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Monitoring, diagnosis and prediction of failures play key roles in automatic

supervision of machine tools. They have received much attention because of the

potential for reduced maintenance expenses, down time, and an increase in the

equipment utilization level. At present, signal analysis techniques are predominantly

used. But methods involving system analysis are capable of providing more reliable

information, especially for predictive applications of supervision. System analysis

involves comprehensive analytical models combined with techniques developed in

control theory, and experimental modal analysis.

The primary objective of this research is to develop a methodology to monitor

critical physical parameters of mechanical systems, which are difficult to measure

directly. These parameters are inherent features of constitutive rigid body models. A

method for computer aided model generation developed in this thesis leads to a gray

box model structure by which physical parameters can be estimated from experimental

data. Lagrange's energy formalism, linear algebra and homogenous transformations

are used to promote parsimonious three-dimensional model building. A software

environment allowing symbolic and arbitrary precision computations facilitates

efficient mapping of physical properties of the actual system into specific quantities of

the analytical model.
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Six different methods are postulated and analyzed in this thesis to estimate

physical parameters such as masses, stiffnesses and damping coefficients.

Implementation of this methodology is a prerequisite for the design of an on-line

monitoring and diagnosis system, which can detect and predict process faults. Two

mechanical systems are used to validate the proposed methods: (1) A simple multi

degree-of-freedom (MDOF) system and (2) a machine tool spindle assembly.

A practical application of physical parameter estimation is proposed for

preload monitoring in high-speed spindles. Preload variations in the bearing can lead

to thermal instability and bearing seizure. The feasibility of using accelerometers

located on the spindle housing to estimate bearing preload is evaluated.

The optimal environment for continuation of this research is collaboration with

machine tool companies to incorporate the proposed methodology (or parts of it) into

current design practices.
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ESTIMATION OF PHYSICAL PARAMETERS IN MECHANICAL

SYSTEMS

FOR PREDICTIVE MONITORING AND DIAGNOSIS

1. INTRODUCTION

1.1 General Context

The supervision of technical processes has become more important in the

course of progressive automation. The need for minimizing plant machinery

downtime has prompted the development of computer based conditioning, monitoring

and diagnosis systems to observe machine-operating behavior and predict malfunction

or failure before that condition is reached. Thus, undesirable behavior can be avoided

and machine repair can be scheduled without unexpected interruption to plant

production. For the general understanding the following definitions have to be made:

Monitoring - According to Szafarczyk (1990), monitoring means to watch

over chosen features of the process as an aid to ensure the continuing achievement of

the required level of product quality, and where appropriate, to measure significant

parameters and to record them if required.

Diagnosis - Diagnosis means identification, classification and correction of

malfunctions. It is the proceeding step after monitoring, and is based on the

relationship between the observed condition of the system and a reference model.
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With diagnosis one expects to assess the place, the kind and the cause of a functional

disturbance.

According to Takata & Sata (1986) and Mitchell (1981) monitoring and

diagnosis holds a promise of great reduction in lost production time and a decrease in

maintenance costs. For example, if a failure can be predicted, maintenance can be

scheduled in non-productive periods and the necessary spare parts can be ordered in

advance. A detection of failures in their early stages would give the possibility of

forecasting and eventually avoiding major breakdowns.

In general, a monitoring system for automatic supervision consists of six

cascaded operations represented in Fig. 1.1 (Spiewak, 1994). Functions of these

blocks are described below:

Signals from
the System

)External
Knowledge

AkIf
.411tx\ Fault

Detection
Preparation ...Li Pre- 3 Feature

Signal )
and Processing Extraction

Acquisition
Signal Processing

Prognostic
Parameters

Fault Diagnosis

cpSeverity Evaluation I

Fig. 1.1: A block diagram of the monitoring chain (Spiewak, 1994).
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0 Signal Preparation and Data Acquisition:

This block has the function of acquiring all the signals, digitizing and storing them in

the computer. Advanced systems can also adjust the gain and sampling frequency to

maximize the signal-to-noise ratio and minimize quantization errors. Research is also

underway on self-tuning sensors, which automatically adapt to a changing working

environment (Spiewak and Di Corpo, 1991; Chung, 1993), and fault tolerant sensors,

which indicate and compensate sensor malfunctions automatically. These sensors

continue to work with acceptable performance even after a sensor malfunction has

occurred.

0 Pre-Processing:
The pre-processing block represents all signal processing techniques to emphasize

important features, which are contained in the signal. The functions range from

suppression of noise, Fast Fourier Transformation (FFT) and spectrum analysis, to

time-series based parametric identification of structures. These functions involve

processing of huge amounts of data in a short period of time.

0 Feature Extraction:

This block converts the more or less abstract data obtained from pre-processing into

physical properties or phenomena in the monitored object. The extraction of features

representing different failures can be extremely difficult, in part because there are no

generic feature extraction algorithms readily available. Instead, there is a broad

spectrum of techniques, which need to be adapted to each particular type of monitored

object.

0 Fault Detection:
A fault is to be understood as a non-permitted deviation of a characteristic property,

which leads to the inability to fulfil the intended purpose. The features extracted by the

previous block are used in the fault detection block to determine whether any
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abnormal condition exists. This is done by comparing the current and a past healthy

state of the machine.

0 Fault Diagnosis:

If a fault is detected in the Fault Detection Block, then the location and type of fault

should be determined. A database of past failures can aid in such a diagnosis and help

to establish the cause of the fault.

0 Severity Evaluation:

The next step is a severity evaluation that means assessing how the fault affects the

process. After the effect of the fault is known a decision on the action to be taken can

be made. If the fault is evaluated to be tolerable, the operation may continue and if it

is conditionally tolerable a change of operation has to be performed. However, if the

fault is intolerable, the operation must be stopped immediately and the fault must be

eliminated.

Traditionally signal based methods were used for monitoring and failure

prevention. However system analysis, which involves building and analyzing a model

instead of signal analysis can provide much deeper insight into the dynamic behavior

of the machine.

Until recently process supervision and monitoring was mainly performed by

limit value checking of some important and measurable process variables. While this

approach is straightforward, it does not take into account how those limits vary

according to the state of the system. Disturbances can easily set off an alarm, even if

no fault is present. Also, process faults are only detected at a rather late stage after the

fault finally affects the measured output, assuming the supervision is based on this

simple method. This method of limit observation is not sufficient to allow the

operation of machinery without human supervision. Human operators are still

required for the supervision of processes. They use their own "sensors" (e.g., noise,
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vibrations, temperature, visual inspection), data records and long term experience to

obtain the required information on process changes. If the process is going to be

automated, a natural first step consists of adding further sensors and a second step is to

transfer the operator's knowledge into computers as much as possible. It is usually

desirable to add sensors which directly indicate faults. Because the number of sensors,

transmitters and cables increases, the overall reliability is not necessarily improved.

The probability of miss-alarm increases and fault detection as well as diagnosis might

even become more difficult due to contradicting features in many different signals

from the machine. Also, many faults cannot be detected directly by available sensors.

Digital computers and microprocessors enable the use of sophisticated

methods, which can detect faults in the process earlier and locate them better. Efforts

have been made (Szafarczyk, 1994; Isermann, 1984; Willsky, 1976) to trace process

changes by using process models and fewer sensors, which don't necessarily detect

faults directly, but which provide information about the process through system

identification. Such model-based methods utilize information of an analytical model

to evaluate the measured signals. Data generated from the analytical model is

compared with sensor signals from the actual machine and the results further analyzed

(usually involving statistical testing) to arrive at a diagnostic decision.

1.2 Problem Statement

This research is concerned with predictive supervision of manufacturing

equipment in general, and metal cutting machine tools in particular. Their dynamic

behavior is determined by the values of physical parameters such as masses, stiffnesses

and damping coefficients. If critical physical parameters of machine tools are

monitored on-line, changes in their values can be used to indicate process changes or
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system faults. In addition this facilitates diagnosis and prediction of machine

breakdowns.

A systematic approach is sought on how to monitor physical parameters of

mechanical systems. Physical parameters are inherent features of analytical models,

which are referred to in this thesis as "gray box" models. In particular three

techniques of modeling structures in the area of mechanics are relevant in this thesis

and therefore described below.

Class 1: Constitutive, analytical models Building models from first principles using

Newton's method is a well-established approach. The resulting equation of motion

(EOM) for linear lumped parameter systems is a set of second order differential

equation shown below in vector-matrix form

d(t) + c d(t) + k d(t) = F(t) (1.1)

Other methods such as Lagrange's or Kane's method derive this model efficiently

using the concept of energies or generalized forces respectively. Even being the oldest

modeling technique available, this class is not as popular as the other classes described

below. The main reason is that until recently no efficient software tool was available

to build these models with the aid of a computer.

Class 2: Constitutive, numerical models The most common way of modeling

machine tools at present is by Finite Element Analysis (FEA). With FEA complex

structures can be modeled with controlled accuracy. This is accomplished by varying

the degree of mesh of elements. This method is widely accepted in industry and aids

machine tool designers in predicting the behavior of machines. However FE modeling

is not suited well for the objective set forth in this research. First, FE models are of

numeric nature, and as a result, there is no clear mapping between physical parameters
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in the actual system and their representation in the model. Second, if the FE model

does not agree with experimental results, on-line adjustment of parameters is difficult.

The entire model needs to be recalculated resulting in time consuming computations.

It is difficult to build cause-effect relationships, which indicate the type and degree of

modification needed by designers to improve the FE model.

Class 3: Empirical, numerical models It is also possible to build models entirely

from experimental data. No physical insight is necessary to determine the structure of

these models. They are therefore referred to as "black box" models. Such a system

usually has multiple inputs u(t) and outputs y(t) and also disturbances n(t) as shown

in Fig. 1.2 (Franklin and Powell, 1994).

Inputs: u(t)

Disturbances: n(t)

Outputs: y(t)

Fig. 1.2: A multi-input multi-output (MIMO) system

The relationship between individual inputs u,(t) and outputs yj(t) can be

described by an arbitrary equation in time or frequency domain. Commonly a rational

polynomial in the s-domain is used as follows

Gii(s)=
(s) bp s P + s + + b2s2 + s + b0

Ui (s) sq +a q-1 s +...+a2s 2 ± a is +a0
(1.2)
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The constants ai and b., in Eq. (1.2) are referred to as model coefficients. They don't

have any physical meaning and have to be distinguished clearly from constants in Eq.

(1.1) which are actual physical parameters in the system. A mapping exists between

the black box model coefficients and physical parameters. However without a

constitutive, analytical model (gray box) this relationship can not be explored. There

are many efficient methods available to estimate the model coefficients very accurately

(see Section 2.1.3) and therefore the behavior of those models resembles the actual

systems very closely.

Despite extensive research on experimental identification as well as analytical

modeling, none of the above models is particularly suited for the goal of physical

parameter estimation set forth in this thesis. A framework needs to be established to

integrate the existing methods to accomplish the objective of predictive monitoring

through physical parameter estimation.

1.3 Proposed Solution

The objective of this research is to develop a methodology for physical

parameter estimation facilitating predictive monitoring and diagnosis of mechanical

systems. This integrates computer aided model derivation, validation and estimation.

The focus is on rigid body models since they are well suited for the task of parameter

estimation. These models apply to lumped parameter structures and are expandable to

include flexible modes of machines as well. This can be accomplished through "rigid

body approximation" or through component mode synthesis. Monitoring physical

parameters of such a model is based on estimating their values using experimental

data. Three estimation techniques are of particular interest in this thesis:



(1) A "two step" identification procedure. The first step is parametric

identification of model coefficients in Eq. (1.2). The second step is

comparison of these model coefficients with their respective analytical

counterparts. An appropriate performance index is built which can be

minimized with respect to the unknown physical parameters.

(2) Minimization of prediction error in time-domain. This is based on the

comparison between the response of the actual system and the response of the

model excited by the same input signal.

Estimation by training of neural networks. This is predicated on the network's

ability to recognize physical parameters based on selected features of the

signal.

(3)

In this research the first two methods are applied since they involve gray box

models. Successful application of one of these methods leads to improved monitoring

of machine tools and facilitates diagnosis of faults and prediction of machine

breakdowns. In addition there are further benefits:

a) Means of achieving high quality of machined parts;

b) Performance assessment of machine tools;

c) Means to improve design of machine controllers;

d) Assistance for designers to analyze and predict the dynamic behavior of

machines.

Accurate computer implementation of features such as arbitrary precision

calculations and robust algorithms for finding global minima of complex shaped

performance indices is critical. Two systems described below are used to investigated

and validate various methods of modeling and parameter estimation.

Simple multi degree-of-freedom (MDOF) system An experimental set-up comprises

two lumped masses supported by a vertical plate through two I-beams, as shown in
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Fig. 1.3. Details can be found in Chapter 5.3. Because of its simplicity this set-up

allows straightforward mapping between the physical system and its symbolic

representation in the constitutive model.

Thin support
beam

Proximity
sensor 2

Accelerometer 2

itical plate Thick support
beam

Mass 2

Proximity sensor 1

Mass 1

Accelerometer 1

Shaker

Load cell

Fig. 1.3: Component top view of the experimental set-up of a simple MDOF system.

Rotor-bearing system An experimental set-up comprising a small size, medium speed

machine tool spindle is investigated.' A simplified view of the system is shown in

Fig. 1.4. Building a constitutive model of such a system is impossible by hand.

Therefore a methodology of computer aided model derivation is developed and

applied to this set-up. It uses Lagrange's energy method, linear algebra, homogeous

transformations to facilitate efficient model building. The derived model contains

physical parameters (e. g. masses, stiffnesses and dampings) of the system in symbolic

form which then can be estimated using experimental data.

1 This spindle was formerly installed on a transfer line in an automotive plant and is therefore well suited
for the proposed concept of physical parameter estimation.
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Bearings of the machine tool are modeled by linear springs. The bearing

stiffnesses are physical parameters of the system and can be estimated with the

proposed method. Changes in these stiffnesses indicate a preload change in the

bearing caused by temperature variations (Tu, 1991). Excessive preload leads to

thermal instability and bearing seizure. The methodology developed in this research

can be used to monitor bearing preload and predict bearing failure.

z

Force

Rigid support

Housing

Spindle

Self-tuning sensor

Fig. 1.4: A 'rigid body' model of the spindle.

1.4 Chapter Outline

In Chapter 2 a review of selected literature relevant to the concept of physical

parameter estimation is presented. This includes a description of methods pertaining

to experimental system identification as well as spindle modeling. In Chapter 3 a

methodology for computer aided model derivation of complex mechanical systems is

presented. Cases of increasing complexity are used to illustrate important features of
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incremental model building. Various methods of estimating physical parameters are

then proposed.

Successful application of the theory derived in the previous chapter hinges on

accurate implementation of computations. Arbitrary precision calculations and global

minimization are important aspects of that. This is presented in Chapter 4. Also

additional issues such as model validation and simulations are discussed. Chapter 5

describes the experimental investigation of two representative systems mentioned in

the preceding section and presents estimation results. Conclusions and

recommendations for future research are presented in Chapter 6.
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2. LITERATURE REVIEW

Successful identification of parameters in mechanical systems hinges upon key

concepts of System Identification, (Young, 1981) developed in various disciplines of

science (e.g. estimation theory, time series analysis) and engineering (e.g. control,

vibrations). Physical parameter estimation depends heavily on advancements in the

areas of experimental identification and analytical modeling, as discussed in Section

1.2. The review presented below is, therefore, focused on these two important fields

of control theory. Due to the lack of consistent nomenclature in the reviewed research

an attempt has been made to establish some common definition, terminology and

notation.

2.1 System Identification

Experimental system identification deals with the problem of building

mathematical models of dynamic systems based on observed data from those systems.

It is an attempt to link multiple and often loosely related observations into a coherent

and informative pattern.

Literature on system identification is extensive. Vast research in this area has

been done since the seventies and many of the methods developed then are still used

today. Important survey papers include Billings (1980), Unbehauen (1990) and

Wellstead (1981). Main references, which cover the whole subject comprehensively,

include Ljung (1987), Eykhoff (1974) and Norton (1986). In general, system

identification involves four entities:
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(1) The data record;

This should be maximally informative by the choice of when or where to

measure signals and/or the type of input signals. There are four types of

experimental data which can be used for system identification:

a. Transient response, such as obtained in the impulse or step test;

b. Frequency response which results from exciting the system with

sinusoidal inputs;

c. Response to ambient excitation, as might come from steady state

observation of a process which has natural sources of randomness. An

example would be data from an aircraft flying through turbulent air;

d. Well defined response to random or pseudo-random signal applied

to one or more inputs, as may be generated by a digital computer and

used as an input to a process, the output of which is then recorded and

analyzed.

(2) A set of candidate models;

A priori knowledge about the system and engineering intuition needs to be

used to choose a suitable model. Based upon whether the physical background

is involved or not, the selected model can be classified as a black-box or gray-

box model as discussed in the following section.

(3) Determining the best model in the set;

This phase involves model order estimation and subsequent model coefficient

estimation. A higher model order usually allows a better fit between the model

and the experimental data.

(4) Model validation;

After the three previous tasks have been performed one has arrived at one

particular model which best describes the data according to the chosen

criterion. Model validation is the following step to test whether the chosen

model is "good enough" for its purpose.
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None of the identification techniques that are discussed in this thesis is

universal in the sense of being capable to identify any system. Each of the techniques

presented has its own range of applicability, but all are designed based on one general

problem, which is to find the best fit of a model to experimental data. To find the

characteristics of the system without knowing its input is referred to as blind

identification.

2.1.1 Classification of Identification Techniques

Identification can be classified in several different ways. A major distinction

can be made between (1) non-parametric identification methods, (Wellstead, 1981)

and (2) parametric identification methods, (Astrom, 1980). Non-parametric methods

aim at determining transfer functions or corresponding impulse responses by direct

techniques, without first selecting a confined set of possible models. Those methods

include time-domain techniques such as transient response analysis and correlation

analysis as well as frequency-domain techniques such as Fourier analysis and Spectral

analysis. Parametric identification techniques are, for example, the Least-Squares

method or the Maximum-Likelihood method. They usually require discrete transfer

function models of identified systems or difference equations. Those methods will be

described in more detail in Section 2.1.3.

Another classification is based upon the amount of information available at the

beginning of the identification process and discerns the following chores (Ljung,

1994):

1. Complete Identification: No basic a priori knowledge about the system such

as its linearity or stationarity is available. Assumptions have to be made about

the system's behavior. Standard linear models may be employed without
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reference to the physical background. Such models, who's coefficients are

basically viewed as means for adjusting the fit to the data and do not

necessarily reflect physical considerations in the system, are called "black-box"

models.

2. Partial Identification: When a priori knowledge about the system leads to the

model structure, then only the values of the model coefficients need to be

determined. Therefore, the problem becomes easier. Since some features of the

system are known, it is therefore referred to as a "gray-box" problem.

With regard to physical parameter estimation, the available methods have to be

assessed as to whether actual physical properties of the system can be recovered.

Table 2.1 shows a comparison of different models and how various quantities

characterizing the modeled system can be computed.

Table 2.1: Assessment of features characterizing dynamic systems based on different
models.

Type

of Model

Identified

Features

Empirical

Non-Parametric

Parametric

Empirical

(Black Box)

Constitutive

(Gray Box)

Shape of
Response

Time-Domain Methods

Frequency-Domain Methods

Readily Available Readily Available

Model
Coefficients No Direct Assessment *

Direct Identification

Possible **

Direct Identification

Possible

Physical
Parameters N/A N/A Explicit Relationship

.

* Indirect assessment possible through curve fitting (see Section 2.1.2)

** Many methods available (see Section 2.1.3) Subject of this research
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The identification techniques can also be divided according to the time when

they are performed. Identification can be done on-line or off-line. According to

Isermann (1981), on-line identification means the identification with computers in on-

line operation with the process. In this mode the estimation of model parameters is

performed at the same time the experimental data is taken. On-line processing is most

frequently implemented recursively, meaning signals are processed and parameters

updated after each new data value is recorded. On-line algorithms are desirable in

time-critical applications. However, the actual real-time applicability of algorithms

strongly depends upon their hardware implementations and the process dynamics. Due

to time constraints, the accuracy and the flexibility of on-line identification methods

are lower compared to off-line methods.

If the measured signals are first stored in a block or in arrays, this is called

batch processing or off-line operation. Off-line usually allows applying suitable input

signals, which do not act on the identified system during their normal operation. Off-

line processing generally yields more accurate parameters and more flexibility in the

selection of the model structure, its order and type of the input signal acting on the

process.

2.1.2 Non-Parametric Identification Methods

Non-parametric methods assess features of unstructured system models. Those

methods relay only on operational data and evaluate their statistical properties. The

result is a time-series of data points, which can be displayed graphically but not in a

form of an analytical equation.

The theoretical evolution of the most basic techniques, the impulse and

frequency response methods, can be traced to the pair of relations



R, (r) = h(r) *Rxx(r)

S,(jco)=H(jco)*Sx.,,(co)
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(2.1a)

(2.1b)

where Rxx(r) , and Rx)(r) are the auto-correlation of x(t) and the cross-correlation

of x(t) with y(t), respectively, and "*" denotes convolution (Stark et al, 1994). h(r)

and H( jw) are the impulse response and the frequency response of a linear system

respectively. Likewise Sxx (w) and S, (co) are the auto-spectrum of x(t) and the

cross-spectrum (also called cross-power spectral density) of x(t) with y(t)

respectively, defined by the Fourier transform (Stark et al, 1994)

Sxx (co) = e'Rxx (r) dr (2.2a)
-00

(w) = Se R, (r) dz . (2.2b)

Once SL, (w) and S (w) have been computed, the impulse response h(r) and

frequency response H( jw) can be calculated.

h(r) = F [H(jco)]. F-1 [s
S xx(jco)

(2.3)

where "/ is the inverse Fourier transform. This result is a quantitative but

unstructured description of the investigated system. Critical features of the system can

be identified, but the result is not useful for further analytical analysis.

Curve fitting of the frequency response can be used to overcome this

disadvantage. A parametric model is used to approximate unstructured result. Once

the frequency response is obtained from measurements one can derive a linear system

model by calculating the least square fit of the frequency response data to a rational

polynomial of a chosen order. After this curve fit is complete, the numerator and

denominator of the polynomial are factored to obtain zeros and poles. Currently there
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are systems available (e.g. Spectrum Analyzer (Hewlett Packard, 1997)), which do this

type of curve fitting automatically. However proper engineering judgement needs to

be used in evaluating the results. For example repeated root and heavily dampened

poles can "hide" behind lightly damped poles. Also data errors in the frequency

response measurements such as non-linearity, noise or quantization errors can prevent

any curve fit algorithm from easily finding a linear model.

Most of these non-parametric techniques apply only to time-invariant linear

systems. Nonlinear systems can be identified by non-parametric means if these

systems can be linearized about some working point and the inputs can be kept about

this point. These methods often require the employment of special input signals, such

as an impulse, a step, a sine wave with variable frequency or white noise. Both, the

time- and frequency-domain response methods are well documented (Wellstead, 1981;

Rake, 1980). However they are rarely suitable for on-line applications, so data must

be collected as part of special tests. The transient response method is quick, but the

data does not come in a form immediately suitable for physical parameter estimation,

which is the topic of this research. Additional computations are needed to obtain for

example poles and zeros of the model (Ziegler and Nichols, 1942). In contrast, the

frequency response method is more time consuming, but it provides results in a form,

which is more convenient for the assessment of physical parameters. The derivation of

dynamic models from operational records or from the response to a pseudo-random

input can be based on the concept of cross-correlation (Bendat and Piersol, 1986; Press

et al., 1994).

Parametric identification techniques, on the other hand, can handle almost any

type of input signal, but at the expense of increased computational burden. In this

research, parametric methods are more suitable to physical parameter estimation since

they can be put into relation to gray box models. Model coefficients of parametric

models are functions of physical parameters and this relationship is essential in this

research.
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2.1.3 Parametric Identification Methods Based on Black Box Models

In the field of parametric identification there are numerous methods

documented in the literature (Astrom, 1971; Billings, 1980; Young, 1984). For single-

input single-output (SISO) systems Ljung (1987) proposes a general family of model

structures

B(q) C(q)A(q)y(t)= n(t)
F (q) D(q)

(2.4)

where A, B, C, D and F are polynomial functions in the forward time shift operator q

such as

A(q) =1 + alq-1 2q-2

A block diagram of this model is presented below.

Disturbance n(t)

(2.5)

Input u(t) B 1 Output y(t)

F A

Fig. 2.1: Block diagram of a general model described by Eq. 2.4.

In most practical applications this structure (Eq. 2.4 and Fig 2.1) is too general.

Therefore, depending on the information available about the system, only selected
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polynomials are used. Several of the most common used model sets are listed in Table

2.2 below.

Table 2.2: Some common black-box SISO models as special cases of Eq. (2.4).

Model Structure Equation

FIR (Finite Impulse Response) y(t) = B(q) u(t)

ARX & Equation Error (EE)
B(q) 1

y(t) =
A(q) A(

u(t) + n(t)
q)

Output Error (OE)
(q)

+y(t) = u(t) n(t)
F

ARMA
C(q)y(t) = n(t)
A(q)

ARMAX
B(q)

+
(q)

u(t) n(t)y(t) =
A(q)

BJ (Box-Jenkins)
(q) C(q)

+y(t) = u(t) n(t)
F D(q)

In this research the ARMAX model is used, where AR refers to the auto-

regressive part A(q) y(t) , MA refers to the moving-average part C(q) n(t), and X refers

to the extra input B(q) u(t) (Pandit and Wu, 1983). This model has become a standard

tool in control design. A block diagram is shown below.



22

Disturbance n(t)

Fig. 2.2: ARMAX model.

Once a model structure is chosen, parametric identification reduces to the

problem of determining model coefficients. A general set of coefficients Ag is selected

where the members of the set are the coefficients ak, b1, cm, do and fo of the

polynomials A(q), B(q), C(q), D(q) and F(q) from Eq. (2.4) respectively.

Ag =lao,a,,a2,...,b0,b,,b2,...,co,c,,c2,...,do,dd2,..., fo, (2.6)

For simple linear cases there is an analytical closed form solution and thus the

model coefficients can be determined uniquely. Using Linear Least Squares (LLS) is

the method of choice in these cases. Conceptual simplicity makes it applicable to a

wide variety of situations. The method is based on the minimization of a merit

function representing the sum of squared residuals (Hsia, 1977):

Q(A g) = i[e,(A g)] 2
i =1

(2.7)

The variable ejAg )=-- yi (Ag) is the prediction error, where yi is the observed

output and j), the output predicted on the basis of the model and is a function of

parameters Ag. An advantage of this method is that the global minimum of the merit

function Q(Ag) is found efficiently and unambiguously by analytical minimization if

e(Ag) is linear in Ag, (Ljung, 1987).
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In general however, the error is nonlinear in Ag and thus a closed form solution

does not exist. Iterative methods are needed to optimally estimate the model

coefficients. Figure 2.3 illustrates the general approach.

Input

OutputActual
Plant

Error

Output

A

Adequacy
Criterion

Math
Model

Estimated

Parameter
Adjustment

Fig. 2.3: Plant-model comparison in parametric system identification.

Out of the numerous techniques available to adjust the model parameters for an

optimal fit, only the Non-Linear Least Squares method (Hsia, 1977) and the

Maximum-Likelihood method (Box, 1976; Astrom, 1980) are described, since they are

suitable for computer applications and representative of the other methods.

