

AN ABSTRACT OF THE DISSERTATION OF

Daniel López Echevarŕıa for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on June 9, 2011.

Title:

Variable Sampling Compensation of Networked Control Systems With Delays

Using Neural Networks.

Abstract approved:

Mario E. Magaña

In networked control systems (NCS) information or packets usually flow from a

sensor or a set of sensors to a remotely located controller. Then the controller

processes the received information and sends a series of control commands to the

actuators through a communication network which could be either wireless or

wired. For any type of communication network, time delays are an inherent

problem and depending on the conditions of the network they can be constant,

variable or even of random nature. Time-delays occurring from sensor to

controller and from controller to actuators may cause important system

performance degradation or even instability. This work proposes a novel strategy

of using the predictive capabilities of artificial neural networks (NN), particularly

the application of an adaptive NN, to minimize the effects of time delays in the

feedback control loop of NCS. We adopt an adaptive time delay neural network

(TDNN) to predict future time-delays based on a given history of delays that are

particularly present on the network where the corresponding system belongs to.

The adaptive nature of a TDNN allows the prediction of unexpected variations of

time-delays which might not be present in the training set of a known history of

delays. This is an important characteristic for real time applications. Using

predicted time delays, different methodologies can be used to alleviate effects of

such delays on NCS. Our focus here is on the development of an observer-based

variable sampling period model, and this dissertation describes how this method

can be used as an effective solution for this problem. Generally speaking, the

predicted time-delay values are used for the discretization of a continuous-time

linear time invariant system model transforming it into a discrete-time linear

time variant system model. In this dissertation, the practical phenomenon of packet

dropout is also addressed.

c©Copyright by Daniel López Echevarŕıa
June 9, 2011

All Rights Reserved

Variable Sampling Compensation of Networked Control Systems
With Delays Using Neural Networks

by

Daniel López Echevarŕıa

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 9, 2011
Commencement June 2012

Doctor of Philosophy dissertation of Daniel López Echevarŕıa presented on
June 9, 2011.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Daniel López Echevarŕıa, Author

ACKNOWLEDGEMENTS

First of all I want to praise God for giving me the strength, understanding, and

wisdom to complete my studies. I also want to express my sincere appreciation to

my advisor Dr. Mario E. Magaña for his invaluable input to this project and for

his support, motivation and advice throughout my research and stay at Oregon

State University. I also want to thank Professor John Schmitt for his suggestions

and feedback. I want to thank my parents, brothers and sister who give me

strength, words of wisdom and encouragement and for their unconditional love.

Also I have special appreciation and gratitude toward my friend Panupat

Poocharoen for his support, advice and true friendship. I am grateful to everyone

who has supported me during this period of my life.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Thesis Contributions and Organization 4

2 Related Work and Problem Formulation 8

2.1 Time Delay in Networked Control Systems 8

2.2 Problem Formulation . 14
2.2.1 Networked Control System Model 15
2.2.2 Time Delay Propagation . 16
2.2.3 The Idea of Prediction . 18

3 Delay model 20

3.1 Sampling systems with delay . 23

4 Artificial Neural Network for Prediction 25

4.1 Fundamentals . 25
4.1.1 Time Delay Neural Network 25
4.1.2 Backpropagation Algorithm 27
4.1.3 Transformation of input data 34

4.2 Neural Network Topology . 35

4.3 Experimental Results . 39
4.3.1 Selection of Neural Network Topology 39
4.3.2 Prediction results . 43
4.3.3 Prediction results with actual data 53
4.3.4 Multi-step prediction . 55

4.4 Conclusion . 61

5 Networked Control System Model Design 63

5.1 Time delays and timeout policy . 63

5.2 Variable sampling and observer models 66

5.3 Determining K̄ and L̄ . 70

5.4 Treatment of packet loss . 71
5.4.1 NCS subject to delays and with no packet loss 72

TABLE OF CONTENTS (Continued)

Page

5.4.2 NCS model subject to packet loss and time delays 72
5.4.3 Alternative approaches . 77

6 Application to the Inverted Pendulum 79

6.1 Inverted Pendulum . 79
6.1.1 Fixed sampling period, no delays and no packet loss 84
6.1.2 Fixed sampling period with delays and no packet loss 86

6.2 Variable Sampling Period . 86
6.2.1 Presence of Delays and No Packet Loss 87

6.3 Presence of delays and packet dropout 94

6.4 Conclusion . 105

7 Conclusion and Future Work 106

7.1 Future Work . 108

LIST OF FIGURES

Figure Page

2.1 NCS with queuing methodology. 9

2.2 Block diagram of the NCS . 11

2.3 Network control system with induced delays τ sc and τ ca 16

2.4 Timing diagram of network delay propagations. 17

2.5 One step ahead prediction . 19

4.1 Time delay neural network. 27

4.2 Local and global minima of the error function. 33

4.3 Early stopping technique. 37

4.4 Prediction of delay sequence with β = 0.0 using NET8,6,1. 44

4.5 Distribution of actual and predicted time delays, β = 0.0, NET8,6,1. 44

4.6 Prediction of delay sequence with β = 0.25 using NET5,9,1. 46

4.7 Distribution of actual and predicted time delays, β = 0.25, NET5,9,1. 46

4.8 Prediction of delay sequence with β = 0.50 using NET3,6,1. 47

4.9 Distribution of actual and predicted time delays, β = 0.50, NET3,6,1. 47

4.10 Prediction of delay sequence with β = 0.75 using NET4,8,1. 49

4.11 Distribution of actual and predicted time delays, β = 0.75, NET4,8,1. 49

4.12 Prediction of delay sequence with β = 0.25 using NET5,2,1. 52

4.13 Distribution of actual and predicted time delays, β = 0.25, NET5,2,1. 52

4.14 Prediction of delay sequence using a NET5,17,1. 55

4.15 TDNN for multi-step prediction. 56

4.16 Adaptive TDNN multi-step prediction. 57

4.17 Non-adaptive TDNN multi-step prediction. 59

4.18 Non-adaptive TDNN multi-step prediction 60

LIST OF FIGURES (Continued)

Figure Page

4.19 Adaptive TDNN multi-step prediction 60

5.1 Proposed NCS based on a predictor and an observer. 69

5.2 Representation of a NCS with packet loss. 73

6.1 Inverted pendulum on a cart. 80

6.2 Inverted pendulum with no delays. 85

6.3 Control input with no delays. 85

6.4 System subject to delays, τ sc and τ ca had mean μ = 0.06s. 87

6.5 Representation of system with delays and no packet loss. 88

6.6 Total time delay series, τ sc = τ ca, μ = 0.02, β = 0.5. 89

6.7 Variable sampling applied to inverted pendulum subject to delays. . 89

6.8 Control input, τ sc = τ ca, μ = 0.02, β = 0.5. 90

6.9 Total time delay series, τ sc = τ ca, μ = 0.06, β = 0.5. 91

6.10 Inverted pendulum subject to delays. 93

6.11 Control input, τ sc = τ ca, μ = 0.06, β = 0.5. 93

6.12 NCS with random delays and packet loss. 94

6.13 Bounded time delay series τ sc (a) and τ ca (b). 97

6.14 Inverted pendulum subject to delays and 30% packet dropout. . . . 98

6.15 Control input, τ sc = τ ca, μ = 0.02, β = 0.5. 98

6.16 Inverted pendulum subject to delays and 49% packet dropout. . . . 101

6.17 Control input, τ sc = τ ca, μ = 0.02, β = 0.5. 101

6.18 Control input, τ sc = τ ca, μ = 0.06, β = 0.5, 12.3% Dropout. 102

6.19 Inverted pendulum subject to delays and 30% packet dropout. . . . 104

6.20 Control input, τ sc = τ ca, μ = 0.02, β = 0.5, 30% Dropout. 104

LIST OF TABLES

Table Page

4.1 Back Propagation Algorithm. 34

4.2 Algorithm for TDNN topology selection. 38

4.3 Correlation factors . 40

4.4 RMSE validation performance for a series with: μ = 0.02, β = 0.0. . 41

4.5 RMSE validation performance for a series with: μ = 0.02, β = 0.25. 41

4.6 RMSE validation performance for a series with: μ = 0.02, β = 0.5. . 42

4.7 RMSE validation performance for a series with: μ = 0.02, β = 0.75. 42

4.8 RMSE prediction performance of different TDNN topologies. 48

4.9 RMSE prediction performance of different TDNN topologies. 50

4.10 Topologies suggested by the rule of thumb. 51

4.11 RMSE prediction performance of different TDNN topologies. 51

4.12 RMSE validation performance for a series with: μ = 0.02, β = 0.5. . 54

4.13 RMSE performance from multi-step prediction. 58

6.1 Inverted pendulum system parameter. 80

6.2 Assumptions for the NCS. 82

6.3 Simulation conditions for the NCS with fix sampling period. 86

6.4 NCS simulation conditions. 92

6.5 NCS simulation conditions. 95

6.6 NCS simulation conditions. 103

DEDICATION

To my parents, brothers and sister.

Chapter 1 – Introduction

In the last decades, increasing advances in communication systems, especially in

the field of wireless communications, have been providing researchers new ideas for

applications. Areas like geology, forestry, biology, robotics, aeronautics, medicine,

and space continue finding new ways to improve research techniques using wireless

communication devices. Those devices are utilized not only for conventional voice

or video transmissions, but also for sending and receiving information using a wide

variety of sensors and actuators.

New communication systems are faster and more reliable, and can compete with

conventional communication and control systems set-ups, namely, wired-connected

(traditionally known as point-to-point connection). For instance, it is possible

to locate a controller and a plant (the system to be controlled) far from each

other without physical connection, but still get the same performance as if they

were wire-connected. In the area of control systems, the traditional point-to-point

communication architecture has been successfully implemented for decades. This

architecture has reached its limits because of the physical need to connect each

sensor and actuator by a wire. This is not a suitable way to meet new require-

ments such as modularity, decentralization of control, low cost, and/or quick and

easy maintenance. The point-to-point architecture is being upgraded using new

communications set-ups, and currently there is an increasing interest in applying

2

wireless communication techniques to networked control systems (NCS). Wireless

systems are more flexible and they optimize physical resources such as connection

hardware, weight and space. These are important characteristics when transmit-

ters and receivers are in motion. This is why wireless control systems have become

a new trend in modern control and a growing area for research.

However, the advantages offered by a wireless network applied to a control sys-

tem are tied to inevitable problems appearing in the transmission of sensor and

control signals. One problem is the effect of time delays in the feedback loop of

NCS. Time delays may cause instability in the controlled system. As we will see

in later chapters, delays are characterized according to origin inside of the NCS,

and they can have different behavior like length and probability distribution. Con-

trolled systems subject to delays have been a constant topic of research generating

different approaches to compensate for the effects of delays. Another character-

istic of the communication network is the loss of information due to packet loss

or packet dropout. This may cause instability and poor performance in the NCS

because of the critical real-time requirement in control systems. This issue has

also been investigated over the years and further chapters mention the works of

the researchers on different solutions.

Different approaches for controlling a plant over a NCS have been created and

each uses different tools to solve a particular problem. Particularly interesting is

the application of a combination of different tools to address the time delay and

packet dropout in a NCS. Tools include artificial neural networks and classical con-

trol methods like linear quadratic regulators (LQR) which make use of estimators

3

like the Kalman filter.

Artificial neural networks, or simply called neural networks (NN), were orig-

inally conceived based on the biological counterpart, neurons, and the extensive

connection between them, synapses, forming neural networks. Such networks are

responsible for the creation of human brain activities like memory, learning ability,

generalization activity, adaptivity, and inherent contextual information process-

ing [1]. It can be said that NNs are computational models of the brain. The field

of NN covers a very extensive area and to mention all types and applications is

beyond the scope of this thesis.

Artificial neural networks research and applications are in constant growth, and

have been increasingly applied in several fields including communication and con-

trol [3] [4]. We are particularly interested in the capacity of NN to approximate

any nonlinear function. Such characteristics can be applied to predict a sequence

of delays either off-line or on-line, which can be applied in real-time processes to

predict one step ahead or multiple predictions as we will see in future sections.

The focus of this dissertation is the application of an artificial neural network as

a predictor of a time series. Time series prediction using NN has been investi-

gated in the literature [6], [7], [9]. Extensive research can be found regarding the

application of NN for forecasting time series [3]. In networked control systems,

prediction based on NN has been investigated to guarantee stability and good sys-

tem performance with the presence of time delay in the feedback communication

loop [10], [11], [12]. Specific research on predicting internet time delay has been

done in [4], [7], [8], [9]. This dissertation will describe some basic principles of NN

4

and how NNs are applied to help compensate for the effects caused by induced time

delays and packet dropouts in NCSs. Our interest is in the treatment of delays

and packet loss in the feedback communication loop that exists in a NCS. In this

dissertation a novel approach to deal with the effects of time delays in a NCS is

investigated, based on the prediction of a series of time delays. Such predictions

are done by a time delay artificial neural network. The predicted values are used

as the sampling period for the controlled system model. Furthermore, the system

model is an observer-based variable sampling period which allows compensation

for the effects caused by the late arrival or absence of the information packet to

the plant, namely, time delays or packet dropout.

1.1 Thesis Contributions and Organization

The main contribution of this research is the development of a variable sampling

methodology to mitigate the effects of time delays and packet dropouts in net-

worked control systems using neural networks. The aim is to apply this method-

ology to applications of controlling dynamic systems that are located remotely.

Specifically, we develop and apply an adaptive time-delay neural network to

perform one-step-ahead predictions of the time delays occurring in the communi-

cation loop of the networked control system. Such neural network uses a sequence

of previous time-delay values to predict the next value of the sequence. We present

an iterative way to obtain the most suitable neural network topology for our par-

ticular studies. An important part on the selection of the best topology is the

5

validation of every topology created. This step plays the main role in selecting

the most appropriate topology. We show that the proposed neural network with

a relatively simple topology with five input nodes in the tapped delay line, nine

nodes in the hidden layer and one output, is capable of achieving predictions of a

time-delay sequence in a one-step-ahead fashion. We also propose and implement

a NN configuration for multi-step predictions. In our design multi-step predictions

are required in the event of packets dropout. We show that multi-step predictions

are possible with certain limitations.

A second contribution is the creation of a novel networked control system de-

sign. We present an observer-based variable sampling control model. This pro-

posed model uses the predicted value from the NN as the sampling time of the

NCS model. In our design each packet is timestamped, it has also the information

of the last time delay from controller to actuator and the plant states data. With

the information of each packet the NN is able to predict the next time delay value

which is used by the observer and controller to compute the control signal. The

main objective of this model is to compensate for the effects caused by time delays

and packet dropouts in the communication loop. To address the packet dropout

case, the proposed NCS model has two variations and the difference between them

is in how the missing information is replaced. This dissertation shows that these

designs are able to compensate for the time delays in the communication loop and

also for packets dropped until certain extent.

This dissertation is organized into seven chapters. Each chapter is self-organized

providing sufficient background and related work.

6

In Chapter 2, related work regarding the treatment of time delays on NCS is

presented. The basic idea of variable sampling period is also given. The problem

formulation is presented together with a description of the proposed NCS model.

In Chapter 3 the model for the time delay series used in our research based on

a recursive equation to form a correlated sequence of time delays is presented.

In Chapter 4, we present the artificial neural network used to predict a time

delay series. We describe the fundamentals of the NN used in our research, namely,

time delay neural network (TDNN). Also presented is the methodology used for the

selection of the topology of the TDNN. Such a method is based on trial and error,

but it is done sequentially by allowing the NN to grow iteratively, i.e. change the

number of input nodes in the input layer and in its hidden layer. Training of the NN

was done in a way to prevent overfitting (overtraining) by implementing the early

stopping technique. This method is compared with an alternative methodology,

the Baum-Haussler rule. We present several numerical tests designed to select the

most appropriate topology for the neural network which is applied in the rest of

our research.

In Chapter 5, the methodology of using a variable sampling period to create

suitable control models to compensate for packet dropouts and delays in a system

is explained and derived. We also present our proposed observer-based variable

sampling period models for application in networked control systems. Each model

is designed to compensate for the effects caused by time delays and packet dropout

in a communication network.

In Chapter 6, we apply the proposed control models to the classic inverted

7

pendulum problem. Several cases are investigated. We simulate the controlled

system when it has no delays and no packet dropouts affecting it, followed by the

case when delays and no packet dropouts are present in the communication loop.

Also the case when delays and packet dropouts occur in the NCS is investigated.

Applied delays sequences with different means are included. This provide an insight

to the limitations of the proposed techniques applied to a real case. It was found

that under certain assumptions and conditions our proposed methodology is able to

control the particular case of the inverted pendulum subject to delays and around

50% packets dropped. This chapter is followed by conclusions and future work in

Chapter 7.

8

Chapter 2 – Related Work and Problem Formulation

Treatment of delays and packet loss is an important topic in the area of NCS.

Different algorithms have been developed and studies have been conducted to find

means to compensate for their effects. In this chapter some of those approaches

are summarized.

2.1 Time Delay in Networked Control Systems

Networked control systems with delays in the communication loop have been ap-

proached in many different ways over the years. For instance, the queuing method-

ology shown in Fig. 2.1 has been utilized to change random network delays, into

non-variable delays [34–36]. By doing this conversion the system becomes time

invariant and is easier to analyze. This methodology uses an observer to estimate

the plant states and a predictor to compute the predictive control based on the

past output measurements. This kind of method has a drawback which is that

the queues are designed according to the maximum time delay that can occur in

the system. If the time that the queues use is shorter than the maximum delay,

then the queue will be empty before the new information packet arrives. For this

reason, the queue method adds more delay to the system.

