensor lines in (d) show the
structures in the eigenvectors and dual-eigenvectors of the tensor, which reflect the directions of anisotropic stretching. Notice that it is a challenging task to
use vector field visualization techniques (a-c) to provide insight such as locating stretching-dominated regions in the flow and identifying places where the
orientations of the stretching change significantly. On the other hand, visualizations based on the gradient tensor such as (d) facilitate the understanding of
these important questions. Detailed description for (d) will be discussed in Section IV-B. The flow field shown here is a planar slice of a three-dimensional
vector field that is generated by linear superposition of two Sullivan Vortices with opposite orientations [29] (Section V-A).

i.e., circular point classification (wedges, trisectors, etc). Third,
eigenvalues are an important aspect of tensor fields. Yet, there
is little discussion on the structures of eigenvalues by Zheng
and Pang. Finally, the focus of Zheng and Pang is on general
asymmetric tensor fields, and there is limited investigation of
the physical interpretation of their results in the context of
flow analysis.

To address these fundamental issues, we make the following
contributions:

1) We introduce the concepts ofeigenvalue manifold(a
hemisphere) andeigenvector manifold(a sphere), both
of which facilitate tensor analysis (Section IV).

2) With the help of the eigenvector manifold, we extend
the theoretical results of Zheng and Pang on eigenvector
analysis (Section IV-A) by:

a) providing an explicit and geometric characteri-
zation of the dual-eigenvectors (Section IV-A.1),
which enables degenerate point classification (Sec-
tion IV-A.2),

b) extending the Poincaré-Hopf theorem to asym-
metric tensor fields defined on two-dimensional
manifolds (Section IV-A.2),

c) and introducing pseudo-eigenvectors which we use
to illustrate the elliptical flow patterns in the com-
plex domains (Section IV-A.3).

3) We provide eigenvalue analysis based on a Voronoi par-
tition of the eigenvalue manifold (Section IV-B) which
allows us to maintain the relative strengths among the
three main non-translational flow components: isotropic
scaling, rotation, and anisotropic stretching. This par-
tition also demonstrates that direct transitions between
certain dominant-to-dominant components are impossi-
ble, such as between clockwise and counterclockwise
rotations. The transition must go through a dominant
flow pattern other than rotation.

4) We present a number of novel vector and tensor field
visualization techniques based on our eigenvalue and
eigenvector analysis (Sections IV-A and IV-B).

5) Our analysis and visualization techniques can apply to
asymmetric tensor fields on two-dimensional manifolds
in 3D (Sections V-B and V-C). To our knowledge, this
is the first time asymmetric tensor fields on surfaces
embedded in 3D are analyzed and visualized.

6) We provide physical interpretation of our analysis in the
context of flow visualization (Section V).

The remainder of the paper is organized as follows. We
will first review related existing techniques in vector and
tensor field visualization and analysis in Section II and provide
relevant background on symmetric and asymmetric tensor
fields in Section III. Then in Section IV, we describe our
analysis and visualization approaches for asymmetric tensor
fields defined on two-dimensional manifolds. We provide some
physical intuition about our approach and demonstrate the
effectiveness of our analysis and visualization by applying
them to the Sullivan Vortex as well as cooling jacket and
diesel engine simulation applications in Section V. Finally,
we summarize our work and discuss some possible future
directions in Section VI.

II. PREVIOUS WORK

There has been extensive work in vector field analysis and
flow visualization [20], [21]. However, relatively little work
has been done in the area of flow analysis by studying the
structures in the gradient tensor, an asymmetric tensor field.
In general, previous work is limited to the study of symmetric,
second-order tensor fields. Asymmetric tensor fields are usu-
ally decomposed into a symmetric tensor field and a rotational
vector field and then visualized simultaneously (but as two
separate fields). In this section, we review related work in
symmetric and asymmetric tensor fields.

A. Symmetric Tensor Field Analysis and Visualization

Symmetric tensor field analysis and visualization has been
well researched for both two- and three-dimensions. To refer
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to all past work is beyond the scope of this paper. Here we
will only refer to the most relevant work.

Delmarcelle and Hesselink [7] provides a comprehensive
study on the topology of two-dimensional symmetric tensor
fields and definehyperstreamlines(also referred to astensor
lines), which they use to visualize tensor fields. This research
is later extended to analysis in three-dimensions [13], [38],
[40] and topological tracking in time-varying symmetric tensor
fields [30].

Zheng and Pang provide a high-quality texture-based tensor
field visualization technique, which they refer to asHy-
perLIC [37]. This work adapts the idea ofLine Integral
Convolution (LIC) of Cabral and Leedom [3] to symmetric
tensor fields. Zhang et al. [35] develop a fast and high-quality
texture-based tensor field visualization technique, which is a
non-trivial adaptation of theImage-Based Flow Visualization
(IBFV) of van Wijk [33]. Hotz et al. [15] present a texture-
based method for visualizing 2D symmetric tensor fields.
Different constituents of the tensor field corresponding to
stress and strain are mapped to visual properties of a texture
emphasizing regions of expansion and contraction.

To reduce the noise and small-scale features in the data
and therefore enhance the effectiveness of visualization, a
symmetric tensor field is often simplified either geometrically
through Laplacian smoothing of tensor values [1], [35] or
topologically using degenerate point pair cancellation [31],
[35] and degenerate point clustering [32].

We also note that the results presented in this paper exhibit
some resemblance to those usingClifford Algebra [9], [14],
[8], in which vector fields are decomposed into different local
patterns, e.g., sources, sinks, and shear flows, and then color-
coded.

B. Asymmetric Tensor Field Analysis and Visualization

Analysis of asymmetric tensor fields is relatively new in
visualization. Zheng and Pang provide analysis on 2D asym-
metric tensors [39]. Their analysis includes the partition of
the domain into real and complex, defining and use of dual-
eigenvectors for the visualization of tensors inside complex
domains, incorporation of degenerate curves into tensor field
topology, and a circular discriminant that enables the detection
of degenerate points (circular points).

In this paper, we extend the analysis of Zheng and Pang
by providing an explicit formulation of the dual-eigenvectors,
which allows us to perform degenerate point classification
and extend the Poincaré-Hopf theorem to two-dimensional
asymmetric tensor fields. We also introduce the concepts of
pseudo-eigenvectors which can be used to illustrate the ellip-
tical patterns inside complex domains. Such illustration cannot
be achieved through the visualization of dual-eigenvectors.
Moreover, we provide the analysis on the eigenvalues which
we incorporate into visualization. Finally, we provide explicit
physical interpretation of our analysis in the context of flow
semantics.

III. B ACKGROUND ON TENSORFIELDS

We first review some relevant facts about tensor fields on
two-dimensional manifolds. An asymmetric tensor fieldT for

a manifold surfaceM is a smooth tensor-valued function
that associates with every pointp ∈M a second-order tensor

T(p) =
(

T11(p) T12(p)
T21(p) T22(p)

)
under some local coordinate sys-

tem in the tangent plane atp. The entries ofT(p) depend on
the choice of the coordinate system. A tensor[Ti j ] is symmetric
if Ti j = Tji .

A. Symmetric Tensor Fields

A symmetric tensorT can be uniquely decomposed into the
sum of its isotropic partD and the (deviatoric tensor) A:

D+A =
(T11+T22

2 0
0 T11+T22

2

)
+

(T11−T22
2 T12

T12
T22−T11

2

)
(1)

T has eigenvaluesγd± γs in which γd = T11+T22
2 and γs =√

(T11−T22)2+4T2
12

2 ≥ 0. Let E1(p) andE2(p) be unit eigenvectors
that correspond to eigenvaluesγd +γs andγd−γs, respectively.
E1 and E2 are themajor and minor eigenvector fields ofT.
T(p) is equivalent to two orthogonal eigenvector fields:E1(p)
and E2(p) when A(p) 6= 0. Delmarcelle and Hesselink [6]
suggest visualizingtensor lines, which are curves that are
tangent to an eigenvector field everywhere along its path.