Non-Linear Least-Squares Method This is an extension of the LLS method described

above. If the minimization of Eq. (2.7) can not be found analytically numerical

minimization techniques are applied. The merit function Q(Ag) is minimized with

respect to Ag until the global minimum is found. This usually consists of two steps,

the initial guess and the final guess routine. The purpose of the initial guess is the

determination of optimal starting values for the final minimization procedure. Since
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the shape of the merit function usually is very complex an uncorrect initial guess can

lead to wrong final estimates of model coefficients.

The Maximum-Likelihood Method The Maximum-Likelihood Method (Astrom,

1980) is derived from the probability density function (PDF) of the output y,. Ag is an

unknown parameter vector of the system to be identified and a is the known standard

deviation of the residuals e(Ag). Assuming independent observations and a gaussian

probability density of the individual observations, the PDF for yi is

p (yi = 1 exp (Yi Yi ))21
cr-V 2z 262

(2.8)

The output y, is a function of the parameter vector Ag. For the case of an N sample

long output record the likelihood function L(ylAg ) is written as a product of the

individual PDFs.

20.2 i=1

N
L(yA g) (o-v270N exp[ (yi (Ag ))2]

This function is usually expressed in the logarithmic form as

L\\ 1 TIn L(yAg )= N ln N
1n(2 r)

2o-
2 2 (Ag

2

(2.9)

(2.10)

The above equation shows that when a is known, the maximization of L(ylAg

simplifies to the minimization of

V(ylAg)= (A32
i=1

(2.11)

This is equivalent to the criterion of the linear least squares method (compare Eq.

(2.7)). If a is unknown, the optimization of L(ylAg ) with respect to Ag and a has to be

performed iteratively. The Maximum Likelihood method yields unbiased, efficient
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and gaussian distributed estimators. Its major drawback is the heavy computational

load.

Recently, new minimization methods have been developed (e.g. genetic

algorithms and simulated annealing) which hold the promise of better and faster

convergence than standard gradient based methods. Since they are based on statistical

features, they can deal with functions where gradients can not be calculated. In

addition, they can handle functions with multiple local minima. Selected successful

solutions of difficult cases are documented in the literature, however no generally

accepted algorithm exists at present (Gelb, 1988; Ingber, 1992).

2.2 Physical Parameter Estimation

The problem of physical parameter estimation has many features similar as

discussed above. However there are unique characteristics, which limit the

applicability of methods developed in the area of system identification. The

estimation of physical quantities requires the availability of gray box models. No

comprehensive methodology can be found in the literature, which integrates model

building, validation and estimation. Some research has been done to cover selected

aspects of the proposed approach and is documented here.

Estimation in time-domain One conceptual straightforward method (Link, 1985;

Leuridian, 1981) involves the differential EOM given by Eq. (1.1) in vector-matrix

form.

m ad-c a±k d=F (2.12)
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This method of physical parameter estimation is referred to in this thesis as the direct

method, since it consists of estimating the mass, damping and stiffness matrix m, c

and k from measured system responses a, d and the force input F. Measured

accelerations, velocities, displacements and forces can be presented in vector form as

follows

d, /d (F y
x= d2 Y= d2 z= d2 . and F = F2 (2.13)

Then the dynamic model can be written as:

X

[m c k] y =F (2.14)

If multiple measurements are taken, Eq (2.14) can be reformulated as a least

square problem.

A X = B (2.15)

where A is a matrix of acceleration, velocity and displacement measurements, X is a

vector of unknown physical parameters and B is a matrix of force measurements. If

one can find the inverse of the measurement matrix A, there is a closed form solution

in the form oft

X=A-1B (2.16)

Depending on the presence of noise in these signals, special care needs to be

taken when solving the above least square problem, e. g. using instrumental variables.

2
If the matrix of measurements is not square a pseudo inverse can be found (see Appendix A3).
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The instrumental variable method reduces the bias problem (Eq. (2.19)) when

noise is present in the signals. It is based on a matrix referred to as the IV matrix, built

from undisturbed output signals. These signals don't exist in the actual system, but

they can be approximated from an auxiliary model. Fig. 2.4 illustrates the procedure.

More details can be found in Fritzen (1986).

Input u(t)
Actual
System

Disturbance n(t)

Calculation of
Equation Error ---- -

Auxiliary
Model

EE
Model

Disturbed Output yd(t)

Undisturbed
Output Y.(t)

V
IV

Algorithm

Fig. 2.4: Instrumental variable method.

Updating of model
parameters 0

The number of sensors necessary to use the direct method for higher order

systems like the spindle assembly is extensive. Therefore this method has limited

practical applicability for industrial monitoring problems.

Estimation in frequency-domain A similar method can be used in the frequency

domain where the Frequency Response Function (FRF) matrix, H(jco), is calculated,

using the Fourier transformation
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1HUM (2.17)co 2M /CO c+k

If the experimentally measured FRF is denoted by 1-1,(jco), then the error, AH(j co),

between the theoretical and measured FRF can be written as

AH(jco) = He ( jc0) H( jco) = He (/w)
1

(2.18)
0)2M+ j0) c + k

The aim is to find the characteristic matrices m, c and k that minimize the error

between the experimental and the analytical FRF. Theoretically the direct method is

straightforward, but it suffers from several practical problems (Leuridian, 1981). One

of them is numerical instability arising when solving usually non-linear equations

represented by the vector matrix Eq. (2.18). Also, if the number of unknown physical

parameters is too large, the task becomes unmanageable for currently available

minimization algorithms. Additional problems are due to the measurement noise in

the transfer functions He(jco). Results in Eckert et al. (1984), in which the Least

Square (LS) method was used to estimate parameters from a noisy FRF, showed that a

2% noise level could result in characteristic matrices with errors more than 200%. The

effect of noise on the results as estimated by the LS method is referred to as the bias

problem in system identification. The bias Op denotes the systematic error of an

estimator

Ap Efiipk EVpo 0 (2.19)

where f are the estimated and Po are the true parameters and E{.} is the Expectation

operator. For an unbiased estimation Ehil= po . To obtain an unbiased estimation

from a noisy process, the Instrumental Variable (IV) method (see Fig. 2.4) is widely

applied (Wong and Polak, 1976; Young, 1970). In most of the work using the IV

method, however it has been used to estimate parameters from discrete data in the time

domain. In the work of Fritzen (1986), the IV method was used to reduce the bias

problem from noisy data obtained in the frequency domain. The results in Fritzen
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showed that the IV method was less sensitive to noise than the LS method. However,

there are disadvantages of the IV method as compared with LS. Generally the IV

method needs the FRF data in a broad frequency bandwidth, which results in a high

computational burden.

"Two step" identification Another class of methods, sometimes referred to as

indirect are based on exploiting the relationship between coefficients, Ap 9 of transfer

function models from measured I/O signals and physical parameters 0 from

constitutive models (Isermann, 1991; Isermann, 1992; Dasgupta et al., 1988; Bohlin,

1994). Ap refers to a list of analytically obtained TF model coefficients a, and b.,

from Eq. (1.2).

A ={(2o aJ, a2,-,b b b } (2.20)

O is a list of physical parameters, which are elements of the matrices m, c and k in Eq.

(2.12).

0"-=IM in1, M 2, 3,, C 1, C 2C ' 3/,k1 k, (2.21)

If the physical parameters, 0, which indicate process faults are not directly

measurable, an attempt can be made to determine their values via the changes in the

experimental model coefficients, Ap . The following procedure illustrated in Fig. 2.5

can be applied:

(a) Establishment of the analytical relationships for the measurable input and output

variables.

y(t, 0) = .111,1(0,0] (2.22)

(b) Determination of the relationship between the TF model coefficients Ap and the

relevant elements of the physical parameter list 0:
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Ap = (DO (2.23)

where 0 is a column vector of functions.

(c) Estimation of the model coefficients Ap as a result of measurements y(t) and

u(t)3.

(d) Calculation of the physical parameters through the inverse relationship

Input signals of
the system

0.43-1(Ap) (2.24)

Output signals
fro the system

Measured output signals
(always available)

Relationships between
model coefficients and

system parameters

Identification of
Model Coefficients AP j

Measured input signals
(may not be available)

Estimation of
System Parameters

Identified
coefficients

Estimated Physical
Parameters 0 of the

System

Model-Based Identification and Estimation

Fig. 2.5: A block diagram of the generic algorithm for parameter estimation
(Spiewak, 1994).

3 Common case in control theory.
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A necessary condition for this procedure is the existence of a unique inverse

relationship, Eq. (2.24); otherwise the physical parameters cannot be determined

uniquely. Therefore it may be restricted to well-behaved processes which are

invertible. Also, the estimated model coefficients need to be very accurate.

One step identification Instead of applying the two step method, in which the

estimation of physical parameters is very sensitive to errors introduced by inaccurate

experimental identification, it is possible to estimate physical parameters using output

signals from the actual system. The error between the response of the actual system

and the response of the model excited by the same input signal is minimized with

respect to the unknown physical parameters. This method is also illustrated in Fig 2.5

if step of identification of model coefficients (dashed block labeled '0 ) is not

performed.

Other methods Extensive research on estimation has also been done in the area of

optimal filtering. Especially, Kalman filtering is a method of signal processing which

gives optimal estimates of the current state of a dynamic system. This method has

been originally developed by Kalman (1960) and can be applied to state-space models,

which are linear in the parameters. In practice many time-series models are non-linear.

Then it may be possible to apply an extended Kalman filter, by making a locally linear

approximation to the model. This approach will be closer investigated in Section

3.6.3.

Another possible method is model updating, which is concerned with the

correction of finite element models by processing records of dynamic response from

test structures (Weaver and Johnston, 1987; Cheung and Leung, 1991; Fagan, 1992).

FE modeling is usually considered to be inaccurate because of the idealization

involved in structural modeling, while experimentally derived modal data are

considered closer to the true representation of the structure. Bergman (1979) for

example has proposed to update the mass matrix of the FE model such that it
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reproduces the measured mode shape matrix. But since FE models generally are of

high order they need to be condensed first to the size of the measured mode shape

matrix. The mass modification matrix can then be defined as

e" Bergman
(71' rer x .._ E 17) (Ei Mr"Bergman " FE FE FE FE`-' i" FE (2.25)

where MFE is the mass matrix of the condensed model and 8 is the matrix of

experimentally measured mode shapes. No equivalent method for updating the

stiffness and damping matrix has been found. These matrices however are more

critical in the context of monitoring than the mass matrix.

Despite the research over the past years in the area of model updating

(Friswell and Mottershead, 1993; Ziaei-Rad, 1996; He and Ewins, 1991) no reliable

and generally applicable procedures have been formulated so far. A review of the case

studies reported in the literature (Natke, 1988; Impegrun and Visser, 1991) pinpoints

the fundamental problem, namely non-uniqueness of a particular solution. Through

the condensation of large FE matrices the relationship between physical parameters in

the actual system and their representation in the model is lost. As a consequence,

generated solutions do not necessarily represent true physical quantities. For the above

reasons model updating is not suited for monitoring of physical parameters.

2.3 Spindle-Bearing Modeling

In this research analytical multi degrees-of-freedom (MDOF) models of

machine tools are needed. Theoretically infinite order models are necessary to

represent such distributed parameter systems accurately, but practically finite order

models which account for a sufficient number of lower resonances are adequate.

There is ample literature available on modeling of rotating machinery. The

predominant approach involves finite element modeling (Isermann, 1992; Weaver and
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Johnston, 1987; Came et al., 1988; Reddy and Sharan, 1987). An accurate finite

element model of the spindle-bearing system dealt with in this research has been

derived by Comparin, (1983). Flexible modes have been identified and are listed in

Table 5.9.

As mentioned in Chapter 1 those models are not suitable for physical

parameter estimation, due to their computational burden and numerical4 global nature.

Desired models have lumped parameters, are modular and contain a clear mapping

between physical quantities in the actual system and their representations in the model.

In such models bearings are described as linear translating springs with constant

stiffness coefficients in the radial and axial directions (Matsubara et al., 1988; Aini,

1990), (see Fig. 2.6).

44-

(a) (b)

Fig. 2.6: (a) Machine tool spindle and (b) enlarged front view of modeling
bearing characteristics with linear spring and damper elements.

4 As opposed to analytical
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Aini (1990) considers a five DOF model of a rigid shaft supported by a pair of

angular contact bearings. The equations of motions (EOM) are derived (by hand) and

then solved by the linear acceleration method (Timoshenko et al., 1974). The EOMs

are non-linear and have many parameters. Other contributions (Shin et al., 1990;

Segalman and Dohrmann, 1996) also show very accurate models of spindle-bearing

arrangements, even considering elastic shafts, however the equations are derived by

hand and thus only simple systems (consisting of one mass connected by springs to a

rigid base) are considered.

In this research a lumped-parameter model for machine tools is sought which

includes shaft, housing and base. Commercial packages capable of symbolic modeling

exist (AUTOLEV, 1988; TSI, 1998) but they have cumbersome user interfaces and are

not optimized for applications to machine tools. Therefore in this thesis a specialized

software package of computer aided model derivation is developed.

2.4 Preload Monitoring

One application of physical parameter monitoring, closer investigated in this

thesis, is the tracking of bearing preload. Therefore current techniques of preload

monitoring are briefly reviewed here. Preload is defined as the amount of internally

applied force, be it radial, axial or both to a bearing system (Harris, 1991). This

internal force causes a initial deformation of the rolling elements and the raceways.

Spindle bearings with a conventional lock nut are still the design of choice in modern

machine tools to obtain the desired preload. Observation of the space between the

inner races in the upper half of the spindle in Fig. 2.7 shows the case before

preloading. This space is machined into the bearings to provide a known deflection of

the rolling elements when the lock nut is tightened (see Fig. 2.7).
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Before preload is applied
gap exists between inner

bearing races

Lock nut

After lock nut is tightened
gap is closed between

inner bearing races

Outer bearing race

Inner bearing race

Spindle

Fig. 2.7: Pre loading by compressing the bearings.

Pre loading is used to satisfy one or more of the following requirements: 1.)

Eliminate all radial and axial play, 2.) Increase system rigidity, 3.) Reduce non-

repetitive run-out, 4.) Limit the difference in contact angle between inner and outer

rings at high speed and 5.) Prevent ball skidding under very high acceleration.

Bearings should not be preloaded more than necessary to obtain the desired rigidity.

Excessive preloads generate heat reduce speed capability and shorten bearing life

(Harris, 1991; Tlusty, 1986; Weck, 1984). To avoid bearing seizure and possible

bearing failure with a resulting machine break down, it is possible to monitor

instantaneous bearing preload on-line. Changes could be detected and machining

conditions adjusted to control the heat build-up. Direct preload monitoring involves

custom equipped bearings, which are expensive and not feasible for off the shelf

machine tools.

Following the same objective as presented in this thesis Tu (1991) developed

an alternative method to monitor bearing preload. The method employs a thermo-

mechanical model, which is partitioned into two components as shown in Fig. 2.8.
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Fig. 2.8: A block diagram of the preload model.

The first component, denoted Heat Generation, is of empirical nature. It has

two inputs, which are the rotational speed of the spindle, lisp , and the total force, F.

Only the former input is measurable and controllable. The output quantity is the total

generated heat. There are strong non-measurable disturbances, which are generally

related to the lubrication, wear and friction in the bearings. Due to these disturbances

and structural uncertainty the accuracy of this part of the model is poor. The second

component of the model, referred to as Expansion & Preload, utilizes analytical

relationships. Its output signals of interest in this analysis are the preload, andand the

temperature Toh at the bearing-housing interface. According to Tu (1991), this part is

sufficiently accurate and linear for building a state observer.

The proposed preload observer is based on the extended Kalman fiter and uses

only one easily measurable signal from the monitored spindle, the temperature Toh.

To attenuate the impact of disturbances not accounted for and model uncertainties, a

`servo loop' is introduced from the measured temperature, Toh, to the point marked
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Corrective Input in the model of Fig. 2.8. The suitability of the preload observer is

limited, in particular during rapid changes of the spindle operating conditions.

To cope with this disadvantage a new method of preload monitoring is

explored in this research. It is based on a purely mechanical MDOF model of a

spindle assembly (see Fig. 1.4). Physical parameter estimation is used to assess the

bearing stiffness on-line. A change in the bearing stiffness indicates a bearing preload

variation, and can therefore be used for the detection of bearing seizure.

System identification has been extensively studied and broadly applied in

engineering. Substantial amount of knowledge has been acquired in the area of

analytical modeling of mechanical systems. Despite of efforts well documented, the

problem of physical parameter estimation has not been solved yet. In particular, the

available methods have not been integrated, for predictive monitoring and diagnosis of

machine tools. Areas that warrant special attention are arbitrary precision calculations

and robust minimization methods.
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3. MODEL BUILDING AND ESTIMATION

METHODOLOGY

3.1 Introduction

As described in Chapter 2, estimation of physical parameters for predictive

supervision of machine tools has not yet been sufficiently studied. This is mainly due

to the lack of suitable accurate analytical models for multi-degree-of-freedom systems.

Therefore, in this chapter an efficient and accurate computer aided method of

analytical model building is described. Also, the principle of physical parameter

estimation is introduced and discussed. Some estimation techniques for physical

parameters already exist (Isermann, 1991) and they are illustrated here. Other

techniques, which have not been used for physical parameter estimation directly, but

can also be adapted for this purpose. Still others are newly developed in this research.

The comparison shows advantages and disadvantages of the different approaches.

Guidelines are developed to help the user in the application of different techniques,

and to show where potential difficulties can arise. The machine tool monitoring

method proposed here combines conventional signal-based techniques with model-

based performance indicators. It is referred to as 'gray box' identification (Ljung,

1984), because some form of prior knowledge about the system is used to build an

analytical model containing physical parameters, and then these physical parameters

are estimated using operational and/or test data. Therefore, in order to carry out

parameter estimation, two tasks have to be accomplished first: Analytical modeling

and experimental identification.
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3.2 Analytical Modeling

Derivation of a generic dynamic model of a machine tool exactly accounting

for distributed mass-stiffness-damping properties of its various mechanical

components and for their interactions with other components of the machine tool is a

task exceeding the capabilities of currently available methods. Because of this, the

modeling attempts documented in the literature resort to approximations. Out of many

available methods, two deserve particular attention, namely 1) the finite element

analysis (Chen, 1996; Bianchi et al., 1996), and 2) 'rigid body' approximation

(Ewins, 1984; Spiewak, 1995). In the presented research the latter method has been

adopted due to its suitability for on-line estimation of physical parameters. To assure

the required accuracy, a methodology has been developed for an incremental, orderly

and algorithmic development of the rigid body models of the required fidelity. This

methodology, which can be enhanced by 'rigid body' approximation or 'component

mode synthesis', is delineated below.

In general, models are defined by their structures (form of equations) and

coefficients. While structures can be considered constant for specific machine tools,

coefficients usually vary in a broad range. Since numerous factors affect these

variations, the only realistic approach to obtaining accurate models requires parameter

estimation based on operational and/or test data. If this estimation of critical process

parameters is done continuously, it can lead to an on-line monitoring system, which

can detect and predict process faults as well as diagnose them. The physical

parameters emerge only when the system is modeled analytically. Therefore, an

analytical model of the system has to be developed from first principles, by stating the

equilibrium equations for mass, energy and momentum. The developed model needs

to be an explicit function of the physical parameters to be estimated. To avoid

excessively large number of parameters, which would make the estimation very

difficult, appropriate simplifications have to be made. The selection of model structure

is very important. The desirable features of this structure are as follows:



Efficient 'mapping' between physical parameters of the actual

and their representations in the model,

Scalability and accuracy of the model,

Model parsimony to guarantee good computational efficiency,

Unambiguous order selection and parameter estimation.
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modeled system

All these features are readily assured by lumped parameter approximation.

Therefore, a dynamic model of the machine tool consisting of rigid bodies (RB) with

concentrated mass parameters, connected by weightless "stiffness-damping elements"

(SDE) is used as shown in Fig. 3.1.

Fig. 3.1: Rigid body model of a serial machine tool.

Such a model is also particularly suited for parallel kinematics machines. An

example of such a parallel structure machine tool is the HEXAGLIDE, designed and

built at ETH, Zurich, (Hebsacker, 1995) and shown in Fig. 3.2. Those structures are

ideal to be modeled by rigid bodies, in which the impact of bending moments can be

made negligible by suitable design. In comparison with traditional serial-structure

designs parallel machine tools are usually characterized by high stiffness and superior

dynamic performance.
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Fig. 3.2: HEXAGLIDE schematic diagram (a), and the prototype built at ETH(b)
(Weikert et al., 1996).

The first step of model development is the separation of objects that act as

energy accumulators or dissipators (mass, springs and dampings). The forces acting

between these objects are internal forces of the entire system. Driving forces/torques

of electric motors, forces of gravity and cutting forces are considered external. This

basic rigid body model is then completed with the addition of elements representing

the drives and the control. Since the elasticities in a machine tool structure caused by

the guideways and the sliders are meant to remain undeformed, the use of rigid bodies

for this purpose is sufficiently accurate. Especially for stocky tools and shafts such a

rigid body model is acceptable. Additionally, in high speed machining the forces due

to acceleration are much greater than the process forces. This can be seen in practice.

Such a discretization of the real system may be called 'natural' discretization

because of the natural division of the real structure into its constitutive parts (or rigid

bodies). Continuous distribution of flexibility in the real system is replaced by

stiffness elements in the model. Damping in the joints of the system is usually

assumed to be structural damping, and is dealt with in the same manner as the stiffness

elements. For illustrating general considerations in model building a generic MDOF

`rigid body' system is shown in Fig. 3.3.



Space-Fixed

Coordinate System
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Fig. 3.3: A generic MDOF system.
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Each rigid body has a mass m, , i=1, 2, ... r, and in general can have forces and

torques acting on it, denoted uk (t), k=1, 2, ... n. These forces and torques are

generated by actuators such as spindle drives or by the cutting process. The

generalized displacements (translation and rotation) of the bodies are defined in a

space-fixed coordinate system (X, Y, Z), and they or some other parameters of interest

such as elongations of the 'spring' elements can be chosen as the output signals.

These later signals are denoted yj (t), j=1, 2, ... m.

The model shown in Fig. 3.3 is qualitative and mainly involves heuristic

knowledge of the system. When modeling systems mathematically, different

representations exist as illustrated in Fig. 3.4. Models derived from basic principles

(e.g. Newton's law or Lagrange's method) result in differential equations of motion.

This continuous model can be transformed into an 1/0 model or state-space model.

For computer implementation discrete models are necessary as outlined on the right

side of Fig. 3.4.
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Discrete time

I/O model State-space model Discrete
I/O model C#.

zero initial conditions

Discrete state-
space model

zero initial conditions

Fig. 3.4: Different types of models considered in this research.

The differential equation model, the state-space model, the transfer function

model and the zero-pole model in time-domain are explained in detail below, since

they are critical for the research presented in this thesis.

3.2.1 Differential Equation Model

For the dynamics of rigid bodies there are several approaches to obtain the

differential equations of motion. One method is based on a direct use of equations
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representing relevant first principles, (e.g. Newton's law of motion), other methods

use Lagrange-Hamilton equations or Kane's principle (Meriam, 1980). The dynamics

of the entire system, shown in Fig. 3.3, is concisely encapsulated in Eq. (3.1) as a set

of ordinary differential equations. Eq. (3.1a) accounts for all mechanical phenomena,

where as Eq. (3.1b) represents electrical effects.

where

m, g

as(o+ [as(t),ds(t),df (t)] = b1 Ff(t) (3.1a)

g df (t) + F2 [as(t),ds(t),df (t)] = b2 v(t) (3.1b)

matrices depending upon the physical parameters of the modeled

machines, such as masses of their components, inductances of electric

motors, etc.,

vectors of generalized coordinates which appear in the above model up

to their first and second derivatives, respectively,

nonlinear functions of the generalized coordinates (i = 1,2), and

vectors of external excitations; example components of these vectors

are, respectively, forces/moments acting on the masses and voltage sig-

nals applied to servomotors.

df(t), ds(t)

[]

F(t), v(t)

For linear systems most frequently dealt with in automatic supervision in

manufacturing (ASM) the above set of equations becomes

m as(o+c as(o+ k ds(t)+ e df (t) = bf F, (t) (3.2a)

g df (t) + h as(o+ p ds(t) + q df (t) = b2 v(t) (3.2b)

If the generalized coordinate vectors df(t) and d,(t) comprise f and s elements

respectively, then the matrices in the above equations have the following dimensions

denoted by the subscripts: cs,s , ksxs esxf gfxf , hfXS 9 r nfxs 9 Cifxf
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Once such a differential equation model is available, it can be transformed into

other forms developed in control theory. The main model representations relevant in

this context are (1) state-space model, (2) transfer function model and (3) zero-pole

model. They are described below in more detail.

3.2.2 State Space Model

The state-space model can be represented in continuous or in discrete time-

domain. Both, are briefly explained below.

Continuous Time-Domain: The continuous state-space model can be obtained by

transforming the equations of motion of a system into a set of simultaneous first-order

differential equations

State equation: i(t) = f (x(t), u(t))

Output equation: y(t) = h(x(t), u(t))

where x(t) is a vector of state-variables and u(t) is the input vector.

as(0-
x(0-. ds (t) u(t) =

v (t)
l(t)._

(2s+f )xl

(3.3a)

(3.3b)

(3.4a,b)

For the linear case and assuming zero initial conditions Eq 3.3 can be rewritten as

x(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t)

(3.5a)

(3.5b)

where matrix A is referred to as the evolution matrix, B is called the control matrix, C

-the output matrix and D -the direct transmission matrix. Constant matrices A and B

are expressed in terms of m, c, k, e, g, h, p and q as



I SXS °SXS Osxf

A= m 1K m m
g-gyp

(2s+ f )x(2s+ f )

; B=
0.1
m-lb

g'b2
(2s+ f )x(2s+ f )
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(3.6a,b)

For purely lumped mechanical systems consisting only of masses, springs and

dampers the matrices A, B, C and D simplify to

A=
[ 0

_1]; B = ; C 0] ; D = 0 (3.7a,b,c,d)k m-1 c m

The solution to equations (3.5a) and (3.5b) results in

x(t) = eA(`-`°)x(to )+ eA(')13 u(r)dr (3.8)
to

A block diagram of the above state-space model is shown in Fig. 3.5. It is customary

to summarize the attributes of constants and variables in this model as follows

x(t) E 911- a vector comprising r state variables,

u(t) E 91111 a vector comprising m inputs,

y(t) E 9111 a vector comprising n outputs,

AE 5

where n=2s+f and 91r denotes a real-valued r-dimensional space.

5
iIt is also common, particularly on the West Coast, to use the notation F, G, H and J in place of A, B,

C and D.
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Fig. 3.5: State-space model of a continuous-time system.

Discrete Time-Domain: Implementing models on computers necessitates the

transformation of continuous systems into discrete time-domain. The discrete state-

space representation can be obtained from Eq. (3.8) by passing the input u(t) through a

Zero-Order-Hold (ZOH). Letting t = kT +T and to = kT the discrete time version of

Eq. (3.8) becomes, (Franklin and Powell, 1984)

x(kT +T) = eATx(kT)+(r emic177) B u(kT) (3.9)

where 77= kT +T and T is the sampling interval. If e AT = IF and

e"diil B =12 , Eqs. (3.5b) and (3.8) reduce to the difference equations

standard form:

Discrete state equation:

Discrete output equation:

x(k +1) = IP x(k) + f/ u(k)

y(k) = C x(k) + D u(k)

in

(3.10a)

(3.10b)

where k is a shorthand notation for kT and k+1 for kT+T. The discrete state matrix III

can be also expressed in a series expansion



= AT = I + AT +
A2T2 A 3T3

+
A4T4

+2! 3! 4!