Stochastic approaches like the one in [5], which proposes an optimal stochastic

9

Controller

Actuators Plant Sensors

NETWORKca sc

u(t) y(t)

K

Queue 2

Queue 1

Figure 2.1: NCS with queuing methodology.

control methodology to control a NCS with random delays. Such a method treats

the effects of random network delays in a NCS as a linear quadratic Gaussian

problem or LQG. Important assumptions in this method are that sensors are time

driven and controller and actuator nodes are event driven. The statistics of the

delays are known and the total variation of the delays is assumed to be less than

one sampling period.

The majority of the research in digital feedback control uses periodic or time

driven control. Continuous-time signals are represented by their sampled values

at a fixed rate. However, the attention to variable sampling step size methodol-

ogy has been increasing [15–17]. One of the reasons is because a fixed sampling

period might lead to unnecessary use of resources like processor or communication

loads. For instance, with fixed sampling time the controllers perform the control

computations at a fixed rate all the time, including when no significant event has

happened during the process. Variable sampling can relax these situations by using

10

the resources only when specific events occur. [18] analyzes the implementation of

event-driven control proposing sensor-based event-driven control by using a con-

trol update triggered by the arrival of new data to the sensors. The same paper

proposes the reduction of resources used by the controller, like processor loads and

communication loads.

Our attention is focused on a different approach to solve the time-delay effect

problem, and is based on the creation of a variable sampling period system model.

In this dissertation the proposed approach requires knowledge of the future value

of the delays. This can be regarded as the prediction of the time delays on the

NCS. In our case, the required predictions are based on the implementation of

artificial neural networks (NN), for which details are explained later.

The basic idea of the variable sampling step size method using predicted values

of the time delays has been studied in [10]. The method was proposed for the

system shown in Fig. 2.2 where it considers an internet-based connection only

between sensors and a controller, and the controller is directly connected to the

plant. The system is represented in continuous time as

ẋ(t) = Ax(t) +Bu(t), x(t0)

y(t) = Cx(t)

(2.1)

with feedback controller

u(t) = −Kx(t)

where all the parameters of the system are explained in detail later.

11

Controller Actuator Plant

Actuator Actuator

-

Delay
Predictor

u y

realpred

Virtual Sensor

Figure 2.2: Block diagram of the NCS

Under this configuration, the system model is sampled at each sampling step

with a different time interval, i.e. different sampling step size. The sensor, network

and the delay predictor together create a virtual sensor, which in the figure is

indicated by the dotted line box. With this virtual sensor the NCS is turned into

an instant sampling time, which ideally does not have time delay. Such sampling

period is calculated based on the predictions made by a backpropagation neural

network which precedes the controller. Then the controller will assign the sampling

period Tk at sampling step k equal to the predicted time delay τk. A consequence

of this is that the state-space model in 2.1 becomes time varying and its discrete

representation takes the form given by 2.2. In short, the model of the NCS depends

on the predicted time delay τk, which becomes a parameter of the system matrix

Φ and the input distribution matrix Γ, i.e.

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)u(tk)

y(tk) = Cx(tk)

(2.2)

12

with discrete feedback controller

u(tk) = −K(Tk)x(tk). (2.3)

A complete description of this model is given in further chapters. Although [10],

does not provide a suitable way to compute the controller parameters for this

method, it points out that a control gain K can be calculated for every predicted

time delay τk. This suggestion is taken into account in our work and a variation for

a more suitable controller is presented and analyzed in chapter 5. We investigated

further the idea given in [10] about the variable sampling period and the use of a

back propagation neural network as a predictor of time delays. This methodology

requires the use of historical data to train the neural network. However, though

the same paper used a random number generator, the paper does not provide

information on the distribution of the data used for the simulations presented.

In [11] the same methodology as in [10] is adopted , but the NCS configuration

is slightly different in the sense that a second predictor is added on the actuator

side. This is an interesting idea, but it is not mentioned how the second predictor

sends the information (from the predictions) to the controller and how the two

predictors are coordinated. Further analysis is required on which type of NN is

more suitable for the prediction of time delays, and some research which has been

done on this topic is mentioned next.

Recently there has been increasing interest in investigating the prediction of

time delay that is induced over the internet. This is because internet time delay

13

prediction plays a significant part in improving dynamic performance of many real

time applications. One such application is internet based control systems. In [7]

the performance of two methods for prediction are compared: the autoregressive

model (AR) and an adaptive linear element, also known as ADALINE. In the same

paper, real data is used to perform the comparison between the two methods. The

results obtained show that the ADALINE, with 10 input nodes and one output,

achieved better performance than the AR model. This suggests that the ADALINE

can be used in internet-based applications and it should perform as well as or better

than the AR model. However, it is not mentioned how the number of inputs was

decided for the ADALINE. It is only mentioned that ten input nodes were selected

with the purpose of reducing calculation cost of the neural network with the idea

of guaranteeing prediction precision. A similar experiment was done in [9], where

a multilayer perceptron (MLP) was implemented, with a trial-and-error selection

of the number of input nodes, hidden layers, and neurons per hidden layer. The

NN used was non adaptive since it was trained off-line and then applied to a on-

line prediction process. The authors concluded that when intense fluctuations of

the time delay occur the MLP predictor introduces greater prediction errors and

that more accurate prediction methods should be created. It can be inferred from

this outcome that it is possible to investigate the potential results of modifying

the learning process of the NN, for instance, the application of early stopping to

truncate the number of epochs or iterations and obtain better generalization.

It is important to notice that there exist two common denominators in the

previous works [7] and [9]. First, they both investigated the prediction of internet

14

time delays. Secondly, one is that they did not use a specific methodology to

select the best predictor topology, i.e. the number of input nodes and the number

of neurons per hidden layer. In [4] an alternative methodology is adopted which

provides a suitable topology of a NN. Following is a summary of the procedure.

The entire training sequence is divided into sections of the same length. The

first section is used to train the NN to minimize the mean squared error (MSE),

which is a cost performance function. The NN starts with p inputs and q hidden

nodes. Once the parameters of the network that minimize the MSE are known,

the trained NN is used with the rest of the sections. This process is repeated for

different values of p and q. Then the selected architecture is the one that gives

the minimum MSE after completing all tests. This is an organized trial-and-error

method to select the appropriate configuration of the NN.

It is important to note that training the NN requires adequate data available

to solve a given problem. Our work is focused on the time delays occurring in

a NCS that utilizes a wireless network. Therefore, it is important to have good

data on delays or at least the best approximation of real data based on specific

models. Various approaches to model time delays on NCS have been investigated,

and some of them are mentioned in chapter 3.

2.2 Problem Formulation

This section describes the main ideas and approaches proposed in the rest of the

dissertation. It starts with a description of the networked control system model

15

studied in later chapters. Also included is a description of the propagation of delays

over the NCS, the role of predictions in the idea of variable sampling, and how

all these can be used to compensate for the delays. Finally a basic explanation of

prediction is given.

2.2.1 Networked Control System Model

Our research is based on the system sketched in Fig. 2.3. This is a representation

of a NCS, in which sensors and actuators are linked to a centralized controller via

a wireless communication network (dashed line). Unlike the ideal case, the infor-

mation sent by sensors and controller does not arrive instantly to the destination

point, i.e. there exists a lag or delay on the arrival time. In NCS time delays

occur while the devices are exchanging data, affecting the arrival time of the infor-

mation (packets) transmitted to its destination. Such delays are sometimes called

network-induced delays. Depending on where the information is sent from, delays

can be denoted as sensor-to-controller delays τ sc, computational time delays in the

controller τ c and controller-to-actuators delay τ ca. It is assumed that computa-

tional delays can be absorbed by τsc or τca. More information about delays is given

in later chapters. On the sensors side, timestamped information packets (Isck) are

created before being transmitted to the controller. Packets have the information

from sensors regarding the states of the plant output. They also include the last

time delay value from controller to actuator, i.e. τ cak−1. In later chapters the im-

portance of having the information of τ cak−1 is emphasized. For the moment it is

16

Controller-Observer-Predictor

Actuators Plant Sensors

NETWORK

K

ca
k 1

sc
kI

sc
k

ca
k

)(kty)(ktu

Figure 2.3: Network control system with induced delays τ sc and τ ca

enough to mention that the values τ cak−1 are used by a predictive neural network to

compute the one step ahead prediction of the delay τ cak that is going to happen.

Actuators receive the feedback input from the controller and execute a required

action.

2.2.2 Time Delay Propagation

As mentioned before, in NCS the packets travel from controller to actuators and

from sensor to controller. The time elapsed from when they are sent until they

are received is variable and those variations depend on many factors as we will

see in chapter 3. Following the sketch in Fig. 2.4, it can be seen that the packet

that contains the information of the plant in the instant (a) departs from the

plant output at instant Tk. It will traverse the network and arrive to the input

controller with a time lag (time delay) τ sck . Assuming the controller uses a very

17

sc
k

)(tu

t

plant
output

controller
input

controller
output

actuator
input

plant
input

kT

ca
k

k

kkT

)(a
)(b

Control applied

Control required

Figure 2.4: Timing diagram of network delay propagations.

small computational time to calculate the control signal, such signal departs in a

packet from the controller output, traversing through the network to the actuators.

The packet arrives to the actuators with delay τ cak and the control signal is input

to the plant. By the time the control signal is applied to the plant the control is

not updated for the actual conditions of plant in (b).

An interesting idea is to foresee or predict (at sampling step Tk) the total time

delay τk = τ sck + τ cak and calculate a corresponding control signal more suitable to

the conditions of the plant at time Tk+τk , i.e. at point (b). In this way by the time

the packet reaches the actuators it will input a more suitable control value. i.e.

the required control. This is explained in the following way:

18

Since the arrival time of packets to the actuators is variable, we can think that

by adopting event-driven actuators and controller the NCS becomes a variable

sampling system. Then the idea is to calculate (at sampling step Tk) the total

time delay τk = τ sck + τ cak that is going to happen, and perform the next sampling

of the system model at Tk+τk = τk and calculate its corresponding control signal

that will arrive to the true system at Tk+τk . Furthermore, since time delays are

variable, the sampling is variable as well. This thesis shows a proposed NCS model

using the ideas exposed above which is introduced in section 2.2.3.

2.2.3 The Idea of Prediction

Prediction is the forecasting side of information processing. In continuous time,

the aim is to obtain at time t the information about y(t+ λ) for some λ > 0, i.e.

what the quantity in question, y{·}, will be subsequent to the time at which the

information is produced. Measurements until time t can be used to do this [24]. In

discrete time, a real discrete random signal {y(k)}, where k is the discrete index

and {·} denotes the set of values, is most commonly obtained by sampling an

analogue measurement [21].

The principle of prediction of a discrete time signal is represented in Fig. 2.5.

The value of the signal ak is predicted on the basis of a linear combination of

p past values, i.e. a linear combination of (ak−1, ak−3, ak−3, ..., ak−p), to create a

19

pka

)(pk)2(k)1(k k

...

...

kâ

datapast

2ka
1ka

valuedesired

Figure 2.5: One step ahead prediction

prediction âk of ak. Thus, the prediction error e(k) becomes

e(k) = dk − âk

where dk is the desired value or target and âk is the one step ahead predicted value.

In further chapters the sequence to be predicted will use the notation τk since the

parameter to be predicted is the time delay occurring at the step time k.

20

Chapter 3 – Delay model

It is important to know the types of delay that occur in a network as well as

their weight in the total delay which eventually will affect the performance of a

dynamic networked control system. One type of delay is processing delay, which

is the time required to examine the packet’s header and determine where to direct

the packet. Another type is queuing delay which is due to the time the packet

waits to be transmitted onto the link. Transmission delay is the amount of time

required to transmit all of the packet’s bits into the link. Also a type of delay

is propagation delay which is the time a packet requires to propagate from the

beginning of a link to router in a point B. Another component is the speed of

the signal transmission and the distance between the source and destination. The

contributions of these delay components can vary significantly. For example, the

propagation delay alone can be just a couple of microseconds if the link connecting

two routers is within the same university campus, but this delay can be of hundreds

of milliseconds for two routers interconnected by a geostationary satellite link. For

this reason propagation delay can be the dominant one in the total delay of the

network loop [48]. The other delays can be also negligible or significant depending

on the parameters of the network. Due to the characteristics of each of these

delays, some assumptions are taken into account for our analysis and research. In

our work we are assuming that queuing delay, processing delay and transmission

21

delay are small and are absorbed by either the sensor to controller delay, τsc, or by

the controller to actuator delay, τca.

The phenomenon of time delay depends on the communication protocol used [2],

the network traffic patterns, the channel conditions [25], network equipment, through-

put and congestion condition on the network during transmission [26]. Such delays

can be of different natures, either constant, variable or random [5]. In the case of

delays over the internet, time delays are characterized by the processing speed of

nodes, the load of nodes, the connection bandwidth, the amount of data, the trans-

mission speed, etc. [7]. This shows the importance of creating a representation of

the network delays to be able to create a suitable control for a certain NCS. Of

course, the easiest way to get a model of the delays is by estimating the probability

distribution of the delays directly from actual delay measurements. Some times

this is not possible and different ways of modeling time delays have been proposed

depending on the characteristics of the network used in a NCS. Delays can be

modeled as constant, periodic, or random. A model that is more suitable for an

analysis depends on the protocol used by the system network. A model has to be

devised under a series of assumptions and/or observations, e.g. in [5] time delays

are modeled by an underlying Markov chain. In [14] and [19] it is observed that

an exponential distribution is well-defined for time delays in a WLAN network.

In [26] a gamma distribution is utilized to represent the behavior of delays in a

WiFi network under the assumption that the behavior of the network has similar

characteristics to this type of distribution.

Another effect of the network over time delays is that loads in the network

22

change over time. For this reason it is logical to think that the distribution of

the delays have lower mean if the network has low load, and a higher mean if the

network has high load. Furthermore, in a realistic model, the delay variation is

smaller for low loads, and larger for high loads [27]. Also, it is important to note

that in real communication systems, time-delays are usually correlated with the

last time delay [5] [29]. In addition, when the load is low, network delays are quite

deterministic, the network is often idle when we want to transmit. On the other

hand, when the network load is high it is possible to have short delays but we could

also have to wait for multiple messages to be sent. In our research, the condition

of correlated time delays in a network is simulated by creating a correlated data

sequence ψ. This sequence was created by using the recursive equation [28]

ψk = βψk−1 + εk (3.1)

where ε is a sequence of independent exponentially distributed random numbers,

and β ∈ (0, 1) is the parameter that determines the degree of correlation between

ψk and ψk−1. The value of ψ0 is selected to be very small so it will not have impact

on the initial values of the sequence. The sequence is then normalized using

ψnorm =
ψε̄

ψ̄
(3.2)

where ε̄ and ψ̄ are the means of the random numbers sequence and correlated

data sequence, respectively. Then, ψnorm is applied to the predictor. In later

chapters, predictions of this correlated sequence will be shown. The model (3.1)

23

was selected for the purpose of generating correlated sequences of time delays for

a selected value of β in controlled experiments.

3.1 Sampling systems with delay

Given that a NCS operates over a network, data transmission between controller

and a remote system is affected by induced network delays. Such delays can be cat-

egorized depending on the direction of data transmission, i.e. sensor-to-controller

delay τ sc and controller-to-actuators delay τ ca. There is also the processing-time

delay, which is the time required by the controller to generate the control signal.

Another delay in the NCS is the inherent delay of the actuators since their re-

sponses are not instantaneous. Normally the last two types of delay are assumed

to be negligible for analysis purposes. The representation of a discrete linear time-

invariant system with time-delay affecting the feedback input is described next.

Given the continuous-time representation of the dynamic system subject to input

delays

ẋ(t) = Ax(t) +Bu(t− τ), x(t0), (3.3)

where x(t) ∈ R
n, u(t) ∈ R

m, represent the system states and the controlled input,

respectively. In this case A and B are constant matrices of appropriate dimensions.

It is assumed that the system has fixed-period sampling intervals and the total

delay τk is assumed to be less than the sampling period Tk. Then the discrete

24

system is described as

x(tk+1) = Φx(tk) + Γ1u(tk) + Γ2u(tk−1) (3.4)

where

Φ = eATk ,

Γ1 =

∫ Tk−τk

0

eAλBdλ

Γ2 =

∫ Tk

Tk−τk

eAλBdλ

(3.5)

This can be represented in state space model as

⎡
⎢⎣x(tk+1)

u(tk)

⎤
⎥⎦ =

⎡
⎢⎣Φ Γ2

0 0

⎤
⎥⎦
⎡
⎢⎣ x(tk)

u(tk−1)

⎤
⎥⎦+

⎡
⎢⎣Γ1

I

⎤
⎥⎦u(tk) (3.6)

This is a classical approach to sampling dynamic systems with delays. Notice that

(3.6) uses the extra state variables to describe the delays. A similar derivation

is done for the analysis of delays longer than a sampling period. The reader is

referred to [22] and [47] for further reading. In chapter 5 we address and explain

in detail our proposed model based on the observer-based variable sampling which

is explained in detail.

