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1.0 INTRODUCTI ON

High strength steel (HSS) reinforcing bars are commercially available, but limited
research has been performed to justify and provide confidenits use. When used

in reinforced concrete elements, HSS reinforcing bars have the potential to provide
economic and constructability benefits. However, the lack of laboratory testing results
on the performance of HSS reinforcing bars in concrete elsngea cause for

concern. Because of this, current design code provisions, such as AASHTO LRFD
Bridge Design Specifications and ACI 318, limit the nominal yield strength of
reinforcing steel bars to 60 ksi (420 MPa) for many bridge design applications.
Previous research has reported that using nominal yield strength larger than 60 ksi
(420 MPa) in shear interfaces results in unconservative estimates of the shear
interface capacity of the specimens (Zeno 2009, Harries et al. 2012, Barbosa et al.
2017). More recent research has reported that AASHTO LRFD could potentially
increase the limit of nominal yield strength values up to 80 ksi (550 MPa), but results
were mixed and depended on other variables not tested in the original Barbosa et al.
(2017) publicabn.

1.1 OBJECTIVE OF THE RESEARCH

The objective of this research is to evaluate and define the performan&& of
reinforcing bars in shear friction applications. The thesis focuses on the use of ASTM
A706 Grade 80 (550 MPa), ASTM A615 Grade 100 (690 MPa) A8ITM A1035

Grade 120 (830 MPa) reinforcing steel bars, since these are representative of the
range of strengths expected in future bridge design and constrdatisaccessfully
implement the use of HSS reinforcement to current design provisionsrftoroeid
concrete structures, it is critical to understand and define its performance. A total of
forty-five (45) pushoff specimens were designed and tested at the Structural
Engineering Research Laboratory at Oregon State University to gain more insight

into the effects of reinforcing steel bar grade, shear interface surface preparation,



reinforcing steel bar spacing, reinforcing steel bar size, and nominal concrete strength

in concrete interface shear behavior.

1.2 OUTLINE OF THE RESEARCH REPORT

This thesis consists of seven chapters. Chapter 1 provides an introduction, objectives
of the research, and a brief description of each chapter. Chapter 2 presents a literature
review of previous research regarding shear friction theory, code reviewinggard
current design code provisions, experimental research, and research vadafell
composite beam specimens. Chapter 3 presents the experimental program and
specimen design. It provides descriptions of the test specimen dimensions,
reinforcement layai experimental test matrix, and test setup and procedures.
Chapter 4 is an overview of the materials usetthis researchncluding

specifications and standards considered for reinforcing steel bars and concrete
mixtures used. Additionally, this chaptaovides results from testing performed on
reinforcing steel bars, beyond the ones that were selected for the construction of the
pushoff test specimens, and concrete cylinders of the-péfsiest specimens that

were constructed and tested. Chapteresgnts experimental results and discussion

on the tested specimens focusing on the effects ofdtighgth reinforcing steel on

shear friction, including the influence of reinforcing steel bar grade, reinforcing steel
bar spacing, and reinforcing steel B&e. In addition, a summary of results and main
findings are provided from the results obtained for these parameters related to the
HSSreinforeement Chapter 6 presents experimental results and discussion for test
specimens focusing on the effects wifface preparation and nominal concrete

strength on shear friction. In addition, a summary of results and main findings are

provided. Finally, chapter 7 presents the main conclusions obtained.



20 LI TERATURE REVI EW

This chapter presents a review of the litera on concreteoncrete shear interface
behavior. Shear friction theory in concretancrete interfaces is presented first. A
review of the research with pusii test specimens is then presented before research
results from fulscale composite beam spmens is presented. Finally, current code

equations for predicting igervice performance are reviewed.

Shear friction is defined in thbocuments the resistance to displacement of an
interface of two elements when acted upon by a shear force. Teasaronsidered

to beparallel toa given plane at an existing or potential crack location, an interface
between dissimilar materials, an interface between two concretes cast at different
times, or the interface between different elements of the crassns@EASHTO

2015). Examplesarecorbels, bearing shoes, ledger beam bearings, and connections

between precast concrete elements (Mansur et al. 2008).

2.1 SHEAR FRICTION THEOR Y

Shear friction theory is used to predict the strength of contwatencrete intdaces

under longitudinal shear stresses. It assumes that friction arising from the roughness

of the concreteo-concrete interface controls the shear force transfer mechanism.