Different tensor lines can only meet at degenerate points,
where A(p0) = 0 and major and minor eigenvectors are not
well-defined. The most basic types of degenerate points are:
wedgesand trisectors. Delmarcelle and Hesselink [6] define a
tensor indexfor an isolated degenerate pointp0, which must
be a multiple of 1

2 due to the sign ambiguity in tensors. It
is 1

2 for a wedge,−1
2 for a trisector, and0 for a regular

point. Delmarcelle shows that the total indices of a tensor
field with only isolated degenerated points is related to the
topology of the underlying surface [5]. LetM be a closed
orientable manifold with an Euler characteristicχ(M), and let
T be a continuous symmetric tensor field with only isolated
degenerate points{pi : 1≤ i ≤N}. Denote the tensor index of
pi as I(pi ,T). Then:

N

∑
i=1

I(pi ,T) = χ(M) (2)

In this paper, we will adapt the classification of degenerate
points of symmetric tensor fields to asymmetric tensor fields.

B. Asymmetric Tensor Fields

An asymmetric tensor differs from a symmetric one in
many aspects, the most significant of which is perhaps that an
asymmetric tensor can have complex eigenvalues for which
no real-valued eigenvectors exist. Given an asymmetric tensor
field T, the domain ofT can be partitioned intoreal domains
(real eigenvaluesλi whereλ1 6= λ2), degenerate curves(real
eigenvaluesλi whereλ1 = λ2), andcomplex domains(complex
eigenvalues). Degenerate curves form the boundary between
the real domains and complex domains.

In the complex domains where no real eigenvectors ex-
ist, Zheng and Pang [39] introduce the concept ofdual-
eigenvectorswhich are real-valued vectors and can be used to
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describe the elongated directions of the elliptical patterns when
the asymmetric tensor field is the gradient of a vector field. The
dual-eigenvectors in the real domains are the bisectors between
the major and minor eigenvectors. The following equations
characterize the relationship between the dual-eigenvectorsJ1

(major) andJ2 (minor) and the eigenvectorsE1 (major) and
E2 (minor) in the real domains:

E1 =
√

µ1J1 +
√

µ2J2, E2 =
√

µ1J1−√µ2J2 (3)

as well as in the complex domains:

E1 =
√

µ1J1 + i
√

µ2J2, E2 =
√

µ1J1− i
√

µ2J2 (4)

whereµ1 and µ2 are the singular values in the singular value
decomposition. Furthermore, the following fields:

Vi(p) =
{

Ei(p) T(p) in the real domain
J1(p) T(p) in the complex domain

(5)

i = 1,2 are continuous across degenerate curves. Either field
can be used to visualize the asymmetric tensor field.

Dual-eigenvectors are undefined atdegenerate points, where
the circular discriminant:

∆2 = (T11−T22)2 +(T12+T21)2 (6)

achieves a value of zero. Degenerate points represent locations
where flow patterns are purely circular, and they only occur
inside complex domains. They are also referred to ascircular
points[39], and together with degenerate curves they form the
asymmetric tensor field topology.

In this paper, we extend the aforementioned analysis of
Zheng and Pang [39] in several aspects that include a ge-
ometric interpretation of the dual-eigenvectors (Section IV-
A.1), the classification of degenerate points and the extension
of the Poincaŕe-Hopf theorem from symmetric tensor fields
(Equation 2) to asymmetric tensor fields (Section IV-A.2), the
introduction and use ofpseudo-eigenvectorsfor the visualiza-
tion of tensor structures inside complex domains (Section IV-
A.3), and the incorporation of eigenvalue analysis (Section IV-
B).

IV. A SYMMETRIC TENSORFIELD ANALYSIS AND

V ISUALIZATION

Our asymmetric tensor field analysis starts with a parame-
terization for the set of2×2 tensors.

It is well known that any second-order tensor can be
uniquely decomposed into the sum of its symmetric and
anti-symmetric components, which measure the impacts of
scaling and rotation caused by the tensor, respectively. Another
popular decomposition removes the trace component from
a symmetric tensor which corresponds to isotropic scaling
(Equation 1). The remaining constituent, thedeviatoric tensor,
has a zero trace and measures the anisotropy in the original
tensor. We combine both decompositions to obtain the follow-
ing unified parameterization of the space of2×2 tensors:

T = γd

(
1 0
0 1

)
+ γr

(
0 −1
1 0

)
+ γs

(
cosθ sinθ
sinθ −cosθ

)
(7)

where γd = T11+T22
2 , γr = T21−T12

2 , γs =
√

(T11−T22)2+(T12+T21)2

2
are thestrengthsof isotropic scaling, rotation, and anisotropic
stretching, respectively. Note thatγs≥ 0 while γr and γd can
be any real number.θ ∈ [0,2π) is the angular component of

the vector

(
T11−T22

T12+T21

)
, which encodes the orientation of the

stretching.
In this paper, we focus on how the relative strengths of the

three components effect the eigenvalues and eigenvectors in
the tensor. Given our goals, it suffices to studyunit tensors,
i.e., γ2

d + γ2
r + γ2

s = 1.
The space of unit tensors is a three-dimensional manifold,

for which direct visualization is formidable. Fortunately, the
eigenvalues of a tensor only depend onγd, γr , and γs, while
the eigenvectors depend onγr , γs, andθ . Therefore, we define
the eigenvalue manifoldMλ as:

{(γd,γr ,γs)|γ2
d + γ2

r + γ2
s = 1 and γs≥ 0} (8)

and theeigenvector manifoldM v as:

{(γr ,γs,θ)|γ2
r + γ2

s = 1 and γs≥ 0 and0≤ θ < 2π}. (9)

Both Mλ andMv are two-dimensional, and their structures
can be understood in a rather intuitive fashion. A second-order
tensor fieldT(p) defined on a two-dimensional manifoldM
introduces the followingcontinuousmaps:

ζT : M →Mλ , ηT : M →Mv, (10)

In the next two sections, we describe the analysis ofMλ and
Mv.

A. Eigenvector Manifold

The analysis on eigenvectors and dual-eigenvectors by
Zheng and Pang [39] can be largely summarized by Equa-
tions 3-6. The eigenvector manifold presented here not only al-
lows us to provide more geometric (intuitive) reconstruction of
their results, but also leads to novel analysis that includes the
classification of degenerate points, extension of the Poincaré-
Hopf theorem to two-dimensional asymmetric tensor fields,
and the definition of pseudo-eigenvectors which we use to
visualize tensor structures inside the complex domains. We
begin with the definition of the eigenvector manifold.

The eigenvectors of an asymmetric tensor expressed in the
form of Equation 7 only depend onγr , γs, andθ . Given that
the tensor magnitude and the isotropic scaling component do
not affect the behaviors of eigenvectors, we will only need to
consider unit traceless tensors, i.e.,γd = 0 and γ2

r + γ2
s = 1.

They have the following form:

T(θ ,ϕ) = sinϕ
(

0 −1
1 0

)
+cosϕ

(
cosθ sinθ
sinθ −cosθ

)
(11)
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Fig. 2. The eigenvector manifold (left) is partitioned into real domains in the northern hemisphere (Wr,n) and the southern hemisphere (Wr,s) as well as
complex domains in these hemispheres (Wc,n and Wc,s). The orientation of the rotational component is counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere. The equator represents pure symmetric tensors, while the poles represent pure rotations. Along any longitude, (e.g.,
θ = 0 (right)), and starting from the intersection with the equator and going north (right), the major dual-eigenvectors (blue lines) remain constant. In the real
domains, i.e.,0≤ ϕ < π

4 , the angle between the major eigenvectors (solid cyan lines) and the minor eigenvectors (solid green lines) monotonically decreases
to 0. The angle is exactly0 when the magnitude of the stretching constituent equals that of the rotational part. Inside the complex domains where major and
minor eigenvectors are not real, pseudo-eigenvectors (cyan and green dashed lines, details in Definition 4.6) are used for visualization purposes. The major and
minor pseudo-eigenvectors atϕ ( π

4 < ϕ < π
2 ) are defined to be the same as the minor and major eigenvectors forπ

2 −ϕ along the same longitude. Traveling
south of the equator towards the south pole, the behaviors of the eigenvectors and pseudo-eigenvectors are similar except they rotate in the opposite direction.
At the equator, there are two bisectors, i.e., major and minor dual-eigenvectors cannot be distinguished. We consider the equator a bifurcation point and
therefore part of tensor field topology. On a different longitude, the same pattern repeats except the eigenvectors, dual-eigenvectors, and pseudo-eigenvectors
are rotated by a constant angle. Different longitudes correspond to different constant angles.

