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Asymmetric Tensor Analysis for Flow Visualization

Eugene Zhang, Harry Yeh, Zhongzang Lin, and Robert S. Laramee

Abstract—The gradient of a velocity vector field is an asym- flow visualization techniques focus on the velocity vector
metric tensor field which can provide critical insight into the field of the flow and have led to effective illustrations of
vector field that is difficult to infer from traditional trajectory- the translational component. On the other hand, other flow

based vector field visualization techniques. We describe the ti be th t fint t L E |
structures in the eigenvalue and eigenvector fields of the gradient maotions may be the center of interest as well. For exampie,

tensor and how these structures can be used to infer the behaviors Stretching of fluid parcels can be a good indicator for the rate
of the velocity field that can represent either a 2D compressible of fluid mixing and energy dissipation, rotation expresses the
flow or the projection of a 3D compressible or incompressible amount of vorticity, and expansion and contraction are related
flow onto a two-dimensional manifold. to change of volume [2], [10], [24], [27]. The non-translational

The structure in the eigenvalue field is illustrated using mbonents are directly related to the gradient tensor of th
the eigenvalue manifold which enables novel visualizations that components are directly related 1o the gradient tensor ot the

depict the relative strengths among the physical components in Vector field. Consequently, inferring them using traditional

the vector field, such as isotropic scaling, rotation, and anisotropic vector field visualization methods that use arrows, streamlines,

stretching. o and colors encoding the magnitude of the vector field (Figure 1
Our eigenvector analysis is based on the concept of the 3.¢))is difficult even to the trained fluid dynamics researchers.

eigenvector manifold which affords additional insight on 2D : S .
asymmetric tensors fields beyond previous analyses. Our results The gradient tensor has found application in a wide range of

include a simple and intuitive geometric realization of the Vvector field vi;ualization t:?\sks such as fixed point classificatiqn
dual-eigenvectorsa novel symmetric discriminant that measures and separatrix computation [12], attachment and separation
the signed distance of a tensor from being symmetric, the line extraction [17], vortex core identification [28], [16], [25],
classification of degenerate (circular) points, and the extension [26], and periodic orbit detection [4]. However, the use of

of the Poincaré-Hopf index theoremto continuous asymmetric - : S . .
tensor fields defined on closed two-dimensional manifolds. We the gradient tensor in these applications is often limited to

also extend eigenvectors continuously into the complex domains point-wise_ C(.)mput.atioln and analysis. There has be.en relatively
which we refer to as pseudo-eigenvectors. We make use of evenlylittle work in investigating the structures in the gradient tensors
spaced tensor lines following pseudo-eigenvectors to illustrate the as a tensor field and what information about the vector field
local linearization of tensors everywhere inside complex domains ~5n pe inferred from these structures. While symmetric tensor

simultaneously. . .
Both eigenvalue manifold and eigenvector manifold are sup- fields have been well explored, it is not clear how structures

ported by a tensor reparamterization that has physical meaning. N Symmetric tensor fields can be used to reveal structures
This allows us to relate our tensor analysis to physical quantities in asymmetric tensor fields due to the existence of the anti-
such as vorticity, deformation, expansion, contraction, which symmetric components.

provide physical interpretation of our tensor-driven vector field Zheng and Pang are the first to study the structures in 2D

analysis in the context of fluid mechanics. . . .
To demonstrate the utility of our approach, we have applied asymmetric tensor fields [39]. To our knowledge, this is the

our visualization techniques and interpretation to the study of ©NlY Wofk where the_focus of the analysis is on asy.mmetric
the Sullivan Vortex as well as computational fluid dynamics tensor fields. In their research, Zheng and Pang introduce

simulation data. the concept ofdual-eigenvectorsinside complex domains
Index Terms— Tensor field visualization, flow analysis, asym- Where ngenvalues ant_j eigenvectors are complex. When the
metric tensors, topology, surfaces. tensor field is the gradient of a vector field, Zheng and Pang

demonstrate that dual-eigenvectors represent the elongated
directions of the local linearization inside complex domains.
Consequently, tensor field structures can be visualized using
ECTOR field analysis and visualization are an integréhe combination of eigenvectors and dual-eigenvectors.
part of a number of applications in the field of aero- The work of Zheng and Pang has inspired this study of
and hydro-dynamics. Local fluid motions comprise translatioasymmetric tensor fields. In particular, we address a number
rotation, expansion, contraction, and stretching. Most existiggiestions that have been left unanswered. First, their algorithm
for computing the dual-eigenvectors relies on eigenvector
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Fig. 1. The gradient tensor of a vector field (d) can provide additional information about the vector field that is difficult to extract from traditional vector
field visualization techniques, such as arrow plots (a), trajectories and color coding of vector field magnitude (b), or vector field topology (c) [4]. The colors

in (d) indicate the dominant flow motion (without translation) such as isotropic scaling, rotation, and anisotropic stretching. The tensor lines in (d) show the
structures in the eigenvectors and dual-eigenvectors of the tensor, which reflect the directions of anisotropic stretching. Notice that it is a challenging task to
use vector field visualization techniques (a-c) to provide insight such as locating stretching-dominated regions in the flow and identifying places where the
orientations of the stretching change significantly. On the other hand, visualizations based on the gradient tensor such as (d) facilitate the understanding of
these important questions. Detailed description for (d) will be discussed in Section IV-B. The flow field shown here is a planar slice of a three-dimensional
vector field that is generated by linear superposition of two Sullivan Vortices with opposite orientations [29] (Section V-A).

i.e., circular point classification (wedges, trisectors, etc). Third, 5) Our analysis and visualization techniques can apply to
eigenvalues are an important aspect of tensor fields. Yet, there asymmetric tensor fields on two-dimensional manifolds
is little discussion on the structures of eigenvalues by Zheng in 3D (Sections V-B and V-C). To our knowledge, this
and Pang. Finally, the focus of Zheng and Pang is on general is the first time asymmetric tensor fields on surfaces
asymmetric tensor fields, and there is limited investigation of = embedded in 3D are analyzed and visualized.

the physical interpretation of their results in the context of 6) We provide physical interpretation of our analysis in the

flow analysis. context of flow visualization (Section V).
To address these fundamental issues, we make the followingrhe remainder of the paper is organized as follows. We
contributions: will first review related existing techniques in vector and

1) We introduce the concepts @igenvalue manifolda tensor field visualization and analysis in Section Il and provide
hemisphere) an@igenvector manifolda sphere), both relevant background on symmetric and asymmetric tensor
of which facilitate tensor analysis (Section V). fields in Section Ill. Then in Section IV, we describe our

2) With the help of the eigenvector manifold, we exten@nalysis and visualization approaches for asymmetric tensor
the theoretical results of Zheng and Pang on eigenvectilds defined on two-dimensional manifolds. We provide some
analysis (Section IV-A) by: physical intuition about our approach and demonstrate the

a) providing an explicit and geometric characterieffectiveness of our analysis and visualization by applying
zation of the dual-eigenvectors (Section IV-A.1)them to the Sullivan Vortex as well as cooling jacket and
which enables degenerate point classification (Sediesel engine simulation applications in Section V. Finally,
tion 1V-A.2), we summarize our work and discuss some possible future

b) extending the PoincarHopf theorem to asym- directions in Section VI.
metric tensor fields defined on two-dimensional
manifolds (Section IV-A.2), I

¢) and introducing pseudo-eigenvectors which we use
to illustrate the elliptical flow patterns in the com- There has been extensive work in vector field analysis and
plex domains (Section IV-A.3). flow visualization [20], [21]. However, relatively little work

3) We provide eigenvalue analysis based on a Voronoi pdras been done in the area of flow analysis by studying the
tition of the eigenvalue manifold (Section IV-B) whichstructures in the gradient tensor, an asymmetric tensor field.
allows us to maintain the relative strengths among tH@ general, previous work is limited to the study of symmetric,
three main non-translational flow components: isotropﬁﬁcond-order tensor fields. Asymmetric tensor fields are usu-
scaling, rotation, and anisotropic stretching. This pa@lly decomposed into a symmetric tensor field and a rotational
tition also demonstrates that direct transitions betwe&gctor field and then visualized simultaneously (but as two
certain dominant-to-dominant components are imposgeparate fields). In this section, we review related work in
ble, such as between clockwise and counterclockwis§gmmetric and asymmetric tensor fields.
rotations. The transition must go through a dominant

4) U\?t\a/v pﬁztstim gﬂ:gnggaerr] g?tﬁtcl)(\)/gi vector and tensor fiefst Symmetric Tensor Field Analysis and Visualization
visualization techniques based on our eigenvalue andSymmetric tensor field analysis and visualization has been
eigenvector analysis (Sections IV-A and IV-B). well researched for both two- and three-dimensions. To refer

. PREVIOUSWORK
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to all past work is beyond the scope of this paper. Here vee manifold surfaceM is a smooth tensor-valued function
will only refer to the most relevant work. that associates with every poiptce M a second-order tensor

Delmarcelle and Hesselink [7] provides a comprehensiqe(p) _ (Tn(p) Ti2(p)
study on the topology of two-dimensional symmetric tensor T21(p)  Tz2(p)
fields and definehyperstreamlinegalso referred to asensor tem in the tangent plane at The entries off (p) depend on
lines), which they use to visualize tensor fields. This researéfe choice of the coordinate system. A ten§@ is symmetric
is later extended to analysis in three-dimensions [13], [38f, Tij = Tji-

[40] and topological tracking in time-varying symmetric tensor
fields [30]. A. Symmetric Tensor Fields

Zheng and Pang provide a high-quality texture-based tensor,
field visualization technique, which they refer to &fy-
perLIC [37]. This work adapts the idea dfine Integral
Convolution (LIC) of Cabral and Leedom [3] to symmetric Toy4T22 Ty
tensor fields. Zhang et al. [35] develop a fast and high-quality DiA— <2 : OT22> n <2 TTE% > )
texture-based tensor field visualization technique, which is a 0 % T 4
non-trivial adaptation of thémage-Based Flow Visualization . . .