Figure2.1 shows the samooth model used to represent this theory. It is important to

note that shear friction theory can be applied when a relative displacement between

both concrete faces exists. Har e s et al . (2012) described s
actionodo arising from the displacement betw
an influential Birkeland and Birkeland (1966) document. This movement forces a

crack to open in the directionpendicular to the shear interface. As the crack

opening increases, the reinforcing steel will engage, thus creating a clamping force

acting perpendicularly to the shear interface.
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Figure2.1: Shear frictbn reinforcement analogy (adapted from Birkeland and Birkeland 1966)

Santos and Julio (2012) reported that the four main parameters included in the shear
friction model are adhesion (chemical bond), cohesion (aggregate interlock), friction,
and dowel actin, similar to those described in Zilch and Reinecke (2000). The
parameters that make up the shear capacity can be separated into the following three
load carrying mechanisms: (1) adhesion and cohesio2) aggregate interlock

shear frictionds, and B8) dowel action of the shear reinforcemddit,Figure2.2

shows the influence of these three kaadrying mechanisms as a function of the
relative displacement beé&n concret¢éo-concrete shear interfaces. As reported in
Santos and Julio (2012), the roughness of the concrete surface has a significant
impact on the concret®-concrete bond strength. This effect of the surface roughness
is considered in code desigguations as a combination of a cohesion coefficient and
friction coefficient. Santos and Julio (2014) reports that even though it is well known
that the load transfer mechanism in concteteoncrete interfaces depends on
cohesion, friction, and dowel &, current design codes do not consider the dowel

action mechanism.

Figure2.2: Load transfer mechanisms (adapted from Zilch and Reira}@)



As shown inFigure2.2, when the relative displacemestbetween two concrete
interfaces is low, the main load carrying mechanism is the adhesion and cohesion
between concrete interfacés, During this stagehe bond between the two concrete
surfaces is unbroken and will exhibit its highest resistance when little to no cracks are
visible across the interface. Both concrete strength and concredacrete interface
roughness are factors influencing the bontiveen these concrete surfaces. The
characteristics of the roughened concrete surface may also influence the shear

capacity.

The second load carrying mechanism showhRigure2.2 is the sheafriction

mechanism. As the relative displacement between the concrete interfaces increases,
the aggregates will interact and force the cilaeteveen the concrete surfates

increase. This causes the interface separation to fuvttlen, thus engaging the
reinforcing bars crossing the concrébeconcrete interface. The opening at the
interface generates a clamping force and increases the friction forces across the
interface. The combination of the clamping force and the effeébiedcsurface

roughness result in aggregate interlock. The strength and size of the aggredates
roughened surfaca this interface, and the clamping force provided by the

reinforcing bars are factors that will influence the magnitude of the aggregate
interlock mechanism. Harries et al. (2012) reported that the crack width across the
interface is critical in the interface shear friction behavior and that the crack width
must be large enough to cause the reinforcing steel to strain. As a result oéthis, th
crack width is directly proportional to clamping force. As crack width increases, the
cohesion generated at the interface by the roughened surface is reduced and therefore
the crack width is inversely proportional to the cohesion component of sheanfrict

Kim et al. (2010) determined that aggregate type is a critical factor influencing
aggregate interlock. The authors reported that larger aggregate interlock was observed
in concrete mixtures containing river ravel compared to concrete mixtures aagtain
limestone aggregate, for both setinsolidating concrete (SCC) and conventional
concrete (CC) mixtures. The authors reported that the friction coeffigiefasthe

CC mixtures is 0.30rigure2.3 shows the observed behavior of the crack width



normal stress relationship and the crack witttdck slip relationship for mixture
SR48/32.3, which corresponds to a-smihsolidated concre{&] mixture with river
gravel [R], 48 MPa [48] release strength, and 32.3% coarse aggregate volume. The

normal stress and crack slip increase as crack width increases.
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Figure2.3: Typical plots of measurguhrameters (Kim et al. 2010)

The last load carrying mechanism showifrigure2.2 is the shear reinforcement

dowel action. The relative displacement between congretdaces will cause the
reinforcement crossing the interface to be subjected to shear, in what is usually
referred to as dowel actioRigure 2.4 illustrates thredifferent dowel modes

described in Park and Paulay (1975): flexure, shear, and kinking. The moment
resistance of the reinforcing bar resists flexure dowel action, while the shear
resistance of the reinforcing bar resists shear dowel action. Kinkingstedeby

tensile resistance at an angle between the two plastic hinges, therefore creating both
horizontal and vertical resistance. Each of these mechanisms may require substantial

slip on the interface for the dowel action to engage significantly.
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Figure 2.4: Three mechanisms of dowel action (Park and Paulay 1975)



Walraven and Reinhardt (1981) reported that for small crack widths dowel action is
not a contributing load carrying mechanism, as can be sdegure2.5. This

indicates that cohesion and aggregate interlock are the main load carrying
mechanisms at small crack widths. However, as the contribution of aggregate
interlock is reduced due to incsag crack width, dowel action becomes the main
contributor to the interface shear strength. This is consistent with results from Zilch
and Reinecke (2000), as showrFigure2.2.
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Figure2.5: Contribution of dowel action to the total shear stress in a crack (Walraven and Reinhardt
1981)

2.2 CODE REVIEW

This section reviews the main codes used in the United States of Amehuaing
the AASHTO (2014) standard design specification, ACI-34&lesign specification,
PCI Design Handbook, and FIB Model Code 2010.