25

Chapter 4 – Artificial Neural Network for Prediction

In the literature, it has been shown that neural networks have the ability to ap-

proximate virtually any function of interest to any degree of accuracy [38] under

the assumption that the neural network is provided with sufficiently many hidden

units. Based on this ability, neural networks have been applied extensively in time

series predictions [3], [4], [7], [31], [43,44]. This chapter begins with the fundamen-

tals of neural networks and the algorithm to update its parameters (weights). It

is followed by the description of the methodology and techniques we use to select

the most appropriate topology and/or architecture of the predictive neural net-

work such as validation performance and early stopping. After that, the chapter

continues with the presentation of several numerical simulations preformed for the

selection of the NN topology for the prediction of a given time delay sequence.

Comparative simulation results of several topologies are also given. This chapter

is closed by a section on conclusions.

4.1 Fundamentals

4.1.1 Time Delay Neural Network

A mentioned earlier we want the neural network to capture the progression of

a time series. In this case the neural network needs to have certain memory of

26

previous events. This can be achieved by feeding to the network delayed versions

of the time series, which in our case is the sequence of time delays in a NCS, i.e.

ak−i, i = 1, 2, ..., p. We later refer to this as the tapped delay line of the neural

network. For this reason we suggest the application of a multilayer feedforward

neural network with a tapped delay line input layer. Such network is classified as

a dynamic network and is called time-delay artificial neural network (TDNN).

We denote the data in the input layer of the TDNN at a particular instant k

as ak, where a may be a vector. This can be described as

âk = NN (ak−1) (4.1)

and since we are using history values the expression (4.1) can be rewritten as

âk = NN (ak−1, ak−2, ..., ak−i, ..., ak−p) (4.2)

where âk is the one step ahead predicted value of ak, p is the number of succes-

sive past observations, and NN (·) represents the neural network. The argument

(ak−1, ak−2, ..., ak−j, ..., ak−p) in equation (4.2) represents the tapped delay line of

the TDNN and it is the input layer represented in Fig. 4.1. As wee will see later,

the number of hidden layers and the number of neurons in each layer (topology)

depends on the application and they are generally determined by using a trial and

error technique, although one can find in the literature different suggestions to find

an appropriate NN topology.

In our research we use a multilayer TDNN, and it has the form depicted in Fig.

27

1z

ijw ,ˆ

1z

rw ,1

1ka

pka

1â

input hidden output

1,1ŵ

1,1w

ika

1d 1e

1z
1h

jh

i j

1a

ia

Figure 4.1: Time delay neural network.

4.1. From this figure we can derive the corresponding weight updates and compute

the error that backpropagates through the layers of the TDNN to minimize a cost

function and achieve a minimum desired error between the predicted values and

the actual values of the time series.

4.1.2 Backpropagation Algorithm

In Fig. 4.1 the layers are defined by: Input (i), hidden (j) and output. The nodes

of each layer have a corresponding output, i.e. input node ai, hidden node output

hj , output node value â1. Let us define the error signal at the output layer (output

28

of neuron 1) at iteration n as

e1(n) = d1(n)− â1(n), (4.3)

where d1(n) is the desired output value (target) and â1(n) is the output node value.

We also define the instantaneous value of the squared error of the output neuron

1 as

E(n) =
1

2
e21(n). (4.4)

We denote N as the total number of samples in the training set. Then the mean

squared error is given by the summation of E(n) over all n and divided by the set

size N , i.e.

Ē(n) =
1

N

N∑
n=1

E(n). (4.5)

The mean squared error is called the cost function and it is a measure of train-

ing performance. Let us define now the output of the output layer as the linear

combination of the weights w1,j(n), namely,

â1(n) =

r∑
j=1

w1,j(n)hj(n), (4.6)

where r is the number of inputs applied to the output neuron 1. To update the

weights w1,j we need to apply a correction Δw1,j(n) to them which is obtained by

using the instantaneous gradient

∂E(n)

∂w1,j(n)
=
∂E(n)

∂e1(n)

∂e1(n)

∂â1(n)

∂â1(n)

∂w1,j(n)
, (4.7)

29

where by differentiating both sides of equation (4.3) with respect to â1(n) and (4.4)

with respect to e1(n) we get

∂e1(n)

∂â1(n)
= −1, (4.8)

∂E(n)

∂e1(n)
= e1(n), (4.9)

respectively, and by differentiating both sides of (4.6) with respect to w1,j(n) we

get

∂â1(n)

∂w1,j(n)
= hj(n). (4.10)

Finally, from equations (4.8), (4.9) and (4.10) in (4.7) we have

∂E(n)

∂w1,j(n)
= −e1(n)hj(n) (4.11)

Then, the correction Δw1,j(n) to update the weights w1,j(n) is defined as

Δw1,j(n) = −η ∂E(n)

∂w1,j(n)
= ηe1(n)hj(n), (4.12)

where η is the learning rate defined by the user. Equation (4.12) can be expressed

in terms of the local gradient δ1(n), which points to required changes in the weights.

Then

δ1(n) = −∂E(n)
∂e1(n)

∂e1(n)

∂â1(n)
= e1(n), (4.13)

30

and (4.12) is expressed as

Δw1,j(n) = ηδ1(n)hj(n), (4.14)

Then the weight update equation is

w1,j(n+ 1) = w1,j(n) + Δw1,j(n)

= w1,j(n) + ηδ1(n)hj(n).

(4.15)

Now, the next step is to backpropagate the error found before to adjust the

weights of the hidden layer. This is not much more difficult and the idea is the same

as for the output layer. We now need to adjust the input-hidden layer weights.

Recall that the activation at the output layer was a linear activation function. In

the case of the hidden layer, a sigmoidal activation function of the form

f(x) = tanh(x) =
ex − e−x

ex + e−x
(4.16)

whose derivative is

f ′(x) = sech2(x) = (1− f 2(x)), (4.17)

where x is the argument of the function, the delta for the hidden layer (δj(n)) is

obtained following the previous procedure, then we have

δj(n) = −∂E(n)
∂hi(n)

f ′(
p∑

i=1

ŵj,i(n)ai(n)) (4.18)

were p is the total number of inputs applied to the hidden neuron j. To calculate

31

∂E(n)/∂ai(n) we have the error in the output layer

E(n) =
1

2
e21(n) (4.19)

which is the same as (4.4) then,

∂E(n)

∂hj(n)
=
∂E(n)

∂e1(n)

∂e1(n)

∂hi(n)
= e1(n)

∂e1(n)

∂hi(n)
. (4.20)

Using partial derivatives in ∂e1(n)/∂hj(n) we express (4.20) as

∂E(n)

∂hj(n)
= e1(n)

∂e1(n)

∂â1(n)

∂â1(n)

∂hj(n)
(4.21)

from the error equation (4.3)

e1(n) = d1(n)− â1(n) (4.22)

then

∂e1(n)

∂â1(n)
= −1 (4.23)

and from (4.6) we have

∂â1(n)

∂hj(n)
= w1,j(n) (4.24)

From equations (4.23), (4.24) in (4.21) we get

32

∂E(n)

∂hj(n)
= −e1(n)w1,j(n)

= −δ1(n)w1,j(n),

(4.25)

where we have used the local gradient δ1(n) given in (4.13), then using (4.25) in

(4.18) we can get the local gradient δj(n) for the hidden neuron j, given by

δj(n) = δ1(n)w1,jf
′(

p∑
i=1

ŵj,iai(n)). (4.26)

Using the activation function (4.17) in (4.26) we have

δj(n) = δ1(n)w1,j(1− f 2(

p∑
i=1

ŵj,iai(n))), (4.27)

which gives the correction factor Δwj,i as

Δŵj,i(n) = ηδ1(n)w1,j(1− f 2(

p∑
i=1

ŵj,iai(n))) ai(n). (4.28)

Finally, the weight update for the hidden layer is given as

ŵj,i(n + 1) = ŵj,i(n) + ηδ1(n)w1,j

(
1− f 2

(p∑
i=1

ŵj,iai(n)
))

ai(n) (4.29)

Notice that it is not possible to have desired outputs for the hidden layers. This is

why the backpropagation starts in the output layer passing back the information

needed [39]. Something important to remember is the application of a momentum

when updating the weights of the TDNN. The term momentum is based on the

33

principles from Physics that bodies in motion keep moving until another force acts

on them. Momentum allows the network to learn faster when plateaus in the error

surface exist [46]. Also, the momentum may help to escape possible local minima

in the error function as seen in Fig. 4.2. The approach is to alter the weight update

equations, so the weights can be updated with a component of the previous weight

updates. A typical value of the momentum is α = 0.9, which is the value used in

our research.

Er
ro

r

Error function

Local minima

Global minimum

Figure 4.2: Local and global minima of the error function.

Let us consider the application of momentum, then using (4.27) and (4.28) and

the momentum factor defined by α we have

Δŵj,i(n) = αΔŵj,i(n− 1) + ηδj(n) ai(n). (4.30)

By doing this change each weight update is closer to the last update.

The backpropagation algorithm is described in Table 4.1. It is possible to speed

up the convergence of the training process by implementing one of the many algo-

34

Table 4.1: Back Propagation Algorithm.

Backpropagation Algorithm
For each epoch:
-Present input to the network
Propagate signal forward:
Compute hidden units values
Compute output values

Find error
Compute output layers deltas
Compute hidden layer delta

Compute gradient for each weight
Update each weight

-Present newt input
Repeat this process until MSE is satisfactory

rithms found in the literature, the most widely used is the Lebenberg-Marquardt

training algorithm and the reader is referred to [13] for further information.

4.1.3 Transformation of input data

In neural networks, activation functions are centered on certain values in their

output space. For instance, the logistic function is centered around 0.5. and the

sigmoidal function tanh has its center around zero. To have good predictions it

is necessary to match the range of the input data, with the range of the chosen

activation function, [21]. There are different methodologies to do this, namely,

normalization, rescaling, standardization, and normalization of eigenvectors. Since

our neural network has a sigmoidal (s-shape) activation function centered around

35

zero, the transformation or preprocessing of the data was made using the following

equations.

midrange =
1

2
maxi(Xi) +mini(Xi)

range = maxi(Xi)−mini(Xi)

Si =
Xi −midrange

range/2
,

(4.31)

where Xi is the ith input data value. The same results given by (4.31) can be

obtained by the simplified equation

Y =
(Ymax − Ymin)(X −Xmin)

Xmax −Xmin
+ Ymin, (4.32)

where, for our purposes, Ymax = +1 and Ymin = −1, X is the input data, Xmax and

Xmin are the maximum and minimum value of the input data. Then, the value Y

falls into the interval [−1, 1], which matches the range of the activation function

tanh used in this work.

4.2 Neural Network Topology

According to literature surveys, there is not a single configuration that is adequate

for all applications. The topology must, therefore, be selected by a process of

trial and error [37]. There are some suggestions to generate an appropriate neural

network topology. One of them is called the Baum-Haussler rule, known also as

the rule of thumb [40]. This rule gives an approximation of how many hidden

36

nodes are needed in the hidden layer of the neural network. It is expressed as:

Nhidden ≤ Ntrain × Npts × Egoal

Npts +Noutputs
(4.33)

where Nhidden is the number of hidden nodes, Ntrain is the size of the training set,

Egoal is the error goal or tolerance, Npts is the number of data points used in the

tapped line of the NN, Noutput is the number of output nodes. Using this method

also requires to determine Npts which is given by the user. This means that several

values of Npts have to be tried. Using this rule it is possible to create several NN

configurations to test. The selection of the most adequate topology for prediction,

given a particular case, is based on the performance of the network.

In [37], it is stated that many of the studies where NN’s were used for pre-

diction suffered from validation or implementation problems. Also, it points out

the importance of doing an effective implementation of the NN and, more impor-

tantly, validate it. We implemented a procedure which validates and tests each

topology created. In the literature we can not find a consistent or standard method

or procedure to generate an adequate topology for the predictive NN. The most

common practice to find such NN is by trial and error, this can take some time

and many iterations before getting good results, such results in our case would be

the predictions of the time delay on a NCS. The time required in the trial and

error process can be reduced drastically by simply implementing a process called

cross-validation or validation.

Validation involves partitioning a sample of data into subsets, performing the

37

analysis (training) on one subset, named training set, and validating the analysis

on the other subset named the validation set, the test is done on the testing

set. Validation is normally done during the learning process, this helps to determine

when to stop the learning and also it controls overfitting or overtraining.

Training time

Er
ro

r

Training set error

Validation set error

Stopping point

Figure 4.3: Early stopping technique.

During the training process, the validation is done by applying it to the NN

validation data set. The error on the validation set is monitored during the train-

ing process. The validation error normally decreases during the initial phase of

training, as does the training set error. However, when the network begins to

overfit the data, the error on the validation set typically begins to rise. It is at

this point when the training is stopped (see Fig. 4.3). In other words, the stopping

occurs when the outcome of the performance error (cost function) does not have

any further change and/or it starts increasing again. Then, the topology with the

minimum performance error in the validation process is used for testing as the

forecaster of the time delay sequence. This technique, also called early stopping,

is used to check, or cross-validate, that the trained network is able to generalize

38

its learning to new data. It also will allow the user to determine how good the NN

is for generalization.

Table 4.2: Algorithm for TDNN topology selection.

Neural Network Topology Selection

1 Transformation of input data:
{
y = (ymax−ymin)(x−xmin)

(xmax−xmin)
+ ymin

2 Divide data: Training, Validation
3 Define input data and targets
4 Define max number of nodes input layer
5 Define max number of nodes hidden layer
6 Set initial TDNN topology:

1 node in input layer
1 node in the hidden layer

7 Start training and validation
8 Stop training using early stopping
9 Increment by one the number of hidden nodes
10 Record TDNN validation performance
11 Go to 7
12 If max number hidden nodes:

Increment by one the number of input nodes
Set number hidden nodes to 1

13 Go to 7
14 STOP if max number of hidden layer nodes

Generalization measures the ability of NNs to recognize patterns, or in our case

predict values, outside the training sample. The accuracy rates achieved during

the learning phase typically define the bounds for generalization. If performance

on a new sample is similar to that in the convergence phase, the NN is considered

to have learned well and it is said that generalization has taken place. In Table

4.2 describes the algorithm to select the TDNN topology based on validation and

39

early stopping described before.

Large topologies will not necessarily produce better results, they might prob-

ably converge to a desired value, but the computation time needed will increase

due the complexity of the NN. This is why it is considered impractical to have

large NN topologies unless a specific application requires it. In some cases rela-

tively large topologies have been used for prediction of time delays, for example [9]

implemented a NN for prediction of time delays over the internet with one input

tapped line of 20 nodes, two hidden layers with 15 neurons per hidden layer and

one single output.

4.3 Experimental Results

4.3.1 Selection of Neural Network Topology

As we mentioned before, to train a neural network using the early stopping method,

it is necessary to partition the set of data available into sets for training, validation

and test. In the literature there is no specific rule governing the splitting of the

data. However, it is generally agreed that most data points should be used for

model building. In our prediction simulation study and using equations (3.1)

and (3.2), we generated four different time delay sequences ψ which correspond to

delays in a NCS, we are assuming they have different correlation factor β given

in Table 4.3. Each sequence has 500 sample points and the same mean μ = 0.02.

The splitting of the data is made in the following manner: we use the first 300

40

observations for training, the next 100 points for validation, and the last 100

points for testing. To generate the sequence of exponential random numbers ε in

equation (3.1) we use the exponential random number generator from Matlab R©.

Table 4.3: Correlation factors

β 0.0 0.25 0.5 0.75

Tables 4.4 to 4.7 present the results for different TDNN topologies implemented.

We denote each entry of the table by NETi,h,1, where i is the number of nodes at

the input tapped delay line, h is the number of hidden nodes in the hidden layer and

1 is the number of output nodes. It is also known in the literature that having just

one hidden layer gives good results on prediction [3], [10], [7], [41]. Having this in

mind, plus knowing that the lesser the complexity of a neural network the simpler

the computations, we implemented several different topology configurations for the

TDNNs with just one hidden layer.

Each configuration was created by varying the number of input nodes and the

number of hidden nodes in increments of one. The maximum number of nodes in

the input tapped delay line was 10 and for the hidden layer was also 10. Since

every time the network is trained its initial parameters are initialized in a random

way, the network might produce different results. This is why to select the best

topology, each of the 100 possible TDNN configurations was trained and validated

10 times, the results expressed in Tables 4.4 to 4.7 are the average of the root

mean square error (RMSE) of the validation process. Recall that the performance

41

Table 4.4: RMSE validation performance for a series with: μ = 0.02, β = 0.0.

i\h 1 2 3 4 5 6 7 8 9 10

1 0.0243 0.0278 0.0254 0.0246 0.0244* 0.0507 0.0248 0.0256 0.0298 0.0297

2 0.0242 0.0243* 0.0270 0.0242* 0.0247 0.0285 0.0251 0.0264 0.0248* 0.0270

3 0.0244 0.0244 0.0244 0.0242 0.0245 0.0244 0.0254 0.0247* 0.0260 0.0293

4 0.0242* 0.0248 0.0242* 0.0243 0.0253 0.0269 0.0243* 0.0419 0.0256 0.0337

5 0.0249 0.0253 0.0264 0.0248 0.0331 0.0260 0.0265 0.0263 0.0261 0.0278

6 0.0246 0.0246 0.0247 0.0255 0.0256 0.0616 0.0253 0.0254 0.0274 0.0333

7 0.0252 0.0256 0.0259 0.0255 0.0246 0.0273 0.0255 0.0254 0.0260 0.0306

8 0.0254 0.0263 0.0251 0.0271 0.0271 0.0235* 0.0255 0.0257 0.0259 0.0532

9 0.0251 0.0255 0.0261 0.0398 0.0246 0.0267 0.0262 0.0280 0.0262 0.0271

10 0.0253 0.0246 0.0259 0.0259 0.0257 0.0252 0.0261 0.0277 0.0251 0.0267*

i = nodes in the tapped delay line, h = nodes in the hidden layer.