(IBFV) of van Wijk [33]. Hotz et al. [15] present a texture- T has (29|ge2nvalue${j +¥s In which yy =
based method for visualizing 2D symmetric tensor fields%zo. LetE;(p) andEx(p) be unit eigenvectors
Different constituents of the tensor field corresponding tiat correspond to eigenvalugs+ ys andyy — ys, respectively.
stress and strain are mapped to visual properties of a texthieand E; are themajor and minor eigenvector fields off .
emphasizing regions of expansion and contraction. T(p) is equivalent to two orthogonal eigenvector fiel&s(p)

To reduce the noise and small-scale features in the datad Ex(p) when A(p) # 0. Delmarcelle and Hesselink [6]
and therefore enhance the effectiveness of visualizationsweggest visualizingensor lines which are curves that are
symmetric tensor field is often simplified either geometricalliangent to an eigenvector field everywhere along its path.
through Laplacian smoothing of tensor values [1], [35] or Different tensor lines can only meet at degenerate points,
topologically using degenerate point pair cancellation [3llvhere A(pg) = 0 and major and minor eigenvectors are not
[35] and degenerate point clustering [32]. well-defined. The most basic types of degenerate points are:

We also note that the results presented in this paper exhib#dgesandtrisectors Delmarcelle and Hesselink [6] define a
some resemblance to those usi@dfford Algebra[9], [14], tensor indexfor an isolated degenerate poipg, which must
[8], in which vector fields are decomposed into different locdde a multiple of% due to the sign ambiguity in tensors. It
patterns, e.g., sources, sinks, and shear flows, and then cdk)r% for a wedge,—% for a trisector, and0 for a regular
coded. point. Delmarcelle shows that the total indices of a tensor

field with only isolated degenerated points is related to the
B. Asymmetric Tensor Field Analysis and Visualization topology of the underlying surface [5]. Lé#l be a closed

Analysis of asymmetric tensor fields is relatively new irientable manifold with an Euler characteriskitM), and let
visualization. Zheng and Pang provide analysis on 2D asyrm-be a continuous symmetric tensor field with only isolated
metric tensors [39]. Their analysis includes the partition ¢fegenerate point§p; : 1<i < N}. Denote the tensor index of
the domain into real and complex, defining and use of dudl: asl(p;,T). Then:
eigenvectors for the visualization of tensors inside complex N
domains, incorporation of degenerate curves into tensor field Zl(pi’T) =x(M) @)
topology, and a circular discriminant that enables the detection is

of degenerate points (circular points). In this paper, we will adapt the classification of degenerate

In th|§ paper, we _e_xtend the_analy5|s of Zhe_ng and Paﬁgints of symmetric tensor fields to asymmetric tensor fields.
by providing an explicit formulation of the dual-eigenvectors,

which allows us to perform degenerate point classification ] ]
and extend the PoindaHopf theorem to two-dimensionalB- Asymmetric Tensor Fields
asymmetric tensor fields. We also introduce the concepts ofAn asymmetric tensor differs from a symmetric one in
pseudo-eigenvectors which can be used to illustrate the ellipany aspects, the most significant of which is perhaps that an
tical patterns inside complex domains. Such illustration canragymmetric tensor can have complex eigenvalues for which
be achieved through the visualization of dual-eigenvector real-valued eigenvectors exist. Given an asymmetric tensor
Moreover, we provide the analysis on the eigenvalues whiéikld T, the domain ofT can be partitioned intoeal domains
we incorporate into visualization. Finally, we provide explici{real eigenvalued; where A1 # Ay), degenerate curvegeal
physical interpretation of our analysis in the context of flowigenvalues; whereA; = Az), andcomplex domaingcomplex
semantics. eigenvalues). Degenerate curves form the boundary between
the real domains and complex domains.
Ill. BACKGROUND ONTENSORFIELDS In the complex domains where no real eigenvectors ex-

We first review some relevant facts about tensor fields ést, Zheng and Pang [39] introduce the concept dofal-

two-dimensional manifolds. An asymmetric tensor figldor eigenvectorsvhich are real-valued vectors and can be used to

) under some local coordinate sys-

symmetric tensoil can be uniquely decomposed into the
sum of its isotropic parD and the eviatoric tensor A:

Ti+T22
L-=2 and ys =
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describe the elongated directions of the elliptical patterns when

the asymmetric tensor field is the gradient of a vector field. The 1 0 0 -1 cosd sin@

dual-eigenvectors in the real domains are the bisectors betweeh = Y4 (0 1) +W (1 0> 5 <sin6 _ cos@> (7)

the major and minor eigenvectors. The following equations

characterize the relationship between the dual—eigenvext{_orﬁlvhere Vo = Ti+Too = To1—Tio Vo = V/(T11—T22)2+(Ti2+T21)2
2 v 1T 2 » ¥S

. . . . 2
(major) ansz (minor) and t.he eigenvectois, (major) and are thestrengthsof isotropic scaling, rotation, and anisotropic
E, (minor) in the real domains:

stretching, respectively. Note thg > 0 while y and yy can
be any real numbed € [0,2m) is the angular component of

the vector (Tﬂ — T

E1 =V + ik E=Vhh-—ik:k Q)

, which encodes the orientation of the
; . T2+ T
as well as in the complex domains:

stretching.
In this paper, we focus on how the relative strengths of the
_ - _ . three components effect the eigenvalues and eigenvectors in
Bi = Vi +iVikh, Ex=Vih—ivikh (4) the tensor. Given our goals, it suffices to stuhyit tensors
where i, and i, are the singular values in the singular valuge., ya + 2+ y2 = 1.
decomposition. Furthermore, the following fields: The space of unit tensors is a three-dimensional manifold,
for which direct visualization is formidable. Fortunately, the
eigenvalues of a tensor only depend wn y, and ys, while
(5) the eigenvectors depend ¢n ys, and6. Therefore, we define
the eigenvalue manifoldM , as:
i = 1,2 are continuous across degenerate curves. Either field
can be used to visualize the asymmetric tensor field. {(ya ¥ ¥6) Vg + VP + V5 =1 and ys > 0} (8)
Dual-eigenvectors are undefineddagenerate poinisvhere
the circular discriminant

Vi(p) = Ei(p) T(p) in the real domain
P = Ji(p) T(p) in the complex domain

and theeigenvector manifold/, as:

Dy = (Tiz— T2)? + (Tiz+ T21)? (6) {(#,v6,0)y?+¥2=1andy>0and0< 6 <2m}. (9)

achieves a value of zero. Degenerate points represent locatiorBoth M, andM, are two-dimensional, and their structures
where flow patterns are purely circular, and they only occgan be understood in a rather intuitive fashion. A second-order
inside complex domains. They are also referred taiesilar tensor fieldT(p) defined on a two-dimensional manifold
points[39], and together with degenerate curves they form thetroduces the followingcontinuousmaps:

asymmetric tensor field topology

In this paper, we extend the aforementioned analysis of 1M =My, nr:M—M,, (10)
Zheng and Pang [39] in several aspects that include a ge- ) _ )
ometric interpretation of the dual-eigenvectors (Section IV the next two sections, we describe the analysisgf and

A.1), the classification of degenerate points and the extensihy:
of the Poincag-Hopf theorem from symmetric tensor fields
(Equation 2) to asymmetric tensor fields (Section IV-A.2), th] ' Eigenvector Manifold
introduction and use gbseudo-eigenvectofsr the visualiza- . . .
. o . . The analysis on eigenvectors and dual-eigenvectors by
tion of tensor structures inside complex domains (Section I\ .
heng and Pang [39] can be largely summarized by Equa-
i