2.2.1 American Association of State Highway and Transportation
Officials (AASHTO) Design

The equations in AASHTO (201&gection 5.8.4.1 are presented in Equatiof)(2
through Equation (B). Equation (21) consists of two terms. The first term refers to
the contribution from cohesion and/or aggregatterlock through the use of a
cohesion coefficient. The second term refers to the contribution of the net normal

clamping force through a friction coefficiemt,

Vni = C'Aév 477( Af fy Pc) (2-1)

The nominal shear resistandk, shall not beyreater than the lesser of:

Vni ¢ Kl fc I Av (2'2)
Vi ¢ KA, (2-3)
In which
A, =h,L, (2-4)
Where

¢ = cohesion factor specified in Article 5.8.4.3 (ksi [MPa));

Acv = area of concrete considered todmgyaged in interface shear transfer
(in.2 [mn?));

K = friction factor specified in Article 5.8.4.3;

At = area of interface reinforcement crossing the shear pladéngim?]);

fy = yield stress of reinforcement but design value not to exceed 60 ksi (420
MPa);

Pc = permanent net compressive force normal to the shear plane; if force is
tensile, Pc is taken equal to 0.0 (kip [kN]);

bvi = interface width considered to be engaged in shear transfer (in. [mm]);

Lvi = interface length considered to be engagedh@astransfer (in. [mm]);



fc' = specified 28day compressive strength of the weaker concrete on either
side of the interface (ksi [MPa]);

K1 = fraction of concrete strength available to resist shear specified in Article
5.8.4.3;

Kz = limiting interfaceshear resistance specified in Article 5.8.4.3 (ksi
[MPa])).

Equation (22) is implemented to prevent crushing or shearing of aggregate along the
shear plane. Equation-@ is implemented to account for the sparseness of available
experimental data. AASHT(2014) states that the interface shear resistance is
limited to 60 ksi, due to an overestimation of interface shear capacity when higher

values are used, even though limited number of tests have been carried out.

AASHTO (2014) Section 5.8.4.4 requiresnanimum area of interface reinforcement

across the interface given by:

2 0'(15% (2-5)

y

Ay

Factors for Equation-2 to2-4 are listed irAASHTO (2014) Section 5.8.4.3 anid
Table2.1.

Table 2.1: Cohesion and friction factors from AASHTO Section 5.8.4.3.

. c, ksi K2, ksi
Interface Preparation (MPa) ] K1 (MPa)
Castin-place concrete slab on clean concggtder surfaces, 0.28 18
free of laitance with surface roughened to an amplitude of ( ' 1.0 | 0.30 i
. (1.93) (12.4)
in. (6.35 mm).
. o 0.40 15
Normatweight concrete placed monolithically. (2.76) 14 | 0.25 (10.3)
Normakweight concrete placed against a cleancrete surface 0.24 15
free of laitance, with surface intentionally roughened to al (1.65) 1.0 | 0.25 (1(‘) 3)
amplitude of 0.25 in. (6.35 mm). ' )
Concrete placed against a clean concrete surface, free ¢ 0.075 06 | 020 0.8
laitance, but not intentionally roughened. (0.52) ' ' (5.52)

The minimum interface shear reinforcemeit, need not exceed the lesser of the

amount determined using EquatiorgPand the amount needed to resist ¥nd3 (-
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from AASHTO 2014, Article 5.5.4.2.1) as determined udtiggiation (21). This is
intended as an overstrength factor as the minimum is waived or lowered if the shear
resistance without reinforcing steel exceeds\n33 Additionally, the minimum
reinforcement provisions specified shall also be waived for dggldérinterfaces with
surface roughened to an amplitude of 0.25 in. where the factored interface shear
stressgni of AASHTO (2014) Equation 5.8.42is less than 0.210 ksi, and all

vertical (transverse) shear reinforcement required by AASHTO (2014)eA5tig.2.5

is extended across the interface and adequately anchored in the slab.

