SKYLINE ANALYSIS WITH LOG DRAG

by

Allen C. Tobey

Masters Project
 submitted to
 Oregon State University

in partial fulfillment of the requirements for the degree of Master of Forestry

February, 1980

TABLE OF CONTENTS

Page
LEGEND OF TERMS 1
ABSTRACT 7
INTRODUCTION 8
OBJECTIVES 10
MATHEMATICAL FORMULATTION 11
Log Drag for a Live and Running Skyline 11
Log Drag for a Standing Skyline 13
Live and Standing Skyline Loads and Line Tensions 16
Running Skyline Loads and Line Tensions 25
Standing Skyline Length and Carriage Clearance 32
Carriage Types 34
SKYLINE ANALYSIS PROGRAM WITH DRAG 41
Profile Input Program 41
Skyline Analysis Program with Log Drag 44
EFFECTS OF THE PARAMETERS USED IN COMPUTING THE ALLOWABLE 46LOADS AND LINE TENSIONS
Choker Angle 46
Length of Log 47
Log to Ground Clearance 47
Length of Choker 47
Point of Choker Attachment 48
Center of Gravity of the Log 49
Coefficient of Friction 49
Page
Terrain Point Step Size 50
Type of Carriage for a Running Skyline 51
COMPARISON WITH THE SKYLINE ANALYSIS PROGRAM 55
ASSUMPTIONS AND LIMITATIONS 59
CONCLUSIONS 62
APPENDICES 64
Appendix 1: Users Guide 64
Appendix 2: Profile Input Program 80
Appendix 3: Skyline Analysis Program with Drag 89
Appendix 4: Sample Profiles and Computer Runs 101
BIBLIOGRAPHY 117

LEGEND OF TERMS

A = Choker angle
$B \quad=$ Angle between \log and ground
$B_{1}=$ Angle between \log and ground
$C \quad=$ Clearance between the top of the front end of the \log and the ground
$C_{1}=$ Clearance between the carriage and the ground
$C_{2}=$ Carriage type
$C_{5}=$ Previous C_{6}
$C_{6}=$ Fraction of W_{4} in V_{4}
$C_{7}=$ Fraction of W_{4} in H_{4}
$C_{8}=$ Fractional distance from the end of \log to the center of gravity
$D()=$ Array of horizontal distances from the headspar to the carriage
D = Horizontal distance from the headspar to the carriage
$D_{1}=$ Horizontal distance from the carriage to the end of the log
$D_{2}=X$ coordinate of carriage with the end of the log at $X(I+1)$
$D_{3}=\begin{gathered}\text { Distance from the end of the } \\ \text { attached }\end{gathered}$
$D_{5}=$ Horizontal distance from the end of the \log to the front of the log
$\mathrm{E}=$ Constant in the elliptical path equation
$E_{3}=$ Previous value of T
$E_{4}=$ Current value of T
$E_{5}=$ Reciprical of the fractional distance from the center of gravity of the log to the point of choker attachment divided by the distance from the end of the log to the point of choker attachment
$F=$ Number of terms in the $D(), P(), S()$, and $V()$ arrays
$F_{1}=$ File yarder is to be loaded from
$F_{3}=$ Previous value of the function
$F_{4}=$ Current value of the function
$G_{1}=$ Minimum Y coordinate
$G_{2} \quad=$ Maximum Y coordinate
$G_{3}=$ Maximum difference in values of the X coordinates
$G_{4}=X$ graph limit for plotting profiles
$\mathrm{G}_{5}=\mathrm{Y}$ graph limit for plotting profiles
$G_{6}=X$ offset for plotting profiles
$G_{7}=Y$ offset for plotting profiles
H = Vertical distance from the top of the tailspar to the top of the headspar
$H_{1}=$ Horizontal component of the force in line 1 at the carriage
$H_{2}=$ Horizontal component of the force in line 2 at the carriage
$H_{3}=$ Horizontal component of the force in line 3 at the carriage
$H_{4}=$ Horizontal component of the force in the choker at the carriage
$H_{6}=$ Headspar height
$H_{7}=$ Tailspar height
I $=$ Terrain point number
$\mathrm{I}_{1} \quad=$ Input control parameter
$I_{5}=$ Integer value of headspar terrain point plus 1
$I_{6} \quad=$ Integer value of tailspar terrain point
K = Constant
$\mathrm{K}_{1} \quad=$ Constant which equals Y / D
$\mathrm{K}_{2}=$ Constant which equals (Y-H)/(L-D)
$\mathrm{K}_{7}=$ Constant
$K_{8}=$ Constant
$\mathrm{L} \quad=$ Span length which equals the horizontal distance from the headspar to the tailspar

```
\(\mathrm{L}_{1}=\) Length of choker from the carriage to the top of the \(\log\)
\(L_{2}=\) Distance from the choker to the end of the \(\log\)
\(L_{3}=\) Length of the \(\log\)
\(L_{4}=\) Distance from point of choker attachment to ground below the end
        of the log
\(L_{5}=\) Required rigging length
M = Constant
\(M_{1}=\) Constant
\(M_{2}=\) Constant
\(M_{3}=\) Constant
\(M_{4}=\) Constant
\(\mathrm{N}=\) Constant
\(N_{1}=\) Number of terrain points
\(N_{5}=\) Plot parameter which causes the \(\log\) to be plotted every third point
\(0=\) Constant
\(P(\) ) = Array of slope angles
P = Slope angle
\(P_{1} \quad=\) Profile number and file profile is stored in
\(P_{5}=\) Profile plot parameter
\(R \quad=\) Type of skyline
\(R_{1}=\) Total weight in line 1
\(R_{2}=\) Total weight in line 2
\(R_{3}=\) Total weight in line 3
\(R_{4}=\) Running skyline parameter
\(R_{5}=R c / R m\)
\(R_{6}=R s / R m\)
\(R_{c} \quad=\) Distance from the center of the drum in the carriage to the dropline
```

$R_{m}=$ Distance from the center of the drum in the carriage to the mainline
$R_{s}=$ Distance from the center of the drum in the carriage to the slackline
$S($) = Array of terrain points
$S_{1}=$ Headspar terrain point
$S_{2}=$ Tailspar terrain point
$S_{3}=$ Terrain point of inner yarding limit
$S_{4}=$ Terrain point of outer yarding limit
$S_{5}=$ Terrain point step size
$S_{6}=$ Terrain point step size
$S_{7}=$ Step size between terrain points
$\mathrm{S}_{8} \quad=$ Step size between terrain points
$S_{9}=$ Terrain point number
T = Allowable haulback plus slackline tension
$T_{0}=$ Allowable slackline tension
$T_{1}=$ Maximum allowable skyline tension
$\mathrm{T}_{2}=$ Maximum allowable haulback tension
$T_{3}=$ Maximum allowable mainline tension
$\mathrm{T}_{6}=$ Tension in lines 1 and 2 at the carriage
$T_{7}=$ Tension at the headspar in line 1
$\mathrm{T}_{8}=$ Tension at the headspar in line 3
$T_{9}=$ Tension in the mainline plus the slackline at the carriage
$T_{m}=$ Tension in the mainline at the carriage
$\mathrm{T}_{\text {ma }}=$ Tension in the mainline at the headspar
$\mathrm{T}_{\mathrm{c}}=$ Tension in the choker at the carriage
$\mathrm{T}_{\mathrm{s}}=$ Tension in the slackline at the carriage
$U=$ Coefficient of friction between the \log and the ground
$U_{4}=$ Minimum line length
$U_{5} \quad=$ Line length
$V()=A r r a y$ of the ground elevations below the carriage
$V_{1}=$ Vertical component of the force in line 1 at the carriage
$V_{2}=$ Vertical component of the force in line 2 at the carriage
$V_{3}=$ Vertical component of the force in line 3 at the carriage
$V_{4}=$ Vertical component of the force in the choker
W = Haulback plus the slackline weight per foot
$W_{0} \quad=$ Slackline weight per foot
$W_{1} \quad=$ Skyline weight per foot
$W_{2} \quad$ Haulback weight per foot
$W_{3}=$ Mainline weight per foot
$W_{4} \quad$ Maximum log weight
$W_{5}=$ Carriage weight
$W_{7} \quad=$ Maximum \log weight with the skyline or haulback being limiting
$W_{8} \quad=$ Maximum log weight with the mainline being limited
$X()=$ Array of X coordinates
$X_{1}=X$ coordinate of the top of the headspar
$X_{2}=X$ coordinate of the top of the tailspar
$X_{3}=X$ coordinate of the bottom of the headspar.
$X_{4}=X$ coordinate of the bottom of the tailspar
$X_{5}=X$ coordinate of the inner yarding limit
$X_{6}=X$ coordinate of the outer yarding limit
$x_{7}=X$ coordinate of the end of the log
$X_{8}=X$ coordinate of the carriage
$x_{9}=X$ coordinate of the ground below the carriage
$Y()=$ Vertical distance from the top of the headspar to the carriage
$\gamma_{1}=Y$ coordinate of the top of the headspar
$Y_{2}=Y$ coordinate of the top of the tailspar
$Y_{3}=Y$ coordinate of the bottom of the headspar
$Y_{4}=Y$ coordinate of the bottom of the tailspar
$Y_{5}=Y$ coordinate of the inner yarding limit
$Y_{6}=Y$ coordinate of the outer yarding limit
$Y_{7}=Y$ coordinate of the end of the log
$Y_{8}=Y$ coordinate of the carriage
$Y_{9}=Y$ coordinate of the ground below the carriage
Y\$ = Yarder name
$Z()=$ Array of X and Y coordinates which are loaded from tape

ABSTRACT

This paper describes a mathematical formulation and a computer program in basic language for analyzing the load carrying capacity of skyline systems using the effects of \log drag. The actual \log and ground geometry are used in the analysis of the payload capacities for standing, live and running skylines. The paper uses an example problem to show the effects of the various parameters used in computing payload capacity using the effects of \log drag (choker length, \log length, \log to ground clearance, point of choker attachment, center of gravity of the log, coefficient of friction, and type of carriage).

The method described in this paper was compared with an existing method which calculates skyline payloads for a fully suspended load. It was found that when logs have one end suspension, there can be considerable difference in the payloads calculated by the two methods.

INTRODUCTION

An important step in planning skyline logging systems is the determination of the load-carrying capacity of the skyline system while anchored in a specific geometry and operating over a specific terrain. Several methods are now available to determine the load-carrying capacity of this type of system: graphical-tabular handbook approaches and mathematical solutions using hand held, desk top, and large computer systems. However, until recently none of these systems took into account the effect of log drag and the effect of the actual log to ground geometry. Recently, Gary Falk (6) developed a series of HP 67 programs which consider the effect of the actual log to ground geometry.

Most of the methods currently used assume a fully suspended load. The Skyline Analysis Program on the HP 9830 assumes a fully suspended load and increases the net load by 50 percent for a dragging log.

The effects of the forces due to log drag on the skyline and mainline depend on the angle the log makes with the ground, length of the log, length of the choker, carriage clearance, ground slope, weight of the turn, log diameter, point of choker attachment and the coefficient of friction between the \log and the ground. Carson (2) developed equations for using the effects of \log drag in determining the load carrying capacity of running skylines. The equations developed by Carson determine the forces at the carriage for a given angle between the \log and the ground. The equations cannot be applied directly to a standing skyline where the angle the log makes with the ground varies as the load is brought in.

With a standing skyline, the length of the skyline is fixed during the yarding cycle. The length of the skyline is often fixed at a length
such that the \log will have at least one end suspended at all points. This is done to eliminate the soil displacement damage caused by the plowing of the front end of the log. Once the length of the skyline is fixed, the angle the log makes with the ground along the skyline road varies according to the ground slope, length of the log, length of the choker and carriage clearance.

Desk top computer systems, such as the HP 9830, HP 9845, and the Techtronics 4051, provide one of the easiest and fastest methods for entering profile data and determining the load carrying capacity of skylines. These systems have the ability to enter profile data from a digitizer, keyboard, files, X, Y coordinates, or slope, \% slope data. The profile data can be stored for later use, analyzed, and plotted with these systems.

This paper describes a mathematical formulation, a computer program written in basic placed on the HP 9830 and the effects of the various parameters in using log drag for determining the load carrying capacity of live, standing and running skylines.

OBJECTIVES

The purpose of this study is to analyze the effects of using log drag for determining the load carrying capacity of live, running and standing skylines, and to develop a working mode1 on the HP 9830 for determining the payload capacity of these skyline systems with the effects of \log drag included in the model. The specific objectives will be as follows:

1. Develop a computer program written in basic and placed on the HP 9830 which will determine the load carrying capacity for a live, standing, and running skyline system given; the allowable mainline tension, the allowable skyline tension, log to ground geometry, the \log length, choker length, log to ground coefficient of friction, yarder specifications, ground profile and cable system geometry.
2. Determine individually the effects of the various parameters used in the model (choker length, log length, log to ground clearance, point of choker attachment, center of gravity of the log, coefficient of friction, and type of carriage), and their effect on the load carrying capacity, mainline tensions, and skyline tensions.
3. Compare the results obtained using the HP 9830 Skyline Analysis Program with the results from the Skyline Analysis Program with Drag developed in this paper.

MATHEMATICAL FORMULATIONS

The symbols used in the following formulations are all described in the Legend of Terms. The terms used are all terms which could be programmed into the HP 9830 and the equations shown are the ones used in the computer programs.

Log Drag for a Live and a Running Skyline

For the purposes of this paper a live skyline will be defined as a system having two lines; a skyline and a mainline, where the skyline length - is varied to maintain a constant \log to ground clearance (C) as shown in Figure (1). A running skyline is a system where the haulback line runs through a sheave in the carriage, through a block at the tailspar, and is then connected to the carriage. It has one or two additional lines, a mainline and a slackpulling line, which run from the headspar to the carriage. In a running skyline the haulback line length will vary to maintain a constant log to ground angle (B_{j}).

Figure 1. Log to Ground Geometry for a Running and a Live Skyline.

The following values are known:

$$
C, P, X(I), Y(I), X_{7}, Y Y_{7}, X(I+1), Y(I+1), L 3, L 2, E 5, L 1
$$

We want to find: $C_{6}, C_{7}, C_{1}, X_{8}, Y_{8}$

For the geometry shown in Figure 1, Carson (2) developed the following equations for determining the horizontal and vertical forces at the carriage due to a dragging log:

$$
\begin{align*}
& H_{4}=W_{4}(U \cos P+\sin P)\left(\frac{\cos \left(P+B_{1}\right) / E_{5}}{\cos B_{1}+U \sin B_{1}}\right) \tag{1}\\
& V_{4}=W_{4}[1+(U \sin P-\cos P)]\left(\frac{\cos \left(P+B_{1}\right) / E_{5}}{\cos B_{1}+U \sin B_{1}}\right) \tag{2}
\end{align*}
$$

However, we wish to find $C_{6}, C_{7}, C_{1}, X_{8}, Y_{8}$ so let:

$$
\begin{align*}
& C_{7}=H_{4} / W_{4} \tag{3}\\
& C_{6}=V_{4} / W_{4} \tag{4}\\
& K=\cos (P+B) /\left[E_{5}\left(\cos \left(B_{1}\right)+U \sin \left(B_{1}\right)\right)\right] \tag{5}
\end{align*}
$$

Then:

$$
\begin{align*}
& P=\operatorname{Tan}^{-1}[(Y(I)-Y(I+1)] /[X(I+1)-X(I)] \tag{6}\\
& B_{1}=\sin ^{-1}\left(C / L_{3}\right) \tag{7}\\
& E_{5}=L_{2} /\left(L_{2}-L_{3} / 2\right) \tag{8}\\
& C_{7}=[U \cos (P)+\sin (P)] K \tag{9}\\
& C_{6}=[1+(U \sin (P)-\cos (P)] K \tag{10}\\
& A=90-\tan ^{-1}\left(C_{7} / C_{6}\right) \tag{1}\\
& X_{7}=X_{8}+L_{2} \cos \left(P+B_{1}\right)+L_{1} \cos (A) \tag{12}\\
& Y_{8}=Y_{7}+L_{2} \sin \left(P+B_{1}\right)+L_{1} \sin (A) \tag{13}\\
& Y_{9}=Y_{7}+\left(X_{2}-X_{7}\right) \sin (P) \tag{14}\\
& C_{1}=Y_{8}-Y_{9} \tag{15}
\end{align*}
$$

With this set of equations the geometry and fraction of the log weight that is in the vertical and horizontal components of the choker at the carriage can be determined for a given log length, choker length, point of choker attachment, location of the center of gravity, and the ground slope.

Log Orag for a Standing Skyline

For a standing skyline the log to ground clearance (C) is unknown, but the carriage clearance C_{1} can be found from the elliptical load path equations, the skyline length, and the cable system and ground geometry. So, referring to Figure 1, we are given: $\mathrm{C}_{1}, \mathrm{P}, \mathrm{X}(\mathrm{I}), Y(\mathrm{I}), X(\mathrm{I}+1)$, $Y(I+1), X_{8}, Y, X_{9}, Y_{9}, L_{2}, L_{3}, E_{5}, L_{1}$.
We want to find: C_{6}, C_{7}, B_{1}, A
Referring to Figure 2:

$$
\begin{align*}
& C^{\prime}=C_{1}-L_{1} \sin (A)+L_{1} \cos (A) \tan (P) \tag{16}\\
& A=90-\tan ^{-1}\left(C_{7} / C_{6}\right) \tag{17}
\end{align*}
$$

Then from the law of sines and Figure 2:

$$
\begin{equation*}
\frac{L_{2}}{\sin (90+P)}=\frac{c^{\prime}}{\sin \left(B_{1}\right)} \tag{18}
\end{equation*}
$$

Substituting in equation (16) and simplifying yields:

$$
\begin{equation*}
\frac{L_{2}}{\cos (P)}=\frac{C_{1}-L_{1} \sin (A)+L_{1} \cos (A) \tan (P)}{\sin \left(B_{1}\right)} \tag{19}
\end{equation*}
$$

Figure 2. Log Geometry for a Standing Skyline.

Solving for B_{1} :

$$
\begin{equation*}
B_{1}=\sin ^{-1}\left[\frac{\cos (P)}{L_{2}}\left(C_{1}+L_{1}(\cos (A) \tan (P)-\sin (A))\right]\right. \tag{20}
\end{equation*}
$$

Now, the following equations can be used to solve for B_{1}, C_{6}, C_{7} and A :

$$
\begin{align*}
& B_{1}=\sin ^{-1}\left[\frac{\cos (P)}{L_{2}}\left(C_{1}+L_{1}(\cos (A) \tan (P)-\sin (A))\right]\right. \tag{20}\\
& K=\cos \left(P+B_{1}\right) /\left(E_{5}\left(\cos \left(B_{1}\right)+U \sin \left(B_{1}\right)\right)\right) \tag{5}\\
& C_{7}=(U \cos (P)+\sin (P)) K \tag{9}\\
& C_{6}=(1+(U \sin (P)-\cos (P)) K \tag{10}\\
& A=90-\tan ^{-1}\left(C_{7} / C_{6}\right) \tag{17}
\end{align*}
$$

To solve for C_{6} and C_{7} these equations are transcendental (cannot be manipulated algebraically for direct solution), so an iterative type solution is needed. First, for an initial guess of B_{1} we can assume L_{1}
and L_{2} are a straight line as shown in Figure 3.