A.3), and the incorporation of eigenvalue analysis (Section | ons 3-6. The eigenvector manifold presented here not only al-

B). lows us to provide more geometric (intuitive) reconstruction of
their results, but also leads to novel analysis that includes the

IV. ASYMMETRIC TENSORFIELD ANALYSIS AND classification of degenerate points, extension of the Pdiacar
VISUALIZATION Hopf theorem to two-dimensional asymmetric tensor fields,

Our asymmetric tensor field analysis starts with a param@?d the definition of pseudo-eigenvectors which we use to
terization for the set of x 2 tensors. visualize tensor structures inside the complex domains. We

It is well known that any second-order tensor can geegin with the definition of the eigenvector manifold.
uniquely decomposed into the sum of its symmetric and The eigenvgctors of an asymmetric tensor exp_ressed in the
anti-symmetric components, which measure the impacts f8fm of Equation 7 only depend op, y;, and 8. Given that
scaling and rotation caused by the tensor, respectively. Anotifd tensor magnltud.e and the isotropic Scallng component do
popular decomposition removes the trace component frdifit &ffect the behaviors of eigenvectors, we will only need to
a symmetric tensor which corresponds to isotropic scalirﬁff]”s'der unit traceless tensors, i.g,= 0 and V¥ =1
(Equation 1). The remaining constituent, theviatoric tensgr 1 1€y have the following form:
has a zero trace and measures the anisotropy in the original
tensor. We combine both decompositions to obtain the follow- . 0 -1 cosf sin@
ing unified parameterization of tr?e spaceof 2 tensors: T(6.9)=sing (1 0 ) +cosp <sin6 —cosG) (11)
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@=n/2: pure counterclockwise rotation Northern hemisphere:
counterclockwise rotatio

o=n/4
Wr,n

¢=0: pure anisotropic stretching 0=n

Whs
major elgenvector

o=-11/4 minor eigenvector
major dual-eigenvector

major pseudo-eigenvector

minor pseudo-eigenvector

Wc,s
¢=-1/2: pure clockwise rotation

Eigenvector manifold (side view)

Fig. 2. The eigenvector manifold (left) is partitioned into real domains in the northern hemi

minor pseudo-eigenvectors @t(F < ¢ < T) are defined to be the same as the minor and major

At the equator, there are two bisectors, i.e., major and minor dual-eigenvectors cannot be d
therefore part of tensor field topology. On a different longitude, the same pattern repeats exce
are rotated by a constant angle. Different longitudes correspond to different constant angles.

x ......

0=3n/2

Eigenvector manifold: northern
hemisphere (top-down view)

sptigdeaqd the southern hemisphend () as well as

complex domains in these hemispherég { andW;s). The orientation of the rotational component is counterclockwise in the northern hemisphere and
clockwise in the southern hemisphere. The equator represents pure symmetric tensors, while the poles represent pure rotations. Along any longitude, (e.
6 =0 (right)), and starting from the intersection with the equator and going north (right), the major dual-eigenvectors (blue lines) remain constant. In the real
domains, i.e.0< ¢ < 7, the angle between the major eigenvectors (solid cyan lines) and the minor eigenvectors (solid green lines) monotonically decreases
to 0. The angle is exactly) when the magnitude of the stretching constituent equals that of the rotational part. Inside the complex domains where major and
minor eigenvectors are not real, pseudo-eigenvectors (cyan and green dashed lines, details in Definition 4.6) are used for visualization purposes. The major al
eigenvectofs{gr along the same longitude. Traveling

south of the equator towards the south pole, the behaviors of the eigenvectors and pseudo-eigenvectors are similar except they rotate in the opposite directic
istinguished. We consider the equator a bifurcation point anc
pt the eigenvectors, dual-eigenvectors, and pseudo-eigenvectt

\

. /K \
O—~——

\ O

QH/%’%%%%\ O

O=mt/2 o=37/8 o=n/4 O=m/8 0=—T/8

O=—mt/4 0=-3m/8 O=—Tt/2

Fig. 3. Example vector fields whose gradient tensors correspond to points along the lofgitu@iéFigure 2 (right)).

in which ¢ = arctan{ c) € (-7, Z]. Consequently, the set ofon ¢ only. In co

ntrast,0 only impacts the directions of the
unit traceles® x 2 tensors can be represented by a unit spheegenvectors and dual-eigenvectors, but not their relatively

which we refer to as theigenvector manifol@Figure 2 (left)). positions (Figure 2, right).

The following observation provides some intuition about the Next, we will

the same latitude-5 < ¢ < 7, let N <S|n6 .

of T, can be written as\w; wherew; is an eigenvector or (Section IV-A.3).
dual-eigenvector ofl;, respectively. 1) Geometric

make use of the eigenvector manifold to
eigenvector manifold. provide a geometric construction of the dual-eigenvectors
Theorem 4.1:Given two tensors; =T(8,¢) (i=1,2) on (Section IV-A.1), classify degenerate points and extend the
cosd S'”5) Poincaé-Hopf theorem to asymmetric tensor fields (Sec-
tion 1V-A.2), and introduce the pseudo-eigenvectors which

with § = %228 91 . Then any elgenvector or dual-eigenvecddr we use to illustrate tensor structures in the complex domains

| Construction of Dual-Eigenvector§heo-
The proofs of this theorem and the theorems thereafter &gy 4.1 allows us to focus on the behaviors of eigenvectors

provided in the Appendix. and dual-eigenvectors along the longitude whére 0, for
Theorem 4.1 states that as one travels along a latitude in {i§ich Equation 11 reduces to:

eigenvector manifold, the eigenvectors and dual-eigenvectors
are rotated at the same rate. This suggests that the fundamental
behaviors of eigenvectors and dual-eigenvectors are dependent

__(cosp —sing
_<sin¢ —cos¢> (12)
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The tensors have zero, one, or two real eigenvalues wherNotice that¢ measures thsignedspherical distance of a
cos2 <0, =0, or > 0, respectively. Consequently, the tensounit traceless tensor to pure symmetric tensors (the equator).
is referred to as being the complex domajron a degenerate For example, the north pole has a positive distance and the
curve or in the real domainf39]. Notice that the tensor is onsouth pole has a negative distance. In contrast, the circular
a degenerate curve if and only ¢f =+ 7. discriminantA; (Equation 6) satisfieA, = 4ys, which implies

In the complex domains, it is straightforward to verifyjthat A, does not make such a distinction between the two
that (1 and ( 1) are the dual-eigenvectors except WheEemispheres. Therefore, we advocate the ugeasf a measure

1 -1 or the degree of being symmetric of an asymmetric tensor.

¢ = +3, i.e, degenerate points. In the real (.jomains, the 2y Degenerate Point ClassificatiorNext, we discuss the
eigenvalues are-,/co2¢. A major eigenvector is: degenerate points where dual-eigenvectors are undefined, i.e.,

. - T circular points. We provide the following definition:
(&:::ﬁg j: ﬁg J_r ﬁgzg :LL %;) (13)  Definition 4.3: Given a continuous asymmetric tensor field
4 4 T defined a two-dimensional manifoldl, let Q be a small
and a minor eigenvector is: circle aroundpp € M such thatQ contains no additional
i degenerate points and it encloses only one degenerate point,
(\/5'”(¢ +7)—/cod¢ + Z)> (14) Po. Starting from a point o€ and travelling counterclockwise
V/Sin(@ +7) +/cosd + 7) alongQ, the major dual-eigenvector field (after normalization)

The bisectors between them are lifés= Y and X — —y covers the unit circleSt a number of times. This number is

whereX andY are the axes of the coordinate systems in tif@id to be the tensor index @k with respect toT, and is

tangent plane at each point. That is, the dual-eigenvectorsdgnoted byl (po, T). . _ .
the real domains are als 1 and 1 Combined with We now return to the discussion on degenerate points,
1 1) which correspond to the poleg & £7), i.e., s=0. The

the dual-eigenvector derivation in the complex domains, riglationship between the dual-eigenvectors of an asymmetric
is clear that the dual-eigenvectors remain the same for ayisor T(6,¢) and the corresponding symmetric tengeyr
¢ € (—75,3)- This is significant as it implies that the dualdescribed in Equation 15 leads to the following theorem:
eigenvectors depend primarily on the symmetric componentTheorem 4.4:Let T be a continuous asymmetric tensor
of a tensor field. field defined on a two-dimensional manifol satisfying

The anti-symmetric (rotational) component impact the duaj2 4 12 ~ 0 everywhere inM. Let St be the symmetric
eigenvectors in the following way. In the northern hemisphetgmponent off which has a finite number of degenerate points
where y = sing > 0, a major dual-eigenvector i 1 ,and K={pi:1<i<N}. Then we have:

1 1) K is also the set of degenerate pointsTof

a minor dual-eigenvector i . In the southern hemi- 2) For any degenerate poiri, |(pi,T) = I(pi,Sr). In

1 . . .
sphere y — sing < 0), the values of the dual-eigenvectors are  Particular, a wedge remains a wedge, and a trisector
remains a trisector.

swapped. Consequently, the major dual-eigenvector field _ )
discontinuous across curves where- 0, which correspond to  1his theorem allows us to not only detect degenerate points,
pure symmetric tensors (Equation 11) that form the boundarféidf &lso classify them based on their tensor indexes (wedges,
between regions of counterclockwise rotations and regionstggectors, etc) and the hemisphere they dwell on, something

clockwise rotations. not addressed by Zheng and Pang’s analysis [39]. Furthermore,
With the help of Theorem 4.1, the above discussion can BtS theorem leads directly to the extension of the well-known
formulated into the following. Poincaré-Hopf theorenfor vector fields to asymmetric tensor

Theorem 4.2:The major and minor dual-eigenvectors of 4€lds as follows.
tensorT (6, ¢) are respectively the major and minor eigenvec- Theorem 4.5:Let M be a closed orientable two-
tors of the fo“owing Symmetric tensor: dimensional manifold with an Euler CharaCteriSﬁqM),
W cog @+ 1 sin(6 -+ ) _ancli Iethdbe a continuous as;llmmetrli\(lz te_ltlsor field with only
_ 2 2 i11<i<NL :
Pr = o Ve (sin(9+ 5 _cogo- g)) (15) isolated degenerate poinfp; : 1 <i <N}. Then
. . N
whereverPr is non-degenerate, i.e; = cosp # 0 and ys = le (pi,T) = x(M) (16)
sing # 0. &
This inspires us to incorporate places correspondingy to The eigenvector manifold also provides hints that degenerate
0 into tensor field topology in addition t = +7 (degenerate points occurring at opposite poles have different rotational
curves) andp = +7 (degenerate points). Symmetric tensorerientations. In fact, any tensor line connecting a degenerate
and degenerate curves divide the eigenvector maniibld point pair inside different hemispheres necessarily crosses the
into four regions: (1) real domains in the northern hemispheeguator (pure symmetric tensors) an odd number of times.
(W.n), (2) real domains in the southern hemisphétés), (3) In contrast, when the degenerate point pair is in the same
complex domains in the northern hemispherg {), and (4) hemisphere, any connecting tensor line will cross the equator
complex domains in the southern hemisphégsj. Figure 2 an even number of times or remain in the same hemisphere
(left) illustrates this partition. (zero crossing).
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(b)

Fig. 4. Three tensor line-based technigues in visualizing the eigenvectors of the vector field shown in Figure 1. In (a), the regions with a single family of tensor
lines are the complex domains and the regions with two families of tensor lines are the real domains. Red indicates a counterclockwise rotational component
while green suggests a clockwise one. The major and minor eigenvectors (real domains) are colored black and white, respectively. The blue tensor lines inside
the complex domains follow the major dual-eigenvectors. In (b), dual-eigenvectors are replaced by pseudo-eigenvectors (blue) inside complex domains. The
image in (c) is obtained from (b) by blending it with a texture-based visualization of the vector field. In (b’), the physical meanings of eigenvectors (top) and
pseudo-eigenvectors (bottom) are annotated.

3) Pseudo-EigenvectorsWWe conclude our analysis with domains across degenerate curves. Thus we definm#ar
the introduction of pseudo-eigenvectors, which like duaknd minor augmented eigenvector fiels(i = 1,2) as:
eigenvectors are continuous extensions of eigenvectors into the

complex domains. Unlike dual-eigenvectors, however, pseudo- { E(p) T(p) in the real domain

eigenvectors are not mutually perpen_dicular. RecaI.I that in A(p) = R(p) T(p) in the complex domain a7
the complex domains, flow patterns without translations and
isotropic scalings are ellipses, whose elongated directions ar@he major and minor pseudo-eigenvectors are undefined at
represented by the major and minor dual-eigenvectors [38kgenerate points, i.e¢q = +7. In fact, the set of degen-
Unfortunately, the elliptical patterns cannot be demonstrategate points of either pseudo-eigenvector field matches that
by drawing tensor lines following the major and minor dualef the major dual-eigenvector field (number, location, tensor
eigenvectors since they are always mutually perpendicular. ifelex), thus respecting the adapted Poiéedopf theorem for
remedy this, we observe that an ellipse can be inferred framymmetric tensor fields (Theorem 4.5). The orientations of
the smallest enclosing diamond whose diagonals representtdgsor patterns in the pseudo-eigenvector fields near degenerate
major and minor axes of the ellipse (Figure 4 (b’): bottompoints are obtained by rotating patterns in the major dual-
Given two families of evenly-spaced lines of the same densiéygenvector field in the same regions Hyeither counterclock-
d intersecting at an angler = f(8), any ellipse can be wise (@ > 0) or clockwise ¢ < 0).
represented. Our question then is: given a terBO,¢)  4) Visualizations:In Figure 4, we apply three visualization
where § < |¢| < Z, how do we decide the directions of thecechniques based on eigenvector analysis to the vector field
two families of lines? This leads to the following definitionsshown in Figure 1. In addition to the option of visualizing
Definition 4.6: Given a tensorT = T(6,¢), the major eigenvectors in the real domains and major dual-eigenvectors
pseudo-eigenvectaf T is defined to be theninor eigenvector in complex domain (Figure 4 (a)), pseudo-eigenvectors provide
of the tensorT(6,5 — ¢) when ¢ > 7 and T(6,—5 — ¢) an alternative (Figure 4 (b)). In these images, the background
when ¢ < —Z. Similarly, theminor pseudo-eigenvectaf T colors are either red (counterclockwise rotation) or green
is defined to be thenajor eigenvector of the same tensorgclockwise rotation). Tensor lines following the major and
under these conditions. minor eigenvector fields are colored in black and white,
It is straightforward to verify that evenly-spaced linesespectively. Tensor lines according to the dual-eigenvector
following the major and minor pseudo-eigenvectors produdield (a) and pseudo-eigenvector fields (b) are colored in blue,
diamonds whose smallest enclosing ellipses represent the flehich makes it easy to distinguish between real and complex
patterns corresponding Tin the complex domains (Figure 3:domains. Degenerate points are highlighted as either black
¢ = i%"). Notice that the definitions of the major andwedges) or white (trisectors) disks. Note that it is easy to
minor pseudo-eigenvectors can be swapped as evenly-spasesl the topology of tensor fields (degenerate points, degen-
lines following either definition produce the same diamonderate curves, purely symmetric tensors) in these visualization
Because of this, we assign the same color (blue) to battthniques. Figure 4 (c) overlays the eigenvector visualization
pseudo-eigenvector fields in our visualization techniques im (b) onto texture-based visualization of the vector field. It is
which they are used (Figure 4 (b-c)). evident that flow directions do not align with the eigenvector
Both major and minor pseudo-eigenvector fieRl§i = 1,2) or pseudo-eigenvector directions. Furthermore, as expected the
in the complex domains are continuous with respect to tfi#ed points in the vector field and degenerate points in the
major and minor eigenvector fields (i = 1,2) in the real tensor field appear in different locations.
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B. Eigenvalue Manifold and 3-types represent regions in the eigenvalue manifold that
do not share a common boundary.

As an application of this theorem, we state that a continuous
path travelling from arR*-type region to arR™-type region

We now describe our analysis on the eigenvalue »f2
tensors, which have the following forms:

_ must intersect with &1-, D~-, or Stype region. A similar
22 ; ,
12 :{ Yo i. VSZ sz !f B2y (18) statement can be made betweela- and D~ -type region
Vaki/ W — Ve i<W pair. Note these statements can be difficult to verify without

ghe use of eigenvalue manifold.
of the isotropic scaling, rotation, and anisotropic Stretcmn%c\:/r\]/?]iqrﬁgp\?vseeag;(;nV:tiliguag(lgléerign;gzﬁséf\:xghfi\:ze's;:gts:}al

. . t
components in the tensor field. X ' I ) )
To understand the nature of a tensor usually requires t%onflguratlons shown in Figure 5 (upper-middie). Effective

study of yy, ¥, Y& or some of their combinations. Since nocglor.asygnment can .allow the. user t9 identify the type
f_primary characteristic at a given point as well as the

upper bounds on these quantities necessarily exist, the effdc-P! :
tiveness of the visualization techniques can be limited by th (iatlve_ ratios among the three Fomponen_t_s. We use _the scheme
own in Figure 5 (upper-right): pure positive isotropic scaling

ratio between the maximum and minimum values. Howev: Sr N . .
?yellow), pure negative isotropic scaling (blue), pure coun-

it is often desirable to answer the following questions: h - . .
i terclockwise rotation (red), pure clockwise rotation (green),
* \(Nhat are dthﬁ') retlatlve.s:reggths of the three componenjgy hyre anisotropic stretching (white). For any other point
Yd, ¥, andys) at a pointpo< , (Ya(x,¥), ¥ (X,y), ¥5(X,Y)), we computex as the angular com-
« Which of these components is dominantpg? ponent of the vectofyu(x,y), % (x.y)) with respect to(1,0)