2.2.2 American Concrete Institute (ACI) DesignSpecifications

The horizontal shear capacity specified in the American Concrete Institute (ACI) 318
14 Section 16.4.4 is presentedEquation (26) through Equation (21). Equation

(2-6) consists of two terms. The first term assumes a cohesion factor of 260 psi
multiplied by the area being investigated. The second term refers to the contribution
of the reinforcing steel to the hooiatal shear strength multiplied by a factor of 0.6,

all multiplied by the area being investigated. The requirements for a surface
intentionally roughened to 0.25 in. amplitude are based on tests discussed in Kaar et
al. (1960), Saemann and Washa (19649, ldanson (1960).

v, =1 5260 4061 §4 (2-6)
c s+

where

&= modification factor for lightweight concrete from Sectitth2.4;

fyt = specifiedyield strengthof transverseteelreinforcemen{psi [MPa])

A, = area of shear reinforcement within spacngin2 [mm?));

bv = width of shear interface (in. [mm])

S = centerto-center spacing of transverse reinforcement (in. [mm});

d =distance from the top face of the beam to the centroid of the tensile

longitudinal reinforcement (in. [mm]).
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ACI 31814 does not have a limit of 60 ksi (420 MPa) for the yield stress of
reinforcing steel, which is the case in AASHTO (2014). However, it does have an

upper limit forVan, as shown in Equation{2).

V,, ¢ 5000, (2-7)

If this limit is surpassed/nh shall be calculateder ACI 318-14 Section 22.9, shown
in Equation (28), which limitsthe yield stress of reinforcing to 60 ksi (420 MPa),
and the coefficient of frictiop determinedgerto ACI 31814 Table 22.9.4.2.

Vn = nAf fy (2'8)

In addition to the upper limit presented in Equatiof7)2a minimum area of shear
reinforcement within spacing Av,min, Shall be provided in accordance to ACI 318
Section 16.4.6, shown in Equationq}, for concrete placed against hardened
concree intentionally roughened to a full amplitude of approximately 0.25 in. and

concrete placed against hardened concrete not intentionally roughened.

(2-9)

’

A/,min = man?O?Q/ fc gf"’_s ,SG?LS 1|
y y 1

When concrete contact surfaces are clean and free of laitance, andecisngiated
against hardened concrete not intentionally roughened and minimum area of shear
reinforcement is providednnh has an upper limit as shown in Equatiorl(®.

V., ¢80h,d (2-10)

For normalweight concrete placed either monbidally or placed against an
intentionally roughened concrete surface as specified in AGIL818ection 16.4.4,

Vn shall comply with Equation ¢21).

€ 0.2fA
V. < min{(480 +O.08‘C') A (2-11)
16004

—_—>
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2.2.3 PCI Handbook

The PCI Handbook in Section 5.3.6 states that dnietion shall be calculated
according to ACI 3184 Section 22.9, as shown in EquatiofBj2In scenarios
where load reversal does not occur, the use of an effectivefsicgan coefficient

He is permitted when the concept is applied to monolithicoorcrete with roughened

surfaces.

1000/ A, .
Y,

n

m (2-12)

where

a= factor for use with lightweight concrete (see PCI Section 5.3.3);

A = area of shear reinforcement perpendicular to the assumed crack plane,
(in.2 [mn?));

M = sheatfriction coefficient (value in PCI Table 5.3.1);

Vn = nominal interface shear resistance.

2.2.4 FIB Model Code 2010

The FIB Model Code 2010 states that the main parameters determining the actual
load bearing capacity observed in tests (large scalenaaltl scale) are interface
roughness, cleanliness of surface, concrete strength and quality,
eccentricity/inclination of shear force, strong bond/macking/debonding before
testing, and ratio of reinforcement crossing the interface. The overall shistannee

results from the following main mechanisms:

- Mechanical interlocking and adhesive bonding,

- Friction due to:
- External compression forces perpendicular to the interface,
- Clamping forces due to reinforcement and/or connectors,

- Dowel action of reinfazement and/or connectors crossing the interface.
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FIB Model Code 2010 describes two indicators to quantify the surface roughness of
concrete, the mean roughness paramBigrand the mean ped&-valley height
parameteR.. Figure2.6 illustrates these concepts. The mean roughness parameter
represents the average deviation of the profile from a mean line and it is calculated as

shown in Equation (2.3)

v

) o 23 yy

0 n;

n
i=1

1! o 1)
Rn=|-0ﬁy(><) & -8
_ (2-13)
y:I_

The mean peato-valley height represents the average difference between peak and

valley measurements within a certain number of assessment lengths as shown in
Equation (214).

ar (2-14)