The integral in the discrete input matrix SL can be evaluated term by term to give

A k Tk

n=y, TB
k=0 (k +1) !
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(3.11)

(3.12)

Once the state-space model is available in continuous or discrete form, it can

easily be transformed into the continuous or discrete transfer function or zero-pole

model using

G(s) =
Y(s) = C (s I A)-1 B + D
U(s)

for the continuous transformation, and

G(z) = Y(z) = C (z I + D
U(z)

for the discrete transformation.

(3.13)

(3.14)

Three features of the state-space models deserve particular attention with

regard to automatic supervision.

i. A simple model given by Eqs. (3.5a) and (3.5b) describe a broad class of

MIMO systems. This is of special importance due to the increasing

availability of software systems facilitating symbolic calculations (eg.

Mathematica or Maple). Utilizing the state-space formalism with these

packages enables easy handling of equations which, if dealt with by traditional

means would require many pages of calculations.

ii. A continuous-time state-space model can be readily converted into the

equivalent 'difference equations' model that is needed for the implementation

of several standard methods presented below on digital computers.
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iii. A large number of algorithmic analysis methods developed in control theory

can be utilized to obtain information needed for the system's supervision.

3.2.3 Transfer Function Model

The transfer function (TF) model is often used in controls theory. Linear,

time-invariant MIMO systems can be described by this model. It is a rational

polynomial in s and can be derived using the Laplace transformation applied to Eq.

(3.1) or directly from the state-space model (described above). The transfer function

Gu(s) relates one particular output y,(t) to one particular input ult) (see Fig. 1.2).

Gu(s)=
Y

I(s)
b

P
sP + b

P-1
sP-1 + ...+ b2s2 + bps + bo

j(S) Sq -F a q_pSq-1 +... +a 2s2 + ais + a 0

(3.15)

A set of model coefficients Ap (see Eq. (2.20)) can be estimated from

experimental data. There are many methods available (Ljung, 1984; Young, 1981;

Astrom, 1971) to obtain an accurate fit of the TF model to the actual system, however

this kind of model doesn't provide any direct information about physical parameters of

the system. The physical parameters 0 are 'hidden' in the model coefficients Ap and

unless a deterministic and invertible relationship between the TF model (Eq. (3.15))

and a constitutive model based on first principles (Eq. (3.2)) can be built, those

physical parameters cannot be found. Nevertheless this purely signal-based model is a

useful tool for investigating the system's dynamic behavior due to changes in the

physical parameters 0. Visual inspection of Bode and Phase plots can aid in

determining the resonance frequencies and damping ratios of the system.
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3.2.4 Zero Pole Model

The zero-pole (ZP) model is very similar to the transfer function model, only

the polynomials are represented in a factored form. The benefit is immediate insight

into modal properties (con, 0, as shown below

where

G(s) = g
(s zi)(s z2)(s zp)
(s pi)(s P2) (s P,)

g gain of the system,

zi ...zp real or complex valued zeros,

pi ...pq real or complex valued poles.

(3.16)

Zeros and poles can be plotted on the s-plane, as shown in Fig. 3.6 and provide

information about the system's dynamic behavior.

complex pole

real zero

Im(s)

=

..................

s-plane

complex
conjugate pole -

Re(s)

Fig. 3.6: Zero/Pole representation in the s-plane (Franklin and Powell, 1994).
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Stability of the system can be readily assessed (unstable if Re {p,}> 0) and

natural frequencies and damping ratios can be calculated using the relationships

Re(pi ) = con,i

= c0,i .111

(3.17a)

(3.17b)

Similarly to the TF model, the ZP model is a very convenient tool for analyzing

system's behavior, especially as a result of changes in physical parameters 0.

However, if the zeros and poles cannot be expressed as a function of 0, then this

model is also not suitable for physical parameter estimation.

3.3 Modeling Methodology

The basic components used in the model derivation described below are
Lagrange's energy method, linear algebra, homogenous transformations and state-
space formalism. Differential equations of motion can be derived for a free
conservative system using Lagrange's method as (Meriam, 1980)

a a aL
= 0 ;

at a4; aq1
L = T(q,4) U(q) (3.18a,b)

where T(q, , U(q) kinetic and potential energy, respectively,

q a set of generalized coordinates for the entire modeled system,
qj j-th element of q.

Eq. (3.18a) is referred to as Lagrange's equation of the first kind. With the inclusion

of the dissipation energy function D and an external force Qj associated with the j-th

generalized coordinate, Eq. (3.18a) becomes Lagrange's equation of the second kind
(Meriam, 1980).

a aT aT ap au---F±.v
at aq aq aq,

(3.19)
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Newton's method is sometimes used instead of Lagrange's method and is

concerned with forces and torques instead of energies (kinetic, potential and

dissipative). However, it is generally much easier to define the energies of a particular

system than to define the individual forces acting on each body. Definition of the

individual forces can become very taxing in some cases, particularly in the structures

considered in this research.

Another alternative to Lagrange's energy formalism is Kane's method. Rather

than considering all the forces and torques acting on a body, Kane's method deals with

generalized active and inertia forces (Kane et al, 1983). The primary advantage of this

is a simplification of equations needed to describe the system, since some of the forces

acting on the bodies contribute nothing to the generalized forces6. Equating the sum

of respective generalized active and inertia forces to zero produces Kane's dynamical

equations of motion. This method in general, will produce the equations in the most

compact form, implying that this is the easiest approach. However, one must keep in

mind that there is also a set of associated kinematical equations that must be satisfied

when using this method (Ginsberg, 1995).

3.4 Automatic Model Generation - General Considerations

Obtaining Eqs. (3.1) for machine tools (three-dimensional systems) is a

complicated task. Commonly used computer aided modeling packages can perform

this task numerically (e.g., ADAMS (Mechanical Dynamics, 1997), I-DEAS (Spectral

Dynamics, 1996), ANSYS (Ansys, 1997) or DADS SIMULINK (CADSI, 1997), but

experience shows that the accuracy of the obtained models is unsatisfactory.

6 Due to force cancellation.
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Also, for the purpose of physical parameter estimation, the critical parameters

need to be available in symbolic form. An available package capable of symbolic

modeling, AUTOLEV (Schaechter and Levinson, 1988), has a cumbersome user

interface and for efficient use requires familiarity with Kane's method (Kane et al.,

1983) which is less frequently used than the classical Lagrange-Hamilton approach

(Meriam, 1980; Ginsberg, 1995). Because of the above reasons, a specialized

computer aided package has been developed for deriving symbolic models of modern

machine tools. The package implements Lagrange's method (Meriam, 1980) for a

class of systems shown in Fig. 3.1 and conveniently links the results with the

analytical 'tools' developed in control theory for the analysis of complex dynamic

systems (Wolfram, 1992). Once the analytical model is generated in terms of

equations of motion for the system, wide range of possibilities for evaluating, testing

and characterizing the system are available. This is especially true if the model is

transformed into the state-space representation. For example, system characteristics

like controllability or observability can be readily tested. The modeling and analysis

are performed in the Mathematica programming environment (Wolfram, 1991).

For computer implementation it is necessary to develop a structured approach

towards calculating the kinetic, potential and dissipative energy needed for

computation of Eq. (3.13). Below, three cases of increasing complexity of energy

calculations are considered. They differ in the way the general motion of the rigid

bodies is modeled. This affects the calculation of the elongations of the stiffness-

damping elements (SDEs), which are needed for the derivation of the potential and

dissipative energies.

3.4.1 CASE 1: SDEs Aligned with Principal Cartesian Directions

A simple sub-system of Fig. 3.1, which comprises one single rigid body

supported by a single SDE is considered in Fig. 3.7.
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"Local"
Coordinate System

Global
Reference

Coordinate System

Undeformed
SDE

Deformed SDE

{x y z,}

Fig. 3.7: The elongation of a spring-damping element.

The body has six DOFs. Therefore, the generalized coordinates, a set of variables,

which completely define the location, and orientation of each component of the

system, can be written in vector form as

q = y(t), z(t), yo(t),0(t), yi(01 T (3.20)

However, it is assumed that the main mode of vibration is in the vertical direction.

Then the elongation of the SDE due to the body's displacement can be approximated

for small deformations as

/ = z(t) + YR(t) x10(t) (3.21)

where xi, and yl are the coordinates of the SDE attachment point Pi to the body.

Eq. (3.21) is obtained intuitively by inspection of Fig. 3.7. This is possible for such a

simple case, but for more general deformations (see CASE 2) a rigorous analytical

approach is recommended. In general, the elongation of any elastic element between

the body and the fixed base can be written in a symbolic form



lk =1k(q) ;
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k = 1, 2, ..., n (3.22)

where n is the number of SDEs. The elongations are defined as functions of

generalized coordinates. The forces between the body and the base arising from all

SDE couplings are directly related to their respective elongations that can be written in

the vector form

L(q) = In IT (3.23)

This vector is a function of the generalized coordinates and can be written as a linear

combination

L(q) = H q (3.24)

where H is a function of geometric dimensions. For the simple case of only one SDE

L(q) is equal to / in Eq. (3.21). Now the potential energy due to deformation of all

SDEs between the body and the base can be calculated as

1 1 1U(q)=LTKsDEL =
2 4:1 THTKsDEl1=-

2
fIT2 KLEfl

where K sDE represents a diagonal matrix of stiffnesses and

KS*DE = HTKSDEH

(3.25)

(3.26)

lesDE in the above equation is a 'weighted' global stiffness matrix. H is obtained as

H = [0 0 1 y, x,] (3.27)

KSDE in that case is only a scalar KsDE but K *SDE is still a matrix.
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0 0 0 0 0

0 0 0 0 0

KSDE = 0 0 0 )71 X1

0 0 y1 y12 xi yi

0 0 x1 xi yi x 12
(3.28)

The energy dissipation due to damping is calculated similarly to the potential

energy, only it is proportional to the displacement velocity.

1 . 1 .

D(q) =
2

q T14TBsDEHq =
2

qT
T.

BspEq (3.29)

In Eq. (3.29) BSDE represents a diagonal matrix of damping of SDEs and B;DE is

again a 'weighted' damping matrix. The expression for kinetic energy for the rigid

body is straightforward and involves the use of a diagonal (global) mass matrix

I q T qT(4) =
2

M (3.30)

Application of Lagrange's equation of the second kind (Eq. 3.19) then extracts the

equations of motion for each generalized coordinate.

3.4.2 CASE 2: Arbitary Directions of SDEs

As in the previous case, a subsystem comprising one single rigid body
supported by two spring-damper elements (SDE 1, SDE 2) from a fixed base. The

initial, (undeformed) position and the displaced position (dashed line) of the rigid
body is shown below.
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Fig. 3.8: Movement of a single lumped mass supported by two SDEs
in three-dimensional space for CASE 2.

The arrangement is similar to CASE 1, except the elongations of the SDEs are

calculated using position vectors. This allows the consideration of a general motion of

the body and is more accurate than the approximation made in Eq. (3.21). The

attachment points of the SDEs are denoted P1 and P2 on the body, and PA, PB on the

fixed base. In the reference coordinate system these points can be identified by

position vectors P , P2 , PA and i3B 7 respectively. As in CASE 1, the rigid body can

move with six DOF, therefore the vector of generalized coordinates is identical to

CASE 1 (Eq. 3.20).

7 P (with arrow) denotes a vector which can be represented graphically and has a certain length and
direction.

P (bold) denotes a data structure, which can have more than three components.
P (plain) is just a label for a point and does not have any numerical value.
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The expression for the total kinetic energy in terms of masses, moments of

inertia and generalized coordinates is also the same as in CASE 1, however the

calculation of the potential energy of the system (and dissipative forces) differs in the

following way:

The elongations of the SDEs are calculated using the above defined position vectors.

The initial position the SDE 1 and SDE 2 are assumed in a relaxed state, and their

initial lengths /I and /2 can be calculated as

1 = IPl
PB1 (3.31)

After the body assumes a displaced position (indicated by dashed lines in Fig. 3.8) the

deflected lengths of the SDEs are

(3.32a,b)

The new, displaced position vectors Pi and P,' are a function of the

generalized coordinates and can be calculated using transformation matrices, which

describe spatial motions. Transformation matrices have been used extensively in the

area of robotics to describe coordinate transformations (Craig, 1955). The following

list of explains the use of these matrices:

1) Transformation matrices apply, in general, to points.

2) Two coordinate systems are involved:

reference system,

"moving body" (local) system.

3) Translations and rotations (x, y, z, w) pertain to the movement of the local

system.

4) Attachment point vectors are created by using points, as explained above.

5) Locations of points (e.g. {x1, yi, in CASE 1) on the moving body are defined in

local coordinate systems.
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6) Because all points on the moving bodies are multiplied by the same transformation

matrices, a concise mathematical notation is possible (and it is introduced in this

research.

The homogeneous transformation matrix TM is a 4x4 matrix and represents

simultaneous rotation and translation of a vector P to a new vector fi* by

P* = TM P (3.33)

where TM is calculated as

TM = TM, TMrx TMry TM, (3.34)

The matrices TM, Thirx, TMry and EVIrz describe translation, rotation around x-, y-

and z-axis respectively. They are listed in Appendix A. As an example, a simplified

form (small angle approximations 8 ) of the transformation matrix TM is

Rotation P

TM =

"Utility" Part

0(t)

p(t) 0(t)

1 T(t)
9(0 1

y(t)
z(t)

0 0 1

Translation Part

(3.35)

The matrix consists of three parts. The rotation part describes an influence of the

generalized angles 9, 0 and The translation part represents the translation motions

of a vector without any change in its orientation. The utility part facilitates

mathematical matrix manipulations. It does not influence the translation or the

rotation. To have the matrix and vector dimensions consistent in Eq. (3.33) the three-

dimensional position vectors need to have '1' as a fourth utility component as well.
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After the new position vectors P* are calculated using Eq. (3.33) the

elongations of SDE 1 and SDE 2 are

11 = = (3.36a,b)

This method of calculating the SDE elongations can be extended to n SDEs. For

convenience the undeformed and deformed lengths of all SDEs are represented in

vector form as

0 (q) = 110,1 /102 9--,10n ; L*(q) = 2 ,...., in*/ (3.37a,b)

The elongations of the SDEs are then simply calculated as

L Lo (3.38)

The potential and dissipative energies can then be calculated using Eq (3.25) and

(3.29). CASE 2 applies if: 1) the bodies do not change their average positions (time

invariant moments of inertia in the global reference coordinate system), or 2)

variations of the generalized coordinates are expressed in coordinate systems that

continuously follow the average positions (translations and rotations) of the bodies.

For major reconfigurations of the system a more general CASE 3 needs to be

considered.

8 The simplified form is used only to illustrate the general structure of TM. However, CASE 2 has
been developed primarily to deal with large rotation angles.
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3.4.3 CASE 3: Systems with Reconfiguration

If the arrangement of rigid bodies changes significantly, e.g. by repositioning

of the main machine tool table, then assumptions made in CASE 2 are not adequate.

Small vibrations can not be taken into account when large movements are tracked with

the vector method. Therefore CASE 2 is extended in order to accommodate these

small but significant vibrations superimposed on large movements.

Motions of model elements are described using right-hand coordinate systems.

There are two kinds of systems in this case: A global coordinate system X, Y, Z and the

local ones x y z,. The global coordinate system is arbitrarily situated, and the

displacements and loads of the model are described in this system. The local

coordinate systems corresponding to the particular rigid bodies and the SDEs are

"body fixed". Local coordinate systems, x y z are attached at the center of mass of

the RBs. The axes of these systems coincide with principal axes of inertia of the

elements in the state of equilibrium and also to the stiffness of the SDE attached to this

body. External loads, uk(t), acting on the RB are also described in the local coordinate

system. The axes of the coordinate system coincide with principal axes of stiffness of

the k-th SDE: xe, ye, ze
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Fig. 3.9: Movement of a lumped mass in space.

A spring-damper element between 2 bodies i and j is considered in Fig. 3.8.

This SDE is attached at point PiL to body i, and at point PA to body j. Both points are

defined in local coordinate systems associated with each of the bodies. Coordinates of

these points in a stationary reference coordinate system (XYZ)R are P riR and at point

P , respectively. The length and orientation of the SDE under consideration is

expressed in vector notation as

ij i)riR 13rjR
(3.39)

gu changes due to NC programmed motion (e.g., increase of the active

leadscrew length due to table translation) or due to vibrations. The latter change is of

primary interest from the viewpoint of deriving the equations of motion. The former

change is secondary and causes non-stationarity of the system and its model. In the

traditional (`serial structure') machine tools only the lengths of Sij change while in the

`parallel structure' machines both the lengths and orientations can change

significantly.
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Changes in the positions of bodies i and] are expressed by six-element sets of

generalized coordinates associated with these bodies, qi and q; *. Components of

these sets, namely three translations and three rotations, depend upon the NC

programmed motion as well as vibrations of the bodies. It is assumed that the

programmed motion does affects neither the potential nor the kinetic energy of the

spring-dashpot element under consideration9. Changes of the q: and qj* coordinates

due to this motion are considered nominal components of instantaneous generalized

coordinates and denoted qi0 and qjc., respectively. On the other hand, the changes due

to vibrations, qi and impact these energies. The following equations apply

qi = qi. +qi = fx0i + xi, yoi zoi cow ±q34i, ± 0r, voi (3.40a)

qi = qi0 +qi = {X01 x , yoi + yj, z01+zi, Co +cop Sbo; +0j, Vo; 1Ki (3.40b)

If the bodies i and j assume new positions q: and qj*, the average (nominal) locations

of points PiL and PiL in the reference coordinate system become PaiR and PaiR

q: = PaiR (Clio) = 114(e io) PL (3.41a)

= PajR(C jo) = TM(C jo) PjL (3.41b)

where TM(qic)o) is a suitable homogeneous transformation matrix (Craig, 1955).

Assuming these new end positions for the SDE, its extension for small increments of

qi and (kJ can be found as the dot product

As (PiL, qio , qi , P qi0,qi) [615(cii.,q;) qi.) (3.42)

where risii0 is the unit vector of gij and "0" abreviates "(qi0 , qi0)".

This assumption is made here to simplify discussion of the proposed modeling approach and is
exactly fulfilled when the machine is at rest. It can still be acceptable at slow feeds.
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APi(qi,qi) = T, ( q ) PaiR(Clio) ; = T, ( q ) PaiR(qi.) (3.43a,b)

The potential energy of the spring in the SDE under consideration is calculated as

USDE (PiL, PjL, q Jo , q j) = 0.5 K (As ())2 (3.44)

The total potential energy is obtained by summing energies of all SDEs. Similarly, the

dissipative force in each SDE is calculated as

(a
As (3.45)

Since the SDEs are assumed massless, the only contributors to the kinetic energy are

the movements of the rigid bodies themselves. Assuming the energy is defined about

the center of mass, then the kinetic energy of the i-th body in Fig. 3.9 can be

conveniently separated into translational and rotational terms

T= Ti trans + Ti,rot

The translational kinetic energy is simply written as

1

Tioans (14i,T I= Cli,T nil i,T

(3.46)

(3.47)

where mi is the diagonal mass matrix and qi,T = is defined as the vector of

generalized translational velocities for the i-th rigid body in the global reference

frame.

The rotational kinetic energy has a similar form, only it uses the local body

inertia tensor and vector of generalized rotational velocities, qi,r = {0i Oi

=
1

T,rot eliT,r (3.48)
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Summing kinetic, potential and damping energies over all m rigid bodies in the

system (two bodies for this example) produces an expression for the total energy of

the multi-degree-of-freedom system under consideration. Application of Lagrange's

equation of the second kind then yields the equations of motion for each generalized

coordinate

d
dIDij

i

dIU
q

dt d qk a (0, d qk d qk Qk

for i = 1,2,...n ; i < j and k = 1,2, ...,6 n (3.49)

where QI, represents the external force associated with the k-th generalized coordinate

from the global list of generalized coordinates qg . The final result is a general vector-

matrix equation encapsulating motion of all rigid bodies.

3.4.4 Accounting for Gyroscopic Forces

If the kinetic energy due to spinning of rigid bodies is to be included, the

gyroscopic forces need to be taken into account. The gyroscopic effect appears when

the orientation of the axis of rotation of a rigid body changes while that body is

spinning (Ginsberg, 1995). Assume that the rigid body considered is a spindle
rotating with constant speed nip.
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Fig. 3.10: Gyroscopic effect.

Due to vibrations the orientation of the spindle axis changes an angle q) around

the x-axis (precession) and an angle 0 around the y-axis (nutation). This can be

mathematically tracked through the transformation of coordinate systems. The

standard way of calculating the kinetic energy due to gyroscopic motion is using the

Euler angles together with body-fixed transformations. However, since the

generalized coordinates of the entire system are defined space-fixed (see Fig. 3.3), the

following approach can be used.

The initial coordinate system (X, Y, Z)1° is first turned an angle 9 around the X-

axis. Any vector in the XYZ-coordinate system can be transformed into the new

x 'y 'z '-coordinate systemil using the transformation matrix

m Indicated with solid lines in Fig. 3.10.
11 Indicated with gray solid lines in Fig. 3.10.



1 0 0

TM9 = 0 cos0(t) sin0(t)
0 sin 0(0 cos0(t)._
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(3.50)

If the x'y'z'-system is rotating with an angular velocity 0 around the X-axis, then the

vector 0 represented in the XYZ-coordinate system is

=

ci

0

0 XYZ

(3.51)

Next, a subsequent rotation is applied, which moves the x'y'z'-coordinate system an

angle 0 around the initial space-fixed Y-axis into the final x"y"z "-coordinate

system12.
The transformation matrix TM0 needed for this rotation is

TM0 =

cos 0(t) 0 sin 0(t)

0 1 0

sin0(t) 0 cos0(t)

(3.52)

If the x"y"z"-system is rotating with an angular velocity 0 around the Y-axis, then

the vector 0 represented in the XYZ-coordinate system is

=

0

q3

0 XYZ

(3.53)

The spindle itself is spinning with a constant angular velocity tfr = 2r nsp around the

z "-axis and thus one can calculate the resultant angular velocity vector co in the final

x "y "z "-coordinate system as

12 Indicated with gray dashed lines in Fig. 3.10.



is simply 'I; =

tP

0

0

tk

but z and q

= TM co IMO (.1)1 xyz

have to be calculated as

cos(0)

sin(v) sin(0)

cos(co) sin(0)

= TM co -1m0 01 XYZ _3

The resultant angular velocity co

(1)1x y"z"

iy becomes

x y

0

cos(q))

sin(v)

cos(0)

sin(v) sin() + cos(V)
yr + cos(v) sin(0* sin(OS

Now the kinetic energy due to the gyroscopic effect can be readily calculated as

1 . \ 2
TG = I coz2 = jzz kt + cos(0 sin(0)0 sin(q))0 )

Y" 2

3.5 Automatic Model Generation for a Spindle Assembly
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(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

The analytical modeling methodology described above is applied in this

section to a realistic system. It is a spindle assembly, the main entity of any metal

cutting machine tool, therefore such a system is considered here. An experimental

system dealt with henceforth is described in more detail in Chapter 5. This system is a
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good representative of a broader class of devices involving rotating machinery that can

be dealt with by the proposed approach.

A purely mechanical, multi-degree-of-freedom (MDOF) model of the spindle

assembly is derived. Fig. 3.11 shows a simplified rigid body model of this system.

The rigid supports shown in the figure indicate only general constraints for the

housing but not the actual locations. The exact connection to the rigid base is shown

in Fig. 3.14.

Y

z

e

X

Rigid support

Housing

Spindle

Fig. 3.11: A 'rigid body' model of the spindle.



70

The spindle shaft is supported in the housing by means of elastic elements with

viscous damping13 which represent rolling element bearings. The housing, in turn, is

attached to the rigid base by means of other elastic elements, which represent physical

components (e.g. guideways or bolted joints) of the machine tool. The exciting force

is applied at the spindle nose through a dynamic system represented in the figure by

two masses and elastic elements with damping. This system is introduced to model

the impact of the remaining mechanical components of the machine tool (coupled

through the cutting process) on the spindle dynamics. The two mass-spring-dashpot

systems shown in Fig. 3.11 accurately represents an electro-dynamic shaker used in

the tests (see Chapter 5).

The housing has three translational (x, y and z) and three rotational degrees-of-

freedom (DOF), (yo, 0 and yi). The spindle shaft itself has five DOF. This is one DOF

less than the housing, because the spindle rotates freely around the z-axis. Therefore

the global vector of generalized coordinates, which comprises the DOF of spindle and

housing is defined as

q(t) = fx, (t), ys (t), z, (t), xh Yh (t), Z h (t), c6I s (t), s (t), h (t), Oh (t), lith (01 T (3.59)

where xs(t) denotes a generalized coordinate for the spindle,

xh(t) denotes a generalized coordinate for the housing.

Their respective time derivatives, the generalized velocities and the generalized

accelerations are denoted 4(0 and 4(0 .

13 These elements are graphically represented by springs. Supporting springs in the Z-direction are
omitted for clarity.
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In this model, the balls of the angular contact bearings are represented by the

`spindle-housing' springs, as shown in Fig. 3.12. Ideally each ball is a linear spring-

damper system. However, in this simplified model only one vertical and one

horizontal ball is considered, for the sake of clarity. In doing so, the number of

parameters influencing the behavior of the bearings (like number of balls, inner ring

curvature, outer ring curvature etc.) is reduced. There are four parameters for the

vertical and horizontal ball (two springs and two dampers) and one spring-damper

system at the center of the spindle shaft for the support in Z-direction. The attachment

points in the figure indicate fixed points on the housing and shaft, respectively. These

points are needed for the calculation of the spring and damper extensions, as described

in the previous sections.

Ball Bearing

Balls represented as
Spring-Damper
Elements (SDE)

`Attachment'
Points

Fig. 3.12: Bearing modeling.

To model this system mathematically according to CASE 2 in Section 3.3.2,

position vectors to the attachment points have to be established. They are defined in a
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reference (global) coordinate system, which can be chosen arbitrarily. In this case it is

chosen to be at the geometric center of the housing. Position vectors determine where

the individual rigid bodies are located with respect to the reference coordinate system,

and the locations where springs and dampers are connected to the individual rigid
bodies. Employing the position vectors and knowledge of how they change the

elongations of the springs, the potential energies can be calculated. The investigated

set-up has a fixed-free bearing arrangement. The front bearing is fixed and therefore

has an axial spindle-housing spring representing the axial bearing stiffness. In

addition, the spindle is held in place in the horizontal and vertical direction by two

radial spindle-housing springs representing the radial bearing stiffness. It is important

to note that those springs are one-dimensional, thus only deflecting in one major

direction. Also, in the arrangement under consideration the bearings do not generate

moments. This is a purposeful simplification. The spindle-housing springs together

with position vectors pointing to their attachment points are shown below.

Housing

Spindle
Position Vectors

PHfy

Inertial Coordinate System

Fig. 3.13: The 'spindle-housing' springs.
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The position vectors of the spindle-housing springs to the attachment points on

the spindle-side are denoted Psfx , Ps. 9 PSfz jSrx and Ps, 14 and are given below in the

initial, non-vibrating state as an example.

PSfx

Xsb0

0

Zsb0

1

; PSfy

0

Y sb0

Z sb0

1

Psrz

0

0

Zsb0

1

PsrX =

X sbo

0

Z sb2

1

; PSry =

0

Y sb0

Z sb2

1

(3.60)

where Xsb0) ytho, zsbo, zsbi and Zsb2 are geometric distances of the relevant bearing

locations. The vectors have a fourth row, as mentioned in Section 3.2, which is called

the utility part. It facilitates matrix manipulation, but does not influence the

coordinates of the vector. The vectors 13,x , PHA, , PHfz, Pyrx and PH,.), define the

attachment points for the spindle-housing springs on the housing side. The complete

list of all position vectors with their numerical values is shown in Appendix C2.