Figure 3. Geometry for an initial guess of B_{1}.

Using the law of sines for the geometry of Figure 3, we obtain:

$$
\begin{align*}
& \frac{L_{1}+L_{2}}{\sin (90+P)}=\frac{C_{1}}{\sin \left(B_{1}\right)} \tag{21}\\
& B_{1}=\sin ^{-1}\left[C_{1} \sin (90+P) /\left(L_{1}+L_{2}\right)\right] \tag{22}
\end{align*}
$$

The iterative procedure is to first use equation (22) to arrive at an initial guess of B_{1}. Then this value is used in equations (5), (9) and (10) to solve for C_{7} and C_{6}. Using these values of C_{6} and C_{7}, the value of A can be found from equation (17). This value can then be used in equation (20) to solve for a new value of B_{1}.

Then the new value of B_{1} can be used in equations (5), (9) and (10) to solve for C_{7} and C_{6}. This process is then continued until the value of C_{6} changes by less than 0.001 . This is not a conventional type iterative procedure, but for this problem it tends to converge very rapidly.

Live and Standing Skyline Loads and Line Tensions

The following analysis uses a rigid link assumption for the lines, and neglects line stretch. Figure 4 below shows the cable system geometry for this problem.

Figure 4. Cable System Geometry.

Figure 5 shows the geometry and forces acting on each line segment for this problem.

Figure 5. Free Body Diagram for a Standing and Live Skyline.

For each line segment the moments can be taken about the upper end. Since the system is assumed to be in static equilbrium, there has to be a moment force balance for each line segment. The following three equations are then obtained:

$$
\begin{array}{ll}
\Sigma M_{A}=0 & V 1=H_{1}(Y / D)-R_{1} / 2 \\
\Sigma M_{B}=0 & V 2=H_{2}[(Y-H) / L-D]-R_{2} / 2 \\
\Sigma M_{A}=0 & V 3=H_{3}(Y / D)-R_{3} / 2 \tag{25}
\end{array}
$$

The carriage is also assumed to be in static equilbrium, so the horizontal and vertical forces at the carriage must balance. The equations for the carriage force balance are:

$$
\begin{array}{ll}
\Sigma F_{x}=0 & H_{3}=-H_{1}+H_{2}+H_{4} \\
\Sigma F_{y}=0 & V_{1}+V_{2}+V_{3}=W_{5}+V_{4} \tag{27}
\end{array}
$$

Let:

$$
\begin{align*}
& K_{1}=Y / D \tag{28}\\
& K_{2}=(Y-H) /(L-D) \tag{29}
\end{align*}
$$

Substituting equations (23), (24), (25), (28), and (29) into equation (27):

$$
\begin{equation*}
\mathrm{H}_{1} \mathrm{~K}_{1}-\mathrm{R}_{1} / 2+\mathrm{H}_{2} \mathrm{~K}_{2}-\mathrm{R}_{2} / 2+\mathrm{H}_{3} \mathrm{~K}_{1}-\mathrm{R}_{3} / 2=\mathrm{W}_{5}+\mathrm{V}_{4} \tag{30}
\end{equation*}
$$

Now using equation (26) to substitute in for H_{3} :

$$
\begin{equation*}
\mathrm{H}_{1} \mathrm{~K}_{1}-\mathrm{R}_{1} / 2+\mathrm{H}_{2} \mathrm{~K}_{2}-\mathrm{R}_{2} / 2-\mathrm{H}_{1} \mathrm{~K}_{1}+\mathrm{H}_{2} \mathrm{~K}_{1}+\mathrm{H}_{4} \mathrm{~K}_{1}-\mathrm{R}_{3} / 2=\mathrm{W}_{5}+\mathrm{V}_{4} \tag{31}
\end{equation*}
$$

Reducing:

$$
\begin{equation*}
\mathrm{H}_{2}\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)+\mathrm{H}_{4} \mathrm{~K}_{1}-\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right) / 2=\mathrm{W}_{5}+\mathrm{V}_{4} \tag{32}
\end{equation*}
$$

Solving for H_{2} yields:

$$
\begin{equation*}
H_{2}=\frac{\left(R_{1}+R_{2}+R_{3}\right) / 2+W_{5}+V_{4}-H_{4} K_{1}}{K_{1}+K_{2}} \tag{33}
\end{equation*}
$$

In the above equations R_{1}, R_{2} and R_{3} are the forces due to the weight of the cable in each line segment. These forces can be found from the following equations:

$$
\begin{equation*}
R_{1}=W_{1} \sqrt{D^{2}+Y^{2}} \tag{34}
\end{equation*}
$$

$$
\begin{align*}
& R_{2}=W_{1} \sqrt{(L-D)^{2}+(Y-H)^{2}} \tag{35}\\
& R_{3}=W_{3} \sqrt{D^{2}+Y^{2}} \tag{36}
\end{align*}
$$

The skyline passes under sheaves in the carriage. Assuming a frictionless sheave, when a line passes under a sheave, the tensions in the line on both sides of the sheave are equal. So for lines 1 and 2, the tension in the cables at the carriage are equal. From this relationship the following equations can be formulated:

$$
\begin{array}{lll}
T_{6}=\sqrt{V_{1}^{2}+H_{1}^{2}} & = & \sqrt{V_{2}^{2}+H_{2}^{2}} \\
T_{6}^{2}=V_{1}^{2}+H_{1}^{2} & \stackrel{\text { or }}{=} & V_{2}^{2}+H_{2}^{2} \tag{38}
\end{array}
$$

From equation (33) the value of H_{2} can be found and using the relationship between H_{2} and V_{2} from equation (24), the value of T_{6} can be found from the following equation:

$$
\begin{equation*}
T_{6}=\sqrt{H_{2}^{2}+\left(H_{2} K_{2}-R_{2} / 2\right)^{2}} \tag{39}
\end{equation*}
$$

Reducing yeilds:

$$
\begin{equation*}
T_{6}=\sqrt{\mathrm{H}_{2}^{2}\left(1+\mathrm{K}_{2}^{2)}-\mathrm{R}_{2} \mathrm{H}_{2} \mathrm{~K}_{2}+\mathrm{R}_{2}^{2} / 4\right.} \tag{40}
\end{equation*}
$$

Once the value of T_{6} is found the value of H_{1} can be found by using equation (38) and the relationship between V_{1} and H_{1} from equation (23) as follows:

$$
\begin{equation*}
T_{6}^{2}=V_{1}^{2}+H_{1}^{2}=H_{1}^{2}+\left(H_{1} K_{1}-R_{1} / 2\right)^{2} \tag{41}
\end{equation*}
$$

Reducing yields:

$$
\begin{equation*}
\mathrm{H}_{1}^{2}\left(1+\mathrm{K}_{1}^{2}\right)-\mathrm{H}_{1} \mathrm{~K}_{1} \mathrm{R}_{1}+\mathrm{R}_{1}^{2} / 4-\mathrm{T}_{6}^{2}=0 \tag{42}
\end{equation*}
$$

Since H_{1} is the only unknown in this equation, the solution can be found from the quadratic equation as follows:

Let:

$$
\begin{align*}
& M=1+K_{1}^{2} \tag{43}\\
& N=-K_{1} R_{1} \tag{44}\\
& 0=R_{1}^{2} / 4-T_{6}^{2} \tag{45}
\end{align*}
$$

Then :

$$
\begin{equation*}
H_{1}=\frac{-N+\sqrt{N^{2}-4 M O}}{2 M} \tag{46}
\end{equation*}
$$

The value of H_{4} can be found from the \log drag equations and the values of H_{1} and H_{2} can be found from the previously formulated equations. Once these values are found the value of H_{3} can be found from equation (26).

Now the tension in the lines 1 and 3 at the headspar can be found using equations (23), (25), (28), and (29) as follows:

$$
\begin{array}{ll}
T_{6}=\sqrt{V_{1}^{2}+H_{1}^{2}} & =\sqrt{\left(H_{1} K_{1}-R_{1} / 2\right)^{2}+H_{1}^{2}} \\
T_{M}=\sqrt{V_{3}^{2}+H_{3}^{2}} & =\sqrt{\left(H_{3} K_{1}-R_{3} / 2\right)^{2}+H_{3}^{2}} \tag{49}
\end{array}
$$

Then:

$$
\begin{align*}
& T_{7}=T_{6}+W_{1} Y=\sqrt{\left(H_{1} K_{1}-R_{1} / 2\right)^{2}+H_{1}^{2}}+W_{1} Y \tag{50}\\
& T_{8}=T_{M}+W_{3} Y=\sqrt{\left(H_{3} K_{1}-R_{3} / 2\right)^{2}+H_{3}^{2}}+W_{3} Y \tag{51}
\end{align*}
$$

The relationships $T_{7}=T_{6}+W_{1} Y$ and $T_{8}=T_{M}+W_{3} Y$ are from the
catenary equation. This is one of the more simple and easy to use relationships from the catenary equations. This relationship will be used to convert tensions from the carriage to the headspar and from the headspar to the carriage. It will be used to convert the magnitude of the force, and the rigid link equations will be used to determine the direction of the force.

The previously formulated equations assumed the log weight was known. If the \log weight is known, then from the previously formulated equations the mainline and skyline tensions can be found. However, it is useful to know what log weight will cause the mainline or skyline to be at its maximum allowable tension.

The following analysis is a method of determining the maximum allowable load which will cause the skyline to be at its maximum allowable tension.

First, assuming the skyline is at its maximum allowable load, then the value of H_{2} can be found using equation (24) in the following analysis:

$$
\begin{align*}
& T_{6}=T_{1}-W_{1} Y \tag{53}\\
& T_{6}^{2}=H_{2}^{2}+V_{2}^{2}=H_{2}^{2}+\left(H_{2} K_{2}-R_{2} / 2\right)^{2}=\left(T_{1}-W_{1} Y\right)^{2} \tag{54}
\end{align*}
$$

Reducing yields:

$$
\begin{equation*}
H_{2}^{2}\left(1+K_{2}^{2}\right)-H_{2} K_{2} R_{2}+R_{2}^{2} / 4-\left(T_{1}-W_{1} Y\right)^{2}=0 \tag{55}
\end{equation*}
$$

To solve for H_{2} the quadratic equation must be used as follows:
Let:

$$
\begin{align*}
& M=1+K_{2}^{2} \tag{56}\\
& N=-K_{2} R_{2} \tag{57}\\
& O=R_{2}^{2} / 4-\left(T_{1}-W_{1} Y\right)^{2} \tag{58}
\end{align*}
$$

Then:

$$
\begin{equation*}
H_{2}=\frac{-N+\sqrt{N^{2}-4 M O}}{2 M} \tag{59}
\end{equation*}
$$

If the value of H_{2} is known, equations (3) and (4) can be used to substitute for the value of H_{4} and V_{4} in equation (33) and then the value of W_{7} can be solved for in equation (33) as follows:

$$
\begin{equation*}
H_{2}=\frac{\left(R_{1}+R_{2}+R_{3}\right) / 2+W_{5}+C_{6} W_{7}-C_{7} W_{7} K_{1}}{K_{1}+K_{2}} \tag{60}
\end{equation*}
$$

Solving for W_{7} yields:

$$
\begin{equation*}
W_{7}=\frac{H_{2}\left(K_{2}+K_{1}\right)-W_{5}-\left(R_{1}+R_{2}+R_{3}\right) / 2}{\left(C_{6}-C_{7} K_{1}\right)} \tag{61}
\end{equation*}
$$

With the above equations, the log weight can be found which causes the skyline to be at its maximum allowable tension. However, in some cases the mainline will be the limiting factor in determining the maximum log weight. The following analysis is a method of determing the log weight which will cause the mainline to be at its maximum allowable load.

From equation (26):

$$
\begin{align*}
& \mathrm{H}_{1}=\mathrm{H}_{2}-\mathrm{H}_{3}+\mathrm{H}_{4} \tag{62}\\
& \mathrm{H}_{1}^{2}=\mathrm{H}_{2}^{2}+\mathrm{H}_{3}^{2}+\mathrm{H}_{4}^{2}-2 \mathrm{H}_{4} \mathrm{H}_{3}+2 \mathrm{H}_{4} \mathrm{H}_{2}-2 \mathrm{H}_{3} \mathrm{H}_{2} \tag{63}
\end{align*}
$$

Then from equations (38), (23) and (24):

$$
\begin{equation*}
\mathrm{V}_{1}^{2}+\mathrm{H}_{1}^{2}=\mathrm{V}_{2}^{2}+\mathrm{H}_{2}^{2} \tag{64}
\end{equation*}
$$

$$
\begin{align*}
& \left(H_{1} K_{1}-R_{1} / 2\right)^{2}+H_{1}^{2}=\left(H_{2} K_{2}-R_{2} / 2\right)^{2}+H_{2}^{2} \tag{65}\\
& H_{1}^{2}\left(1+K_{1}^{2}\right)-H_{1} K_{1} R_{1}+\left(R_{1}^{2}-R_{2}^{2}\right) / 4-H_{2}^{2}\left(1+K_{2}^{2}\right)+H_{2} K_{2} R_{2}=0 \tag{66}
\end{align*}
$$

Substituting the values of H_{1} and H_{1}^{2} from equations (62) and (63) into equation (66) yields:

$$
\begin{align*}
& H_{2}^{2}\left(K_{1}^{2}-K_{2}^{2}\right)+H_{2}\left(2 H_{4}\left(1+K_{1}^{2}\right)-2 H_{3}\left(1+K_{1}^{2}\right)-K_{1} R_{1}+K_{2} R_{2}\right) \\
& +H_{3}^{2}\left(1+K_{1}^{2}\right)+H_{4}^{2}\left(1+K_{1}^{2}\right)-2 H_{4} H_{3}\left(1+K_{1}^{2}\right)+H_{3} K_{1} R_{1} \\
& -H_{4} K_{1} R_{1}+\left(R_{1}^{2}-R_{2}^{2}\right) / 4=0 \tag{67}
\end{align*}
$$

Now let:

$$
\begin{align*}
& V_{4}=C_{6} W_{8} \tag{68}\\
& H_{4}=C_{7} W_{8} \tag{69}\\
& M_{1}=\frac{W_{5}+\left(R_{1}+R_{2}+R_{3}\right) / 2}{K_{1}+K_{2}} \tag{70}\\
& M_{2}=\left(C_{6}-C_{7} K_{1}\right) /\left(K_{1}+K_{2}\right) \tag{71}\\
& M_{3}=K_{1}^{2}-K_{3}^{2} \tag{72}\\
& M_{4}=1+K_{1}^{2} \tag{73}
\end{align*}
$$

Substituting (68), (69), (70), and (71) into equation (33) gives:
$H_{2}=M_{1}+M_{2} W_{8}$
$H_{2}^{2}=M_{1}^{2}+2 M_{2} M_{1} W_{8}+M_{2}^{2} W_{8}^{2}$

Substituting equations (68), (69), (72), (73), (74), and (75), into equation (67) yields:

$$
\begin{align*}
& \left(M_{1}^{2}+2 M_{2} M_{1} W_{8}+M_{2}^{2} W_{8}^{2}\right) M_{3}+\left(M_{1}+M_{2} W_{8}\right)\left(2 C_{7} W_{8} M_{4}-2 H_{3} M_{4}\right. \\
& \left.-K_{1} R_{1}+K_{2} R_{2}\right)+H_{3}^{2} M_{4}+C_{7}^{2} W_{8}^{2} M_{4}^{2}-2 C_{7} W_{8} H_{3} M_{4}+H_{3} K_{1} R_{1} \\
& -C_{7} W_{8} K_{1} R_{1}+\left(R_{1}^{2}-R_{2}^{2}\right) / 4=0 \tag{76}
\end{align*}
$$

Simplifying yields:

$$
\begin{align*}
& W_{8}^{2}\left(M_{2}^{2} M_{3}+2 M_{2} M_{4} C_{7}+C_{7}^{2} M_{4}\right)+W_{8}\left(M _ { 2 } \left(2 M_{3} M_{1}-2 H_{3} M_{4}-K_{1} R_{1}\right.\right. \\
& \left.\left.+K_{2} R_{2}\right)+2 C_{7} M_{4}\left(M_{1}-H_{3}\right)-C_{7} K_{1} R_{1}\right)+M_{1}\left(M_{1} M_{3}-2 H_{3} M_{4}-K_{1} R_{1}\right. \\
& \left.+K_{2} R_{2}\right)+H_{3}\left(H_{3} M_{4}+K_{1} R_{1}\right)+\left(R_{1}^{2}-R_{2}^{2}\right) / 4=0 \tag{77}
\end{align*}
$$

To solve for W_{8} the quadratic formula must be used as follows: Let:

$$
\begin{align*}
& M=M_{2}{ }^{2} M_{3}+2 M_{2} M_{4} C_{7}+C_{7}^{2} M_{4} \tag{78}\\
& N=M_{2}\left(2 M_{3} M_{1}-2 H_{3} M_{4}-K_{1} R_{1}+K_{2} R_{2}\right)+2 C_{7} M_{4}\left(M_{1}-H_{3}\right)-C_{7} K_{1} R_{1} \tag{79}\\
& 0=M_{1}\left(M_{1} M_{3}-2 H_{3} M_{4}-K_{1} R_{1}+K_{2} R_{2}\right)+H_{3}\left(H_{3} M_{4}+K_{1} R_{1}\right)+\left(R_{1}^{2}-R_{2}^{2}\right) / 4 \tag{80}
\end{align*}
$$

Then:

$$
\begin{equation*}
W_{8}=\frac{-N+\sqrt{N^{2}-4 M O}}{2 M} \tag{81}
\end{equation*}
$$

The value of H_{3} to be used in the above equations can be found using equation (25) in the following analysis:

$$
\begin{equation*}
T_{M}^{2}=V_{3}^{2}+H_{3}^{2}=\left(H_{3} K_{1}-R_{3} / 2\right)^{2}+H_{3}^{2}=\left(T_{3}-W_{3} Y\right)^{2} \tag{82}
\end{equation*}
$$

Reducing yields:

$$
\begin{equation*}
H_{3}^{2}\left(K_{1}^{2}+1\right)-H_{3} K_{1} R_{3}+R_{3}^{2} / 4-\left(T_{3}-W_{3} Y\right)^{2} \tag{84}
\end{equation*}
$$

The solution to equation (84) can be found using the quadratic formula as follows:

Let:

$$
\begin{align*}
& M=1+K_{1}^{2} \tag{85}\\
& N=-K_{1} R_{3} \tag{86}\\
& O=R_{3}^{2} / 4-\left(T_{3}-W_{3} Y\right)^{2} \tag{87}
\end{align*}
$$

Then:

$$
\begin{equation*}
H_{3}=\frac{-N+\sqrt{N^{2}-4 M O}}{2 M} \tag{88}
\end{equation*}
$$

The solution procedure for finding the maximum allowable log weight, is to find the maximum \log weight with the skyline being limited and then find the maximum log weight with the mainline being limited. The smaller of these values is then the maximum log weight. The limiting line will then be at its maximum allowable tension and the tension in the other line can be found from the formulas which give the tensions in the lines for a given log weight.