Fig. 3. Example vector fields whose gradient tensors correspond to points along the longitudeθ = 0 (Figure 2 (right)).

in which ϕ = arctan( γr
γs

) ∈ [−π
2 , π

2 ]. Consequently, the set of
unit traceless2×2 tensors can be represented by a unit sphere
which we refer to as theeigenvector manifold(Figure 2 (left)).
The following observation provides some intuition about the
eigenvector manifold.

Theorem 4.1:Given two tensorsTi = T(θi ,ϕ) (i = 1,2) on

the same latitude−π
2 < ϕ < π

2 , let N =
(

cosδ −sinδ
sinδ cosδ

)

with δ = θ2−θ1
2 . Then any eigenvector or dual-eigenvector−→w2

of T2 can be written asN−→w1 where−→w1 is an eigenvector or
dual-eigenvector ofT1, respectively.

The proofs of this theorem and the theorems thereafter are
provided in the Appendix.

Theorem 4.1 states that as one travels along a latitude in the
eigenvector manifold, the eigenvectors and dual-eigenvectors
are rotated at the same rate. This suggests that the fundamental
behaviors of eigenvectors and dual-eigenvectors are dependent

on ϕ only. In contrast,θ only impacts the directions of the
eigenvectors and dual-eigenvectors, but not their relatively
positions (Figure 2, right).

Next, we will make use of the eigenvector manifold to
provide a geometric construction of the dual-eigenvectors
(Section IV-A.1), classify degenerate points and extend the
Poincaŕe-Hopf theorem to asymmetric tensor fields (Sec-
tion IV-A.2), and introduce the pseudo-eigenvectors which
we use to illustrate tensor structures in the complex domains
(Section IV-A.3).

1) Geometric Construction of Dual-Eigenvectors:Theo-
rem 4.1 allows us to focus on the behaviors of eigenvectors
and dual-eigenvectors along the longitude whereθ = 0, for
which Equation 11 reduces to:

T =
(

cosϕ −sinϕ
sinϕ −cosϕ

)
(12)
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The tensors have zero, one, or two real eigenvalues when
cos2ϕ < 0, = 0, or > 0, respectively. Consequently, the tensor
is referred to as beingin the complex domain, on a degenerate
curve, or in the real domain[39]. Notice that the tensor is on
a degenerate curve if and only ifϕ =±π

4 .
In the complex domains, it is straightforward to verify

that

(
1
1

)
and

(
1

−1

)
are the dual-eigenvectors except when

ϕ = ±π
2 , i.e., degenerate points. In the real domains, the

eigenvalues are±√cos2ϕ . A major eigenvector is:
(√

sin(ϕ + π
4 )+

√
cos(ϕ + π

4 )√
sin(ϕ + π

4 )−√
cos(ϕ + π

4 )

)
(13)

and a minor eigenvector is:
(√

sin(ϕ + π
4 )−√

cos(ϕ + π
4 )√

sin(ϕ + π
4 )+

√
cos(ϕ + π

4 )

)
(14)

The bisectors between them are linesX = Y and X = −Y
whereX andY are the axes of the coordinate systems in the
tangent plane at each point. That is, the dual-eigenvectors in

the real domains are also

(
1
1

)
and

(
1

−1

)
. Combined with

the dual-eigenvector derivation in the complex domains, it
is clear that the dual-eigenvectors remain the same for any
ϕ ∈ (−π

2 , π
2 ). This is significant as it implies that the dual-

eigenvectors depend primarily on the symmetric component
of a tensor field.

The anti-symmetric (rotational) component impact the dual-
eigenvectors in the following way. In the northern hemisphere

where γr = sinϕ > 0, a major dual-eigenvector is

(
1
1

)
, and

a minor dual-eigenvector is

(
1

−1

)
. In the southern hemi-

sphere (γr = sinϕ < 0), the values of the dual-eigenvectors are
swapped. Consequently, the major dual-eigenvector fieldJ1 is
discontinuous across curves whereϕ = 0, which correspond to
pure symmetric tensors (Equation 11) that form the boundaries
between regions of counterclockwise rotations and regions of
clockwise rotations.

With the help of Theorem 4.1, the above discussion can be
formulated into the following.

Theorem 4.2:The major and minor dual-eigenvectors of a
tensorT(θ ,ϕ) are respectively the major and minor eigenvec-
tors of the following symmetric tensor:

PT =
γr

|γr |γs

(
cos(θ + π

2 ) sin(θ + π
2 )

sin(θ + π
2 ) −cos(θ + π

2 )

)
(15)

whereverPT is non-degenerate, i.e.,γr = cosϕ 6= 0 and γs =
sinϕ 6= 0.

This inspires us to incorporate places corresponding toϕ =
0 into tensor field topology in addition toϕ =±π

4 (degenerate
curves) andϕ = ±π

2 (degenerate points). Symmetric tensors
and degenerate curves divide the eigenvector manifoldMv

into four regions: (1) real domains in the northern hemisphere
(Wr,n), (2) real domains in the southern hemisphere (Wr,s), (3)
complex domains in the northern hemisphere (Wc,n), and (4)
complex domains in the southern hemisphere (Wc,s). Figure 2
(left) illustrates this partition.

Notice thatϕ measures thesignedspherical distance of a
unit traceless tensor to pure symmetric tensors (the equator).
For example, the north pole has a positive distance and the
south pole has a negative distance. In contrast, the circular
discriminant∆2 (Equation 6) satisfies∆2 = 4γs, which implies
that ∆2 does not make such a distinction between the two
hemispheres. Therefore, we advocate the use ofϕ as a measure
for the degree of being symmetric of an asymmetric tensor.

2) Degenerate Point Classification:Next, we discuss the
degenerate points where dual-eigenvectors are undefined, i.e.,
circular points. We provide the following definition:

Definition 4.3: Given a continuous asymmetric tensor field
T defined a two-dimensional manifoldM , let Ω be a small
circle aroundp0 ∈ M such thatΩ contains no additional
degenerate points and it encloses only one degenerate point,
p0. Starting from a point onΩ and travelling counterclockwise
alongΩ, the major dual-eigenvector field (after normalization)
covers the unit circleS1 a number of times. This number is
said to be the tensor index ofp0 with respect toT, and is
denoted byI(p0,T).

We now return to the discussion on degenerate points,
which correspond to the poles (ϕ = ±π

2 ), i.e., γs = 0. The
relationship between the dual-eigenvectors of an asymmetric
tensor T(θ ,ϕ) and the corresponding symmetric tensorPT

described in Equation 15 leads to the following theorem:
Theorem 4.4:Let T be a continuous asymmetric tensor

field defined on a two-dimensional manifoldM satisfying
γ2

r + γ2
s > 0 everywhere inM . Let ST be the symmetric

component ofT which has a finite number of degenerate points
K = {pi : 1≤ i ≤ N}. Then we have:

1) K is also the set of degenerate points ofT.
2) For any degenerate pointpi , I(pi ,T) = I(pi ,ST). In

particular, a wedge remains a wedge, and a trisector
remains a trisector.

This theorem allows us to not only detect degenerate points,
but also classify them based on their tensor indexes (wedges,
trisectors, etc) and the hemisphere they dwell on, something
not addressed by Zheng and Pang’s analysis [39]. Furthermore,
this theorem leads directly to the extension of the well-known
Poincaŕe-Hopf theoremfor vector fields to asymmetric tensor
fields as follows.

Theorem 4.5:Let M be a closed orientable two-
dimensional manifold with an Euler characteristicχ(M),
and letT be a continuous asymmetric tensor field with only
isolated degenerate points{pi : 1≤ i ≤ N}. Then:

N

∑
i=1

I(pi ,T) = χ(M) (16)

The eigenvector manifold also provides hints that degenerate
points occurring at opposite poles have different rotational
orientations. In fact, any tensor line connecting a degenerate
point pair inside different hemispheres necessarily crosses the
equator (pure symmetric tensors) an odd number of times.
In contrast, when the degenerate point pair is in the same
hemisphere, any connecting tensor line will cross the equator
an even number of times or remain in the same hemisphere
(zero crossing).
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(a) (b) (b′) (c)
Fig. 4. Three tensor line-based techniques in visualizing the eigenvectors of the vector field shown in Figure 1. In (a), the regions with a single family of tensor
lines are the complex domains and the regions with two families of tensor lines are the real domains. Red indicates a counterclockwise rotational component
while green suggests a clockwise one. The major and minor eigenvectors (real domains) are colored black and white, respectively. The blue tensor lines inside
the complex domains follow the major dual-eigenvectors. In (b), dual-eigenvectors are replaced by pseudo-eigenvectors (blue) inside complex domains. The
image in (c) is obtained from (b) by blending it with a texture-based visualization of the vector field. In (b’), the physical meanings of eigenvectors (top) and
pseudo-eigenvectors (bottom) are annotated.