The length and orientation of these position vectors change as the generalized

coordinates change. Putting all position vectors related to one body in one matrix

improves the efficiency of calculations. As a result, manipulations do not have to be

performed on each individual vector, but rather on the whole matrix. A Iwo is the

matrix of all attachment points of the spindle-housing springs on the spindle-side and

MHB4O is the matching matrix on the housing-side.

MSB,0 = [PSfx PSfy PSfz PSrx PSry

x sb0

0

Zsb0

1
_

Y0tho

Zsb0

1

0

0

Zsb0

1

xsb0

0

Z sb2

1

0

Y sb0

Z sb2

1
_,

(3.61)

14 The subscripts means: S = Spindle, H = Housing, fx, fy, fz = front in x-, y- or z-direction, rx, ry =
rear in x- or y- direction.
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MHB4O = [PHfx PHfy PHfz PHrx PHry

x hb0

0

0

y hb0

0

0

Xhb0

0 Yhbo (3.62)
Z sb0 Zs130 Z sbl Z sb2 Z sh2

1 1 1 1 1

In the investigated spindle-bearing system the housing is bolted onto a massive

steel base by four screws located on the four corners of the cube shaped housing. In

the model this connection of the housing to a rigid base is represented by four

`housing-base' springs shown in Fig. 3.14. In contrast to the one-dimensional spindle-

housing springs, these springs are three-dimensional since each screw fixes the

housing in all three directions. The attachment points of these springs on the housing-

side are defined by four position vectors Ph, , Ph2 P,,3 and fii,4. On the base-side they

are denoted by vectors P,, , fib3 and fib4

3-Dim Spring (x,y,z-Direction)

Inertial Coordinate System

Fig. 3.14: The `housing-base' springs.
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MH,0 is the matrix of all attachment points of the housing-base springs on the housing

side. MA0 is the matching matrix on the base side.

M H,0 [Phl Ph2 Ph3 Phi =

Xh0

Yh0

Zho

Xh0

Y h0

Zho

Xh0

Yh0

ZhO

Xh0

Y h0

ZhO

(3.63)

1 1 1 1

X h0 Xh0 Xh0 X h0

MB4O = [Pb, Pb2 Pb3 Pb4 J =
Ybo Yho Ybo Ybo

(3.64)
Zho ZhO ZhO ZhO

1 1 1 1

Additional position vectors needed are the force-input location Pin and the desired

output measurement location /tut . Their use will be described later, after all the

energies and the Lagrangian are derived.

Pin =

X In

yin

Z In

Pout =

xOut

YOut

ZOut

(3.65a,b)

After all position vectors are defined and put into convenient matrix forms, the

extensions of the SDEs are found using transformation matrices as described in

Section 3.4.2 (Eq. 3.33). The transformation matrices needed for the housing, TM'',

and spindle, TMs, assuming small angle approximations are found as (see Appendix

A for derivation)

TMH =

1

tgh(t)

01,(t)
0

1/1h(t)
1

401,(t)

0

Oh(t)

q;th(t)

1

0

X h(t)-

yfi(t)

zh(t)

1

(3.66)



TMs =

1 0 0,(t) x, (t)

0 1 q)s(t) y

Os(t) JO 1 z

0 0 0 1
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(3.67)

The deflection of the "housing-base springs" can be found using the equation

Ad HB = [Ad Ad 2 Ad 3 Ad 4 = (TM H I) M H,o M 13,0 (3.68)

The deflections of the "spindle-housing springs" can be found using the equation

AdsH = kdfx Adfy Ad Adrx Adry,i= (TMs I)' MSB,o (TMH I) MHB4O (3.69)

If a vector of housing-base stiffnesses is introduced in the form

k Erni = fk HBxj k FIB)" 7k finz, , 0) ; j =1 ... 4 (3.70)

then the potential energy due to the deflection of these springs can be calculated as

UHB =
2 HB 1 Ad 12 + k Ad 2

2
+ k m33 Ad 3

2 + k Ad4
2)

(3.71)

where Ad j2 is the square of the components of Eq. (3.68). Similarly the damping

energy can be calculated by introducing a vector of housing-base dampings of the

form

C HBj = C HBxj HByj C HBzj 0) ; j=1 ... 4 (3.72)

for each 3-dim housing-base spring. The damping energy due to the deflection

velocities
a
t

Ad. of these springs can be calculated as
D

1
DHB = C HB,1

, l2

Adi
at

CHB,2

N2

Ad2
at

a
12 /a \ 2 \

AdHB,3 3 + c HB,4 Ad 4
at at

(3.73)
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Since the spindle-housing springs are only one-dimensional, their extensions need to

be multiplied by the appropriate unit vector

uz = [1 0 0 0] ; uy = [0 1 0 0] ; uz =40 0 1 0] (3.74)

After introducing bearing stiffnesses kfx , kfy , k1 , k, and kry , the potential energy of

the spindle-housing springs calculates to

USH =1
fx

( k u. Ad fx 2 k u
Y

Ad fy k fzUz Ad
fz2

(k
TX

u
X

Ad rX

2 + k uy Adry2)
2

The damping energy calculates to

2)

2 -N2(a aa
at

d-c,uy
at Y fz

Adif +c u Adfz
at

1
r a ,2 (a

+-2 Ad- + c u Ad
at rY Y at rY

2 \

(3.75)

(3.76)

The calculation of the kinetic energy T is straightforward. It is the sum of the

kinetic energies of the individual masses for each generalized coordinate, which

include a translational and rotational portion (Eq. (3.77) through (3.82)). This total

kinetic energy (Eq. 3.77) also includes a gyroscopic portion due to the spinning of the

shaft with the rotational speed nsp.

T =TSrot. ±TS,.+TGyro ±TH,rot. ±THar.

Tarot = 21 (1Sxx0s2 ($ Sx2 '0 )Syy s ) s s

2 2
TS tr

1
Ms(X, y + z )

TS rot =
2

s z(2it- n sp + cos( q ) sin(Os )0, sin(cos )0.02

(3.77)

(3.78)

(3.79)

(3.80)
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(3.81)

TH rot.
2

(
HxxVh HyOlf h HzzY" h2 Hxy tP Svh Hxz h HyzY h

(3.82)

where the subscripts "rot." And "tr." represent the rotational and translational kinetic

energy respectively.

The generalized input force Q(t) is derived based on the input force vector

Fat), an input moment Mat) and the force application point Pll, (Eq. 3.65a).

Fx(t)

F,,, (t) = F, (t)

_Fz(t)

(t) =

M x(t)
M (t)
M z(t)

(3.83a,b)

Q(t) = { F (t), F,. (t), Fz(t),0,0,0, F (t) y Fx(t)zm,Fz(t)xm+Fx(t)z,0,0,01 T (3.84)

After all the energies and the generalized input forces have been derived, the

eleven equations of motion for the 11 DOF system can be calculated using the

Lagrange' s Equation (Eq. 3.13). The resulting differential equations15 are too long to

be shown here. An equation for the generalized coordinate xs is shown her as an

example.

k,(x,(t) x h zds(t) zsi0h(0)+ k fx(xs(t) x h(t) + zs10, zsi0h(0)

+ c,(i.(t) -ih(t) Z s (t) Zs1Oh (t)) Cfx(is (t) h (t) Z s(t) Z h (0)

M s(t) = Fx (t) (3.85)

15 Derived by a suitable program performing symbolic computations.
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The eleven EOMs can be put in vector matrix form as shown below.

m q(t) + c 4(0+ k q(t) = Q(t) (3.86)

From this equation the m, c and k matrices can be readily extracted. They are shown

in Appendix C3. Also the state-space and TF model can be derived according to

Sections 3.2.2 and 3.2.3.

3.6 Model Based Estimation

Various methods for estimating physical parameters are investigated in this

research. In particular, six methods seem most promising and will therefore be

described here in more detail. Since physical parameters only appear in constitutive

models, such a model is developed in the previous Section for the system shown in

Fig. 3.11. The resulting set of governing equations of motion is derived and one

example of this set is shown in Eq. (3.76) above. All six estimation methods use this

set of equations as a basis together with experimental data to obtain the physical

parameters. These parameters can be found using various optimization algorithms

(e.g. simulated annealing (Davis, 1987), adaptive grid refinement (Loehle, 1998) or

deepest descent method (Pinter, 1996). The differences between the experimental and

the theoretical model are minimized with respect to the unknown physical constants.

The six estimation methods described below are referred to as: 1) "direct" method

involving Newtonian equations of motion, 2) "two step" identification involving on

black box models, 3) "one step" identification based on gray box models, 4) extended

Kalman filter, 5) use of functional relationships and 6) "hybrid" method.
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3.6.1 "Direct" Method

As outlined in Chapter 2 the differential EOM become algebraic equations if

one can measure accelerations, velocities, displacements and forces directly. For the

simple MDOF system analyzed in Chapter 5.3 the model can be written in the form

(Eq. (5.2) presented in the form of Eq. (2.14)).

rml 0 c11+c12

L

c 12 k11 + k12 k12

0 M2 c12 c12 + c22 k12 k12 + k22

id

d2

d1

6.12

d1

2

2

(3.87)

For six sets of measurement data the measurement vector becomes a square matrix and

thus can be inverted.

[m c k]= (F11

F21

F12

F22

F13

F23

F14

F24

F15

F25

F16

F26

d21

all

d21

d11

d21

d12

a22

d12

d22

d12

d22

d13

d23

d13

d23

d13

d23

d14

a24

d14

d24

d14

d24

15

d25

d15

d25

d15

d25

d16

d26

d16

d26

d16

d26

1

(3.88)

This method presents a closed form solution for the physical parameters in theory. It

has not been tested in this research because of the extensive amounts of measurements

necessary.
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3.6.2 "Two Step" Method

This method is based on the comparison of the transfer functions from the

analytical model and from experimental data. Fig. 3.14 illustrates the relationship

between the actual system and different models.

Based on
Physical Laws

Constitutive
Model

Signal Based

Input u(t)

Generic
I/O I--

Model Output y(t)

Estimation of
Physical Parameters

ap-mft
Disturbence n(t)

Fig. 3.15: Concept of physical parameter estimation.

From the constitutive equations of motion an analytical transfer function is

calculated. For a system shown in Fig. 1.2 and Eq. (1.2), which has n inputs and m

outputs, there exist m n separate transfer functions describing the system. Each of

those transfer functions contains information about the system and some or all of its

physical parameters. In particular, the coefficients a, and b3 of Eq. (3.15) are functions

of these physical parameters. In this method, those coefficients are used to estimate

the physical parameters. It will be shown later that using more than one transfer

function is often required to estimate the m, c and k matrices. However, for the sake
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of clarity, the method will first be presented using only one transfer function. The

method can be easily extended to include more transfer functions.

A single-input single-output system (SISO) shown below is considered.

Parametric identification (Ljung, 1987; Young, 1981; Astrom, 1971) applied to

experimental input-output data facilitates the estimation of a transfer function Ge(s).

This monic transfer function has numerical coefficients a, and Li .

_bpsP-ELP-1sP-'+...+E2 S2 + IS-FLO

sq +aq-1
a 1 +...+a 2s 2 +a

1
s+a0

(3.89)

The same system is modeled by an analytical transfer function Ga(s), (Eq. 3.4), that is

obtained using one of the methods described in Section 3.2. The coefficients a, and k

are explicit functions of the physical parameters collectively represented by a set

O = {mi,...mci,...cki,...k,}.

where

b sP +b sP-1+...+b2s2 +bs+bo
Ga(s)= P P-I (3.90)

sq +a q-1 ...sq-1 ++a 2 S2 +a
1
s+ao

ai=f,(0)

k=gi(0)
(3.91a)

(3.91b)

Comparison of coefficients in the analytical and empirical transfer function

yields p +q -1 equations involving the physical parameters.

ai(0)=a,

b(0) =11

(3.92a)

(3.92b)

It is important that the numerator and denominator of Eq. (3.89) and Eq. (3.90) have

the same order, otherwise the coefficients can not be compared and Eq. (3.92a) and

Eq. (3.92b) are meaningless (see also Fig. 3.16).
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The task is to solve this set of equations for the unknown physical parameters.

Unfortunately, this turns out to be a difficult task, and usually an analytical closed

form solution does not exist. There are several reasons for this. First, the

experimentally identified TF coefficients a, and Li are corrupted with random noise,

introduced through 110 identification of noisy experimental data. Second, the

theoretical TF might not exactly represent all the physical phenomena present in the

system, since assumptions and linearizations were probably made. Thirdly, a, and b1

are usually nonlinear functions of m, c and k, making linear techniques for solving the

system of equations not applicable. Table 3.1 illustrates the difficulty of finding a

closed form solution of Eq. (3.92).

Table 3.1: Determination of uniqueness of solution of Eq. (3.92).

f, , gj
a, ''-, b3 , linear

corrupted --,
No Yes

No Exact solution can be found
numerically

Exact closed form solution
exists

Yes Numerical solution, optimal
in a statistical sense can be
found. This solution might
be inaccurate.

Closed form solution,
statistically optimal can be
found (e.g. "least square" sense
optimal. This solution might be
inaccurate

Only if the functions f and gi of Eq. (3.91) are linear in the physical parameters, and

a, and b, are not corrupted with noise, then a closed form solution is guaranteed.

Still, with the system's behavior known and with exact measurements of input and

output signals the determination of the physical parameters should be possible. Even

if the system does not have an analytical closed form solution, iterative methods can

be used to obtain estimates of the physical parameters m, c and k. The determination
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of the parameters becomes a statistical estimation problem. It can be shown that this

problem can be solved using global minimization methods.

The following methodology was developed as a guideline for setting up these

equations (3.92a) and (3.92b) described above, and finding a solution for the physical

parameters m, c and k.

Identified and pruned
coefficients and

Higher order identification
& improved pruning 16

L Insufficient #
of experimental

coefficients

Transfer Function
Coefficients a; and bi

Enhance model

o Insufficient #
of analytical
coefficients

Number
of equations equal

to number of

Get second TF
No (to increase # of equations)

or
simplify model

(to reduce # of parameters)

(END, Succes2___)

If no meaningful solution can
be found after several attempts

the transfer function
No comparison method has failed

LEND, re

Fig 3.16: Methodology for transfer function coefficients comparison.

16
see Section 4.7 for more details on 'pruning'.
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The first objective within this methodology is to obtain the same order of the

theoretical and experimental transfer functions, and as a result, the same number of

coefficients a, and bp Typically in experimental parametric identification, the higher

order model one chooses, the more accurate the identification is. Unfortunately, high

order identification causes so called 'phantom' poles and zeros to appear, which are

nonexistent in the real system. In this research 40th order ARMAX (Ljung, 1987;

Isermann, 1981) identification is used causing the result to contain 40 poles and 39

zeros, even though from theoretical modeling it was clear that the system should have

much fewer zeros and poles. Hence, so-called 'model pruning' (Shyan-Huang, 1994)

has to be used to identify and eliminate these 'phantom' poles and zeros (see also

Section 4.7).

After the system of equations has been built with equal number of transfer

function coefficients, one has to analyze how many equations there are and how many

variables are unknown. If there are more unknowns than equations, the problem is

under-determined. The number of equations needs to be increased by including

another transfer function of the same system. Also, the number of unknowns could be

reduced, by lumping physical parameters together. In doing so one could monitor e.g.

the sum of two masses instead of each mass individually. If there exist more equations

than unknowns, the system is over-determined. This should actually help in the

numerical minimization procedure, since more equations means more information

about the system which facilitates finding the optimal parameters. However, "least

squares" sense solution is possible in the latter case.

The set of equations (3.92a,b) is not only non-linear, but also multi-

dimensional. Solving this set of equations is equivalent to finding the roots of

a, a i(0) =0

b1 (0) = 0

(3.93a)

(3.93b)
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Multidimensional root finding is considered a very difficult problem. It is easier to

find a minimum of a function of many variables, which helps here as well. One might

collapse all these dimensions into one. Adding up the squares of the individual

functions fi to get a master function Q, which is positive definite and has a global

minimum of exactly at zero all the solutions of the original set of nonlinear equations.

In order to facilitate computer implementation, equations (3.93a) and (3.93b) are put

into vector notation, such that

ATF =
q-1

ATF =

al

a q-1

b,

by

(3.94a,b)

Equations (3.93a,b) then become the total error between the experimental and

analytical transfer function coefficients

e = A TF (C)) TF (3.95)

The error vector e may not become zero and it might not be possible to solve Eq.

(3.95) analytically then numerical methods need to be applied. A performance index

can be formed using different norms. The quadratic norm is built as

/q(e).-1 eTL e
2

(3.96)

where L is a diagonal matrix weighing the relative importance of the components of e.

Another norm used often is the euclidian (L2) norm.

le(e) =11e112 Vei2 e22 en2 (3.97)

In this research the sum of normalized squares is used as a performance index for

physical parameter estimation.
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(3.98)

Applying Eq. (3.98) to the case of transfer function coefficient comparison leads to

p+q--1

Q,(0)=
i=1

2/ (GI
TF,i

ATFi
(3.99)

Minimizing this performance index QTF(0) leads to the estimates of the physical

parameters as shown in Eq. (3.100) below.

O= argminQTF(0)
BED

(3.100)

Unfortunately the shape of the function QTF(0) can be complex and can have multiple

minima in addition to the global one. The challenge is to develop search methods,

which will not get trapped in local minima, but which will find the global minimum.

Details about global minimization are described in Section 4.3. A slight modification

of the TF coefficient comparison method is outlined below.

Zero Pole Comparison is an alternative to the method of comparing transfer

function coefficients. Instead of using the coefficients a, and b, of the analytical and

experimental transfer function, the poles and zeros are used directly. Zeros and poles

are more meaningful in describing the behavior of the system, since their values

represents explicitly the nature of the system. In particular, zeros and poles give direct

information on the resonance frequency and damping ratios of the system (see Section

3.2.3).

In order to completely describe a system, the DC-gain has to be known in

addition to the zeros and poles of the system. After the zeros and poles and the DC-

gain are calculated from the model and from the experimental data, a performance
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index can be derived using the error between the model and experimental poles, zeros

and DC-gain.

Pi pi(0)=epj (3.101a)

z;(0)=e,j (3.101b)

g(0) = eg (3.101c)

Similarly to Eq. (3.94a,b) the differences between experimental and analytical poles,

zeros and gains can be put into a vector notation such that

ZP =

P1

Pq
2

z1

zp
2

g

p1

Pq
2

Azp Zi

zp

2

g

The performance index is then calculated similarly to Eq. (3.99)

Qzp (0) =

2

A zp A zp (CO

i=1 A zp,i

(3.102a,b)

(3.103)

Minimization should again lead to an optimal estimate of the unknown physical

parameters O.

O = arg min Qzp (0) (3.104)
OED

The following figure (in the s-plane) can illustrate this error minimization process.
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location of
experimental pole

initial guess of pole

initial guess of zero

location of
experimental zero

s-plane

experimental gain

initial guess of gain

Fig. 3.17: Error minimization in the s-plane.

3.6.3 "One Step" Method

In this method the analytical transfer function is used as well. An output signal

is simulated from the theoretical model, which is compared with the respective

experimental data. In order to estimate the physical parameters m, c & k, the sum of

squared errors between the simulated and experimental data has to be minimized with

respect to m, c & k. Therefore, the simulated output data has to be a function of the

physical parameters. Since the experimental data is in discrete form, the theoretical

transfer function of the continuos domain needs to be transformed into the discrete

domain using, for example, Tustin's method (DeCarlo, 1989).

b h
Od + bid-1 + . . gm

Gd
and + aidq +...+ andqn

(3.105)
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From the discrete transfer function of the system, (Eq. 3.105)17, a recursive formula

can be obtained in the form of Eq. (3.106). It shows the theoretical model output yk

as a function of past outputs and present and past inputs to the system. a and bid are

the discrete transfer function coefficients and are a function of the physical parameters

m, c and k.

1 "
k (0) = Ibed (0) uk-ir 4a1 (0) Yk jr

and \,i=0 l=1

The error between the simulated and experimental output is

ek(0)= k (0) y k

(3.106)

(3.107)

Here the euclidian norm of the output error (Eq. (3.97)) is used for building the
performance index.

QTD (0) = JIy sr(0)112

This can be minimized similarly to Eq.(3.100)

0 = arg min QTD(0)
OED

17 The subscript "d" in Eq. (3.105) and (3.106) denotes discrete coefficients

(3.108)

(3.109)
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3.6.4 Extended Kalman Filter

Physical parameters of a system can also be estimated using an extended

Kalman filter (Kalman, 1960). It is essentially an observer, as shown in Fig 3.18.

u(t)

Process noise c(t) Measurment noise n(t)

A
B

(0
f

Plant

(t) (t)

A
l<

>I

State observer!

y(t)

X (t)

Fig. 3.18: The Kalman filter as an optimal observer.

The Kalman filter gain K is calculated to give optimal estimates of the state

variables x(t) with respect to minimizing process and measurement noise. It is

employed for physical parameter estimation in the following way: one can rewrite the

state-space formulation of the system (repeated here for clarity but with noise) such

that the unknown physical parameters are represented as additional state variables of

the system.

ii(t)= A x(t)+ B u(t) + c(t) (3.110)
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Then the Kalman filter can be used to estimate those states and hence find the

unknown system constants. Unfortunately, as a result the dimension of the system

increases, and the evolution matrix A also becomes non-linear. One way to deal with

these difficulties is to linearize the model using the Taylor series expansion around

some operating state x0. Eq. (3.110) can be rewritten to separate all non-linear

components into n(x) leaving the linear components in T.

x(t) =T x(t)+n(x)+B u(t)+E(t)

Expanding n(x) with a Taylor's expansion about some state xo gives

n(x) =n(x
0
)+ J(x x0)

where J represents the Jacobian matrix ofn evaluated at xo

J =
axe

(3.112)

(3.113)

Substituting Eq. (3.112) into Eq. (3.111) gives

*(t) = (F + J) x(t) n(xo) J(x0) +B u(t) + e(t) (3.114)

Equation (3.114) can then be put into discrete form. One obtains a linearized discrete

state-space form.

Xj+1 = + Ui Ei (3.115)

di =Cixi +qi (3.116)

The optimal estimate of the state vector can be calculated as

= +Sliui +K(di Ciii ) (3.117)

where the gain K is calculated by solving the Riccati equation. More detailed

information can be found in (Trujillo,1997).
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Due to the linearization necessary as described above, there is no guaranty that

the states and therefore the physical parameters converge to their actual values. The

extended Kalman filter presented by the equations above is applied in this research, to

a simple spring mass system described in Section 5.3.4.3.

3.6.5 Use of Functional Relationships

As explained in Chapter 1 (see Fig. 1.1), feature extraction of measured signals

is an important component of the monitoring chain. If one can find functional

relationships between these features and physical parameters, monitoring would be

quick and straightforward. Observation of features would give direct indication of the

behavior of physical parameters. These relationships can be analytical or empirical.

They might be explored by establishing "feature" maps, which illustrate the change of

features due to modification of physical parameters.

Unfortunately there is no guaranty whether such a relationship exists and no

rigorous approach is available on how to find it. However, the analytical model

developed in this thesis greatly facilitates searching such relationships. Generation of

features such as resonance frequency or damping ratio can be done quickly for many

different sets of physical parameters. In Chapter 5.4.4 this method is applied to the

problem of preload monitoring.

3.6.6 "Hybrid" Method

As a conclusion of the analysis of the five methods above, a combination of

two or more of these methods can lead to improved estimation results. For example



94

the extended Kalman filter can be combined with the "one step" method for fast

estimation of varying parameters and multiple estimation of slow changing

parameters. This method has to be evaluated and tested in more detail in the future.

3.7 Closure

In this Chapter a methodology of computer aided model derivation and gray

box model-based estimation is presented. The concept of analytic model building is

discussed and three cases of increasing complexity are analyzed. An analytical model

of a MDOF machine tool is developed for the purpose of physical parameter

estimation. The model is built in an incremental manner from first principles and

allows easy modification by the user. It consists of multiple rigid bodies connected by

spring-damper elements. Once position vectors and attachment points to the SDEs

have been defined, the program will derive the EOMs automatically using Lagrange's

method. Also different physical parameter estimation methods are investigated. The

following table summarizes these methods and the circumstances when they can be

applied.
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Table 3.2: Summary of different estimation methods.

Estimation Method Comments

1) Direct method involving
Newtonian EOMs.

Closed form solution;

Has not been tested in depth because excessive
requirements of sensors.

2) "Two step" method

a) analytical solution

When analytic solution is possible and physically
meaningful.

b) numerical solution When analytical solution is not possible or not
physically meaningful.

c) minimization When analytic solution is not possible or not
physically meaningful and numeric methods fail.

3) "One step" method based on
gray box I/O models

Computationally intensive, but leads to promising
results.

4) Extended Kalman filter Only feasible for limited physical parameters.

5) Use of functional relationships If such relationships are found this method is
simple.

6) "Hybrid" method Combination of above methods can take
advantage of individual benefits.
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4. IMPLEMENTATION AND VALIDATION ISSUES

4.1 Introduction

In order to realize the full potentials of the modeling and estimation

methodology developed in Chapter 3 it needs to be implemented on a computer. An

inherent feature of physical parameter estimation is its high sensitivity to modeling

errors. Therefore computations of the equations in the previous section without any

loss of precision is critical otherwise the proposed methodology won't be successful.

The working environment for the computer implementation has to be characterized by

the following three features. First, the software package used has to allow symbolic

calculations since this is the key to tracability of the physical parameters. Second, the

ability to perform computations with controlled numerical precision ensures correct

calculations of equations, which are very sensitive to inaccuracies. Finally the

software has to facilitate mapping of models from the differential equation domain

into the system analysis and control theory framework.

Both, Mathematica, (Wolfram, 1992) and Maple, (Waterloo, 1997) allow

symbolic and arbitrary precision calculations. If necessary, infinite precision

calculations can be done provided the inputs are entered with infinite precision18.

18
In Mathematica' s language this means no decimal fractions are used.
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In other packages like Mat lab (Mathworks, 1995) users have little control on

the precision of calculations and therefore those packages are not suited for this

research. Mathematica has an additional advantage over Maple since a package is

available, (Wolfram, 1992), which allows the use of functions from controls theory

and also can do transformations of models into different representations and domains

illustrated in Fig. 3.4.

Since successful estimation hinges on the accurate implementation of

computations, the issue of controlled numerical precision is addressed in Section 4.2.

Two examples illustrate that modeling of complex mechanical systems necessitates

computations with high numerical precision. Section 4.3 presents a discussion of

difficulties encountered with the minimization algorithm. The complex shape of the

multi-dimensional performance index derived in Section 3.6 causes these difficulties.