=
2
et
=N
BN
L
H
=
=

Figure2.6: Average roughnes&:, and mean peato-valley height R, (FIB Model Code 2010)
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The design limit for interface shear (no reinforcing steel crossing the interface):

les=C, By 1 05¢ T, (2-19)

where

Ca = coefficient for adhesive bond,

K = coefficient of friction;

n = lowest compressive stress resulting from a normal force acting on the
interface;

fcta = design value for concrete tensile strength;

fca = design value ok

If reinforcement is required tross the interface, the design limit is:

lrai =C; th/3 m 0, /ﬂ-f%(l@ anm C"o\,oa()') 28t f(yd fr; Q OC(
(2-16)

where

cr = coefficient for aggregate interlock effect at rough interfaces;

fck = characteristic value of the compressive strength of concrete;

fya = reinforcing steel tensile dggyn yield strength;

a1 = interaction coefficient for tensile force activated in the reinforcement;
a2 = interaction coefficient for flexural resistance;

} =ratio of reinforcement steel crossing the interface;

U= angle of inclination of reinforcing steelossing the interface;

bc = coefficient for the strength of the compression strut;

3 = effectiveness factor for the concrete

The surface roughness categories and coefficients are presensdaldai.2.
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Table 2.2: Coefficients for different surface roughness as presented in FIB Model Cod2010

Surface Example Ry, in. (mm) C G | a1 | @ b e
roughness P v 2 TS %P T ] fadR0 | fuCB5
very | Highpressurewater o 4| o5 |g2|05|09|05| 08 | 10
rough jetting, indented
Sand blasted, high
Rough pressure water <0.06(1.5)| 04 |01|{05|09|05 0.7
blasted, etc.
Smooth | JUntreated, slightly | 4 56 ¢ 5y 9o | 0 | 05| 1.1]04 0.6
roughened
Very Cast against steel Not 0.025! 0 o l15l03 05
smooth formwork measurable

There is a limit set on the tensile force in the reinforcement due to simultaneous
bending and/or reduced anchorage of bars, and also besteaasdailure can occur at

low slip values.

k=22 4.0 (2-17)

The ultimate shear stress resulting from different single mechanisms can be expressed

as shown in Equation {29).

2.3 EXPERIMENTAL RESEARC H

This section provides a summary of therature where shear experimental research
was conducted with pustff test specimend.able2.3 provides an overview of the
published research and identifies st experimental parameters identified by each
reference to assess interfacial shear. The table is in chronological order. A description

of each study is provided.

Hofbeck et al. (1969) investigated the shear transfer strength of reinforced concrete
specinens with and without cracking along the shear plane. The objective of the
study was to determine the influence of-prasting cracks in the shear plane on the
shear transfer strength, to determine the influence of strength, size, and arrangement
of reinforcement on the shear transfer strength, and to examine the possible
contribution of the dowel action on shear transfer strength. Test results indicated that

a preexisting crack along the shear interface increased the slip and reduced the
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ultimate shear stngth when compared with uncracked specimens. The reduction in
ultimate shear strength decreased as the reinforcement ratio increased. Additionally,
test specimens reinforced with higher strength steel bars reported higher shear
transfer strength, excefatr the specimen with the highest reinforcement ratio. The
authors concluded that shdaction theory provided a reasonable and conservative

estimate of shear transfer strength in-gracked normal weight concrete assuming

Mattock et al. (1976) tested pusHf specimens, both uncracked and-pracked,

using lightweight concrete to develop shear transfer design recommendations. The
types of aggregate used were naturally occurring gravel and sand, rounded
lightweight aggregat, crushed angular lightweight aggregate, and sanded lightweight
aggregate. Test results indicated that diagonal tension cracks in uncracked specimens
began to appeat shear stresses of 400 psi (2.76 MPa) to 700 psi (4.8 MPa). No
diagonal cracks formed in paracked specimens. The authors noted that the ultimate
shear capacity increased for larger reinforcement ratio values. The authors reported a
lower shear transfestrength for concrete specimens with lightweight aggregate when
compared with specimens containing norwaight gravel aggregate and sand

concrete mixtures.

Kahn and Mitchell (2012) tested fifty puslff specimens with uncracked, pre

cracked, and cold jot interfaces. The objective of the study was to extend the

existing provisions presented in ACI 388 to highstrength concrete. Concrete

design strengths in the specimens were 4 ksi (27.6 MPa), 7 ksi (48.3 MRal), 10

(68.9 MPa), and 14 ksi (96.5 MPayd the reinforcement ratio varied from 0.37% to
1.47%. The authors recommended the yield stfgdse taken as 60 ksi (420 MPa)

rather than using the measured yield stress. This recommendation is due to the results
of normatweight and higkstrength cacretes showing lower scatter and reaching

