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Chapter 1: Introduction

We are interested in the problem of finding recurring patterns in multiple sets. Find-

ing repeated DNA sequences and motif discovery are among the multiple application

areas. In this thesis, the problem is formulated as a statistical inference problem, a few

statistical models are proposed and analyzed. We develop both a single pattern model

and a multiple pattern model for inference and derive a maximum likelihood estimation

solution. Due to the non-convex nature of the problem, we introduce novel algorithms

to solve the non-convex optimization tasks and provide theoretical guarantees on the

solution approach. A key motivating application is the problem of recognizing voltage

envelope signatures of home appliances.

1.1 A key motivating application

The problem of home appliances recognition based on voltage measurement is the key

motivating application for this work. Several approaches have been proposed to the

problem for disaggregated end-use energy [6]. Most approaches are concentrated on ac-

tive and reactive power or current signatures. In this work, we focus on voltage envelope

transient responses [7]. To the best of our knowledge, the use of activation signatures in

appliance recognition has only been lightly explored as opposed to complex power analy-

sis [15], spectral signatures [28], or harmonics of current [9]. Appliance recognition from

voltage signatures is challenging because: (i) Voltage envelope changes are subtle. In

order to keep the home power grid stable, voltage envelope increase or decrease are under
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a small percent of the overall voltage envelope value. With small changes in voltage, the

quantization error becomes significant. (ii) Voltage envelope transient response may not

capture the variations among different appliances (many responses may look like step

decrease). However, there are many advantages in using voltage features: (i) Voltage

can be monitored at any power outlet while current and power can only be measured at

the appliance. (ii) Voltage envelopes are rich in information especially in different work

modes and various models.

To explore the possible advantages in the voltage approach, we aim at developing

a system which can learn the voltage activation patterns for home appliances. The

challenges are: (i) How to learn the voltage signatures? (ii) How to develop a detection

or classification system to detect the signatures and recognizing their labels?

1.2 Statement of the problem

Many methods and algorithms have been developed and studied for pattern recognition.

While we focus on the problem of estimating multiple different templates from N multi-

instance bags containing only one of the multiple templates (see Fig. 1.1(b)), we start by

introducing the simpler problem of estimating a single template from N multi-instance

bags each containing only one occurrence of the desired template (see Fig. 1.1(a)). In

Fig. 1.1(a) and (b), the dot over the template indicates the position of template in the

bag.
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(a) Single template (b) Multiple templates

Figure 1.1: Recognition of templates in multiple sets.

1.3 Objectives

The aim of this thesis is to provide an inference framework on the problem of recognizing

unknown recurring patterns in multiple sets. To investigate the problem of identifying

voltage signatures of home appliances, we focus on the following tasks:

1. Develop a statistical model for finding a single pattern recurring in multiple sets.

2. Solve the ML estimation problem of the unknown pattern analytically.

3. Extend the model into recognizing multiple patterns that are recurring in multiple

sets.

4. Develop algorithms that solve ML estimation of multiple unknown patterns.

5. Evaluate the performance of the proposed approaches analytically and quantita-

tively for both cases.

6. Apply the algorithms for recognition of home appliances.
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1.4 Related Work

We first consider the problem of finding the same unknown element in multiple sets.

This problem may arise in different application areas including but not limited to: pat-

tern matching, sequence alignment in DNA sequencing, and dictionary learning. The

problem presents multiple challenges. First, no a-priori information is provided for the

element of interest. The search for the element of interest must be performed blindly.

This is different than matched filtering in which an element in a set is matched with

multiple known templates. The second challenge is computational. When comparing

two sets, one can compare every element in the first set to every element in the second

set. The complexity associated with comparisons of elements from multiple sets grows

exponentially in the number of sets.

Template or pattern matching has been explored in several areas. In [16], a Gibbs

Sampling framework for estimating and identifying multiple patterns in the DNA se-

quences is proposed. In communications and signal processing, matched filtering and

correlation analysis have been used in the context of joint delay or angle of arrival es-

timation. A pre-specified signal structure is a common assumption, e.g., a predefined

transmitted signal [27], sinusoidal model with unknown frequencies [23], or a steering

vector with unknown angles or delays [26]. In computer science, fast pattern match-

ing [13] for text strings is preformed given a pre-specified template. The formulation in

our paper differs from the aforementioned frameworks in that we are interested in an

unknown pattern. A closer setup in bioinformatics involves alignment of multiple se-

quences. While the reference sequence is not defined, scoring different alignments using

the COBALT tool [19] enables the process of pattern discovery.

When the object changes to multiple patterns, the main focus may be changed. Find-
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ing recurring patterns in data can be applied to various areas, such as finding regulatory

sequences in DNA [16], pattern matching in strings [13], and audio motif discovery for

bioacoustic applications [18].

Different approaches have been proposed for a pre-specified pattern matching. A

Gibbs sampling framework for estimating and identifying multiple patterns in the DNA

sequences is proposed in [16], while a graph based WINNOWER algorithm for finding a

signal in sampled DNA sequence is proposed in [20]. In computer science, fast pattern

matching [13] for text strings has been widely used. Dynamic time warping (DTW) is also

a well-known algorithm for a matching problem that allows variations in time [2]. If the

pattern of interest is unknown, the problem becomes a blind pattern recognition problem.

In [8], a parameter-free CK distance approach with probabilistic early abandoning is

proposed for audio motif discovering on large data archives. Finding the most similar

pair in long sequence is their focus.

A natural extension to the single pattern matching involves the recognition of mul-

tiple recurring patterns. For multiple motif identification and alignment of protein se-

quences, [1] proposes a combination of search and refinement algorithm. For speaker

identification [22], a robust text-independent Gaussian mixture model is proposed.

1.5 Structure of the thesis

The rest of this thesis is organized as follows. Section 2 introduces the blind joint delay

estimation model and a maximum likelihood estimation of the model parameters. Sec-

tion 3 proposes an approach for a single pattern recognition framework. A statistical

model is introduced and ML estimator with performance bounds are provided. Section

4 generalizes the single pattern recognition model into K-pattern model. An EM-based
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algorithm with robust initialization and Majorization-minimization refinement is intro-

duced for solving the model. Section 5 evaluates the performance of proposed algorithm

on synthetic and real-world datasets. In the last section, summary of this work, list of

publications and future directions are presented.
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Chapter 2: A blind joint delay estimation for single pattern

For continuous data, we develop the corresponding bind joint delay model originated

from home appliance signatures recognition task.

2.1 Model

In order to identify the activation pattern from voltage envelope measurements, we need

to estimate the offset parameter bi and the delay τi for each observed noisy template

yi. Following the Gaussian iid assumption with ni(t) ∼ N (0, σ2), the negative log-

likelihood [25] of the observation can be written as 1
2σ2

∑
i,t ‖yi(t)−s(t−τi)−bi‖2+const.

Hence, the optimization associated with ML is equivalent to the following minimization

problem:

min
θ

N∑
i=1

T∑
t=1

‖yi(t)− (s(t− τi) + bi)‖2, (2.1)

where θ = [τ1, . . . , τn, b1, . . . , bn, s(1), . . . , s(T0)]
T is the vector of unknown parameters.

2.2 Solution approach

To perform the minimization, we propose to eliminate the bi’s, then the s(t) and finally

the τi’s. By [25], the resulting ML estimate of the bi’s is given by b̂ML
i = ȳi − s(t− τi).

Substituting b̂ML
i for i = 1, 2 . . . , n into (2.1) yields
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min
τ,s̃

N∑
i=1

T∑
t=1

(ỹi(t)− s̃(t− τi))2, (2.2)

where τ = [τ1, . . . , τn]T , ỹi(t) = yi(t) − ȳi, s̃(t) = s(t) − s(t) and s̃ = [s̃(1), . . . , s̃(T )]T .

Note that
∑

t s̃(t) = 0. Next, we exploit the fact that s(t) = 0 for t /∈ {1, . . . , T0}.

Consequently s̃(t) = −s̄ for t /∈ {1, . . . , T0} and (2.2) can be rewritten as

min
τ,s̃

N∑
i=1

T0∑
t=1

(ỹi(t+ τi)− s̃(t))2 +

N∑
i=1

∑
t∈T (τi)

(ỹi(t) + s̄)2, (2.3)

where T (τi) = [1, τi] ∪ [τi + T0 + 1, T ]. Next, if we expand
∑

t∈T (τi)(ỹi(t) + s̄)2 as∑
t∈T (τi)(ỹi(t)− ȳiT (τi))

2 +
√
T − T0(ȳiT (τi) + s̄)2 then we can rewrite (2.3) as

min
τ,s̃

(
N∑
i=1

T0∑
t=1

(ỹi(t+ τi)− s̃(t))2 +
√
T − T0(ȳiT (τi) + s̄)2) +

N∑
i=1

∑
t∈T (τi)

(ỹi(t)− ȳiT (τi))
2. (2.4)

2.3 Optimization reformulation

We construct the (T0 + 1) × (T − T0 + 1) matrix Yi such that its kth column given by

[yi(k), . . . , yi(k + T0 − 1),
√
T − T0ȳiT (k)]T and vector s̃ = [s̃(1), . . . , s̃(T0),−