Next, in Section 4.4 a sensitivity analysis is described to evaluate which parameters

are suited for estimation. Rapid changes of sensitivities can indicate potential

difficulties with the estimation procedure. Computer simulations are also very helpful

in analyzing, evaluating and tuning the estimation procedure and therefore are

elaborated on in Section 4.5. Another necessary step before estimation is the

validation of the analytical model developed in the previous chapter. One way of

comparing the model behavior with the dynamics of the real machine is visualization

of its motion, which is dealt with in Section 4.6. A new concept of 'gray box' model

based visualization is proposed there. Finally, in Section 4.7 the attempt is made to

automate and facilitate different steps of the estimation algorithm through the use of

artificial intelligence. For example until recently, the task of experimental

identification of transfer functions required significant user input and experience. An

intelligent algorithm is proposed which reduces the user involvement.
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4.2 Arbitrary Precision Computations

Mechanical systems and machine tools in particular are characterized by

quantities, which vary in a wide range. Elements of the stiffness matrix k in Eq. (3.86)

are very high (of the order 108 N/m) whereas elements of the damping matrix c can be

extremely low (of the order 10-2 N/m) (Weck, 1984; Goodwin, 1991). These values

appear in the differential equations of motion in matrix form, shown here again for

clarity.

m q(t) + c q(t) + k q(t) = Q(t) (4.1)

Systems of this nature are commonly referred to as being ill conditioned. As a

result difficulties arise when dealing with matrices such as Eq. (3.7a), which is shown

here again for clarity.

A=
[ 0 I

k in-1 c
(4.2)

This matrix, called the evolution matrix in state-space theory is used in this research in

many ways. One way is for the frequently needed transformation of the state-space

model into the TF model. Equation (3.13) is used for this transformation in

continuous time,

G(s) =
Y(s) = C (s I Ay' B + D
U(s)

and Eq. (3.14) for the discrete transformation.

G(z)= YU((z) = C (z I Ty' + D
z)

(4.3)

(4.4)

Especially when inverting such ill conditioned matrices computational errors can

become large. The severity of the problem will be illustrated below. Since the model

of the spindle-assembly is too complex to serve for this purpose a simpler system is

used to give insight into the problem.
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It will show the user where the errors can manifest themselves and thus is part

of the validation of the methodology presented in Chapter 3. Also the user will learn

how to deal with those problems, which will almost certainly arise. Two examples

from a case well documented in previous research (Chung, 1993) are used to show the

class of problems encountered when computing with finite precision. They involve a

simple rigid body plate with six DOF moving in space. Its EOMs can be found in any

standard dynamics textbook such as Innman (1994). Such a plate actually represents a

high performance dynamometer (Model 9257A) manufactured by Kistler. Fig. 4.1

shows the mechanical design of this dynamometer.

Force transducer
( 3D elastic element\

with damping

Y

Platform
(force distributing\

element, mass

Dynamometer Base
SE = Sensing

Fig. 4.1: Mechanical design of the Kistler dynamometer.

Chung, (1993) investigated and modeled this device in an effort to build an inverse

filter to attenuate distortions of the force signals introduced by the vibration modes of

the plate. Distorted electrical output signals of the dynamometer are passed through a

filter consisting of the inverse transfer function of the system in order to obtain
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corrected signals representing the true acting forces on the plate. In the two examples

the following problems were encountered:

Example 1: The transfer function (TF) between the input force on the plate and the

output displacement in z-direction19 was derived following the procedure of automatic

modeling delineated in Chapter 3. The EOMs in the form of Eq. (4.1) and the state-

space model was obtained. Applying Eq. (4.3) in the continuous case or Eq. (4.4) in

the discrete case the state-space model can be transformed into the TF model. The

structure of the TF model obtained in the continuous domain is shown below

b sP +b
P-1 +...+b2 s2 +b

1
s+b0Gxf,(s)=

sq +a q-I S
q-1 +...+a2 S

2 +a s+a 0

(4.5)

Finite precision calculations of Eq. (4.5) resulted in p= 10 and q= 12. Infinite

precision calculations however gave p= 8 and q= 10. Further analysis revealed that

the finite precision TF one zero and pole was very close and a zero-pole cancellation

should have taken place, which wasn't accomplished due to insufficient precision of

calculations. In this case users heuristic knowledge and in depth investigation was

needed to correct the result. However in general and in more complex cases such as

the spindle assembly it is not possible to check the correctness of computations.

Especially in this research it is of utmost importance to obtain the correct model

structure. Methods are applied (transfer function coefficient comparison) where the

accurate calculation of TF coefficients is critical. As a result infinite precision

calculations are needed.

19
The displacement can be used as an output of a model since it is proportional to the electrical output

of the actual dynamometer.
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Example 2: Before an inverse filter proposed in Chung's research can be developed, it

has to be tested whether that inverse exists. According to Sain and Massey (1969) a

system is invertable if and only if

and

m < r (4.6)

Rank(Mn) Rank(Mn_i) = m (4.7)

In equations (4.6) and (4.7) m and r are the number of inputs and outputs to the system

respectively, and n is the number of state variables. Mn is referred to as the

invertability-matrix and has a similar form as the observability- or controllability-

matrix (described in Eq. (6.2) and (6.3)).

_
0 0 0 0

CB 0 0 0

Mn = CAB CB 0 0 (4.8)

CAn-1B CA"-2B CA"-3B 0

The state-space model of the dynamometer has m = 6 inputs, r = 6 outputs and n = 12

state variables. As a result, even for the simple plate moving in 3D-space the matrix

Mn has the size 78x78 and Mn.1 has the size 72x72. From finite and infinite precision

computation of the rank of the invertability matrix the following results were obtained:

Table 4.1: Results of the invertability tests.

Finite
Precision

Infinite
Precision

Rank (Mn) 12 66
Rank (Mn-1) 12 60
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Table 4.1 together with Eq. (4.7) shows that finite precision computation lead to the

conclusion that the inverse of the dynamometer model does not exist. The proposed

inverse filter would be impossible to design. Infinite precision computation however

proved these results wrong. User's heuristic knowledge does not help in this case

since it is impossible to deal with such large matrices by hand.

The above two examples of previous research among others resulted in the

decision to use Mathematica for all computations in this research. The work done by

Chung does not only serve here as an illustration of the importance of infinite

precision, but is also relevant in the research presented here, since this concept can

also be applied to the spindle assembly. It would open the possibility of estimating

unknown cutting forces by vibration measurement on the spindle housing. An

accurate model of the system, such as derived in Chapter 3 is the prerequisite of

building this inverse system (Spiewak, 1994).

4.3 Global Minimization

Most of the methods for physical parameter estimation proposed in Chapter 3

relay on the minimization of a performance index. Many minimization algorithms

exist and they usually have no difficulties finding minima of well-behaved functions

(Pinter, 1996; Press, 1994). However in this research the performance indices built,

(Eq. (3.96), (3.106)) have multiple minima and their shape is complex. For example

the performance index used for the time domain estimation method derived in Section

3.6.2 is built as follows
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Input u(t)

Actual
Plant

Output y(t)

Math
Model

Error e(t)

Estimated Output y(t)

Performance
Index Q(43)

Fig. 4.2: A block diagram for building the performance index.

The system and model output in time-domain are substracted and then the L2 norm is

calculated. The optimal physical parameters are found by minimizing the 1.2 norm as

done in Eq. (3.95) which is shown here again for clarity

O = arg sq0)112
eED

(4.9)

where D is the unconstrained domain of possible mathematical solutions which

include negative or complex values. For the spindle assembly this function can have

up to twenty variables and therefore a robust method is needed to find its global

minima. A minimization algorithm based on the combination of the Brent and the

conjugate gradient method is used in this research20. However this method like most

standard procedures can only find local minima. The user than has to validate whether

the found solution is global and meaningful. If not, a new search needs to be

conducted starting from different initial conditions. For functions with up to two

variables 3D-visualization can aid in analyzing its shape and detect potential

difficulties with minimization. Fig. 4.3 shows a 3D-visualization of a `camelback'

function (Loehle, 1998), which can be used to test the robustness of different

minimization methods.
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The example below illustrates the difficulties encountered when searching for

the global minima of the performance index of Eq. (4.9).

Example: The performance index was built for the estimation of the seven physical

parameters of the simple MDOF system described in Section 5.2. The unconstrained

search of the minimization procedure converged to the following values:

Table 4.2: Unconstrained search results of physical parameter estimates.

Physical

Parameter

Numerical

Value

Physical

Parameter

Numerical

Value

m1, [kg] -2.54 k22, [106 N/m] 5.92

m2, [kg] 4.43 cii, [Ns/m] 23.56

k11, [106 N/m] 3.20 c22, [Nsim] 12.63

k12, [106 N/m] 1.78

This is mathematically a legitamite solution however, it is physically totally

meaningless (negative Massi). It is common practice to introduce penalty functions

in such cases in order to limit the search space. Eq. (4.10) shows how the performance

index was modified by the introduction of a penalty function to prevent the algorithm

from getting to negative physical parameters.

Q* (0)
Q(®), for m1

p Q(0), for m1 <
(4.10)

20 This method works well in the programming environment chosen in this research.
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If the estimated value m1 becomes smaller than the threshold rni,min the performance

index Q(0) is multiplied by the penalty function p.

p =1+ Cp
( \ 2

M1

m1
(4.11)

The severity of the penalty can be adjusted by the user through modification of the

variable TheThe objective is to select p such, that the shape of the performance index

is changed in a smooth way. It should be avoided to introduce ridges in the function or

its gradient.

However, in this case the minimization algorithm got 'trapped' at the penalty

function. In addition the speed of iteration slowed down significantly. In order to

overcome this problem the minimization process was stopped manually and the values

modified to move the search away from this obstacle. As a result the procedure

became very cumbersome but finally converged to meaningful values.

This example shows the importance of robust minimization algorithms for the

successful implementation of this research. New minimization methods have been

developed to overcome the above addressed difficulties (e.g. simulated annealing or

genetic algorithms (Ingber, 1992)). The genetic algorithm can find multiple minima,

but only stochastically and it does not allow constrains to be added. Even that

considerable research has been done in this area and some successful applications have

been documented (Dietrich, 1998), no generally accepted algorithm has been found

which can be readily implemented.

However, recently a new global optimization package became available called

`Adaptive Grid Refinement', (AGR), (Loehle, 1998). This minimization algorithm is

based on the identification of feasible points at each iteration, which define the

solution set. As lower points are found during the grid refinement process, points far
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from the current optimum are pruned from the solution set. As a result multiple

minima can be found in a single run, if they exist. The algorithm can also find optimal

regions, rather than only a single point. These optimal regions might represent an

equivalent result or might depict confidence limits for parameter estimation.

The performance of the AGR method compared with traditional gradient

approaches is illustrated below through the use of a `camelback' function.

400

300

200

100

0

-0.02

-0.01

0.02

Fig. 4.3: Camelback function.

The traditional minimization method failed to find the correct minimum at (0/0.007).

It converges to different values depending what initial conditions are used. The AGR

method does not need a special starting point for its search rather it needs bounds for

the initial search space. It finds the correct minimum in one single run.
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Preliminary tests with the AGR algorithm were also conducted for physical

parameter estimation of the simple MDOF system described in Section 5.3. Only five

parameters were estimated, but the results were very promising. Convergence to

meaningful values was obtained in one single run, without the need to add penalty

functions or to aid the algorithm by hand. However the procedure was very time-

consuming (it took several days to reach the minimum) and is therefore not suited for

practical applications. More in depth investigation is necessary to evaluate this new

method including possible implementation on super-computers. This must be left for

future research.

4.4 Sensitivity Analysis

As described in the previous section, the complexity of the performance index

has a significant influence on the success of the minimization method. The

performance index can be built in many different ways and the user benefits from the

availability of 'indicators', which evaluate the characteristics of this index. Sensitivity

analysis provides such indicators to probe the performance index. Areas of high

sensitivity can indicate ridges or instable regions in the performance function. The

sensitivity SaQ(43) of a function Q(0), to a change in one of the parameters a is given

by (Dorf and Bishop, 1995)

st,(0), aQ(0)
Q(0) as (4.12)

Eq. (4.12) indicates the magnitude of change in the function due to perturbations in the

value of the parameter a. Sensitivity analysis should be done before the actual

estimation, because it gives hints to which parameters are suited for estimation. This

is also of great importance when using functional relationships for estimating physical

parameters. It facilitates identification of features in the signals, which are very
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sensitive to critical parameters. At the same time these features should not b sensitive

to other parameters or to disturbances. Benefits of sensitivity analysis are

detection of critical parameters and determination of parameter tolerances,

predictions of solutions in the neighborhood of a known solution by linear

interpolation,

determination of stability boundaries and

optimization of system parameters in accordance with specified performance

criteria using gradient techniques (Eykhoff, 1974).

Having an analytical model available, one can also investigate how changes in

physical parameters effect the performance of the model. Calculation of sensitivities

is also used to analyze the effect of physical parameters on natural frequencies and

damping ratios. However, it is currently impossible to compute natural frequencies

and damping ratios symbolically as a function of physical parameters. In such cases

one can derive numeric results of how these values change percentage-wise to unit

perturbations.

High sensitivity of the performance index is usually desired in order to
facilitate locating a minimum. However, in multi-dimensional minimization

procedure it is more important that the range of sensitivities of Q(0) to different

parameters be not too large. If the shape of the performance index looks as in Fig.

4.4a, it is favorable for the minimization algorithm. Different sensitivities to different

parameters create a tunnel-like shape for the performance index, which is not

particularly good for minimum finding (Fig. 4.4c).
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parameter a and b, good for minimization. b.) Low sensitivity to
parameter a and b, not so good for minimization. c.) Different
sensitivity to parameter a and b, bad for minimization.

The shape of the actual performance index of the simple MDOF system

analyzed in Chapter 5.2 is shown in Fig. 4.5 as a function of mass m1 and stiffness k11

leaving all other physical parameters fixed at the values listed in Table 5.1. The actual

value of mi and k11 should be approximately 1.39 kg and 1.38 106 N/m respectively.
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Fig. 4.5: Shape of the cost function Q(mj , k11) of the simple MDOF system.

The figure illustrates, that in this particular case the performance index naturally

prevents the minimization algorithm from converging to a negative Massj.

However, the shape does not change significantly when changing k11 to negative

values.

4.5 Simulation

In order to be less dependent on actual experimental data, simulations can be

used to 1.) eliminate uncertainties of the experimental results, 2.) investigate the

influence of signal noise, and 3.) reduce the burden of experimental data collection.

Simulations also facilitate the analysis and optimization of various physical parameter

estimation methods. Out of the different model based estimation techniques described

in Section 3.6, the "two step" method, is investigated more thoroughly. The
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experimentally obtained transfer function coefficients a, and b., are simulated by

using the analytic transfer function coefficients a, and k (obtained from theoretical

modeling), which are functions of physical parameters together with the direct

estimations of those parameters referred to as Mideal C ideal and kideal (see highlighted

values of Table 5.1). Various levels of random noise (see Eq. 4.13 below) is added to

the ideal parameters by changing a factor err,d (the identification error) in percent

(between 5% and 100%) for different runs of simulation.

Asi = ATF m,c,k(ideal) (1 + errid R) (4.13)

As; is a vector of simulated transfer function coefficients, ATF is a vector of analytic

transfer function coefficients (see Eq. 3.94b) and R is a normally distributed random

variable with a mean of zero and standard deviation of 0.3. The performance index

Q(00, is identical to that initially proposed in Section 3.6, Eq. (3.99) except As; is

used instead of the experimentally identified A .

p +q -1( A
Q(0,)= 100 s

1=0

2

A TF,i (C )s

A si,ii

(4.14)

This method of simulation was applied to the simple MDOF system described

in Chapter 5.3. The results tabulated below in Table 4.3, show that a global minimum

can be found, even when large errors in the transfer function coefficients are present.

The estimates of physical parameter are less accurate when more noise is present.

However these simulations indicate, that the "two step" method should be capable of

estimating physical parameters of the actual system
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Table 4.3: Simulation results for the simple MDOF system using the "two step"
method.

Ideal Physical
Parameters

Noise in transfer function coefficients a and b
5 % 20 % 100 %

Estimated
Values

St.
Dev.

Estimated
Values

St.
Dev.

Estimated
Values

St.
Dev.

m1
[kg]

1.39 1.42 0.002 1.28 0.012 1.44 0.002

m2

[kg]
1.09 1.09 0.005 1.19 0.009 0.86 0.005

k11

[106 N/m]
1.38 1.37 0.011 1.31 0.008 1.59 0.011

k22

[106 N/m]
0.24 0.24 0.006 0.31 0.010 0.37 0.006

k121
[106 N/m]

0.12 0.12 0.009 0.19 0.003 0.27 0.009

C11

[Ns/m]
13.42 13.87 0.014 14.26 0.007 11.18 0.014

C22

[Nshn]
0.47 0.48 0.027 0.33 0.019 0.31 0.027

4.6 Model Validation and Diagnostic Tools

Model validation is the process of confronting the analytical model with

various facts about the system and checking whether or not these facts hold true. Once

the model is available in state space form, several methods can be applied to verify the

model. They include comparison of DC-gains and static responses as well as checking

the natural frequencies of the system.

Visualization of machine tool vibrations under controlled (e.g. harmonic) or

ambient excitations is also a very powerful element of this validation. Here a new

approach especially developed for the research presented in this thesis is described

(Jitpraphai, 1997; Jitpraphai et al., 1998). It integrates analytical and experimental
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model derivation. A block diagram of the implemented software package is shown in

Fig. 4.6.

Input Excitation(s)

0 Machine Tool
with Sensors

Actual
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V

Definition of the Machine Tool
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ADerivation
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> Estimation

I

I

Estimated Parameters

Signal Processing -.IC'. -.1E 'Po-
Feedback Corrective
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Signal Based Response I

Direct Visualization
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Generator
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?Model Confidence
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Fig. 4.6: A block diagram of the 'gray box' model based visualization.

The basic entities required for visualization are as follows:

Definition of the rigid body model representing machine tools,

Excitation and response signals measured by sensors located on the machine and

tested equipment,

Information about sensors and their locations.

System responses and subsequent visualization are generated along two routes.

The left-hand side of the block diagram in Fig. 4.6 represents direct visualization. The

input and response signals from the machine tool (Block 0) are processed (Block 0)
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to obtain the best estimates of the generalized coordinates for the given type and

configuration of sensors. This is accomplished through measurement and display of

the locations of rigid bodies. Six variables are necessary and sufficient to completely

represent the spatial motion of a rigid body. These variables are referred to as

generalized coordinates and include three translations and three rotations.

Once generalized coordinates are known, visualizing pictures of bodies with

pre-defined geometry is readily done by employing homogeneous transformation

matrices (Craig, 1955). The simplest configuration involves three sensors of linear

displacements and three rotation sensors per body. Practically, the measurement of

displacements and rotations is cumbersome, so accelerations are measured instead and

converted to generalized coordinates by double integration. The most serious

drawback of this approach is strong amplification of low frequency disturbances,

caused in particular by the thermal drift in accelerometers. To suppress these

disturbances, significant signal processing is necessary. One convenient method to

measure generalized coordinates involves nine linear accelerometers located on a rigid

body as shown in Fig. 4.7 (Padgaonkar et al., 1975).

z

Fig. 4.7: Accelerometer locations on the body.
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According to this method, three accelerometers (as, ay, az) are mounted at one

point of the body and aligned with the body's coordinate system. Double integrated

signals from these accelerometers represent linear displacements at this point. If six

additional accelerometers are used, represented by the arrows axi, aZj, ay2, az2, ax3, ay3

in the figure, the angular accelerations can be calculated as

a a,,3 azi a a 2 a ,2 a, a , a
= z

2r,
J X1 X (4.15)

2ry

where rs, ry, rz are defined in the figure. These estimates (function of time) are

referred to as Signal Based Response. They can be used directly, together with

geometric information about the component rigid bodies, to visualize vibrations

(heavy dashed line from Block ® to Block 0 in Fig. 4.6).

The right side of Fig. 4.6 shows model based visualization. The structure of

the analytical model, also referred to as 'gray box' is derived on the basis of physical

phenomena and first principles that govern the dynamic behavior of the tested machine

(Block 3). Parameters of the model are next estimated from the operational and test

data (Block ®). A comparison of the signal and model based responses, performed in

Block ©, can immediately indicate a high confidence of visualization if signals from

the left and right paths are similar. In such a case, either signal or model based

responses can be used for visualization. If not, analysis of the responses often aids in

diagnosing and correcting the type of problem. For example, a divergence of spectra at

low frequency (< 5 Hz) typically indicates the impact of thermal drift in sensors. Once

the problem is detected and diagnosed, appropriate corrective action can be applied.

One such corrective action involves an additional separation method to be used in the

Signal Processing Block 0 to extract the 'drift-free' generalized coordinates from the

signal based responses. As shown in the block diagram, corrective feedback signals are

passed to various modules of the algorithm. As the visualization procedure self-tunes

to the specific tested machine tool and estimated disturbances are suppressed,

differences between the signal and model based responses diminish. A suitable
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measure of this similarity, such as the weighted root mean square of residual, serves as

a confidence indicator (see Block ®) for the model as well as vibration visualization.

At present, only a subsystem of a machine tool (Block 0) comprising the shaft

and housing has been investigated. These two units form an eleven DOF, multi-input

multi-output (MIMO) system. Its analytical model is derived in Section 3.4. Masses

and moments of inertia are the fixed known physical parameters, while the bearing and

housing-to-base fixture stiffnesses are adjustable parameters, which represent

unknown quantities in actual machine tools. Typical values of these stiffnesses are 20

60 Num (spindle), and 60 200 N/um (fixture). The first flexible vibration mode

occurs at nearly 730 Hz for the spindle shaft and 2.5 kHz for the housing (Spiewak,

1995). The dampings associated with bearings and fixtures are unknown, uncontrolled

variables that have to be estimated experimentally (Bishop, 1955; Nashif, 1985).

Based on the developed model and visualization, the dominant 'rigid body' resonances

are found in the range of 200-550 Hz. The effect of varying preload and fixture

stiffnesses on the frequencies can be readily investigated. As explained in Section 3.5,

generalized coordinates of the shaft and housing are measured (by accelerometers), on-

line conditioned and recorded. The data acquisition and visualization is implemented

under the LabVIEW software package (National Instruments, 1994). Fig. 4.8 shows

visualization results using the developed software.
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Fig. 4.8: Visualization result of the spindle.

4.7 Use of Artificial Intelligence

Currently the accurate identification of transfer functions from experimental

input/output data is a time-consuming and cumbersome task in the physical parameter

estimation methodology proposed in Section 3.6. It has been shown in Shyan-Huang

(1994) that parametric identification employing high order models such as ARMA

models of order 40 yield the most precise estimates of the natural frequencies and

damping ratios of systems like the MDOF spindle-assembly. The order selection for

the parametric model is not an easy task. Classical identification methodologies

attempt to find the smallest number of parameters to best fit the system under

consideration. The search begins with a low order model, and the order is then

increased iteratively (Pandit and Wu, 1983) until a suitable criterion of fit is satisfied

such as Akaike Information Criterion (AIC Akaike, 1974), BIC, and/or Final
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Prediction Error (FPE) Criterion (Akaike, 1969). Since machine tools are MDOF

systems and may contain some distributed parameter elements, there is no 'upper

bound' limit of the model order. The 'highest order' is determined by: (1) the

limitation of the computer's memory that is required to store large data structures used

by the identification algorithm, or (2) the limitation imposed by the time required to

generate the estimates of model parameters. At the present stage of digital technology,

the latter limitation is encountered first. However such 'high order' identification is

computationally intensive and generates phantom roots in the numerator and

denominator of the transfer function. Obviously high order models have many more

roots than the physical model of the spindle-assembly. These 'phantom' roots have no

physical counterparts in the investigated real system and therefore need to be

recognized and the valid roots extracted. This task is referred to as Model Pruning.

At present model order selection and model pruning is done manually. It is

based on a human expert's experience and knowledge, which unfortunately is largely

of heuristic nature. However some rules and facts discussed below could be used to

develop an Artificial Intelligent System for order selection and model pruning (Shyan-

Huang, 1994).

Rule 1: If the natural frequency of a root is higher than the cut-off frequency in the

data acquisition system, then these roots do not exist in the actual system.

Rule 2: If a pair of zeros and a pair of poles occur very close to each other, then a

zero-pole cancellation takes place.

Rule 3: If the damping ratio of a root is very high (more than realistically expected in

mechanical systems), it is not a significant peak or null and this root can be

omitted.

Artificial intelligence (e.g. pattern recognition through neural networks) could

also be used for establishing the frequency-damping map as a function of preload (see

Fig 5.34). For many different sets of data the frequency response function has to be
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analyzed and the vibration modes identified. Through comparison with the analytic

model, changes in certain resonance frequencies can then be used to make statements

about the conditions of the bearings.

4.8 Closure

It is the intent to solve the modeling and estimation problem covered in this

research with the aid of a standard Desktop PC. Therefore certain compromises and

modifications need to be made to keep the computational problems manageable.

Calculations would be quicker on large super computers, but the eventual possibility

of a shop floor implementation of a monitoring system is considered, and a standard

Desktop PC is much more desirable for such an application. The above presented

implementation and validation tools significantly help to manage the necessary large

models and matrices. Mathematica is an ideal software package for this purpose

because of its ability to do symbolic calculations and to calculate with arbitrary

precision.

Validation is a very important part of examining how well the actual system is

represented by the model. Comparing DC-gains and checking natural frequencies of

model and actual system are some of the simple tools of validation. Model based

visualization of vibrations is one of the more advanced tools and gives intuitive

information on how the model and the actual system behave. Based on that

knowledge, experiments are conducted in the next section to validate the model and to

investigate the estimation methods proposed in Section 3.6.
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5. EXPERIMENTAL INVESTIGATION AND

ESTIMATION RESULTS

5.1 Introduction

This chapter presents results of experiments conducted to examine the

accuracy of the analytical model developed in Chapters 3. Also, the physical

parameter estimation methods derived in Chapter 3 are applied and investigated.

Experimental investigation provides an insight into the system's properties and the

impact of the various parameters on the dynamic performance. This information helps

to build an enhanced model of the system, which in turn improves physical parameter

estimation. Related issues, such as the use of different sensors, placement concerns

and signal processing problems are addressed.

Two different experimental set-ups are used to investigate the methodology of

physical parameter estimation. One set-up involves a simple and well defined two

degree-of-freedom system described in Section 5.3. A lumped parameter model of the

system is formulated and experimental data sets are collected. For comparison a

Finite-element model is also developed. Data collected during experiments is a basis

for the physical parameter estimation. Estimation procedures developed in Chapters 3

are validated and results are discussed in detail.

The second test set-up represents a shaft-bearing system, described in Section

5.4, which is a common component of rotating machinery. Example applications

include machine tools, pumps, compressors, turbines, motors, gearboxes and fans.

Thus the investigation of the shaft-bearing system provides knowledge applicable in a

broad range of devices. Results of simulations based on a comprehensive lumped-

parameter model of such a multi-degree-of-freedom system are analyzed and
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compared with experimental results. Particularly, bearing stiffnesses calculated from

the model and from experimental data are investigated in depth. The data acquisition

system common to both investigated set-ups is presented in Section 5.2. Section 5.5

summarizes the experimental investigation and the estimation results for both systems.

5.2 The Data Acquisition System

The data acquisition system used in this research is shown in Fig. 5.1. Its main

components include various sensors, their amplifiers, anti-aliasing filters, analog to

digital converters and a desktop computer. A block diagram of the typical

configuration is drawn in Fig. 5.2. When using an impact hammer for excitation of

the system, the signal of the piezoelectric load cell PCB, type 208B03 (PCB, 1996) at

the tip of the instrumented hammer is applied to a signal-conditioning unit (PCB type

408D06). The signal from the load cell is also used as a trigger to initiate the data

acquisition. When using continuous excitation, the desired signal is first generated by

a digital function-generator Sony/Tektronix, model AFG 2020 (Sony/Tektronix,

1995). Next it is passed through a low-pass filter by Precision®, model 88B

(Precision, 1989), to cut off high undesired frequencies and suppress distortions

caused by the digital signal generation. The filtered signal is passed through a power

amplifier by Bruel & Kjaer, type 2706 (Bruel & Kjaer, 1994). From there it is applied

to the electro-magnetic shaker (Bruel & Kjaer, type 4809). The shaker excites the

system via a metal stinger through the attached load cell by Kistler, type 9212 (Kistler,

1995). The load cell requires a charge amplifier by Kistler, type 5054A1410.