Running Skyline Loads and Line Tensions
The analysis method for a running skyline is essentially the same as for a standing and live skyline, only in place of line 2 are two lines with equal tensions. The mathematical formulation shown here for a running skyline will be reduced, just showing the essential equations and analysis. For more details on the analysis refer to the standing and live skyline analysis which is essentially the same with only a few changes in each equation. The cable system geometry for a running skyline is the same as shown in Figure 4. The geometry and forces acting on
each line segment are as shown in Figure 6.

Figure 6. Free Body Diagram for a Running Skyline.

For a running skyline, the equations for the moment and vertical force balance for each line segment remain essentially the same as equations (23), (24), (25), (28), and (29). These equations are as follows: Let:

$$
\begin{equation*}
K_{1}=Y / D \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
K_{2}=(Y-H) /(L-D) \tag{90}
\end{equation*}
$$

Then:

$$
\begin{array}{ll}
\Sigma M_{A}=0 & V_{1}=H_{1} K_{1}-R_{1} / 2 \\
\Sigma M_{B}=0 & V_{2}=H_{2} K_{2}-R_{2} / 2 \\
\Sigma M_{A}=0 & V_{3}=H_{3} K_{1}-R_{3} / 2 \tag{93}
\end{array}
$$

The equations for the carriage force balance are the following:

$$
\begin{array}{ll}
\Sigma F x=0 & 2 H_{2}+H_{4}-H_{1}+H_{3}=0 \\
\Sigma F y=0 & V_{1}+2 V_{2}-V_{3}-W_{5}-V_{4}=0 \tag{98}
\end{array}
$$

Using these equations, the following equation for H_{2} can be formulated:

$$
\begin{equation*}
H_{2}=\frac{W_{5}+V_{4}+\left(R_{1}+2 R_{2}+R_{3}\right) / 2-H_{4} K_{1}}{2\left(K_{1}+K_{2}\right)} \tag{99}
\end{equation*}
$$

The equation for R_{1}, R_{2} and R_{3} are only changed by substituting for the different line weights as follows:

$$
\begin{align*}
& R_{1}=W_{2} \sqrt{D^{2}+Y^{2}} \tag{100}\\
& R_{2}=W_{2} \sqrt{(L-D)^{2}+(Y-H)^{2}} \tag{101}\\
& R_{3}=W \sqrt{D^{2}+Y^{2}} \tag{102}
\end{align*}
$$

The haulback on a running skyline also passes over a sheave in the carriage, so assuming a frictionless sheave, the tensions in lines 1 and 2
at the carriage will be equal which are also equal to the tension in line 2 at the carriage. From this relationship, the following equations can be formulated:

$$
\begin{align*}
& T_{6}=\sqrt{V_{1}^{2}+H_{1}^{2}}=\sqrt{V_{2}^{2}+H_{2}^{2}} \tag{103}\\
& T_{6}^{2}=V_{1}^{2}+H_{1}^{2}=V_{2}^{2}+H_{2}^{2} \tag{104}
\end{align*}
$$

Substituting for the value of V_{2} from equation (92) into equation (103) yields:

$$
\begin{equation*}
T_{6}=\sqrt{H_{2}^{2}+\left(H_{2} K_{2}-R_{2} / 2\right)^{2}} \tag{105}
\end{equation*}
$$

Once the value of T_{6} is found, the following equation can be formulated from equations (104) and (91) to find the value of H_{1} :

$$
\begin{equation*}
\mathrm{H}_{1}^{2}\left(1+\mathrm{K}_{1}^{2}\right)-\mathrm{H}_{1} \mathrm{~K}_{1} \mathrm{R}_{1}+\mathrm{R}_{1}^{2} / 4-\mathrm{T}_{6}^{2}=0 \tag{106}
\end{equation*}
$$

The solution to this equation for H_{1} can be found from the quadratic formula as follows:

Let:

$$
\begin{align*}
& M=1+K_{1}^{2} \tag{107}\\
& N=-K_{1} R_{1} \tag{108}\\
& 0=R_{1}^{2} / 4-T_{6}^{2} \tag{109}
\end{align*}
$$

Then:

$$
\begin{equation*}
H_{1}=\frac{-N+\sqrt{N^{2}-4 M O}}{2 M} \tag{1.10}
\end{equation*}
$$

Once the values of H_{1} and H_{2} are found from equations (99) and (110), the value of H_{3} can be found from equation (97). When the values of H_{1} and H_{3} are known, the tensions in lines 1 and 3 at the headspar can be found from the following equation:

$$
\begin{align*}
& T_{7}=\sqrt{H_{1}^{2}+\left(H_{1} K_{1}-R_{1} / 2\right)^{2}}+W_{1} Y \tag{111}\\
& T_{8}=\sqrt{H_{3}^{2}+\left(H_{3} K_{1}-R_{3} / 2\right)^{2}}+W_{3} Y \tag{12}
\end{align*}
$$

The previously formulated equations are for determining the haulback and mainline tensions for a given log weight.

The following analysis is for determining the maximum allowable log weight with the haulback being limited by its maximum allowable load:

$$
\begin{align*}
& T_{6}=T_{2}-W_{1} Y \tag{113}\\
& T_{6}^{2}=H_{2}^{2}+V_{2}^{2}=H_{2}^{2}+\left(H_{2} K_{2}-R_{2} / 2\right)^{2}=\left(T_{2}-W_{2} Y\right)^{2} \tag{114}
\end{align*}
$$

Reducing yields:

$$
\begin{equation*}
H_{2}^{2}\left(1+K_{2}^{2}\right)-H_{2} K_{2} R_{2}+R_{2}^{2} / 4-\left(T_{2}-W_{2} Y\right)^{2}=0 \tag{115}
\end{equation*}
$$

To solve for H_{2} the quadratic formula must be used as follows:
Let:

$$
\begin{align*}
& M=1+K_{2}^{2} \tag{116}\\
& N=-K_{2} R_{2} \tag{117}\\
& 0=R_{2}^{2} / 4-\left(T_{2}-W_{2} Y\right)^{2} \tag{118}
\end{align*}
$$

Then:

$$
\begin{equation*}
H_{2}=\frac{-N+\sqrt{N^{2}-4 M O}}{2 M} \tag{119}
\end{equation*}
$$

Once the value of H_{2} is known, equations (2) and (3) can be used to substitute in for the values of V_{4} and H_{4} and the resulting equation can be solved for W_{7} yielding the following equation:

$$
\begin{equation*}
W_{7}=\frac{2 H_{2}\left(K_{2}+K_{1}\right)-W_{5}-\left(R_{1}+2 R_{2}+R_{3}\right) / 2}{C_{6}-C_{7} K_{1}} \tag{120}
\end{equation*}
$$

With the above equation, the log weight can be found which will cause the haulback to be at its maximum allowable tension. However, with a running skyline, the mainline will often be the limiting factor in determining the maximum log weight. The following analysis is a method of determining the \log weight which will cause the mainline to be at its maximum allowable load.

First, by substituting equations (91), (92) and (97) into equation (104) and simplifying yields:

$$
\begin{align*}
& \mathrm{H}_{2}^{2}\left(4 \mathrm{~K}_{1}^{2}-\mathrm{K}_{2}^{2}+3\right)+2 \mathrm{H}_{2}\left(2 \mathrm{H}_{4}\left(1+\mathrm{K}_{1}^{2}\right)-2 \mathrm{H}_{3}\left(1+\mathrm{K}_{1}^{2}\right)+\mathrm{K}_{1} \mathrm{R}_{1}+\mathrm{K}_{2} \mathrm{R}_{2} / 2\right) \\
& +\mathrm{H}_{3}^{2}\left(1+\mathrm{K}_{1}^{2}\right)+\mathrm{H}_{4}^{2}\left(1+\mathrm{K}_{1}^{2}\right)-2 \mathrm{H}_{4} \mathrm{H}_{3}\left(1+\mathrm{K}_{1}^{2}\right)+\mathrm{H}_{3} \mathrm{~K}_{1} \mathrm{R}_{1}-\mathrm{H}_{4} \mathrm{~K}_{1} \mathrm{R}_{1} \\
& +\left(\mathrm{R}_{1}^{2}-\mathrm{R}_{2}^{2}\right) / 4=0 \tag{121}
\end{align*}
$$

Then let:

$$
\begin{align*}
& V_{4}=C_{6} W_{8} \tag{122}\\
& H_{4}=C_{7} W_{8} \tag{123}
\end{align*}
$$

$$
\begin{align*}
& M_{1}=\frac{\left(R_{1}+2 R_{2}+R_{3}\right) / 2+W_{5}}{2\left(K_{1}+K_{2}\right)} \tag{124}\\
& M_{2}=\frac{C_{6}-C_{7} K_{1}}{2\left(K_{1}+K_{2}\right)} \tag{125}\\
& M_{3}=4 K_{1}^{2}-K_{2}^{2}+3 \tag{126}\\
& M_{4}=1+K_{1}^{2} \tag{127}
\end{align*}
$$

Substituting equations (122), (123), (124), and (125) into equation (99) yields:

$$
\begin{align*}
& H_{2}=M_{1}+M_{2} W_{8} \tag{128}\\
& H_{2}^{2}=M_{1}^{2}+2 M_{2} M_{1} W_{8}+M_{2}^{2} W_{8}^{2} \tag{129}
\end{align*}
$$

Substituting equations (122), (123), (126), (127), (128), and (129), into equation (121) and simplifying yields:

$$
\begin{align*}
& W_{8}^{2}\left(M_{2}^{2} M_{3}+4 M_{2} M_{4} C_{7}+C_{7}^{2} M_{4}\right)+W_{8}\left(M_{1}\left(M_{1} M_{3}-4 H_{3} M_{4}-2 K_{1} R_{1}+K_{2} R_{2}\right)\right) \\
& +H_{3}\left(H_{3} M_{4}+K_{1} R_{1}\right)+\left(R_{1}^{2}-R_{2}^{2}\right) / 4=0 \tag{130}
\end{align*}
$$

To solve for W_{8} in this equation the quadratic formula can be used as follows:

Let:

$$
\begin{equation*}
M=M_{2}^{2} M_{3}+4 M_{2} M_{4} C_{7}+C_{7}^{2} M_{4} \tag{131}
\end{equation*}
$$

$$
\begin{align*}
& N=M_{2}\left(2 M_{3} M_{1}-4 H_{3} M_{4}-2 K_{1} R_{1}+K_{2} R_{2}\right)+2 C_{7} M_{4}\left(2 M_{1}-H_{3}\right)-C_{7} K_{1} R_{1} \tag{132}\\
& 0=M_{1}\left(M_{1} M_{3}-4 H_{3} M_{4}-2 K_{1} R_{1}+K_{2} R_{2}\right)+H_{3}\left(H_{3} M_{4}+K_{1} R_{1}\right)+\left(R_{1}^{2}-R_{2}^{2}\right) / 4 \tag{133}
\end{align*}
$$

Then:

$$
\begin{equation*}
W_{8}=\frac{-N+\sqrt{N^{2}-4 M O}}{2 M} \tag{134}
\end{equation*}
$$

The value of H_{3} to be used in the above equations can be found using equation (93) as follows:

$$
\begin{equation*}
T_{M}^{2}=V_{3}^{2}+H_{3}^{2}=\left(H_{3} K_{1}-R_{3} / 2\right)^{2}+H_{3}^{2}=\left(T_{3}-W_{3} Y\right)^{2} \tag{135}
\end{equation*}
$$

Reducing yields:

$$
\begin{equation*}
H_{3}^{2}\left(K_{1}^{2}+1\right)-H_{3} K_{1} R_{3}+R_{3}^{2} / 4-\left(T_{3}-W_{3} Y\right)^{2}=0 \tag{137}
\end{equation*}
$$

The solution to equation (137) can be found using the quadratic formula as follows:

$$
\begin{equation*}
H_{3}=\frac{K_{1} R_{3}+\sqrt{K_{1}^{2} R_{3}^{2}-4 M_{4}\left(R_{3}^{2} / 4-(T-W Y)^{2}\right)}}{2 M_{4}} \tag{139}
\end{equation*}
$$

The solution procedure for finding the maximum allowable log weight is to find the maximum log weight with the haulback being limited and then find the maximum log weight with the mainline being limited. The smaller of these values is then the maximum log weight. The limiting line will then be at its maximum allowable tension and the tension in the other line
can be found from the formulas which give the tensions in the lines for a given \log weight.

Standing Skyline Length and Carriage Clearance

A standing skyline has a fixed line length. For this analysis it is assumed that this line length is fixed such that the log will have a specified minimum amount of one and suspension at all points along the skyline. This line length is found by placing the \log, with its minimum required clearance along the terrain as described in the section "Terrain Point Step Size." The line length for each of these points along the terrain is then determined. The line length is then fixed at the shortest of these lengths.

The carriage clearance is found from the equations shown for $\log \mathrm{drag}$ of a live skyline. Once the carriage clearance $\left(C_{p}\right)$ is found, using Figures 1 and 4, the skyline length can be found from the following equations:

First, from the geometry of Figures 1 and 4:

$$
\begin{align*}
& Y_{8}=Y_{9}+C_{1} \tag{140}\\
& Y=Y_{1}-Y_{8} \tag{141}\\
& H=Y_{2}-Y_{1} \tag{142}\\
& D=X_{8}-X_{1} \tag{143}
\end{align*}
$$

Then the skyline length can be found from the following equation:

$$
\begin{equation*}
U_{5}=\sqrt{D^{2}+Y^{2}}+\sqrt{(L-D)^{2}+(Y-H)^{2}} \tag{144}
\end{equation*}
$$

This analysis assumes straight line segments and neglects line stretch.

Once the line length is set, the vertical distance from the carriage to the top of the headspar (Y) can be found from the elliptical load path equations developed by Carson (1). These equations were modified to use the variables from the rest of this analysis. These equations are as follows:

$$
\begin{align*}
& E=\frac{U_{4}}{\sqrt{L^{2}+H^{2}}} \tag{145}\\
& M=E^{2}+H^{2}\left(E^{2}-1\right) / L^{2} \tag{146}\\
& N=E(1-2 D / L) \tag{147}\\
& 0=(1-2 D / L)^{2}-H^{2}\left(E^{2}-1\right) / L^{2} \tag{148}\\
& N=\left(-N+A B S(H)^{\sqrt{\left.N^{2}-4 M O / H\right) / M}}\right. \tag{149}\\
& Y=\left(H \left(1+E N+L^{\sqrt{\left.\left(E^{2}-1\right)\left(1-N^{2}\right)\right) / 2}}\right.\right. \tag{150}
\end{align*}
$$

Once the value of Y is found, the carriage clearance can be found from the following equations:

$$
\begin{align*}
& Y 8=Y 1-Y \tag{151}\\
& C_{1}=Y_{8}-Y_{9} \tag{152}
\end{align*}
$$

Once the value of C_{1} is known the horizontal and vertical forces at the carriage from the choker can be found by using the analysis shown for \log drag for a standing skyline. Then the formula for determining standing skyline loads and line tensions can be used to find the maximum allowable load for each terrain point and the resulting mainline and skyline tensions.

Carriage Types

For a standing skyline, which is usually skyline limited, a single mainline type carriage is assumed in the computer program. For a running skyline, which is often mainline limited, and where mechanical slackpulling (MSP) and over/under wound type carriages (Rowley-Parker style) are often used, the computer program offers a choice of using a single mainline type carriage, a MSP type carriage or an over/under wound carriage. For a single mainline type carriage, the equations formulated for a running skyline analysis can be used as formulated in the section "Running Skyline Loads and Line Tensions." Figures 7 and 8 show a free body diagram for a MSP and an over/under wound carriage, respectively.

Figure 7. Free Body Diagram for a MSP Type Carriage, on a Running Skyline.

Figure 8. Free Body Diagram for a Over/Under Wound Type Carriage on a Running Skyline.

For a over/under wound carriage as shown above, it is assumed the dropline, mainline and slackpulling line drums in the carriage cannot lock, and therefore, the sum of the moments about the center of the drums must be in balance as shown in the following equation:

$$
\begin{equation*}
\Sigma M=0 \quad R_{m} T_{m}-R_{c} T_{C}-R_{s} T_{s}=0 \tag{153}
\end{equation*}
$$

The analysis for a MSP carriage is the same as for a over/under carriage only $R_{m}=R_{c}=R_{s}$.

Let T be the maximum tension the mainline plus the slackpuling line can have at the headspar. If the value of T is known, the equations derived for a running skyline can be used with T in place of the maximum allowable mainline tension and with the mainline plus the slackpulling line weight substituted for the mainline weight. However, the value of T is generally not known and cannot be solved for directly, so an iterative type procedure is needed: The secant method was the iterative procedure chosen for this problem with the value of T as the variable and the difference between the allowable mainline tension and the actual value of the mainline tension for the chosen value of T as the function. The value of T which makes the value of the function equal zero will then be the value of T for which the mainline will be at its maximum allowable tension. For this problem, the value of mainline tension at the headspar can be found as follows:

First, rearranging equation (153) yields:

$$
\begin{equation*}
T_{m}=\frac{R c}{R m} T_{c}+\frac{R s}{R m} T_{s} \tag{154}
\end{equation*}
$$

Let:

$$
\begin{align*}
& R_{5}=\frac{R c}{R m} \tag{155}\\
& R_{6}=\frac{R s}{R m} \tag{156}
\end{align*}
$$

Then substituting equation (155) and (156) into equation (154) yields:

$$
\begin{equation*}
T_{m}=R_{5} T_{c}+R_{6} T_{s} \tag{157}
\end{equation*}
$$

Solving for T_{S} yields:

$$
\begin{equation*}
T_{s}=\frac{T_{m}-R_{5} T_{c}}{R_{6}} \tag{158}
\end{equation*}
$$

The value of T, T_{s} and T_{m} can be equated using the following equation:

$$
\begin{equation*}
T-W Y=T_{5}+T_{m} \tag{159}
\end{equation*}
$$

Substituting in equation (159) the value of T_{s} from equation (158) yields:

$$
\begin{equation*}
T-W Y=\frac{T_{m}-R_{5} T_{c}}{R_{6}}+T_{m} \tag{160}
\end{equation*}
$$

Solving for Tm yields:

$$
\begin{equation*}
T_{m}=\left(T-W Y+\frac{R_{5} T_{c}}{R_{6}}\right) \frac{R_{6}}{T+R_{6}} \tag{161}
\end{equation*}
$$

If the value of the mainline tension at the carriage is known, the tension in the mainline at the headspar can be found as follows:

$$
\begin{equation*}
T_{\mathrm{ma}}=T_{m}+W_{3} Y \tag{162}
\end{equation*}
$$

$$
\begin{equation*}
T_{\text {ma }}=\left(T-W Y+\frac{R_{5} T c}{R_{6}}\right) \frac{R_{6}}{1+R_{6}}+W_{3} Y \tag{163}
\end{equation*}
$$

The value of T_{c} can be found from the following equation:

$$
T_{c}=W_{8} \sqrt{C_{6}^{2}+c_{7}^{2}}
$$

The equation for the function can now be written as follows:

$$
\begin{equation*}
F_{4}=T_{3}-T_{m a}=T_{3}-\left(T-W Y+\frac{R_{5} W_{8} \sqrt{C_{6}{ }^{2}+C_{7}^{2}}}{R_{6}}\right) \frac{R_{6}}{1+R_{6}}-W_{3} Y \tag{164}
\end{equation*}
$$

In the above equation, the value of W_{8} is found from the equations for determining the maximum allowable load with the mainline being limited. Using the secant method, the equation for choosing a new value of T is the following:

$$
\begin{equation*}
T=E_{4}-F_{4} \frac{E_{4}-E_{3}}{F_{4}-F_{3}} \tag{165}
\end{equation*}
$$

In this equation E_{4} is the current value of T, E_{3} is the last value of T, F_{4} is the current value of the function, F_{3} is the last value of the function, and T is the new guess for a value of T.