3) Pseudo-Eigenvectors:We conclude our analysis with
the introduction of pseudo-eigenvectors, which like dual-
eigenvectors are continuous extensions of eigenvectors into the
complex domains. Unlike dual-eigenvectors, however, pseudo-
eigenvectors are not mutually perpendicular. Recall that in
the complex domains, flow patterns without translations and
isotropic scalings are ellipses, whose elongated directions are
represented by the major and minor dual-eigenvectors [39].
Unfortunately, the elliptical patterns cannot be demonstrated
by drawing tensor lines following the major and minor dual-
eigenvectors since they are always mutually perpendicular. To
remedy this, we observe that an ellipse can be inferred from
the smallest enclosing diamond whose diagonals represent the
major and minor axes of the ellipse (Figure 4 (b’): bottom).
Given two families of evenly-spaced lines of the same density
d intersecting at an angleα = f (θ), any ellipse can be
represented. Our question then is: given a tensorT(θ ,ϕ)
where π

4 < |ϕ| < π
2 , how do we decide the directions of the

two families of lines? This leads to the following definitions:
Definition 4.6: Given a tensorT = T(θ ,ϕ), the major

pseudo-eigenvectorof T is defined to be theminor eigenvector
of the tensorT(θ , π

2 − ϕ) when ϕ > π
4 and T(θ ,−π

2 − ϕ)
when ϕ <−π

4 . Similarly, theminor pseudo-eigenvectorof T
is defined to be themajor eigenvector of the same tensors
under these conditions.

It is straightforward to verify that evenly-spaced lines
following the major and minor pseudo-eigenvectors produce
diamonds whose smallest enclosing ellipses represent the flow
patterns corresponding toT in the complex domains (Figure 3:
ϕ = ±3π

8 ). Notice that the definitions of the major and
minor pseudo-eigenvectors can be swapped as evenly-spaced
lines following either definition produce the same diamonds.
Because of this, we assign the same color (blue) to both
pseudo-eigenvector fields in our visualization techniques in
which they are used (Figure 4 (b-c)).

Both major and minor pseudo-eigenvector fieldsPi (i = 1,2)
in the complex domains are continuous with respect to the
major and minor eigenvector fieldsEi (i = 1,2) in the real

domains across degenerate curves. Thus we define themajor
and minor augmented eigenvector fieldsAi (i = 1,2) as:

Ai(p) =
{

Ei(p) T(p) in the real domain
Pi(p) T(p) in the complex domain

(17)

The major and minor pseudo-eigenvectors are undefined at
degenerate points, i.e.,ϕ = ±π

2 . In fact, the set of degen-
erate points of either pseudo-eigenvector field matches that
of the major dual-eigenvector field (number, location, tensor
index), thus respecting the adapted Poincaré-Hopf theorem for
asymmetric tensor fields (Theorem 4.5). The orientations of
tensor patterns in the pseudo-eigenvector fields near degenerate
points are obtained by rotating patterns in the major dual-
eigenvector field in the same regions byπ

4 either counterclock-
wise (ϕ > 0) or clockwise (ϕ < 0).

4) Visualizations:In Figure 4, we apply three visualization
techniques based on eigenvector analysis to the vector field
shown in Figure 1. In addition to the option of visualizing
eigenvectors in the real domains and major dual-eigenvectors
in complex domain (Figure 4 (a)), pseudo-eigenvectors provide
an alternative (Figure 4 (b)). In these images, the background
colors are either red (counterclockwise rotation) or green
(clockwise rotation). Tensor lines following the major and
minor eigenvector fields are colored in black and white,
respectively. Tensor lines according to the dual-eigenvector
field (a) and pseudo-eigenvector fields (b) are colored in blue,
which makes it easy to distinguish between real and complex
domains. Degenerate points are highlighted as either black
(wedges) or white (trisectors) disks. Note that it is easy to
see the topology of tensor fields (degenerate points, degen-
erate curves, purely symmetric tensors) in these visualization
techniques. Figure 4 (c) overlays the eigenvector visualization
in (b) onto texture-based visualization of the vector field. It is
evident that flow directions do not align with the eigenvector
or pseudo-eigenvector directions. Furthermore, as expected the
fixed points in the vector field and degenerate points in the
tensor field appear in different locations.
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B. Eigenvalue Manifold

We now describe our analysis on the eigenvalues of2×2
tensors, which have the following forms:

λ1,2 =
{

γd±
√

γ2
s − γ2

r if γ2
s ≥ γ2

r

γd±i
√

γ2
r − γ2

s if γ2
s < γ2

r
(18)

Recall thatγd, γr , and γs represent the (relative) strengths
of the isotropic scaling, rotation, and anisotropic stretching
components in the tensor field.

To understand the nature of a tensor usually requires the
study of γd, γr , γs, or some of their combinations. Since no
upper bounds on these quantities necessarily exist, the effec-
tiveness of the visualization techniques can be limited by the
ratio between the maximum and minimum values. However,
it is often desirable to answer the following questions:

• What are the relative strengths of the three components
(γd, γr , andγs) at a pointp0?

• Which of these components is dominant atp0?

Both questions are more concerned with the relative ratios
among γd, γr , and γs rather than their individual values,
which makes it possible to focus on unit tensors, i.e., when
γ2
d +γ2

r +γ2
s = 1 andγs≥ 0. The set of all possible eigenvalue

configurations satisfying these conditions can be modeled
as a unit hemisphere, which is a compact two-dimensional
manifold (Figure 5 upper-left).

There are five special points in the eigenvalue manifold
that represent the extremal situations: (1) pure positive scaling
(γd = 1, γr = γs = 0), (2) pure negative scaling (γd = −1,
γr = γs = 0), (3) pure counterclockwise rotation (γr = 1, γd =
γs = 0), (4) pure clockwise rotation (γr = −1, γd = γs = 0),
and (5) pure anisotropic stretching (γs = 1, γd = γr = 0)
(Figure 5 (upper-left)). The Voronoi diagram with respect
to these configurations leads to a partition of the eigenvalue
manifold into the following types of regions: (1)D+ (positive
scaling dominated), (2)D− (negative scaling dominated), (3)
R+ (counterclockwise rotation dominated), (4)R− (clockwise
rotation dominated), and (5)S (anisotropic stretching dom-
inated). Here, the distance function is the spherical geodesic
distance, i.e.,d(v1,v2) = 1−v1 ·v2 for any two pointsv1 andv2

on the eigenvalue manifold. The resulting diagram is illustrated
in Figure 5 (upper-middle).

A point p0 in the domain is said to be a typeD+ point
if T(p0) is in the Voronoi cell of pure positive scaling,
i.e., γd(p0) > max(γs(p0), |γr(p0)|). A D+-type regionR is a
connected region in which every point is of typeD+. Points
and regions corresponding to the other types can be defined in
a similar fashion. We define the topology of a tensor field with
respect to eigenvalues as the set of points in the domain whose
tensor values map to the boundaries between the Voronoi
cells in the eigenvalue manifold. The following result is a
straightforward derivation from the Voronoi decomposition of
the eigenvalue manifold.

Theorem 4.7:Given a continuous asymmetric tensor field
T defined on a two-dimensional manifoldM , let U1 and
U2 be anα- and β -type region, respectively, whereα,β ∈
{D+,D−,R+,R−,S} are different. Then∂U1

⋂
∂U2 = /0 if α-

andβ -types represent regions in the eigenvalue manifold that
do not share a common boundary.

As an application of this theorem, we state that a continuous
path travelling from anR+-type region to anR−-type region
must intersect with aD+-, D−-, or S-type region. A similar
statement can be made between aD+- and D−-type region
pair. Note these statements can be difficult to verify without
the use of eigenvalue manifold.