larger capacities when compared to the ACI 318 design equation values. The authors
concluded that the current ACI 318 provisions were conservative in estimating
interface shear strength for higtrength concretdhey recommend be taken as 60

ksi (420 MPa) to limit the slip along the smooth cracks in4sigength concrete. An

upper limit of shear stress of 20% was proposed.
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Specimen Number o Steel Yield Design
. . Bar Size, in. - Concrete
Reference size, in. of (mm) ratio, Stress, §, Strength, 6
. - y C y
(mm) specimens ], ksi (MPa) ksi (MPa)
1/8 (3.2), #2
Hofbeck et (25142 LN B ngom;“; 731 0.00% | 48.066.1 4
al. (1969) | 177 (i13M) 45 | 2:64% | (331-456) (27.6)
(#16M)
25
22x12 x 12 o, | 47.753.6
Mattock et | (oo 305x | 62 |#3@om) | 299% | (3289 (17.2),
al. (1976) | 500 379% | 3e06) 6.0
: (41.4)
69.5
thn and | 24x12x10 0.37% (479.2), 6.8
Mitchell | (610 x 305 x 50 #3 (#10M) Ta70n | g3o (46.9), 17.9
(2002) 254) (579.3) (123.4)
Scholz et
48 x 18 x 16
al. (2007)/ #4 (#13M), | 0.10%, 4.36.0
Wallenfelsz f(ljgg)x as7 26 | s meM) | 0.16% | (2033 (596414
(2006)
29.5 x 15.75 . 10.6 (73.1),
Mansur et | x 5.9 19 21'3#)5 i @ | 0.45% 43.5 (300)| 123 (848)
al. (2008) | (750 x 400 x (H10M) 2.67% | 13.8 (95.1),
150) 15.4 (106.2)
0.00%
50 x 18 x 16 #4 (#13M), o )
é%oltf)) (1270x 457 | 36 | #5(k16M), | | 60 (410)" (33';?1'227)
X 406) #6 (#19M) o0t
. 48 x 18 x 16
Trejo and #4 (#13M), o 5.97.5
Kim (2011) f(lfég)x 457 8 #5 o) | 0-10% | 62(428) | 45251 7)
615
Harries et ?fﬁgi 2118 . 43 (#10M), | 0.41%, | (424.0) 5
al. (2012) | oo #4 (#13M) | 0.75% | 140.0 (34.5)
(965.3)
Shaw and | 24x12x5.5 58
Sneed (610 x 305 X 36 #3 (#10M) 1.33% | 66.2(456)| (34 )
(2014) 140) ,
0.009%
24x12x5.5
Sneed et al, 0.013% 4.45.6
2016) (162110(; x 305 x 52 #3(HI0M) | o01706| 722(498)| (30'335)
0.022%
44 (52) x 24 645
Barbosa et | x 24 20 #4(#13M) | 0.42% | acing 4.25.2
al. (2017) | (1118 (1321) #5 (#16M) | 0.65% | (o (29.035.9)
X 610 x 610)
33x18x 12
. 0.22%
Li et al. (24) 2|72 (496) 5.07.5
X X . .
(2017) (838 x 457 16 | #5 (#16M) 043% | 140(965) | (34.551.7)
305 (610)) -OR70

*Actual yield stress not reported. Nominal yield stress stated.
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Kahn and Mitchell (2012) tested fifty puslif specimens with uncracked, pre

cracked, and cold joint interfaces. The objective of the study was to extend the
existing provisions presented in ACI 383 to highstrength concrete. Concrete

design strengths in the specimens were 4 ksi (27.6 MPa), 7 ksi (48.3 MRal), 10

(68.9 MPa), and 14 ksi (96.5 MPa), and the reinforcement ratio varied from 0.37% to
1.47%. The athors recommended the yield strdgdye taken as 60 ksi (420 MPa)
rather than using the measured yield stress. This recommendation is due to the results
of normatweight and higkstrength concretes showing lower scatter and reaching
larger capacities hen compared to the ACI 318 design equation values. The authors
concluded that the current ACI 318 provisions were conservative in estimating
interface shear strength for higtrength concrete. They recommeytde taken as 60

ksi (420 MPa) to limit thelg along the smooth cracks in higlrength concrete. An

upper limit of shear stress of 20% was proposed.