The iterative procedure is then to choose two initial values for E_{3} and E_{4} and find the values of F_{4} and F_{3} for these values of T. Then equation (165) is used to determine a new guess of T. The value of F_{4} is then found for this new value of T using the equations for finding W_{8} given the value of T and equation (164). This procedure is continued until the value of F_{4} is within an acceptable tolerance of zero.

Portions of the preceeding analysis and figures used the methods devised by Carson (2, 3), Carson and Mann (4, 5), Peters (9), Sessions (10), and Falk (7).

SKYLINE ANALYSIS PROGRAM WITH DRAG

A computer program has been written in Basic and placed on the HP 9830 to solve this problem. This computer program is actually two separate computer programs. The first program is for entering and storing the profile data and the yarder specifications. The profile data is stored on the auxiliary cassette and the yarder specifications are stored on the main cassette along with the computer programs. Once the yarder specifications and profile data are stored on the cassette, they do not have to be reentered and when an analysis is done they can be used over and over.

The second program is for analyzing the profiles determining the allowable loads, mainline tensions, and skyline or haulback tensions. This program uses the yarder specifications and profile data previously stored on the cassettes.

Profile Input Program

This computer program consists of a mainline memory subprogram, plus ten subprograms on the special function keys 0 through 9. Figure 9 shows the special function key overlay for both programs. The descriptions above the special function keys refer to the profile input program. The descriptions below the special function keys refer to the skyline analysis program.

Figure 9. Special Function Key Overlay.

For example, special function key f_{0} is for entering data from the digitizer in the profile input program and for entering a new profile from tape in the skyline analysis program.

The mainline memory subprogram is for initializing the program and loading the special function key subprograms from tape. Special function keys f_{0} through f_{4} are for entering profile data from a contour map using the digitizer. Special function key f_{5} is for reversing a profile. Special function key f_{6} is for storing a profile once it is entered. Special function keys f_{7} and f_{8} are for entering profile data by X, Y coordinates and slope distance, percent slope data respectively. Special function key f_{g} is for entering and storing the yarder specifications that are used in the skyline analysis program with drag. The profile inputs and computer programs used for these special function key programs are essentially the same as the ones used on the Skyline Analysis Program (Sessions, 1978).

LIUE FND STAPATHG SKGLINE LOAD FRAL'TEIEURIGID LIPK FESUNFTIOND
TAFDEF EFECS -THURDEFEIFD MOBILE YRFDER

FLLOMAELE	LINE
LOAD	WEIGHT
34500	1.85
19600	1.04
6	0.06
6	0.60

EKTLIPE	34500	1. 85
MAITALTAE	19600	1. 64
HFidlemide	$\underline{\square}$	6. 60
BLACKLINE	$\underline{\square}$	日. 60

HEACSFRF: HT $=45$
FROFTLE 14
EAEEIAGE HT= TEILEFHE HT= 4G
HEADGFAR T. P. $=1 \quad 1 \quad$ TAILEFAF T. F. $=9$
IDH 'TAFD LIM= DUIT 'TAFD LIH= 1
LENGTH OF CHOKEF= s LEMGTH OF LOIS= $s=$
MIH LOD TG GFOUND CLEAFANGE $=2$
TEFEAIN FOINT STEF SIZE= 1
LIVE SKTLINE FATLOADE

TEFEHIN	HOES	MA\% LOM	EKTLITAE	NAFINLIME	CAPEIAGE	LOIS TO GROUMD
FOIMT	QIET	LOHD	TEHSIDN	TENSION	CLEFFARHE	FHGLE
2. ${ }^{\text {a }}$	207	15141	34500	1002e	8.67	3. 56
3. 8	Ses	1323	34500	8554	5. 5.1	3. 58
4. 6	581	1269	34560	5095	E. 8 e	3.58
5. 9	746	13284	34500	8445	11. 68	3. 56
E 0	847	24975	34560	14792	9. 29	E. 59
F. $\square^{\text {a }}$	997	4737	24509	1:188	9. 68	2. 58
8. 5	122	51.80	34500	P1E4	9.94	3. 55

ETFADING EFTLIAE FF'TLGADS EHEED DR F EKTLINE LENGTH OF 1S4E. 4E FT.

Figure 10. Typical Printout.

However, the programs were all slightly modified to simplify the input and storing of the profiles. Appendix 1 contains a users guide for using this program. Appendix 2 contains a copy of the program statements for this program.

Skyline Analysis Program with Log Drag

Figure 10 shows a typical printout of the output for this program. The yarder specifications and profile data are all entered from tape which was stored in the profile input program. The carriage weight, tailspar height, headspar terrain point number, tailspar terrain point number, inner yarding limit, outer yarding limit, length of the choker, length of the log, minimum log to ground clearance, and terrain point step size, were all entered in this program. The terrain point, span, maximum log load, skyline tension, mainline tension, carriage clearance, log to ground angle, and required rigging length are all output by this program.

In this program, the mainline memory subprogram initializes the program and loads the special function key programs from the cassette tape. Referring again to Figure 9, the descriptions below the special function key apply to the skyline analysis program with log drag. Special function key f_{5} enters the program inputs, analyzes the data, and prints the outputs. Once the first profile has been analyzed, special function keys f_{0} through f_{4} and f_{6} through f_{8} are used to change the inputs specified by the user which are then analyzed using special function key f_{5}. For example, after the first profile has been run using special function key f_{5}, special function keys f_{0} and f_{6} could be used to change the profile data and the carriage weight before analyizing the data using special function key f_{5} again. The yarder data, \log and choker data, log clearance
and terrain point step size would all remain the same and would not have to be input again. If all new data is required for the next analysis after the first profile is run, then special function key f_{7} would be used before using special function key f_{5} again. Special function key f_{g} just gives another listing of the profile. The profile is also listed in the profile input program. The computer programs were set up in this way to require the least amount of input.

Appendix 1 contains a users guide for using this program and Appendix 3 contains a copy of the program statements for this program.

EFFECTS OF THE PARAMETERS USED IN COMPUTING

THE ALLOWABLE LOADS AND LINE TENSIONS

Appendix 4 contains sample profiles and computer runs to demonstrate the effects of the various parameters. Figures 17 and 28 in Appendix 4 show the basic profiles and inputs. The parameters were varied from this basic data one at a time, to show the effects of the parameters. The following is a discussion of these computer outputs, and the effects of the various parameters.

Choker Angle

The smaller the choker angle (A in Figure 1), the higher the horizontal component of the force at the carriage from the choker will be $\left(\mathrm{H}_{4}\right.$ in Figures 5 and 6) and the lower the vertical component of the force at the carriage from the choker (V_{4} in Figures 5 and 6). As the horizontal component of the force increases and the vertical component of the force decreases in the choker, this causes an increase in the mainline tension and a decrease in the skyline tensions. If the skyline is limiting the allowable load, then the allowable load would increase as the choker angle decreases. However, if the mainline is limiting the allowable load, then the allowable load would decrease as the choker angle decreases. Most of the parameters discussed in the following sections affect the line tensions in this manner, by changing the choker angle and horizontal and vertical components of the force at the carriage, shifting the effects of
load from one line to the other.

Length of Log

Figures 18 and 19 show the effects of the length of the log. For this example the skyline is limiting, and a longer log causes a higher mainline tension and a higher maximum log load, a longer log causes an increase in the horizontal component of the force at the carriage, a decrease in the vertical component of the force at the carriage, and a smaller choker angle. This causes a transfer of the force from the skyline to the mainline, which allows a higher log load, if the skyline is limiting. If the mainline were limiting, a longer log would decrease the allowable load.

Log to Ground Clearance

Figures 17,20 and 21 show the effect of the \log to ground clearance (C in Figure 1). Again in this example, the skyline is always limiting and the higher the \log to ground clearance, the lower the maximum log load, and the lower the mainline tensions. Higher \log to ground clearances cause a higher vertical component of the force at the carriage, and a larger choker angle. This causes a transfer of some of the load from the mainline to the skyline and decreases the allowable load if the skyline is limiting.

Length of Choker

Figures 17 and 22 show the effects of the length of the choker. A longer choker causes a shortening of skyline in order to maintain the
minimum \log to ground clearance. In the example this caused a decrease in the maximum log load and a decrease in the mainline tensions. For a given log weight, the horizontal component and vertical component of the force in the choker at the carriage remain the same and the choker angle remains the same. For a given log weight the shorter the skyline, and less the deflection, the higher the tension in the skyline. So if the skyline is limiting, the shorter the choker length the higher the load that can be carried.

Point of Choker Attachment

In the computer program, the choker is assumed to be attached 2 feet from the end of the log. This value can easily be changed in the computer program or could easily be made an input. To change the point of choker attachment in the computer program, the value of D_{3} needs to be changed in statement number 30 . The point of choker attachment was changed from 2 feet to 14 feet from the end of the \log in the computer program and the results of the output are shown in Figure 23. Comparing Figure 17 ($\mathrm{D}_{3}=2$) and Figure $23\left(D_{3}=14\right)$, placing the choker closer to the center of the log caused a decrease in maximum load and decreased the mainline tension. The negative mainline tension at terrain point 8 , indicates the mainline would be slack at this point and the \log would slide down the hill without the assistance of the mainline. Placing the choker closer to the center of the \log causes the vertical component of the force at the carriage to increase, the horizontal component of the force in the choker at the carriage to decrease, and the choker angle to increase. If the skyline is limiting, then choking the \log closer to the center causes a
decrease in the maximum \log load. If the mainline is limiting then choking the \log closer to the center would increase the maximum log load.

Center of Gravity of the Log

In the computer program, the center of gravity of the \log is assumed to be located a distance of half the log length from the end of the log $\left(C_{8}=0.5\right)$. This value can be easily changed in the computer program by changing the value of C_{8} in program line number 85 or this value could easily be made on input. Figures 24 and 25 show an example of the effect of having the center of gravity of the $\log 0.3$ and 0.7 of the length of the \log from the end of the log. In this example, having the center of gravity closer to the end of the $\log \left(C_{8}=0.3\right)$ increased the mainline tension and caused the mainline to be limiting in some cases. Also, the maximum \log load increased because the skyline was limiting with $\mathrm{C}_{8}=0.7$. Having the center of gravity closer to the end of the $\log \left(C_{8}=0.3\right)$ caused more of the load to be taken by the mainline and less to be taken by the skyline. The closer the center of gravity of a \log is to the end of the \log, the higher the horizontal component of the force in the choker, the lower the vertical component of the force in the choker, and the smaller the choker angle. If the skyline is limiting, a higher load can be carried for a \log, with its center of gravity closer to the end of the log. If the mainline is limiting a higher \log load can be carried with a \log that has its center of gravity farther from the end of the log.

Coefficient of Friction

Values of the coefficient of friction reported in the literature have generally varied from a value of 0.5 to a value of 1.0 with a value of 0.6
for the coefficient of friction being the most commonly used value in most engineering calculations. The computer program assumes a value of $\mathrm{U}=0.6$, however, this value is very easy to change and could be made an input. Figures 17, 26 and 27 show the effect of the coefficient of friction. The coefficient of friction was 0.6 for output shown in Figure 17, 0.4 for the output shown in Figure 26 and 0.8 for the output shown in Figure 27. For the examples shown in Figures 26 and 27 , changing of the coefficient of friction from 0.4 to 0.8 did not significantly change the maximum \log loads, but did cause the mainline tensions to increase. For a log with a given one end suspension, increasing the coefficient of friction causes the choker angle to decrease and causes the tension in the choker to increase. When the skyline is limiting, the increase in load from a decreased choker angle is offset by an increase in the choker tension. When the mainline is limiting, increasing the coefficient of friction would cause an increase in the mainline tension and a decreased log load.

Terrain Point Step Size

Figures 11 and 12 show the effect of the terrain point step size. As shown in Figure 11 for a terrain point step size of 2 every second terrain point is analyzed with the carriage directly above the terrain point and for a terrain point step size of one every terrain point is analyzed. Similarly, for a terrain point step size of 3 every third terrain point would be analyzed and for a terrain point step size of 4 every fourth terrain point would be analyzed. Figure 12 shows that for a terrain point step size of $: 5(1 / 2)$ two points are analyzed between terrain
points, one with the carriage directly above the terrain point and one with the end of the \log on the next terrain point. For a terrain point step size of $.33(1 / 3)$ three points are analyzed between terrain points as shown in Figure 12. Similarly for a terrain point step size of . 25 (1/4) four points between terrain points would be analyzed and for a terrain point step size of $.20(1 / 5)$ five points between terrain point would be analyzed. The advantage in analyzing more terrain points is that the critical point for the payload is more likely found. Also, for a standing skyline analyzing more terrain points assures that the minimum line length is more accurately found.

Type of Carriage for a Running Skyline

Figures $28,29,30$, and 31 show the effect of the different types of carriages. In these examples the mainline is always limiting. The MSP carriage gave the highest log loads, the over/under wound carriage with $R_{5}=R_{6}=1.5$ the second highest loads, the over/under wound carriage with $R_{5}=R_{6}=2.0$ the third highest log loads, and the single mainline type carriages giving the lowest loads.* However, the single mainline carriage gave a higher load on a few of the terrain points with flatter or downhill slopes. For the downhill and the flatter uphill slopes, more of the log load is transferred to the haulback with a single mainline carriage, since the choker tension is not transferred directly to the mainline through a sheave or series of drums in the carriage. The MSP and over/under wound carriages are generally more efficient, since the slackpulling line carries a portion of the load. The smaller the ratios of the mainline drum
*See the section on carriage types for an explanation of R_{5} and R_{6}.

TERRFIN PGINT STEF 5!ZE $=2$

TERRAIN PGINT STEP SIZE =1

Figure ll.- Effect of Terrain Point

TERRAIN PDINT 5TEP 5IZE $=.5$

Figure 12.- Effect of Terrain Point Step Size.
diameter to the dropline and slackpulling line drum diameter (R_{5} and R_{6}), the more efficient is the over/under wound carriage and the more load the slackpulling line will carry.

COMPARISON WITH SKYLINE ANALYSIS PROGRAM

Figure 13 shows an example of the output from the Skyline Analysis Program on the HP 9830. The value input for the loaded carriage clearance to insure a specified amount of one end suspension is generally a guess. A value of 9 was used in this example because it was the average carriage clearance found using the Skyline Analysis Program with Drag (Figure 14). In the standing skyline output, the carriage clearance can greatly vary and it is generally a guess whether to use the dragging load or the flying load for the actual loads. The value for the dragging loads was determined by multiplying the flying log loads by 1.5. The Skyline Analysis Program does not determine or limit the mainline tensions. To accurately determine the mainline tension for a dragging log, the horizontal component of the force from the choker has to be used in the analysis. Figure 14 shows the output for this same profile using the Skyline Analysis Program with Drag. For the live skyline analysis, which would have a dragging load, the Skyline Analysis Program with Drag gave a lower payload for the first few terrain points since the mainline was limiting and the Skyline Analysis Program on the HP 9830 does not even check the mainline tensions. For the rest of the terrain points, the Skyline Analysis Program with Drag gave higher payloads. The negative mainline tension for terrain point 13 indicates the mainline is slack and the \log would be sliding down the hill. For the standing skyline payloads, the two programs give similar results, since the load is flying for most of the terrain points.

This example demonstrates that for a dragging log, using the fully

FLLOWAELE EKTLINE TEMEIGN= E4GBG

EKTLINE UT=	350	MAINLINE WT=	2. 34
HEACSFFR HT=	11.6	THILSFHF HT=	2
HEADGFAF: T. F. $=$	1	THILSFAR T.F. $=$	16
INW 'TAFD LIM $=$	1	OUIT SAFD LIM=	16

GFREIFGE WT=
 4606

LOAOED GFERIAISE ELEARAROE= ヨ
TEREFIN FGINT LOU LOAD ©FL' LOME LOAD GDFFGY. LINE LENGTH

2	E2313	94977	4275
3	51845	7748	4291
4	35984	56976	4290
5	2951	4436	4300
θ	2856	$42>5$	4215
7	26110	39165	4295
E	2779	4169	4243
9	25562	2ses	$4 \leq 59$
19	1506	295	42917
11	1156	17254	4295
12	11193	16796	4280
13	10945	2896	4315
1.4	1367	2019	4273
15	1059	15809	4237

```
NEW SFFF LOLHTION = E
MEM THRDER SFEE = = 
FEDO RIGGIMG LENIGTH= =
STROLDING GFTLINE FLOT= Z
```


STATION	LOES LOHO <FL')	LOİ LOHO ©0FFG\%	ELEAFPRHE
414	12594	20291	129
689	631	9496	
1242	Ese	4951	295
1056	1672	2509	217
21	811	1217	196
2485	567	85	167
2095	104E	156	143
12	2769	415	180
¢e?	7921	11882	32

Ficure 13. Outbut from the Skvline Analvsis Proaram.