√
T − T0s̄]T

and rewrite (2.4) as

min
s̃,τ

N∑
i=1

‖Yieτi − s̃‖2 +

N∑
i=1

φi(τi), (2.5)

where φi(τi) =
∑

t∈T (τi)(ỹi(t) − ȳiT (τi))
2 and ek is the canonical vector with 1 at the

kth place and 0 otherwise. Next, we obtain the ML estimate of s̃ by differentiating
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(2.5) with respect to s̃ and setting to zero. The resulting ML estimate for s̃ is given

by s̃ = 1
N

∑N
i=1 Yieτi . After substituting the ML estimate of s̃ in (2.5), we obtain a

minimization only with respect to τ

min
τ

N∑
i=1

‖Yieτi −
1

N

N∑
j=1

Yjeτj‖2 +

N∑
i=1

φi(τi). (2.6)

While the resulting minimization involves only τ , it is still non-trivial. The τi’s are

integers and hence the domain of the problem is non-convex leading to a non-convex

optimization problem. Note that (2.6) can also be written as

min
τ

1

2N

N∑
i=1

N∑
j=1

‖Yieτi − Yjeτj‖2 +

N∑
i=1

φi(τi). (2.7)

In the reformulation of (2.7), each term in the summation involves only two delay terms τi

and τj . The equivalence between (2.6) and (2.7) is due to the following result. For vectors

u1, u2, . . . , un we have 1
2N

∑
ij ‖ui−uj‖2 =

∑
i ‖ui− ū‖2 where ū = 1

N

∑N
i=1 ui. This can

be proven by expanding both LHS and RHS into the term
∑

i ‖ui‖2−‖ū‖2. The LHS can

be expanded as 1
2N

∑
ij ‖ui−uj‖2 = 1

2N

∑
ij ‖ui‖2 + ‖uj‖2− 2uTi uj = 1

2N (2N
∑

i ‖ui‖2−

2(
∑

i ui)
T (
∑

j uj) = 1
2N (2N

∑
i ‖ui‖2 − 2N2‖ū‖2 =

∑
i ‖ui‖2 − N‖ū‖2. Similarly, the

RHS can be expanded as
∑

i ‖ui − ū‖2 =
∑

i ‖ui‖2 − 2ūTui + ‖ū‖2 =
∑

i ‖ui‖2 − ‖ū‖2.

Denote the number of delays for each τi by M = T−T0. The computational complex-

ity of minimizing (2.7) with respect to the delays τ in a brute-force manner isO(MN ) [10].

For example, if N = 30 and the number of delays is M = 100, then MN = 1060. This

prompts us to propose an approximate solution with significantly lower computational

complexity. The proposed solution guarantees no more than twice of the global minimum

achieved by the objective in (2.7).



10

2.4 Approximate solution for non-convex minimization

We could apply the graph-based approximation described for robust initialization in

single pattern recognition section to solve the problem. Since the objective in (2.7) can

be viewed as a sum of edge weight in a graph given by Dij = ‖Yieτi−Yjeτj‖2 and a sum of

node penalties φi(τi). Since the sum runs over all pairs of (i, j), the graph is a complete

graph. We propose to replace the single complete graph by N bipartite graphs [3] (see

Fig. 3.2). The ith bipartite graph contains only N−1 edges placed between the ith node

and all other nodes.

To obtain the approximate ML solution τ̂AML, we begin by solving N minimizations.

The ith minimization is given by

τ i = arg min
τ
fi(τ), where (2.8)

fi(τ) =
N∑

j=16=i

(
‖Yieτi − Yjeτj‖2 + φj(τj)

)
. (2.9)

Then, τAML = τ i
∗
, where

i∗ = arg min
i
fi(τ

i). (2.10)

Although the objectives fi(τ) differ from our original objective in (2.7) they are tightly

connected.
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2.5 Theoretical guarantees

For both estimators, we establish a lower and upper bounds:

1

2N

∑
i

fi(τ
i) ≤ f(τ∗) ≤ min

i
fi(τ

i).

The bound holds for both τ∗ = τML and τ∗ = τAML.

Starting with τML. For the lower bound, it is easy to see that f(τ) = 1
2N

∑
i fi(τ)

and hence f(τML) = minτ f(τ) = minτ
1
2N

∑
i fi(τ) ≥ 1

2N

∑
i minτ fi(τ) = 1

2N

∑
i fi(τ

i).

For the upper bound, we have f(τ) = mins
∑

i ‖Yieτi−s‖2 ≤
∑

i ‖Yieτi−Yjeτj‖2 = fj(τ)

for all j and hence f(τML) = min f(τ) ≤ minτ fi(τ) = fi(τi). Next, we show the

same bound for τAML. For the lower bound, we have f(τML) ≤ f(τAML) and hence

1
2N

∑
i fi(τ

i) ≤ f(τAML). For the upper bound we have f(τ) ≤ fj(τ) hold for any τ and

j. Hence setting j = i∗ and τ = τAML = τ i
∗
, yields f(τAML) ≤ fi∗(τ i

∗
) = mini fi(τi).

SinceN mini fi(τ
i) ≤

∑
i fi(τ

i), we can further bound the lower bound by 1
2min

i
fi(τ

i).

Therefore,

1

2
min
i
fi(τ

i) ≤ f(τML) ≤ f(τAML) ≤ min
i
fi(τ

i).

This sandwich inequality guarantees f(τML) ≤ f(τAML) ≤ 2f(τML). This bound sug-

gests that the proposed approach yields a solution objective within a factor of 2 from

the optimal solution objective.

The main advantage of the proposed algorithms is the relatively low computational

complexity. The minimization in (4.8) can be implemented as follows. For each of the M

values of τi, N −1 separate minimizations over M values of τj can be performed yielding

a computational complexity of the order O(M2N). Since this minimization is applied for

every i, the overall computational complexity is O((MN)2). T his is the computational
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complexity obtained by comparing every one of M delay windows in every one of N

observed sequences with every one of the M delay windows in all other N − 1 observed

sequences.
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Chapter 3: Single Pattern Recognition

Consider the problem of finding the same unknown pattern across multiple sets. To for-

mulate this problem, consider N subsets X1,X2, . . . ,XN of the d-dimensional Euclidean

space Rd, i.e., Xi ⊆ Rd for i = 1, 2, . . . , N . Each set is assumed to contain only one

instance of the unknown pattern of interest (see Fig. 3.1(a)) among other patterns. Our

goal is to obtain the pattern of interest. In general, no distinguishing characteristics

are provided for the unknown pattern and hence it cannot be found when only one set

is available. The fact that the pattern of interest is repeated in each set is key to its

estimation. We proceed with a detailed probabilistic model for the problem.

X1 X2 X3

x1

x2

x3

(a)

�

����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
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Figure 3.1: (a) Our setting: each set Xi is assumed to contain one instance of a desired
element s. Our goal is to identify the desired element s along with the most similar
element in each set, i.e., xi ∈ Xi. (b) A graphical model for the alignment problem
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3.1 Model

To model the problem of finding the same unknown element in multiple sets in a noisy

setting, we start with a generative model for the collection of sets. We begin by generating

N sets, each containing one instance of the pattern of interest in an independent fashion.

For the ith set, we assume the following generative process. Sample the ith set position

RV Ji uniformly in {1, 2, . . . , ni}. Then, generate the ni elements in Xi according to

xij =

 s+ νij j = ji

νij j 6= ji

(3.1)

for i = 1, 2, . . . , N and j = 1, 2, . . . , ni where s is a deterministic unknown signal, the

noise terms νijs are iid N (0, σ2I).

We determine the joint distribution of X1, . . . ,XN based on the aforementioned

generative process. For each i we organize the elements of Xi in a d × ni matrix

Xi = [xi1, · · · ,xini ] and consider joint distribution of the observations represented by

the observation matrix X = [X1, . . . , XN ] given the unknown vector s. Since we assume

that sets are generated in an independent fashion, we express the joint distribution of

sets as a product of their marginal PDFs:

f(X|s) =
N∏
i=1

f(Xi|s). (3.2)

Since the position of the vector s, Ji, is a latent random variable uniform over the set of

positions {1, 2, . . . , ni}, we use the following marginalization of Ji to obtain f(Xi|s) =∑ni
j=1 f(Xi|Ji = j, s)P (Ji = j), where f(Xi|Ji = j, s) denotes the PDF of Xi with s
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positioned in the jth element of Xi. As a result, we express f(Xi|s) as a mixture:

f(Xi|s) =
1

ni

ni∑
j=1

f(Xi|Ji = j, s). (3.3)

We denote the PDF of a single element xij which does not contain s as f0(·) and the

PDF of a single element which contains s as f1(·|s). Assuming that the elements in each

set are drawn independently conditioned on Ji = j, we can express f(Xi|ji = j, s) as

a product of n − 1 iid RVs which follow f0 and one RV which follows f1: f(Xi|Ji =

j, s) = f1(xij |s)
∏ni
j′=16=j f0(xij′). An alternative version of f(Xi|Ji = j, s) is given by

f(Xi|Ji = j, s) =
f1(xij |s)
f0(xij)

∏ni
j′=1 f0(xij′). Substituting this expression for f(Xi|Ji = j, s)

into (3.3) yields

f(Xi|s) =

ni∏
j′=1

f0(xij′) ·
1

ni

ni∑
j=1

f1(xij |s)
f0(xij)

. (3.4)

Under the f0 model, xij is distributed N (0, σ2I) and under the f1 model, xij is dis-

tributed N (s, σ2I). Therefore the ratio
f1(xij |s)
f0(xij)

= exp(−‖s‖2/(2σ2)) exp(sTxij/σ
2).