Table 4.5: RMSE validation performance for a series with: μ = 0.02, β = 0.25.

i\h 1 2 3 4 5 6 7 8 9 10

1 0.0161 0.0162 0.0163 0.0163 0.0161 0.0165 0.0160 0.0161 0.0165 0.0162

2 0.0156 0.0155 0.0156 0.0156 0.0157 0.0162 0.0609 0.0162 0.0166 0.0169

3 0.0158 0.0161 0.0160 0.0163 0.0156 0.0162 0.0161 0.0173 0.0161 0.0159

4 0.0162 0.0160 0.0163 0.0160 0.0157 0.0161 0.0160 0.0161 0.0163 0.0166

5 0.0151 0.0150* 0.0158 0.0155 0.0155* 0.0153 0.0158 0.0153* 0.0154* 0.0159

6 0.0151 0.0155 0.0160 0.0161 0.0160 0.0152 0.0160 0.0159 0.0157 0.0158*

7 0.0155 0.0152 0.0163 0.0154 0.0158 0.0151* 0.0155* 0.0154 0.0155 0.0162

8 0.0152 0.0154 0.0154* 0.0160 0.0166 0.0159 0.0161 0.0154 0.0183 0.0159

9 0.0152 0.0155 0.0154 0.0152* 0.0158 0.0166 0.0161 0.0169 0.0170 0.0161

10 0.0150* 0.0157 0.0157 0.0167 0.0158 0.0157 0.0168 0.0170 0.0162 0.0168

i = nodes in the tapped delay line, h = nodes in the hidden layer.

42

Table 4.6: RMSE validation performance for a series with: μ = 0.02, β = 0.5.

i\h 1 2 3 4 5 6 7 8 9 10

1 0.0098 0.0098* 0.0097* 0.0097* 0.0097* 0.0098 0.0097* 0.0097 0.0097* 0.0099

2 0.0098 0.0100 0.0098 0.0099 0.0098 0.0097 0.0098 0.0098 0.0098 0.0098*

3 0.0100 0.0100 0.0098 0.0098 0.0099 0.0095* 0.0099 0.0101 0.0104 0.0099

4 0.0098 0.0098 0.0098 0.0099 0.0099 0.0100 0.0101 0.0097* 0.0102 0.0169

5 0.0099 0.0099 0.0098 0.0101 0.0100 0.0109 0.0149 0.0099 0.0103 0.0101

6 0.0098* 0.0100 0.0107 0.0103 0.0101 0.0103 0.0099 0.0106 0.0110 0.0101

7 0.0115 0.0101 0.0100 0.0102 0.0100 0.0101 0.0101 0.0108 0.0100 0.0107

8 0.0100 0.0101 0.0100 0.0100 0.0124 0.0103 0.0101 0.0103 0.0104 0.0104

9 0.0116 0.0101 0.0107 0.0108 0.0104 0.0111 0.0104 0.0102 0.0101 0.0145

10 0.0101 0.0102 0.0108 0.0102 0.0103 0.0107 0.0105 0.0111 0.0104 0.0109

i = nodes in the tapped delay line, h = nodes in the hidden layer.

Table 4.7: RMSE validation performance for a series with: μ = 0.02, β = 0.75.

i\h 1 2 3 4 5 6 7 8 9 10

1 0.0047* 0.0075 0.0047 0.0046* 0.0046* 0.0045* 0.0047 0.0046 0.0046* 0.0050

2 0.0048 0.0050 0.0047 0.0053 0.0047 0.0049 0.0046* 0.0048 0.0061 0.0047*

3 0.0048 0.0048 0.0049 0.0048 0.0048 0.0047 0.0047 0.0047 0.0048 0.0049

4 0.0049 0.0047 0.0047* 0.0048 0.0054 0.0046 0.0047 0.0045* 0.0046 0.0047

5 0.0048 0.0048 0.0047 0.0048 0.0047 0.0048 0.0047 0.0048 0.0048 0.0089

6 0.0048 0.0047* 0.0048 0.0051 0.0047 0.0048 0.0049 0.0048 0.0047 0.0047

7 0.0048 0.0049 0.0048 0.0046 0.0048 0.0050 0.0047 0.0048 0.0050 0.0047

8 0.0050 0.0049 0.0049 0.0050 0.0049 0.0049 0.0050 0.0048 0.0048 0.0052

9 0.0051 0.0051 0.0049 0.0050 0.0050 0.0051 0.0050 0.0051 0.0050 0.0049

10 0.0051 0.0050 0.0050 0.0048 0.0049 0.0051 0.0054 0.0051 0.0050 0.0052

i = nodes in the tapped delay line, h = nodes in the hidden layer.

43

criterion used for the early stopping was the minimum MSE. RMSE is a frequently

used measure of the differences between values predicted and the actual value.

The best topology was chosen based on the best validation performance for each

delay sequence and its generalization capacity. For each of the four cases studied

above, there were 10 possible TDNN candidates (marked by a star *) among the

100 tested . From those 10 candidates, the one with good performance but also

with good generalization was selected. At the end we had four candidates with

different topology corresponding to a particular delay sequence. Such candidates

were used to predict an unknown time delay sequence, i.e. a new sequence of delays

with similar statistics as the one previously studied. The selected topologies are

listed in Table 4.8.

4.3.2 Prediction results

The selected TDNN topologies were used to predict four new sequences with same

statistics already studied above. Such sequences had 2000 points, mean μ = 0.02

and correlation factors β = 0.00, 0.25, 0.50 and 0.75. The TDNNs where trained

using the first 300 points of each series. Once trained, the TDNNs were ready to

predict the other 1700 points of the series. For clarity, the plots have the last 300

points of the series.

The plots 4.4 to 4.11 show predictions made by two TDNNs with same topology,

which differ in the way they work, namely, one TDNN is non-adaptive and the

other one is adaptive. Fig. 4.4 shows the prediction of a sequence with correlation

44

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(a)

Sampling Number

T
im

e
D

el
ay

 (
s)

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(b)

Sampling Number

T
im

e
D

el
ay

 (
s)

Actual Time Delay
Predicted Time Delay

Actual Time Delay
Predicted Time Delay

Figure 4.4: Prediction of delay sequence with β = 0.0 using NET8,6,1.

0 0.05 0.1 0.15 0.2 0.25
0

500
(a)

Time Delay (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500
(b)

Time Delays (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500

(c)

Time Delays (s)

F
re

qu
en

cy

Actual time delay

Predicted (non−adaptive)

Predicted (adaptive)

Figure 4.5: Distribution of actual and predicted time delays, β = 0.0, NET8,6,1.

45

β = 0.0 given by the NET8,6,1 which is one of the TDNN candidates. It can

be seen that prediction lacks accuracy, the predicted values are around the mean

of the actual time delays series. This behavior occurs in both TDNNs, the non-

adaptive and the adaptive one (see Fig. 4.4 (a) and (b), respectively). This can

be also observed in the distributions shown by the histograms in Fig. 4.5, where

predictions of the non-adaptive (b) and adaptive TDNNs (c) are slightly skewed

to the left.

Fig. 4.6 shows the prediction of a sequence with correlation β = 0.25 given by

the NET5,9,1. It can be seen that predictions follow the trend of the actual time

delay series following more closely the changes of the series than in the previous

case. Also this behavior occurs in both TDNNs, the non-adaptive (a) and the

adaptive (b). The RMSE for the test has improvement compared with the one

obtained in the test for the series with β = 0.00. The RMSE values of the four

sequences are shown in Table 4.8. However, it can be seen in the histograms

of Fig. 4.7 that the adaptive predictions (c) have a better approximation to the

distribution of the actual time delay shown in Fig. 4.7 (a).

Compared to the previous two cases, we can see in Fig. 4.8 that there is a

noticeable change in the behavior of the predicted values for a series with β = 0.50.

It is interesting to note the accuracy of the predictions given by the two TDNN:

(a) non-adaptive and (b) adaptive. Both follow very closely the variations of the

series of actual values and the performance is improved. Fig. 4.9 shows a better

approximation to the distribution of the actual time delay by the non-adaptive (b)

and the adaptive TDNN (c). Also we can see in Fig. 4.9 that the distribution

46

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual Time Delay
Predicted Time Delay

Actual Time Delay
Predicted Time Delay

Figure 4.6: Prediction of delay sequence with β = 0.25 using NET5,9,1.

0 0.05 0.1 0.15 0.2 0.25
0

500
(a)

Time Delay (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500
(b)

Time Delay (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500
(c)

Time Delay (s)

F
re

qu
en

cy

Actual TIme Delay

Predicted (non−adaptive)

Predicted (adaptive)

Figure 4.7: Distribution of actual and predicted time delays, β = 0.25, NET5,9,1.

47

1400 1450 1500 1550 1600 1650 1700
0

0.02

0.04

0.06

0.08

0.1
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

1400 1450 1500 1550 1600 1650 1700
0

0.02

0.04

0.06

0.08

0.1
(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual Time Delay
Predicted Time Delay

Actual Time Delay
Predicted Time Delay

Figure 4.8: Prediction of delay sequence with β = 0.50 using NET3,6,1.

0 0.05 0.1 0.15 0.2 0.25
0

500
(a)

Time Delay (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500

(b)

Time Delay (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500
(c)

Time Delay (s)

F
re

qu
en

cy

Predicted (non−adaptive)

Predicted (adaptive)

Actual Time Delay

Figure 4.9: Distribution of actual and predicted time delays, β = 0.50, NET3,6,1.

48

given by the adaptive TDNN (c) has a better approximation to the distribution in

(a).

A more important improvement is achieved by the TDNN when the correlation

factor is β = 0.75, see Fig. 4.10. The sequence of predicted vales follows the

changes on the series of the actual time delays and the rmse improves even more

than the previous cases (see Table 4.8). We can see that both TDNNs, non-

adaptive (a) and adaptive (b), follow closely the unknown series of actual delays.

In the histograms of Fig. 4.11 we can see that the distribution of predictions given

by the adaptive TDNN in (c) almost matches the distribution of the actual time

delay in (a). Nevertheless the distribution of the non-adaptive (b) has also a good

approximation of the distribution in (a).

The previous outcomes suggest the applicability of adaptive TDNN to the

prediction of time delays in a NCS, also the results from the non-adaptive TDNN

suggest that it is a good candidate for prediction of time delays when the statistics

of the historic series are similar to the training set.

Table 4.8: RMSE prediction performance of different TDNN topologies.

TDNN Topology β RMSE non-adaptive RMSE adaptive
NET8,6,1 0.00 0.0242 0.0219
NET5,9,1 0.25 0.0169 0.0175
NET3,6,1 0.50 0.0125 0.0111
NET4,8,1 0.75 0.0052 0.0060

Furthermore, comparing the results of the four sequences in the validation

process and the test results given in Table 4.8, we wanted to identify a single general

49

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(a)

Sampling Number

T
im

e
D

el
ay

 (
s)

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(b)

Sampling Number

T
im

e
D

el
ay

 (
s)

Actual Time Delay
Predicted Time Delay

Actual Time Delay
Prediceted Time delay

Figure 4.10: Prediction of delay sequence with β = 0.75 using NET4,8,1.

0 0.05 0.1 0.15 0.2 0.25
0

500

(a)

Time Delay (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500

(b)

Time Delay (s)

F
re

qi
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500

(c)

Time Delay (s)

F
re

qu
en

cy

Actual Time Delay

Predicted (non−adaptive)

Predicted (adaptive)

Figure 4.11: Distribution of actual and predicted time delays, β = 0.75, NET4,8,1.

50

configuration capable of predicting an unknown sequence of delays regardless the

correlation factor of it. In Table 4.9 are the results of two candidates for predictors,

they were early stopped in the epoch number 10 to avoid overtraining. Based on

these results, we decided that the appropriate topology for this kind of sequences

with the assumed correlations was: NET5,9,1. This will be the topology used in

the direct application in the NCS in Chapter 6.

Table 4.9: RMSE prediction performance of different TDNN topologies.

TDNN Topology β RMSE non-adaptive RMSE adaptive epochs
NET5,9,1 0.00 0.0244 0.0238 10
NET5,9,1 0.25 0.0161 0.0172 10
NET5,9,1 0.50 0.0109 0.0130 10
NET5,9,1 0.75 0.0054 0.0056 10
NET8,6,1 0.00 0.0238 0.0224 10
NET8,6,1 0.25 0.0173 0.0179 10
NET8,6,1 0.50 0.0107 0.0122 10
NET8,6,1 0.75 0.0055 0.0066 10

We can now compare the previous results of the topology selected NET5,9,1,

which was obtained by using the systematic trial and error technique combined

with the early stopping method, to the topologies given in Table 4.10 obtained

using equation (4.33). For a three layer TDNN the number of neurons in the hidden

layer was determined using the following values: Egoal = 0.01, Ntrain = 300×Npts,

and Noutput = 1. We can see that for a TDNN with 5 input nodes we need 2

nodes in the hidden layer (see Table 4.10). Then for a TDNN with topology

NET5,2,1, the results of the performance on the validation process can be found in

Tables 4.4 to 4.7. In addition, we also tested such configuration to investigate its

51

Table 4.10: Topologies suggested by the rule of thumb.

Ninputs 1 2 3 4 5 6 7 8 9 10
Hidden Nodes 1 2 2 2 2 3 3 3 3 3

capability for predicting a time delay series regardless its correlation factor, this

was done by applying the same four series used before i.e. the series of 2000 points,

mean μ = 0.02 and correlation factors β = 0.00, 0.25, 0.50 and 0.75. We have the

following results:

Table 4.11: RMSE prediction performance of different TDNN topologies.

TDNN Topology β RMSE non-adaptive RMSE adaptive epochs
NET5,2,1 0.00 0.0215 0.0213 10
NET5,2,1 0.25 0.0161 0.0174 10
NET5,2,1 0.50 0.0105 0.0118 10
NET5,2,1 0.75 0.0053 0.0077 10

Comparing the results from NET5,9,1 in Table 4.9 and NET5,2,1 in Table 4.11

we can see that there are small differences including better numerical performance

in some points by NET5,2,1. However, a difference exists in the distribution of the

predicted data obtained from the two topologies. For instance, comparing results

between predictions of the series with β = 0.25 given by NET5,9,1 and NET5,2,1,

the primary difference is between the two non-adaptive TDNN (see Fig. 4.7 (b) and

Fig. 4.13 (b)). The distribution given by the non-adaptive NET5,9,1 more closely

approximates the distribution of the actual delay. We concluded that NET5,9,1 is

a better candidate for our research.

52

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual time Delay
Predicted time Delay

Actual Time Delay
Predicted time Delay

Figure 4.12: Prediction of delay sequence with β = 0.25 using NET5,2,1.

0 0.05 0.1 0.15 0.2 0.25
0

500

(a)

Time Delays (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500

(b)

Time Delays (s)

F
re

qu
en

cy

0 0.05 0.1 0.15 0.2 0.25
0

500

(c)

Time Delays (s)

F
re

qu
en

cy

Figure 4.13: Distribution of actual and predicted time delays, β = 0.25, NET5,2,1.

53

4.3.3 Prediction results with actual data

To further validate the proposed approach, real data of time delays occurring be-

tween two computers that have a wireless connection to the internet were acquired.

Using the algorithm in Table 4.2, the TDNN topology for a sequences of real time

delay data was selected. Based on preliminary results, the maximum number of

nodes in the input and hidden layer was predetermined to be 20. The sequence

of data was obtained between two computers located 9 km apart. The computer

number one was located at Oregon State University, the computer number two

was located in a residential place situated 9km away in downtown Philomath also

in the state of Oregon. Using the ping function a sequence of 1000 data points

was acquired. The ping function measure the round trip time (RTT), then the

one-way value of the time delay is equivalent to RTT/2. Such one-way time delay

sequence is shown in Fig. 4.14 with its corresponding predictions. Each value of

the sequence was taken every 10ms and the packet transmitted was of 64 bits. The

data set was divided into a training set of 300 points and a validation set of 100

points. From the 400 possible topologies obtained (see Table 4.12), the selected

topology was NET5,17,1. Then, the trained network was then used to predict a

sequence of 695 points which gives the results shown in Fig. 4.14, where for the

sake of clarity, only the first 300 points of the sequence are presented.