Both questions are more concerned with the relative ratigsounterclockwise rotation). The hue of the color is then:
among Y4, %, and ys rather than their individual values,

which makes it possible to focus on unit tensors, i.e., when { %G if O0<a<m (19)
Y3+ +y2=1andy > 0. The set of all possible eigenvalue a0 if —m<a<0

configurations satisfying these conditions can be modelRghtice that angular distortion ensures that the two isotropic
as a unit hemisphere, which is a compact two-dimensiongdajings and rotations will be assigned opposite colors, re-
manifold (Figure 5 upper-left). spectively. Our color legend is adopted from Ware [34]. The
There are five special points in the eigenvalue manifolghtyration of the color reflectg (x,y) + y2(x,y), and the value
that represent the extremal situations: (1) pure positive scaliggthe color is always one. This ensures that as the amount of
(v =1, ¥ = ¥ =0), (2) pure negative scalingy{ = —1, anisotropic stretching increases, the color gradually changes
¥y = ¥s=0), (3) pure counterclockwise rotatiog; = 1, ya = to white, which is consistent with our choice of color for
¥s = 0), (4) pure clockwise rotation(= —1, ys = s =0), representing anisotropic stretching. Figure 6 (a) illustrates this
and (5) pure anisotropic stretchings(= 1, yu = % = 0)  visualization with the vector field shown in Figure 1.
(Figure 5 (upper-left)). The Voronoi diagram with respect Qur second eigenvalue visualization method assigns a
to these configurations leads to a partition of the eigenvaluiique color to each of the five Voronoi cells in the eigenvalue
manifold into the following types of regions: (D* (positive manifold. Figure 6 (b) shows this visualization technique for
scaling dominated), (2D~ (negative scaling dominated), (3)the aforementioned vector field.
R*™ (counterclockwise rotation dominated), R) (clockwise  Notice that the two techniques differ in how they address
rotation dominated), and (5§ (anisotropic stretching dom- the transitions between regions of different dominant char-
inated). Here, the distance function is the spherical geodeaigteristics. The first method allows for smooth transitions
distance, i.e.d(vi,Vvz2) = 1—Vv; -V for any two points; andvz  and preserves relative strengths yaf y, and ys, which we
on the eigenvalue manifold. The resulting diagram is illustratedfer to as the AC (all components) method. The second
in Figure 5 (upper-middle). method explicitly illustrates the boundaries between regions
A point pg in the domain is said to be a tyd@" point with different dominant behaviors, which we refer to as the
if T(po) is in the Voronoi cell of pure positive scaling,DC (dominant component) method. We use both methods in
i.e., Ya(Po) > max(ys(Po), |% (Po)|). A DT -type regionR is a our interpretations of the data sets (Section V). To illustrate the
connected region in which every point is of ty@e'. Points absolute magnitude of the tensor field, we provide a visualiza-
and regions corresponding to the other types can be definedidm in which the colors represent the magnitude of the gradient
a similar fashion. We define the topology of a tensor field witfensor, i.e.,y3 + y? + y2 (Figure 6 (c)). In this visualization,
respect to eigenvalues as the set of points in the domain wheese indicates high values and blues indicate low values. Notice
tensor values map to the boundaries between the Voromeat this visualization can provide complementary information
cells in the eigenvalue manifold. The following result is ghan either the AC or DC method.
straightforward derivation from the Voronoi decomposition of Combining visualizations based on eigenvalue and eigen-
the eigenvalue manifold. vector analysis leads to several hybrid techniques. The fol-
Theorem 4.7:Given a continuous asymmetric tensor fieldowing provides some insight on the link between eigenvalue
T defined on a two-dimensional manifolll, let U; and analysis and eigenvector analysis.
U, be ana- and -type region, respectively, where, 3 € Theorem 4.8:Given a continuous asymmetric tensor field
{D*,D7,R",R",S} are different. ThedU;NdU, =0 if a- T defined on a two-dimensional manifold such tl@& v+

Recall thatyy, %, and ys represent the (relative) strength
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anisotropic
stretching

clockwise positive isotropic
rotation: a=rt scaling: o=m/2

anisotropic
isotropic stretching
scaling

positive scaling

clockwise counterclockwise
rotation

anisotropic
stretching counterclockwise
rotation: a=0

rotation

egative scaling
negative isotropic

Eigenvalue manifold Eigenvalue manifold .
scaling: o=—m/2

(top-down view)

(a) source (positive scaling) (b) node  (c) saddle (anisotropic stretching)  (d) simple shear  (e) center (counterclockwise rotation)  (f) spiral (g) improper node

Fig. 5. The eigenvalue manifold of the set 2k 2 tensors. There are five special configurations (top-left: colored dots). The top-middle portion shows a
top-down view of the hemisphere along the axis of anisotropic stretching. The hemisphere is decomposed into the Voronoi cells for the five special cases,
where the boundary curves are part of tensor field topology. To show the relationship between a vector field and the eigenvalues of the gradient, seven vector
fields with constant gradient are shown in the bottom rowi(f@y, ys) = (1,0,0) , (b) (42,0,*2), (c) (0,0,1), (d) (0,2, %), () (0,1,0), () (*2,*2,0),

and (g)(@, @, @). Finally, we assign a unique color to every point in the eigenvalue manifold (upper-right). The boundary circle of the eigenvalue manifold

is mapped to the loop of the hues. Notice the azimuthal distortion in this map, which is needed in order to assign positive and negative scaling with hues
that are perceptually opposite. Similarly we assign opposite hues to distinguish between counterclockwise and clockwise rotations.

(@ (b) (c)

Fig. 6. Three visualization techniques on the vector field shown in Figure 1 (Section V-A): (a) eigenvalue visualization based on all components, (b)
eigenvalue visualization based on the dominant component, and (c) magnitude (dyadic product) of the velocity gradient tensor. The color scheme for (a) is
described in Figure 5 (upper-right). The color scheme for (b) is based on the dominant component in the tensor: positive scaling (green), negative scaling
(red), counterclockwise rotation (yellow), clockwise rotation (blue), and anisotropic stretching (white). In (c), red indicates large values and blue indicates
small.

y2 > 0 everywhere, the following are true: (a)). This results in eight different colors according to Theo-
1) anR'-type region is contained i, and anR -type rem 4.8):
region is contained iM s, e C1 =R"NW;p (red),
2) an Stype region is contained W nUW s, « C; =R NW;s (green),

3) a D*-type or D™-type region can have a non-empty , C;=D* NWen UWin) (vellow-+red),
intersection with any of the following n, Wi s, Wen, e C4=D"NWesUWs) (yellow+green),
andWes. o CG5=D"NWenUW ) (bluetred),
Three hybrid visualizations are shown in Figure 7. In (a), « Co =D~ N(WesUW ) (bluetgreen),
the colors are obtained by combining the colors from the s C7 = SN(WenUWrn) (White+red),
eigenvalue visualization (Figure 6 (b)) with the background ¢ Cs = SN(WesUWs) (Whitet-green),
colors (red or green) from eigenvector visualization (Figure 4 FurthermoreCs — Cg can be in either the real or complex
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Fig. 7. Example hybrid visualization techniques on the vector field shown in Figure 1: (a) a combination of eigenvalue-based visualization (Figure 6 (b))

with the background color (red and green) from eigenvector-based visualization (Figure 4 (a)), (b) same as (a) except the underlying texture-based vector field
visualization is replaced by eigenvectors and major dual-eigenvectors, and (c) a combination of (a) and (b).

domain. This can be distinguished based on the colors of tields. Letu be the flow velocity. The velocity gradient tensor
tensor lines (see Figure 7 (b)): real domains (tensor lines [ilu consists of all the possible fluid motions except translation
black and white) and complex domains (tensor lines in blugnd can be decomposed into three terms [2], [27]:

Figure 7 (c) is obtained by combining the visualizations in

Figure 7 (a) and (b). Ou= tracﬂ

N O T Qi +Ej (20)
C. Computation of Field Parameters

In the latter case, the vector gradient (a tensor) is used as {igingin mathematical terms), and the anti-symmetric tensor
input. The computational domain is a triangular mesh in elth?{i_ = 1(Ou— (Ou)T) represents the averaged rotation of a
a planar domain or a curved surface. The vector or tensor fieﬁlﬁ%d pgrcel Since;; has only three entities whel = 3, it

is defined at the vertices only. To obtain values at a point QA be considered as a pseudo-vector; twice the magnitude of
the edge or inside a triangle, we use a piecewise interpolatilrp‘% vector is calledvorticity. The symmetric tensor:
scheme. On surfaces, we use the scheme of Zhang et al. [36],