Substituting this ratio and f0 into (3.4), we find f(Xi|s), substitute it into (3.2), and

obtain

f(X|s) =
N∏
i=1

(
e−
‖s‖2

2σ2

ni∏
j′=1

1
√

2πσ2
d
e−
‖xij′ ‖

2

2σ2
1

ni

ni∑
j=1

e
sT xij

σ2
)
. (3.5)

Note that f(X|s) can be expressed as f(X|s) = A(X)B(s)·
∏N
i=1

∑ni
j=1 exp(sTxij/σ

2),

where A(X) =
∏N
i=1

∏ni
j′=1

√
2πσ2

−d
exp(−‖xij′‖2/(2σ2)) 1

ni
is only a function of the

observations X1, . . . , Xn and B(s) = exp(−N‖s‖2/(2σ2)) is only a function of the pa-

rameter vector s. Note that in general the PDF f(X|s) is not a member of the expo-
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nential family. However, the aforementioned modeling approach yields a fairly simple

log-likelihood

log f(X|s) = K − N‖s‖2

2σ2
+

N∑
i=1

log
( ni∑
j=1

e
sT xij

σ2
)
. (3.6)

The log-likelihood can be used to facilitate the derivation of the ML estimator as well as

the derivation of the CRLB.

3.2 Maximum Likelihood Estimation

In order to obtain the ML estimator of s, we consider a minimization problem of the

negative objective:

min
s

f(s) = u(s)− v(s),where,

u(s) =
‖s‖2

2σ2
;

v(s) =
1

N

N∑
i=1

log
( ni∑
j=1

e
sT xij

σ2
)
.

Since u(s) and v(s) are both real-valued convex functions, f(s) is a convex-concave func-

tion and may contain multiple local solutions. We propose majorization-minimization

(MM) approach [14]. The general idea is to construct a majorizing function g(s, s(t))

such that (i) g(s, s(t)) ≥ f(s) for any s, s(t); and (ii) g(s, s(t)) = f(s) for any s. Min-

imizing g(s, s(t)) function instead of f(s) results in the following update rule s(t+1) =

arg mins g(s, s(t)), which yields non increasing sequence of the objective, i.e., f(s(t+1)) ≤

f(s(t)).

A simple upper bound function g(s, s(t)) can be obtained by linearizing the convex
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function v(s). Since v(s) ≥ v(s(t)) + (s− s(t))T∆v(s(t)), then f(s) ≤ u(s)− v(s(t))− (s−

s(t))T∆v(s(t)) := g(s, s(t)) [14]. Therefore, the upper bound g(s, s(t)) is:

g(s, s(t)) = ‖s‖2
2σ2 − 1

N

∑N
i=1 ·

∑ni
j=1 e

s(t)T xij

σ2 ·
xij

σ2∑ni
j=1 e

s(t)T xij

σ2

·
(
s− s(t)

)
− v(s(t)).

By minimizing g(s, s(t)) with respect to s, we obtain the update rule:

s(t+1) =
1

N

N∑
i=1

ni∑
j=1

e
s(t)T xij

σ2∑ni
k=1 e

s(t)T xik
σ2

xij . (3.7)

Due to the non-convexity of the objective, the ML solution depend on the initial-

ization. However, we introduce a core idea which suggests that despite the non-convex

nature of the problem, a close to optimal solution can be obtained. We rely on the ob-

servation that the log-likelihood can be approximated using the soft-max approximation

of the max function: log(
∑

i e
αi) ≈ maxi αi, yielding,

1

N

N∑
i=1

logGi(Xi|s) ≈ C − ‖s‖
2

2σ2 + 1
N

∑N
i=1 maxj

sTxij
σ2

= max
j1,...,jN

C − ‖s‖
2

2σ2 +
sT 1

N

∑
i xiji

σ2 . (3.8)

Consequently, ML can be approximated by

max
s,j
−‖s‖

2

2
+ sT

1

N

∑
i

xiji , (3.9)
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or as a minimization problem

min
s,j

N∑
i=1

‖xiji − s‖2 −
N∑
i=1

‖xiji‖2, (3.10)

where j = [j1, j2, . . . , jN ]T . This problem is a non-trivial integer programming. A solu-

tion to a more general form is proposed in [29]:

min
s,j

N∑
i=1

‖xiji − s‖2 +

N∑
i=1

φi(xiji), (3.11)

where φi(xiji) ≥ 0. Minimizing the objective in (3.11) with respect to s results in

s = 1
N

∑N
i=1 xiji . After substituting s back into (3.11), a minimization problem only

with respect to j is obtained:

ĵ = arg min
j

f(j), where,

f(j) = 1
2N

N∑
i1=1

N∑
i2=1
‖xi1ji1 − xi2ji2‖

2 +
N∑
i=1

φi(xiji). (3.12)

The objective in (3.12) can be viewed as a sum of edge weight in a graph given by

Di1i2 = ‖xi1ji1 − xi2ji2‖
2 and a sum of node penalties φi(xiji). The graph is a complete

graph since the sum runs over all pairs of (i1, i2). The solution for the complete graph

requires a brute-force search which results in computational complexity O(MN ), where

M is the number of instances per bag. To reduce the computational complexity, the

proposed algorithm in [29] replaces the single complete graph by N bipartite graphs (see

Fig. 3.2), reducing the computational complexity to O(M2N2) [3]. For each bipartite

graph, we set aside the ith bag and calculate the sum of the squared distances from one

instance in bag i to the other instance in all other bags as a function of fi(ji). Instead
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complete graph bi-partite graph

Figure 3.2: Graphical representation of two approach: (3.12) and (3.13).

of minimizing the objective in (3.12), a sub-optimal solution j̃ is obtained by solving N

independent minimizations. For each i, we solve

ji = arg min
j
fi(j), where (3.13)

fi(j) =

N∑
i2=16=i

(
‖xiji − xi2ji2‖

2 + φi2(xi2ji2 )
)
. (3.14)

Then, the vector of position estimate is determined by j̃ = ji
∗
, where

i∗ = arg min
i
fi(j

i). (3.15)

In [29], it is shown that the minimum of the objective f(j) can be bounded using the

fi(j)’s as follows:

1

2
min
i
fi(j

i) ≤ f (̂j) ≤ f (̃j) ≤ min
i
fi(j

i).

This sandwich inequality guarantees f (̂j) ≤ f (̃j) ≤ 2f (̂j). Consequently, the bound

suggests that the bi-partite approach yields a solution which guarantees that f (̃j) the

objective value in (3.12) evaluated at the sub-optimal solution is no more than the twice
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of its global minimum f (̂j).

Naturally this approach can be applied to the minimization in (3.10) by setting

φi(xiji) = maxt ‖xit‖2 − ‖xiji‖2 in (3.11). Consequently the minimum of the objective∑N
i=1 ‖xiji − s‖2 +

∑N
i=1(maxj ‖xij‖2 − ‖xiji‖2) can be approached within a factor of 2.

Moreover, this result suggests that the approximate solution s∗

s∗ =
1

N

N∑
i=1

xĩj (3.16)

can offer a feasible robust initialization to iterative methods for solving the ML in (3.6).

In effort to obtain the global solution, we propose the combination of the initialization

in (3.16) and the iterations in (3.7). Inspired by this approach for solving the ML problem

for the single template case, we proceed with a mixture model generalization for the

multiple template case.

3.3 Performance Analysis: Cramér-Rao lower bound (CRLB) Anal-

ysis

The CRLB on the MSE of an unbiased estimator of s is given by the inverse of the

Fisher information matrix (FIM) FIM = E[ log f(X|s)ds
log f(X|s)

ds

T
] [11]. Since the Xis

are generated in an independent fashion, we have FIM =
∑

i FIMi where FIMi =

E[ log f(Xi|s)ds
log f(Xi|s)

ds

T
] is the FIM for a single set Xi [11]. Following the derivation

in the Appendix, we obtain the expression for FIMi:

FIMi =
b(ρ, ni)

σ2
(I +

a(ρ, ni)− b(ρ, ni)
b(ρ, ni)

ssT

‖s‖2
) (3.17)
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where

a(ρ, n) = EZ [(
√
ρ(1−W1)−

∑n
j=1WjZj)

2] (3.18)

b(ρ, n) =
∑n

j=1EZ [W 2
j ] (3.19)

Zj ∼ N (0, 1), j = 1, 2, . . . , n (3.20)

Wj =
eρδj1+

√
ρZj∑n

l=1 e
ρδl1+

√
ρZl

, j = 1, 2, . . . , n (3.21)

and ρ = ‖s‖2
σ2 . Here a(ρ, n) and b(ρ, n) are defined as expectations of functions of

(W,Z, ρ, n) wrt RVs Zjs keeping in mind that the RVWjs are dependent on (Z1, . . . , Zn, ρ, n).