It can be seen in Fig. 4.14 (a) that the TDNN in non-adaptive mode follows

closely the variations of the actual time delay sequence. Predictions done by the

TDNN in adaptive mode are shown in Fig 4.14 (b), where also it can be seen that

54

Table 4.12: RMSE validation performance for a series with: μ = 0.02, β = 0.5.

i\h 1 2 3 4 5 6 7 8 9 10

1 0.0215 0.0215 0.0212 0.0212 0.0211 0.0215 0.0211 0.0217 0.0221 0.0219

2 0.0212 0.0213 0.0211* 0.0218 0.0217 0.0212* 0.0218 0.0222 0.0213* 0.0221

3 0.0213 0.0211* 0.0213 0.0216 0.0227 0.0222 0.0222 0.0233 0.0214 0.0224

4 0.0208* 0.0216 0.0216 0.0220 0.0223 0.0361 0.0224 0.0216 0.0225 0.0236

5 0.0216 0.0214 0.0212 0.0211* 0.0210* 0.0226 0.0209 0.0239 0.0234 0.0216

6 0.0213 0.0217 0.0226 0.0212 0.0216 0.0218 0.0221 0.0219 0.0220 0.0223

7 0.0210 0.0218 0.0216 0.0212 0.0213 0.0220 0.0221 0.0219 0.0232 0.0217

8 0.0211 0.0218 0.0217 0.0223 0.0211 0.0217 0.0209* 0.0215 0.0221 0.0216*

9 0.0218 0.0213 0.0217 0.0214 0.0227 0.0215 0.0212 0.0227 0.0249 0.0230

10 0.0218 0.0216 0.0221 0.0222 0.0220 0.0220 0.0223 0.0219 0.0221 0.0226

11 0.0216 0.0215 0.0216 0.0224 0.0221 0.0227 0.0228 0.0214* 0.0224 0.0232

12 0.0216 0.0219 0.0220 0.0223 0.0228 0.0219 0.0216 0.0223 0.0226 0.0282

13 0.0221 0.0238 0.0229 0.0220 0.0228 0.0281 0.0253 0.0220 0.0224 0.0261

14 0.0219 0.0226 0.0258 0.0216 0.0237 0.0227 0.0249 0.0227 0.0237 0.0244

15 0.0220 0.0228 0.0220 0.0218 0.0253 0.0228 0.0236 0.0226 0.0245 0.0270

16 0.0218 0.0217 0.0216 0.0235 0.0217 0.0223 0.0279 0.0222 0.0225 0.0242

17 0.0218 0.0225 0.0239 0.0220 0.0243 0.0221 0.0213 0.0239 0.0273 0.0227

18 0.0223 0.0218 0.0219 0.0231 0.0219 0.0229 0.0231 0.0240 0.0229 0.0254

19 0.0219 0.0235 0.0220 0.0245 0.0225 0.0222 0.0268 0.0244 0.0243 0.0243

20 0.0226 0.0222 0.0228 0.0233 0.0248 0.0230 0.0250 0.0255 0.0237 0.0221

i\h 11 12 13 14 15 16 17 18 19 20

1 0.0219 0.0219 0.0225 0.0219 0.0220 0.0222 0.0210 0.0222 0.0219* 0.0222

2 0.0226 0.0222 0.0223 0.0238 0.0230 0.0234 0.0241 0.0228 0.0242 0.0235

3 0.0229 0.0231 0.0223 0.0217 0.0229 0.0227 0.0237 0.0224 0.0227 0.0228

4 0.0217 0.0231 0.0221 0.0222 0.0230 0.0220 0.0219 0.0237 0.0235 0.0232

5 0.0206* 0.0219 0.0240 0.0212* 0.0210* 0.0236 0.0207* 0.0216* 0.0224 0.0212*

6 0.0228 0.0238 0.0224 0.0252 0.0229 0.0227 0.0240 0.0244 0.0241 0.0231

7 0.0222 0.0233 0.0220* 0.0223 0.0230 0.0224 0.0214 0.0246 0.0238 0.0245

8 0.0243 0.0225 0.0225 0.0219 0.0238 0.0230 0.0293 0.0324 0.0221 0.0261

9 0.0238 0.0224 0.0226 0.0230 0.0233 0.0213* 0.0268 0.0274 0.0231 0.0238

10 0.0253 0.0236 0.0227 0.0216 0.0235 0.0255 0.0253 0.0274 0.0234 0.0271

11 0.0229 0.0269 0.0251 0.0272 0.0247 0.0219 0.0248 0.0230 0.0246 0.0256

12 0.0220 0.0256 0.0266 0.0260 0.0243 0.0220 0.0253 0.0224 0.0256 0.0294

13 0.0254 0.0236 0.0223 0.0269 0.0288 0.0227 0.0264 0.0282 0.0250 0.0268

14 0.0235 0.0222 0.0260 0.0232 0.0234 0.0272 0.0241 0.0266 0.0237 0.0265

15 0.0224 0.0253 0.0293 0.0255 0.0254 0.0286 0.0246 0.0311 0.0291 0.0261

16 0.0246 0.0219 0.0266 0.0271 0.0276 0.0257 0.0226 0.0226 0.0287 0.0249

17 0.0254 0.0245 0.0292 0.0354 0.0226 0.0279 0.0228 0.0301 0.0241 0.0250

18 0.0264 0.0218 0.0242 0.0278 0.0297 0.0268 0.0219 0.0315 0.0227 0.0228

19 0.0277 0.0215* 0.0237 0.0272 0.0267 0.0221 0.0316 0.0349 0.0252 0.0231

20 0.0273 0.0279 0.0243 0.0278 0.0278 0.0854 0.0235 0.0218 0.0273 0.0259

i = nodes in the tapped delay line, h = nodes in the hidden layer.

55

predictions follow the changes of the sequence of actual delays. From these results,

it can be concluded that the algorithm proposed for the selection of the TDNN can

be used effectively to select an adequate topology of the TDNN, given a sequence

of historic data of the delays occurring in a particular network.

0 50 100 150 200 250 300
0

0.05

0.1

0.15
(a)

Sampling Number

T
im

e
D

el
ay

 (
s)

0 50 100 150 200 250 300
0

0.05

0.1

(b)

Sampling Number

T
im

e
D

el
ay

 (
s)

Actual Time Delay
Predicted Time Delay

Actual Time Delay
Predicted Time Delay

Figure 4.14: Prediction of delay sequence using a NET5,17,1.

4.3.4 Multi-step prediction

As we will see in Chapter 5, multi-step predictions will be needed for the cases of

packet loss in a NCS, this means that the TDNN will need to predict the value

of delays more than one step ahead. We know that packets that go from sensor

to controller have the information of the state of the plant, the last delay from

controller to actuator τca, and also the time stamp of the packet that allows the

56

controller to know the delay from sensor to controller τsc.

As mentioned earlier once the predictive TDNN is trained off-line, its parame-

ters remain fixed and the TDNN can be used in the NCS as a non-adaptive TDNN.

In the case of the predictive adaptive TDNN, its parameters need to be adjusted at

every sample step. In order to make such adjustments, the TDNN has to make a

comparison of its current output (predicted delay value) to the actual correspond-

ing time delay, i.e. it needs to calculate the prediction error. To do that, it is

necessary to have continuous and uninterrupted arrival (to the predictive TDNN)

of the information regarding the delays included in the packets traversing the NCS.

In reality in a NCS, packets can be lost in the communication link and we set up

an strategy to compensate for this losses using multi-step prediction.

1z

ijw ,ˆ

1z

rw ,1

1ka

pka

1â

1,1ŵ

1,1w

ika

1h

jh

1a

ia

Figure 4.15: TDNN for multi-step prediction.

As mentioned before, the information of delays (τca) is used to keep the history

of delays needed by the TDNN to predict in a one-step ahead fashion. However,

in the case that a packet is lost or dropped, the sequence of delays will present

57

gaps that need to be filled by an approximation or estimation of the missing data.

In order to fill those possible gaps we implemented a multi-step prediction config-

uration of the TDNN. We tested the TDNN with the topology determined in the

previous section to do multi-step predictions by feeding the last predicted value

back to the tapped delay line as the new input as shown in Figure 4.15. This pro-

cess is repeated until the next packet containing the information of delays arrives

to the controller. A time out policy will trigger the multi-step prediction and such

policy is explained in detail in chapter 5. For the moment it is only needed to say

that if a delay is greater than a certain threshold, the packet is considered lost and

multi-step prediction is initiated. This process continuous until the next packet

arrives and a new value of τca is available for prediction error computation.

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

1400 1450 1500 1550 1600 1650 1700
0

0.05

0.1
(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual time delay τsc

Actual τca

Predicted τca

Theshold

Figure 4.16: Adaptive TDNN multi-step prediction.

58

To test this proposed scheme, we implemented two predictive TDNNs of the

form NET5,9,1 previously studied, one of them was non-adaptive and the other

one was adaptive. We assumed for our simulations that in a NCS the sequence of

delays from sensor to controller (τ sc) and from controller to actuators (τ ca) have

the parameters β = 0.50, mean μ = 0.02.

We assumed also that the threshold value at which a packet coming from the

sensors to the controller is considered to be lost is equal to 0.03s, see Fig. 4.16 (a)

and 4.17 (a). We will also see in chapter 5 that in our NCS model, predictions are

only needed to be carried out for the controller-to-actuator side. In this context

we know that the predictor will have some gaps in the history of τ ca. Recall that

the packets from sensor to controller contain the information of the last value of

τ ca.

For this scenario in our simulations using both the non-adaptive and the adap-

tive TDNNs, a multi-step prediction was triggered every time a packet was consid-

ered lost. The black dots in figures 4.16 (b) and 4.17 (b), indicate the delay values

predicted beyond one step ahead. In the same figures, multiple predictions were

done for consecutive values of delays above the threshold line. This implies that

the TDNN predictor had to send its output back to its input layer to generate a

new estimated value of the delay τ ca continuously for some steps.

Table 4.13: RMSE performance from multi-step prediction.

TDNN Topology β RMSE non-adaptive RMSE adaptive epochs
NET5,9,1 0.50 0.0132 0.0130 10

59

1400 1450 1500 1550 1600 1650 1700
0

0.02

0.04

0.06

0.08

0.1
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

1400 1450 1500 1550 1600 1650 1700
0

0.02

0.04

0.06

0.08

0.1
(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Acual time delay τsc

Actual τca
Predicted τca

Figure 4.17: Non-adaptive TDNN multi-step prediction.

From the results shown in figures 4.16 and 4.17, it can be concluded that multi-

step prediction can be done and used for the compensation of the delays occurring

in a NCS. They have the corresponding performance values indicated in Table 4.13.

We observed in our simulations that multi-step prediction can not be done for

an indefinite amount of steps, it is necessary to have some feedback to calculate

the prediction errors for the case of the adaptive TDNN in order to modify its

parameters (weights). It was observed also that using this methodology the pre-

diction converges to the mean of the time delay series. However, once the TDNN

starts receiving again actual information of delays, it will generate more accurate

predictions and it will follow the changes of the time delay sequences. This behav-

60

1580 1590 1600 1610 1620 1630 1640 1650
0

0.02

0.04

0.06

0.08
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

1580 1590 1600 1610 1620 1630 1640 1650
0

0.02

0.04

0.06

0.08
(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual time delay τsc

Actual τca
Predicted τca

Figure 4.18: Non-adaptive TDNN multi-step prediction

1580 1590 1600 1610 1620 1630 1640 1650
0

0.02

0.04

0.06

0.08
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

1580 1590 1600 1610 1620 1630 1640 1650
0

0.02

0.04

0.06

0.08
(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual time delay τsc

Actual τcaPredicted τca

Figure 4.19: Adaptive TDNN multi-step prediction

61

ior can be seen in figures 4.18 and 4.19. In these cases we allowed the delays to

be above the threshold in an arbitrary section of the sequence from sample step

number 1600 to 1633. It is clear in Fig. 4.18 (b) that multiple predictions follow

the changes of the actual values for the first 5 samples, i.e. from 1600 to 1605.

After this point the predicted values converge to the mean of the sequence. Similar

result is also seen in Fig. 4.19 (b).

4.4 Conclusion

From the results given above it can be seen that the trial and error method re-

quires several iterations. However, it is important to mention that if we have good

information regarding the time series to be predicted, the procedure of searching

for the most adequate topology of a TDNN, can be done in an iterative manner.

More importantly is to do a correct selection process, this includes to validate each

proposed topology and also test them. This leads to have enough results to decide

on the most appropriate topology of the TDNN for a particular application. After

creating and testing several TDNN topologies we conclude that the TDNN with 5

delays in the tapped delay line, 9 nodes in the hidden layers and one output is the

most adequate given the delay sequences used in this chapter.

It was also shown that the configuration for multi-step predictions is feasible,

nevertheless such configuration has a limited prediction horizon.We can see that

multi-step prediction gives with similar RMSE as in the case of no missing data.

The results given by these simulations are one part of the core in our research, and

62

we will see in chapter 5 the reason why the predictive TDNNs will predict only

the delay from controller to actuator τ ca even though they can predict also τ sc in

the same fashion.

From the simulations we can also conclude that predictions become more ac-

curate when the correlation increases. This is important for this research since we

are assuming that delays are correlated with previous delays.

The selected topology for prediction described above, was used on the numerical

simulations presented in Chapter 6 for the proposed NCS models described in

Chapter 5.

63

Chapter 5 – Networked Control System Model Design

As mentioned earlier the transmission delays depend on several factors like the

protocol used on the network, traffic patterns, the channel conditions and conges-

tion during transmission. Furthermore, delays can be of different nature either

constant, variable (though deterministic) or random. If we take into consideration

that a long time delay can cause instability, we can think of the existence of a

limit in the duration of the delay for which the controlled system is stable. In

this chapter we explain the design of a timeout policy for the case of long delays

and a design of the variable sampling and observer models is presented. A con-

troller design methodology is presented as well. We then describe and design a

NCS model for the case when a NCS is subject to packet loss, in addition to the

already existent time delay in the communication loop. At the end of this chapter

we comment on some suggested or alternative approaches for the cases of packet

loss.

5.1 Time delays and timeout policy

The following are the considerations taken regarding the duration of time delays

in both ends of the system loop, i.e. τ sc and τ ca. For a controlled system subject

to time delays in the feedback communication loop, there exists a maximum time

64

delay, Tmax, allowable for which the stability of the NCS is guaranteed to be

preserved [33]. In other words if, for a particular controlled system, at sampling

step k the total time delay τk is smaller than the maximum time delay Tmax, then

the system is stable. This means that for the cases when τk > Tmax, given the

combination of τ sck + τ cak > Tmax, the system may become unstable due to packets

dropout. We are assuming that a packet will be discarded if it has not been

successfully received by the end of the sample period equal to Tmax, since new

measurements are always more valuable than old measurements [25]. Remember

that the idea of this work is to minimize the effects on the NCS caused by time

delays and packet loss.

Let us consider the possibility of having the knowledge of how long a time

delay is gong to be, (for a packet to arrive to its destination), before it occurs.

Under this assumption, it is logical to think that we can reduce the uncertainty

of the delays, at least from one side of the network loop, by inserting time stamp

information in packets from sensor to controller. This means that τ sck is known

once it arrives at the controller which we are assuming is event driven. However,

the delay values from controller to actuator τ cak remain uncertain since they have

not happened yet. Knowing the value of delay τ cak or an estimate of it, before

it occurs, will allow the controller to compensate for the total time delay τk. It

is here where the proposed predictive TDNN described in previous chapters is

used to predict such unknown delays. Remember that the TDNN can be used

in two different ways, non-adaptive mode, which, as we saw earlier, means that

the parameters of the network will change only during the training stage, until a

65

predetermined prediction error is achieved. The other way of prediction is using

the adaptive TDNN , where its parameters will change in a continuous fashion.

Then, the TDNN can be used to output a predicted value of the delays τ̂ sck , τ̂ cak or

τ̂k.

In the case of a delayed packet coming from the sensors, which contains the

information of the system output y(tk) and the corresponding time stamp, exceeds

the maximum allowed time delay to arrive to the controller, a timeout policy has

to be adopted. We name the time out from sensor to controller as tscout. Similarly,

in the actuator side we have tcaout. Both are defined as

tscout = tcaout =
Tmax

2
− τc (5.1)

where τc is the computational time required by the controller to output a control

signal, and is assumed to be constant.

In the following sections we consider different scenarios regarding the time out

policy for time delays. They include the case when τ sck > Tmax/2 and the lack of

the information packet containing ŷ(tk) and τ
ca
k−1. We investigate for this case the

application of multi-step prediction by the TDNN. The case when τ cak > Tmax/2

is also investigated and some approaches to compensate for it including the use

of multi-step prediction as well and the implementation of a hold system before

the actuators node are proposed. We also point out that it is possible to compute

control values in advance and send them in a single packet to the actuators. This

approach has the drawback that it will increase the load of the network.

66

5.2 Variable sampling and observer models

Let a continuous-time linear time-invariant controlled system model with no delays

have the state-space form

ẋ(t) = Ax(t) +Bu(t), x(t0)

y(t) = Cx(t)

(5.2)

with feedback controller

u(t) = −Kx(t)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, represent the system states, input, out-

put, respectively. In this case A, B, and C are constant matrices of appropriate

dimensions and K is the m× n feedback gain matrix.

In NCS there are two sources of transmission delays in the communication net-

work. Namely, delays from sensor to controller τ sck and from controller to actuators

τ cak . If system (5.2) is subject to such delays, the controlled system can be modeled

by

ẋ(t) = Ax(t) +Bu(t− τ sck + τ cak), x(t0)

y(t) = Cx(t)

(5.3)

Also, both delays can be lumped together as the total time delay τk = τ sck + τ cak ,

where it has been assumed that the computational time required for the controller

is negligible.

Sampling a system implies to chose the sampling instants, tk, as the times when

the control signal changes. Then it is logical to think that the duration between

67

samples (sampling period) can be constant or variable.