[35] that ensures vector and tensor field continuity in spite of 1 T, tracgOu] o
the discontinuity in the surface normal. Bij = E(Du+(Du) )- N 9 (1)
Given a tensor fieldT, we first perform the following js termed theate-of-strain tensofor deformation tensgrthat
computation for every vertex. represents the angular deformation, i.e. the stretching of a fluid
« Repamaterization, in which we computg ¥, ¥s, and6. element along a principle axis. Notice that in two-dimension
« Normalization, in which we scalg, %, andys to ensure cases Ij = 2) Equation 20 corresponds directly to the tensor
BHw+H=1 , _ reparamterization (Equation 7) in whigpy = "8y —
« Eigenvector analysis, in which we extract the eigenvec- 1E i
E?; +Ef,, and 6 = tan !(g2). Consider the

tors, dual-eigenvectors, and pseudo-eigenvectors at eﬁghﬂj ¥s = | i i i
vertex. gradient tensor of a two-dimensional flow field (see Figures 6

Next, we extract the topology of the tensor field with respegpd 7 for an example), the counterclockwise and clockwise

to the eigenvalues. This is done by visiting every edge in tﬁgtatlons n the t'er?s'or field indicate p95|t|ve vort|C|t|§§ (red)
a}gd negative vorticities (green), respectively . The positive and

mesh to locate possible intersection points with the boundal 97 . i . .
curves of the Voronoi cells shown in Figure 5. We then connedpgative isotropic scalings represent expansion and contraction
the fluid elements (yellow and blue). The anisotropic

. . . . (o]
the intersection points whenever appropriate. L . o r
Finally, we extract tensor topology based on eigenvecto%:emhmg is equivalent to the rate of angular deformation, i.e.,

This includes the detection and classification of degenera%tleeeal:vzgg ps ?r,wv?rllt:)r.ezluc;?gg?no:g’ r?:se"r!l':sc;;?;er%;?io?glgt?e?ﬁs
points as well as the extraction of degenerate curves a P P

symmetric tensors of fluid elements, while dual-eigenvectors in the complex

y ' domain represent the skewed (elliptical) rotation pattern.
For the analysis of three-dimensional incompressible-fluid
V. PHYSICAL INTERPRETATION ANDAPPLICATIONS flows (Zisleii — 0) confined to a plane (e.g., Figures 6 and 7),
In this section, we describe the physical interpretation tivice the trace ofdJu can be written asliy+ Top = —Tas,

our asymmetric tensor analysis in the context of fluid flowhich represents the net flow to the plane from neighboring
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(@ (b) (d)

Fig. 9. Four visualization techniques on the Sullivan flow (Section V-A): (a) vector field topology [4] with textures representing the vector field, (b) eigenvalue
visualization based on all components with textures showing major eigenvectors in the real domain and major dual-eigenvectors in the complex domain, (c)
same as (b) except that colors encode the dominant component, and (d) magnitude (dyadic product) of the velocity gradient tensor with the underlying textures
following the vector field. The visualization domainris< 2.667.

Y VA
MU e
H(s) :/ exp{—t+3/ Zodrjdt  (29)
0 0
X
> Sketches of the flow pattern in the horizontal and vertical

planes are shown in Figure 8. Away from the vortex center
Fig. 8. The Sullivan Vortex viewed in (left) they plane and (right) the-z «, the flow is predoml_nantly in the ”egat"’e radial direction
plane. (toward the center) with the accelerating upward flaws

—ar, v~ 0, wa 2az On the other hand, asbecomes small

r — 0), we haveu= 3ar, v~ 0, wa —4az Figure 9 visualizes

planes: this is a consequence of mass conservation. Posiimg instance of the Sullivan Vortex with= 1.5. I = 25. and
scaling in the plane represents the effect of inflow from the_ 1 i, the planez = 1. ' '

3D neighborhood of the plane. This can be also interpreted a%igure 9 (a) shows the velocity vector field together with

pegative stre_tching qf flu?d mate_rial i_n the normal directior}he topology [4] identifying the unstable focus (the green
i.e. the velocity gradient in the direction normal to the planazot) and the periodic orbit (the red loop). The images in
is negative Tz3 < 0). A similar interpretation can be made

¢ i i o). Thi Id be stretching in th (b) and (c) are the eigenvalue visualizations based on all
or neg:adl_ve s_camg‘l@3> )- |s_t\)/\|/ouﬂ 'de srr]ec_ ing in ?components (AC method) and on the dominant component
norma irection. or compressible fluids, the interpretat C method), respectively. The textures in (b) and (c) illustrate
requires care: positive scaling can represent not only vo

A . ; . / e major eigenvector field in the real domains and the major
metric dilatation of compressible fluid, but also contain tr:E

f . ff  infl f the fluid f h iahborh ual-eigenvector field in the complex domains. Due to the
oregaing € ect of inflow of the fluid from the neighborhood, , ajization of tensors, our visualization techniques shown
of the subject plane.

in (b) and (c) exhibit relative strengths of tensor components
(va» ¥, and ys) at a given point. To examine the absolute
) ] ) ) ) strength of velocity gradients in an inhomogeneous flow field,

The first example we discuss is an analytical 3D incomya1ia variations of the magnitude (dyadic product) of velocity
pressible flow that is presented by Sullivan [29]. This iS 8kagients are provided in (d) with the texture representing

exact solution of the Navier-Stokes equations for a thregye yelocity vector field. Red indicate high values and blue
dimensional vortex. The flow is characterized by: correspond to low values.

) The behaviors of the third dimension (z-direction) can be

cosf —sind 0 inferred from our DC-based eigenvalue visualization in the

Ur(X,¥,2) | sin | +Ug(X,y,2) | COSH | +Uz(X,Y,2) (1) x-y plane (Figure 9 (c)). Namely, in the regions of lamge
(22

A. Sullivan Vortex: a Three-Dimensional Flow

0 0 the negative isotropic scaling (blue) is dominant, and near
) the vortex center, the positive isotropic scaling (yellow) is

dominant. Identifying such isotropic scaling is formidable with

the use of texture-based vector visualization (Figure 9 (a)).

in which:

Ur = —ar+6v/r[1—e*(ar2/2")] The eigenvalue visualization (Figure 9 (b) and (c)) allows
to = (F/2m)[H(ar'/2v) /(o) be ideniied from the corteaponing vector fisd vistalzaton
U, = 2871 — 3e~/2V] 23) ponting

(Figure 9 (a)). Figure 9 (b) and (d) collectively exhibit that

are the radial, azimuthal, and axial velocity componentstrong counterclockwise rotation of fluid parcels appears in
respectively. Herea (flow strength),l” (flow circulation), and the annular region near the center, and the rotation dimin-
v (kinematic viscosity) are constants= /X2 +y2, and: ishes ag increases (away from the center). Notice that this
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o

outlet

transversal

Fig. 10. The major components of the flow through a cooling jacket incluc s =
a longitudinal component, lengthwise along the geometry and a transvel
component in the upward-and-over direction. The inlet and outlet of tt
cooling jacket are also indicated. (b)

Fig. 11. DC-based eigenvalue visualization of a simulated flow field inside

. T the cooling jacket: (a) the outside surface of a side wall in the cooling
information is difficult to extract from the texture-based vectqlcyet, and (b) the inside surface of the same side wall. This is the first

visualization (Figure 9 (a)), although it can be achieved witdine asymmetric tensor analysis is applied to this data set.
a vorticity-based visualization.

Comparing the texture plots of Figure 9 (a) and (b), we
notice that the major eigenvectors ((b): the directions @hd scaling that appear on the contact (inner) surface. As
stretching) closely align with the streamlines in the real defiscussed earlier, stretching is a measure of fluid mixing.
main (a) for large enough while the major dual-eigenvectorsjt increases the interfacial area of a lump of fluid material,
((b): the direction of elongation) are nearly perpendicular tnd the interfacial area is where heat exchange takes place
the streamlines (a) in the complex domain near the centf conduction. Given that the flow in the cooling jacket is
of the vortex. This kind of enlightening observations are n@pnsidered incompressible [18], scalings that appear on the
revealed without tensor analysis. contact surface, whether positive or negative, indicate the flow

The extremely localized high magnitude of velocity gradierfomponents normal to the interface, i.e., convection at the
(red region) shown in Figure 9 (d) represents the compl@yerface. Note that fluid rotations (either counterclockwise
flows that resemble theye wallof a hurricane or tornado, or clockwise) would yield inefficient heat transfer at the
although for large, the Sullivan Vortex differs from hurricane contact interface since rotating motions do not contribute to
or tornado flows. the increase of the surface of a lump of fluid material.