Output signals of the systems are displacements and accelerations of various

mechanical components. Displacements are measured by Bentley&Nevada proximity

sensors, type 7200 (Bently&Nevada, 1992). Low impedance piezoelectric

accelerometers, (Kistler, type 8702B25M1) are used for acceleration measurements.

Signals from the accelerometers are conditioned by an accelerometer coupler (Kistler,
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type 5128A) and passed through low-pass anti-aliasing programmable filters by

Precision, model 88B (Precision, 1989) and Datel, model FLJ-D6LA2 (Datel, 1987).

The filtered and amplified signals are passed through an interface panel and digitized

by a National Instruments AT-MIO 16E2 data acquisition card (National Instrument,

1995) installed inside an IBM compatible desktop computer. The DAQ card uses a

12 bit Analog-to-Digital Converter (ADC), a multiplexer and additional amplifiers.

Suitable data acquisition, processing and visualization procedures (Jitpraphai, 1998)

developed in LabVIEW (National Instrument, 1994) are used for signal collection and

analysis. The sensors used in the experiments were calibrated precisely before actual

data was taken (see Appendix E).

Signal Conditioner for Load Cell

PCB® 408D06
Interface Panel

Data Acquisition (DAQ) Card

National Instrument®

LabVIEW®

DAQ Controller

Program

Kistler® type 5128A Coupler

used with Accelerometers

Anti-aliasing filters Precision® 88B and

Datel® FLJ-D6LA2

Fig. 5.1: The data acquisition system.
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Signals from the system comprise:

force signals either from the load cell mounted between the tested system and the

electro-magnetic shaker, or from the impact hammer,

acceleration signals from sensors mounted at various locations of the system, and

displacement signals from proximity sensors.

The LabVIEV data acquisition software allowed selection of the following parameters

during data collection:

Sampling Frequency: 0 40,000 Hz,

Number of recorded signals: 16,

Number of data: 512 16,384 per channel, with 0 1024 pre-trigger points,

Signal acquisition mode: triggered by signal from the force sensor, continuous or

one time read.

Function
Generator

Amplifier

Impact
Hammer Exciter Accelerometers

& Proximity IBM
Sensors Computer

Load
Cell

System under
investigation

KISTLER
16 Channel

Coupler

Load Cell
Amplifier

Trigger

Anti-
Ali asing

Filter -

Spread Sheet Data

External
storage and

LAN
(Ethernet)

LabVIEW
Program

AT-BUS

National
Instruments
DAQ Board

(in Computer)

Fig. 5.2: Schematic diagram of the experimental set-up.
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5.3 Simple MDOF System

A system consisting of two masses connected by a helical spring (Fig. 5.3)

facilitates in-depth investigation and validation of the developed procedures for

physical parameter estimation. Its simple structure allows rapid modeling, analysis

and structural modification; this facilitates thorough and efficient investigation of the

effects caused by parameter variations.

5.3.1 Mechanical Design

The two steel prismatic parts are held by I-beams of different width. The I-

beams are bolted to a vertical steel plate, which is welded to a horizontal steel base

plate. All the components are manufactured of low carbon 1040 steel. The right mass

in Fig. 5.3 is designated Mass_l (m1) and is supported by a thicker I-beam (stiffness k

and damping coefficient c). The left mass is designated Mass_2 (m2) and is

supported by a thinner I-beam (stiffness k22 and damping coefficient c22). A helical

spring (stiffness k12 and damping coefficient c12) is located in between the two masses.

An additional mass (variable) can be attached to Mass_l or Mass_2 as shown in Fig.

5.4. Transient and continuous excitation can be applied to the system. Fig. 5.3 shows

the case of the system being excited through Mass_l by the electromagnetic shaker,

which provides the input force F,. However the shaker can be easily removed to

facilitate impact hammer excitation. The displacements of Mass_l and Mass_2

represent possible output signals and are measured by proximity sensors.

Accelerations of Mass _l and/or Mass_2 can also be measured.
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Heavy wooden

base (dampening)

Steel base plate

Vibrating masses

Fig. 5.3: The experimental set-up for the simple MDOF system.

The major direction of vibration of the two masses is horizontal, while the

remaining motion of each mass in the other five 'degrees of freedom' have not been

taken into account in this research. Simplicity of this set-up is the key factor

facilitating rapid and comprehensive testing and validation of various parameter

estimation methods. The masses and stiffnesses can be varied. Individual mechanical

components can be investigated and characterized (e.g., weighing masses, measuring

stiffness of I-beams) separately and their influence on the behavior of the entire

system can be modeled with high fidelity. Notwithstanding, the set-up poses

considerable challenges due to unmodeled phenomena. Some components, like the

back wall and the I-beams, have been idealized in this research for the sake of model

simplicity. Specifically, the wall is considered perfectly rigid and the distributed mass

of I-beams is neglected. Therefore the lumped parameter model of this set-up only

approximates its actual behavior. Additional challenge comes from the considerable

noise present in the signals, which makes the estimation difficult.
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Weak
support beam

-.AProximity
sensor 2

Vertical plate

Accelerometer 2

Mass 2

Attachment
Mass

Mass 1

Accelerometer 1

Strong
support beam

Proximity sensor 1

Shaker

Load cell

Fig. 5.4: Simplified mechanical diagram of the simple MDOF system.

Obtaining reliable results hinges upon the robustness of the algorithm with

respect to the estimation of the required physical parameters. Data compression and

extraction of the right features from the recorded signal is essential for accomplishing

this goal.

5.3.2 Lumped Parameter Model

Although the experimental set-up described above has distributed parameters,

it is modeled as a two degree-of-freedom lumped-parameter system. This

simplification is possible since the parameters of concern in this research (prismatic

masses mounted at the end of each I-beam, high stiffnesses of the I-beams and their

low damping coefficients) have the dominant effect on the system's dynamics.
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5.3.2.1 Model Structure

In this model the masses are attached to fixed boundaries, as shown in Fig. 5.5.

One exciting force, F acts on Mass_1. Only the motion along the X-axis is

considered. Variables d, and d2 denote the displacements of Mass_l and Mass_2,

respectively.

Fig. 5.5: Model of the simple MDOF system.

Eight physical parameters given by Eq. (5.1) are of interest in this research.

X

Based on the

m 0
1

[
0 m2

or in vector-matrix

two

(di \
d 2\

±

OS = { MI, M2, k11, k12,

DOF, lumped-parameter

C11 + C12 C 12 1

c 12 c 12 + C22

form
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k22,
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I \
di

.

d2\

Cl+k

C11, C12, C22 }

the equations of motion

[k11 ± k12 -k12 Id1
+

k12 1(12 + k22 d 2
)
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=
I Fi

\0/

(5.1)

(5.2)
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Equation (5.3) can be readily transformed into the state-space representation

(Section 3.2.2) by forming a state vector as follows

The state-space

A=

B=

x = [di d2

matrices A, B, C and D are

0 0 1

0 0 0
k11 kl2 kl2 c11 6'12

d2]T

0

1

Cl2

0

0

0

(5.4)

(5.5a)

(5.5b,c,d)

m1 m1 m
1

kt2 k12 k22 C12

0

0

m
1

c12 c22

m2

0 0

0 0
1

0

m2 M2

C=

[1 0 0
0 1 0

M2

ml
1

0
m2

The transfer function model of the system is

cl,(W G11 (s) G12 (S)-'

k,,.(1 2 (s) G21 CO G22 (s)
(5.6)

Specifically, the monic transfer function between the input force F1 and the output

displacement di, is

di(s) b2 s 2 + bi s + bo
Gu(s) = (5.7)

F1(s) s4 + a3 s3 + a2 s2 + al s + ao

where

u0
k 12 + k 22

tjl
C12 C12 2- . b2 =

1
(5.8a,b,c)

Mi M2 m2 M2

and
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k11 k12 +k11 k22 +k12 k22 (5.9a)c/o =
MI /112

a
c12 kil + c22 k11 +

Cl' k12 + C22 k12 + C11 k22 -1- C.12 k22 (5.9b)1
=

mi m2

C11 , C12 + CIL 1 c22 + c12 c22 + k12 MI + k22 MI + k11 M2 + k12 m2a 2 = " (5.9c)
mi M2

C12 MI + C22 /12
1

+ C11 1/22 + C12 m2a = (5.9d)3

m1 n12

The monic transfer function between F1 and d2 is

where

b; s + bo*
G21 (S) =

d
2

(s)
=

s4 + a3 s3 + a2 -s 2 +aF1(s) +a1 s+ao

b* = k12
o

M1 M2

b. C12

m1 M2

(5.10)

(5.1 la,b)

The transfer functions under considerations have the same denominator and,

consequently, the same characteristic equation.

The DC-gain of a transfer function represents the static "stiffness" of the

mechanical system at masses m, and m2 and can be calculated by setting the Laplace

operator to zero. These static stiffnesses are

kSI1 = G
bo

=
k12 + k22

ll (°) =
a0 k11 k12 + kl, k22 + k12 k22

b* ki2
ks21 = G21(0) = 0 =

c/o k11 k12 + k11 k22 + k12 k22

(5.12a)

(5.12b)

In Section 5.3.4 (Estimation Results), this model will be used for physical parameter

estimation.
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5.3.2.2 Experimental Measurement of Parameters

The purpose of the experimental analysis is verification of the estimation

methods developed in Chapter 3. The physical parameters m, c and k appearing in the

analytical model need to be estimated using experimental data. Having the model

structure derived in Section 5.3.2.1, any of the procedures proposed in Chapter 3 can

be used to estimate the values of physical parameters defined in the list given by Eq.

(5.1). To compare the estimation results with a reliable reference, conventional

procedures are also used to obtain the unknown masses, stiffnesses and dampings.

They are tabulated in Table 5.1.

Table 5.1: Measured and calculated values of the physical parameters.

Physical
Parameters

Numerical
Values

Mass m,

[kg]

1.14 ")

1.39 (2)

Mass m2 0.95 (1)

[kg] 1 09 (2)

Stiffness k 1.88 (1)

[1061sUm] 1.36 (4)

1.37 (3'

1.40 (6)

1.38 ")

Stiffness k 0.16 (3)

[106 N/m] 0.27 (4)

0.24 ")

0.23 (6)

0 24 (7)

Physical
Parameters

Numerical
Values

Stiffness k 0.04 (6)

[106 N/m] 0.19 (9)

0.17 (9)

0.10 (9)

0.12 (9)

Damping c11 13.42 "°)

[Ns/m]

Damping c22
0.47 "°'

[Ns/m]

Damping c1,
0(11)

[NS/M]
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The index numbers in the table above refer to the itemized list below indicating the

method of calculation of each specific physical parameter. Traditional methods for

determining the respective numerical values that were employed in this research

included the following:

For the masses m, and m2:

(1) Calculation as the product of volume V and density p.

(2) Partial disassembly and weighing of the components.

For the beam stiffnesses k1, and k22:

(3) Theoretical calculation from the formula,

3
k =

E1

13
(5.13)

which approximates the lumped end stiffness of a distributed cantilever beam

(Thomson, 1981). E is the modulus of elasticity, / is the length of the beam

and 1 is the area moment of inertia. All geometric dimensions and moments of

inertia of the simple MDOF system are listed in Appendix B 1.

(4) Evaluation based on the measurement of static deflection caused by a known

force of the respective partially disassembled beam-mass component using

mechanical sensing devices, in this case a ring dynamometer and a dial gage.

(5) As above, except using a proximity sensor instead of the dial gage.

(6) Evaluation based upon the measurement of deflection caused by a known

periodical force generated by an exciter. The force was generated by the B&K

shaker as a 5 Hz sinusoidal waveform, while the displacement was measured

by a proximity sensor.

(7) As above, except for the use of random signal and subsequent input/output

identification on the partial disassembled beam-mass component using load

cell and proximity sensor signals. The DC-gain was calculated to obtain the

stiffness of the beam.



For the helical spring stiffnesses k12 between the two masses:

(8) Calculation according to the formula (Thomson, 1981).

G
k =

d 4

64nR3
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(5.14)

where G is the modulus of shear, n the number of coils, d the diameter of the

steel wire forming the spring and R the outer radius of the entire spring.

(9) Calculation using Eq. (B.3) in Appendix B3 together with k11 & k22 evaluated

with methods (4), (5), (6) and (7), respectively and the gain from 5 Hz

measurements.

For the dampings c and c22:

(10) Calculation from impulse response data involving the Log-Decrement method.

Each beam-mass system was tested separately (see Appendix B4).

For the damping c12 of the helical spring between the two masses:

(11) The dampings c12 for the helical spring is difficult to measure, but from the

literature (Bishop, 1956; Myklestad, 1952) it was found to be negligible

compared to c11 and c22; therefore assumed zero.

The results, compared in Table 5.1, show significant discrepancies (up to 30

%) between the values of some parameters obtained by different methods. This can be

due to such factors as the measurement errors, inadequate knowledge of material

properties or simplifications in mathematical approximation. The level of discrepancy

is even higher for the damping values as they are usually very difficult to assess.

Furthermore, the rotation of the prismatic masses can be a source of measurement

error when assessed by a dial gage or proximity sensor. The method of on-line

parameter estimation proposed in this research provides yet another set of values that

can resolve some ambiguities in the data compiled in Table 5.1. The most likely

values are highlighted in the table. Directly measured values are treated in this

research as more reliable than the values estimated indirectly, and electronic sensors

are deemed more accurate than mechanical devices (e.g. dial gages).
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5.3.3 Validation of the Model

After the model is built it must be verified through experiment or through

comparison with reference models. Here frequency and NF analysis is used to validate

the lumped parameter model.

5.3.3.1 Transfer Function Analysis

First low frequency sine wave experiments are performed to check the DC-

gain and the linearity of the system. The input force recorded by the Kistler load cell

and the output displacement of Mass_l and Mass_2 are shown below.

Force, [N]

20

101 :

0

-10

-20

-30

-40

-I
_II

Displacement, [m]

5 10

ir° 410 -5

1 -4

4 5
310

\ 2 10-5

1105

0

-5

Displ., Mass_i

I`

1
-2 10-5

Fig. 5.6: Force input and proximity sensor output of Mass_l and Mass_2
for low frequency sine wave excitation.
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Magnitudes of the input force above 20 N cause distortions in the output

displacement of Mass_2 which indicate non-linear regime of operation. An

approximate 50 % increase of Mass_2 21 does not cause any significant change in the

waveforms at this low frequency. As expected, the calculated stiffness is independent

of the mass variation.

The theoretical DC-gain of the transfer functions G11 and G21 can be calculated

using Equations (5.12a and b) and the highlighted physical parameters of Table 5.1.

The results are compared with experimental DC-gains from the sine wave and white

noise measurements as tabulated below.

Table 5.2: DC-gain values of the simple MDOF system.

Theoretical
Gain

Experimental Gain
(5 Hz Test)

Experimental Gain
(White Noise Test)

DC-Gain of G11

[104 m/N]

49.1 68.0 63.0

DC-Gain of G21

[10-8 m/N]

8.1 28.6 (no add. mass)

28.0 (with add. mass)

22.0

The frequency behavior of the transfer function G11 using the analytical model

of Section 5.3.2 together with the highlighted physical parameters from Table 5.1 is

shown in Figure 5.7 and 5.8. The model (solid line), the experimental (dashed) and

the pruned experimental (gray dashed) transfer functions are compared. The

importance of pruning is explained in detail in Section 4.7.

21 for change in the experimental set-up see Fig. 5.4 and see a signal comparison in Appendix B2.



135

The magnitude graphs (Fig. 5.7) have qualitative similarities (similar DC-gains, two

distinct resonance peaks, similar shapes) but considerable quantitative differences.

Originally, the rigid body model of the system using physical reference parameters

from Table 5.1 has two resonance frequencies and their respective damping ratios at

f1,a =192.9 Hz

f2,a = 74.5 Hz

= 0.0030

eza = 0.0005

(5.15)

(5.16)

where as the experimental analysis shows fi,e much lower. From Fig 5.7 the

experimental resonance frequencies are

fLe = 138 Hz

= 77 Hz

Magnitude , [m/N]

0 '13 001
[

/e= 0.0124

2e= 0.0056

\

A
10-6 //

Pruned'
experiment

Experimen

10-7

0 50 100 150 200 250 300

Frequency, [Hz]

Fig. 5.7: Magnitude comparison of transfer function G11.

(5.17)

(5.18)
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The phase graph in Fig. 5.8 below shows an expected 90° phase shift at the

first resonance frequency, which gets immediately cancelled by a closely following

zero (see also the pole/zero graph in Fig. 5.10). Then there is another drop of the

phase down to-180° at the second resonance frequency. The `unpruned' experimental

phase shows another phase shift at 220 Hz caused by a 'phantom' pole. However, this

disappears after pruning. The frequency behavior of the transfer function G21 is shown

in Fig. 5.9. The phase plot is omitted since important features are shown and

described in Fig. 5.9.

Phase, [Degree]

1001

-200

-300

-400

-500
0

Model

Pruned
gr'\, experiment

Experiment \

50 100 150 200

Frequency, [Hz]

250 300

Fig. 5.8: Phase comparison of transfer function G11.
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Magnitude, [m/N]

0.0001F------
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experiment

Model
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Frequency, [Hz]
250 300

Fig. 5.9: Magnitude comparison of transfer function G21.

The differences in the transfer function graphs are due to the numerical values

of the physical parameters m, c and k being only approximations. Using the

parameters from Table 5.1, assuming the damping of the helical spring is negligible,

an analytical transfer function G11 can be calculated. It equates to

G (s)= 0.72 s2 +5.28s+158405.39,,,
s4 + 20.29 s3 +1687904.43. s2 +1.36 -107 s + 3.22.1011

(5.19)

From experimental identification and after subsequent pruning of the high order

transfer function one obtains

0.11- s2 + 0.71. s+775.35Gli,e(s)= (5.20)
S +142.37 s' +2.52 .105 .s2 +1.81.106 .s+1.20 .107
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The coefficients of Gll,a and GIL, are very different. However, it is more meaningful

to compare the zeros and poles of the two transfer functions before making any

conclusions.

Imag.

1500

1000

500

0
-25

Two poles of
the exp. TF

Two poles of the model TF

Zero of the exp. TF

-20 -15

Real
-10

Zero of the
model TF

-5

Fig. 5.10: Pole & Zero comparison of Gil.

Fig. 5.10 shows that the experimental as well as the analytical transfer functions have

two complex conjugate poles and one complex conjugate zero. Fig. 5.10 can be

interpreted by comparing it to the standard zero-pole plot (Fig.3.11).

5.3.3.2 Finite Element Analysis

One method of validating the lumped parameter model is through comparison

with a finite element model. Finite element analysis (FEA) is often used as an

alternative of rigid body (RB) modeling, to get an accurate picture of deflections of

mechanical systems, especially if the analyzed systems have significant flexible

modes. As already described in Section 2.2, FEA is not as convenient for physical
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parameter estimation problems, because physical parameters do not remain in a
symbolic form during the FEA process. FEA was performed using Ansys V 5.3

(Ansys, 1997) for the simple MDOF system. The structure of this model can be seen

below.

ANSYS S.3
FEB 24 1898
15:28:00
ELEMENTS
TYPE NUM

ROT
F
CP

2V =1
*015T=.109396
OF =.088496
*YF =-.066621
2- BUFFER

Fig. 5.11: FE model of the simple MDOF system.

The physical parameters used for this model are again taken from Table 5.1. A
frequency analysis is performed on the FE model and the resonance frequencies are

evaluated. Two different cases are compared, to investigate the change in resonance

frequencies and the change in estimation results caused by the additional attached
mass.



CASE 1: No additional mass is attached on either Mass _l or Mass_2.

ANSYS 5.3
FEB Z4 199B
15:26:13
POSTZ6
AMPLITUDE

2V =1
NEDIST=.75
*XF =.5
mYF =.5
w2F =.5
2-BUFFER

Fig. 5.12: Frequency characteristic of a point placed on Mass_2.

As can be seen from the figure, the two resonance frequencies are at

fi,FEA = 190 Hz

f2,FEA = 95 Hz
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(5.21)

(5.22)

Comparing these frequencies with those obtained from the RB model of Eq. (5.15) and

Eq. (5.16), one can see differences, but the values are reasonable close. In fact, the FE

model agrees much better with the RB model than with the experimental analysis of

Eq. (5.17) and (5.18). The higher resonance frequency in particular shows significant

discrepancy when comparing the FE model with the experiment.
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CASE 2: An additional mass of 0.75 kg is attached on Mass_1.

ANSYS 5.3
FEB 24 1998
15:31:10
POST26
AMPLITUDE

2k) =1
wDIST=.75
*XF =.5
3YF =.5
w2F =.5
2-BUFFER

Fig. 5.13: Frequency characteristic when additional mass is added to Mass_1.

As can be seen from Fig. 5.13, the two resonance frequencies for the case with an

additional mass attached to Mass _l are at

fl,FEA = 145 Hz

f2,FEA = 95 Hz

(5.23)

(5.24)

Obviously, the lower resonance frequency does not change but the higher resonance

frequency drops accordingly. The results of case 2 can be compared to the resonance

frequencies of the respective rigid body model and to experimental analysis. They are

documented in Appendix B2. From the FE analysis it can be concluded that the RB

model built in Section 5.3.1 is a good representation of the simple MDOF system. In

particular the agreement of resonance frequencies shows that the model structure is
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appropriate and therefore tuning the model coefficients should suffice to build an

accurate representation of the experimental system.

5.3.4 Model Based Parameter Estimation

To meaningfully analyze and interpret the following estimation results it is advisable

to do a sensitivity analysis as described in Section 4.4. Since the sensitivity S for the

resonance frequency and damping ratio cannot be calculated explicitly as a function of

the physical parameters, a percentage change is tabulated below in Table 5.3.

Table 5.3: Sensitivities of resonance frequencies and damping ratios.

Physical Parameters
Changes, [%]

Resonance Frequency
Changes, [%]

Damping Ratio
Changes, [%]

fi fZ
m1 +10% -4.7 -0 -4.7 -0

-10 % +5.4 -0 +5.4 -0
m2 +10% -0 -4.7 -0 -4.7

-10% -0 +5.4 -0 +5.4
k11 +10% +4.8 -0 -4.6 -0

-10 % -5.0 -0 +5.3 -0
k22 +10% -0 +4.1 -0 -3.9

-10% -0 -4.3 -0 4.4
k/2 +10 % +0.8 +0.1 -0.6 -0.1

-10 % +0.8 +0.1 -0.6 -0.1
cii +10% -0 -0 +10.0 -0

-10% -0 -0 -10.0 -0
C22 +10% -0 -0 -0 +9.9

-10% -0 -0 -0 -9.9
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Originally the RB model has resonance frequencies and damping ratios as

listed in Eq. (5.15) and (5.16). Table 5.3 shows that the parameters m1 and k11

influence the resonance frequency fl and the damping ratioei, where as the parameters

m2 and k22 influence the resonance frequency f2 and the damping ratioe2. k12 has little

effect on the characteristic of the system which indicates weak coupling of the two

masses. c11 and c22 naturally have a very direct influence on the damping of the

system.

There are different methods to estimate the optimal physical parameters as

described in Section 3.6. The "direct" method involving Newtonian EOM is not

applied because of the extensive number of sensors necessary. The "two step" method

involving Black Box models is most promising and is also straightforward, since only

transfer function coefficients need to be compared. The "one step" method based on

Gray Box models is computationally intensive, but is applied for this system. Another

method tested is based on the extended Kalman filter.

5.3.4.1 Estimation Using "Two Step" Method

The methodology described in Section 3.6.2 and illustrated in Fig. 3.15 is

applied to estimate the physical parameters of the simple MDOF system. Using the

TF coefficients of G11 and G21 as shown in Eq. (5.7) and (5.10) 9 equations in the form

of Eq. (3.91a,b) are formulated. Since c12 is assumed negligible seven unknown

parameters remain to be estimated.

0 s, ={ m llm 1,k 11,k12 9k 22,c 11 9 C22} (5.25)

A performance index QTF(Osi) is built according to Eq. (3.97). Ten minimization runs

are documented here, beginning from different starting values m/(0) through C22(o). The

starting values were statistically varied 100% from the approximations in Table 5.1.

The ten sets of starting values are shown below in Table 5.4.
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Table 5.4: Seven sets of starting values for the minimization procedure.

Parameters 1. Set 2. Set 3. Set 4. Set 5. Set 6. Set 7. Set

mi(o) , [kg] 1.11 2.62 1.87 2.43 1.02 2.15 1.08

m2(o) , [kg] 1.78 1.94 0.90 1.22 0.70 0.59 2.03

ki/(0), [106 N/m] 2.24 1.17 1.26 2.79 3.00 2.31 1.85

k22(o) , [106 N/m] 0.75 0.32 0.36 0.25 0.62 0.93 1.55

k12(0) , [106 N/m] 0.20 0.22 0.19 0.96 0.69 0.91 0.58

clim , [Ns/m] 16.02 22.82 15.49 11.81 8.37 30.61 21.93

C22(09 [NS/111] 0.79 0.76 0.84 0.33 0.41 0.36 0.48

The minimization results tabulated in Table 5.5 show that for a wide range of different

starting values the minimization procedure finds one global minimum with high

repeatability. However, the resulting numerical values of the parameters are not

satisfactory.

Table 5.5: Solutions from the minimization procedure.

Physical
Parameters

Average Value at
Minimum

Standard Deviation

mi, [kg] 2.471 0.0004

m2, [kg] 2.521 0.096

kll,[106N/m] 0.9422 0.0050

k22, [106 N/m] 4.3045 0.0164

102, [106 N/m] 0.154 0.0606

cii, [Ns/m] 27.156 0.00015

c22, [Ns/m] 1.865 0.0709
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Comparison with the expected parameters (highlighted in Table 5.1) show large

discrapencies. This is not caused by a poor minimization procedure, but rather by the

fact that transfer function coefficients have no physical meaning and can carry a

significant error as seen from the transfer function comparison in Eq. (5.19) and
(5.20). Even when the physical parameters minimize to a wrong value, the shape of

the resulting transfer function looks promising as can be seen from Fig. 5.14 and 5.15.

Fig. 5.14 shows experimental and model transfer function G11 before the minimization,

and Fig. 5.15 after minimization. Figures 5.16 and 5.17 show the same for G21. The

estimation results for the case of an additional mass attached on MassJ are shown in

Appendix B2.
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Fig. 5.14: Experimental (dashed) and model (solid) magnitude plot of G11 in m/N
before minimization (small mass).
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Fig. 5.15: Experimental (dashed) and model (solid) magnitude plot of G11 in m/N
after minimization (small mass).
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Fig. 5.16: Experimental (dashed), and model (solid) magnitude plot of G21 in m/IV
before minimization (small mass).



Magnitude, [dB]

-100

-120

-140

-160

150 200 250 300

147

350 Freq., [Hz]

Fig. 5.17: Experimental (dashed) and model (solid) magnitude plot of G21 in m/N
after minimization (small mass).