Consider, for the moment, the assumption that system (5.2) is subject to known

delays (the case with unknown random delays is studied later). If the actuators

and controller are assumed event-driven, then the control input will change at

every time tk. Furthermore, the sampling period Tk is considered to be equal to

the total time delay τk, i.e. Tk = τk, which can be variable. Then the system

model (5.3) becomes a discrete time-variant controlled system described by

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)u(tk)

y(tk) = Cx(tk)

(5.4)

with discrete feedback controller

u(tk) = −K(Tk)x(tk) (5.5)

where

Φ(Tk) = eATk

Γ(Tk) =

∫ tk+1

tk

eA(tk+1−λ)Bdλ ,

assuming u(tk) remains the same for tk ≤ t ≤ tk+1. Note that under the previous

assumptions the system (5.4) is not subject to delays. Now, let us assume that the

state x can be approximated by

x̂(tk+1) = Φ(Tk)x̂(tk) + Γ(Tk)u(tk) (5.6)

68

which has the same input as system (5.4). If the model (5.6) is perfect in the sense

that its parameters are identical to the system in (5.4) and also with the same

initial conditions, then states x̂ will be identical to those in (5.4), i.e. x̂ = x.

This is true for any sampling period applied to (5.4) either constant or variable.

Using (5.6) we can generate an observer of (5.4) by introducing the difference

between the measured and estimated outputs, i.e. y(tk)− ŷ(tk), where

ŷk = Cx̂(tk) (5.7)

Then (5.6) becomes

x̂(tk+1) = Φ(Tk)x̂(tk) + Γ(Tk)u(tk) + L(Tk)(y(tk)− ŷ(tk)) (5.8)

where L(Tk) is the observer gain matrix yet to be defined.

Up to this point we have assumed that for a known sampling period Tk the

states given by system 5.4 and 5.6 are exactly the same. However, in the real

case of having a NCS over a a communication network, the existence of unknown

time delays which, as mentioned before, can be constant, variable, or even random

makes it more complicated to do the sampling of (5.4) and (5.6) equally.

We now propose an observer and a controller based on those unknown time

delays. In order to do that, it is necessary to know exactly when to perform the

sampling. In other words, the estimator and controller need to know at sampling

step k the sampling period Tk that will occur, and since Tk = τk it is necessary to

predict the value of τk.

69

To solve the prediction problem, we apply a predictive adaptive TDNN to out-

put a predicted value, at sampling step k, of the total delay τk, i.e. the TDNN

will predict τ̄k which becomes the parameter T̄k. Such value will be used to com-

pute Φ̄(T̄k) and Γ̄(T̄k) which are to be substituted in (5.6). This also implies

that the observer gain L in (5.8) has to be estimated also based on T̄k giving

the estimated observer gain denoted by L̄(T̄k). The entire proposed system is de-

picted in Fig. 5.1, where the dashed line represents the network connection between

estimator-controller and the true system.

))(ˆ)()(()(ˆ)()(ˆ)()(ˆ 1 kkkkkkkk tytyTLtuTtxTtx

)(ˆ)()()()(1 kkkkk tuTtxTtx

L

)(0tx

N
)(ktr

)(ˆ ky

))(ˆ)((kyky

)(ˆ ktu

)(ˆ ktu

ca
kk andty)(

)(ˆ 0tx

sc
k

ca
k

NN predictor k

kT

C
)(ktx

K
)(ˆ ktx

Figure 5.1: Proposed NCS based on a predictor and an observer.

Furthermore, the control feedback u(tk) will be indeed an estimated value based

on the states estimated by the observer, this will be denoted by

û(tk) = −K̄(T̄k)x̂(tk) (5.9)

where K̄ is a suitable estimated feedback control gain based on T̄k as well. Then

70

the observer in (5.8) becomes

x̂(tk+1) = Φ̄(T̄k)x̂(tk) + Γ̄(T̄k)û(tk) + L̄(T̄k)(y(tk)− ŷ(tk)) (5.10)

Remember that if T̄k = Tk the states given by (5.10) are identical to the states x

given by the true system. Then the closed loop system can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)û(tk)

x̂(tk+1) = Φ̄(T̄k)x̂(tk) + Γ̄(T̄k)û(tk) + L̄(T̄k)(y(tk)− ŷ(tk))

y(tk) = Cx(tk)

ŷ(tk) = Cx̂(tk)

û(tk) = −K̄(T̄k)x̂(tk).

(5.11)

5.3 Determining K̄ and L̄

The selection of the control gain K̄ is based on optimal control given by the linear

quadratic regulator technique or LQR for discrete systems. The optimal control

gain K̄ is computed for the estimated system model

x̂(tk+1) = Φ̄(T̄k)x̂(tk) + Γ̄(T̄k)u(tk) (5.12)

under the assumption that T̄k = Tk, which is the ideal case of exact prediction of de-

lays. We solve the optimal discrete linear quadratic regulator problem (DLQR) for

71

(5.12), such that the state feedback law û(tk) = −K̄x̂(tk) minimizes the quadratic

cost function

J =
N−1∑
k=0

x̂′kQx̂k + û′kRûk

where K̄ = (R + Γ̄′ΠΓ̄)−1(Γ̄′ΠΦ̄) with Π being the solution to the discrete-time

algebraic Riccati equation

Π = (Q+ Φ̄′ΠΦ̄)− (Γ̄′ΠΦ̄)′(R + Γ̄′ΠΓ̄)−1(Γ̄′ΠΦ̄)

and Q and R are the weights for the states and control, respectively. For concise-

ness in the notation we have omitted the term (T̄k) in Φ̄ and Γ̄. The observer gain

L̄ is calculated based on the Ackerman method for pole placement. Note that the

computation of K̄ and L̄ is done for every predicted time delay T̄k.

5.4 Treatment of packet loss

As we mentioned before one of the issues that a NCS faces is the effect of packet

loss due to network congestion. This can be seen in terms of the length of the

time delay that might occur in the transmission from sensor to controller, from

controller to actuators or a combination of both. The following sections discuss

the control algorithms for the cases where no packets are lost and where packets

are lost.

72

5.4.1 NCS subject to delays and with no packet loss

Based on the system in (5.11) that describes the NCS in Fig. 5.1 we can obtain the

closed loop structure for the overall system model subject to time delays and no

packet loss, i.e. yk arrives at the controller and ûk arrives at the plant actuators.

The system is given in (5.13)

⎡
⎢⎣x(tk+1)

x̂(tk+1)

⎤
⎥⎦ =

⎡
⎢⎣ Φ(Tk) −Γ(Tk)K̄(T̄k)

L̄(T̄k)C Φ̄(T̄k)− Γ̄(T̄k)K̄(T̄k)− L̄(T̄k)C

⎤
⎥⎦
⎡
⎢⎣x(tk)
x̂(tk)

⎤
⎥⎦ (5.13)

where it is assumed that the total time delay in the control loop is less than the

maximum delay, i.e. τk < Tmax.

5.4.2 NCS model subject to packet loss and time delays

We have seen that the information or packets in a NCS are subject to time delays.

We can also think that some of those packets will not reach their final destination,

namely, they may get dropped as they traverse the nodes of the communication

network. This loss can happen to packets as they travel from both sensor to

controller and from controller to actuator.

We defined our models based on the system depicted in Fig. 5.2, which adds

some new parameters to our model in Fig. 5.1 and they are described in the

remainder of this section. We define the system model subject to packet loss

and time delays in two ways. The first model adopts a holding device (queue)

73

))(ˆ)()(()(ˆ)()(ˆ)()(ˆ 1 kkkkkkkk tytyTLtuTtxTtx

)(ˆ)()()()(1 kkkkk tuTtxTtx

L

)(0tx

)(ˆ ky

))(ˆ)((kyky

)(ˆ ktu

)(ˆ ktu

ca
kk andty)(

)(ˆ 0tx

sc
k

ca
k NN predictor k

kT

C
)(ktx

K
)(ˆ ktx

2p

1p

2S

1S

N
)(ktr

1p

2p

Figure 5.2: Representation of a NCS with packet loss.

before the controller and another before the actuators. The idea is to use the most

recent value of both, the system output and the control signal in the case that the

corresponding packet at step k is lost. These values are updated when a new value

arrives. This approach is also combined with a TDNN predictor which, as we will

see, may need to perform multi-step predictions. The second model relies only

on the observer combined with multi-step predictions of time delays. A detailed

explanation of these approaches follow.

As stated before, in the case of packet loss the NCS is subject to the maximum

time delay that occur in the network i.e. Tmax. Then the timeout policy for Tmax

previously formulated is applied in the following approaches.

Our first approach treats the packet loss as a system where its output informa-

tion y(tk) does not arrive to the observer/controller before the time Tmax/2 is up.

In this case we propose that the observer uses the previous value of the system

74

output, i.e. y(tk−1). This can be expressed as

p1 : y(tk) = y(tk)

p2 : y(tk) = y(tk−1)

(5.14)

where pn is the position of switches S1 and S2 in Fig. 5.2. It is assumed that the

position of the switches changes from p1 to p2 with some probability. The observer

calculates the estimation of the states and a control output is generated.

Since the controller is event driven then, in the case of packet loss from sensor to

controller, the sampling time at the corresponding sampling step k, is equal to the

event defined as the value Tmax/2 + τ̄ cak , which allows the observer to estimate the

states and calculate the required control. The parameter τ̄ cak is defined later. We

also know that a packet coming from sensors to controller contains the information

of the last delay from controller to actuator, i.e. τ cak−1. If the TDNN does not

have that information, then it performs a prediction further than one step ahead

to output the corresponding predicted delay from controller to actuator τ̄ cak at

the corresponding sampling step k. The observer then uses τ̄ cak and computes

the estimation of the states and a control input û(tk) is generated. Multi step

prediction is explained in chapter 5.

Furthermore, to implement this methodology in the case when packet loss oc-

curs from controller to actuator, i.e. S2 is in position p2, which can not be foreseen

by the time delay predictor, it is necessary to have a way to hold the most recent

control value that has already arrived at the actuators. We are assuming that

such storage system exists and outputs the most recent control input, i.e. û(tk−1)

75

exactly at time Tmax/2. We are assuming that this action continues until a new

value arrives. Then the values in the storage system are replaced by new ones.

Considering all possible scenarios for the combination of estimator and the

actual system, the NCS has the structure given next.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)û(tk) if û(tk) is delivered

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)û(tk−1) if û(tk) is lost

x̂(tk+1) = Φ̄(T̄k)x̂(tk) + Γ̄(T̄k)û(tk) + L̄(T̄k)(y(tk)− ŷ(tk)) if y(tk) is delivered

x̂(tk+1) = Φ̄(T̄m
k)x̂(tk) + Γ̄(T̄m

k)û(tk) + L̄(T̄m
k)(y(tk−1)− ŷ(tk)) if y(tk) is lost

y(tk) = Cx(tk)

ŷ(tk) = Cx̂(tk)

û(tk) = −K̄(T̄k)x̂(tk).

(5.15)

where T̄m
k is the predicted sampling period at sampling step k given a multi-step

prediction. We incorporated in the notation the super-scriptm, that is, the number

of step ahead predictions, it is omitted in the notation when m = 1 which is the

basic one step ahead prediction. Some modifications to this first approach are

made to present a second approach to compensate effects of the NCS subject to

time delays and packet loss.

The second approach to compensate for the packet loss proposes to use the

observer to estimate the state based only on the prediction of the time delay further

76

i.e. a prediction of more than one step ahead. Recall that if predictions were

accurate, the states of the actual system and the states of the observer would be

identical. We design this alternative approach based on this previous observation.

The proposed combination of estimator and the actual system has the following

scenarios:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)û(tk) if û(tk) is delivered

x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)û(tk−1) if û(tk) is lost

x̂(tk+1) = Φ̄(T̄k)x̂(tk) + Γ̄(T̄k)û(tk) + L̄(T̄k)(y(tk)− ŷ(tk)) if y(tk) is delivered

x̂(tk+1) = Φ̄(T̄m
k)x̂(tk) + Γ̄(T̄m

k)û(tk) if y(tk) is lost

y(tk) = Cx(tk)

ŷ(tk) = Cx̂(tk)

û(tk) = −K̄(T̄k)x̂(tk).

(5.16)

notice that when y(tk) is lost the observer will estimate the states based on a

prediction further than one step ahead, as previously explained. Now, the packet

containing y(tk) also contains the previous value of the delay τ cak , this is the reason

to perform a multi-step prediction.

77

5.4.3 Alternative approaches

It is also possible to implement a predictor (extrapolator) located before the actua-

tors. It uses a sequence of the past control values of û to compute the corresponding

control input, i.e. û(tk) given {û(tk−1), û(tk−2), ..., û(tk−n)} where n is the number

of previous delays used for the extrapolation and it is defined by the user. The

predictor then updates its stored information with the new information available.

Adopting this methodology implies that the control input calculation by the pre-

dictor requires added computation time. Then, the extrapolation is done to a time

equal to Tmax/2 + τex, where τex is the computation time of the extrapolator, and

we are assuming that it is a constant value.

It is also possible to create a packet Ū(tk) with extra information to be used in

the case of packet loss. When the controller computes the corresponding control

û(tk), based on the predicted T̄k, also it computes the corresponding control input

for û(tk+1) given Tmax/2. The packet is defined as

Ū(tk) = {û(tk), û(tk+1)} (5.17)

Then the algorithm at the actuators side is

• If Ū(tk) arrives, then actuators use û(tk) from Ū(tk)

• If Ū(tk+1) does not arrive, then actuators use û(tk+1) from Ū(tk)

We are assuming that the controller is fast enough to do this calculations before

the arrival of the next packet from the sensors.

78

This methodology can be extended to the case where consecutive packet losses

occur, however, this depends on the accuracy of the multi step predictions. Also,

it is not practical to send large packets since this will increment the computational

time required by the controller, and also this can increment the congestion in the

network [27].

79

Chapter 6 – Application to the Inverted Pendulum

In this chapter we present the simulation results of the application to a real case

of the proposed NCS models described in the previous chapter. We are integrating

the proposed neural network (TDNN) to the NCS models and using a real system

to test them. We start by describing the actual system to be controlled: the

inverted pendulum on a cart, followed by the presentation of results for different

scenarios.

6.1 Inverted Pendulum

One of the most common systems utilized for testing new algorithms in the area of

control systems is the inverted pendulum on a cart, depicted in Fig. 6.1. The idea

of this electromechanical set-up is that we maintain the pendulum in an upright

position atop the cart by making controlled changes in the horizontal position of

the cart by a force F.

We denote the cart position coordinate by x and the pendulum angle from the

vertical position by θ. In our simulations we assume that the inverted pendulum

system has the parameter listed in Table 6.1.

We also assume that the pendulum does not move more than few degrees from

the vertical position, therefore the system is linearized about the vertical position

80

x

y

u
M

m

L

Cart
F

Figure 6.1: Inverted pendulum on a cart.

θ = 0. Lagrange equations in (6.1) give the linearized equations of motion for

the inverted pendulum (6.2). The reader is referred to [45] for more information

regarding the inverted pendulum.

Table 6.1: Inverted pendulum system parameter.

Inverted Pendulum Parameters
Mass of the cart M 2 kg
Mass of the pendulum m 1 kg
Length to the pendulum center of mass L 0.5 m
Gravitational constant g 9.81 m/s2

Pendulum Angle (initial condition) θ 0.035 rad

(M +m)ẍ+mLθ̈ = F

mLẍ+mL2θ̈ −mgLθ = 0

(6.1)

81

Solving for ẍ and θ̈ we have

ẍ = v̇ = −mg
M

θ +
F

M

θ̈ = ẇ =
(M +m)g

ML
θ − F

ML
.

(6.2)

Then from (6.2) we can get the standard linear model for the inverted pendulum

in state-space form as in equation (5.2) which gives

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẍ

θ̇

θ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 −m
M
g 0

0 0 0 1

0 0 M+m
ML

g 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ

θ

θ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1
M

0

− 1
ML

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u
(6.3)

Since we are interested in measuring the parameters: pendulum angle θ with

respect to vertical and horizontal position x of the cart, then the output is

y =

⎡
⎢⎣1 0 0 0

0 0 1 0

⎤
⎥⎦

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ

θ

θ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We are assuming that the inverted pendulum is controlled from a remote lo-

cation by a main controller. The assumptions for the NCS are described in Table

82

6.2. Using the values from Table 6.1 in (6.3) we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẍ

θ̇

θ̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 −4.9050 0

0 0 0 1

0 0 29.4300 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

ẋ

θ

θ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0.5

0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u (6.4)

We can verify the stability of the dynamic system by looking at the eigenvalues

Table 6.2: Assumptions for the NCS.

Networked Control System Assumptions
A communication network exists only between:
- Sensors to controller and controller to actuators

Delays present between:
- Sensor to controller (τ sc) and between controller to actuators (τ ca)

The controller, actuators and sensors are event driven
Sensors are directly connected to the plant
Actuators are directly connected to the plant

of the system matrix A, i.e. eigenvalues of A are [0, 0, 5.4249, -5.4249]. From this

result, we can see that the system is unstable. For the application of the optimal

linear regulator or linear quadratic control (LQR) we defined the weight matrices

Q and R as:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wx 0 0 0

0 0 0 0

0 0 wθ 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, R = [1], (6.5)

83

where the element wx is the weight affecting the position of the cart, and wθ is the

weight affecting the angle of the pendulum. These weighting factors were chosen

individually. Q weights different parts of the state. The larger the diagonal entry

in Q, the more emphasis the corresponding part of the state receives in driving

the system to zero. For example, if the state is the vector [x1 x2]
T , and Q is the

diagonal matrix with (1000, 1) on the diagonal, then we really care more about x1

being driven to 0 than x2. In the same way, since we are interested in keeping the

pendulum upright, we initially selected the weights wx = 1 and wθ = 10, giving

more emphasis to the position of the pendulum. The values of the weights can be

changed depending on which variable we are more interested in driving to zero.