To illustrate our visualization techniques earlier in Fig- This dataset has been examined using various vector field
ures 1, 4, 6, and 7. We have used the combination of tWgyalization techniques based on velocity and vorticity [22],
S_ullivan Vortices whose centers_ are slightly di_splaced with [28], [19]. We have applied our asymmetric tensor analysis
distance 00.17 and whose rotations are opposite but of equg this data set and discuss the additional insight that has not

strength. been observed from previous study.
) In order to distinguish the regions of rotation-dominant
B. Heat Transfer With a Cooling Jacket flows from scalings and anisotropic stretching, we choose to

A cooling jacket is used to keep an engine from overheatingse the DC-based eigenvalue visualization (Figure 11). In (a)
Primary considerations for its design include 1) achievinand (b), we show the outer and inner surface of the right half
an even distribution of flow to each cylinder, 2) minimizingf the jacket, respectively. The visualization suggests that the
pressure loss between the inlet and outlet, 3) eliminating fldlews are indicative of heat transfer, especially at the inner side
stagnation, and 4) avoiding high-velocity and regions that may the wall (b). This is because a large portion of the surface
cause bubbles or cavitation. Figure 10 shows the geometryanéa exhibits positive scaling (yellow), negative scaling (blue),
a cooling jacket, which consists of three components: 1) thed anisotropic and stretching (white), whereas the area of
lower half of the jacket or cylinder block, 2) the upper halpredominantly rotations (red and green) are relatively small.
of the jacket or cylinder head, and 3) the gaskets to conndcis emphasized that an important part of the geometry is
the cylinder block to the head. Evidently, the geometry of thibe inner surface where coolant is directly in contact with
surface is highly complex. engine’s cylinders. Comparing the inner and outer surfaces of

In order to achieve efficient heat transfer from the engirtee cooling jacket provides interesting insights into the flow
block to the fluid flowing in the jacket, the fluid must bepatterns. In the cylinder blocks between the adjacent cylinders,
continuously convected while being mixed. Consequentlihe flow pattern in the inner surface (b) is divergent (yellow)
desirable flow patterns to enhance cooling include stretchipgeceded by convergent flows (blue). The flow path from
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Intake Ports

one cylinder to another has significant curvature (Figure 10),
and a portion of the flow is brought to the upper jacket
through the gasket. It appears that curvature-induced advective
deceleration and acceleration and the outflow to the upper
jacket are responsible for the repetitious flow pattern on the
inner surface. On the other hand, the resulting flow contraction
is supposed to cause the flow convergence on the outer surface
(Figure 11 (a)). Yet, no clear repetitious pattern is present
on the outer surface except flow convergence between the
cylinders. In general, there is no significant region where flow
rotation is dominant on the inner surface. While there are more
rotation-dominated regions on the outer surface, it is not gg. 12. The swirling motion of flow in the combustion chamber of a diesel

critical as the inner surface. This indicates a positive aspectenfine Swirlis used to describe circulation about the cylinder axis. The intake

: : ; ports at the top provide the tangential component of the flow necessary for
the CQOIIng jacket design. . . swirl. The data set consists of 776,000 unstructured, adaptive resolution grid
While these flow patterns could be interpreted with vectgeis.

field visualization, it would require a more careful inspection.
On the other hand, our eigenvalue presentation of the tensor
field can reveal such characteristics explicitly, automaticall§igenvectors). Note that the trend is opposite to that of the
and objectively. For example, to our knowledge, the aforemefullivan Vortex (Figure 9).
tioned repeating patterns of divergent and convergent flows orOn the cylinder surface shown in (b), there are only two
the inner surface (Figure 11 (b)) has not been reported frataminant regions: counterclockwise rotation and anisotropic
previous visualization work that studies this data set [22], [18}fretching. Lack of regions dominated by isotropic scaling
[19]. suggests that the flow along the cylinder wall forms no
strong flow separation or reattachment, which is consistent
with the sketch in Figure 12. On the other hand, the top
of the cylinder shows the dominance of negative isotropic
Swirl motion, an ideal flow pattern strived for in a diesecaling, representing that the flow is in the intake cycle. These
engine [23], resembles a helix spiral about an imaginappservations are rather difficult to make from visualization of
axis aligned with the combustion chamber as illustrated the velocity vector field, i.e. the texture in Fig 13 (a) alone.
Figure 12. Achieving this ideal motion results in an optimal The locations of pure circular rotation of fluid parcels can be
mixing of air and fuel and thus a more efficient combustiospotted in (b) as the degenerating points such as wedges (black
process. A number of vector field visualization techniquetots) and trisectors (white dots). A degenerate point represents
have been applied to a simulated flow inside the diesle location of zero angular strain. Hence for two-dimensional
engine [23], [11], [4]. These techniques include arrow ploteon-divergent flows, no mixing or energy dissipation can
color coding velocity, textures, streamlines, vector field topolake place at the degenerate points. Nonetheless, it is not
ogy, and tracing particles. We have applied our tensor-basedctly the case for three-dimensional and compressible flows
techniques to this dataset, which to our knowledge is the fiiatthis example, because stretching could still take place in the
time asymmetric tensor analysis is applied to this data.  direction normal to the surface, if isotropic scaling component
Visualization of both eigenvalues and eigenvectors on tlweere present.
curved surface is presented in Figure 13: (a) AC-basedThe vector plot of Figure 13 (c) shows the complex flow
eigenvalue visualization, (b) a hybrid approach with eigemattern comprising several vortices with both rotations. The
vectors and pseudo-eigenvectors illustrated. We also appbmplex pattern is resulted from the decelerating flow, since
our visualization techniques to a planar vector field obtaingdis flow field is taken at the end of the intake process, i.e.,
from a cross section of the cylinder &6 percent of the the cylinder head is near the bottom end. The overlay of
length of the cylinder from the top where the intake portsigenvalues clearly and effectively exhibits the directions of
meet the chamber. The visualization techniques are: (c) Afdtation, positive and negative isotropic scaling (expansion and
based eigenvalue visualization, and (d) DC-based eigenvatumtraction), and anisotropic stretching (shear strain).
combined with eigenvectors and major dual-eigenvectors. Noten Figure 13 (d), the direction of stretching is readily under-
that the textures shown in (a) and (c) illustrate the velocistood by the major and minor eigenvectors in the real domains
vector field. and the major dual-eigenvectors in the complex domains. This
Figure 13 (a) and (b) demonstrate that the developed tedimage also demonstrates the fact, as we demonstrated in Fig-
nique for visualizing both eigenvalues and eigenvectors onuges 2 and 5, that fluid rotation cannot directly come in contact
curved surface. The major eigenvectors in the real domaimith the flow of opposite rotational orientation. There must
(stretching direction of fluid parcels) do not align with thée a region of stretching in-between with the only exception
streamlines. In some locations, they are perpendicular to edighing a pure source or sink. Furthermore, it can be observed
other. On the other hand, the elongation of rotating motidhat the regions between rotations in the same direction tend
tends to be in the similar direction to the velocity vector (sde induce stretching. The regions between rotations in the
Figure 3 for the stretching and elongation interpretations opposite directions tend to generate negative scaling, which

/ \ Swirl

U Motion

Rotation

C. In-Cylinder Flow Inside a Diesel Engine
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(@) (b)

Fig. 13. Visualization of a diesel engine simulation dataset (Section V-C): (a) AC-based eigenvalue visualization of the data on the surface of the engine,
(b) hybrid eigenvalue and eigenvector visualization (Figure 7 (b)) of the gradient tensor on the surface with eigenvectors in the real domains and pseudo-

eigenvectors in the complex domains, (c) AC-based visualization of a planar slice @btpatcent of the length of the cylinder from the top where the

intake ports meet the chamber), and (d) the hybrid visualization used for (b) is applied to the planar slice. The degenerate points are highlighted using colored

dots: black for wedges and white for trisectors. This is the first time asymmetric tensor analysis is applied to this set.

represents contraction. There are several degenerate pointor the eigenvector field, we augment previous results of
such as wedges (black dots) and trisectors (white dots) in thkeng and Pang [39] based on a novel concept of eigenvector
figure. manifold (Figure 2). Our analysis includes an explicit charac-
We wish to emphasize that this is the first time the followintgrization of the dual-eigenvectors (Theorem 4.2), a new sym-
flow characteristics are visualized for the diesel engine datasegtric discriminant that takes into account the orientation of
expansion, contraction, stretching, elongation, and degenere rotational component, an algorithm to classify degenerate
points. Also, to our knowledge, the observation that the flopoints (Theorem 4.4) and the extension of the Poid¢dopf
along the cylinder wall forms no flow separation or reattacltheorem to asymmetric tensors on two-dimensional manifolds
ment has not been reported previously based on velocity gfidheorem 4.5), and the definition of pseudo-eigenvectors (Def-

vorticity visualizations [23], [11], [4]. inition 4.6) which we use to visualize tensor structures inside
complex domains.
VI. CONCLUSION AND FUTURE WORK We present several visualization techniques based on the