＇THFDEF：EFEES－EFAIIT EU－19		
	FLLCMFELE	LIPE
	LIAPD	WEIGHT
玉ドTL INE	548016	3．50
NATHITHE	4350	E．
HFIILEFIC\％	易	E．E10
SLAITHLIPE	5	6． 60

HEFDEFHF HT＝110

LIVE GKTLINE F＇T＇LOARCS

TEEEPAIM	HORE	MF\％LOS	Er゙TIINE	MAIPLIRE	CARRIFGE	LOUS TO GELUND
FOINT	DIST	LOAD	TENSION	TEPSIOR	Elefrifrice	FNGLE
2． 9	13	47845	2865：	4360	12． 46	3． 53
3 B	225	56191	2955s	4 S 40	E． 78	3． 58
4．${ }^{\text {a }}$	397	57316	52696	4350	9.8	3.53
5.6	544	58642	E4060	4361	9．7E	3.58
E． 0°	67%	61595	6 ± 46	4 SE	9． 78	3.58
T．${ }^{\text {d }}$	E4E	4 Sc 0	E4090	21294	11． 26	3.59
8．	954	62959	E460	413 C	E． 39	3.59
	116e	G298	646016	52.21	96	3． 58
16．	1576	356	E4060	18085	e． 43	2.58
11．${ }^{\text {a }}$	2122	25169	E460 0	12474	E． 6	2． 59
12． 0	2110	19742	64010	10204	8． 86	3.59
12．${ }^{\text {a }}$	Sest	EST	64609	－690e	7． 84	2．5e
14． 0	3493	29145	64060	7121	9.95	2．5e
15．0	Sex	21901	E4060	6575	9.93	358

ETFNDTHG EKTLINE FATLOADS EAGED DN F EKTLIAE LENGTH OF 42SE 13 FT

$\begin{aligned} & \text { TEEFEIN } \\ & \text { FOIPNT } \end{aligned}$	$\begin{aligned} & \text { HORE } \\ & \text { DIET } \end{aligned}$	infe LOM LOAD	Sk＇rla IPE TENSIOR	MFIRULINE TENEION	EAREIFISE CLEASHRHE	LOIG TO GROUNAD ANHLE
2． 0	135	34174	E4060	19016	Fe．17	49.11
3． 0	2 s	2こヶ93	64860	11767	1898	65． 61
4． 9	397	12955	E4Ege	7 TET	126.36	61． 54
5.	544	18210	E4096	525	159.64	58．${ }^{\text {c }}$
E． 6	676	5081	E4604	4475	20.55	Es． 01
F．e	848	5992	E4060	375	235 5E	52． 85
8． 0	954	565	E460 0^{4}	259	2es 26	69.89
9.8	11EE	5614	64060		14．ES	Ere 60
16． 6	1596	1811	E4060	336	224． 14	E1． 81
11． 9	2132	6 E	E4060	46 C	198． 16	85． 2
12．${ }^{12}$	3110	1586	E4609	54.5	1365	72． 5
13．	251	2981	E4E60	50.5	192． 08	121． 22
14． 0	3493	4156	64600	Eces	161． 94	109．62
15． 0	Sess	21565	E460	6580	938	3.14

FEDUIEED EIGGIN LENISTH＝4593 92
Figure 14．Output from the Skyline Analysis Program with Drag．
suspended payload or using the fully suspended payload and the "rule of thumb" that a 1.5 times greater load can be dragged than flown, can result in payloads which differ by over 50 percent.

ASSUMPTIONS AND LIMITATIONS

1. The \log diameter was neglected in the analysis. For a \log which is reasonably long as compared to its width, with its choker located near the end, and the center of gravity near the center of the \log, the amount of error will be small in neglecting the log diameter. Peters (9) developed equations similar to Carson's (2) which consider the effects of the diameter. These equations could be used, only they are a little more complex and would require an additional input to the program for ${ }^{\circ}$ log diameter.
2. The cable segments were all analyzed using a rigid link analysis as an approximation to the more accurate catenary-type analysis. The error involved in using a rigid link analysis is generally small for taut cables. Since the skyline systems are analyzed using the maximum log weight, the skyline in the standing skyline and live skyline analysis is generally taut. When yarding uphill, a dragging log tends to increase the mainline tensions, so the mainline will usually be reasonably taut for a dragging log. In the running skyline analysis, all of the cables help provide lift, so all of the cables will generally be taut. The biggest possible source of error in the skyline analysis using the rigid link assumption, would be in the mainline for a fully suspended load in the standing skyline analysis or in the slackpulling line in the running skyline analysis. The cables could be analyzed using the catenary relationships or just the mainline and slackpulling line could be analyzed, using the catenary relationships to help
minimize this error. However, the catenary equations require an iterative type solution, which requires more time to compute, especially on the HP 9830, which is slower than some of the newer desk top computers. Also, an error statement could be added to the program to indicate when the rigid link assumption is in error.
3. If a haulback line is used with a standing or live skyline and has tension in it during the inhaul, it could greatly change the payloads. Mechanical slackpulling carriages and over/under wound type carriages are sometimes used in live and standing skylines. The option to use a haulback line, a mechanical slackpulling carriage and over/under wound type carriage could also be added to the program for a standing and live skyline.
4. In some situations, the tension in a line can become negative to obtain static equilibrium. When the log slides down the hill, the mainline tension becomes negative. In these situations where there is a negative tension in the lines, the loads computed will be in error. A haulback line could be added to the analysis when the mainline tension becomes negative.
5. The effects of line stretch are neglected in the analysis. This will cause some error in the standing skyline analysis.
6. The horizontal distance from the carriage to the end of the log must be less than the distance between terrain points, for a terrain point to be analyzed.
7. The maximum allowable tensions are assumed to occur at the headspar. For downhill yarding, whenever the tailspar elevation is higher than the headspar elevation, the skyline and mainline tensions may be
greater at the tailspar and the carriage than the values input for the maximum allowable tensions. For downhill yarding, an analysis procedure which uses a fully suspended load should be used.

CONCLUSIONS

The method described in this paper provides a means to determine the load carrying capacity of skylines when partial suspension of the logs is used. As shown in the example problems, the load carrying capacity of a skyline system can vary from the result obtained using log drag by over 50% when \log drag is neglected. A correction factor of 1.5 has been used in the past to determine the increase in payload for a dragging log. This correction factor only applies to the skyline and does not consider the mainline tensions. Also, this factor varies with the ground slope, length of the \log , \log to ground clearance, choker length, point of choker attachment, center of gravity of the 10 g and coefficient of friction. If the mainline tensions are to be considered in skyline analysis with a dragging \log, a factor has to be used to determine both the decrease in the vertical component of the force and the increase in the horizontal component of the force in the choker at the carriage. The best method of determining these factors is to use a log drag analysis. This paper describes one such method.

Often when determining the load carrying capacity of a skyline system, several of the parameters such as length of log, length of choker, point of choker attachment, center of gravity of the 1 og , and coefficient of friction are unknown. However, realistic estimates can usually be determined and the effect of different values for these parameters can be determined to arrive at a realistic load carrying capacity for a given skyline operating over a particular terrain.

The computer program presented is as easy to use as the Skyline Analysis Program, which does not consider log drag. If this type of analysis is considered to be too sophisticated, or it is felt that realistic estimates of the parameters cannot be found, then this type of analysis can be used as a comparison to demonstrate the difference in payloads which can occur from using a flying payload and a correction factor of 1.5 , or a flying payload for a dragging log.

APPENDIX

SKYLINE ANALYSIS PROGRAM WITH LOG DRAG USERS GUIDE*

This program inputs profile data, inputs cable system geometry, determines skyline payloads, mainline tensions, and skyline tensions including the effects of a dragging \log and the \log and ground geometry.

ASSUMPTIONS AND LIMITATIONS

1. The effects of line stretch are neglected.
2. The maximum allowable tensions are assumed to occur at the headspar. For downhill yarding, the skyline and mainline tensions may be greater at the tailspar and the carriage than the values input for the maximum allowable tensions.
3. The horizontal distance from the carriage to the end of the log must be less than the distance between terrain points, for a terrain point to be analyzed.
4. The program assumes the choker is attached 2 feet from the end of the \log and the center of gravity of the \log is located in the center of of the log.
5. The loaded cables are assumed to be rigid links. This error is generally small for taut cables. If low tensions occur an error check such as Carson's (1) HP 67 error in rigid link program should be used.

[^0]6. The minimum \log to ground distance used in the program is the distance perpendicular to the ground to the top of the front end of the \log.
7. The choker length used in the program is the distance from the carriage to the top of the log.
8. When a negative tension occurs the payload is in error.

GENERAL OPERATING NOTES

1. All data is input in response to visual prompters. If more than one piece of data is requested, the pieces of data must be separated by a comma.
2. All data is entered into the program by pressing EXECUTE. Always check the display before pressing EXECUTE; because what you see is what you get.
3. All spar locations are referenced by Terrain Point Numbers and fractions are acceptable.
4. Loads are calculated only at those points the user defines when responding to the prompter "TERRAIN POINT STEP SIZE." For example, if the user inputs "1", the payload is calculated at each terrain point between supports. For "2", every other point is calculated, for "3", every third point, and so forth.
5. Terrain data from the digitizer is entered using the method developed by Carson in PNW-31. Special Function Keys $0-4$ correspond to those functions in PNW-31. Several applicable pages from PNW-31 are attached.
6. When analysis of any profile has been completed, a new profile can be generated by pressing a Special Function Key.
7. If the user makes an input error at any time, the system will recover if the Special Function Key corresponding to the particular operation is repressed and the data re-entered as requested by the display.
8. The analysis program assumes the yarder is on the left.
9. Visual prompters requiring a "yes" or "no" answer require use of " 1 " or "0".

The Skyline Analysis Program with Drag actually consists of two separate computer programs.

The first program enters and stores profile data and yarder specifications. The profile data is stored on the auxiliary cassette, and the yarder specifications are stored on the main cassette along with the computer programs. Once the yarder specifications and profile data are stored on the cassettes they can be entered from the cassettes, and the data does not have to be re-entered when used more than once.

The second program is for analyzing the profiles, determining the allowable loads, mainline tensions, and the skyline or haulback tensions. This program uses the yarder specifications and profile data previously stored on the cassettes.

Figure A shows a copy of the special function key overlay for both of the programs. The descriptions above the special function keys refer to the profile input program. The descriptions below the special function keys refer to the skyline analysis program. For example, special function key f_{0} is for entering data from the digitizer in the profile input program and for entering a new profile from cassette tape in the Skyline Analysis Program with Drag.

Figure A.- Special Function Key Overlay.

In the profile input program, special function keys f_{0} through f_{4} are for entering profile data from a contour map using the digitizer. Special function key f_{5} is for reversing a profile. Special function key f_{6} is for storing a profile once it has been entered. Special function keys f_{7} and f_{8} are for entering profile data by X, Y coordinates and slope distance, percent slope data respectively. Special function key f_{9} is for entering and storing yarder specifications. These profile inputs and computer programs are essentially the same as the ones used in the Skyline Analysis Program (Sessions, 1978). However, the programs were all slightly modified to simplify the input and storing of the profiles.

In the Skyline Analysis Program with Drag special function key f_{5} enters the program inputs, analyzes the data, and prints the outputs. Once the first profile has been analyzed, special function keys f_{0} through f_{4} and f_{6} through f_{8} are used to change the inputs specified by the user. Once the inputs have been changed, special function key f_{5} is used to analyze the data. For example, after the first profile has been run using special function key f_{5}, special function keys f_{0} and f_{5} could be used to change the profile data and the carriage weight before analyzing the data using special function key f_{5} again. The yarder data, log and choker data, tailspar height, log clearance and terrain. point step size would all remain the same and would not have to be input again. If all new data is required for the next analysis after the first profile is run, then special function key f_{7} would be used before using special function key f_{5} again. Special function key f_{9} gives a listing of the profile data.

The following example problem demonstrates the use of this program. When entering a different profile the same general procedure should be followed.

Example

User Instructions
The following example demonstrates the use of the program.

1. Place plotter paper on the plotter, switch it "on" and engage the "chart hold" key.
2. Set the plotting limits.
3. Place the program cassette into the cassette transport on the calculator. Be absolutely certain that the front of the cassette, which is labelled, faces outward.
4. Place the data tape into the peripheral unit, switch that unit "on".
5. Press the REWIND button for that unit.
6. If terrain data is to be entered from a map, then switch on the digitizer and tape map on digitizer surface.
7. Switch the calculator and the printer "on". Press the REWIND key on the calculator.
8. Press the SCRATCH A and EXECUTE keys.
9. Press LOAD and EXECUTE keys.
10. Press RUN and EXECUTE keys.
11. All user inputs are entered by typing the input on the keyboard and pressing the EXECUTE key.
12. Continue with the procedure outlined in the following table by responding to the visual prompters with the numerical entries indicated in the middle column. The descriptions should be read for an understanding of the process.

Figure B.-Contour map.

Input Explanation for the Example Problem

VISUAL PROMPTER ON DISPLAY	KEYBOARD RESPONSE	DESCRIPTION
GO TO SPECIAL FUNCTION KEYS	f_{0}	Selects digitizer input of the profile.
MAP SCALE (FT/INCH)?	200	Enters scale of the map being used.
CONTOUR INTERVAL (FT)?	40	Enters contour interval of the map being used.
HORIZONTAL GRAPH LIMITS (FT)?	2000	Enters scale value for X-axis on plotter.
PROFILE NUMBER?	1	Enters number of profile to be plotted. The profile number must be between 1 and 100.
DIGITIZE FIRST POINT AFTER BEEP.		(DIGITIZER RESPONSE): Set origin and digitize first point on the profile.
SELECT A SLOPE AND PROCEED.	f_{3}	Executes program on function key f_{3} which anticipates downhill profile. (DIGITIZER RESPONSE): Digitize all downhill points (2 through 15).
	STOP	
	f_{2}	Executes program on function key f_{2} which anticipates level profile. (DIGITIZER RESPONSE): Digitize level section (points 16 and 17).
	STOP	
	f_{4}	Executes program on function key f_{4} which anticipates fractional contour interval.

VISUAL PROMPTER ON DISPLAY	KEYBOARD RESPONSE	DESCRIPTION
FRACTION (+FOR UPHILL; -FOR DOWN)?	+. 5	(DIGITIZER RESPONSE): Digitize next contour (point 19).
	STOP	
	f_{1}	Executes program on function key f_{1} which anticipates uphill profile. (DIGITIZER RESPONSE): Digitize remaining uphill points (points 20 and 24).
	STOP	
	f_{6}	Stores the profile in the auxiliary cassette. The profile is stored in the file corresponding to the profile number.
	f_{9}	Executes program to enter and store the yarder specifications.
YARDER NAME?	$\begin{aligned} & \text { SKAGIT } \\ & \text { BU-739 } \end{aligned}$	Enter the yarder name.
ALLOWABLE SKYLINE TENSION (LBS) :	53300	Enters the allowable skyline tension.
ALLOWABLE MAINLINE TENSION (LBS)?	34500	Enters the allowable mainline tension.
ALLOWABLE HAULBACK TENSION (LBS)?	0	Enters the allowable haulback tension.
ALLOWABLE SLACKLINE TENSION (LBS)?	0	Enters the allowable slackline tension.
SKYLINE WT (LBS/FT)?	2.89	Enters the skyline weight per foot.
MAINLINE WT (LBS/FT)?	1.85	Enters the mainline weight per foot.
HAULBACK WT (LBS/FT)?	0	Enters the haulback weight per foot.
SLACKLINE WT (LBS/FT)?	0	Enters the slackline weight per foot.
HEADSPAR HT (FT) ?	100	Enters the headspar height.
STORE YARDER IN FILE \# (4-20)?	4	Stores the yarder specifications in file 4.

VISUAL PROMPTER ON DISPLAY	KEYBOARD	DESCRIPTION
	RESPONSE	

Special function keys f_{0} through f_{9} should be used until all of the profiles and yarder specifications that are to be analyzed are entered. The next few steps enter the Skyline Analysis Program with Drag which analyzes the profiles and yarder specifications stored on the cassette tapes.

	SCRATCH A	Erases all program lines and data from the calculator memory.
	LOAD 2	Loads program from tape.
	RUN	Initializes the program.
GO TO SPECIAL FUNCTION KEY f_{5}	f_{5}	Executes the program to analyze the data.
LIVE-1, STAND-2, BOTH-3, RUN-4 SKY?	2	Selects type of skyline (3 selects both a live and standing skyline for analysis).
LOAD YARDER DATA FROM FILE \#?	4	Loads yarder data from file 4.
PROFILE NUMBER?	1	Loads the profile data from file 1.
WANT PROFILE PLOTTED?	1	Executes plotting of profile.
CARRIAGE WT (LB)?	1000	Enters the carriage weight.
TAILSPAR HT?	50	Enters the tailspar ht.
HEADSPAR T.P. \#, TAILSPAR T.P. \#	1, 24	Enters the terrain point numbers for the location of the headspar and tailspar.
WANT DATA PLOTTED?	1	Executes plotting of the data.
INNER YARD LIM, OUTER YARD LIM?	1, 24	Enters the yarding limits between which the payloads are calculated.
LENGTH OF CHOKER (FT) ?	12	Enters the length of the choker from the carriage to the top of the log.
LENGTH OF LOG (FT)?	32	Enters the length of the \log.

VISUAL PROMPTER ON DISPLAY	KEYBOARD RESPONSE	DESCRIPTION
MIN LOG TO GROUND CLEARANCE?	5	Enters the minimum clearance between the top of the front end of the 10 g and the ground.
TERRAIN POINT STEP SIZE?	1	

The program then analyzes and prints out the data. If only a portion of the data is to be changed for the next analysis, special function keys f_{0} through f_{4}, f_{6} and f_{7} can be used to change the desired information. For example, if we wanted to change the tailspar height and the carriage weight, the following steps would be used.

	f_{2}	Selects changing of the tailspar.
TAILSPAR HT?	30	Enters new tailspar height.
HEADSPAR T.P. \#, TAILSPAR T.P.\#	1, 24	Enters new spar locations.
	f_{6}	Selects changing of carriage weight.
CARRIAGE WT?	600	Enters new carriage weight.
	f_{5}	Executes analysis of the data.
LIVE-1, STANDING-2, BOTH-3, RUN-4 SKY?	2	Enters type of skyline.
WANT PROFILE PLOTTED?	1	Executes plotting of profile.
WANT DATA PLOTTED?	1	Executes plotting of data.

Figures C, D, E, and F show the outputs for this example problem.