Since modern control devices are digital (micro-controllers or computers), we

can obtain the discrete representation of the system in (6.4). A fixed sampling pe-

riod for the inverted pendulum can be obtained by looking at the natural frequency

of the system which is determined as ω2
0 = g/l [49]. Then ω0 = 4.42rad/s. It is

suggested in [23] that the sampling period can be determined from Ts ≥ 1/2ω0.

Let us assume a fixed sampling period Ts = 0.03s, which gives the discrete system

of the form (6.6).

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(k + 1)

ẋ(k + 1)

θ(k + 1)

θ̇(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0.0300 −0.0022 −0.0000

0 1 −0.1478 −0.0022

0 0 1.0133 0.0301

0 0 0.8868 1.0133

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(k)

ẋ(k)

θ(k)

θ̇(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0002

0.0150

−0.0005

−0.0301

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u(k)

(6.6)

84

In the following section, some simulations are presented for the system (6.6)

under the conditions of fixed sampling period and no packet dropouts. Also we

are assuming there are no delays present in the feedback loop.

6.1.1 Fixed sampling period, no delays and no packet loss

The system in (6.6) has a fixed sampling period. Let us assume also that it is

subject to no time delays and no data loss. Simulation of the full state feedback

system is depicted in Fig. 6.2. It shows the transient responses for the position of

the cart x and the angle of the pendulum θ. The initial condition for the position

of the pendulum with respect to the vertical was arbitrarily set to θ = 0.035rad.

We can see that for the initial position, with no delays present and no packet loss,

the pendulum converges to the vertical position in about 6s, and the maximum

distance excursion of the cart is about 0.12m returning to its initial position in

around 15s. In this case we adopted the LQR (approach mentioned earlier) to

determine the state feedback controller u(tk) = −Kx(tk). Fig. 6.3 shows the

control input applied to the cart. The initial force reaches a maximum of around

2.25N and a lower transient of about 0.25N , reaching steady state in approximately

10s.

85

0 5 10 15 20 25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Time (s)

x,
 θ

Linear position (m)

Angular position θ

Figure 6.2: Inverted pendulum with no delays.

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

In
pu

t F
or

ce
 (

N
)

Control input

Figure 6.3: Control input with no delays.

86

6.1.2 Fixed sampling period with delays and no packet loss

Let us now induce delays into the NCS. We set the previous system with the same

initial conditions, but this time the system was subject to time delays in both

ends: from sensor to controller and from controller to actuator. We assume that

each time delay series τ sc and τ ca has a mean μ = 0.06s and a correlation factor

β = 0.5, as well as the conditions described in Table 6.3. The outcome of the

simulation is in Fig. 6.4. We can see the instability caused by the NCS-induced

delays in the feedback loop.

Table 6.3: Simulation conditions for the NCS with fix sampling period.

Simulation conditions: fix sampling period
τ sc, mean μ = 0.06s
τ ca, mean μ = 0.06s
Assuming correlation factor β = 0.5
Assuming no packet dropout
Assuming fixed sampling period Ts = 0.03
Pendulum initial conditions:
-Actual plant 0.035rad (2deg)

In the next section we apply our proposed observer-based variable sampling

methodology using predictions from the TDNN previously studied.

6.2 Variable Sampling Period

Now we investigate the application of the variable sampling period to the case of

the inverted pendulum under different scenarios.

87

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

x,
 θ

Linear position (m)
Angular position θ

Figure 6.4: System subject to delays, τ sc and τ ca had mean μ = 0.06s.

6.2.1 Presence of Delays and No Packet Loss

For this case we assume that the NCS for the inverted pendulum is subject to

delays and has no packet loss occurring either from sensor to controller or from

controller to actuator. Let the system in Fig. 5.1 be expressed as in Fig. 6.5, where

the dashed lines represent the network connection between the TDNN-observer-

controller and the true system. The NCS model is an observer-based NCS with

variable sampling. The closed loop for the system model is given by the equations

(5.13). We are assuming that the total delay in the NCS is τk < Tmax, and the

computational time is small, known and constant, and it can be absorbed by τ sc.

As mentioned before, since there is no packet loss, the controller receives all

88

Plant

TDNN-Observer-Controller

scca

Figure 6.5: Representation of system with delays and no packet loss.

the information at every sampling step k, and given that the packets are time-

stamped, then the value of τ sck is known. Because of this, the TDNN needs to

compute only the predicted value (at every step k) of the delay from controller to

actuator in a one-step ahead fashion, i.e. τ̄ cak . The observer is sampled at every

predicted total time delay τ̄k = T̄k = τ̄ cak + τ sck . After that, the controller sends the

estimated control signal û(tk) to the plant.

Let us first investigate the case where the NCS for the inverted pendulum

system has a total time delay given by the delay series τ sc = τ ca, both with mean

μ = 0.02 and β = 0.5, Fig. 6.6. The predictor is an adaptive TDNN named

NET5,9,1 defined in chapter 5.

Given the previous assumptions and conditions, the behavior of the inverted

pendulum is shown in Fig. 6.7. From that figure we can see that the position of

the pendulum converges to the vertical in about 5s and the maximum distance

excursion of the cart is about 0.17m returning to its original position in around

15s. These results are comparable to the ones obtained in the case of no delays

89

0 100 200 300 400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Sampling number

T
im

e
D

el
ay

 (
s)

Actual total delay
Predicted delay

Figure 6.6: Total time delay series, τ sc = τ ca, μ = 0.02, β = 0.5.

0 5 10 15 20 25
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (s)

x,
 θ

Linear position (m)
Angular position (rad)

Figure 6.7: Variable sampling applied to inverted pendulum subject to delays.

90

and no packet drop out shown in Fig. 6.2. The main difference is that the cart has

a slightly larger displacement. The control input in Fig. 6.8 shows that the initial

force applied to the cart reaches a maximum of 3N in the first transient and a lower

value of 1.25N in the negative transient, reaching steady state in approximately

10s.

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

In
pu

t F
or

ce
 (

N
)

Control input

Figure 6.8: Control input, τ sc = τ ca, μ = 0.02, β = 0.5.

Let us revise the previously studied case of fixed sampling period with delays

and no packet loss (see Fig. 6.4), and apply the proposed variable sampling period

scheme. This time the parameters of the simulation were changed to the conditions

and assumptions summarized in Table 6.4. In addition, the initial condition of the

position of the pendulum (in the observer) with respect to the vertical was set

closely to the actual position of the pendulum of the true system to θ = 0.055rad.

91

After several tests adequate position observer poles (0.3 0.31 0.32 0.33) were found.

Fig. 6.9 shows the predicted and actual total time delay sequences.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Sampling number

T
im

e
D

el
ay

 (
s)

Actual total delay
Predicted delay

Figure 6.9: Total time delay series, τ sc = τ ca, μ = 0.06, β = 0.5.

We can see from the results in Fig. 6.10 that the position of the pendulum is

controlled and the vertical position is reached in about 6s, similar to the results

seen in Fig. 6.7. Also, we can observe that this time the maximum distance

excursion of the cart is about 0.27m, however, it returned to the original position

in around 15s which is comparable to the results in Fig. 6.2 and Fig. 6.7. We can

see in Fig. 6.11 that the initial force applied to the cart has three transients. The

third transient almost reaches a maximum of 3N in the second positive transient

and a lower value of approximately 1.5N in the negative transient, reaching steady

state in approximately 13s.

92

Table 6.4: NCS simulation conditions.

Simulation conditions
τ sc, mean μ = 0.06s
τ ca, mean μ = 0.06s
Assuming correlation factor β = 0.5
NET5,9,1 (adaptive)
Assuming no packet dropout
Assuming total delay τk < Tmax

Observer pole location (0.3 0.31 0.32 0.33)
Pendulum initial conditions:
-Actual plant 0.035rad (2deg)
-Observer 0.05rad (2.9deg)

From these results and compared to the case of a fixed sampling period with

delays in Fig. 6.4, we can see that in this system, under the conditions and

assumptions mentioned, our proposed observer-based variable sampling model is

able to compensate for delays in the NCS with no packet loss.

We have shown that the proposed observer-based variable sampling period gives

satisfactory results when the system is subject to time delays and no packet loss

in the communication loop. Particularly in the case of the inverted pendulum,

the proposed method gives good results in keeping the position of the pendulum

upright. Such results are comparable to the case with a fixed sampling period with

no delays and no packet loss (see Fig. 6.2). The case of random time delays and

packet loss in the communication loop is investigated in the next section.

93

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

x,
 θ

Linear position (m)
Angular position (rad)

Figure 6.10: Inverted pendulum subject to delays.

0 5 10 15 20 25

−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

In
pu

t F
or

ce
 (

N
)

Control input

Figure 6.11: Control input, τ sc = τ ca, μ = 0.06, β = 0.5.

94

6.3 Presence of delays and packet dropout

In this section we investigate the application of a variable sampling period to the

case of the inverted pendulum in a NCS subjected to random delays and packet

dropout. Let us represent the model in Fig. 5.2 as in Fig. 6.12.

Plant

TDNN-Observer-Controller
sc

ca

1S
1p

2p

)(ˆ ktu2p

1p

2S

Figure 6.12: NCS with random delays and packet loss.

We start with the application of our algorithm given in (5.15). Recall that this

algorithm tells the controller and actuators to use the last information available

in the case when a packet does not arrive, i.e. when s1 and s2 are in position p2

in Fig. 6.12. As we saw in previous examples, the proposed variable sampling

method is able to stabilize the inverted pendulum model in the presence of delays.

We now assume the system has packet losses occurring from sensor to controller

and from controller to actuator. The conditions of the simulation are similar to

those used in the example depicted in Fig. 6.7 with the addition of an assumed

value of Tmax/2 = 0.03s. The conditions are given in Table 6.5.

At this point it is important to remark that the packet arriving to the controller

95

Table 6.5: NCS simulation conditions.

Simulation conditions
τ sc, mean μ = 0.02s
τ ca, mean μ = 0.02s
Assuming correlation factor β = 0.5
NET5,9,1 (adaptive)
Assuming packet dropouts in both ends
Assuming Tmax/2 = 0.03s
Observer pole location (0.3 0.31 0.32 0.33)
Pendulum initial conditions:
-Actual plant 0.035rad (2deg)
-Observer 0.05rad (2.9deg)

at sampling step k is timestamped, but also it contains the information of the state

of the plant and the last delay value of the last packet sent from the controller

to the actuator (τ cak−1). When a packet traversing from controller to actuator is

dropped at its corresponding sampling step k, i.e. when τ cak ≥ Tmax/2, we define

the construction of the packet (Isck) sent from sensors to controller at sampling step

k as (6.7).

Isck = {y(tk), τ cak−1 = Tmax/2, timestamp}, if τ cak−1 ≥ Tmax/2

Isck = {y(tk), τ cak−1, timestamp}, if τ cak−1 < Tmax/2

(6.7)

where y(tk) is the output value of the state at time tk, τ
ca
k−1 is the time delay value

of the packet sent from controller to actuator at sampling step (k− 1), timestamp

is the time at which the packet Isck was sent. Assuming the packet Isck reaches the

controller, the value of τ cak−1 is passed to the tapped delay line of the TDNN which

96

generates the predicted value τ̄ cak . Then the observer will have a sampling period

equal to T̄k = τ̄ cak + τ sck , where τ sck is computed from timestamp.

Note in (6.7), that the historic data the TDNN is receiving about τ ca is upper

bounded to Tmax/2 since every packet (from controller to actuators) with delay

greater than that is discarded. Therefore the delay τ cak−1 with value Tmax/2 at

sampling step k is the most recent information available to the TDNN to compute

the corresponding prediction. Recall that in NCS the newest measurement (data)

information is always more valuable than old measurements. Furthermore, in the

case of packet loss from sensor to controller the value of τ sck is also equal to Tmax/2

at sampling step k, i.e. τ sck is upper bounded, and multi-step prediction is activated

as explained in chapter 5.

In the event of packet loss from sensor to controller we use the criteria given

in 5.14 which allows the controller to use the most recent value (y(tk−1)) saved in

a buffer or queue. Similarly, when no input arrives to the actuators by the time

Tmax/2 is up, they will use the most recent value of the input available i.e. u(tk−1).

These criteria are given as:

p1 : u(tk) = u(tk)

p2 : u(tk) = u(tk−1)

(6.8)

The following results were obtained by applying the algorithm in (5.15) to the

inverted pendulum case. We assumed the conditions given in Table 6.5. Under

these conditions the controller for the inverted pendulum experienced 30% packet

97

loss. Fig. 6.13 (a) shows the sequence of delays affecting the packets traversing

from sensor to controller, the horizontal line at 0.03s marks the assumed value of

Tmax/2, so τ
sc is upper bounded. Also in Fig. 6.13 (b), the history of the delays

(from controller to actuator) as seen by the predictive TDNN in the moment of

computing the predicted value τ̄ cak is shown. The history series τ ca is also upper

bounded which means that the actuators did not receive the corresponding control

signal, making use of the most recent control signal previously received. Predictions

by the TDNN of this series are shown also in Fig. 6.13 (b). The black dots represent

the multi-step predictions generated by the TDNN when a packet sent is dropped.

0 100 200 300 400 500 600 700
0

0.05

0.1
(a)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual time delay τsc

0 100 200 300 400 500 600 700
0

0.01

0.02

0.03

(b)

Sample Number

T
im

e
D

el
ay

 (
s)

Actual τca

Predicted τca

Multi−step τca

Figure 6.13: Bounded time delay series τ sc (a) and τ ca (b).

Let us now investigate the effects that the induced delays and packet loss shown

in Fig. 6.13 have on the NCS for the inverted pendulum. We can see in Fig. 6.14

98

0 5 10 15 20 25
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (s)

x,
 θ

Linear position (m)
Angular position (rad)

Figure 6.14: Inverted pendulum subject to delays and 30% packet dropout.

0 5 10 15 20 25

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

In
pu

t F
or

ce
 (

N
)

Control input

Figure 6.15: Control input, τ sc = τ ca, μ = 0.02, β = 0.5.

99

that even with this amount of information loss, the algorithm can compensate and

stabilize the system in about 6s to 7s with some small oscillations in the interval

from 5s to 10s. Also, the maximum distance excursion of the cart is about 0.055m.

We can see in the same figure that the position of the cart has a negative transient

close to −0.01m which is larger than the similar case shown in Fig. 6.7. These

small oscillations are attributed to the difference between the actual control value

(û(tk)) needed at Tmax/2 and the value (û(tk−1)) used by the actuators. In Fig.

6.15 we can see that the initial force applied to the cart has an initial transient of

about 3N and a negative transient of approximately 2N , reaching steady state in

approximately 7s.

Comparing the results between Fig. 6.2 and Fig. 6.14 it can be seen that the

displacement of the cart is smaller in Fig. 6.14. Also the position of the pendulum

after the first transient returns close to the vertical position in a shorter time than

the case with no packet loss. These effects are because the control input is larger

compared to the case with no packet loss. Large control input (force) causes the

cart to move faster at the beginning of the test with a short displacement. This

is reflected in the position of the pendulum being close to the vertical in a shorter

time around 2.5s compared to the 5s for the case of no-packet loss.

In further analysis we found that the system starts showing instability when

the number of packets dropped is close to 50%. This can be seen in Fig. 6.16,

where the system was subject to 49% packet dropout. Even though an oscillatory

behavior of the carts is shown, the position of the pendulum is kept upright almost

constantly. Comparative results of the force applied to the cart are shown between

100

Fig. 6.15 and Fig. 6.17.

As we saw in the results of the case of fixed sampling time with delays shown in

Fig. 6.4 (see conditions in Table 6.3), the system becomes unstable. Furthermore,

the same system under the same conditions but using the proposed observer-based

variable sampling method results in a controlled system (see Fig 6.10). We now

investigate the same system, but this time it is subject to packet dropouts and

we assume a maximum time delay Tmax = 0.3 occurring from sensor to controller

and from controller to actuator. This accounts for a total of 12.3% packet loss.

We can see in Fig. 6.18 that the proposed method of observer-based variable

sampling period was not able to compensate (in the event of packet dropouts) and

the inverted pendulum became unstable. The use of the most recent input and

output values are not sufficient to allow the system to compensate under these

particular conditions. The actuators are using a control input value corresponding

to a step further back in time which is not the value needed for the system to

compensate. This shows why it is important to consider the characteristics of the

network delays when a NCS is designed and the limitations of the system to be

controlled through a network.

Let us now consider the proposed methodology described in equations (5.16)

to treat the case of packet dropouts. This methodology differs from the previ-

ously studied examples above (see equations (5.15)) in that it uses the most recent

value of the control input (û(tk−1)) in the case of packet dropout from controller

to actuators, but this time it will not use the most recent value of the plant out-

put y(tk) to calculate the difference between the measured and estimated outputs

101

0 5 10 15 20 25
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time (s)

x,
 θ

Linear position (m)
Angular position (rad)

Figure 6.16: Inverted pendulum subject to delays and 49% packet dropout.

0 5 10 15 20 25
−2

−1

0

1

2

3

4

Time (s)

In
pu

t F
or

ce
 (

N
)

Control input

Figure 6.17: Control input, τ sc = τ ca, μ = 0.02, β = 0.5.