We propose two visualization techniques. With the first
technique, we assign a unique color to each of the five special
configurations shown in Figure 5 (upper-middle). Effective
color assignment can allow the user to identify the type
of primary characteristic at a given point as well as the
relative ratios among the three components. We use the scheme
shown in Figure 5 (upper-right): pure positive isotropic scaling
(yellow), pure negative isotropic scaling (blue), pure coun-
terclockwise rotation (red), pure clockwise rotation (green),
and pure anisotropic stretching (white). For any other point
(γd(x,y),γr(x,y),γs(x,y)), we computeα as the angular com-
ponent of the vector(γd(x,y),γr(x,y)) with respect to(1,0)
(counterclockwise rotation). The hue of the color is then:

{ 2
3α if 0≤ α < π
4
3α if −π ≤ α < 0

(19)

Notice that angular distortion ensures that the two isotropic
scalings and rotations will be assigned opposite colors, re-
spectively. Our color legend is adopted from Ware [34]. The
saturation of the color reflectsγ2

d(x,y)+γ2
r (x,y), and the value

of the color is always one. This ensures that as the amount of
anisotropic stretching increases, the color gradually changes
to white, which is consistent with our choice of color for
representing anisotropic stretching. Figure 6 (a) illustrates this
visualization with the vector field shown in Figure 1.

Our second eigenvalue visualization method assigns a
unique color to each of the five Voronoi cells in the eigenvalue
manifold. Figure 6 (b) shows this visualization technique for
the aforementioned vector field.

Notice that the two techniques differ in how they address
the transitions between regions of different dominant char-
acteristics. The first method allows for smooth transitions
and preserves relative strengths ofγd, γr , and γs, which we
refer to as the AC (all components) method. The second
method explicitly illustrates the boundaries between regions
with different dominant behaviors, which we refer to as the
DC (dominant component) method. We use both methods in
our interpretations of the data sets (Section V). To illustrate the
absolute magnitude of the tensor field, we provide a visualiza-
tion in which the colors represent the magnitude of the gradient
tensor, i.e.,γ2

d + γ2
r + γ2

s (Figure 6 (c)). In this visualization,
red indicates high values and blues indicate low values. Notice
that this visualization can provide complementary information
than either the AC or DC method.

Combining visualizations based on eigenvalue and eigen-
vector analysis leads to several hybrid techniques. The fol-
lowing provides some insight on the link between eigenvalue
analysis and eigenvector analysis.

Theorem 4.8:Given a continuous asymmetric tensor field
T defined on a two-dimensional manifold such thatγ2

d + γ2
r +
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Fig. 5. The eigenvalue manifold of the set of2×2 tensors. There are five special configurations (top-left: colored dots). The top-middle portion shows a
top-down view of the hemisphere along the axis of anisotropic stretching. The hemisphere is decomposed into the Voronoi cells for the five special cases,
where the boundary curves are part of tensor field topology. To show the relationship between a vector field and the eigenvalues of the gradient, seven vector
fields with constant gradient are shown in the bottom row: (a)(γd,γr ,γs) = (1,0,0) , (b) (

√
2

2 ,0,
√

2
2 ), (c) (0,0,1), (d) (0,

√
2

2 ,
√

2
2 ), (e) (0,1,0), (f) (

√
2

2 ,
√

2
2 ,0),

and (g)(
√

3
3 ,

√
3

3 ,
√

3
3 ). Finally, we assign a unique color to every point in the eigenvalue manifold (upper-right). The boundary circle of the eigenvalue manifold

is mapped to the loop of the hues. Notice the azimuthal distortion in this map, which is needed in order to assign positive and negative scaling with hues
that are perceptually opposite. Similarly we assign opposite hues to distinguish between counterclockwise and clockwise rotations.

(a) (b) (c)
Fig. 6. Three visualization techniques on the vector field shown in Figure 1 (Section V-A): (a) eigenvalue visualization based on all components, (b)
eigenvalue visualization based on the dominant component, and (c) magnitude (dyadic product) of the velocity gradient tensor. The color scheme for (a) is
described in Figure 5 (upper-right). The color scheme for (b) is based on the dominant component in the tensor: positive scaling (green), negative scaling
(red), counterclockwise rotation (yellow), clockwise rotation (blue), and anisotropic stretching (white). In (c), red indicates large values and blue indicates
small.

γ2
s > 0 everywhere, the following are true:

1) an R+-type region is contained inWc,n and anR−-type
region is contained inWc,s,

2) an S-type region is contained inWr,n
⋃

Wr,s,
3) a D+-type or D−-type region can have a non-empty

intersection with any of the following:Wr,n, Wr,s, Wc,n,
andWc,s.

Three hybrid visualizations are shown in Figure 7. In (a),
the colors are obtained by combining the colors from the
eigenvalue visualization (Figure 6 (b)) with the background
colors (red or green) from eigenvector visualization (Figure 4

(a)). This results in eight different colors according to Theo-
rem 4.8):
• C1 = R+ ⋂

Wc,n (red),
• C2 = R−

⋂
Wc,s (green),

• C3 = D+ ⋂
(Wc,n

⋃
Wr,n) (yellow+red),

• C4 = D+ ⋂
(Wc,s

⋃
Wr,s) (yellow+green),

• C5 = D−⋂
(Wc,n

⋃
Wr,n) (blue+red),

• C6 = D−⋂
(Wc,s

⋃
Wr,s) (blue+green),

• C7 = S
⋂

(Wc,n
⋃

Wr,n) (white+red),
• C8 = S

⋂
(Wc,s

⋃
Wr,s) (white+green),

Furthermore,C5−C8 can be in either the real or complex
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(a) (b) (c)
Fig. 7. Example hybrid visualization techniques on the vector field shown in Figure 1: (a) a combination of eigenvalue-based visualization (Figure 6 (b))
with the background color (red and green) from eigenvector-based visualization (Figure 4 (a)), (b) same as (a) except the underlying texture-based vector field
visualization is replaced by eigenvectors and major dual-eigenvectors, and (c) a combination of (a) and (b).

domain. This can be distinguished based on the colors of the
tensor lines (see Figure 7 (b)): real domains (tensor lines in
black and white) and complex domains (tensor lines in blue).
Figure 7 (c) is obtained by combining the visualizations in
Figure 7 (a) and (b).

C. Computation of Field Parameters

Our system can accept either a tensor field or a vector field.
In the latter case, the vector gradient (a tensor) is used as the
input. The computational domain is a triangular mesh in either
a planar domain or a curved surface. The vector or tensor field
is defined at the vertices only. To obtain values at a point on
the edge or inside a triangle, we use a piecewise interpolation
scheme. On surfaces, we use the scheme of Zhang et al. [36],
[35] that ensures vector and tensor field continuity in spite of
the discontinuity in the surface normal.

Given a tensor fieldT, we first perform the following
computation for every vertex.
• Repamaterization, in which we computeγd, γr , γs, andθ .
• Normalization, in which we scaleγd, γr , andγs to ensure

γ2
d + γ2

r + γs
d = 1.

• Eigenvector analysis, in which we extract the eigenvec-
tors, dual-eigenvectors, and pseudo-eigenvectors at each
vertex.

Next, we extract the topology of the tensor field with respect
to the eigenvalues. This is done by visiting every edge in the
mesh to locate possible intersection points with the boundary
curves of the Voronoi cells shown in Figure 5. We then connect
the intersection points whenever appropriate.

Finally, we extract tensor topology based on eigenvectors.
This includes the detection and classification of degenerate
points as well as the extraction of degenerate curves and
symmetric tensors.

V. PHYSICAL INTERPRETATION ANDAPPLICATIONS

In this section, we describe the physical interpretation of
our asymmetric tensor analysis in the context of fluid flow

fields. Letu be the flow velocity. The velocity gradient tensor
∇u consists of all the possible fluid motions except translation
and can be decomposed into three terms [2], [27]:

∇u =
trace[∇u]

N
δi j +Ωi j +Ei j (20)

where δi j is the Kronecker delta, N is the dimension of
the domain (either2 or 3), trace[∇u]

N δi j represents the volume
distortion or expansion and contraction (equivalent toisotropic
scaling in mathematical terms), and the anti-symmetric tensor
Ωi j = 1

2(∇u− (∇u)T) represents the averaged rotation of a
fluid parcel. SinceΩi j has only three entities whenN = 3, it
can be considered as a pseudo-vector; twice the magnitude of
the vector is calledvorticity. The symmetric tensor:

Ei j =
1
2
(∇u+(∇u)T)− trace[∇u]

N
δi j (21)

is termed therate-of-strain tensor(or deformation tensor) that
represents the angular deformation, i.e. the stretching of a fluid
element along a principle axis. Notice that in two-dimension
cases (N = 2) Equation 20 corresponds directly to the tensor
reparamterization (Equation 7) in whichγd = trace[∇u]

N , γr =

|Ω12|, γs =
√

E2
11+E2

12, and θ = tan−1(E12
E11

). Consider the
gradient tensor of a two-dimensional flow field (see Figures 6
and 7 for an example), the counterclockwise and clockwise
rotations in the tensor field indicate positive vorticities (red)
and negative vorticities (green), respectively . The positive and
negative isotropic scalings represent expansion and contraction
of the fluid elements (yellow and blue). The anisotropic
stretching is equivalent to the rate of angular deformation, i.e.,
shear strain (white). Furthermore, as illustrated in Figure 3,
eigenvectors in the real domain represent deformation patterns
of fluid elements, while dual-eigenvectors in the complex
domain represent the skewed (elliptical) rotation pattern.