MAF SCALE $=20$ COWTOUR INTEFWH		FEF: INOH FEET	
FROFILE NHMEER: FGINT	$\frac{1}{\operatorname{SFFN}}$	ELEW OIFF FROM	PTI
1	\square	\square	
			DOLHPHILL SLOFE
Σ	158	-46	
3	224	-80	
4	346	-120	
5	416	-160	
E	496	-260	
7	578	-249	
8	654	-280	-
9	692	-329	
16	726	- 380	
11	775	-463	
12	824	-449	
13	E56	-489	
14	9 Ec	-520	
15	10.5	-560	
			LEVEL ELOPE
16	1167	-5684	
17	1241	-569	
			FFACTIUNAL IRGFEMENT $=-20$
13	1325	-560	
			FFAETICMAL INEEEMENT $=2 \mathrm{E}$
19	1397	-560	
			UFHILL SLOFE
2 E	1485	-520	
21	1517	-4E0	
22	1549	-449	
23	1575	-489	
24	1607	-360	

EKTLINE
MFINLINE
HFHILEFHEK
SLACKLIAE

FLLGMFELE
55000
34560
0
8

LIME WEIGHT
2. 89

1. 85
E. 60
Q. 60

HEAOSFAE HT $=100$

T＇HREDER SFECS．－EKAGIT EU－TEG

	HLLOHAELE LOAD	LIME WEIGHT
EKTLINE	5 Sc	2． 89
MAINLINE	34506	1． 5
HRULLEEACK	0	日． 60
SLFICKLINE	$\underline{\square}$	6． 6.10

HEADSPAR HT $=160$

Profile 1		
CAFPRIFEE HT＝	1600	TAILSFFF：HT＝
HEADSFHE T．P．$=$	1	THILSFAR T．F．$=$
Irdd CrARD LIM＝	1	DUIT T＇AFSO LIM＝
LETGTH OF CHOKER＝	12	LENGTH OF LiGu＝
MIM LOIS TO GREDUND	CLE	
TEFRRAIM FOINT STEF	F＇SIZ	

TEFPRIN FOIHT	$\begin{aligned} & \mathrm{HOFE} \\ & \text { OIST } \end{aligned}$	MAN LOIG LOAD	EK＇LITNE TENSION	MAIRLINE TENEION	CAFPIFIE CLEARANEE	LOG TG GROURN FRGLE
2． 0	158	45977	53.606	20543	16． 20	12． 39
2． 5	224	20967	$5 E 56$	18265	27．5s	22． 59
4．${ }^{\text {a }}$	346	24981	53560	14216	2S． 02	23．15
5．$\square^{\text {a }}$	416	17990	5356	8615	56． 58	43.99
E． 6	496	14612	5350	5279	56.58	64． 64
7． 9	578	13760	5936	477	65． 59	
E．	E54	12216	53200	4424	83． 7	43.51
9． 9	69	12 ET 7	5500	427 E	113.28	4 C .36
16． 9	72 F	12もア6	53200	4161	144.13	51.34
11．${ }^{\text {a }}$	FTE		53506	4 Ca	171． 21	50.19
12．${ }^{\text {a }}$	8 c 4	12649	53509	SES1	199.2	36． 83
13． 0	85	$126 \leq 1$	5326	3063	231． 44	60.95
14． 8	9こ5	12695		3649	2548	72.3
15． 9	165	13174	5 ESW	5429	268． 25	96． 80
16．${ }^{\text {a }}$	1167	14121	5586	5296	247.76	96． 80
17．${ }^{\text {a }}$	1241	15145	5360	365	EsE． E_{1}	76． 61
130	135	16959	5356	2769	244.96	105.52
19．9	1397	1956	5356	24.5	217． 95	114．44
2 2． 9	148	2456	53560	－2455	174.94	141． 34
21．	1517	Eser	53360	－ 760	134． 6	141． 34
22． 9	1549	5］es4	53560	－6878	97.15	146.93
2 E	1575	4 A 43	5×64	-13496	61.5	141． 29

Figure D．－Output for the example problem．

Figure E.- Output for the example problem.

ETANDING EKTLINE LOAD RNFLTEIEGEIGID LIAK ASEUAFTION

TAFDEE SFECS．－SKHIIT EUM－		
	FLLOURELE LDAD	
SkiL If	5300	2． 6
	34506	1． 85
HAILEACK	E	E． 6.9
GLFICELINE	0	©． 0.0

HEADSFAF $H T=106$

FROFILE 1		
CAFERIAGE MT＝	660	TAILSF＇HR HT＝
HEADSF＇RF：T．F．＝	1	TAILSF＇HF：T．Fi，$=$
INN TAFED LIM＝	1	BUIT＇THRD LIM＝
LENTTH OF CHOKEE：	12	LEPMETH OF Linio

MIN LOG TG GROURD GLEARFRGE $=5$
TEFRAIA FOINT STEF EIZE＝ 1

TERFAIN FOIPNT	$\begin{aligned} & H O R Z \\ & D I \cong T \end{aligned}$	$\mathrm{MH} \% \mathrm{LOT}$ LUAD	EK＇TLIME TENETIDN	MAINLINE TENSION	EAFRIATE GLEAFIFRE	LOIS TO GEOUND FRGLE
2． 5	158	44573	53360	36145	1E． 20	12．39
3.4	224	30004	5350	1835	라． g^{2}	31． 50
4． 5	346	25501	5 Sc 0	1480	21． 5	20.48
5． 9	416	18T0s	5 Sc 0	9835	54．13	43.63
6	496	14521	5350	5977	47． 26	E4．E05
7．9	59	13596	5350	4792	61． 35	62.27
9． 6	654	13159	5 5 510	4.54	7e． 6 E	43． 51
9.6	692	12965	$5 \mathrm{SE0}$	4315	107． 76	4星 36
16． 0^{10}	7 SE	12 E 7	5950	4264	133． 19	51． 34
11． 9	アTE	12682	53500	4060	164． 61	519
12． 0	824	12006	$5 \mathrm{5c} 0$	3941	192． 53	58． 88
12．${ }^{\text {a }}$	556	12563	53506	2ecs	293 Es	60.98
14．${ }^{\text {a }}$	929	12645	53500	3729	246.25	72． 39
15．9	1095	13113	53569	3596	25s． 92	90． 90
18．0	1167	14645	53506	3 364	295． 9	96． 0.0
17． 9	$1 玉 41$	15649	5336	－224	29317	76.61
19． 9	1225	16S6	5356	299%	230． 85	165．5 52
19．6	1397	19 ec	$5 \leq 56$	26.47	262.76	114． 44
26． 9	1485	$24 E 43$	5296	2094	157． 3	141． 3
21． 9	1517	28143	5 SE 5	－3こ11	117． E	141． 34
22．	1543	SE495	5 SE	－E1E日	79． 8	146.96
23． 9	1575	46446	5350	－12449	43． 11	141.29

Figure F．－Output for the example Problem．

APPENDIX

PROFILE INPUT PROGRAM

There is one main program and ten subprograms in the profile input program. The following is a listing of these programs:

MAIN PROGRAM


```
EG FFIIMT
```



```
*& FFITIT
EQ LIND KEET I
70 [1=6
BQ OISF "GO TG SFEEIFL FIHNOTIONKE'\Xi";
#0 ETOF
1EG ET|E
```

```
SED G
    OL=E THEN EM
    \XiF "NE|& MFF SFECE";
IFIIT DI
OL=E THEN 1EIE
SF" "MFF EGFLE &FT,IPNHO":
|FIIT H
EF "LIDNTGILP IPTEFMFL &FT`";
|FUIT E
FFINT
#FINT "NAP SEFLE = "H" FEET FEE: IPNH"
#FIINT "GINTGLFE INTEFP"HL = "L" FEET"
FFOINT
OL=1
OISF" "FFOGFILE R|MEEFOE-GG%";
IPNFUT PNE
[I\XiF "HBFZ GFHFH LINIT&FT:";
ITFPIT F
```



```
FEH
OFFEET E. 1%%E. E. EF:%%G
FLOT 0.E, -ق
FLLGT E. E. 1
LFEEL &&, 2,1.7.0.7,11?
EFLGT G.:
LFEEL i;: E.1.7.E,TM13PE
FLOT Q.E.1
LHEEL &:, 1, 1. P. E, F,11%
EFLOT B, -こ
LAEEL ध%:1.1.F.E.F.11%"1"
GFLGT E, ב
\Xi1=EQ=E = N1=0
```



```
FEINT
```



```
LIEF "QIGITIEE FIF゙ST FGIVT HFTEF: EEEF"" .
HFIT EENG
WFITE &G,:%
ETTTEF: &.:%%1.'1
RM=$|+1
FFIRT N1, E.E 
U[N1]=5
4[41]=56004
DISF "SELECT H ELEFE FPD FFOMEEED":
ETGF
ErdC
```


PROGRAM ON $f_{1} K E Y$

```
E F1=1
T FRINT THE4G"BFHILL SLOFE"
OLITE (G):%
G ENTEF <9.*2R2.''%
\12=N1+1
晾 <=%-%1
'日 'т'`'%'2-r'1
```



```
S1=51+5
EME E:=E: + H1:+C
10 E=E1-E5
|g |[N1]=51
<30 U[ N1]=$[1]+E
L4g FRINT N1.E1,E
L5M FLOT S1, E. 2
LEG LAEEL &*, 1, 1. T. E. T,11)
1TG EFLOT -1:-2
LEG LAEEL &%,1,1.7, 6,7,11)N1
19G GFLOT 1.3
2001%1=82
21日 'r1='r'%
220 10T0 20
236 END
```

PROGRAM ON $f_{2} K E Y$

```
10 F1=0
2@ FPINT TFE:4G"LE'MEL SLGPE"
SE HFITE &G,*%
40 ENTEF: 69, +%)2.'r'
```



```
60 %=2-%1
TG 'T='r'E-'T'1
```



```
90 S1=51+5
1601 E 1=E1+F1:+C
1.1E E=E.1-E0
120 |[N1]=51
136 U[N1]=V[1]+E
140 FRINT N1. E1.E
1501 FLOT S1.E,2
1E0 LAEEL (*, 1, 1. 7, 6, 7,11)
1TG CFLGT -1.-2
1EE LFEEL {+, 1.1.7.6.7.11\N1
190 EFLGT 1.3
200 81=%2
210 'r'1='r'2
20日 BiOTG 36
205 EN[
```

```
10 H1=-1
2G FFINT THEAG"DGHNHILL ELOFE"
S@ WFITE G%:* 
4 0 ~ E M T E F ~ \& G ~ * \% M E , 4 2
56 N N = N 1 + 1
60 %=%2->1
T0
O0=51,0%4+%+4:+4%:H
90 E = =1+5
1010 E1=E1+F1:+E:
11E E=E1-EG
125 U[ MN1]=51
125 U[N1]=4[1]+E
140 FPINT R1: E1.E
15G FLOT E1, E:2
1EG LHEEL &%,1.1. ;, E, 7,11)
1FG EFLIT -1.-E
13G LHEEL &*,1.1.7.G.7.11)N1
1GE GFLIT 1. 2
2040 % =92
210 Ч1=な2
2Eg GINTG SG
2EG ERO
```

PROGRAM ON $\mathrm{I}_{4} \mathrm{KEY}$


```
EG IMFUIT F1
30 E:1=F1:NL
4E FF:INT THE4G"FREHETIGNHL IPNFEMENT="EI
EG WFITE &F, t%
6G ENTEF: &. +%XO, 'TE
FE NM=N1+1
EG %=%-41
90 'T'='T'2-'T'1
```



```
110 31=51+5
120 E1=E1+H1:+C
1ZE E=E1-EG
140 |[[M1]=51
150 }\because[||]=\because[1]+
1ES FFINT NL,E1.E
1FE FLDT E1, E Z
1ES LHEEL &+1.1. . . F, 11)
150 EFLOT -1.-2
EEG LHESL &%,1.1. F.E.F.11\N1
219 EFLOT 1: 
z-6 O1=%2
```



```
24日 B1OTD 50
ES END
```


PROGRAM ON $\mathrm{f}_{5} \mathrm{KEY}$

```
10 FINEO G
20 FOE I=1 TG N1
304 E[I]=u[I]
40 [1] [=4[I]
50 NEKT I
60 U[1]=0
70%[1] ]=W[N1]
G0 FOR I=2 TO N1
96 U1=6[N1+2-I ]-G[N1+1-T]
106 41=N[N1+2-I]-0[N1+1-I]
1.1[ U[[1]=1[[ I-1]+U1
120 v[1]=v[I-1]-4
13Q NE%T I
146 DIEF "FFOFILE NUMEER(E-99)";
150 INFIT NS
160 FOR I=\N1+1) TO 50
176 U[I]=[0
189 ध[I]=0
190 NEKT I
2GU FOR I=1 TO 50,
21E [[I,1]=U[!] ]
2こ日 2[I.2]=V[I]
25日 RENT I
24G STORE DHTA #S.NS. 2
ESM ENO
```

PROGRAM ON I6 KEY
16 FOR $I=C N+1$ ）TG 5
$20 \mathrm{H}[\mathrm{I}]=0$
36 6［ I $]=0$
46 NE K I
$5 \mathrm{FOF} I=1$ TG 50

7日 2［I，2］＝w［I］
BG NEKT I
G6 STGFE DHTA \＃5．NS， 2 16G ERD

PROGRAM ON f_{7} KEY

```
10 DIGF "FFOFILE NHEER(Q-GG)":
20 INFUT NE
3G FRINT
4E FFINA "FFOOFILE",NE
SG PRINT
GQ DISF "HORZ GEFFH LIMITCFT)";
TG INFUT NG
```



```
90 FEM
1G0 OFFSET E. 1%%G, 0. 65%%G
119 FLOT E, 日, -2
120 FLOT 0, 0, 1
120 LAEEL (%,2,1.7, 8,7,11)
14G EFLGT E,2
150 LFEEL <%,2.1.7.0,7,11)NS
1EQ PLOT G.E.1
170 LFBEL &*, 1.1. 7. ©.7.11)
18G EFLRT E, -2
130 LFBEL (*, 1.1.7.6,711)"1"
204 EFLOT Q,3
216 FFIINT "TEFRAIN"
22G FFINT " FOINT * CINED ' EDORD"
2SE PFIINT
24g 0IGF "INITIFL ETATION, INITIFL ELEV";
25E INFUT F1. HE
260 N1=1
2TG PRINT N1, F1, FE
28Q IEN1J=F1
296 4[N1]=F2
S0日 DISF "ENTER %'т";
31日 INFUT <, 'T
Seg N1=N1+1
350 U[H1]=%
34g v[N+]=''
356 HG=%-F1
305 4'9=ヶーH2
30 FRINT M1.%'t
305 LAEEL (*, 1, 1. 7, 6, 7,11)
Sg FLGT HO, %G, 2
40日 EPLOT -1,-2
419 LFEEL &*, 1, 1. 7, 6, %,11,M1
420 CFLOT 1, ב
430 GOTO 306
44ETIF
450 END
```

```
19 LIGF "FROFILE NOMEERCQ-G%`":
20 INFIIT NE
30 FFEIHT
40 FEINT "FFODFILE", NE
5 6 ~ F F I N T
EQ DISF "HORZ GEAFH LIMIT&FT";
TO IPPUIT %O
80 SCALE 0, 1. 2+%G, 0, 1. 2*%0
09 PEM
106 OFFSET E. 1*%G.6. ESN%G
110 FLOT E. E. -2
120 PLOT E. 6.1
130 LHEEL (%,2.1.7.6,7,11)
146 CFLOT G. 2
156 LAEEL <%,2,1.7.8.7,11)NE
1 0 0 ~ P L O T ~ E . ~ G . 1 ~
170 LAEEL (*: 1, 1. 7, 6. 7,11)
1BQ CFLOT 日, -2
190 LFEEL (%,1:1. F, 0, 7,11)"1"
20G EFLOT G. S
21G PRINT "TEFREAIN"
2SG FRIMT " FOINT & GODRD G GODRE ELOFE DIST * SLOFE"
20 PFEINT
246 DIEP "INITIAL STATION, INITIFL ELEW";
25G INFUIT F1, HE
250 M1=1
2T0 FRINT N1, F1. FE
200 U[N1]=F1
290 v[ &1]=R2
20日 'r'1=H2
310 %1=F1
300 DEG
3SG DISP "SLOFE DISTFNDE. PEFGENT SLOFE ";
240 IPFIIT E.P
S50 N1=N1+1
3E日 F1=HESCP),160
37日 A=ATM(F%1)
30日 &=Ew60SG%
S90 'T=5+EIN(G)
400 IF FDG THEN 420
410 Y=-%
42E %1=%1+%
43日 'r'1='1'4'r
440 |[ N1]=%1
456 リ[N1]='4
4E日 FRINT NL,%1, YL.S.F
47E HG=%1-H1
40日 !G='1-R2
496 LAEEL &*, 1, 1. 7. 1. 7.11)
SGE FLIT HE, W9,Z
S10 EFLOT -1, -2
```



```
50 CFLOT 1, E
546 GOTO SSG
550 ETGF
560 ENDD
```


PROGRARI ON f f_{9} KEY

```
10 STARNDHFD
20 DIEF "'TARDEF NAME";
30 INFUIT %:$
4 9 ~ F R I N T ~
50 FFINT ''$
60 DISF "ALLOWHELE SKYLINE TENEION(LEES";
TO INFUIT T1
EG OISF "FLLOWAELE MAINLINE TENEIOWGLES`";
90 INFUTT TZ
100 OISF "FLLOWAELE HAULEAEK TENEIONGLE'E";
110 INFIIT TZ
120 DISP "FLLOWHELLE ELFCKLIRE TENEION LEE";
13日 INFFIT TE
149 OIGP "EKTLINE HT &LESGFT)":
15G INFUTT WI
1EQ DIEP "MAIMLINE HT &LESFFT`";
170 INFUT WS
1BG DISP "HFIILEACK HT &LEE,FFT)";
190 INFUT W2
2GQ DIGP "GLFCKLINE MT &LESGFT)";
21日 INFIUT WE
22G FF:INT
2S日 FK:INT " FLLOWHELE LINE"
24G FRI&T " LOAD WEIGHT"
250 WFITE &15, 2G0%T1, H1, TE,WS
```



```
2TG HRITE 《15, 2GOT2, ME, TE, W口
```



```
290 DISF "HEADSFRF HT &FT)";
304 INFUTT HE
316 FEINT
SEQ FRINT "HEADGFHF: HT="HG
3SG DIEF "ETURE TAFOER IN FILE#(4-2G)";
346 INFUTT N
35日 STORE DHTA M
364 END
```


A P P ENDIX

SKYLINE ANALYSIS PROGRAM WITH LOG DRAG

There is one main program and ten subprograms in the Skyline Analysis Program with log drag. The following is a listing of these programs:

MAIN PROGKAM


```
30 FRINT
```



```
54 FRINT
GS LOFD KE'T S
70 11=6
GE DIEF "GO TO EFEGIAL FINOTION KE'T FE";
50 STOF
1E0 EPN
```


PROGRAM ON $f_{0} K E Y$

```
10 FI%ED E
2G DIEF "FFOFILE NUMEER";
30 IAFUST FI
4G LOHD DHTA #5, F.L.Z
50 FOF: I=1 TO 56
6日 <[I]=2[I.1]
7G Y[I]=Z[I, Z]
8G NE:T I
90 N1=1
10n FOE I=2 TO 5,4
116 IF X[[I]=6 THEN 146
120 N1=I
1SG NE:T I
140 I1=2
1SG DIEF "IO TG SFECIRL FUNOTION KE'T FS"
1EG END
```

PROGRAM ON $f_{1} K E Y$

19 DIEF "LORD 'TARDEF DATA FFOM FILE\#":
29 IPFUT FI
SG LORD DATA FI
4ब DISF "GO TO EFEGIFL FINETIGN KE't FS"
56 Eld

PROGRAM ON $\mathrm{f}_{2} \mathrm{KEY}$
10 DISF "TAILSFAR HT":
20 INFYIT HT^{7}
3 IISF "HEADSFAF T. F. \#. TAILSFAF: T. F. \#":
$4 \mathrm{~S}^{1}$ IPFUT S1. S2
56 DIGF "GUT TO SFECIFL FUNLTION KE'T FS"
ES ERID