Both a(ρ, n) and b(ρ, n) have the same limits: (i) a(ρ, n), b(ρ, n)→ 1 as ρ→∞ and (ii)

a(ρ, n), b(ρ, n) → 1
n as ρ → 0 (see Fig. 3.3). For the special case in which all sets have
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Figure 3.3: Plot of the function a(ρ, n) (×) and b(ρ, n) (◦) as a function of ρ for n ∈
{1, 2, 5, 10, 20, 50, 100, 200, 500}.

the same number of elements ni = n, further simplification is possible. In this case,

FIMi = FIM1 for i = 1, 2, . . . , N . The FIM for s given X1, . . . , XN can be obtained as
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N · FIM1 or explicitly as

FIM =
Nb(ρ, n)

σ2
(I +

a(ρ, n)− b(ρ, n)

b(ρ, n)

ssT

‖s‖2
). (3.22)

The CRLB is computed by inverting the FIM using the Sherman-Morrison formula [24]:

CRLB =
σ2

Nb(ρ, n)
(I − a(ρ, n)− b(ρ, n)

a(ρ, n)

ssT

‖s‖2
). (3.23)

To determine the relative error given by E[‖ŝ−s‖2]
‖s‖2 , we apply the trace to E[(ŝ − s)(ŝ −

s)T ] ≥ CRLB and obtain

E[‖ŝ− s‖2]
‖s‖2

≥ 1

NSNR
(
d− 1

d

1

b(dSNR, n)
+

1

d

1

a(dSNR, n)
), (3.24)

where SNR = ρ/d is the ratio between the energy of the signal ‖s‖2 and the total energy

for a d-dimensional noise vector σ2d. Note that when ρ → ∞, CRLB → dσ2

N , when

ρ→ 0, CRLB → ndσ2

N .
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Chapter 4: Multiple Pattern Recognition

We introduce a novel non-Gaussian mixture model based on the single pattern model

in [21]. Due to the non-convex nature of the problem, multiple local solutions may

arise. To address this problem, we propose novel robust initialization and iterative

updates. Based on mixture modeling approach, we first show estimation performance

on synthetic data. Then, we present detection performance on real world dataset and

show a significant increase in performance compared to the approaches of [21] and [29].

Figure 4.1: A graphical model for the K-Pattern alignment problem

To formulate this problem, consider N subsets X1,X2, . . . ,XN of the d-dimensional

Euclidean space Rd, i.e., Xi ⊆ Rd for i = 1, 2, . . . , N . Each set is assumed to contain

only one of K possible patterns {s1, s2, . . . , sK} among other instances (see Fig. 1.1(a)).

Our goal is to obtain the K patterns of interest.
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4.1 Statistical K-pattern Model

To model the problem of finding the K-unknown elements in multiple sets in a noisy

setting, we extend the single pattern model in [21] as shown in Fig. 4.1. We introduce

hidden template id RV K in addition to the position of the template J in a given bag.

For each bag i, we organize the elements of Xi in a d× ni matrix Xi = [xi1, . . . ,xini ]

and consider joint distribution of the observations represented by the observation matrix

X = [X1, . . . , XN ] given the unknown vectors s1, . . . , sK . We introduce the class prior

probability αk that satisfies 0 < αk < 1,
∑K

k=1 αk = 1 for each probability density

function G(Xi|sk) = f(Xi|sk) in (3.6). Since we assume that sets are generated in

an independent fashion, we express the joint distribution of sets as a product of their

marginal PDFs:

Λ(X; θ) =
N∏
i=1

fi(Xi; θ) (4.1)

fi(Xi; θ) =
K∑
k=1

αkG(Xi|sk), (4.2)

where G(Xi|sk) is a the ith bag probability density function conditioned on template

pattern sk, and θ = {α1, α2, . . . , αK , s1, s2, . . . , sK}. Then, the log-likelihood function is:

log Λ(X; θ) =

N∑
i=1

log(

K∑
k=1

αkG(Xi|sk)). (4.3)

Although the expectation maximization algorithm has been well-developed to solve the

parameter estimation problem in mixture models, the optimization of a non-convex ob-

jective is non-trivial.
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4.2 Expectation Maximization

Expectation Maximization (EM) is an iterative solution to maximum likelihood [17].

Specifically, the iterations offer a non-decreasing sequence of the likelihood function. In

general, the auxiliary function Q(θ, θ(t)) is:

Q(θ, θ(t)) = E[logP (X1, X2, . . . , XN , k1, k2, . . . , kN ; θ)

|X1, X2, . . . , XN , θ
(t)]

The iterations are performed in two steps. In the E-step, the auxiliary function is

computed as:

Q(θ, θ(t)) =
N∑
i=1

K∑
k=1

p
(t)
i (k|θ(t)) log(αkG(Xi|sk)).

Here, p
(t)
i (k|θ(t)) =

α
(t)
k G(Xi|s

(t)
k )∑K

l=1 α
(t)
l G(Xi|s

(t)
l )

represents the probability that the ith bag was

generated by component K.

In the M-step, we maximize the auxiliary function maxθ Q(θ, θ(t)) to obtain the update

rule:

α
(t+1)
k =

1

N

N∑
i=1

p
(t)
i (k|θ(t)), (4.4)

s
(t+1)
k = arg max

sk

N∑
i=1

p
(t)
i (k|θ(t)) ·

(
C − ‖sk‖

2

2σ2
+ log

( ni∑
j=1

e
sTk xij

σ2
))
. (4.5)
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The optimization in (4.5) involves the sum of convex-concave functions that cannot be

solved in closed-form. We propose to solve (4.5) and obtain s
(t+1)
k by using a method

described in Section 3.2. First, we find a robust initialization for s
(t+1)
k (i.e., s

(t+1,0)
k ).

Then we use MM approach to refine the solution.

Algorithm 1 Expectation Maximization for the mixture model

1: Initialize θ0 = {α0
1, α

0
2, . . . , α

0
K , s

0
1, s

0
2, . . . , s

0
K}.

2: procedure EMforMGF(θ0, X)
3: while Likelihood Λ(X; θ) not converged do

4: E-step: compute membership probability p
(t+1)
ik =

α
(t)
k G(xi|s

(t)
k )∑K

l=1 α
(t)
l G(xi|s

(t)
l )

5: M-step: max
θ

Q(θ, θ(t)) to obtain sk

6: Running Procedure: ŝk =MMforS(s0k, X)

7: Return θ

4.3 Robust Initialization

There are two sets of initialization parameters α0
k = {α0

1, α
0
2, . . . , α

0
K} and s0k = {s01, s02, . . . , s0K}.

The initialization of Gaussian mixture model is a well-known problem (e.g., see [5]). We

can directly apply initialization techniques for the α0
k and s0k, while initializing s

(t+1,0)
k is

our focus.

By approximating the log of sum of exponential functions with the largest term in the

sum log(
∑ni

j=1 e
sTk xij ) ≈ maxj sTk xij and pik = pi(k|θ), wik = pik∑N

i=1 pik
, the approximated

maximization problem in (4.5) becomes:

max
sk

N∑
i=1

wik ·
(
−‖sk‖

2

2
+ max

ji
sTk xiji

)
, or,

max
sk,j

N∑
i=1

wik ·
(
−‖sk‖

2

2
+ sTk xiji

)
. (4.6)
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We first solve for sk by taking the derivative of the objective function with respect to sk

and setting to zero. We obtain the solution for sk as sk =
∑N

i=1wikxij . Substituting sk

back into (4.6), yields:

max
j

1

2

( N∑
i=1

wikxiji
)2

or,

max
j

1

2

N∑
i1=1

N∑
i2=1

wi1kwi2kx
T
i1ji1

xi2ji2 ,

which can be written as,

min
j

f (k)(j), where

f (k)(j) = 1
2

N∑
i1=1

N∑
i2=1

wi1kwi2k||xi1ji1 − xi2ji2 ||
2

+
N∑
i1=1

wi1k
(
max
t

||xi1t||2 − ||xi1ji1 ||
2
)
. (4.7)

The objective in (4.7) can be viewed as a weighted sum of edge weight in a graph given

by Di1i2 = ‖xi1ji1 −xi2ji2‖
2 and a weighted sum of node penalties φi(j) = maxt ||xit||2−

||xij ||2.

This problem is similar to the single pattern matching problem. We apply the bi-

partite graph approach for each pattern to robustly initialize s
(t)
k for each iteration with

estimated ŝk. Since (4.7) is similar to (3.12), we can use the same procedure to obtain

the ML solution ĵk. Using f
(k)
i (j) functions and solving N minimizations for each pattern
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individually, we obtain the approximate solution j̃k:

ji1k = arg min
j
f
(k)
i1

(ji2), where

f
(k)
i1

(ji2) =
N∑

i2=16=ii

wi2k
(
‖xi1ji1 − xi2ji2‖

2 + φi2(ji2)
)
.

Then, j̃k = j
i∗k
k , where

i∗k = arg min
i
f
(k)
i1

(ji2).

Based on the approximate solution j̃k, we directly obtain the approximate estimation for

s∗k:

s∗k =
N∑
i=1

wikxĩjk . (4.8)

Moreover, we can still establish a lower and upper bound for each pattern k:

1

2

∑
i1

wi1kf
(k)
i2

(ji1k ) ≤ f (k)(̃j(k)) ≤ min
i1

f
(k)
i1

(ji1k ).

Since
∑

i1
wi1k mini1 f

(k)
i1

(ji1k ) ≤
∑

i1
wi1kf

(k)
i1

(ji1k ), we can further bound the lower bounded

by 1
2 mini1 f

(k)
i1

(ji1k ). Therefore,

1

2
min
i1

f
(k)
i1

(ji1k ) ≤ f (k)(̂jk) ≤ f (k)(̃jk) ≤ min
i1

f
(k)
i1

(ji1k ).

This bound shows that the robust initialization finds out an approximated template

such that the corresponding objective is within a factor of 2 from the optimal solution
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objective.