For the analysis of three-dimensional incompressible-fluid
flows (∑3

i=1Tii = 0) confined to a plane (e.g., Figures 6 and 7),
twice the trace of∇u can be written asT11+T22 = −T33,
which represents the net flow to the plane from neighboring
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(a) (b) (c) (d)
Fig. 9. Four visualization techniques on the Sullivan flow (Section V-A): (a) vector field topology [4] with textures representing the vector field, (b) eigenvalue
visualization based on all components with textures showing major eigenvectors in the real domain and major dual-eigenvectors in the complex domain, (c)
same as (b) except that colors encode the dominant component, and (d) magnitude (dyadic product) of the velocity gradient tensor with the underlying textures
following the vector field. The visualization domain isr ≤ 2.667.

Fig. 8. The Sullivan Vortex viewed in (left) thex-y plane and (right) thex-z
plane.

planes: this is a consequence of mass conservation. Positive
scaling in the plane represents the effect of inflow from the
3D neighborhood of the plane. This can be also interpreted as
negative stretching of fluid material in the normal direction,
i.e. the velocity gradient in the direction normal to the plane
is negative (T33 < 0). A similar interpretation can be made
for negative scaling (T33 > 0). This would be stretching in the
normal direction. For compressible fluids, the interpretation
requires care: positive scaling can represent not only volu-
metric dilatation of compressible fluid, but also contain the
foregoing effect of inflow of the fluid from the neighborhood
of the subject plane.

A. Sullivan Vortex: a Three-Dimensional Flow

The first example we discuss is an analytical 3D incom-
pressible flow that is presented by Sullivan [29]. This is an
exact solution of the Navier-Stokes equations for a three-
dimensional vortex. The flow is characterized by:

ur(x,y,z)




cosθ
sinθ

0


+uθ (x,y,z)



−sinθ

cosθ
0


+uz(x,y,z)




0
0
1




(22)
in which:

ur =−ar +6ν/r[1−e−(ar2/2ν)]
uθ = (Γ/2πr)[H(ar2/2ν)/H(∞)]

uz = 2az[1−3e−ar2/2ν ] (23)

are the radial, azimuthal, and axial velocity components,
respectively. Here,a (flow strength),Γ (flow circulation), and
ν (kinematic viscosity) are constants,r =

√
x2 +y2, and:

H(s) =
∫ s

0
exp{−t +3

∫ t

0

1−e−τ

τ
dτ}dt (24)

Sketches of the flow pattern in the horizontal and vertical
planes are shown in Figure 8. Away from the vortex centerr →
∞, the flow is predominantly in the negative radial direction
(toward the center) with the accelerating upward flow:u≈
−ar, v≈ 0, w≈ 2az. On the other hand, asr becomes small
(r → 0), we haveu≈ 3ar, v≈ 0, w≈−4az. Figure 9 visualizes
one instance of the Sullivan Vortex witha = 1.5, Γ = 25, and
ν = 0.1 in the planez= 1.

Figure 9 (a) shows the velocity vector field together with
the topology [4] identifying the unstable focus (the green
dot) and the periodic orbit (the red loop). The images in
(b) and (c) are the eigenvalue visualizations based on all
components (AC method) and on the dominant component
(DC method), respectively. The textures in (b) and (c) illustrate
the major eigenvector field in the real domains and the major
dual-eigenvector field in the complex domains. Due to the
normalization of tensors, our visualization techniques shown
in (b) and (c) exhibit relative strengths of tensor components
(γd, γr , and γs) at a given point. To examine the absolute
strength of velocity gradients in an inhomogeneous flow field,
spatial variations of the magnitude (dyadic product) of velocity
gradients are provided in (d) with the texture representing
the velocity vector field. Red indicate high values and blue
correspond to low values.

The behaviors of the third dimension (z-direction) can be
inferred from our DC-based eigenvalue visualization in the
x-y plane (Figure 9 (c)). Namely, in the regions of larger,
the negative isotropic scaling (blue) is dominant, and near
the vortex center, the positive isotropic scaling (yellow) is
dominant. Identifying such isotropic scaling is formidable with
the use of texture-based vector visualization (Figure 9 (a)).

The eigenvalue visualization (Figure 9 (b) and (c)) allows
us to see stretching-dominated regions (white), which cannot
be identified from the corresponding vector field visualization
(Figure 9 (a)). Figure 9 (b) and (d) collectively exhibit that
strong counterclockwise rotation of fluid parcels appears in
the annular region near the center, and the rotation dimin-
ishes asr increases (away from the center). Notice that this
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Fig. 10. The major components of the flow through a cooling jacket include
a longitudinal component, lengthwise along the geometry and a transversal
component in the upward-and-over direction. The inlet and outlet of the
cooling jacket are also indicated.

information is difficult to extract from the texture-based vector
visualization (Figure 9 (a)), although it can be achieved with
a vorticity-based visualization.

Comparing the texture plots of Figure 9 (a) and (b), we
notice that the major eigenvectors ((b): the directions of
stretching) closely align with the streamlines in the real do-
main (a) for large enoughr, while the major dual-eigenvectors
((b): the direction of elongation) are nearly perpendicular to
the streamlines (a) in the complex domain near the center
of the vortex. This kind of enlightening observations are not
revealed without tensor analysis.

The extremely localized high magnitude of velocity gradient
(red region) shown in Figure 9 (d) represents the complex
flows that resemble theeye wall of a hurricane or tornado,
although for larger, the Sullivan Vortex differs from hurricane
or tornado flows.

To illustrate our visualization techniques earlier in Fig-
ures 1, 4, 6, and 7. We have used the combination of two
Sullivan Vortices whose centers are slightly displaced with a
distance of0.17 and whose rotations are opposite but of equal
strength.

B. Heat Transfer With a Cooling Jacket

A cooling jacket is used to keep an engine from overheating.
Primary considerations for its design include 1) achieving
an even distribution of flow to each cylinder, 2) minimizing
pressure loss between the inlet and outlet, 3) eliminating flow
stagnation, and 4) avoiding high-velocity and regions that may
cause bubbles or cavitation. Figure 10 shows the geometry of
a cooling jacket, which consists of three components: 1) the
lower half of the jacket or cylinder block, 2) the upper half
of the jacket or cylinder head, and 3) the gaskets to connect
the cylinder block to the head. Evidently, the geometry of the
surface is highly complex.

In order to achieve efficient heat transfer from the engine
block to the fluid flowing in the jacket, the fluid must be
continuously convected while being mixed. Consequently,
desirable flow patterns to enhance cooling include stretching

(a)

(b)
Fig. 11. DC-based eigenvalue visualization of a simulated flow field inside
the cooling jacket: (a) the outside surface of a side wall in the cooling
jacket, and (b) the inside surface of the same side wall. This is the first
time asymmetric tensor analysis is applied to this data set.

and scaling that appear on the contact (inner) surface. As
discussed earlier, stretching is a measure of fluid mixing.
It increases the interfacial area of a lump of fluid material,
and the interfacial area is where heat exchange takes place
by conduction. Given that the flow in the cooling jacket is
considered incompressible [18], scalings that appear on the
contact surface, whether positive or negative, indicate the flow
components normal to the interface, i.e., convection at the
interface. Note that fluid rotations (either counterclockwise
or clockwise) would yield inefficient heat transfer at the
contact interface since rotating motions do not contribute to
the increase of the surface of a lump of fluid material.

This dataset has been examined using various vector field
visualization techniques based on velocity and vorticity [22],
[18], [19]. We have applied our asymmetric tensor analysis
to this data set and discuss the additional insight that has not
been observed from previous study.