G DISF＂LENGTH GF LGHEFT：＂；
E INPUT LZ
E［ISE＂LEPGTH OF EHDKEFEFT）＂；
6 IPAFIIT LI
0 OIEF＂GQ TQ EFEEIAL FUNETIDR KE＇T FE＂
E ENO

PROGRAM ON $f_{4} K E Y$
－DISP＂LCG TO GEGUND CLEAPRPNE＂；
SG IAFITT C
：DISP＂TEREIAR FGINT STEF EIZE＂；
HE IPAPUT SE
G DISP＂GQ TG GFECIAL FLNNTION EE＇T FE＂
㴙 END

PROGRAM ON I_{5} KEY

```
1酉 GARIDHFD
2G OEG
玉O 0-=こ
40 F=ES=6
56 RT=%
EC 144=9604040
7G U=互昌
B6 F4=1
BC E:B=6 S
GG FFIMT
10日 FRITHT
```



```
1工G IPAFUIT F:
```



```
156 EOTG 2gQ
```



```
1P日 G070 2-6
```



```
AGE GOTG 2-G
```



```
210 F4=?
2ge IF IM#0 THEN 2ed
2OG [ISF "LEIFD 'HFEDE: DHTH FFODH FILE#":
E4E IPFFIIT FI
FEG LDHE OHTA FI
Z回 FFIHT
ZTQ FCITMT "'T'HFDEF: SFER'S. -"'r'$
ZEG FRIMT " FLLQMAE:LE LINE"
2G日 FF:INT " LENE
|EITHT"
```



```
:ZG HF:ITE (15, STOTO. HE, TE, HM
```



```
4G FRINT "HEFDEFFF: HT="HE
SG IF I\##G THEN SEO
GB DIGF "PROFILE NUMEEF";
TG INFUTT F"1
SG FEINT
GG WFITE &1E, 4EGOF1
HEG FOWMAT "FFOFILE".FES
#10 IF I1#日 THEN 5ces
FGG LOHD DATA #5,FH.Z
FSG FOE I=1 TO 5G
44@ %[[I]=2[I:1]
450 T[[I]=Z[I, こ]
46@ NE%T I
470 N1=1
4E0 FOR I=天 TO 50
490 IF X[I ]=0, THEN 520
#ano N1=I
#10 NEMT I
SEQ DISP "UFNT FROFILE FLQTTED";
EEG IMFUT FS
```



```
55日 G1=G9='[1]
SGQ FGF: I=E TO N1
50E IF T'LIMIN THEN 5GQ
50% E1='r[ I]
Sge IF P[CI]CGE THEN EIE
EGG [G=t[I]
G1G NEMT I
G09 G3=FES(%[M1]-M[1])
ES G4=1. 2$03
640 B5=1. 2*40-61+156)
ES IF (8*G4,10,5)<05 THEN E00
6% B5=54%6,10.5
Grg GGTO EOG
ESQ G4=55%10. 5%%
E06 65=$[1]-64-13%)%
T00 6T=61-65-62+61-156),2
P1G EOFLE GE,GE+G4, G7:GF+GS
#g FLol <[1], '[1].1
TSG LHEEL &*, 2,1,7, 5, T,11)
T4E EFLOT Q.2
F5G LFEEL <*, 2, 1. 7, 5, 7,11)F1
GEG FLOT X[1]. Y[1].1
TFG LAEEL (+, 1, 1. 7, E, 7,11)
TE CFLOT -G. 3, -2
FG0 LFEEL (*, 1.1.7.6.7M1)"1"
```



```
BLG FOR I=E TO N1
E<G FLOT X[I ]. 'r[ I ]. 2
BGG EFLOT -1:-2
E46 LAEEL (*,1,1.7, 6, 7,11)I
BEG FLGT %[I ].'T[I ]. 1
```

```
8GG NEMT I
8TG IF II#E THEN 920
gEO DIEF "CHERIHIGE RT &LE`":
EOQ INFUIT W5
9010 dIEF "THILSFFR HT":
G1E INFUT HP
92E WFITE &15, 9300WE HF
93Q FGRMAT "CHERIHGE MT=", 2%FF. 日, E%,"THILSFHF HT=". 2%.FE.E
946 IF II=1 THEN 970
SEG DISP "HEFDSFPFR T.F.#. TAILSFRE T. F. #":
GEQ IPPUTT S1.S2
GTQ PFINT "HEADSFAF:T.F. = "GI:" THILSPAF:T.F. = "SE
GEG DISP "UFNT DHTA FLGTTED";
990 INFUT FS
```



```
1049 '1 = 'r 2+H5
1050 'T2=T4+H7
1060 L=x4-*3
1070 H=ヶ1-'r2
1086 IF FS=0 THEN 1146
1090 FLOT KE, 'r'3,1
110M FLOT %1, '1, 2
1110 FLOT S2. Y'2, z
1120 FLGT X4, 'r'4.2
1130 FLGT %1.''1.1
1140 IF II=1 THEN 1176
1150 OISF "INHER YAFD LIM OUITER THFD LIM":
1160 INFUIT SS. S4
117E FRINT "INN TAFEO LIM= "SS;" OHIT YAFD LIM= "S4
1180 IF I1#G THER 1こ3G
1190 DISF "LENGTH OF CHOKEFEFT)";
19GQ INFUIT LY
1210 OIGF "LENGTH OF LONGFT)";
1200 INFUT LZ
1220 &FITE <15, 124G)L1.LS
1240 FOFMHT "LENGTH OF GHOWEF=".F4. G. G%, "LENGTH OF LOG=",FES
1256 LZ=LS-0E
12G6 ES=L2,《Lz-CE%LZ)
1270 IF IN#G THEN 130日
12ES OISF "LOG TG GROUNO CLEFF:HWE":
12GO INFUIT C
1200 FRINT "MIN LOGG TO GROHNO GLEFF:FNEE="G
1:10 IF 11#G THEN 1340
122G [ISF "TEFERHIN FUINT STEF EIZE";
13SQ IPFUT SE
1346 FRINT "TEFERIN FOIPNT STEF SIZE="ES
1250 FI%ED 2
12EE IF R##4 THEN 15Eg
13TE OISF "MEF-1. OHL WOUND-2 S.ML. -E GAF.";
12ES IMFUT LE
1390 FS=T3
1400 [0T0 G2 OF 1410.1460. 1516
```

```
1410 FRINT "MSF T'TFE EARRIAGE"
\(1420 \quad 4=46+43\)
\(1430 \quad T=T E+T 3\)
\(1446 \mathrm{FS}=\mathrm{FE}=1\)
1450 BOTO 1596
```



```
1479 . \(4=4842\)
\(1480 \mathrm{~T}=\mathrm{TE}+\mathrm{T} \mathrm{S}\)
\(1490 \mathrm{RE}=\mathrm{F}=1.5\)
1560 GOTO 1596
1516 FFINT "SIMGLE MAINLINE T'TFE ERFRIFGE"
\(1506 \quad 4=43\)
15玉6 T=TE
1546 F:5=0
1556 F6=96060n6
156 IF Fi\# THEN 1590
15196 PRINT
15G0 FRINT "LIVE EKTLINE FATLOADS"
```



```
1610 IF WE\#\%4 THEN 162.
1E20 \% \(6=\% 6-16\)
1ES日 IF \%EATS THEN 16SQ
1E46 :5=\%
1650 IF \(55=1\) THEN 1690
\(1600 \quad 5=1\)
16T0 ST=INT(1, 55 )-1
1esa GuTa 1F16
1696 EG=INT SES
\(176 \mathrm{ET}=\mathrm{E} .1\)
1719 IF ECLE THEN 175
\(1726 \mathrm{E} 1=2 \mathrm{E} 0\)
\(175 \mathrm{~L} 4=\mathrm{C}-\mathrm{DS}\)
1746 BTO 1776
1759 L4=L
```



```
1.770 IF \(\mathrm{E}=2\) THEN 1790
1760 GQSUE T 2 O
1790 FOR \(I=I N T G S \%\) TG INTCS4+6. \(99 \%\) STEF EE
1864 SEM[I]
\(1516 \mathrm{E}=\mathrm{B} 1\)
```



```
18 S IF E+PGO THEN 1856
1846 E=96-F
```



```
\(1860 \mathrm{O}=4+\mathrm{COS}(\mathrm{F})+\mathrm{SIN}(\mathrm{F}) \mathrm{O}+\mathrm{K}\)
```



```
1960 IF \(\times 3 \times[1+1]\) THEN 2256
\(1916[1=\% 7-\%\)
\(19 \mathrm{E}[\mathrm{E}=\mathrm{E}[\mathrm{I}+1]-\mathrm{D} 1\)
```



```
\(1956 \mathrm{DE}=\mathrm{L}+0.0 \mathrm{CP}+\mathrm{E})\)
```

```
1760 0=个[ I ]-01+[5
```



```
2015 114=115
```



```
#076 0=$E-x1
ERE:004 'r'='1'1-'%
26%04 144=39606010
```



```
E11g F=F+1
2HEG [M[F]=[0
21玉采 F[F]=F
E149 S[F ]=E`
2156 ![[F]=r'`
```



```
2176 [0SUB z2%G
21E@ EMTO 2Ege
2196 lySuE 2%00
```



```
20% IF U4415 THEN ここ40
2EE4 114=115
Z4G PEST XZ
2E5 NE:TT I
2get if F=1 OF F:=4 THEN ESGS
EPE IF F## THEN ES1E
ETS IF FS=6 THEN E玉1G
2`@ FLOT MQ 'T'E. こ'
2%G FLDT $1, 't'1.1
ETMN NE=E
215 FFIMT
```



```
zESG GDEuE SF2G
```



```
FSG FDF I=1 TD F
ここGG 0=[![]
ETG F=F[ I ]
```



```
2\Xi#G Tr=%[I]
```



```
Z41日 R=E:*1-Z:0,0%)
```



```
245% 'T: B='T'1-'T'
```



```
Z4%1F CLI+LOSE1 THEN ES40
E4g E=F星-F
```



```
2515 CE=1
250 H=90
2534 G0TO 26EG
2540 05=0
2556 K-C1+SIN(90+P)(CL+LE)
2S60 E:=ATM(K7,EDE(1-K7+KT)
```



```
250日 GE=1+(UWSIN(F)-COSQF)+NE
2064 IF HESCCE-C5)< E0, THEN 2050
2010 05=06
2020 F=90-FTH(C7406)
```



```
2E40 BOTO CEES
2650 F=90-RTNCOTMCE%
2es0 GOGuE 2seg
2070 gngue 201g
EGSG RE%T I
2090 IF FS=0 THEN こTEG
2TGU FLOT ME. YE, 2
2710 PEN
2T20 15=INT(S1+1)
2ア3日 IE=INT(Se)
```



```
2750 FOF I=I5 TO (I6-1)
```



```
2TTG HENT I
2760 LS=F44+LS+E**H6+H7)
2r9g FRINT "FEQUIFED FIGGING LENGGTH="LE
28006 I1=1
2818 END
2020 K1='%O
2E日 K゙\Xi=(''-H), (L-D)
284日 F1=H1*S0RCD*D+'*'r')
```



```
20TG M=1+K2+NK2
2BE0 N=-K2+FE
```



```
250 M2=(06-C7+K1) (K1+K2)
2946 MS=k1`2-+こ`
23501 M4=1+K1-2
```



```
20101 44=6,4
SEOE IF WECG THEN 2120
```



```
2046 144=143
3054 TB=TS
```

```
    606 44=E50+014
    9701H4=1:7+1.44
```



```
    11E BGTO SEGE
    1ELTP=T1
    12g H4=C:7+6.04
    144-M=K1-a+1
    2Fg. N=-F1:+K1
```



```
S1800H3=HO+H4-H1
```



```
Z2E10 F:CTUFW
3`10 END
ここご心 K゙=ない品
```



```
ZTE M=1+K゙E*kO
ごGM N=-K゚こ+FO
```



```
K48 M2=4:+K1-彐-K2``+S
25EM M4=1+K1こ
```



```
<400 IF EO=` THEP S4GM
```



```
3430 IF AES&F4)<1G4 THEN S4GE
E446 E4=T
```



```
2480 E==E4
34E FS=F4
348& BOTG SこE日
3495 .14=47
SENG IF 4BC0 THEH SERO
EEN IF WFOE FidD WT<MB THEN SEDG
```



```
TET TB=TE
E54504=6:+6,44
SESE H4=1:7+644
```



```
SEg0 TF=Tこ
```

3610	$W 4=56+2.14$						
3629	$\mathrm{H} 4=\mathrm{C} 7+6.14$						
3630	$M=k 12+1$						
3646	$\mathrm{N}=-\mathrm{R} 1 \times+\mathrm{k} 1$						
3650							
3506		3 m					
9570	$\mathrm{HS}=2+\mathrm{HE} 2+\mathrm{H} 4-\mathrm{HI}$						
3680	TG＝HEAESCHS）＊CSERC	H3＊K1－FS	$2{ }^{-2+H 5 ゙ こ}$				
3694		$2+\mathrm{H}_{4}$ こ）	（1＋R6）＋WE				
2760	FEETUFN						
3716	ENO						
3726	FF：INT						
8756	IF R＝4 THEN 3PE日						
3740	FFEINT＂TEFERAIN HORZ	MAN LEM	GK＇L INE	MAINLINE	CAFRIAGE	Luİ	TO GFOLI
<750	GOTO ST7G						
3700	FFINT＂TEFERAIN HOEZ	Mrs：Linj	HRULEEACK	MAINLINE	CAFRIEGE	LOG	TO DROU
S77日	FRINT＂FOINT DIST	LOHD	TENSION	TENSICH	CLEARANCE		FRNGLE＂
5780	FRINT						
3790	FEETURN						
360	END						
S816	WRITE（15，3960） 09.	14．T7．TS	C1． E				
Sese	FORWHT F5．1， $2 \times$ FS． 9.	（\％FT．E． 2	¢ FT．日． $3 \times$		，5x，FP． 2		
	IF P5＝9 THEN 3929						
3840	FLOT XE，TS， 2						
3856	IF NE\＃S THEN S916						
356		IN（A）． 2					
S6P6	IFLOT－DS＊OUS（F＋E），D	SWINCF＋	． 2				
3886	1 PLOT LS：COS（F＋E），－L	WSINCF＋E	， 2				
3890							
3900	$\mathrm{NE}=6$					．	
3916	$N E=N E+1$						
3920	FEETIFN						
3930	END						

PROGRAM ON £ KEY

19 DIEF＂CAFEIAGE WT．＂：
20 IPFUIT 45
36［ISF＂GO TO EFEGIFL FUND：TION KE＇T FS＂
46 END

PROGRAM ON $f_{7} K E Y$

16 I1＝6
EG DIEP＂GO TG GFELIFL FUHETION KE＇T FE＂
S 9 ERUD

PROGRAM ON $f_{8} K E Y$

10 D1EP "INNER TARD LIM, DUTER TARD LIM";
29 IPFIIT 53,54
SG DISF "EO TO GFECIFL FUNUTION KE't FS"
46 END

PROGRAM ON f_{9} KEY

```
10 FINEO E
EQ FRINT
3E FEINT "FPOFILE"FI
4G FRINT "T. F.# X EOMRD 't EOURO";
5 G ~ F R I N T ,
EQ FOF I=1 TO N1
FG FEINT I, M[I],'TCI]
ES NEMT I
96 FRINT
IEG END
```

A P PENDIX 4

HEADGFHF HT= 45
FFOFILE 14

EAFEIAILE WT=	664	TAILSFAR HT=
HEFDEFFR T. F. $=$	1	THILSFAF: T. F. $=$
ITA ${ }^{\text {T'HRE }}$ LIM=	1	OUT 't'HFD LIM=

	C

MIN LOG TG GFOURD CLEAFRRCE $=2$
TEPEAIA FQINT GTEF SIZE= 1
LIVE EKT'LINE FA'tLDADE

TEERAIN FIINT	$\begin{aligned} & \text { HORE } \\ & D I E T \end{aligned}$	MAM LDTg LIAD	GTRINE TENEION	MAINLINE TENEIG	EAFPIFIE CLEFPRNEE	LOIS TIG GEOMRD FHGLE
2. E^{4}	E6T	15141	34500	1605E	8. 67	3. 58
3. 0	Ses	1323	34504	8554	3. 51	3. 58
4. 6	581	12609	34560	865	\% 8t	2. 58
5.	T4E	13984	34560	8448	11. E8	3. 59
E. $\square^{\text {a }}$	847	24973	24560	14759	9. 20	3.58
7. $\square^{\text {a }}$	997	4735	2456	18089	9. WE	3.59
E E	122	51290	34500	7184	9.94	35

ETAHDIMG EFTLINE FHTLOADE EHEED DM A EF'TLIAE LENGTH DF 1S4E 4E FT

TEPFAIA	HOEZ	MAX LOS	ExTLIME	MFITRIME	CAFRIPISE	LOTj TG TEO
FOINT	DIST	1080	TENSI的	TEMEICH	ELEFFRTCE	Frigle
2.0	2617	1469	24560	Fez	8.67	5. 4
3. 9	2se	F900	34569	4434	21.29	2E. 71
4. 8	581	486	24060	2149	S5. 78	57.18
C.E	T4E	4215	24564	1756	64. 69	51. 43
6.0	847	42 e	24560	1795	115	Ez. 81
7. 5	96	4611	34506	1729	154. 48	96. Ex
8.9	122	8168	34560	1852	81. 67	164. 57

FEQUTFED FIGIITG LENGTH=1FES 15

Figure 17. Basic Output.

,	fll Durele	LINE HE IIGHT
ErtLIte	34500	1. 85
MFINLINE	19600	1. 14
HFULLEACEK	6	Q. 6.4
SLFCELIME	\square	Q. 6.4

HEADEFFF: HT=4

FFOFILE 14			
CPFEIFIGE HT=	661	TAILSFPF: HT=	46
HEADSFHE T.F. $=$	1	THILSFAF: T. F. $=$	9
INH TAFEC LIH=	1	OUIT 'TAFD LIM=	9
LENGTH DF EHOKEE=	E	LEPISTH OF LIIS=	16
WIN LOE TG GFOUND	CLEF		
TEREAIN FOINT ETEP	SI		

LIWE GGTLINE FA'tOADE

TEFEHIN	HOEZ	Mre Log	Erit Ime	MFINL IAE	EAREIAIE	LOG TG Tifoumg
FGIUT	DIET	LOAR	TENEION	TENEIOH	CLEARHNEE	Fivele
2 B	207	13472	24500	8492	E. 48	7. 16
2. 0^{1}	386	11920	24564	7248	E. 41	7. 16
4.6	581	1.1420	24560	6EF9	E. 54	7. 15
5. \square^{1}	P4E	12627	34569	7412	9.56	7. 13
E. 0	847	22609	34560	1292	E. 68	7. 15
7.9	997	4069	24500	$14 E 45$	9. 18	7. 18
E. 0	122	45762	34560	5594	9.94	7. 18

 FOIN DIET LOAD TENEIOH TENEION GLEAFPROE FHGLE

2. 0	207	13162	34500	8210	E. 46	9. 08
2. 0^{4}	Tes	5901	3456	2609	21. 05	60. 76
4. 9	581	4615	2450	1691	5 5. 59	E4. 19
5.0	745	4340	34509	1743	64.40	5.1 .45
	847	4345	34504	1714	115. 26	62 01
7. 9	937	468	24506	1720	154.22	96.80
8 E	132	8 cos	24500	180	81. 51	104. 57

FEGUIFED FITGING LENITH= 17ES IE

Figure 18. Output for a Log Length of 16 Feet.