Algorithm 2 Robust Initialization

1: Input pik from previous E-step in EM algorithm
2: Compute wik = pik∑N

i=1 pik

3: procedure SearchGoodInstances(wik, X)
4: for bagid i1 in 1,. . . ,N do
5: for bagid i2 in 1,. . . ,N 6= i1 do
6: Compute weighted distance matrix Dji1ji2

= wi2k
(
‖xi1ji1 − xi2ji2‖

2 +

φi2(ji2)
)

7: Find smallest instance position for each i1:
[j∗1 , j

∗
2 , . . . , j

∗
N ]=minindex(DT

ji1ji2
)

8: Compute v = v +DT
ji1ji2

9: Find overall smallest distance value for each i1:
10: MinVal(i1)=minimum value(v)
11: MinIdx(i1)=minimum index(v)

12: [i∗1]=min(MinVal(i1))
13: Get [j1∗, j2∗, . . .MinIdx(i∗1), . . . , jN∗] from optimal position collection in bag i∗1.
14: Return sk =

∑N
i=1wikxij

4.4 Majorization-mimimization for ML Refinement

In the M-step of the EM algorithm, a separate update rule is used for each sk (see (4.6)).

We can directly apply MM algorithm for each individual minimization:

min
sk

f̃k(sk), where

f̃k(sk) =
‖sk‖2

2σ2
−

N∑
i=1

wik log
( ni∑
j=1

e
sTk xij

σ2
)
,

where pik = pi(k|θ) and wik = pik∑N
i=1 pik

. The upper bound of the objective gk(sk, s
(t′)
k ) is

a majorizing function which satisfies f̃k(sk) ≤ gk(sk, s
(t′)
k ). By minimizing gk function, a
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solution of sk∗ is obtained in the t′th iteration and it provides an input to the (t′ + 1)th

iteration:

gk(sk, s
(t′)
k ) = ‖sk‖2

2σ2 −
∑N

i=1wik

∑ni
j=1 e

s
(t′)T
k

xij

σ2 ·
xij

σ2∑ni
j=1 e

s
(t′)T
k

xij

σ2

·(sk − s
(t′)
k )−

∑N
i=1wik log

(∑ni
j=1 e

s
(t′)T
k

xij

σ2
)
.

Then by setting
δgk(sk,s

(t′)
k )

δs = 0, we have the update rule:

s
(t′+1)
k =

∑N
i=1w

(t′+1)
ik

∑ni
j=1W

(t′+1)
ijk · xij , where,

w
(t′+1)
ik =

p
(t′)
ik∑N

i=1 p
(t′)
ik

, W
(t′+1)
ijk = e

s
(t′)T
k

xij

σ2

∑ni
j=1 e

s
(t′)T
k

xij

σ2

. (4.9)

Using a combination of robust initialization and iterative implementation of the ML

estimator of sk, we can obtain the solution of s
(t+1)
k in (4.5).

Algorithm 3 Majorization-minimization for template sk

1: RobustInitialize ss0k = {s01, s02, . . . , s0K}.
2: procedure MMforS(s0k, X)
3: while Likelihood f(s; s(t

′)) not converged do

4: Recalculate Q
(t′+1)
ik =

p
(t′)
ik∑N

i=1 p
(t′)
ik

from E-step of EM

5: Recalculate W
(t′+1)
ijk = e

s
(t′)T
k

xij

σ2

∑ni
j=1 e

s
(t′)T
k

xij

σ2

6: Update s
(t′+1)
k =

∑N
i=1Q

(t′+1)
ik

∑ni
j=1W

(t′+1)
ijk · xij

7: Return sfinalk
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Chapter 5: Experiments and Results

In this section, we evaluate our proposed method on both synthetic data set and on a real

world data set of electric appliance activations (Source: Pecan Street Research Institute).

We perform numerical experiments to verify the CRLB against the MSE of an iterative

implementation of the ML estimator and to gain further insight into the expression for

the CRLB. For single pattern recognition task, we evaluate our proposed method and

compare it with Woody’s method [4]. We first deploy our signature estimation procedure

and compute sum of squared errors for both methods. Then we use the estimated

signature to detect activation events of multiple devices from voltage measurements taken

from multiple homes. For multiple pattern recognition task, we evaluate our methods

in terms of Receiver Operating Characteristic curve (ROC) and Area Under the ROC

curve (AUC) and also compare the results to the results presented in [29]. We also show

the improved performance on ROC and AUC based on the mixture model.

5.1 Synthetic Data on Single Pattern

Consider the nominal setting of N = 50 sets with n = 20 d = 100-dimensional elements

in each set for SNR ∈ {−20dB,−18dB, . . . , 20dB}. We vary one parameter (d, n, and N)

at a time in {10, 50, 100} to evaluate the MSE of the ML estimator and the CRLB as a

function of SNR. For each combination of parameters ({N,n, d,SNR}), we generate 100

independent Monte-Carlo (MC) realizations based on the model. For each realization,

we apply the iterative implementation of the ML estimator initialized (i) at random with
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multiple restarts, (ii) by averaging over the largest norm element from each set and (iii)

at the true value of s. Using the 100 MC runs, we estimate the MSE by averaging the

squared estimation error. In Fig. 5.2 ((a), (c), (e)), we present the CRLB as a function of

the SNR along with the MSE of the iterative implementation of the ML estimator. We

observe that for SNR ≥ 0dB the MSE of the ML estimator agrees with the formula of the

CRLB while for SNR < 0dB, the MSE of the ML deviates from the CRLB. The random

initialization and average max energy template methods are outperformed by initializing

at the true s. This is expected since for low SNR the ML estimator is no longer unbiased,

however, the method of initializing with the true s biases the ML estimator favorably.

Next, we focus on the evaluation of the relative CRLB for the problem (3.24). We

evaluate the performance bound as a function of SNR ∈ {−20dB,−18dB, . . . , 20dB} for

three different settings of the parameters: (b) N = 50, n = 20, and d ∈ {1, 2, 5, 10, 20, 50,

100, 200, 500}; (d) N = 50, d = 100, and n ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}; and (f)

n = 20, d = 100, and N ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500}. We present the relative

CRLB for settings (b), (d), and (f) in Fig. 5.2. we observe that an increase in SNR,

element dimension d, number of sets observed N , or a decrease the number of elements

in each set n yields a decrease in the relative CRLB. We also notice that it is possible to

achieve an under −10dB relative CRLB, for fairly low values of SNR by either increasing

the dimension d or the number of sets N . This suggests that while an increase in the

number of elements in each set (i.e., larger haystacks) degrades the performance, using

more sets (i.e., increasing N) allows us to compensate for this performance degradation.

The derivation of CRLB is in the Appendix.
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Figure 5.1: (a), (c), (e): Relative CRLB and MSE of the ML estimator initialized using
three methods as a function of SNR. Parameter values 10, 50, 100 are shown in blue,
red, and green, respectively. (b), (d), (f): Relative CRLB as a function of SNR.

5.2 Synthetic Data on Multiple Patterns

An extent synthetic data test on multiple pattern tasks are given as follows: The Xi’s are

generated in an independent fashion based on the K-pattern Model, where the template
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id for bag i is uniformly sampled in {1, 2, . . . ,K} and the template position in the ith bag

Ji is uniformly sampled in {1, 2, . . . ,M}. We choose K = 3 and ground-truth templates

s1(t), s2(t), s3(t) are designed as:

s1(t) = u(t+D/2)− u(t−D/2), for t = 0, 1, 2, . . . , D;

s2(t) = t, for 0 ≤ t ≤ D;

s3(t) = −t, for 0 ≤ t ≤ D.

Note that u(t) is a step function. We normalize each vector si = [si(1), si(2), . . . , si(t)]
T

using si/||si|| and set it as our new si for all i = 1, 2, 3.

Since the estimated accuracy is affected by the set of parameters {D,M,N, SNR} (D-

dimension of the template, M -number of instances per bag, N -number of bags and SNR-

signal to noise ratio), we perform numerical experiments to analyze the mean squared

error (MSE) of the iterative implementation of the ML estimator against different setups

of parameters. Then, we also perform a detection task based on a maximum a-posterior

probability (MAP) detector using the estimated patterns.

To analyze the estimation performance with respect to different parameters, we start

with the same nominal setting as the single pattern recognition task. Then we vary one

parameter (D, M , and N) at a time as D ∈ {100, 400} and M,N ∈ {10, 50} to evaluate

the MSE of the ML estimator as a function of SNR. For each combination of parameters

{N,M,D, SNR}, we generate 50 independent Monte-Carlo (MC) realizations based on

our mixture model. Since EM is sensitive to the initialization, we use 10 iterations

of different random values of α0
k and s0k and choose the estimate yielding the largest

likelihood value. Using the 50 MC runs, we compute the sum of each k empirical MSE

with the mean and its confidence interval. In Fig. 5.2, we present the MSE as a function
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of the SNR of the iterative implementation of the ML estimator. Increasing SNR and

the number of bags N yields a decrease in the relative MSE, while increasing template

dimension D and the number of instances in each bag M yields a small increase in the

relative MSE when SNR is less than −10dB. We also notice that it is possible to achieve

an under −10dB relative MSE, for fairly low values of SNR by either increasing the

dimension D or the number of sets N . This suggests that using more sets compensate

for the performance degradation when choosing larger number of elements in each set.