When looking at the bode plots above a good agreement between the shape of

the experimental and analytical TF can be observed. The numerical results of the

estimated physical parameters (Table 5.5), however were not at all close to the

parameters expected (from direct estimation). It can be concluded that the estimation

in Laplace-domain does not lead to satisfactory results. One reason might be that the

experimental identification procedure of the TF is not accurate enough to allow using

these few TF coefficients as a base for estimating physical parameters. Also the search

for the global minimum cannot be limited in its bounds since it is not known in which

range the TF coefficients vary. As can be seen from Eq. (5.19) and (5.20) they can

vary between 10-1 to 1011. The values do not have any physical meaning, therefore

intuitive assessment is difficult.
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5.3.4.2 Estimation Using "One Step" Method

In the time-domain a performance index like Eq. (3.108) in Section 3.5.2 is

used. Since there were slight uncertainties about the zero level and phase shift of the

signals collected, the phase and level were included as variables in the performance

index in addition to the physical parameters Os. The data used for the estimation was

a 10 Hz square wave output signal from the proximity sensor on Mass_2. First tests

showed that certain physical parameters tend to become negative during the

minimization process. Therefore a penalty function was incorporated into the

performance index for ml, k11 and cii as described in Chapter 4.3 Several

minimization runs were computed with the following result being only an example.

The number of iterations and the resulting error level depend on the tolerance set for

reaching the required accuracy. The result illustrated in the figure below was reached

with the following parameters:

Table 5.6: Estimation results in the time-domain.

Parameter Estimation Result Parameter Estimation Result

ml, [kg] 1.349 cm, [Ns/m] 5353.59

m2, [kg] 0.556 c12, [Nsim] 10.2092

k11, [106 N/m] 1.518 c22, [Nshn] 2.2892

k12, [106 N/m] 0.0538 Phase shift, [deg] 13.887

k22, [106 N/m] 0.0843 Off-set, [m] 0.000486

The minimization procedure converged very slowly since each collected datapoint is

used for estimation. The penalty function introduced new problems as described in

Section 4.3 such that the procedure had to be guided manually. The final estimated
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values show good agreement with parameters obtained by conventional methods for

the first I-beam. The parameters ml, k11 and cji show good results. The values for the

second I-beam give rather poor results. The set-up has to be modified for more

accurate estimation of the second I-beam (e.g. putting an additional force sensor in

front of Mass_2 and off-setting the filtering effect of the first I-beam by an 'inverse'

filter). This must be left for future research. The experimentally obtained output

signal and the model output after optimization are shown in Fig. 5.18.
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Fig. 5.18: Measured and simulated output signal from the proximity sensor
on Mass_2.

Since the minimization algorithm used, caused some difficulties in finding a good

minimum quickly a different algorithm called AGR was tested. The AGR method is
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described in more detail in Section 4.3 and promises faster convergence and the ability

to find multiple minima in one single run. The result is shown in Fig. 5.19 below

Output Signal, [m]
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Fig. 5.19: Measured and simulated output signal from the proximity sensor
on Mass_2 using the AGR method.

It can be concluded that estimation in time-domain gives reasonably good

results, where as the Laplace-domain method did not meet expectations. In both cases

the need for more robust minimization methods is obvious. Additional research is

necessary to explore the full potential of the proposed methods.

5.3.4.3 Estimation Using the Extended Kalman Filter

In order to apply the concept of the extended Kalman filter to physical

parameter estimation, the dynamic system needs to be enhanced to include the

unknown parameters in the state vector. This concept is illustrated and tested below.
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c

Fig. 5.20: A simple spring-mass system.

Considered is simple spring mass system shown in Fig. 5.20 and given by

x +2 co i+co2x=0 (5.26)

where and w are considered constants to be determined from measurements of the

displacement. In order to use the Kalman filter equations derived in Section 3.6.3, the

constants must be considered variables. One has to define the following state vector x

x=

X1

X2

x 3

X4

=

x

i

co

The complete state-space description of this dynamic system is given by

x=

-
0 1 0 0

0 2x3x4 0 x3x4

0 0 0 0

0 0 0 0 _

(5.27)

x (5.28)

The matrices F and n from Eq. (3.111) are now filled with the appropriate terms to

separate the linear from the non-linear parts.

F =

0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0_

(5.29)



n(x)

0

2X2 X3 X4

0

0

2

The Jacobian matrix J(x0) evaluated at xo calculates to

0 0 0 0
_

X04
2

2 X03 X04 2 X02 X04 2 X02 X03 2x01 X04

0 0 0 0

0 0 0 0

J(x0 ) =

152

(5.30)

(5.31)

The state variables are now estimated with the generated displacement data. The

procedure outlined in Section 3.6.3 is used to update the state variables using the

measured data. The initial values used were xi = 1.0 m, x2 = 0.0 m/s, x3 = 0.05 and .x4

= 1000 Hz. An integration step of 2.5 10-5 seconds was used for a total time of 0.01

seconds. The tracking of the state x1, which represents the displacement of the spring-

mass system, is shown below.

Displacement, [m]
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0.50

_ Noisy displacement data

Kalman estimation

-1.00
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11 11111I1111 t III
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Time, [sec]

Fig. 5.21: Estimation of the state x1 with the extended Kalman filter.
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The constant damping coefficient and the natural frequency w were also estimated

within 0.0015 seconds to their correct initial values of 0.1 and 1715 Hz. Fig. 5.22 and

5.23 show the fast convergence of these values.
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Fig. 5.22: Estimation of the state x3, (4).
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Fig. 5.23: Estimation of the state x4, ((o).
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The same procedure was applied to the simple MDOF system described in Section

5.3.2, but without success. Assuming c12 to be zero, seven additional states have to be

established, to accommodate all physical parameters present in this system. The

modified state vector x becomes
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x=

1

X2

x3

x4

x5

x6

X7

x8

X9

X10

X11

d,

d2

c12

m,

M2

k11

k12

k22

Cl'

_C22

(5.32)

In this case the evolution matrix Al of the state-space description is given by

Al

o

0

o

0

1

0

0

1

o

0

o o o o o o
o o 0 o o o

X7 X8 X8 X10
0 0 0 0 0 0 0 0

X5 x5 x5
Xs X8X9

0 x 0 0 0 0 0 0 0"
X6 x6 x5

0 0 0 0 0 0 0 0 0 0 0
(5.33)

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

The only non-zero elements of the //x// I' matrix are l = 1 and F24 = 1. The vector

n(x) of non-linear components is



Mx) =

X3 X 10

X'5

X I1X4

0

0
x2 x8 xi + x8 )

x5 x5

xi x8 x2 (x8 + x9)

X'5 x6 x6

0

0

0

0

0

0

0
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(5.34)

In this case the estimation algorithm did not converge to meaningful values. The

analysis of causes is difficult. The number of unknown states in this system might be

too large for their accurate estimation based on just two state measurements. No

further investigation was done on this method.

5.4 Spindle-Bearing System

The second, more realistic system used to investigate the concept of physical

parameter estimation is the following spindle-bearing set-up. It consists of a medium-

speed machine tool spindle, suspended by two sets of angular contact bearings. Fig.

5.24 shows the experimental test rig.
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Fig.5.24: The experimental set-up of the spindle-bearing system.

The spindle housing is attached to the rigid base via four screws. An electromagnetic

shaker (Bruel & Kjaer) excites the system by generating an input force F. An electric

motor can rotate the spindle to speeds of up to 2000 rpm.

5.4.1 Mechanical Design

Main geometric dimensions characterizing the experimental set-up are shown

in Table 5.7. Barden angular contact bearings, type #110H, with a contact angle of

15° (Barden, 1996) are used in this set-up. Detailed information about the bearing

characteristic is found in Appendix D.
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Table 5.7: Geometric dimensions characterizing the spindle-bearing system.

Housing Spindle Bearings

Length, [m]: 0.340 0.612 Type: Barden 110H

Width, [m]: 0.105 # of Balls: 18

Height, [m]: 0.125 Outer Dia., [m]: 0.08

Outer Diameter,
[m]:

0.05 Inner Dia., [m]: 0.05

Inner Diameter, [m]: 0.026 Dist. between
Bearings, [m]

0.275

A technical drawing of the spindle-bearing set-up is shown below.

612

115 342 155

SPACER

7/16 COURSE
THREAD NUT

r Artsimm77.77

SHAFT COLLAR THREAD FOR
PRELOAD NUT

Fig. 5.25: Technical drawing of the spindle-bearing system.
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5.4.2 Lumped Parameter Model

A purely mechanical, multi-degree-of-freedom (MDOF) model of this spindle

assembly is built in Section 3.5. Fig. 3.11 shows a 'rigid body' model of the spindle.

The system is modeled as an eleven DOF system. The housing has three translational

(x, y and z) and three rotational DOF, 0 and t). The spindle itself has five DOF.

5.4.2.1 Model Structure

The system is modeled according to CASE 2 in Section 3.4.3. Only small

vibrations are considered around some fixed reference position. Large system

reconfigurations e.g. by repositioning of the main machine tool table (CASE 3) are not

taken into account here. Also gyroscopic effects are neglected for the sake of brevity.

The spindle and housing are assumed to have symmetric mass distribution, so that the

global inertia matrix is diagonal (see Appendix C3).

5.4.2.2 Experimental Measurement of Parameters

Estimates (not using physical parameter estimation methods as of Section 3.6,

but traditional methods) of the physical parameters are tabulated below in Table 5.8.
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Table 5.8: Reference physical parameters of the spindle-bearing system.

Physical Parameters
(housing)

Numerical
Values

(housing)

Physical
Parameters

(spindle)

Numerical
Values

(spindle)

Mh 24.61 kg ms 10.67 kg

kmx = kmx= kH3x= kHax 65 106 N/m kFx = kRx 60 106 N/m

kmy = kH2Y= kH3Y= kli4Y 130 106 N/m kFy = kRy 60 106 N/m

kHlz = kmz= kmz= km 65 106 N/m kFz 30 106 N/m

elm = CH2X = CH3X = CH4X 1000 Ns/m CFX = CRX 1000 Ns/m

CHIY = CH2Y = CH3Y = CH4Y 1000 Ns/m CFY = CRY 1000 Ns/m

CHI' = CH2Z = CH3Z = CH4Z 1000 Ns/m CFZ 1000 Ns/m

The stiffnesses of the housing-base screws in the y-direction are approximated with

the formula

7.
HBY

EA screw =129.9 106
Screw

(5.35)

The stiffnesses in the x- and z-direction are estimated at 50 % of kHBY. The bearing

stiffnesses are obtained from low frequency force & displacement measurements.

Dampings are difficult to estimate and are somewhat arbitrarily assumed to be 1000

Ns/m.

5.4.3 Validation of the Model

In order to compare the model with the actual system, vibration measurements

were performed on the spindle-bearing set-up described above. Forces, deflections

and accelerations were recorded at various locations. The location of sensors is shown

in Fig. 5.24. The data acquisition equipment used for signal collection was the same
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as for the simple MDOF system (see Section 5.2). Fig. 5.26 shows a force vs.

displacement graph resulting from a sinusoidal force input through the electro-

magnetic shaker connected to the front of the spindle.

Deflection, [pm]
3

Signal, front

Signal, rear

-100 - 5 0 0
1 11-11-1

50 100
Force, [N]

Fig. 5.26: Linearity of the spindle-bearing system.

These initial simple tests allow visual inspection of the quality of the signals

(`hazy' or 'crisp') and also reveal information about the linearity of the system. It can

be concluded that for low input forces (<100 ]V), the system behaves almost perfectly

linear and therefore a linearized model is a good representation of this system. The

graph in Fig. 5.26, labeled (Signal front) is obtained from a load cell mounted at the

shaker and a proximity sensor in front of the spindle. The graph labeled (Signal rear)

is obtained from the same load cell but from a proximity sensor mounted at the rear of

the spindle.
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The slope of the graphs gives some indication of the stiffness of the spindle,

however the evaluation of the correct spindle stiffness requires a closer look at the

entire system (see Section 5.4.4).

The model can also be validated in the frequency domain. Experimental 1/0

identification was applied to the signals (load cell and proximity sensor at the front)

and the resulting transfer function is shown in Fig. 5.27.
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Fig. 5.27: Experimental transfer function characteristic of the spindle-bearing system.

The shaded area is not considered here. The features of the experimental transfer

function in Fig 5.27 labeled through are described below:
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0 The intersection of the magnitude graph with the Y-axis represents the DC-gain

of the system. Even though Fig. 5.28 doesn't show the entire frequency range

down to 0 Hz it can be approximated that the experimental DC-gain is 135 dB.

This is in good agreement with the model DC-gain (see Fig. 5.29).

0 The first resonance peak appears at approx. 190 Hz. This cannot be attributed to

any feature in the model. It is currently unknown what this resonance frequency

is caused by. It is possible that the experiment table, which acts as the base of

the system, causes this resonance. Since the rigid body model assumes a

motionless base this resonance doesn't appear in Fig. 5.29.

0 This strong resonance peak at approx. 220 Hz is one of the rigid body modes of

the spindle. It agrees well with the model resonance frequency at 215 Hz.

0 This smaller resonance peak cannot be found in the model. It is considered

insignificant, since its magnitude is 20 dB or 10 times lower than the previous

resonance peak (feature 3).

0 At 390 Hz, there is another significant resonance peak, which coincides with

the second peak in the model (at 310 Hz). This represents another rigid body

mode.

0 This resonance peak is not existent in the RB model, but it agrees with the

resonance found in Comparin's research (see Table 5.10). Therefore this is the

first flexible mode of the spindle. In this research flexible modes are not of

concern and therefore are not modeled.

0 The experimental phase agrees well with the model phase in that it starts with

zero phase shift at low frequencies.

Not considering the unknown resonance at 190 Hz, the first significant phase

drop occurs at 220 Hz.

0 After the drop, the phase recovers quickly due to the anti-resonance (zero) at 290

Hz.

0 Another significant phase drop exists because of the second strong resonance

peak at 390 Hz. The region above 550 Hz is not discussed here.
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The natural frequencies revealed through experimental analysis can be

compared with frequencies of the model, which are calculated from the A matrix.

Using all geometric dimensions and physical parameters from Table 5.6, 5.7 and

Appendix C1, all eleven natural frequencies and damping ratios of the model are

calculated as follows:

Table 5.9: Natural frequencies and damping ratios of the spindle-bearing model.

Natural Frequency, [Hz] Damping Ratio

214.705 0.0201

235.532 0.0237

288.883 0.0250

310.671 0.0204

336.537 0.0430

510.146 0.0368

552.928 0.0259

553.565 0.0399

903.223 0.0316

1145.304 0.0199

1248.862 0.0327

Fig. 5.28 shows the model transfer function between the input force in the x-

direction on the front of the spindle and the output displacement on the front of the

spindle shaft. Not all natural frequencies shown in Table 5.9 can be observed in the

figure because only the vibrations along the x-axis are evaluated. Two very strong

resonance frequencies can be observed at 1350 rad/sec (215 Hz) and at 1940 rad/sec

(310 Hz) (highlighted in Table 5.9). They are caused by rigid body motion of the

spindle and housing.
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Fig.5.28: Magnitude and Phase characteristic of the spindle-bearing model.

Detailed information pertaining to the flexible mode vibrations of the

considered spindle22 has been available from previous studies (Comparin, 1983;

Spiewak, 1995). In particular, essential flexible modes have been defined. That

research showed that the combined spindle-housing flexible modes are above 800 Hz,

significantly higher than the rigid body modes. Table 5.10 shows the principle results

in terms of resonance frequencies and damping ratios (Comparin, 1983).

22 The spindle-bearing set-up shown in Fig. 5.24 was obtained from Mr. Comparin after he finished his
research.
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Comparin's calculated flexible modes of Table 5.10 were obtained by 1-E,

analysis of the spindle-bearing system and show a reasonable agreement with his

experimental results. Comparin also investigated the housing and shaft as separate

components. The shaft itself has resonances found experimentally at 692 Hz, 1898 Hz

and 3442 Hz (calculated with FEA: 681 Hz, 1879 Hz and 3448 Hz respectively). The

housing has even higher natural frequencies because of its short and stocky shape

(experimental: 3582 Hz and 3823 Hz; FEA: 4765 Hz and 4880 Hz). The fact that the

rigid body modes appear in a quite different frequency range (-200-400 Hz) than the

flexible body modes (> 700 Hz) is very important in this research. It justifies that the

developed RB model, neglecting flexible motion is a good representation of the

system below 600 Hz.

Table 5.10: Flexible modes of the investigated spindle-assembly (Comparin, 1983).

Natural
Frequency [Hz]

Damping Ratio Comment

892 0.008 1st flexible mode, experimental

900 1st flexible mode, calculated

1301 2nd flexible mode, calculated

1444 0.023 2nd flexible mode, experimental

1802 0.018 3rd flexible mode, experimental

2050 3rd flexible mode, calculated

5.4.4 Estimation of Key Physical Properties

Due to computer limitations and difficulties with the minimization procedure,

no estimation method involving the minimization of a performance index was applied

to the spindle-bearing system. However all necessary prerequisites are fulfilled to
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perform this task. Optimization of the minimization procedure must be left for future

research. It was found in Section 5.3.4.2 that time domain estimation leads to

promising results. In particular low frequency square wave excitation results in

desirable signals for estimation because intuitive evaluation of the final fit is possible.

Nevertheless, the optimization of the performance index is demanding since there will

be many more variables than in the case of the simple MDOF system. This must also

be left for future research. Still, signals are collected for square wave excitation to

show the feasibility of the method (see Fig. 5.29 below).

Force, [V] Displacement [V]
0.6

0 40 130 120

Time, Ems]

160

Fig. 5.29: Square wave characteristic of the spindle.

200

For the application of preload monitoring the analytical spindle model

developed in Chapter 3 was used to search functional relationships between the

features in the measured signals and the bearing stiffness.
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The spindle model derived in Section 3.5 has eleven vibration modes

characterized by natural frequencies fni, and damping ratios cni, (i = 1, 2,...11). They

are readily calculated from the eigenvalues of the evolution matrix A(0) (Eq. (3.7a).

This matrix depends upon the system properties including the stiffnesses of bearings.

As these stiffnesses depend in turn upon the preload, Fp, the pattern of fni[O(F p)] and

ni[O(Fp)] can be used to establish this preload. It should be remembered, however,

that this pattern is also strongly affected by other stiffnesses in the system, which may

significantly vary in the realistic working conditions. To resolve this difficulty, the

proposed analytical model is of utmost importance.

The above concept can be implemented in several ways, e.g., pattern

recognition by artificial neural networks, discriminant functions, or fuzzy logic. Since

the analytical model is available, a 'deep knowledge' expert system is an attractive

alternative. Specifically, the inherent complexity of the frequency-damping-preload

relationship can be efficiently dealt with by establishing 'maps', such as shown below
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Fig. 5.30: Frequencies and damping ratios calculated for the first five modes.
Preload (%, left to right): 5, 15, 25, 40, 55, 70, 85, 100, 115, 130, 150.
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Based on the proposed model (automatically generated in Section 3.5 together

with coefficients established in Section 5.4.2.2), distinctive traces are plotted for the

damping-frequency relationships for varying preload and for chosen vibration modes

of the investigated spindle (see Section 5.4). While building these maps, it is

advisable to start with a weakly coupled system (low bearing stiffness), so the

vibration modes of the shaft and the housing can be easily distinguished.

A systematic development of the system for practical application should start

with identifying these modal properties which are the most sensitive to the bearing

preload, Fp. Computing the sensitivity coefficients (see Eq. 4.12) readily does this.

Based on the results, a list of candidate modal properties for consideration (see Fig.

5.30) is established. In the next step, different sensor types (e.g., accelerometers,

displacement sensors) and locations are examined. The analysis indicates which

sensor types and locations are favorable for the estimation of the modal properties.

This is illustrated by way of the following example.

Considered is a proximity sensor measuring displacements of the front end of

the spindle shaft in the x-direction (Fig. 5.22). The output matrix, C(0), accounts for

an impact of two generalized shaft coordinates on the measured output signal. These

coordinates are: 1) translational motion along the x-axis and 2) rotational motion about

the y-axis. The other matrices in the state-variable model are not affected by the

sensor selection. The Bode plots shown in Fig. 5.31 represent a scalar transfer

function of the system obtained according to Eq. (3.15).
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Fig. 5.31: Bode plots of the transfer function Gs.,Fx(0,$) obtained analytically

for different preloads Fp.

The plots are generated for the nominal preload (solid), a lower preload (75%

of nominal - dashed thin line) and an increased preload (125% dashed heavy line). A

shift of the resonance frequencies is clearly visible. The sensitivity of frequency shift

due to preload change, SF', is approximately the same for both pronounced resonance

peaks (345 Hz and 595 Hz). The third resonance at 1100 Hz is 45 dB below the first

one, so it not suitable for detection using the proximity sensor under consideration. It

should be noted, however, that the measurement of acceleration instead of

displacement would 'life the magnitude plot at higher frequencies (proportionally to

the frequency squared). This could be a reason for using an accelerometer in place of

a proximity sensor.

It is worthwhile to investigate if the preload can be estimated by measuring the

spindle housing vibrations. By modifying the output matrix, C(0), a new transfer

function is generated. Its magnitude plot is compared in Fig. 5.32 with the transfer
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function discussed above. The most significant difference is the lower gain (about 15

dB) of the plot corresponding to the housing measurement. However, the two

strongest resonance peaks occur at the same frequencies as in the transfer function

representing the measurement of the shaft vibrations. It is an interesting conclusion,

since the measurement of housing vibrations is significantly easier and suitable

acceleration sensors are widely available.

-120 Magnitude
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-140
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-170

-180

-190
100 200 500 1000
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Fig. 5.32: Magnitude plots of transfer functions of the shaft and housing.

The proposed location of the sensor close to the end of the shaft or housing (far

away from the shaft's center of gravity) is also established by analyzing the derived

MDOF model. The analysis (omitted here for the sake of brevity) reveals that the

rotational motion of the shaft about the Y axis is featured by the lowest modal

frequency (345 Hz), while the second lowest frequency (595 Hz) represents the

translational shaft motion in the x-direction. Placing the proximity (or acceleration)

sensor away from the center of gravity allows the monitoring of both peaks. Indeed,
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for the system under consideration it is possible to find such a location that both peaks

have approximately the same magnitude.

Experimental veryfication of the bearing stiffness is difficult. One reason is

that the total stiffness of the spindle is built up from a number of contributory

elements, as shown in Fig. 5.33. These elements are the spindle flexure element, the

bearing flexure element, and the contact flexure element.

Fig. 5.33: Deflections of a main spindle.

The deflection contribution of the spindle is due to the flexible nature of the

material. The contribution of the bearing is due to the bearing stiffness. In addition

there is a contact stiffness due to the various interfaces (e.g. rings and spacers)

between the bearing and the housing. Because of the serial connection of the
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individual contributions to the total flexure, the total flexibility at the point-of-force

application is given by

1 1 1 1 _Ys 1

k ksp kb k, F +F +F (5.36)

The combination of what is measured in the following experiments equates to

the total stiffness k. A direct comparison with the bearing stiffness information

supplied by the manufacturer is difficult, because even if the flexible stiffness of the

spindle is negligible (very high), the contact stiffness due to some 'looseness' at

several interfaces is rather low. Since Eq. (5.36) shows an inverse relationship for the

stiffness, high component siffnesses hardly contribute to the total stiffness. This is

actually a positive finding, since on-line monitoring of the stiffness would reveal any

looseness in the system immediately. To evaluate this total stiffness at the bearings,

the spindle-bearing system is excited with a 5 Hz sinusoidal wave. Stiffness changes

at higher frequencies are thus avoided. Taking into account the different sensor

locations, Equations (5.37) and (5.38)23 solve for the stiffness at the front and rear

bearings respectively.

k f =
0.840 dSf 0.160 -dSr

1.397 Uf
(5.37)

0.397 Uf
k (5.38)

0.160 . dsf 0.840 dsr

The manner in which the stiffness is evaluated differs from the approach taken

for the simple MDOF system (where only a simple ratio of magnitudes is calculated,

see Fig (5.6). Equations (5.37) and (5.38) are applied to each data point collected in

the experiment and thus statistical variations become existent.

23 See Appendix C4 for derivation.
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Fig 5.34 shows example stiffness evaluations for the 'no shim' configuration

(the purpose of inserting different shims will be explained further below). The

stiffness varies in the range indicated by the figure. The spikes are due to a zero

crossover of the input signal and the resulting sudden increase in the ratio of Eq. (5.37)

and (5.38).
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Fig. 5.34: Evaluating the stiffness at 5 Hz.
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As described above, a relationship exists between the increase in preload, the

increase in bearing stiffness and the change in natural frequencies. But these

relationships have to be verified experimentally. Therefore the total stiffness is

evaluated for each different preload configuration.
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To change the preload, shims of various thicknesses were inserted between the

two outer bearing races of the front and rear bearing (Fig. 5.35). The bearings were

manufactured for a medium standard preload of 85 lb. The thickness variation of the

shims was 13 gm, 38 pm and 76 pm.

Before preload is applied
(Lock nut is loose)

After preload is applied
(Lock nut is tightened)

Shim to increase preload

Fig. 5.35: Preload increase through use of additional shim.

A summary of the stiffness calculation results for the front and rear stiffnesses

of the spindle-bearing system is shown in Fig. 5.36 and 5.37 respectively. It can be

seen that increasing the shim thickness, which raises the preload applied to the

bearings, increases the stiffness of the bearings. Each mark in Fig. 5.36 and 5.37

represents a separate experiment and the length of the mark represents the level of

statistical variation. Repeatable levels of stiffnesses were difficult to accomplish since

for a preload change the spindle had to be dissassembled. Also, note that the rear

stiffness increases at a similar rate as the front stiffness, although starting from a lower

level.
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Fig. 5.36: Front bearing stiffness change with increasing preload.
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Fig. 5.37: Rear bearing stiffness change with increasing preload.
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Frequency changes due to variations in the preload are shown for the model in

Fig. 5.38. Showing these changes from actual data is essential for proving the theory

of the proposed preload monitoring method. The experimental results should not be

expected to be as clear as those from the model. This is because variations caused by

disassembly and re-assembly as well as effects of other components (e.g. table,

various rings and spacers) cause resonances (feature 2 in Fig. 5.27) that blur the result.

Nevertheless, Fig. 5.38 shows how the natural frequencies clearly change with the

preload variation.
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Fig. 5.38: Bode plots of the transfer function GsxFx(0,$) obtained experimentally

for different preloads Fp.



178

5.5 Closure

This chapter presented experimental analysis to examine the accuracy of the

analytical model developed in Chapters 3, and to analyze the physical parameter

estimation methodology. Two different experimental set-ups were used for

investigation. One set-up involves a simple and well defined two degree-of-freedom

system described in Section 5.3. A lumped parameter model of the system was

formulated and experimental data was collected. The analysis revealed that the "two

step" method did not lead to satisfactory results. The "one step" method has a

significant better performance.

The second test set-up represented a shaft-bearing system. In depth model and

experimental analysis showed that the concept of physical parameter estimation is

applicable and realistic for shop floor environments. Due to computer limitations and

difficulties with the minimization procedure, no estimation method based on

minimizing the performance index was applied to the spindle-bearing system.

However all necessary prerequisites are fulfilled to perform this task. Optimizing the

minimization procedure must be left for future research. A functional relationship was

found between resonance frequencies, damping ratios and the bearing stiffness. Based

on this relationship a empirical "feature" map was constructed which is used for

monitoring the bearing preload.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

A methodology of physical parameter estimation for monitoring and diagnosis

of mechanical systems is presented. It integrates two important components: (1)

computer aided model generation and (2) estimation of physical parameters. The

development of the entire methodology was done in a programming environment of

Mathernatica, which allows symbolic as well as arbitrary precision computations.