In this paper, we provide the analysis of asymmetric tenseigenvalue field, eigenvector field, or their combination. Our
fields defined on two-dimensional manifolds and develop einalysis and visualization techniques are also adapted to
fective visualization techniques based on such analysis. At #i¢rved mesh surfaces. To the best of our knowledge, this is the
core of our technique is a novel parameterization of the spdtiét time asymmetric tensor fields on 3D surfaces are analyzed
of 2 x 2 tensors, which has well-defined physical meaningd visualized.
when the tensors are the gradient of a vector field. We provide physical interpretation of our approach in the

Based on the parameterization, we introduce the conceptstext of flow understanding, which is enabled by the rela-
of eigenvalue manifoldFigure 5) andeigenvector manifold tionship between our tensor parameterization and its physical
(Figure 2) and describe the topology of these objects. For timerpretation. Our visualization techniques can provide a
eigenvalue manifold, we have identified five special modes thaimpact and concise presentation of flow kinematics. Principal
lead to a partition of the manifold (Figure 5). Such a partitiomotions of fluid material consist of angular deformation (i.e.
provides a physically-motivated way of segmenting a tensstretching), dilatation (i.e. scaling), rotation, and translation.
field, or a vector field whose gradient is the tensor field dh our tensor field visualization, the first three components
interest. (stretching, scaling, and rotation) are expressed explicitly,
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while the translational component is not illustrated. One of the To verify the relationship between the dual-eigenvectors of

advantages_ in our tensor visuali_zation is that the ki_nemati?s ndTy, letU; (M

expressed in eigenvalues and eigenvectors can be mterpretlea 0

phys:icallly,. for exgmple, to identify the regions of eﬁiciepgition of To. ThenUs i O V5 in which U, = U;NT and

and inefficient mixing. Furthermore, the components of scalin 0

(divergence and convergence) in a two-dimensional surface ¥6r= NVi is the singular decomposition &. This implies

incompressible flows can provide information for the threddat T1 and T, have the same singular valugs and pi.

dimensional flow; negative scaling represents stretching of e relationship between the dual-eigenvectorstofand

fluid in the direction normal to the surface, and vice versa. T2 can be verified by plugging into Equations 3 and 4 the
We demonstrate the efficiency of these visualization metfiforementioned statements on eigenvectors and singular values

ods by applying them to the Sullivan Vortex, an exact solutidfFtWeen congruent matrices. o

to the Navier-Stokes equations, as well as two CFD simulation 1 '€0rem4.4: LetT be a continuous asymmetric tensor field
applications for a cooling jacket and a diesel engine. defined on a two-dimensional manifadl satisfyingy? + & >

To summarize, the eigenvalue visualization enables USQeveryWhere irM. Let Sy be the symmetric component of

examine the relative strengths of fluid expansion (contractiorW?"Ch has a finite number of degenerate pokits- {pi : 1<
rotations, and the rate of shear strain in one single plé.S N}. '_I'hen we have: :

Hence such a plot is convenient for inspection of global flow g ﬁolrs :LSO g:ee sﬁér(:téieg;?;ra}? qulr)‘tirolf( LS. In
characteristics and behaviors, as well as to detect salient fea- particul);r agwe dge rgmairl{s ap;/’ve dg; at)rl{d a- trisector
tures. In fact, the developed visualization technique should be remains é trisector '

ideal for the exploratory investigation of complex flow fields. ) ' )
Furthermore, the developed eigenvector visualization allows us 700 Given thatyg(T) + y#(T) > 0 everywhere in the

to uniquely identify the detailed deformation patterns of fluigomain. the degenerate pointsionly occur inside complex
parcels, which provides additional insights in understandirgmams' Recall that the structures ®f inside complex

I?z) V1 is the singular value decompo-

of fluid motions. Consequently, the developed tensor-basigmains are defined using the dual-eigenvectors, which are
visualization techniques will provide an additional tool fof€ €igenvectors of symmetric tenspr f'm (Equation 15).
flow-field investigations. Moreover, the set of degenerate pointslois the same as the

There are a number of possible future research directio:?%t ofgegenerate points 6% inside complex domains, i.e.,

that are promising. First, in this work we have focused o Eotiéé that the major and minor eigenvectors Rif are
a two-dimensional subset of the full three-dimensional Eigenbtained from corres Jondin o envec?ors&af by rotatin
value manifold (unit tensors). While this allows an efficien P g €9 y 9

seqmertatenof e fow based on he dominant compondl T ST SeESe o Hockuse BT e
the tensor magnitude can be used to distinguish betwe comp P ’ .
Q he rotation is constant. Zhang et al. [35] show that rotating

regions of the same dominant component but with significani[ . . . S
different total strengths (Figure 6 (c)). We plan to incorpora ge eigenvectors of a symmetric tensor field (in this case

the absolute magnitude of the tensor field into our analysis a fformly in the dom?'” (in this case a co_nne(_:ted comgonent
of the complex domains) by an angle Bf(in this case+7)

study the full three-dimensional eigenvalue manifold. Second, ) . )
y g esults in another symmetric tensor field that has the same

tensor field simplification is an important task, and we wiﬁet of degenerate points as the oriinal field. Moreover. the
explore proper simplification operations and metrics that appff nsor ind%ces of thg degenerate oir?ts are ma{intained b : such
to asymmetric tensor fields. Third, we plan to expand ou 9 P y

research into 3D domains as well as time-varying fields. rotation. Thereforesy andP_r (and consequently) have th_e .
same set of degenerate points. Furthermore, the tensor indices

are the same between corresponding degenerate point.
APPENDIX Theorem4.5: LetM be a closed orientable two-dimensional
PROOES manifold with an Euler characteristig(M), and letT be a
continuous asymmetric tensor field with only isolated degen-
In the appendix, we provide the proofs for the theorenegate points{p;: 1 <i < N}. Then:
from Section IV.

N
Theorem 4.1: Given two tensor§; =T (6, ¢) (i=1,2) on le (pi, T)=x(M) (25)
. - - cosd —sind i=
the same latitude-5 < ¢ < 5, let N = { _ N N ,
sind  cosd Proof: 3iz;1(pi,T) = 3iza ! (Pi,Sr) = X(M). The first

with & = %% Then any eigenvector or dual-eigenvecigr equation is a direct consequence of Theorem 4.4, while the

of T, can be written ad\w; whereWw; is an eigenvector or second equation makes use of the fact Sats a symmetric

dual-eigenvector off;, respectively. tensor field, for which thePoincare-Hopf theoremhas been
Proof: It is straightforward to verify thaf, = NT;NT, proven true [5]. [ ]

i.e., Ty and T, are congruent Results from classical linear Theorem 4.7: Given a continuous asymmetric tensor field

algebra state thaf; and T, have the same set of eigenvaluesl defined on a two-dimensional manifoldl, let U; and

Furthermore, a vectow; is an eigenvector of; if and only U, be ana- and B-type region, respectively, where, 3 €

if W> =Nwj is an eigenvector of. {D*,D~,R*,R", S} are different. TherdU; U, =0 if a-
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and 3-types represent regions in the eigenvalue manifold that
do not share a common boundary.
Proof: Since{r (Equation 10) is a continuous map frony;s;
M to the eigenvalue manifoltyl ,, we haveZT‘l((l)) =0.
Theorem 4.8: Given a continuous asymmetric tensor fielﬂG]
T defined on a two-dimensional manifold such th@t- y2 +

y2 > 0 everywhere, the following are true: [17]
1) anR*-type region is contained W, and anR -type
region is contained W\, [18]

2) an Stype region is contained W n W s,

3) a D*-type or D™ -type region can have a non—empty[lg]
intersection with any of the followingi\ n, W.s, We n,
andWs.

Proof: Given a pointpg in an R"-type region, we have
¥ (pPo) > ¥s(po) > 0, i.e., po is in a complex domain in the [20]
northern hemisphereA; ). Similarly, if po is in an R™-type
region, thenpg € Wes.

If po is in anStype region, thens(po) > |y (po)|, i.e.,po  [21]
is in the real domains that can be in either the northern or the
southern hemisphere.

Finally, if pp is in a DT-type region, thenyy(po) > [22]
max(| % (Po)|, ¥s(Po)). However, there is no constraint on the
discriminant¢ = arctar(%). Therefore,pp can be inside any
of Win, Wes, Wen, andWes. A similar statement can be made23]
whenpg is in aD~-type region. [ ]

(24]
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