In order to distinguish the regions of rotation-dominant
flows from scalings and anisotropic stretching, we choose to
use the DC-based eigenvalue visualization (Figure 11). In (a)
and (b), we show the outer and inner surface of the right half
of the jacket, respectively. The visualization suggests that the
flows are indicative of heat transfer, especially at the inner side
of the wall (b). This is because a large portion of the surface
area exhibits positive scaling (yellow), negative scaling (blue),
and anisotropic and stretching (white), whereas the area of
predominantly rotations (red and green) are relatively small.
It is emphasized that an important part of the geometry is
the inner surface where coolant is directly in contact with
engine’s cylinders. Comparing the inner and outer surfaces of
the cooling jacket provides interesting insights into the flow
patterns. In the cylinder blocks between the adjacent cylinders,
the flow pattern in the inner surface (b) is divergent (yellow)
preceded by convergent flows (blue). The flow path from
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one cylinder to another has significant curvature (Figure 10),
and a portion of the flow is brought to the upper jacket
through the gasket. It appears that curvature-induced advective
deceleration and acceleration and the outflow to the upper
jacket are responsible for the repetitious flow pattern on the
inner surface. On the other hand, the resulting flow contraction
is supposed to cause the flow convergence on the outer surface
(Figure 11 (a)). Yet, no clear repetitious pattern is present
on the outer surface except flow convergence between the
cylinders. In general, there is no significant region where flow
rotation is dominant on the inner surface. While there are more
rotation-dominated regions on the outer surface, it is not as
critical as the inner surface. This indicates a positive aspect of
the cooling jacket design.

While these flow patterns could be interpreted with vector
field visualization, it would require a more careful inspection.
On the other hand, our eigenvalue presentation of the tensor
field can reveal such characteristics explicitly, automatically,
and objectively. For example, to our knowledge, the aforemen-
tioned repeating patterns of divergent and convergent flows on
the inner surface (Figure 11 (b)) has not been reported from
previous visualization work that studies this data set [22], [18],
[19].

C. In-Cylinder Flow Inside a Diesel Engine

Swirl motion, an ideal flow pattern strived for in a diesel
engine [23], resembles a helix spiral about an imaginary
axis aligned with the combustion chamber as illustrated in
Figure 12. Achieving this ideal motion results in an optimal
mixing of air and fuel and thus a more efficient combustion
process. A number of vector field visualization techniques
have been applied to a simulated flow inside the diesel
engine [23], [11], [4]. These techniques include arrow plots,
color coding velocity, textures, streamlines, vector field topol-
ogy, and tracing particles. We have applied our tensor-based
techniques to this dataset, which to our knowledge is the first
time asymmetric tensor analysis is applied to this data.

Visualization of both eigenvalues and eigenvectors on the
curved surface is presented in Figure 13: (a) AC-based
eigenvalue visualization, (b) a hybrid approach with eigen-
vectors and pseudo-eigenvectors illustrated. We also apply
our visualization techniques to a planar vector field obtained
from a cross section of the cylinder at25 percent of the
length of the cylinder from the top where the intake ports
meet the chamber. The visualization techniques are: (c) AC-
based eigenvalue visualization, and (d) DC-based eigenvalue
combined with eigenvectors and major dual-eigenvectors. Note
that the textures shown in (a) and (c) illustrate the velocity
vector field.

Figure 13 (a) and (b) demonstrate that the developed tech-
nique for visualizing both eigenvalues and eigenvectors on a
curved surface. The major eigenvectors in the real domain
(stretching direction of fluid parcels) do not align with the
streamlines. In some locations, they are perpendicular to each
other. On the other hand, the elongation of rotating motion
tends to be in the similar direction to the velocity vector (see
Figure 3 for the stretching and elongation interpretations in

Intake Ports

Motion
Swirl

Rotation
Axis of

Fig. 12. The swirling motion of flow in the combustion chamber of a diesel
engine.Swirl is used to describe circulation about the cylinder axis. The intake
ports at the top provide the tangential component of the flow necessary for
swirl. The data set consists of 776,000 unstructured, adaptive resolution grid
cells.

eigenvectors). Note that the trend is opposite to that of the
Sullivan Vortex (Figure 9).

On the cylinder surface shown in (b), there are only two
dominant regions: counterclockwise rotation and anisotropic
stretching. Lack of regions dominated by isotropic scaling
suggests that the flow along the cylinder wall forms no
strong flow separation or reattachment, which is consistent
with the sketch in Figure 12. On the other hand, the top
of the cylinder shows the dominance of negative isotropic
scaling, representing that the flow is in the intake cycle. These
observations are rather difficult to make from visualization of
the velocity vector field, i.e. the texture in Fig 13 (a) alone.

The locations of pure circular rotation of fluid parcels can be
spotted in (b) as the degenerating points such as wedges (black
dots) and trisectors (white dots). A degenerate point represents
the location of zero angular strain. Hence for two-dimensional
non-divergent flows, no mixing or energy dissipation can
take place at the degenerate points. Nonetheless, it is not
exactly the case for three-dimensional and compressible flows
in this example, because stretching could still take place in the
direction normal to the surface, if isotropic scaling component
were present.

The vector plot of Figure 13 (c) shows the complex flow
pattern comprising several vortices with both rotations. The
complex pattern is resulted from the decelerating flow, since
this flow field is taken at the end of the intake process, i.e.,
the cylinder head is near the bottom end. The overlay of
eigenvalues clearly and effectively exhibits the directions of
rotation, positive and negative isotropic scaling (expansion and
contraction), and anisotropic stretching (shear strain).

In Figure 13 (d), the direction of stretching is readily under-
stood by the major and minor eigenvectors in the real domains
and the major dual-eigenvectors in the complex domains. This
image also demonstrates the fact, as we demonstrated in Fig-
ures 2 and 5, that fluid rotation cannot directly come in contact
with the flow of opposite rotational orientation. There must
be a region of stretching in-between with the only exception
being a pure source or sink. Furthermore, it can be observed
that the regions between rotations in the same direction tend
to induce stretching. The regions between rotations in the
opposite directions tend to generate negative scaling, which
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(a) (b)

(c)

(d)

Fig. 13. Visualization of a diesel engine simulation dataset (Section V-C): (a) AC-based eigenvalue visualization of the data on the surface of the engine,
(b) hybrid eigenvalue and eigenvector visualization (Figure 7 (b)) of the gradient tensor on the surface with eigenvectors in the real domains and pseudo-
eigenvectors in the complex domains, (c) AC-based visualization of a planar slice (cut at25 percent of the length of the cylinder from the top where the
intake ports meet the chamber), and (d) the hybrid visualization used for (b) is applied to the planar slice. The degenerate points are highlighted using colored
dots: black for wedges and white for trisectors. This is the first time asymmetric tensor analysis is applied to this set.

represents contraction. There are several degenerate points
such as wedges (black dots) and trisectors (white dots) in the
figure.

We wish to emphasize that this is the first time the following
flow characteristics are visualized for the diesel engine dataset:
expansion, contraction, stretching, elongation, and degenerate
points. Also, to our knowledge, the observation that the flow
along the cylinder wall forms no flow separation or reattach-
ment has not been reported previously based on velocity and
vorticity visualizations [23], [11], [4].

VI. CONCLUSION AND FUTURE WORK

In this paper, we provide the analysis of asymmetric tensor
fields defined on two-dimensional manifolds and develop ef-
fective visualization techniques based on such analysis. At the
core of our technique is a novel parameterization of the space
of 2× 2 tensors, which has well-defined physical meanings
when the tensors are the gradient of a vector field.

Based on the parameterization, we introduce the concepts
of eigenvalue manifold(Figure 5) andeigenvector manifold
(Figure 2) and describe the topology of these objects. For the
eigenvalue manifold, we have identified five special modes that
lead to a partition of the manifold (Figure 5). Such a partition
provides a physically-motivated way of segmenting a tensor
field, or a vector field whose gradient is the tensor field of
interest.

For the eigenvector field, we augment previous results of
Zheng and Pang [39] based on a novel concept of eigenvector
manifold (Figure 2). Our analysis includes an explicit charac-
terization of the dual-eigenvectors (Theorem 4.2), a new sym-
metric discriminant that takes into account the orientation of
the rotational component, an algorithm to classify degenerate
points (Theorem 4.4) and the extension of the Poincaré-Hopf
theorem to asymmetric tensors on two-dimensional manifolds
(Theorem 4.5), and the definition of pseudo-eigenvectors (Def-
inition 4.6) which we use to visualize tensor structures inside
complex domains.