Wallenfelsz (2006) and Scholz et al. (2007) assessed the horizontal shear strength of a
deck panel to prestressed concrete beam conne€tgane2.7 provides a schematic

of the horizontal pusbff tests described in both publicatiofrsgure2.8 shows three

cases of the typical loagkrsusslip testing resultdigure2.8(a) presents the case

where the horizontal shear resistance of the shear connector is lower than the
cohesion shear resistance. The sisiprresponse is characterized by a sharp drop in
shear load after the interface cracks, followed by a sustained load ipigase 2.8(b)
presents the case where the steel shear connectors resistance is approximately equal to
the cohesion resistance. The sh&lgr response is characterized by a small dnop

shear load after cracking, followed by a sustained growth pRegee2.8(c)

presents the case where the steel shear connector resistance is higher than the
cohesion resistance. The shesdip response is characterized by an initial slope

change after cracking occurs which represents the load transferring from cohesion to
the shear connectors. The load continues to grow until peak load is reached, at which
point the shear connectors begin to yield. Results indicated that the resistance

provided by shear friction did not occur until cracking begins, which occurred when

the adhesion bond was broken. This observation led the authors to recommended
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modifications of thesurrent equation in AASHTO (2014), described in the next

section, by separating the two components.

P SLAB SPECIMEN
SHEAR CONNECTOR F'OCKET_\ l /
N J
V —> > A
I/U 103 \

(03 (o T———
/ K ’
BEAM SPECIMEN GROUTED HAUNCH
ROLLER SUPPORTS

Figure2.7: Horizontal puskoff test (Wallenfelsz 2006)

| l T [~
Il i /
| \ I i
o\ o 5 |
P — g H
= | i Zl
| |
|
| '
.ﬁqu‘:CAm- | Asfy:CA-cv Asfy:}CAA&cv
Slip Slip Slip
(b) ()

(a)
Figure2.8: Typical Loadversus Slip Plots (Wallenfelsz 2006)

Mansur et al. (2008) conducted tests on 19gpaeked pusioff specimens. The two
major parameters considered in the research were the compressive strength of the

concretef c0and the reinforcement parametefy, through the shear interfadégure
2.9 shows the typical loadeformation response of the test specimens. It is

characteized by the four (4) events shownHRigure2.9. Results indicated that an
increase in the concrete strength increased the stiffness of Branch I, increased the load

achieved in the Branch I, and also increased the peak shear stress (strength). Results
also indicated that an increase in the reinforcement paramétegenerated changes

in response similar to when the concrete strength was increased. The authors noted
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that a balanced reinforcement parameter and concrete strength parameter could be

achieved to result in higher shear resistance values.

BRANCHI  BRANCHII

E I — Loss of aggregate interlock and
subsequent dowel action contribution to
residual shear strength

Breakdown of second

order irregularities / -
overriding -~ 3: Yielding of reinforcement
- (Ultimate strength)

4: Loss of aggregate interlock
Idealized

Stiffness remains independent -
of concrete strength and
reinforcement parameter. Actual

Shear stress, v

Stiffness increases with
increasing concrete strength
and reinforcement parameter.

1:; Establishment of firm contact

Shear slip, &

Figure2.9: Response in terms of slip/separation under increasing load (Mansur et al. 2008)

Scott (2010) evaluated the accuracy of the current AASHTO LRFD provisions in
predicting horizontal shear strength of precast girdedscasin-place decks for both
normal weight and lightweight concrete. The experimental program included testing
thirty-six pushoff specimens. The tests investigated the steel reinforcement ratio and
the combination of deck and girder concrete. Froardésults of the pusbif tests,

the author concluded that the AASHTO (2007) provisions were conservative in
predicting interface horizontal shear strength for a precast concrete girder aind cast
place concrete deck. The authors noted that if higheesaltireinforcement area
crossing the shear interface were used, the strain values in the reinforcement either
right before or right after cracking were lower than with lower reinforcement area.
However, the reinforcement still reached strain levels thggested yielding. The

author noted that the modifications proposed in Wallenfelsz (2006) provided a better

fit to their test data.
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Trejo and Kim (2011) conducted 24 pust tests to assess the shear transfer
behavior of the girdehaunchdeck systems. &sults indicated that there were five
different stages of a typical failure mode, as showrignre2.10. These stages
included: (1) adhesion loss, where interfagessht constant loadoss (2)
engagement of shear key components; (3) peak load shear key fidugd4)

dowel action of connectors or beginning of sustained load; and (5) system failure.

250

g 200 | g ,

2 Adhesion Loss at (F hm)

S 150

L.; Peak Shear Force (I;m])
L

% 100F Sustained

B Shear Force (T'Sm)
= S0F

o

<

O L 1
0 005 01 015 02 025 03
Slip (in.)