'TAFDEF EFEES - THURDEREIFD MOEILE TAFDEE

HEFOSFHE HT=45

FROFILE 14			
CAFPIFCE HT=	660	TAILSFAF HT=	46
HEADSFAR T. F. $=$	1	THILSFAR T. F. $=$	9
INA T'AFE LIM=	1	CUIT 't'HED LTM=	9
LEPGTH DF CHOUEF:=	8	LENGTH OF LOİ=	48

MIA LOG TO GEOURD CLEAFAHEE $=2$
TEFRAIP FGINT ETEF 三IZE= 1
LIVE EKTLINE FATLOADE

TEERAIN	HOES	HA\% Lins	EKTLINE	MAINALIAE	GAREIAIE	LOG TO GEOUHE
FOIPT	CIET	LOAD	TENSION	TENSIOR	CLEAFARUE	FNigle
2. $\square^{\text {a }}$	207	15650	34569	10550	3. 16	2. 29
E. ${ }^{\text {a }}$	2es	13887	34560	9625	E. 84	2. 39
4. 0	51	12934	3450	E45	9.44	2.3
5. 9	T4E	13 S 4	24560	876	13.72	2. 3
50	847	2505	34500	15674	9. 34	2. ${ }^{\text {c }}$
F.E	97	5069	34506	19478	9. 80	2. 39
E 0	122	52 56	34560	7754	9.84	2.29

-TEFEFIN FOINT	$\begin{aligned} & \text { HORE } \\ & \text { DIST } \end{aligned}$	HAS: LOT LOHD	STRINE TENEION	MAINLINE TENEIOH	CHEEIARE CLERFRNGE	LOG TG GEOURA FNGLE
2. 8	297	1514	34560	16079	9. 10	4. 22
3.8	Ses	8600	345010	516	21. 82	1E. 1
4. 0	51	5747	34560	3060	$3 \mathrm{E}-5$	55. 12
5.8	745	4262	34560	1721	E5. 27	51.49
E $\square^{\text {a }}$	847	4 CE	34569	1694	116. 15 5	52.01
F. ${ }^{\text {c }}$	G9\%	4555	54500	176	155.91	90. 69
E. 9	122	8685	34500	1856	Ex. 61	104.57

Figure 19. Output for a Log Length of 48 Feet.

'TPEDEF SFEES	-THIDNEEEIED FLLOUAEELE	MOEILE TMPDEF: LIPE
	LOAD	WEICHT
SC'TL INE	34569	1. 85
MSINL THE	19604	1. 14
HFIULEFICK	Q	6. 204
SLFCKIM INE	6	E. 8.4
HEADSF'HF: $\mathrm{HT}=$		

Frufile 14			
CAREIAIE UT=	606	TRILSFRE HT=	46
HEADSFAE T. F. $=$	1	THILSFAF: T. F. $=$	9
INN 'TAFD LIM=	1	OUT 'TAFD LIM=	9
LENGTH OF CHOEEF:	E	LEMISTH DF LOG=	E

MIN LOG TO GFOURD GLEAFRNGE= 10
TEFRHIN FQINT ETEP EIZE= 1
LIWE EGTLIHE FF'tLORDE

TEFEAIN	HOEZ	MAX	GK'TL I PE	MAINLINE	EAERIAGE	LOE TO CROUPAD
FOINT	OIST	LOHD	TEHSIDH	TENSION	CLEFPRHEE	FldGle
2. 6	207	9597	34560	5860	17. 52	13. 21
2. $\square^{\text {a }}$	386	985	-4560	545	17. 27	18. 21
4. E	581	9271	34560	585	17. 85	13. 21
5. 6	748	16453	34560	5601	21. 25	13. 21
6. 6	847	19579	34560	1606	13. 26	18. 21
7. 0	997	28098	24560	1365s	18.8	18. 21
8. ${ }^{\text {a }}$	1229	44416	5456	E408	17.63	18. 21

STANTING SKYITAE FA'TLOADE EAGED ON A EKTLINE LENGTH OF 154E. 47 FT

2. 0	29	9431	34560	554
3. 0	2es	4993	34500	2455
4. 9	581	3468	34500	1512
5.6	ア46	3227	3456	1425
E. 0	84	Eser	3456	1435
7. 9	9 F	345	34.501	1481
E. 0	122	845	3456	176

17.59	19. 94
2. 14	49.50
47.51	6.4. 19
76.64	5.1. 49
127. 28	62. 61
185	96. 60
Es. 65	104. 56

FEGUIFED EIGGING LENGTH= 1FES IE

Figure 20. Output for a 10 Foot Minimum Log to Ground Clearance.


```
HEDEF SFECE -THINDEFEIFD MOEILE TAROEF
                FLLOUGELE LINE
            LGAD WEIGHT
                        24560 1.85
                19000 1.84
                g B. 60
ELFOKIINE G G 00
TEFOSFHE:HT=45
\begin{tabular}{|c|c|c|}
\hline FROFILE 14 & & \\
\hline CAEFIFIGE MT= & 609 & THILSFAR HT= \\
\hline HEFDSFAE T. F. \(=\) & 1 & TAILSPAR T. F. \(=\) \\
\hline INA YRED LIM= & 1 & EUT 'TAFO LIM= \\
\hline LEMGTH OF EHOEEE= & E & LENIITH OF LOGI= \\
\hline
\end{tabular}
MIN LOG TO GFOHND ELEAEFNEE= ZQ
TEFRHIN FOINT STEF SIZE= 1
```

LIVE EF'TLINE FF'tLOADS

TEFERTA	HOEZ	MA\% L0IF	EFTLIME	MAINLIPE	CAFEIFIEE	LOG TO GEOURO
FGINT	QIST	LOFP	TEHETOU	TEHEID.	CLEFEPRUE	Fingle
2. 0	2 E	2465	34586	1126	36.60	55.98
3.	365	125	24500	794	57.51	ET. E8
4. 9	581	850	34569	729	7 F	64.19
E.	T4E	681	24509	794	194. 28	S1. 49
6	847	658	34560	8 Ec	155 日e	62.01
F. 0	997	751	24560	962	191.59	90. 96
E.	1222	2345	34560	123	16톤 28	104.57

Figure 21. Output for a 30 Foot Minimum Log to Ground Clearance.

TEFEHIN FOTMT	$\begin{aligned} & \text { HBEZ } \\ & O I S T \end{aligned}$	$\mathrm{MA} \mathrm{\%} \mathrm{LOH}$ LOHD	Ert'LINE TEPEION	MAINLINE TENEIOM	CAFEIFIGE GLEAFHNHE	Loti	TIG GROURD FBHLE
2. 4	207	16939	34560	ETV	19.85		5.45
2. 0	26	55.54	34509	154	25.61		27. 21
4. 0	51	E37	24560	1844	5 E 5		55. Ex
5. \square^{4}	ア46	2959	24560	155	7 Pa		ㄷ.1. 49
50	847	2 ET	34560	12E1	136.3		52. 91
P.	997	2154	34564	1417	168. 41		90. 60
9. 6	1322	5996	34500	1727	96.5		164. 57

Figure 22. Output for a 24 Foot Choker Length.

ARCER GPECE THUMDEREIFD MOEILE YHROER

	LOAD	WEITHT
ETLME	34509	1. 85
FIML IME	19609	1. 14
Fulleffek	\square	6. 6.1
LACOIPEE	\square	6. 06

EADSFHF: $H T=45$
FOFILE 14

HEFIFIGE WT=	060	THILSFAR HT=
IEAOSPRE T. F =	1	THILSFAR T.F. $=$
IRN THEO L IM=	1	DUIT T'HED LIM=
-ESTIH DF EHOEEE=	日	LENGTH OF LOIG=

MIN LOG TO BEOUNO ELEAPRPNE= 2
TEFEAIA FGINT STEF SIZE= 1

LIVE EK'tLIPE FA'tLOADE

TEFPGIM	HOFZ	MH\% LOG	ErTLINE	MAIPLIME	GAREIFIE	LIIE TG GFOURO
FOIPT	DIET	LOAD	TENEION	TENSICN	CLEAPHRIE	Fidile
2. 9	297	8179	34589	STV	9.57	3. 58
2 E	285	T24	34569	2217	9.46	2.58
4. ${ }^{\text {a }}$	591	7479	34560	3691	9.71	3.58
5. 0	T4E	9564	34509	208	11. 20	․ 58
E. 0	84	15622	34560	4827	9.31	2. 58
F. Q	957	21615	24509	4525	9. 08	2. 56
E. ${ }^{\text {a }}$	1222	24915	24509	-17E3	3. 4	3. 58

TEFERHIN FIINT	$\begin{aligned} & \text { HEFZ } \\ & \text { OIST } \end{aligned}$	MAM Ling LOAD	ETGINE TENETOH	MAINLIPE TEMEION	GAREIFGE CLEARHNGE	LOIG TO gROUND Frigle
2.0	267	815	34509	375	9. 57	5. 41
2 0	3E6	51481	34560	222	22.30	51.75
4. 5	581	4475	34500	1885	2e. 98	E4. 19
50	T4E	$4 \mathrm{EV4}$	24560	1795	E5. 90	51. 49
E. 0	847	4212	24508	1689	11E. ET	ce. 91
P. ${ }^{\text {a }}$	997	4494	24500	189	155. 59	96. Eu
ed 0	1222	730	3456	185	82.8	194.57
PEQUIFED EIGGIHG LENGTH= 17ES 1E						

Figure 23. Output for $D_{3}=15$.

$\mathrm{EADOF} \mathrm{FF}: H T=4.5$
GOFILF 14
AFEIFIEE $H T=$ THILSFRF HT= 46
EADGFHF T.F. $=1 \quad$ TFILSFRF T. F. $=9$
UH 'T'AFD LIM= DUT T'FFO LIM= $1 \quad 9$
EHGTH OF CHOGEF= \because LEMGTH OF LOIG=. 32
IN 1 OU TO GFOUHD CLEAFANGE $=2$
EEFAIA FGIHT STEF EIZE= 1
IWE EK'TLINE F'F'TGADE

$\begin{aligned} & \text { EFEIN } \\ & \text { GOIPT } \end{aligned}$	$\begin{aligned} & \text { HERE } \\ & \text { DIST } \end{aligned}$	MAR LOM LOAD	EKTLINE TENEION	MAINLINE TERETOR	DAERIFGE CLEAFTHEE	LOIS	TO GROUNO Fiblile
2. 8	207	2546	22096	1960	E. 80		3. 56
2.8	SE	2STE	34560	17719	E.E1		2. 58
4. 8	581	19937	34560	15093	7. 85		3.5
C. E_{1}	F4E	16937	34506	1312	16. 16		2. 56
E.	847	26494	25561	19680	7. 41		2.5
7. $\square^{\text {a }}$	997	41298	12E45	19606	7.15		卫. 58
8.6	1229	89344	27215	19600	9.85		3.5

EFEFHIP	HOES	MF\% LDG	Ertline	MAIRLINE	EAREIFISE	LOIS	Oupde
FGITM	DIET	LOAD	TENSIOR	TESEIOR	CLEFPAMSE		Fidice
2. 0	267	2589	34429	19650	E. 80		5. 28
3.8	286	10750	345610	E8E	19.61		24.47
4. 9	581	565	34590	Erel	E3. 20		51.19
E. 0_{0}	T4E	4542	24506	1896	EE. 13		51. 49
6	847	455	34560	17ES	113.92		E2. 01
7. $\mathrm{B}^{\text {a }}$	997	485	74569	1776	152.17		96. 69
E. 0	1322	8594	34560	1895	8 Ec 20		164.5

Figure 24. Output for $C_{8}=0.3$.

LIWE AND STANDING EK'LINE LOAO FNAL'EIEGEIGID LINK FEEUAFTIONO

HEADSFAR HT $=45$

FFOFILE 14		
CAEEIFIGE $4 \mathrm{~T}=$	664	TAILSFHR HT=
HEFROFAR T. F. $=$	1	TAILSPAF: T. P. $=$
INA T'RED LIN=	1	DIT T'FED LIM=
LEFAGTH OF CHOKEF=	3	LENGTH OF LOG=

MId LOIS TG GFEDRD CLEAEARGE= 2
TEFFAIN FGIdT ETEF EIZE= 1

LIGE EKTLIAE FH'tLOADE

 FOTHT DIET LOAD TENEIGH TENEION ELEGEANEE FNGLE

2. ${ }^{\text {a }}$	297	10923	24.569	EESE	19.69	5.44
20	3se	Eser	3456	3697	23.92	28. 68
4. \square^{4}	581	4435	34.409	1846	$37.6 E$	62.95
5. 0	745	4141	34500	1688	66.59	5.1. 49
E. $0^{\text {a }}$	847	4145	34508	1654	117. 2	E2. 6
7. 4	997	4426	2450	1682	156. 23	90. 610
E. 6	1222	7897	24500	185	E2. 78	104. 57

FEDUTEE FIGIIUG LENGTH=1765. 16

Figure 25. Output for $C_{8}=0.7$.

Figure 26. Output for $\mathrm{U}=0.4$.

LIVE EK'LINE FHTLGHDE

2. 1^{1}	207	1493	24560	1691	E. 34	5.37
2.	286	7 BCO	34560	4695	29.83	26. 17
4. 9	581	4912	3450	2916	5. S4	55.95
5.9	746	485	3456	1747	64.34	51.49
E. ${ }^{\text {c }}$	847	4363	34560	1718	115. 94	62. 61
F. ${ }^{\text {P }}$	997	465	34506	1795	154. 6	96. 60
E E	1222	893	34569	164	E1. 42	164.57

FEDUIFED FIGGIMG LEPGTH=1?ES 1E

Figure 27. Output for $U=0.8$.

	flotimable	LIME
	LOAD	WEIEHT
EKTLINE	E	6. 6.9
MAIPALINE	19606	1. 14
HFDILEAHEK	19660	1. 94
SLACKL INE	19606	1. 94
HEADSFFF: HT= 50		

PFIOFILE 14				
CARE1FIEE UT=	684	TAILSFPR	$H T=$	46
HEADSFAR T. F. $=$	1	THILSF'RR	T. P. $=$	9
IRHW THEC LIM=	1	CUIT 'T'FED	LIM=	9
LEPdith of Chikee=	8	LEMISTH OF	LOIS $=$	2
	CLEA	'		
TEFPRIN FOIHT STEP	SI			
MSF T'tFE GAREIAIEE				

TERFAIN Fildet	HOEZ DIET	MAN: LOIT LOAC	HAULEACK TEMETUH	AEINLIME TENETIDN	CAREIAGE ELEAFFHICE	LOM TG GREURAD FHILE
2. 0	2 Cl	1593	1608	19609	8. 67	2. 56
3. 0	Ses	14658	17911	19600	E. 51	356
4. 9	581	1298	13961	19609	8. Eb	2. 53
5. 9	746	12769	17E12	19606	11. 83	E. 56
E. 0	847	17793	13197	19604	9.20	Z. 58
$7 . \mathrm{B}$	997	27964	11275	19606	9.6	3.58
8.0	1222	2ser	13814	19684	9.94	3.56

FEGUIFED FTIGIAG LENGTH=37E. 31

Figure 28. Output for MSP Type Carriage.

Figure 29. Output for Over/Under Wound Carriage with $R_{5}=R_{6}=1.5$.

Figure 30. Output for Over/Under Wound Carriage with $R_{5}=R_{6}=2.0$.

	fllowable LOAD	LINE WEIGHT
GKTLINE	6	E. 610
MFINLINE	19660	1. 94
HFILLEHCK	19660	1. 14
ELFEKLINE	19600	1. 14

HEADOFHF: $\mathrm{HT}=5 \mathrm{E}$

PEOFILE 14		
CAFFIPISE WT=	6 ELT	TAILSFPF: HT=
HEPDEFAF: T. F. =	1	TAILSFAF: T. F. $=$
INA 'tafe Lim=	1	OUIT T'AFD LIM $=$
LEAGTH DF CHOEEE=	E	LEPGTH OF LOIG=

MIN LOM TO GFOUND ELEFFAHAE $=\Xi$
TEFEFIN FGINT STEF SIZE= 1
EIPGLE PAIALINE T'tFE CAERIFGE

TEFEPIN	HGEz	Max Log	HAIJLEFHLK	MHINLINE	CAREIASE	LOIS	TO GEO
FOIPN	DIET	LOAD	TENSIOd	TENETON	CLEAFPFHEE		Frigle
2. 1	207	10729	12391	196010	3. 67		3.58
2.	3 E	9964	13 Sc	19680.	5. 51		3.55
4. 4	581	9624	1356:	19680	8		3.58
5. 5	746	10685	13598	19600	11. E8		3.58
E. E	847	14P62	11680	19860	9. 20		3. 58
7. E	997	2545	16080	196010	9.6		5. 53
8.	1229	41827	14096	19600	9.94		3. 5

Figure 31. Output for a Single Mainline Type Carriage.

BIBLIOGRAPHY

1. Binkley, Virgil W. and John Sessions. 1974. Chain and Board Handbook for Skyline Tension and Deflection. USDA Forest Service, Pacific Northwest Region.
2. Carson, Ward W. 1975. Analysis of Running Skyline with Drag. USDA Forest Service, Research Paper, PNW 193. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.
3. Carson, Ward W. 1975. Programs for Skyline Planning. USDA Forest Service General Technical Report, PNW-31, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.
4. Carson, Ward W. and Charles N. Mann. 1970. A Technique for the Solution of Skyline Catenary Equations. USDA Forest Service Research Paper PNW-110.
5. Carson, Ward W. and Charles N. Mann. 1971. An Analysis of Running Skyline Load Path. USDA Forest Service Research Paper PNW-120.
6. Falk, Gary D. 1979. H.P. 67 Programs for Analyzing Skyline Payloads with the Effects of Partial Suspension. Northeastern Forest Experiment Station, Morgantown, West Virginia.
7. Falk, Gary D. 1979. Personal Communications, Civil Engineer. USDA Forest Service, Northeastern Forest Experiment Station, Morgantown, West Virginia.
8. Henshaw, John Robinson. 1977. A Study of the Coefficient of Drag Resistance in Yarding Logs. A thesis submitted to Oregon State University, Corvallis, Oregon.
9. Peters, Penn. 1979. FE 560 Logging Systems Mechanics - class notes.
10. Sessions, John. 1978. Skyline Analysis Program (S.A.P.). Program Documentation. USDA Forest Service, Pacific Northwest Region.

[^0]: *Portions of the users guide were copied from the Skyline Analysis Program (SAP) documentation (Sessions, 1978).