We present several visualization techniques based on the
eigenvalue field, eigenvector field, or their combination. Our
analysis and visualization techniques are also adapted to
curved mesh surfaces. To the best of our knowledge, this is the
first time asymmetric tensor fields on 3D surfaces are analyzed
and visualized.

We provide physical interpretation of our approach in the
context of flow understanding, which is enabled by the rela-
tionship between our tensor parameterization and its physical
interpretation. Our visualization techniques can provide a
compact and concise presentation of flow kinematics. Principal
motions of fluid material consist of angular deformation (i.e.
stretching), dilatation (i.e. scaling), rotation, and translation.
In our tensor field visualization, the first three components
(stretching, scaling, and rotation) are expressed explicitly,
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while the translational component is not illustrated. One of the
advantages in our tensor visualization is that the kinematics
expressed in eigenvalues and eigenvectors can be interpreted
physically, for example, to identify the regions of efficient
and inefficient mixing. Furthermore, the components of scaling
(divergence and convergence) in a two-dimensional surface for
incompressible flows can provide information for the three-
dimensional flow; negative scaling represents stretching of
fluid in the direction normal to the surface, and vice versa.

We demonstrate the efficiency of these visualization meth-
ods by applying them to the Sullivan Vortex, an exact solution
to the Navier-Stokes equations, as well as two CFD simulation
applications for a cooling jacket and a diesel engine.

To summarize, the eigenvalue visualization enables us to
examine the relative strengths of fluid expansion (contraction),
rotations, and the rate of shear strain in one single plot.
Hence such a plot is convenient for inspection of global flow
characteristics and behaviors, as well as to detect salient fea-
tures. In fact, the developed visualization technique should be
ideal for the exploratory investigation of complex flow fields.
Furthermore, the developed eigenvector visualization allows us
to uniquely identify the detailed deformation patterns of fluid
parcels, which provides additional insights in understanding
of fluid motions. Consequently, the developed tensor-based
visualization techniques will provide an additional tool for
flow-field investigations.

There are a number of possible future research directions
that are promising. First, in this work we have focused on
a two-dimensional subset of the full three-dimensional eigen-
value manifold (unit tensors). While this allows an efficient
segmentation of the flow based on the dominant component,
the tensor magnitude can be used to distinguish between
regions of the same dominant component but with significantly
different total strengths (Figure 6 (c)). We plan to incorporate
the absolute magnitude of the tensor field into our analysis and
study the full three-dimensional eigenvalue manifold. Second,
tensor field simplification is an important task, and we will
explore proper simplification operations and metrics that apply
to asymmetric tensor fields. Third, we plan to expand our
research into 3D domains as well as time-varying fields.

APPENDIX

PROOFS

In the appendix, we provide the proofs for the theorems
from Section IV.

Theorem 4.1: Given two tensorsTi = T(θi ,ϕ) (i = 1,2) on

the same latitude−π
2 < ϕ < π

2 , let N =
(

cosδ −sinδ
sinδ cosδ

)

with δ = θ2−θ1
2 . Then any eigenvector or dual-eigenvector−→w2

of T2 can be written asN−→w1 where−→w1 is an eigenvector or
dual-eigenvector ofT1, respectively.

Proof: It is straightforward to verify thatT2 = NT1NT ,
i.e., T1 and T2 are congruent. Results from classical linear
algebra state thatT1 andT2 have the same set of eigenvalues.
Furthermore, a vector−→w1 is an eigenvector ofT1 if and only
if −→w2 = N−→w1 is an eigenvector ofT2.

To verify the relationship between the dual-eigenvectors of

T1 andT2, let U1

(
µ1 0
0 µ2

)
V1 is the singular value decompo-

sition of T1. ThenU2

(
µ1 0
0 µ2

)
V2 in which U2 = U1NT and

V2 = NV1 is the singular decomposition ofT2. This implies
that T1 andT2 have the same singular valuesµ1 and µ2.

The relationship between the dual-eigenvectors ofT1 and
T2 can be verified by plugging into Equations 3 and 4 the
aforementioned statements on eigenvectors and singular values
between congruent matrices.

Theorem4.4: LetT be a continuous asymmetric tensor field
defined on a two-dimensional manifoldM satisfyingγ2

r +γ2
s >

0 everywhere inM . Let ST be the symmetric component ofT
which has a finite number of degenerate pointsK = {pi : 1≤
i ≤ N}. Then we have:

1) K is also the set of degenerate points ofT.
2) For any degenerate pointpi , I(pi ,T) = I(pi ,ST). In

particular, a wedge remains a wedge, and a trisector
remains a trisector.

Proof: Given thatγ2
s (T)+ γ2

r (T) > 0 everywhere in the
domain, the degenerate points ofT only occur inside complex
domains. Recall that the structures ofT inside complex
domains are defined using the dual-eigenvectors, which are
the eigenvectors of symmetric tensor fieldPT (Equation 15).
Moreover, the set of degenerate points ofT is the same as the
set of degenerate points ofPT inside complex domains, i.e.,
ϕ =±π

2 .
Notice that the major and minor eigenvectors ofPT are

obtained from corresponding eigenvectors ofST by rotating
them either counterclockwise or clockwise byπ

4 . Within each
connected component in the complex domains, the orientation
of the rotation is constant. Zhang et al. [35] show that rotating
the eigenvectors of a symmetric tensor field (in this caseST )
uniformly in the domain (in this case a connected component
of the complex domains) by an angle ofβ (in this case±π

4 )
results in another symmetric tensor field that has the same
set of degenerate points as the original field. Moreover, the
tensor indices of the degenerate points are maintained by such
rotation. Therefore,ST andPT (and consequentlyT) have the
same set of degenerate points. Furthermore, the tensor indices
are the same between corresponding degenerate points.

Theorem4.5: LetM be a closed orientable two-dimensional
manifold with an Euler characteristicχ(M), and letT be a
continuous asymmetric tensor field with only isolated degen-
erate points{pi : 1≤ i ≤ N}. Then:

N

∑
i=1

I(pi ,T) = χ(M) (25)

Proof: ∑N
i=1 I(pi ,T) = ∑N

i=1 I(pi ,ST) = χ(M). The first
equation is a direct consequence of Theorem 4.4, while the
second equation makes use of the fact thatST is a symmetric
tensor field, for which thePoincaŕe-Hopf theoremhas been
proven true [5].

Theorem 4.7: Given a continuous asymmetric tensor field
T defined on a two-dimensional manifoldM , let U1 and
U2 be anα- and β -type region, respectively, whereα,β ∈
{D+,D−,R+,R−,S} are different. Then∂U1

⋂
∂U2 = /0 if α-
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andβ -types represent regions in the eigenvalue manifold that
do not share a common boundary.

Proof: SinceζT (Equation 10) is a continuous map from
M to the eigenvalue manifoldMλ , we haveζ−1

T ( /0) = /0.
Theorem 4.8: Given a continuous asymmetric tensor field

T defined on a two-dimensional manifold such thatγ2
d + γ2

r +
γ2
s > 0 everywhere, the following are true:

1) an R+-type region is contained inWc,n and anR−-type
region is contained inWc,s,

2) an S-type region is contained inWr,n
⋃

Wr,s,
3) a D+-type or D−-type region can have a non-empty

intersection with any of the following:Wr,n, Wr,s, Wc,n,
andWc,s.

Proof: Given a pointp0 in an R+-type region, we have
γr(p0) > γs(p0) ≥ 0, i.e., p0 is in a complex domain in the
northern hemisphere (Wc,n). Similarly, if p0 is in an R−-type
region, thenp0 ∈Wc,s.

If p0 is in anS-type region, thenγs(p0) > |γr(p0)|, i.e., p0

is in the real domains that can be in either the northern or the
southern hemisphere.

Finally, if p0 is in a D+-type region, thenγd(p0) >
max(|γr(p0)|,γs(p0)). However, there is no constraint on the
discriminantϕ = arctan( γr

γs
). Therefore,p0 can be inside any

of Wr,n, Wr,s, Wc,n, andWc,s. A similar statement can be made
whenp0 is in a D−-type region.
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