102

0 5 10 15 20 25
−30

−20

−10

0

10

20

30

Time (s)

x,
 θ

Linear position (m)
Angular position (rad)

Figure 6.18: Control input, τ sc = τ ca, μ = 0.06, β = 0.5, 12.3% Dropout.

y(tk) − ŷ(tk). This methodology is based on the assumption that under perfect

prediction of delays, the states given by equations (6.9) (see (5.16)) are the same.

⎧⎪⎪⎨
⎪⎪⎩
x(tk+1) = Φ(Tk)x(tk) + Γ(Tk)û(tk)

x̂(tk+1) = Φ̄(T̄m
k)x̂(tk) + Γ̄(T̄m

k)û(tk)

(6.9)

In the event of packet dropout from sensor to controller, the controller will

compute the control signal based only on the states given by the observer with

no information from the system output. Then in the absence of the information

packets described in (6.7), the sampling interval (T̄m
k) for the observer becomes the

103

Table 6.6: NCS simulation conditions.

Simulation conditions
τ sc, mean μ = 0.02s
τ ca, mean μ = 0.02s
Assuming correlation factor β = 0.5
NET5,9,1 (adaptive)
Assuming packet dropouts in both ends
Assuming Tmax/2 = 0.03s
Observer pole location (0.3 0.31 0.32 0.33)
Pendulum initial conditions:
-Actual plant 0.035rad (2deg)
-Observer 0.05rad (2.9deg)

time out value τ sck = Tmax/2 added to the multi-step predicted value τ̄ cak computed

by the TDNN, i.e. T̄m
k = τ sck + τ̄ cak . To test this proposed methodology we revise

the example given in Table 6.5 which is shown again in Table 6.6.

As we saw, the NCS for the inverted pendulum is subject to delays and packet

dropouts. It is important to remark that to have consistency in our simulations

and be able to compare results, we use the same sequences of delays. The only

difference is the control algorithm used.

We can see in Fig. 6.19 that this new proposed algorithm is able to keep

the pendulum in a vertical position with a small oscillation at 5s. Furthermore,

the pendulum is subject to a 30% packet loss. This proves that the algorithm

works under these particular conditions. The transient of the pendulum position is

comparable to the one shown in Fig. 6.14 that uses the previous control algorithm

given in (5.15). Furthermore, the overall results in this test are improved as we

104

0 5 10 15 20 25
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (s)

x,
 θ

Linear position (m)
Angular position (rad)

Figure 6.19: Inverted pendulum subject to delays and 30% packet dropout.

0 5 10 15 20 25
−2

−1

0

1

2

3

4

Time (s)

In
pu

t F
or

ce
 (

N
)

Control input

Figure 6.20: Control input, τ sc = τ ca, μ = 0.02, β = 0.5, 30% Dropout.

105

can see that the distance excursion of the cart in Fig. 6.20, has less variablilty and

the negative transient has decreased.

6.4 Conclusion

The methodologies presented here have shown good potential and effectiveness in

controlling a classic dynamic system under the assumptions and conditions pre-

sented. We have shown that the algorithms presented here are capable of control-

ling a system subject to time delays with no packet dropouts. Particularly it has

been shown that the proposed algorithms are able to stabilize the system of the

inverted pendulum on a cart, under the assumed conditions.

Furthermore, we have shown that in the event of packet dropouts, the algo-

rithms which use the most recent control input value (u(tk−1)) and the most recent

output value (y(tk−1)) can compensate for the effects of time delays in packet trans-

mission. However, the larger the delays in the NCS the further back the values

(u(tk−1)) and (y(tk−1)) are. This results in a lack of values useful in compensating

for the dropouts in the system. The methodologies presented here can be used with

understanding of the limitations of a particular system it is desired to control.

106

Chapter 7 – Conclusion and Future Work

In this dissertation the development of a variable sampling methodology to miti-

gate the effects of time delays and packet dropouts in networked control systems

using neural networks was presented. The methodology was applied to control

dynamic systems remotely located. For the method here presented we used pre-

dicted values of time delays occurring in the feedback communication loop as the

sampling instants of the system model. Such delays are time variant.

One of the contributions of this work is the application of an adaptive TDNN to

perform one-step-ahead predictions of the time delays occurring in the communi-

cation loop. The TDNN uses a sequence of previous time-delay values to calculate

the next value of the sequence. We showed that with a relatively simple TDNN

with five input nodes in the tapped delay line, nine nodes in the hidden layer

and one output, it is possible to achieve predictions of a time-delay sequence in a

one-step-ahead fashion. Furthermore, we proposed a TDNN configuration for the

cases when multistep prediction is required. In such a configuration, the predicted

time delay is fedback to the input layer in the event that a packet from sensor to

controller in the NCS is considered lost or dropped. In addition, we showed that

multistep predictions are possible under certain conditions.

We presented an iterative way to obtain the most suitable TDNN topology

for our particular application. More importantly, it should be emphasized that

107

although the proposed method is of the iterative trial-and-error type, the valida-

tion of every topology plays an important role in selecting the most appropriate

topology.

Another contribution is a novel networked control system design. We presented

an observer-based variable sampling control model. The predicted value from the

TDNN is used as the sampling time of the NCS model. The optimal control gain is

calculated using a linear quadratic regulator for every predicted time-delay value

and the control signal is sent to the actuators. This novel approach is designed

to compensate for systems with time delays and packet dropouts. This disser-

tation showed that this design is able to compensate for the time delays in the

communication loop and also for dropped packets with some limitations.

Using the inverted pendulum example we showed that the proposed NCS model

can stabilize a real life dynamic system model. We showed that such a system sub-

ject to time delays and up to 50% packet loss can be stabilized. On the other hand,

the proposed model has limitations, namely, the proposed control methodology is

not able to compensate for packets dropped when the system (inverted pendulum)

is subject to delays with a mean around μ = 0.12s and 12.3% packet loss.

The methodologies presented here have shown good potential and effective-

ness in controlling a classic dynamic system under the assumptions and stated

conditions.

108

7.1 Future Work

Due to the existence of multiple kinds of possible networks to be used in control

systems, it would be convenient to test this methodology with the most commonly

used ones. This means that real data of the delays occurring in a particular network

have to be estimated. This can be a complicated task due to the vast variety and

complexity of each network in use today.

This dissertation showed the prediction capabilities of the TDNN, especially

when the correlation factor of the sequence increases. A study of the amount

of correlation between time delays occurring in a particular network would tell

the designer if this methodology is applicable, and if so, under which limits this

methodology can work.

It is important to remark that the methods here presented are based on predic-

tions. It is logical to investigate the possibility of implementing or creating a better

predictor. Also it is important to keep in mind that many of the applications may

require high speed or real time computations. Then a proposed predictor has to

be designed for a particular condition and application.

Further strategies to compensate for dropped packets can be pursued. It is

possible to think of predicting or estimating the states or control values contained

in dropped packets by using a TDNN.

109

Bibliography

[1] Anil K. Jain, and Jianchang Mao, Artificial Neural Network: A tutorial, IEEE

Computer, 1996

[2] Yodyium Tipsuwan and Mo-Yuen Chow, Control Methodologies in Networked

Control Systems, Engineering Practice, 11 pp 1099-1111, 2003

[3] Dan Shi, Hongjian Zhang, and Liming Yang , Time-Delay Neural Network

for the Prediction of Carbonation Tower’s Temperature, IEEE Transactions on

Instrumentation and Measurement, Vol. 52, No 4, August 2003

[4] Nahid Ardalani, Ahmadreza Khoogar, and H. Roohi, A Comparison of Ada-

line and MLP Neural Network based Predictors in SIR Estimation in Mobile

DSCDMA Systems, Proceedings of the World Academy of Science, Engineering

and Technology, vol. 9, November 2005

[5] Nilsson, J, Real-Time Control Systems with Delays, PhD Thesis, Lund Institute

of Technology, Lund, Sweden, 1998

[6] Samir Shaltaf, Neural-Network-Based Time-Delay Estimation, EURASIP Jour-

nal on Applied Signal Processing 2004

110

[7] Li Hongyan, Wang Hong and Gui Chao, Internet Time-delay Prediction Based

on Autoregressive and Neural Network Model, International Conference on

Communications, Circuits and Systems Proceedings, 2006

[8] Q. P. Wang, D.L. Tan, Ning Xi and Y. C. Wang, The Control Oriented QoS:

Analysis and Prediction, International Conference on Robotics and Automa-

tion, Seoul Korea, 2001

[9] S.R. Seyed Tabib, and Ali A. Jalali, Modelling and Prediction of Internet Time-

delay by Feed-forward Multilayer Perceptron Neural Network, IEEE Tenth In-

ternational Conference on Computer Modeling and Simulation, April 2008

[10] Jianqiang Yi, Qian Wang, Dongbin Zhao, and John T. Wen, BP neural net-

work prediction-based variable-period sampling approach for networked control

systems, Applied Mathematics and Computation, Elsevier, 2007

[11] Liu Jiangang, Liu Biyu, Zhang Ruifang, and Li Meilan, The New Variable-

period Sampling Scheme for Networked Control Systems with Random Time

Delay Based on BP Neural Network Prediction, Proceedings of the 26th Chinese

Control Conference, 2007

[12] Yan Xue, and Ke Liu, Analysis of Variable-Sampling Networked Control Sys-

tem Based on Neural Network Prediction, Proceedings, International Confer-

ence On wavelet Analysis and Patern Recognition, 2007

111

[13] Martin T. Hagan and Mohammad B. Menhaj, Training Feedforward Networks

with the Marquardt Algorithm, IEEE Transactions on Neural Networks, vol. 5,

No. 6, pp 989-993, November 1994.

[14] P. Raptis, V. Vitsas, A. Banchs, K. Paparrizos, Delay Distribution Analysis of

IEEE 802.11 with Variable Packet Length, in Proc. of the 65th IEEE Vehicular

Technology Conference, 2007. VTC2007-Spring. IEEE 65th, pp 830-834, April

2007.

[15] Payam Naghshtabrizi and Joao P. Hespanha, Stability of network control sys-

tems with variable sampling and delays, In Proc. of the Forty-Fourth Annual

Allerton Conf. on Communication, Control, and Computing, 2006

[16] Yan Xue; Ke Liu; , Controller design for variable-sampling networked con-

trol systems with dynamic output feedback Intelligent Control and Automation,

2008. WCICA 2008. 7th World Congress on , vol., no., pp.6391-6396, 25-27

June 2008

[17] Anta, A.; Tabuada, P.; , Self-triggered stabilization of homogeneous control

systems, American Control Conference, 2008 , vol., no., pp.4129-4134, 11-13

June 2008

[18] J. H. Sandee, Event-driven Control in Theory and Practice. Eindhoven, the

Netherlands: PhD thesis, Technische Universiteit Eindhoven, 2007.

[19] P. Raptis, A. Banchs, V. Vitsas, K. Paparrizos, and P. Chatzimisios, Delay

Distribution Analysis of the RTS/CTS mechanism of IEEE 802-11 in Proc of

112

the 31 st IEEE Conference on Local Computer Networks, pp. 404-410, Nov.

2006.

[20] Nargess Sadeghzadeh, Ahmad Afshar, Mohammad Bagher Menhaj, An MLP

neural network for time delay prediction in networked control systems, Chinese

Control and Decision Conference, 2008

[21] Danilo P. Mandic, Jonathon A. Chambers Recurrent Neural Networks For

Prediction, Wiley, 2001.

[22] Gene F. Franklin, J. David Powell, Michael L. Workman Digital control of

dynamic systems,Addison-Wesley Pub. Co. 1990

[23] Stevens, Brian L., and Lewis, Frank L., Aircraft control and simulation, Wiley,

New York, 1992

[24] Brian D.O. Anderson, and John B. Moore, Optimal Filtering, Dover,2005

[25] Xiangheng Liu, and Andrea Goldsmith, Wireless Medium Access Control in

Networked Control Systems, Report

[26] Rafael Camilo Lozoya Gmez, Pau Mart, Manel Velasco and Josep M. Fuertes,

Wireless Network Delay Estimation for Time Sensitive Applications Research

report ESAII RR-06-12, Technical University of Catalonia, 2006

[27] Kondo, Y. and Itaya, S. and Yamaguchi, S. and Davis, P. and Suzuki, R. and

Obana, S. Wireless Channel Detection Based on Fluctuation of Packet Arrival

113

Interval,Networks, 2007. ICON 2007. 15th IEEE International Conference on,

2007.

[28] John G. Proakis and Masoud Salehi, Contemporary Communication Systems

Using Matlab, Pacific Grove, CA: Brooks/Cole, 2000, pp. 56-57.

[29] Liqian Zhang, Yang Shi, Tongwen Chen, and Biao Huang A New Method for

Stabilization of Networked Control Systems with Random Delays, American

Control Conference, 2005.

[30] E. Witrant, C. Canudas-de-Wit, D. Georges, and M. Alamir Remote Stabiliza-

tion Via Communication Networks With a Distributed Control Law, Automatic

Control, IEEE Transactions on , vol.52, no.8, pp.1480-1485, Aug. 2007

[31] Yasar Becerikli, Yusuf Oysal, Modeling and prediction with a class of time

delay dynamic neural networks, Applied Soft Computing, 7, Elsevier, 2007

[32] Radu Drossu, and Zoran Obradovic, Stochastic Modelling Hints for Neural

Network Prediction, Document, University of Washington, 1995

[33] Wei Zhang, Michael S. Branicky, and Stephen M. Phillips Stability of Net-

worked Control Systems, IEEE Control Systems Magazine, February 2001

[34] Luck, Rogelio, and Ray Asok, An Observer-based Compensator for Distributed

Delays, Automatica. Vol. 26, pp. 903-908. Sept. 1990

114

[35] Luck, Rogelio, and Ray Asok, experimental verification of a delay compensa-

tion algorithm for integrated communication and control, International Journal

of Control, Vol. 59, pp.1357-1372, 1994

[36] Jiwei Hua, Tao Liang, Hexu Sun and Zhaoming Lei, Time-delay Compensation

Control of Networked Control Systems Using Time-stamp based State Predic-

tion,Computing, Communication, Control, and Management, 2008. CCCM ’08.

ISECS International Colloquium on , vol.2, no., pp.198-202, 3-4 Aug. 2008

[37] Adya M. and Collopy F. How Effective are Neural Networks at Forecasting and

Prediction? A Review and Evaluation,Journal of Forecasting ,vol.17, pp.481-

495, 1998

[38] Hagan, M. and Demuth, H., Neural Networks for Control, Proceedings of the

American Control Conference, 1999.

[39] A. Zaknich Principles of Adaptive Filters and Self-learning Systems, Springer,

2005.

[40] Baum E. B. and Haussler D. (1988), What size net gives valid generalization?,

Neural Computation, 1, pp. 151-160.

[41] R. Zemouri, D. Racoceanu, N. Zerhouni, Recurrent Radial Basis Function

Network for Time-Series Prediction, Engineering Applications of Artificial In-

telligence 16 (5-6) (2003) 453-463.

115

[42] Bernard Widrow, Michael A. Lehr, 30 Years Of Adaptive Neural Networks:

Perceptron, Madaline, and Backpropagation, Proceedings of the IEEE, Vol. 78,

No. 9, 1990.

[43] C. Lee Giles, Steve Lawrence and Ah Chung Tsoi, Noisy Time Series Pre-

diction using Recurrent Neural Networks and Grammatical Inference, Machine

Learning, 44, 161183, 2001

[44] Frank, R. J. and Davey, N. and Hunt, S. P., Time Series Prediction and

Neural Networks, Journal of Intelligent and Robotic Systems, Volume 31 Issue

1-3, May -July 2001

[45] Belanger, Pierre R., Control Engineering: A modern Approach, Oxford Uni-

versity Press, Inc., New York, NY, USA. 1995

[46] Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification,

John Wiley and Sons, 2000.

[47] Aström, Karl J. and Wittenmark, Björn, Computer-controlled systems: theory

and design (2nd ed.), Prentice-Hall, Inc., 1990.

[48] James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down

Approach (4th Edition), Addison Wesley, 2007.

[49] Eugene I. Butikov, On the dynamic stabilization of an inverted pendulum,

American Association of Physics Teachers, 2001.

	Introduction
	Thesis Contributions and Organization

	Related Work and Problem Formulation
	Time Delay in Networked Control Systems
	Problem Formulation
	Networked Control System Model
	Time Delay Propagation
	The Idea of Prediction

	Delay model
	Sampling systems with delay

	Artificial Neural Network for Prediction
	Fundamentals
	Time Delay Neural Network
	Backpropagation Algorithm
	Transformation of input data

	Neural Network Topology
	Experimental Results
	Selection of Neural Network Topology
	Prediction results
	Prediction results with actual data
	Multi-step prediction

	Conclusion

	Networked Control System Model Design
	Time delays and timeout policy
	Variable sampling and observer models
	Determining and
	Treatment of packet loss
	NCS subject to delays and with no packet loss
	NCS model subject to packet loss and time delays
	Alternative approaches

	Application to the Inverted Pendulum
	Inverted Pendulum
	Fixed sampling period, no delays and no packet loss
	Fixed sampling period with delays and no packet loss

	Variable Sampling Period
	Presence of Delays and No Packet Loss

	Presence of delays and packet dropout
	Conclusion

	Conclusion and Future Work
	Future Work