A class of lumped parameter models is generated automatically using

Lagrange's energy method, linear algebra and homogenous transformations. The

proposed modeling approach is particularly suitable for parallel kinematics machines,

in which the impact of bending moments can be made negligible by suitable design

and rigid body approximation is sufficiently accurate.

The models built for a simple MDOF system and for the spindle-assembly are

validated through comparison with FE models and through experimental analysis. In

particular for the spindle-assembly a frequency region is established (<800 Hz) where

the rigid body model is a good representation of the system. A comparison with

earlier research on the same set-up (Comparin, 1983) shows that flexible modes do not

appear in this region. Transfer functions are also compared (see Fig. 5.38 and 5.39).

They show significant similarities in the above frequency range.

With regard to the estimation of physical parameters the research has lead to

the formulation of six methods. They are:
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(1) "Direct" method Its main advantage is a closed form solution. The disadvantage

is a number of sensors that are necessary, which makes this method not practical for

industrial applications because of increased equipment and installation costs, and

deterioration of reliability.

(2) "Two step" method The partitioning in this method has a drawback of errors

being less traceable through the two steps. It was found that small errors in the

identified model coefficients obtained in the first step cause large errors in the

estimation results of the second step. Specifically the appearance of multiple solutions

in the second step, which was not predicted by simulations, necessitates the use of

robust algorithms that can find global minima instead of being trapped locally.

(3) "One step" method This method is computationally very intensive, since no

information compression is applied as in the "two step" method.

(4) Extended Kalman filter The validity of this approach has been demonstrated in a

simple one DOF example. The method works well and is very fast for the estimation

of few parameters.

(5) Functional relationships This is the simplest method, but it relays on the

existence of functional relationships between features in measured signals and physical

parameters.

(6) "Hybrid" method Combination of two or more of the above methods has the

potential to significantly improve the accuracy and robustness of physical parameter

estimation.

6.2 Recommendations for Future Research

The research presented in this thesis has revealed several obstacles that have to

be overcome before an efficient, fast and robust method for physical parameter

estimation can be implemented. The major areas recommended for future research are

as follows:
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Model Enhancement: Currently the proposed methodology applies to systems

that can be approximated by lumped parameter models. However it is possible to

account for flexible modes by applying techniques well documented in the literature.

In particular two methods are straightforward in their application: (1) "rigid body"

approximation (Schmitz, 1985) and (2) component mode synthesis (Zhang, 1991).

Accuracy and robustness of these extended models have to be tested. The major tasks

for research are as follows:

The spindle dynamic behavior and in particular the bearing stiffness can vary

substantially as the rotational speed increases due to the bearing gyroscopic

moment and centrifugal force (Shin et al., 1994). This has not been taken into

account in this research. Therefore it is recommended to include this effect in

the spindle model.

The current models are built using Lagrange's energy method. Implementation

of alternative approaches such as Kane's method (Kane et al., 1983) will

provide additional validation of the existing models.

Experimental evaluation of the proposed methodology necessitates extension

of the model to represent the test rig under investigation more accurately. This

can be done by including additional components such as the base, exciter, or

V-belt pulley.

Knowledge of the actual physical parameters is indispensable for the

evaluation of different estimation algorithms. In particular the fixture of the

spindle housing to the base changes after every assembly and disassembly.

Accurate and rapid methods for experimental determination of these

parameters need to be developed.
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Enhancement of Non-Linear Minimization: The difficulties encountered with
minimization require additional research in two areas:

(1) Search for more efficient minimization algorithms. Current minimization

techniques proved insufficient in this research for finding global minima of

complex shaped functions. New, more robust methods such as simulated

annealing, genetic algorithms and adaptive grid refinement need to be

investigated.

(2) Speed of computations. The proposed methodology has been developed on

and for generally available desktop computers such as a standard 200 MHz

Pentium PC. It was found in this research that their speed is not adequate.

Some computations, in particular for the "one step" method, run for several

days. The methodology or parts of it should be ported to more powerful

computers (e.g. workstations or supercomputers). Another possibility is to

implement specialized hardware using DSP processors for a fast computation

of model responses (needed to evaluate performance indices).

Improvement of Estimation: Improvements in the model as described above will

automatically lead to better results in all proposed estimation methods.

The proposed "hybrid" method (see Section 3.6.6) has the best potential of

accurate and fast estimation of multiple parameters. It is therefore

recommended to focus future research on this method.

There are many different ways of building the performance index as indicated

in Eq. (3.98) and (3.99). They greatly affect the efficiency of minimization and

thus are critical for fast parameter estimation. It is recommended for future

research to define guidelines for optimization of the performance index

structure.

Improvement of the Experimental Set-Up: The conducted research has indicated the

need for enhancement of the experimental set-up in two ways:
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Additional sensors to measure internal forces of the system (e.g. a force

between the two masses of the simple MDOF system) will allow building a

more robust performance index.

Experimental measurement of flexible vibration modes of the complete spindle

assembly will provide better insight on the validity of the RB model and

indicates necessary extensions.

Implementation in the Shop-Floor Environment: High-speed estimation of bearing

preload based on a functional relationship proved feasible in this research. This

method should be applied in the shop-floor conditions. The same method should be

investigated for monitoring the stiffness of housing-base fixture. These fasteners are

easily accessible (no disassembly necessary as with the bearing preload variation) and

can be accurately set. Monitoring the housing-base fixture could immediately detect

any looseness or failure.

The optimal environment for continuation of this research involves

collaboration with machine tool designers. Their experience in design and FE

modeling is crucial in the effort of implementing a monitoring and diagnosis system

based on physical parameter estimation for the next generation of machine tools.
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Appendix A: Matrix Calculations

Al: Transformation Matrices

The derivation of the transformation matrices TM, TMry and TMrz for

rotation co, 0 and around the x, y and z-axis respectively can be found in Craig,

(1955). They are shown below:

TM,,,(v,t)=

TM, (0, t) =

TMrz (v, t) =

_
1 0 0 0

0 cos (t) sin c(t) 0

0 sin v(t) cos co(t) 0

0 0 0 1

cos 0(t) 0 sin 0(t) 0

0 1 0 0

sin 0(t) 0 cos 0(t) 0

0 0 0 1

cos v(t) sin yl(t) 0 0
sin v(t) cos ty(t) 0 0

0 0 1 0

0 0 0 1

The matrix for translational transformation Tn is

TM, (x, y,z,t)=

l 0 0 x(t)

0 1 0 y(t)

0 0 1 z(t)

0 0 0 1

195

(Al)

(A2)

(A3)

(A4)

The transformation matrix of the individual rigid bodies can be calculated through the

combination of Eq. (Al) to (A4). The transformation matrix for the general motion of

the spindle is a combination of the matrices TM,, TMrz and TM. The matrix TMrz

is not included, since the spindle can rotate freely around the z-axis. The subscripts
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"s" and "h" in the following matrices express that these general coordinates belong to

the spindle and housing respectively.

TMs = TM,

The simplified (for small angles)

TMs =

The housing transformation

TMH 7= TM t (xh

The simplified (for small angles)

TMH =

(xs , Y z t) TM,. (q),, t) TMry

spindle transformation matrix

1 0 Os (t) xs W

O 1 cos (t) ys(t)

Os (t) Y's (t) 1 zs (t)

0 0 0 1

matrix can be calculated through

h 9 ZhIt) TM rx (Vh t) TiViry (0h ,

housing transformation matrix

1 vh(t) Oh (t) xh (t)

yfh (t) 1 vh (t) yh (t)

0h(t) c)h(t) 1 zh (t)

0 0 0 1

t)

(0 t)

calculates to

TM (y/h t)

equates to

(A5)

(A6)

(A7)

(A8)

A2: Inversion of Large Matrices

The derivation of models for machine tools like the ones presented in Section

3.2 involves dealing with high dimensioned matrices. For example, the model of the

spindle-bearing system described above has 11 degrees-of-freedom. In the state space

model derivation the dimension of the system matrix A is always twice the number of

degrees-of-freedom (see Section 3.2.2). Therefore the size of the A matrix for the

spindle model is 22x22. When dealing with these kinds of large matrices, it is

necessary to use all the mathematical 'tricks' in order to simplify them and to avoid

lengthy, unnecessary computer calculations. Consider a matrix multiplication of two

22x22 matrices. More than 20,000 additions and multiplications are needed for such

an operation.
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In order to derive a transfer function from the A, B and C matrices of the state

space formulation, it is necessary to compute the inverse of a matrix of the form (s I -

A). If it is intended to use this model for the purpose of physical parameter estimation

then the A matrix will not be numerical, but will have up to 50 symbolic variables in

it. Investigations done here showed that a PC with a Pentium 150 MHz processor is not

capable of inverting a matrix of that size symbolically in a reasonable amount of time.

Fortunately, there are mathematical tools to simplify such large matrices. Using the

matrix inversion lemma (Ogata, 1987) one can simplify the inversion of a large matrix

as follows:

If the matrices A, B, C and D are, respectively, an n x n, an n x m, an m x n, and an m

x m matrix, then

FA B1-'

LC Di
(A BD-1C) (A BD-1C) 1BD-'

D-1C(A BD-1C) D-1C(A BD-1C) 1BD-1 + D-
(A9)

provided IDI# 0 and IA BD-1C . The matrix (s I A) therefore can be

inverted using Eq. (A9). If the 22x22 matrix to be inverted is reduced in this manner

to an //x// matrix, and the computation will be much easier and faster. For larger

matrices this lemma can be applied several times consecutively, and thus the

dimension reduced considerably.

A3: Pseudo-Inverse of Matrices

The concept of pseudo-inverses of a matrix is a generalization of the notion of

an inverse. Consider the vector-matrix equation

A x = b (A10)

where A is an n x m matrix, x is an m-vector and b is an n-vector. Depending on

whether m > n or m < n, the concept of right pseudo-inverse or left pseudo-inverse can
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be introduced to find the minimum norm solution x° that satisfies the condition

A x° = b and (If 115_1134 for all x that satisfy A x = b .

If A has the Rank m, then the solution is

x° = ARmb

where ARM is the right pseudo-inverse and is calculated as

ARM = AT (AAT )

If A has the Rank n, then the solution is

x° =ALmb

where ALM is the left pseudo-inverse and is calculated as

A LM (A TA) 1A T

The detailed mathematical proof can be found in Ogata (1987).

(All)

(Al2)

(A13)

(A14)
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Appendix B: Additional Information about the simple MDOF System

Bl: Geometric Dimensions

Table Bl: Geometric Dimensions of the simple MDOF System.

Geometric Dimension Numerical
Value

Mass 1: width w,/, [mm] 38.0

height limb [mm] 38.0

length /,/, [mm] 101.0

Mass 2: width wm2, [mm] 31.5

height hm2, [mm] 38.0

length 42, [mm] 101.0

I- beam 1: width Wbeaml, [mm] 12.5

height hbeaml, [nun] 38.0

length ibeaml, [mm] 127.5

I-beam 2: width Wbeam21 [mm] 6.0

height hbeam2, [mm] 38.0

length /beano, [mm] 139.0

Helical spring: No. of turns nhs 5

Diameter of steel wire dsw, [nun] 4.5

Radius of total spring rhs, [mm] 13.2

Distance between

the two masses lmlm2, [mm]

60.0



The area moments of inertia of the two I-beams are:

3
hbeaml w beamlIbeaml

12

3

hbeam2 wbeam2
1beam 2 =

12

B2: Signal Change for Additional Mass

Force, [N] Displacement, [m]

0 0.2 0.4 0.6

Time, [s]

0.8 1

-5
1 10

-6

5 10

0

-5 10
-6

Fig. Bl: Force and proximity signal on Mass_2 with additional mass
for low frequency sine wave excitation.

200

(B1)

(B2)

Transfer function analysis and physical parameter estimation was also done on

simple MDOF system modified through attachment of an additional mass of 0.75 kg

on Mass_1. Graphical results are presented below:



Magnitude, [dB]

201

200 250 300 350
Freq., [Hz]

Fig. B2: Experimental (dashed) and model (solid) magnitude plot of G11 in m/N
before minimization (large mass).

Magnitude, [dB]

100

-110

120

130

140

Freq., [Hz]
50 101`0 150 200 250 300 350

Fig. B3: Experimental (dashed) and model (solid) magnitude plot of G11 in m/N
after minimization (large mass).



Magnitude, [dB]
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100 150 200 250 300 350 Freq, [Hz]

Fig. B4: Experimental (dashed) and model (solid) magnitude plot of G21 in m/N
before minimization (large mass).

Magnitude, [dB]

Freq., [Hz]

Fig. B5: Experimental (dashed) and model (solid) magnitude plot of G21 in m/N
after minimization (large mass).
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B3: Stiffness Calculation for Helical Spring

From the transfer function G11 and G21, Eq's (5.7) and (5.10) the DC-gain can be

calculated by setting s = 0 as done in Eq. (5.12). If the gain is determined

experimentally as shown in Table 5.2, then k12 can be determined.

From Eq. (5.12a):

k12 = k72 g11.k11 k22

g11 g11 k22 -1

From Eq. (5.12b):

g21 k11 k22kl2 =
gll k22

B4: Damping Calculation Using the Log-Decrement Method

(B3)

(B4)

The logarithmic decrement method is the simplest and most frequently used technique

to experimentally determine the damping coefficients since equipment and

instrumentation requirements are minimal. In this technique the free vibration of a

single DOF system can be initiated and the ratio between successive or non-successive

displacement amplitudes can be measured. From which the logarithmic decrement S

can be defined as (Shabana, 1995)

(S 11n
xi

xi,
n

(B5)

where xi and x,,,, are two displacement amplitudes n cycles apart. Once S has been

determined, the damping factor can be determined according to

S
=

V(2702 + 82 (B6)
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The equivalent viscous damping coefficient c can then be determined as

c = 2 mw (B7)

where m is the mass and co the natural frequency of the system. Results from impact

tests, which were used for the damping calculations of the two masses are shown

below.

Displacement, [V]
6

SIP

-6
03 0.35 04 0.45 05 0.55 06

Time, [s]

Fig. B6: Impact test result from Mass_1.



Displacement, [V]
6

1 1.2 1.4 1.6

Time, [s]
1.8

Fig. B7: Impact test result from Mass_2.

2
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Appendix C: Additional Information about the Spindle-Bearing System

Cl: Geometric Dimensions

612
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115 342 155

SPACER

612

SHAFT COLLAR THREAD FOR
PRELOAD NUT

115 342 155

7/16
COURSE
THREAD
BOLT

115

10 10

127 I 5

15

7/16 COURSE
THREAD NUT
TYPICAL 4 PLACES

106 DIA

68 DIA

48 DIA

30 DIA

0

Fig. Cl: Technical drawing of the spindle assembly.

7/16 COURSE
THREAD BOLT

1/4"
ALLEN BOLT
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5/16"
ALLEN BOLT
TYPICAL, 3 PLCS.
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C2: Initial Position Vectors

a) Bearing Vectors (spindle

MSB,0 = [PSfx PSfy

MSB,o =

side)

PSfz PSrx PSry

0.025 0

0 0.025
0.127 0.127

1 1

Xsb0 0 0 Xsb0

0 Ysb0 0 0

Zsb0 Zsb0 Zsb0 Zsb2

1 1 1 1

0 0.025 0

0 0 0.025
0.127 0.162 0.162

1 1 1

0

Ysbo

Z sb2

1

(C1)

(C2)

b) Bearing Vectors (housing side)

MHB4O = [PHfx PHfy PHrz PHrx PHry

MHB4O

Xhb0 0 0 Xhb0 0

0 Yhbo 0 0 Yhbo

Zsh0 Zsb0 Zsb] Zsb2 Zsb2

1 1 1 1 1
_

0.04 0 0 0.04 0

0 0.04 0 0 0.04
0.127 0.127 0.2 0.162 0.162

1 1 1 1 1

c) Housing-Base Vectors (housing side):

MH,o = [Phl Ph2 Ph3 Phi =

X h0 X h0 Xh0 Xh0

h0 YhO YhO 120

Z h0 ZhO ZhO ZhO

(C3)

(C4)

(C5)



d)

MH,0 =

Housing-Base Vectors

M B4O [Pb1 Pb2

M B4O =

0.048

0.064

0.06

1

(Base

Pb3 Pb4 j

0.048

0.08
0.06

1

0.048

0.064

0.06

side):

0.048

0.08

0.06

1

0.048

0.064

0.06

1 1

Xh0 Xh0

YbO YbO

ZhO ZhO

_ 1 1

0.048

0.08
0.06

1

0.048

0.064

0.06

1

Xh0

YbO

ZhO

1

0.048

0.08

0.06

1

X h0

YbO

ZhO

1
_
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(C6)

(C7)

(C8)



C3: Spindle Arrangement m, c, and k Matrices

m=

m s

0

0

0

0

0

0

0

0

0

0

0

ms

0

0

0

0

0

0

0

0

0

0

0

ms
0

0

0

0

0

0

0

0

0

0

0

Mh

0

0

0

0

0

0

0

0

0

0

0

M h

0

0

0

0

0

0

0

0

0

0

0

mh

0

0

0

0

0

0

0

0

0

0

0

J sxx

J sx,

0

0

0

0

0

0

0

0

0

Jsx,

J SY1

0

0

0

0

0

0

0

0

0

0

0

Jhxx

J hxy

J1

0

0

0

0

0

0

0

0

J hxy

J hyy

J h}z

0

0

0

0

0

0

0

0

J hxz

'Ihyz

'I hzz

(C9)

If one assumes the housing and spindle being symmetric, then all the off-diagonal elements of matrix m become zero.

Due to the large size of the k matrix it is split up here as follows

k k2 k3] (C10)

where k1, k2 and k3 are as shown below.



k2

2 kFx

0

0

0

2 kFy

0

0

0

kFz

2 kFx

0

0

2 kFx 0 0 4 kHix +2 kFx

0 2 kFy 0 0

= 0 0 kFz 0

0 kFy Zsbo + kFy Zsb2 0 0

kFx Zsnv, - kFx Zsb2 0 0 kFx Zsbo + kFx Zsb2

0 kFy Zsbo kFy 0 0

kFx Z sb0 + k FX Zsb2 0 0 kFx Zsbo k FX Z .sb2

0 0 0 4 kinx Y h0

7=

0

2 kFy

0

0

4 kHly + 2 kFy

0

kFy Zsbo kFY Zsb2

0

kFy Zsbo kFy Zsb2

0

0

0

kFz

0

0

kFz ± 4 kinz
0

0

4 /cc/1z v h0

0

0

kFy Zsbo kFy Zsb2

0

0

kFY Zsb0 kFY Zs/79

0
2 2

kFy Zsbo k, Zsb2

0

kFY Zsb0
2 kFY Z sb2

2

0

kFx Zsb0

kFX Zsb0

2

kFX Z sb0

kFx Zsb0

0

0

0

0

0

0
2

kFx Zsb2

k FX Zsb2

2

FX Zsb2

2

kFx Zsb2

0



k1 =

4 k111Z yh 2

0

zthol k FY Z sb2

0

0

k FY Z sb01 +k FY Zsb2

4 kin, yho
2

k FY z sho
2 k, z sb2

0

+ 2 k ,y Zh 2
+ 2 k, Z so

2

0

0

+ 2 kF, Zsh2
2

k FX Zsb01 k FX Zsb2

0

0

kFx Z sb01 k FX Z sb2

0

0

0
2 2

kFx Z sb01 kFx Z sb2

0

4 kH1Z Xho
2 +4 kHlx Zho

2
+ kFx Zsho

2 +2 kFx Z sh2
2

0

0

0

0

4 k Y h0

0

0

0

0

0

0

4 k my xno
2 +4 kHlx Y h0

2

Similarly, due to the large size of the c matrix it is split up here as follows

C = [Ci C2 C3]

where cl, c2 and c3 are as shown below.

(C13)

(C14)



CI =

2 CFX

0

0

2 CFX

0

0

0

CFX Z sb0 CFX Zsb2

0

CFX Zsb0 CFX Zsb2

0

0

2 CFY

0

0

2 CFY
0

CFY Z sb0 CFY Zsb2

0

CFY Zsbo CFY Zsb2

0

0

0

0

C FZ

0

0

C FZ

0

0

0

0

0

2 cFx

0

0

4 cinx + 2 CFX

0

0

0

CFX zsb0 + CFX Zsb2

0

CFX Zsb0 CFX Zsb2

4 C H1X .Y h0

(C15)

0

2 CFY

0

0

0

C FZ

0

CFY Z sb0 + CFY Zsb2

0

CFX Z sb0 CFX Zsb2

0

0

0 0 0 CFX Z sb0 CFX Zsb2

4 C 1 i iy + 2 cFy 0 CFY Z sb0 CFY Zsb2 0

0

CFY Zsb0 CFY Zsb2

C FZ ± 4 C H1Z

0

0

y Zsb2
2

CFY ' Z sbo
2

-1 CFY

0

2 Jszz n sp lc

(C16)

2 2
0 0 2 Jszz 'nsp 7t CFX Z sb0 + C FX Zsb2

2 2

CFY Z sb0 CFY Zsb2 4 C Y h0 CFY Z sbo CFY Zsb2 0

0 0 0
2 2

CFX Z sb0 CFX Zsb2

0 0 0 0



C H1Z

0

CFY Z sb01 CFY Z sb2

0

0

CFY Zsb01 + C FY Zsb2

4 C H1Z Yho
2 2

CFY Zsb0 CFY Zsb2

0

yho
2 +2 CHIP Zho

2 +2 CFY Zsho
2 +2 CFY Z.,h2

2

0

0

CFX Z sb01 C FX Z sb2

0

0

C FX Z sb01 C FX Z sb2

0

0

0
2 2

CFX Z sb01 CFX Zsb2

0

4 CH1Z xho
2 +4 c,, zho 2

CFX Zsb0
2 +2 CFX Zsb2

0

2

0

0

0

4 c MX 'Yll0

0

0

0

0

0

0
2

CHIP X h0 '

2
4 clitX YhO

(C17)
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C4: Bearing Stiffness Calculations

A simplified free-body-diagram of the spindle-bearing system is shown in Fig.

C2. It shows the input force Uf and the two resulting radial bearing forces FBf and FBr-

The spindle is seen as a rigid shaft, which can rotate around a pivot point, which is not

necessarily the center of gravity.

Fig. C2: Simplified free-body-diagram of the spindle.

The rigid-body deflection of the spindle-bearing system under the load Uf can be seen

in Fig. C3. The locations of the deflection sensors are also shown with the necessary

dimensions.
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X X sr

dsf dBf

XCG

XSfr

Fig. C3: Spindle in deflected position.

In Fig. C2 and Fig. C3

denotes the force application point,

denotes the location of the front bearing,

denotes the location of the back bearing,

© denotes the front sensor measuring point and

0 denotes the rear sensor measuring point.

In order to calculate bearing stiffness from force and deflection measurements, some

adjustment calculations need to be done. The radial bearing stiffness kf is calculated

with the formula

FBfk =
f dBf.

(C18)

for the front bearing. F BJ denotes the radial force at the front bearing and dBf denotes

the radial deflection at the front bearing. For the rear bearing the formula is as similar.



k =FBr

dBr
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(C19)

Formulas C12 and C13 only apply for low frequency measurements. Since the actual

force and displacement measurements are recorded at different locations on the

spindle, than where the actual bearing is positioned, the following formulas need to be

used to get the radial bearing stiffnesses. From the balance of forces and moments,

one obtains

F = U
f

(X
Bf

X
uf

)

Br (LXBrXgf)

FBf =U FBr

(C20)

(C21)

From geometric relations (see Fig. C3) one obtains

bearing deflections as a function of the deflection

locations.

XP

X Sfr dSl

the

X

pivot point Xp and the radial

measurements at the sensor

(C22)

(C23)

(C24)

P ds

clf = dsf

dBr=dsf

+dsr

1

1

xsf

XP

X

XP

Using equations (C20) through (C24) together with the numerical dimensions of Fig

C2 and C3 the radial bearing stiffnesses kf and kr in the front and rear calculate to

0.397 Uf
k = (C25)

r 0.160 dsf 0.840 dsr

kf = 0.840 dSf 0.160 .dsr

1.397U1
(C26)
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Appendix D: Barden Bearing Manufacturers Information

The Barden Corporation provided detailed information about the behavior of

the angular contact bearings used in this research. The deflection and stiffness

characteristic of the chosen bearings are shown below.
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Fig. Dl: Preload generated through axial deflection.
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Radial Stiffness, [N/pm]
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Fig. D2: Radial stiffness change of duplex Barden 110H bearings.

Appendix E: Sensor Calibration

a) Kistler Load Cell

A Kistler load cell (Model 9212) was used for all force measurements in my

experiments. It is a high impedance unit with high rigidity and high sensitivity. The

factory specifications are as follows:
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Table El: Technical specifications of the Kistler load cell (Model 9212).

Measuring Range:

Compression

Tension

0 to 5000 lb

0 to 500 lb

Threshold 0.001 lb

Impedance

Sensitivity (nominal)

high

-50 pC/lb

Linearity < +/- 1 % FSO

Natural Frequency 70 kHz

This load cell was used together with a Kistler charge amplifier (Model 5054A1410),

which is a special PC board mounted amplifier for converting electrical charge signals

from quartz transducers into proportional voltages. It's factory specifications are as

follows (Kistler Instruments, 1995):

Table E2: Technical specifications of the Kistler charge amplifier (Model
5054A1410).

Range (for +/- 10 V output) +/- 10 to 1.1 106

Frequency Response (-3dB) 0 to 10 kHz

Maximum Drift (leakage current) < +/- 0.03 pC/s

Accuracy < +/- 1 %

Noise <2 m17,
Operating Temperature 0 to 60 °C

Also, as part of the data acquisition system programmable filters were used for high

frequency cut-off and for anti-ailiasing. These filters were low pass filters from the

66/88 series of Precision Filters Inc. (Model# 88-B-LP8, SN# 36285-35). They are

digitally programmable 8 pole, 8 zero active filter modules. The LP8 are elliptic
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(Kauer) low-pass filters with 0,044 dB p-p pass-band ripple and a 130 dB/octave

attenuation slope. The cutoff frequency of that particular model can be set between

100 Hz and 102,400 Hz in 100 Hz steps. The amplitude accuracy is +/- 0.2 dB; DC to

0.75 F, (cutoff frequency). The filters were programmed to 300 Hz cut-off and a gain

of 10. (Precision Filters, 1994)

The whole system including load cell, charge amplifier and programmable

filter with gain 10 was calibrated before the experiments using static weights. The

weights were chosen between 10 and 900 grams. Three test series were performed and

the average values were calculated and are plotted below.

Voltage, [V]
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Fig. El: Load cell calibration curve (Kistler, Model 9212).
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b) Bent ly Nevada Proximity Sensor

The Bent ly & Nevada Proximity System (Type 7200 (5 mm) series) was used

for all displacement measurements in the experiments. This transducer is a non-

contacting, gap to voltage system that measures static as well as dynamic distances

between the probe tip and the observed target. The factory specifications are as

follows (Bent ly & Nevada catalog, 1992):

Table E3: Technical specifications of the Bently & Nevada proximity system
(Type7200).

Calibrated Measuring Range: 0.25 to 2 mm

Scale Factor 7.87 V/mm +1- 4%

Linearity 0.02 mm

Frequency Response 0 to 10 kHz

Temperature Sensitivity -3% at +65°C

This system was also used with the above described programmable filter with gain 10

and was calibrated before the experiments using a feeler gage. Three test series were

performed and the average values were calculated and are plotted below.
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Fig. E2: Proximity sensor calibration curve (Bendy & Nevada, Type 7200).