In order to verify that recognizing more patterns will increase the performance signif-

icantly in learning task, we designed a GLRT framework for detecting the position J of

unknown patterns {s1, s2, . . . , sK} given a new dataset X = {x1,x2, . . . ,xM}. We denote

xj∗ as an instance in the set that contains one of the true templates sk ∈ {s1, s2, . . . , sK}.

Our goal is to detect the position j in each bag and analyze the performance of our de-

tectors as a function of k.

By maximizing the posterior probability of J and K, which can be written as

P (J = j,K = k|X) = f(X|J=j,K=k)·P (J=j)P (K=k)∑M
j=1

∑K
k=1 f(X|J=j,K=k)·P (J=j)P (K=k)

∝ f(X|J = j,K = k)P (J =

j)P (K = k), we can directly obtain the detector as

max
J,K

P (J = j,K = k|X).

To simplify the notation, we omit the dependence of P (J = j,K = k|X;α, s) on α

and s and write it as P (J = j,K = k|X). Since for each bag, f(Xi|J = j,K = k) =∏M
j=1 f0(xj) ·

f1(xj |sk)
f0(xj)

, and based on the Gaussian model for f1 and f0, the log of the
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Figure 5.2: MSE of the ML estimator as a function of SNR in (i)-(iii) and detection error
vs. K in (iv) .

posterior probability can be rewritten as:

log(f(X|J = j,K = k)) = −||xj − sk||
2

2σ2
+
||xj ||2

2σ2
+ C;

log(P (J = j)) = − log(M);

log(P (K = k)) = log(αk).
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By taking the negative logP (J = j,K = k|X), we obtain the detector as:

min
j,k

2sTk xj − ||sk||2

2σ2
+ log(αk). (5.1)

In this experiment, we apply this detector to the synthetic data set with 50 bags and we

detect the position of the pattern based on the K-pattern estimation results of ŝk, α̂k. If

the position of a pattern is true, we count it as a hit, otherwise, we count it as a miss.

The error given by P (J 6= j|X) is presented in Fig. 5.2(d) as a function of the number

of the templates.

5.3 Real-world Data for Single Pattern Recognition

In our experiments, we use the Pecan Street dataset (Source: Pecan Street Research

Institute). The dataset contains four homes of disaggregated, time-sampled electricity

usage data with 120 sampling frequency. The data set includes voltage and apparent

power readings for both the whole home and disaggregated household appliances in a

period of 25 days. Since the voltage peak to peak (Vpp) waveform is corrupted by spike

noise, we apply a five-tap median filter to de-spike the voltage waveforms.

Home appliance recognition from voltage envelope measurements relies on the unique

signatures associated with each appliance. To extract voltage envelope waveforms con-

taining the appliance activation transient response, a power meter measurement of the

appliance of interest provides a rough interval in which the activation response is present.

Since the precise start time of the activation is unavailable, blind joint delay estimation

is key to this problem. In our problem formulation, a set of N signals containing the
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appliance activation signature are extracted from training data for each appliance,

yi(t), i = 1, 2, . . . , N, 1 ≤ t ≤ T.

Figure 5.3 (a)-(c) shows three different templates y1(t) to y3(t) containing the activation

signature from the same appliance.
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Figure 5.3: Three air-conditioning activation events (a)-(c) and template detection illus-
tration (d)

Our goal is to detect the presence of an activation signature in a new (test) signal

(see Fig. 5.3 (d)) using the information from the training data yi(t) for i = 1, 2, . . . , n
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and 1 ≤ t ≤ T .

We identify two tasks: (i) detect the presence of a signature in a new signal, and (ii)

obtain an accurate estimate of the signature present in the multiple training templates.

5.3.1 Generalized Likelihood Ratio Test Dector

The GLRT framework is a common and powerful statistical test method to determine

between multiple hypothesis models which involve unknown parameters. The GLRT [12]

for observation vector x is given by:

maxθ1 p(x|H1, θ1)

maxθ0 p(x|H0, θ0)

H1

≷
H0

ρ, (5.2)

where θ0 and θ1 are the unknown parameters associated with the statistical model under

hypothesis H0 and H1, respectively, and ρ is the non-negative test threshold. The test

can be rephrased in terms of the negative log-likelihood as minθ1(− log p(x|H1, θ1)) −

minθ0(− log p(x|H0, θ0))
H0

≷
H1

ρ′, where ρ′ = − log ρ is a real-valued threshold [12].

min
θ1

(− log p(x|H1, θ1))−min
θ0

(− log p(x|H0, θ0))
H0

≷
H1

ρ′, (5.3)

Based on the Gaussian model forH0, we have− log f(ytest|H0, θ0) = 1
2σ2

∑T
t=1(ytest(t)−

B)2 +c where c = T
2 log(2πσ2) and similarly, based on H1 we have− log f(ytest|H1, θ1) =

1
2σ2

∑T
t=1(ytest(t)− s(t− τ)−B)2 + c. Minimizing the negative log-likelihood for H0 and

H1 respectively yields BH0 = ȳtest , 1
T

∑T
t=1 ytest(t) and BH1 = ȳtest − 1

T

∑T
t=1 s(t− τ).

Substituting the optimal values of B into the respective negative log-likelihood yields
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the following form for the simplified GLRT:

min
τ

T∑
t=1

(ytest(t)− ȳtest − (s(t− τ)− s(t− τ)))2

−
T∑
t=1

(ytest(t)− ȳtest)2
H0

≷
H1

ρ′′, (5.4)

where s(t− τ) , 1
T

∑T
t=1 s(t− τ) and ρ′′ = 2ρ′σ2. Expanding the quadratic form of the

first term on the LHS of (5.4) yields the following simplification of the test to a simple

correlation test as our detector [12]:

max
τ

T∑
t=1

(ytest(t)− ȳtest(t))(s(t− τ)− s(t− τ))
H1

≷
H0

ρ′′ (5.5)

where ρ′′ = ρ′σ2 − 1
2

∑
t(s(t − τ) − s(t− τ))2). The resulting detector compares the

maximum sample cross-covariance function to a threshold to determine the presence or

absence of the template s. It is closely related to the well-known matched filter [12,

p. 95] in which a test signal is correlated with a given template.

5.3.2 Signature Maximum Likelihood Estimation

Our goal is to learn the activation signature for each appliance using the training data

and to test the detection performance obtained using a detector which uses the estimated

signature. In our experiment, we split four home data into training data (in the period

11/17/2012-11/25/2012 with around 50 activations per appliance) and test data (in the

period 11/26/2012-12/11/2012 with around 80 activations per appliance). The ground

truth (based on the independent measurement from a commercial power meter) regarding
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the activation events is obtained by identifying a power increase from 0 to 80 watt or

more.
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Figure 5.4: Activation patterns of six household appliances from four homes.

For the training phase, we obtain activation events from the training data by ex-

tracting a segment yi(t) of T = 1000 samples around the reported activation time for

each event i in the training dataset. We consider an activation signature window size
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of T0 = 700. We use (3.13)-(3.15) to find the delay of the activation signature within

each segment. For each segment, we extract the portion associated with the activation

signature and average following (2.5). Similarly, we apply the Woody’s method [4] to

obtain a signature for each device. The mean square error (MSE) 1
N

∑N
i=1 ‖Yieτi − s̃‖2

is presented in the Table 5.1.

After the training process, we generate distinct activation patterns of each appliance

in each home. In Fig. 5.6, we present activation patterns of six appliances in four homes

(PS-025, PS-029, PS-046, and PS-051). Based on the activation patterns estimated

during the training phase, we apply the detector in (5.5) to the test data. We apply

the detection scheme to each hourly file in a period of more than ten days and acquire

the receiver operating characteristic (ROC) curve for each appliance in all homes. We

present the area under the ROC curve (AUC) for each of the appliances available in

each of the homes in Table 5.1. We observe that for most of the appliances the AUC

is over 80%. Additionally, we observe that for devices which have a distinct single

consistent activation pattern such as air-conditioning, both the proposed method and

the Woody’s method achieve AUC of over 0.9 (e.g., see air-conditioning signature in

Fig. 5.5(a)). However, we notice that for some of the other appliances, Woody’s method

fails to find the activation pattern yielding a low AUC of 0.5 (e.g., see fridge signature

in Fig. 5.5(b)). Moreover, when a given appliance has more than one activation pattern,

the detection performance degrades for all algorithms tested. The template obtained by

averaging over the multiple activation patterns may not resemble either of the patterns.

Additionally, when one of the activation signatures is prominent, the average follows it

closely. However, during the test phase, the less prominent activation signatures of a

given appliance may not be detected.
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Figure 5.5: Template comparison for the proposed method and the Woody’s method [4].

House ID App. Name MSE.
Our
Method

MSE.
Woody’s
Method

AUC
Our
Method

AUC
Woody’s
Method

PS-025 Air-Cond. 2517.93 3201.17 0.95066 0.90309

PS-025 Oven 1812.61 3243.28 0.52177 0.38571

PS-029 Air-Cond. 5356.00 3723.36 0.91496 0.88241

PS-029 Fridge 1573.47 4605.86 0.71906 0.30876

PS-029 Furnace 1582.34 2201.17 0.86338 0.39473

PS-029 Dryer 3812.68 7316.96 0.99142 0.55087

PS-029 Microwave 2168.59 5440.45 0.87869 0.47560

PS-029 Oven 1953.54 2323.37 0.91030 0.53450

PS-046 Air-Cond. 1548.87 2366.34 0.84892 0.85404

PS-046 Fridge 1303.00 2142.41 0.49252 0.49213

PS-046 Furnace 623.93 690.28 0.53887 0.55045

PS-046 Oven 4193.05 5024.09 0.91824 0.49346

PS-051 Air-Cond. 2730.66 2569.54 0.91311 0.92936

PS-051 Oven 2115.58 2599.95 0.78501 0.47497

Table 5.1: MSE for the estimated template and AUC for the proposed method and for
Woody’s method [4]



44

5.4 Real-world Data for Multiple Pattern Recognition

it is shown that the blind joint delay estimation for single activation pattern yields mean

AUC around 75%. However, for some appliances such as oven, the AUC is as low as 50%.