Figure2.10: Typical failure mode and the plot of the system (Trejo and Kim 2011)

Harries et al. (2012) and Zeno (2009) summarized a research program developed to
study the shear interface behavior when using with-kiggngth reinforcing steel

bars across the inface. The objective of the research was to compare the behavior
of the horizontal shear capacity of specimens containing ASTM A615 and ASTM
A1035 reinforcing steel. The experimental program included-pifdlest specimens

with 60 ksi (420 MPa) and 100ik$90 MPa) reinforcing steel with reinforcement

steel ratios varying from 0.40 to 0.75%. The bar sizes were #3 (#10M) and #4 (#13M)
bars, and the concrete-concrete surface was prepared with a 1/4 in. (6.35 mm)
amplitude roughness and cleared of laitabefore the second layer was cast. Results
from the testing showed that three of the four specimens reinforced with ASTM A615
Grade 60 (420 MPa) reinforcing steel reached the design values determined per
AASHTO (2007). On the other hand, none of the speaos reinforced with ASTM
A1035 Grade 100 (690 MPa) specimens reached the design values when using 100
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ksi (690 MPa) to compute the shear capacity. However, Vyleas limited to 60 ksi
(420 MPa), the A1035 specimens did reach the design values per AAQATD.

Test results reported by Zeno (2009) indicate that the -$hewn mechanism

occurs in stages, as showrFigure2.11. The author reported that the concrete

component had the highest contribution to the load transfer mechanism before

cracking occurred. After cracking, the contribution of the reinforcingsted ar s ( fist e e
component o in the figure) increased. These
through the concrete and reinforcing steel bars of the-$hei@wn mechanisms do

not act simultaneously, as suggested by the dhieaon equation in AASITO

(2014).

Shear Load

Shear Load, kips
¥

f B i B < oncrete component
60 S — o e
| ~_ Concrere component g v S
| An Bl = —~
= - R - . z e,
gl

0.01 0.02 0.03 0.04 0032 0.06 0.07 0.08 0.09 0.10

Crack Width, in Crack Width, in,

Figure2.11: Components of shediction shear loadersuscrack width for specimens with

reinforcing steel bars consisting of (a) A615 #3 (#10M), and (b) A1035 #3 (#10M) (Zeno 2009)
Figure2.12to Figure2.15 can be used to summarize the main observations in the
researb described in Harries et al. (201B)gure2.12 shows results of shear load
versus average shear displacement. The strain measurements are gfigue in
2.14. The authors reported that the shigation capacity did not increase
considerable with the use of ASTM A1035 Grade 100 (690 MPa) reinforcing steel.
Theresearchers concluded that this occurred because the specimens reached the
ultimate load before the reinforcing steel yielded. Based on these findings, the authors
recommend the clamping force should be considered as a function of the steel

modulus rathethan the yield strength.
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Figure2.13 andFigure2.15 show the linearized rakis of shear load versus average
shear displacement behavior and strains, respective, where the three stages can be

clearly identified:

1. Stage lthis stage covers the behavior before cracking occurs. It is
characterized by a linear shear load vertesisdisplacement behavior in
all the specimens. During this stage, the applied load is resisted by the
concrete component, controlled by the coneteteoncrete bond between

the two surfaces.

2. Stage 2: thistage covers the behavior from cracking tcheng the
ultimate capacity. It is characterized by softening, observed in the change
of slope. During this stage, the applied load is resisted by the friction
originated from the interface surface roughness. Due to the low values of
strain reached in theinforcing steel bars crossing the interface, the
clamping force across the interface is still low and does not have a
considerable contribution to resisting the applied load.

3. Stage 3this stage covers the post ultimate behavior. It is charactdryzed
a sustained load carrying capacity in the ASTM A1035 Grade 100 (690
MPa) specimens. The ASTM A615 Grade 60 (420 MPa) specimens
exhibited a faster degradation of the post ultimate load carrying capacity.
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Shear Displacement, in.

Figure2.12: Shear load versus shear displacement showing the described stages of the shear friction
mechanism (Zeno 2009)
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Figure2.13: Linearization of shear load versus shear displacement showidgsbebed stages of the
shear friction mechanism (Zeno 2009)
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Figure2.14: Shear load versus average interface steel strain showing described stages of the shear
friction mechanism (Zeno 2009)

Figure2.15: Linearization of shear load versus average interface steel strain showing described stages
of the shear friction mechanism (Zeno 2009)

In summary, Harries et al. (2012) concluded that the design valuektzdcper

AASHTO (2007) were only reached by specimens reinforced with ASTM A615

Grade 60 (420 MPa) reinforcing steel. The results showed that increasing the yield

stress of the reinforcing steel did not increase the peak load capacity due to the

reinforcing bars not reaching their yielding strain before reaching the peak load, as

indicated by the strain measurements collected via strain gages. However, the peak

load did increase with a higher bar size. This was attributed to a higher interface

stiffness reulting from a higher reinforcing bar area.

































































































































































































































































































































































































































































































