Our goal is jointly identify multiple activation patterns together for the same appliance

in a multiple bag setting. We show an example of oven (in Fig. 5.6) with two activation

patterns repeated multiple times.

(e) Oven Activations

Figure 5.6: Examples of Identifying Two Activation Patterns of Oven.

5.4.1 Comparison with Single Pattern Model

To make the comparison fair, we use the same amount of training examples and choose

a window of size 700 (i.e., D = 700) during the training phase. We compare the ROC

and AUC in [29] with those of the K-pattern model for both single activation appliances

and multi-activation appliances.

Since not all appliances have multiple activation patterns, we test the performance

of our proposed algorithm by increasing K (the number of patterns). Based on the

activation patterns estimated during the training phase, we apply the same detector
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maxτ
∑T

t=1(ytest(t) − ȳtest(t))(s(t − τ) − s(t− τ))
H1

≷
H0

ρ′′ as in [29] to each hourly file

in the test data with a period of more than ten days and acquire the ROC curve for

each appliance in each of the four homes. In [29], because the model is not robust to

outliers, the training data has been filtered. To make the comparison fair, we also apply

the filtering process to the training data such that the training examples are free from

outliers. The corresponding AUCs for all appliances available in each home on both

single pattern model and K-pattern model is present in the TABLE 5.2.

House ID App. Name AUC (Single) AUC (MixtureK = 1)

PS025 Air-Cond. 0.95066 0.95228
PS025 Oven 0.52177 0.52076

PS029 Air-Cond. 0.91496 0.91496
PS029 Fridge 0.71906 0.68795
PS029 Furnace 0.86338 0.86519
PS029 Dryer 0.99142 0.98460
PS029 Microwave 0.87869 0.87926
PS029 Oven 0.91030 0.91602

PS046 Air-Cond. 0.84892 0.85882
PS046 Fridge 0.49252 0.49680
PS046 Furnace 0.53887 0.57652
PS046 Oven 0.91824 0.95471

PS051 Air-Cond. 0.91311 0.91418
PS051 Oven 0.78501 0.77505

Table 5.2: AUCs of single pattern model vs. mixture model with K = 1 on test dataset

We observe that mixture model with K = 1 attains a reasonable ROC curves and the

similar AUCs compared to the single pattern model in [29]. We also notice that AUCs

for most appliances in the mixture model is slightly higher than the single pattern model

(10/14 entries are higher in the mixture model in Table 5.2). This suggests that the

mixture model, built upon the single pattern model, is not decreasing the performance

of the single pattern model. Moreover, we concentrate on increasing the AUCs for the
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appliances revealing more than one activation pattern.

5.4.2 K-pattern Model Results

By increasing the number of activation patternsK in the model, more than one activation

pattern can be identified, but each pattern would be more coarse. This is due to the effect

of averaging with less bags for each pattern. To capture the variation among patterns

and maintain the completeness of the training data, we train the mixture model on the

unfiltered training data. Then, we apply the same detector to test for different K.

For appliances with only one activation pattern, such as air-conditioning, furnace, and

microwave, considering a larger K model would not affect the performance significantly

(see Fig. 5.7(a) and (c)). For those appliances with multiple activation patterns, such as

oven, dryer and fridge, mixture model captures more variations of the activation patterns

yielding a significant improvement in detection accuracy (see Fig. 5.7(b) and (d)).

In the case of K = 1, the performance of single pattern model and mixture model

is similar (see TABLE 5.2). To test the performance of mixture model by the effect of

varying K, we present the AUCs for K = 1, K = 2, K = 3 and K = 4 in four homes

which is shown in TABLE 5.3. Even though increasing the number K in the training

phase is more time consuming, the detection accuracy has increased in the testing phase.

The computation complexity of training the mixture model with K components is K

times more than the single pattern model. However, the AUCs improved significantly for

K = 3 than the single pattern model, especially for those appliances containing multiple

activation patterns (see Table 5.2 and Table 5.3). Moreover, without manually filtering

the training data, we can save time and avoid human intervention.

We observe that the AUCs for most appliances change slightly when varying K from
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(a) PS025 Air-cond. ROC
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(b) PS046 Oven ROC
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(c) PS029 Furnace ROC
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(d) PS046 Fridge ROC

Figure 5.7: ROC plots for Single pattern detection and for multiple pattern detection.

1 to 4, while some appliances change significantly, such as oven in home PS025, fridge,

dryer and microwave in home PS029 and air-conditioning, fridge in home PS046. We

notice that the AUC may not increase by increasing K because outliers can be recognized

as a pattern introducing more ’false alarms’. Even if some appliances have only one

activation pattern, the mixture model approach increases the AUC by capturing the

variations in patterns. In practice, K can be selected using cross-validation to prevent
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House ID App. Name AUC (K = 1) AUC (K = 2) AUC (K = 3) AUC (K = 4)

PS025 Air-Cond. 0.91536 0.94718 0.96430 0.94521
PS025 Oven 0.62589 0.77490 0.77117 0.78919

PS029 Air-Cond. 0.89135 0.93373 0.93373 0.93373
PS029 Fridge 0.69454 0.82033 0.82255 0.77734
PS029 Furnace 0.92872 0.87298 0.92531 0.92872
PS029 Dryer 0.14849 0.98840 0.96926 0.97028
PS029 Microwave 0.70571 0.94661 0.93492 0.92364
PS029 Oven 0.92116 0.95478 0.95478 0.91151

PS046 Air-Cond. 0.27775 0.85115 0.94300 0.95887
PS046 Fridge 0.50963 0.72579 0.81084 0.87933
PS046 Furnace 0.50576 0.55790 0.57826 0.52459
PS046 Oven 0.45611 0.85403 0.81768 0.87384

PS051 Air-Cond. 0.91362 0.93661 0.96314 0.96314
PS051 Oven 0.77862 0.78036 0.75660 0.79800

Table 5.3: AUCs of mixture model by varying K

overfitting.
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Chapter 6: Conclusion and Future Work

6.1 Summary

We presented a problem setting in which an unknown pattern present in multiple sets is

sought after. We first presented a single pattern statistical model in which the element of

interest is corrupted by Gaussian noise and is placed among noisy elements. We extended

the model to statistical mixture model for finding multiple patterns across multiple sets.

We proposed an iterative algorithm for solving ML estimation of the unknown pattern

with theoretical guarantees on the optimal solution. Then, we extended the solution by

using an EM-based inference framework with robust initialization approach. We tested

the performance of our proposed algorithms on both synthetic dataset and real world

dataset. The results on synthetic data showed that for high SNR, MSE for multiple

patterns would achieve a similar performance as that of the single pattern.

In real world dataset, we first provided a formulation of the problem of automatic

detection of electric appliance activation from voltage measurements as a blind joint delay

estimation. We then presented a GLRT detection scheme based on activation signatures

estimated in the maximum likelihood framework. In the experiment, we achieved an

improved detection performance relative to Woody’s method. For most appliances, the

AUC achieved by our method was over 80%.

A disadvantage of the single pattern model is whenever there are multiple activation

patterns of the same appliance, the model may not resemble any of the patterns. How-

ever, this can be solved by the K-pattern model. For some appliances, we observed a
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significant performance increase when using the K pattern model instead of the single

pattern model. Moreover, if a home appliance has only one activation pattern, using

the mixture model maintained the performance of the single pattern model. The mix-

ture model introduces significant performance improvement relative to the single pattern

model when an appliance exhibits multiple activation patterns.

6.2 Publications

The following is a list of publications I have worked on during my master period from

2012 September to 2014 June.

6.2.1 Journal papers

1. Zeyu, You and Raich, Raviv. Learning Recurring Unknown Patterns with Ro-

bustness to Outliers. Signal Processing, IEEE Transactions on, IEEE, 2015, In

preparation.

6.2.2 Conference papers

2. Zeyu, You, Raich, Raviv and Yonghong, Huang. An Inference Framework for

Detection of Home Appliance Activation from Voltage measurements, International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014 IEEE

International Conference on, IEEE, 2014.

3. Raich, Raviv and Zeyu, You. Looking for the Same Needle in Multiple Haystacks:

Performance Bounds, International Conference on Acoustics, Speech, and Signal



51

Processing (ICASSP), 2014 IEEE International Conference on, IEEE, 2014.

4. Zeyu, You, Raich, Raviv and Yonghong, Huang. Mixture modeling and inference

for recognition of multiple recurring unknown patterns, International Joint Con-

ference on Neural Networks (IJCNN), 2014 IEEE International Conference on,

IEEE-WCCI, 2014.

6.3 Future Work

The future directions of this work are divided into three different categories:

1. Making the algorithm robust to outliers: Training data may contain pure noise

examples among more pronounced transient responses. We would like to develop

algorithms that are robust to pure noise examples.

2. Reducing the computational complexity from quadratic to linear: The original

approach of solving the non-convex objective for pattern recognition is quadratic

in the number of total instances from all bags. We want to develop an algorithm

that reduces computational complexity.

3. Classification: The previous detection tasks are mainly to detect the presence of

the activation template in the data. We want to develop a classifier that can

determine the label of the patterns (activation templates). We are also interested

in classification of appliances across multiple homes.
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Appendix A: CRLB derivation

A.1 Single set Fisher Information Matrix (FIM)

We derive the expression for FIM1 = E[ log f(X1|s)
ds

log f(X1|s)
ds

T
]. The log-likelihood of s

given X1 = [x11, . . . ,x1n1 ] is obtained by setting N = 1 in (3.6). To simplify the

derivation of of FIM1, we omit the dependence on i and write x1j simply as xj and n1

as n. Consequently, we rewrite log f(X1|s) as

log f(X1|s) = K − ‖s‖
2

2σ2
+ log(

n∑
j=1

e
sT xj

σ2 ). (A.1)

The derivative of the log-likelihood log f(X1|s) wrt to s is given by:

log f(X1|s)
ds

=
1

σ2

n∑
j=1

wj(xj − s), where (A.2)

wj = e
sT xj

σ2 /(
n∑
j=1

e
sT xj

σ2 ) (A.3)

are sum-to-one non-negative weights that depend on (X1, s). Due to symmetry in the

position of s, the distribution of log f(X1|s)
ds is invariant of J and hence

FIM1 = E[
log f(X1|s)

ds

log f(X1|s)
ds

T

|J = 1]. (A.4)
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We can further simplify this as

FIM1 =
1

σ4
EX [(

∑
k

wk(xk − s))(
∑
k

wk(xk − s))T |J = 1] (A.5)

Since we proceed with the calculation of FIM1 under the assumption that J = 1, we

assume x1 ∼ N (s, σ2I) and xj ∼ N (0, σ2I) for j = 2, . . . , n.

Due to the dependencies between the wj ’s and xj ’s (see (A.3)), the computation of

the FIM is non-trivial. To simplify the dependencies, we consider a change of coordinates.

First, we introduce the d × n matrix Z whose entries are iid zero mean unit variance

Gaussian random variables, Zlk ∼ N (0, 1). The jth column of Z is given by zj =

[Z1j , Z2j , . . . , Zdj ]
T . Then, we express xj in terms of Z as:

xj = sδj1 + σUzj (A.6)

where U = [ s
‖s‖ , u2, . . . , ud] is a unitary matrix and δab is the delta function, which

satisfies δab = 1 if a = b and 0 otherwise. Note that with the exception of the first

column of matrix U all other columns can be chosen arbitrarily while maintaining the

orthonormality. To express the wi’s in terms of Z, we substitute
sTxj
σ2 = ρδj1 +

√
ρZ1j

into (A.3) and express wj in terms of Z as

wj =
eρδj1+

√
ρZ1j∑n

l=1 e
ρδl1+

√
ρZ1l

. (A.7)

Note that for all j = 1, 2, . . . , n, wj depends only on Z11, . . . , Z1n and is independent

of Zl1, . . . , Zln for all l = 2, . . . , n. Next, we express the score, d log f(X1|s)
ds , in the new

coordinates. Since the score depends on (xj − s), we compute its new coordinates using
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(A.6):

UT (xj − s) = ‖s‖e1δj1 + σzj − ‖s‖e1 (A.8)

where et denotes the canonical vector in which the tth element is one and all other

elements are zero. Using the variable substitution in (A.8), we can re-write FIM1 as

FIM1 =
1

σ2
UMUT , where (A.9)

M =

n∑
j1=1

n∑
j2=1

E
[
wj1wj2(

√
ρe1(δj11 − 1) + zj1) ·

(
√
ρe1(δj21 − 1) + zj2)T

]
. (A.10)

We proceed with the calculation of the entries of matrix M . The kl term of the matrix

M is given by

Mkl =

n∑
j1=1

n∑
j2=1

E[wj1wj2(
√
ρδk1(δj11 − 1) + Zkj1) ·

(
√
ρδl1(δj21 − 1) + Zlj2)]. (A.11)

If k = l, we can simplify Mkl as

Mkl = E
[( n∑
j=1

wj(
√
ρδk1(δj1 − 1) + Zkj)

)2]
. (A.12)

For the case of k = l = 1, we have δl1 = δk1 = 1. Hence the argument of the square in

(A.12) is
∑n

j=1wj(
√
ρ(δj1 − 1) + Z1j) = −√ρ

∑n
j=2wj +

∑n
j=1wjZ1j = −√ρ(1− w1) +∑n

j=1wjZ1j . Substituting
∑n

j=1wj(
√
ρ(δj1 − 1) + Z1j) = −√ρ(1 − w1) +

∑n
j=1wjZ1j
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into (A.12) yields

M11 =
n∑

j1=1

n∑
j2=1

E[wj1wj2(
√
ρ(δj11 − 1) + Z1j1)(

√
ρ(δj21 − 1) + Z1j2)] (A.13)

= ρ

n∑
j1=1

n∑
j2=1

E[wj1wj2(δj21 − 1)(δj21 − 1)] (A.14)

+
√
ρ

n∑
j1=1

n∑
j2=1

E[wj1wj2(δj11 − 1)Z1j2 ] (A.15)

+
√
ρ

n∑
j1=1

n∑
j2=1

E[wj1wj2(Z1j1(δj21 − 1)] (A.16)

+
n∑

j1=1

n∑
j2=1

E[wj1wj2Z1j1Z1j2 ] (A.17)

= ρE[(
n∑

j1=2

wj)
2]− 2

√
ρE[

n∑
j1=2

wj1

n∑
j2=1

wj2Z1j2 ] + E[(
n∑
j=1

wjZ1j)
2] (A.18)

= ρE[(1− w1)
2]− 2

√
ρE[(1− w1)

n∑
j=1

wjZ1j ] + E[(

n∑
j=1

wjZ1j)
2] (A.19)

= E[(
√
ρ(1− w1)−

n∑
j=1

wjZ1j)
2]. (A.20)

We continue with the evaluation of Mkl terms for which k = 2, . . . , n and l = 1. Substi-

tuting δk1 = 0 into (A.11), we simplify Mkl as

Mk1 =

n∑
j1=1

n∑
j2=1

E[wj1wj2Zkj1(
√
ρ(δj21 − 1) + Z1j2)]

=
n∑

j1=1

n∑
j2=1

E[wj1wj2(
√
ρ(δj21 − 1) + Z1j2)]E[Zkj1 ]

= 0, (A.21)

where the second equality holds due to the independence between Zkj for k = 2, . . . , n
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and j = 1, . . . , n and (Z1j , wj) for j = 1, . . . , n and the third equality hold since all

Zkj are zero mean. By symmetry M1k = Mk1 = 0. Continue with k, l = 2, . . . , n.

Recognizing that δk1 = δl1 = 0, we simplify Mkl as

Mkl =
n∑

j1=1

n∑
j2=1

E[wj1wj2Zkj1Zlj2 ] (A.22)

=

n∑
j1=1

n∑
j2=1

E[wj1wj2 ]E[Zkj1Zlj2 ] (A.23)

=

n∑
j1=1

n∑
j2=1

E[wj1wj2 ]δklδj1j2 (A.24)

=

n∑
j=1

E[w2
j ]δkl (A.25)

since E[wj1wj2Zkj1Zlj2 ] = E[wj1wj2 ]E[Zkj1Zlj2 ] = E[wj1wj2 ]· δklδj1j2 . Note that Mkk =∑n
j=1E[w2

j ] for k = 2, . . . , n and Mkl = 0 for k 6= l. The matrix M is a diagonal matrix

and is given by M = diag([M11,M22, . . . ,M22]). We can write M as

M = (M11 −M22)e1e
T
1 +M22I.

Multiplying on the left with U and on the right with UT and dividing by σ2, we obtain

FIM1 as

1

σ2
UMUT =

1

σ2
((M11 −M22)

ssT

‖s‖2
+M22I).

For the special case of ni = n for all i, we have FIM= N
σ2 ((M11 −M22)

ssT

‖s‖2 + M22I) =

NM22
σ2 (M11−M22

M22

ssT

‖s‖2 + I) and consequently CRLB= σ2

NM22
(−M11−M22

M11

ssT

‖s‖2 + I) (since (I +

auuT )(I − buuT ) = I + (a − b − ab)uuT = I, if b = a
a+1). We notice that the CRLB in

the direction of the unit vector s/‖s‖ is given by σ2

nM11
and σ2

nM22
in any other direction

orthogonal to s.
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A.2 Extra equations

Note that since the expected value of the score is 0, we have

0 =
n∑

j1=1

E[wj(
√
ρe1(δj1 − 1) + zj)] =

√
ρe1E[

n∑
j1=1

wj(δj1 − 1)] +
n∑

j1=1

E[wjzj ](A.26)

= −√ρe1E[

n∑
j=2

wj ] +

n∑
j=1

E[wjzj ] (A.27)

=
√
ρe1E[w1 − 1] +

n∑
j=1

E[wjzj ] (A.28)

n∑
j=1

E[wjZ1j ] =
√
ρE[1− w1] (A.29)




